Sample records for genetic complementation studies

  1. Genetic control of the alternative pathway of complement in humans and age-related macular degeneration

    PubMed Central

    Hecker, Laura A.; Edwards, Albert O.; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H.; Brown, William L.; Issa, Peter Charbel; Scholl, Hendrik P.; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E.; Bailey, Kent R.; Oppermann, Martin

    2010-01-01

    Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues. PMID:19825847

  2. Genetics Home Reference: Fanconi anemia

    MedlinePlus

    ... D1 Genetic Testing Registry: Fanconi anemia, complementation group D2 Genetic Testing Registry: Fanconi anemia, complementation group E ... ANEMIA, COMPLEMENTATION GROUP D1 FANCONI ANEMIA, COMPLEMENTATION GROUP D2 FANCONI ANEMIA, COMPLEMENTATION GROUP E FANCONI ANEMIA, COMPLEMENTATION ...

  3. Complement dysregulation and disease: from genes and proteins to diagnostics and drugs.

    PubMed

    de Cordoba, Santiago Rodriguez; Tortajada, Agustin; Harris, Claire L; Morgan, B Paul

    2012-11-01

    During the last decade, numerous studies have associated genetic variations in complement components and regulators with a number of chronic and infectious diseases. The functional characterization of these complement protein variants, in addition to recent structural advances in understanding of the assembly, activation and regulation of the AP C3 convertase, have provided important insights into the pathogenic mechanisms involved in some of these complement related disorders. This knowledge has identified potential targets for complement inhibitory therapies which are demonstrating efficacy and generating considerable expectation in changing the natural history of these diseases. Comprehensive understanding of the genetic and non-genetic risk factors contributing to these disorders will also result in targeting of the right patient groups in a stratified medicine approach through better diagnostics and individually tailored treatments, thereby improving management of patients. Crown Copyright © 2012. Published by Elsevier GmbH. All rights reserved.

  4. Novel roles of complement in renal diseases and their therapeutic consequences.

    PubMed

    Wada, Takehiko; Nangaku, Masaomi

    2013-09-01

    The complement system functions as a part of the innate immune system. Inappropriate activation of the complement pathways has a deleterious effect on kidneys. Recent advances in complement research have provided new insights into the pathogenesis of glomerular and tubulointerstitial injury associated with complement activation. A new disease entity termed 'C3 glomerulopathy' has recently been proposed and is characterized by isolated C3 deposition in glomeruli without positive staining for immunoglobulins. Genetic and functional studies have demonstrated that several different mutations and disease variants, as well as the generation of autoantibodies, are potentially associated with its pathogenesis. The data from comprehensive analyses suggest that complement dysregulation can also be associated with hemolytic uremic syndrome and more common glomerular diseases, such as IgA nephropathy and diabetic kidney disease. In addition, animal studies utilizing genetically modified mice have begun to elucidate the molecular pathomechanisms associated with the complement system. From a diagnostic point of view, a noninvasive, MRI-based method for detecting C3 has recently been developed to serve as a novel tool for diagnosing complement-mediated kidney diseases. While novel therapeutic tools related to complement regulation are emerging, studies evaluating the precise roles of the complement system in kidney diseases will still be useful for developing new therapeutic approaches.

  5. [Genetic study of bacteriophage phi81. I. Isolation, study of complementation and preliminary mapping of amber-mutants of bacteriophage phi81].

    PubMed

    Sineokiĭ, S P; Pogosov, V Z; Iankovskiĭ, N K; Krylov, V N

    1976-01-01

    123 Amber mutants of lambdoid bacteriophage phi81 are isolated and distributed into 19 complementation groups. Deletion mapping made possible to locate 5 gene groups on the genetic map of bacteriophage phi81 and to determine a region of possible location of mm' sticky ends on the prophage genetic map. A gene of phage phi81 is localized, which controls the adsorption specificity, and which functional similarity to a respective gene of phage phi80 is demonstrated.

  6. Defining the genetics of thrombotic microangiopathies.

    PubMed

    Vieira-Martins, Paula; El Sissy, Carine; Bordereau, Pauline; Gruber, Aurelia; Rosain, Jeremie; Fremeaux-Bacchi, Veronique

    2016-04-01

    The spectrum of the thrombotic microangiopathies (TMA) encompasses a heterogeneous group of disorders with hereditary and acquired forms. Endothelial cell injury in the microvasculature is common to all TMAs, whatever the pathophysiological process. In this review we describe genetic mutations characteristic of certain TMAs and review their contributions to disease. Recent identification of novel pathologic mutations has been enabled by exome studies. The monogenic forms of TMA are more frequently caused by recessive alterations in von Willebrand factor cleaving protease ADAMST13, leading to congenital thrombotic thrombocytopenic purpura, or cobalamine C and DGKE genes, leading to an atypical hemolytic-uremic syndrome (aHUS)-like TMA. aHUS, whether idiopathic or linked to a known complement amplifying condition, is a TMA that primarily affects kidney function. It often results from a combination of an underlying genetic susceptibility with environmental factors activating the alternative complement pathway. Pathogenic variants in at least five complement genes coding for complement factor H (CFH) complement factor I (CFI), MCP (CD46), C3 and complement factor B (CFB) have been demonstrated to increase the risk of developing aHUS, but several more genes have been implicated. A new challenge is to separate disease-associated genetic variants from the broader background of variants or polymorphisms present in all human genomes that are rare, potentially functional, but may or may not be pathogenic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mouse genetics and proteomic analyses demonstrate a critical role for complement in a model of DHRD/ML, an inherited macular degeneration

    PubMed Central

    Garland, Donita L.; Fernandez-Godino, Rosario; Kaur, Inderjeet; Speicher, Kaye D.; Harnly, James M.; Lambris, John D.; Speicher, David W.; Pierce, Eric A.

    2014-01-01

    Macular degenerations, inherited and age related, are important causes of vision loss. Human genetic studies have suggested perturbation of the complement system is important in the pathogenesis of age-related macular degeneration. The mechanisms underlying the involvement of the complement system are not understood, although complement and inflammation have been implicated in drusen formation. Drusen are an early clinical hallmark of inherited and age-related forms of macular degeneration. We studied one of the earliest stages of macular degeneration which precedes and leads to the formation of drusen, i.e. the formation of basal deposits. The studies were done using a mouse model of the inherited macular dystrophy Doyne Honeycomb Retinal Dystrophy/Malattia Leventinese (DHRD/ML) which is caused by a p.Arg345Trp mutation in EFEMP1. The hallmark of DHRD/ML is the formation of drusen at an early age, and gene targeted Efemp1R345W/R345W mice develop extensive basal deposits. Proteomic analyses of Bruch's membrane/choroid and Bruch's membrane in the Efemp1R345W/R345W mice indicate that the basal deposits comprise normal extracellular matrix (ECM) components present in abnormal amounts. The proteomic analyses also identified significant changes in proteins with immune-related function, including complement components, in the diseased tissue samples. Genetic ablation of the complement response via generation of Efemp1R345W/R345W:C3−/− double-mutant mice inhibited the formation of basal deposits. The results demonstrate a critical role for the complement system in basal deposit formation, and suggest that complement-mediated recognition of abnormal ECM may participate in basal deposit formation in DHRD/ML and perhaps other macular degenerations. PMID:23943789

  8. Complement pathway biomarkers and age-related macular degeneration

    PubMed Central

    Gemenetzi, M; Lotery, A J

    2016-01-01

    In the age-related macular degeneration (AMD) ‘inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration. PMID:26493033

  9. THE PATHOPHYSIOLOGY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION AND THE COMPLEMENT PATHWAY AS A THERAPEUTIC TARGET

    PubMed Central

    Schmidt-Erfurth, Ursula; van Lookeren Campagne, Menno; Henry, Erin C.; Brittain, Christopher

    2017-01-01

    Purpose: Geographic atrophy (GA) is an advanced, vision-threatening form of age-related macular degeneration (AMD) affecting approximately five million individuals worldwide. To date, there are no approved therapeutics for GA treatment; however, several are in clinical trials. This review focuses on the pathophysiology of GA, particularly the role of complement cascade dysregulation and emerging therapies targeting the complement cascade. Methods: Primary literature search on PubMed for GA, complement cascade in age-related macular degeneration. ClinicalTrials.gov was searched for natural history studies in GA and clinical trials of drugs targeting the complement cascade for GA. Results: Cumulative damage to the retina by aging, environmental stress, and other factors triggers inflammation via multiple pathways, including the complement cascade. When regulatory components in these pathways are compromised, as with several GA-linked genetic risk factors in the complement cascade, chronic inflammation can ultimately lead to the retinal cell death characteristic of GA. Complement inhibition has been identified as a key candidate for therapeutic intervention, and drugs targeting the complement pathway are currently in clinical trials. Conclusion: The complement cascade is a strategic target for GA therapy. Further research, including on natural history and genetics, is crucial to expand the understanding of GA pathophysiology and identify effective therapeutic targets. PMID:27902638

  10. Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy.

    PubMed

    Katschke, Kenneth J; Xi, Hongkang; Cox, Christian; Truong, Tom; Malato, Yann; Lee, Wyne P; McKenzie, Brent; Arceo, Rommel; Tao, Jianhua; Rangell, Linda; Reichelt, Mike; Diehl, Lauri; Elstrott, Justin; Weimer, Robby M; Campagne, Menno van Lookeren

    2018-05-09

    Geographic atrophy (GA), the advanced form of dry age-related macular degeneration (AMD), is characterized by progressive loss of retinal pigment epithelium cells and photoreceptors in the setting of characteristic extracellular deposits and remains a serious unmet medical need. While genetic predisposition to AMD is dominated by polymorphisms in complement genes, it remains unclear how complement activation contributes to retinal atrophy. Here we demonstrate that complement is activated on photoreceptor outer segments (POS) in the retina peripheral to atrophic lesions associated with GA. When exposed to human serum following outer blood-retinal barrier breakdown, POS act as potent activators of the classical and alternative complement pathway. In mouse models of retinal degeneration, classical and alternative pathway complement activation on photoreceptors contributed to the loss of photoreceptor function. This was dependent on C5a-mediated recruitment of peripheral blood monocytes but independent of resident microglia. Genetic or pharmacologic inhibition of both classical and alternative complement C3 and C5 convertases was required to reduce progressive degeneration of photoreceptor rods and cones. Our study implicates systemic classical and alternative complement proteins and peripheral blood monocytes as critical effectors of localized retinal degeneration with potential relevance for the contribution of complement activation to GA.

  11. Genetic variation in CFH predicts phenytoin-induced maculopapular exanthema in European-descent patients

    PubMed Central

    McCormack, Mark; Gui, Hongsheng; Ingason, Andrés; Speed, Doug; Wright, Galen E.B.; Zhang, Eunice J.; Secolin, Rodrigo; Yasuda, Clarissa; Kwok, Maxwell; Wolking, Stefan; Becker, Felicitas; Rau, Sarah; Avbersek, Andreja; Heggeli, Kristin; Leu, Costin; Depondt, Chantal; Sills, Graeme J.; Marson, Anthony G.; Auce, Pauls; Brodie, Martin J.; Francis, Ben; Johnson, Michael R.; Koeleman, Bobby P.C.; Striano, Pasquale; Coppola, Antonietta; Zara, Federico; Kunz, Wolfram S.; Sander, Josemir W.; Lerche, Holger; Klein, Karl Martin; Weckhuysen, Sarah; Krenn, Martin; Gudmundsson, Lárus J.; Stefánsson, Kári; Krause, Roland; Shear, Neil; Ross, Colin J.D.; Delanty, Norman; Pirmohamed, Munir; Carleton, Bruce C.; Cendes, Fernando; Lopes-Cendes, Iscia; Liao, Wei-ping; O'Brien, Terence J.; Sisodiya, Sanjay M.; Cherny, Stacey; Kwan, Patrick; Baum, Larry

    2018-01-01

    Objective To characterize, among European and Han Chinese populations, the genetic predictors of maculopapular exanthema (MPE), a cutaneous adverse drug reaction common to antiepileptic drugs. Methods We conducted a case-control genome-wide association study of autosomal genotypes, including Class I and II human leukocyte antigen (HLA) alleles, in 323 cases and 1,321 drug-tolerant controls from epilepsy cohorts of northern European and Han Chinese descent. Results from each cohort were meta-analyzed. Results We report an association between a rare variant in the complement factor H–related 4 (CFHR4) gene and phenytoin-induced MPE in Europeans (p = 4.5 × 10–11; odds ratio [95% confidence interval] 7 [3.2–16]). This variant is in complete linkage disequilibrium with a missense variant (N1050Y) in the complement factor H (CFH) gene. In addition, our results reinforce the association between HLA-A*31:01 and carbamazepine hypersensitivity. We did not identify significant genetic associations with MPE among Han Chinese patients. Conclusions The identification of genetic predictors of MPE in CFHR4 and CFH, members of the complement factor H–related protein family, suggest a new link between regulation of the complement system alternative pathway and phenytoin-induced hypersensitivity in European-ancestral patients. PMID:29288229

  12. Can innate and autoimmune reactivity forecast early and advance stages of age-related macular degeneration?

    PubMed

    Adamus, Grazyna

    2017-03-01

    Age-related macular degeneration (AMD) is a major cause of central vision loss in persons over 55years of age in developed countries. AMD is a complex disease in which genetic, environmental and inflammatory factors influence its onset and progression. Elevation in serum anti-retinal autoantibodies, plasma and local activation of complement proteins of the alternative pathway, and increase in secretion of proinflammatory cytokines have been seen over the course of disease. Genetic studies of AMD patients confirmed that genetic variants affecting the alternative complement pathway have a major influence on AMD risk. Because the heterogeneity of this disease, there is no sufficient strategy to identify the disease onset and progression sole based eye examination, thus identification of reliable serological biomarkers for diagnosis, prognosis and response to treatment by sampling patient's blood is necessary. This review provides an outline of the current knowledge on possible serological (autoantibodies, complement factors, cytokines, chemokines) and related genetic biomarkers relevant to the pathology of AMD, and discusses their application for prediction of disease activity and prognosis in AMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Complementation and Genetic Recombination in Candida lipolytica

    PubMed Central

    Bassel, John; Warfei, Jean; Mortimer, Robert

    1971-01-01

    Nutritional requirements were introduced into wild-type, heterothallic strains of Candida lipolytica by exposing the cells to X rays. Complementing hybrids were recovered from mixtures of the auxotrophic strains, and genetic recombination was observed in individually isolated ascospores from the hybrid strains. PMID:5122814

  14. Genetic variation in CFH predicts phenytoin-induced maculopapular exanthema in European-descent patients.

    PubMed

    McCormack, Mark; Gui, Hongsheng; Ingason, Andrés; Speed, Doug; Wright, Galen E B; Zhang, Eunice J; Secolin, Rodrigo; Yasuda, Clarissa; Kwok, Maxwell; Wolking, Stefan; Becker, Felicitas; Rau, Sarah; Avbersek, Andreja; Heggeli, Kristin; Leu, Costin; Depondt, Chantal; Sills, Graeme J; Marson, Anthony G; Auce, Pauls; Brodie, Martin J; Francis, Ben; Johnson, Michael R; Koeleman, Bobby P C; Striano, Pasquale; Coppola, Antonietta; Zara, Federico; Kunz, Wolfram S; Sander, Josemir W; Lerche, Holger; Klein, Karl Martin; Weckhuysen, Sarah; Krenn, Martin; Gudmundsson, Lárus J; Stefánsson, Kári; Krause, Roland; Shear, Neil; Ross, Colin J D; Delanty, Norman; Pirmohamed, Munir; Carleton, Bruce C; Cendes, Fernando; Lopes-Cendes, Iscia; Liao, Wei-Ping; O'Brien, Terence J; Sisodiya, Sanjay M; Cherny, Stacey; Kwan, Patrick; Baum, Larry; Cavalleri, Gianpiero L

    2018-01-23

    To characterize, among European and Han Chinese populations, the genetic predictors of maculopapular exanthema (MPE), a cutaneous adverse drug reaction common to antiepileptic drugs. We conducted a case-control genome-wide association study of autosomal genotypes, including Class I and II human leukocyte antigen (HLA) alleles, in 323 cases and 1,321 drug-tolerant controls from epilepsy cohorts of northern European and Han Chinese descent. Results from each cohort were meta-analyzed. We report an association between a rare variant in the complement factor H-related 4 ( CFHR4 ) gene and phenytoin-induced MPE in Europeans ( p = 4.5 × 10 -11 ; odds ratio [95% confidence interval] 7 [3.2-16]). This variant is in complete linkage disequilibrium with a missense variant (N1050Y) in the complement factor H ( CFH ) gene. In addition, our results reinforce the association between HLA-A*31:01 and carbamazepine hypersensitivity. We did not identify significant genetic associations with MPE among Han Chinese patients. The identification of genetic predictors of MPE in CFHR4 and CFH, members of the complement factor H-related protein family, suggest a new link between regulation of the complement system alternative pathway and phenytoin-induced hypersensitivity in European-ancestral patients. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  15. A mutational approach for the detection of genetic factors affecting seed size in maize.

    PubMed

    Sangiorgio, Stefano; Carabelli, Laura; Gabotti, Damiano; Manzotti, Priscilla Sofia; Persico, Martina; Consonni, Gabriella; Gavazzi, Giuseppe

    2016-12-01

    Genes influencing seed size. The designation emp (empty pericarp) refers to a group of defective kernel mutants that exhibit a drastic reduction in endosperm tissue production. They allow the isolation of genes controlling seed development and affecting seed size. Nine independently isolated emp mutants have been analyzed in this study and in all cases longitudinal sections of mature seeds revealed the absence of morphogenesis in the embryo proper, an observation that correlates with their failure to germinate. Complementation tests with the nine emp mutants, crossed inter se in all pairwise combinations, identified complementing and non-complementing pairs in the F 1 progenies. Data were then validated in the F 2 /F 3 generations. Mutant chromosomal location was also established. Overall our study has identified two novel emp genes and a novel allele at the previously identified emp4 gene. The introgression of single emp mutants in a different genetic background revealed the existence of a cryptic genetic variation (CGV) recognizable as a variable increase in the endosperm tissue. The unmasking of CGV by introducing single mutants in different genetic backgrounds is the result of the interaction of the emp mutants with a suppressor that has no obvious phenotype of its own and is present in the genetic background of the inbred lines into which the emp mutants were transferred. On the basis of these results, emp mutants could be used as tools for the detection of genetic factors that enhance the amount of endosperm tissue in the maize kernel and which could thus become valuable targets to exploit in future breeding programs.

  16. Genetic Variation in Complement Component 2 of the Classical Complement Pathway is Associated with Increased Mortality and Infection: A Study of 627 Trauma Patients

    PubMed Central

    Morris, John A.; Francois, Cedric; Olson, Paul K.; Cotton, Bryan A.; Summar, Marshall; Jenkins, Judith M.; Norris, Patrick R.; Moore, Jason H.; Williams, Anna E.; McNew, Brent S.; Canter, Jeffrey A.

    2009-01-01

    Trauma is a disease of inflammation. Complement Component 2 (C2) is a protease involved in activation of complement through the classical pathway and has been implicated in a variety of chronic inflammatory diseases. We hypothesized that genetic variation in C2 (E318D) identifies a high-risk subgroup of trauma patients reflecting increased mortality and infection (Ventilator associated pneumonia: VAP). Consequently, genetic variation in C2 may stratify patient risk and illuminate underlying mechanisms for therapeutic intervention. Methods DNA samples from 702 trauma patients were genotyped for C2 E318D and linked with covariates (age: mean 42.8 years, gender: 74% male, ethnicity: 80% Caucasian, mechanism: 84% blunt, ISS: mean 25.0, admission lactate: mean 3.13 mEq/L) and outcomes: mortality 9.9% and VAP: 18.5%. VAP was defined by quantitative bronchoalveolar lavage (>104). Multivariate regression determined the relationship of genotype and covariates to risk of death and VAP. However, patients with ISS ≥ 45 were excluded from the multivariate analysis, as magnitude of injury overwhelms genetics and covariates in determining outcome. Results 52 patients (8.3%) had the high-risk heterozygous genotype, associated with a significant increase in mortality and VAP. Conclusion In 702 trauma patients, 8.3% had a high-risk genetic variation in C2 associated with increased mortality (OR=2.65) and infection (OR=2.00). This variation: 1) Identifies a previously unknown high risk group for infection and mortality; 2) Can be determined on admission; 3) May provide opportunity for early therapeutic intervention; and 4) Requires validation in a distinct cohort of patients. PMID:19430225

  17. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection

    PubMed Central

    MacDuff, Donna A; Reese, Tiffany A; Kimmey, Jacqueline M; Weiss, Leslie A; Song, Christina; Zhang, Xin; Kambal, Amal; Duan, Erning; Carrero, Javier A; Boisson, Bertrand; Laplantine, Emmanuel; Israel, Alain; Picard, Capucine; Colonna, Marco; Edelson, Brian T; Sibley, L David; Stallings, Christina L; Casanova, Jean-Laurent; Iwai, Kazuhiro; Virgin, Herbert W

    2015-01-01

    Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies. DOI: http://dx.doi.org/10.7554/eLife.04494.001 PMID:25599590

  18. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection.

    PubMed

    MacDuff, Donna A; Reese, Tiffany A; Kimmey, Jacqueline M; Weiss, Leslie A; Song, Christina; Zhang, Xin; Kambal, Amal; Duan, Erning; Carrero, Javier A; Boisson, Bertrand; Laplantine, Emmanuel; Israel, Alain; Picard, Capucine; Colonna, Marco; Edelson, Brian T; Sibley, L David; Stallings, Christina L; Casanova, Jean-Laurent; Iwai, Kazuhiro; Virgin, Herbert W

    2015-01-20

    Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies.

  19. Adherence to a Mediterranean diet, genetic susceptibility, and progression to advanced macular degeneration: a prospective cohort study.

    PubMed

    Merle, Bénédicte M J; Silver, Rachel E; Rosner, Bernard; Seddon, Johanna M

    2015-11-01

    Adherence to a Mediterranean-type diet is linked to a lower risk of mortality and chronic disease, but the association with the progression of age-related macular degeneration (AMD) and genetic susceptibility is unknown. We examined the association of adherence to the Mediterranean diet and genetic susceptibility with progression to advanced AMD. Among 2525 subjects in the AREDS (Age-Related Eye Disease Study), 1028 eyes progressed to advanced AMD over 13 y. Baseline data for demographic and behavioral covariates were collected by using questionnaires. Dietary data were collected from food-frequency questionnaires. The alternate Mediterranean diet (aMeDi) score (range: 0-9) was constructed from individual intakes of vegetables, fruit, legumes, whole grains, nuts, fish, red and processed meats, alcohol, and the ratio of monounsaturated to saturated fats. Ten genetic loci in 7 genes [complement factor H (CFH), age-related maculopathy susceptibility 2/high-temperature requirement A serine peptidase 1 (ARMS2/HTRA1), complement component 2 (C2), complement factor B (CFB), complement component 3 (C3), collagen type VIII α 1 (COL8A1), and RAD51 paralog B (RAD51B)] were examined. Survival analysis was used to assess individual eyes for associations between incident AMD and aMeDi score, as well as interaction effects between aMeDi score and genetic variation on risk of AMD. A high aMeDi score (score of 6-9) was significantly associated with a reduced risk of progression to advanced AMD after adjustment for demographic, behavioral, ocular, and genetic covariates (HR: 0.74; 95% CI: 0.61, 0.91; P-trend = 0.007). The aMeDi score was significantly associated with a lower risk of incident advanced AMD among subjects carrying the CFH Y402H nonrisk (T) allele (P-trend = 0.0004, P-interaction = 0.04). The aMeDi score was not associated with AMD among subjects who were homozygous for the risk (C) allele. Higher adherence to a Mediterranean diet was associated with reduced risk of progression to advanced AMD, which may be modified by genetic susceptibility. This trial was registered at clinicaltrials.gov as NCT00594672. © 2015 American Society for Nutrition.

  20. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis.

    PubMed

    Tüzün, Erdem; Scott, Benjamin G; Goluszko, Elzbieta; Higgs, Stephen; Christadoss, Premkumar

    2003-10-01

    Abs to acetylcholine receptor (AChR) and complement are the major constituents of pathogenic events causing neuromuscular junction destruction in both myasthenia gravis (MG) and experimental autoimmune MG (EAMG). To analyze the differential roles of the classical vs alternative complement pathways in EAMG induction, we immunized C3(-/-), C4(-/-), C3(+/-), and C4(+/-) mice and their control littermates (C3(+/+) and C4(+/+) mice) with AChR in CFA. C3(-/-) and C4(-/-) mice were resistant to disease, whereas mice heterozygous for C3 or C4 displayed intermediate susceptibility. Although C3(-/-) and C4(-/-) mice had anti-AChR Abs in their sera, anti-AChR IgG production by C3(-/-) mice was significantly suppressed. Both C3(-/-) and C4(-/-) mice had reduced levels of B cells and increased expression of apoptotis inducers (Fas ligand, CD69) and apoptotic cells in lymph nodes. Immunofluorescence studies showed that the neuromuscular junction of C3(-/-) and C4(-/-) mice lacked C3 or membrane attack complex deposits, despite having IgG deposits, thus providing in vivo evidence for the incapacity of anti-AChR IgGs to induce full-blown EAMG without the aid of complements. The data provide the first direct genetic evidence for the classical complement pathway in the induction of EAMG induced by AChR immunization. Accordingly, severe MG and other Ab- and complement-mediated diseases could be effectively treated by inhibiting C4, thus leaving the alternative complement pathway intact.

  1. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    DTIC Science & Technology

    2017-09-01

    Public Release; Distribution Unlimited The views , opinions and/or findings contained in this report are those of the author(s) and should not be...STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT: This project is designed to complement a multi ...fact progress to invasive disease (IBC), and complements our multi -institutional, NIH-funded study of genetic and epigenetic alterations of pre

  2. Evolutionary Analysis of Heterochromatin Protein Compatibility by Interspecies Complementation in Saccharomyces

    PubMed Central

    Zill, Oliver A.; Scannell, Devin R.; Kuei, Jeffrey; Sadhu, Meru; Rine, Jasper

    2012-01-01

    The genetic bases for species-specific traits are widely sought, but reliable experimental methods with which to identify functionally divergent genes are lacking. In the Saccharomyces genus, interspecies complementation tests can be used to evaluate functional conservation and divergence of biological pathways or networks. Silent information regulator (SIR) proteins in S. bayanus provide an ideal test case for this approach because they show remarkable divergence in sequence and paralog number from those found in the closely related S. cerevisiae. We identified genes required for silencing in S. bayanus using a genetic screen for silencing-defective mutants. Complementation tests in interspecies hybrids identified an evolutionarily conserved Sir-protein-based silencing machinery, as defined by two interspecies complementation groups (SIR2 and SIR3). However, recessive mutations in S. bayanus SIR4 isolated from this screen could not be complemented by S. cerevisiae SIR4, revealing species-specific functional divergence in the Sir4 protein despite conservation of the overall function of the Sir2/3/4 complex. A cladistic complementation series localized the occurrence of functional changes in SIR4 to the S. cerevisiae and S. paradoxus branches of the Saccharomyces phylogeny. Most of this functional divergence mapped to sequence changes in the Sir4 PAD. Finally, a hemizygosity modifier screen in the interspecies hybrids identified additional genes involved in S. bayanus silencing. Thus, interspecies complementation tests can be used to identify (1) mutations in genetically underexplored organisms, (2) loci that have functionally diverged between species, and (3) evolutionary events of functional consequence within a genus. PMID:22923378

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuskan, Gerald

    Jerry Tuskan of Oak Ridge National Laboratory and the DOE JGI talks about poplar trees as models for selective adaptation to an environment. This video complements a study published ahead online August 24, 2014 in Nature Genetics.

  4. Chromosomal locations of the ribosomal dna genes in shortleaf pine

    Treesearch

    Narul Islam-Faridi; M. Abdul Majik; C. Dana Nelson

    2007-01-01

    A reference karyotype (i.e., chromosome-specific description of a species' chromosomal complement) is a pre-requisite for advanced genetic and genomic studies. The Southern Institute of Forest Genetics has initiated a project to develop reference karyotypes for each of the major southern U.S. pine species, including shortleaf pine, using AT-rich chromosomal...

  5. QTL mapping for grain yield, flowering time, and stay-green traits in sorghum with genotyping-by-sequencing markers

    USDA-ARS?s Scientific Manuscript database

    Molecular breeding can complement traditional breeding approaches to achieve genetic gains in a more efficient way. In the present study, genetic mapping was conducted in a sorghum recombinant inbred line (RIL) population developed from Tx436 (a non-stay-green high food quality inbred) × 00MN7645 (a...

  6. Genetic and cytogenetic analysis of the American cherry fruit fly, Rhagoletis cingulata (Diptera: Tephritidae).

    PubMed

    Drosopoulou, Elena; Augustinos, Antonios A; Nakou, Ifigeneia; Koeppler, Kirsten; Kounatidis, Ilias; Vogt, Heidrun; Papadopoulos, Nikolaos T; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope

    2011-12-01

    The American eastern cherry fruit fly, Rhagoletis cingulata, a pest of cherries in the western hemisphere, invaded Europe in 1983, and since then dispersed to several European countries. Information on the genetics and cytogenetics of this pest is very scarce. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of R. cingulata are presented here. The mitotic metaphase complement consists of six pairs of chromosomes with the sex chromosomes being very small and similar in size. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes (10 polytene arms), which correspond to the five autosomes of the mitotic nuclei and an extrachromosomal heterochromatic mass, which corresponds to the sex chromosomes. The banding patterns and the most characteristic features and prominent landmarks of each polytene chromosome are presented and discussed. Chromosomal homologies between R. cingulata, R. completa and R. cerasi are also proposed, based on the comparison of chromosome banding patterns. Furthermore, the detection and characterization of Wolbachia pipientis in the R. cingulata population studied is presented and the potential correlation with the asynaptic phenomena found in its polytene complement is discussed. In addition, 10 out of 24 microsatellite markers developed for other Rhagoletis species are cross-amplified, evaluated and proposed as useful markers for population and genetic studies in R. cingulata.

  7. Genetic disorders of vitamin B12 metabolism: eight complementation groups – eight genes

    PubMed Central

    Froese, D. Sean; Gravel, Roy A.

    2010-01-01

    Vitamin B12 (cobalamin, Cbl) is an essential nutrient in human metabolism. Genetic diseases of vitamin B12 utilisation constitute an important fraction of inherited newborn disease. Functionally, B12 is the cofactor for methionine synthase and methylmalonyl CoA mutase. To function as a cofactor, B12 must be metabolised through a complex pathway that modifies its structure and takes it through subcellular compartments of the cell. Through the study of inherited disorders of vitamin B12 utilisation, the genes for eight complementation groups have been identified, leading to the determination of the general structure of vitamin B12 processing and providing methods for carrier testing, prenatal diagnosis and approaches to treatment. PMID:21114891

  8. Genetics Home Reference: complement component 8 deficiency

    MedlinePlus

    ... in people with Hispanic, Japanese, or African Caribbean heritage, whereas type II primarily occurs in people of Northern European descent. Related Information What information about a genetic condition can statistics provide? Why are some genetic ...

  9. Identification of a central role for complement in osteoarthritis

    PubMed Central

    Wang, Qian; Rozelle, Andrew L.; Lepus, Christin M.; Scanzello, Carla R.; Song, Jason J.; Larsen, D. Meegan; Crish, James F.; Bebek, Gurkan; Ritter, Susan Y.; Lindstrom, Tamsin M.; Hwang, Inyong; Wong, Heidi H.; Punzi, Leonardo; Encarnacion, Angelo; Shamloo, Mehrdad; Goodman, Stuart B.; Wyss-Coray, Tony; Goldring, Steven R.; Banda, Nirmal K.; Thurman, Joshua M.; Gobezie, Reuben; Crow, Mary K.; Holers, V. Michael; Lee, David M.; Robinson, William H.

    2011-01-01

    Osteoarthritis, characterized by the breakdown of articular cartilage in synovial joints, has long been viewed as the result of “wear and tear”1. Although low-grade inflammation is detected in osteoarthritis, its role is unclear2–4. Here we identify a central role for the inflammatory complement system in the pathogenesis of osteoarthritis. Through proteomic and transcriptomic analyses of synovial fluids and membranes from individuals with osteoarthritis, we find that expression and activation of complement is abnormally high in human osteoarthritic joints. Using mice genetically deficient in C5, C6, or CD59a, we show that complement, and specifically the membrane attack complex (MAC)-mediated arm of complement, is critical to the development of arthritis in three different mouse models of osteoarthritis. Pharmacological modulation of complement in wild-type mice confirmed the results obtained with genetically deficient mice. Expression of inflammatory and degradative molecules was lower in chondrocytes from destabilized joints of C5-deficient mice than C5-sufficient mice, and MAC induced production of these molecules in cultured chondrocytes. Furthermore, MAC co-localized with matrix metalloprotease (MMP)-13 and with activated extracellular signal-regulated kinase (ERK) around chondrocytes in human osteoarthritic cartilage. Our findings indicate that dysregulation of complement in synovial joints plays a critical role in the pathogenesis of osteoarthritis. PMID:22057346

  10. Excision repair cross-complementing group 2/Xeroderma pigmentousm complementation group D (ERCC2/XPD) genetic variations and susceptibility to diffuse large B cell lymphoma in Egypt.

    PubMed

    El-Din, Mennat Allah Kamal; Khorshied, Mervat Mamdooh; El-Saadany, Zainab Ali; El-Banna, Marwa Ahmed; Reda Khorshid, Ola M

    2013-12-01

    Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous neoplasm. Although several genetic and environmental factors have been postulated, no obvious risk factors have been emerged for DLBCL in the general population. DNA repair systems are responsible for maintaining the integrity of the genome and protecting it against genetic alterations that can lead to malignant transformation. The current study aimed at investigating the possible role of ERCC2/XPD Arg156Arg, Asp312Asn and Lys751Gln genetic polymorphisms as risk factors for DLBCL in Egypt. The study included 81 DLBCL patients and 100 healthy controls. Genotyping of the studied genetic polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism technique. Our results revealed that there was no statistical difference encountered in the distribution of -Asp312Asn and -Lys751Gln polymorphic genotypes between DLBCL cases and controls, thus it could not considered as molecular risk factors for DLBCL in Egyptians. However, Arg156Arg polymorphism at exon-6 conferred twofold increased risk of DLBCL (OR 2.034, 95 %CI 1.015-4.35, p = 0.43), and the risk increased when co-inherited with Lys751Gln at exon-23 (OR 3.304, 95 %CI 1.113-9.812, p = 0.038). In conclusion, ERCC2/XPD Arg156Arg polymorphism might be considered as a genetic risk factor for DLBCL in Egyptians, whether alone or conjoined with Lys751Gln.

  11. Serological and Genetic Evidence for Altered Complement System Functionality in Systemic Lupus Erythematosus: Findings of the GAPAID Consortium.

    PubMed

    Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; Del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László

    2016-01-01

    Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement opsonized immune complexes promotes the development of class-switched autoantibodies targeting nucleic acids.

  12. Smoke Exposure Causes Endoplasmic Reticulum Stress and Lipid Accumulation in Retinal Pigment Epithelium through Oxidative Stress and Complement Activation*

    PubMed Central

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-01-01

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD. PMID:24711457

  13. Lack of association of CFD polymorphisms with advanced age-related macular degeneration.

    PubMed

    Zeng, Jiexi; Chen, Yuhong; Tong, Zongzhong; Zhou, Xinrong; Zhao, Chao; Wang, Kevin; Hughes, Guy; Kasuga, Daniel; Bedell, Matthew; Lee, Clara; Ferreyra, Henry; Kozak, Igor; Haw, Weldon; Guan, Jean; Shaw, Robert; Stevenson, William; Weishaar, Paul D; Nelson, Mark H; Tang, Luosheng; Zhang, Kang

    2010-11-03

    Age-related macular degeneration (AMD) is the most common cause of irreversible central vision loss worldwide. Research has linked AMD susceptibility with dysregulation of the complement cascade. Typically, complement factor H (CFH), complement factor B (CFB), complement component 2 (C2), and complement component 3 (C3) are associated with AMD. In this paper, we investigated the association between complement factor D (CFD), another factor of the complement system, and advanced AMD in a Caucasian population. Six single nucleotide polymorphisms (SNPs), rs1683564, rs35186399, rs1683563, rs3826945, rs34337649, and rs1651896, across the region covering CFD, were chosen for this study. One hundred and seventy-eight patients with advanced AMD and 161 age-matched normal controls were genotyped. Potential positive signals were further tested in another independent 445 advanced AMD patients and 190 controls. χ2 tests were performed to compare the allele frequencies between case and control groups. None of the six SNPs of CFD was found to be significantly associated with advanced AMD in our study. Our findings suggest that CFD may not play a major role in the genetic susceptibility to AMD because no association was found between the six SNPs analyzed in the CFD region and advanced AMD.

  14. Xeroderma pigmentosum complementation group G associated with Cockayne syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeulen, W.; Jaspers, N.G.J.; Bootsma, D.

    1993-07-01

    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are two rare inherited disorders with a clinical and cellular hypersensitivity to the UV component of the sunlight spectrum. Although the two traits are generally considered as clinically and genetically distinct entities, on the biochemical level a defect in the nucleotide excision-repair (NER) pathway is involved in both. Classical CS patients are primarily deficient in the preferential repair of DNA damage in actively transcribed genes, whereas in most XP patients the genetic defect affects both [open quotes]preferential[close quotes] and [open quotes]overall[close quotes] NER modalities. Here the authors report a genetic study of twomore » unrelated, severely affected patients with the clinical characteristics of CS but with a biochemical defect typical of XP. By complementation analysis, using somatic cell fusion and nuclear microinjection of cloned repair genes, they assign these two patients to XP complementation group G, which previously was not associated with CS. This observation extends the earlier identification of two patients with a rare combined XP/CS phenotype within XP complementation groups B and D, respectively. It indicates that some mutations in at least three of the seven genes known to be involved in XP also can result in a picture of partial or even full-blown CS. It is concluded that the syndromes XP and CS are biochemically closely related and may be part of a broader clinical disease spectrum. The authors suggest, as a possible molecular mechanism underlying this relation, that the XPGC repair gene has an additional vital function, as shown for some other NER genes. 33 refs., 5 tabs.« less

  15. AMD and the alternative complement pathway: genetics and functional implications.

    PubMed

    Tan, Perciliz L; Bowes Rickman, Catherine; Katsanis, Nicholas

    2016-06-21

    Age-related macular degeneration (AMD) is an ocular neurodegenerative disorder and is the leading cause of legal blindness in Western societies, with a prevalence of up to 8 % over the age of 60, which continues to increase with age. AMD is characterized by the progressive breakdown of the macula (the central region of the retina), resulting in the loss of central vision including visual acuity. While its molecular etiology remains unclear, advances in genetics and genomics have illuminated the genetic architecture of the disease and have generated attractive pathomechanistic hypotheses. Here, we review the genetic architecture of AMD, considering the contribution of both common and rare alleles to susceptibility, and we explore the possible mechanistic links between photoreceptor degeneration and the alternative complement pathway, a cascade that has emerged as the most potent genetic driver of this disorder.

  16. An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize

    USDA-ARS?s Scientific Manuscript database

    In this study, we generated a linkage map containing 1,151,856 high quality SNPs between Mo17 and B73, which were verified in the maize intermated B73'×'Mo17 (IBM) Syn10 population. This resource is an excellent complement to existing maize genetic maps available in an online database (iPlant, http:...

  17. Complement in Lupus Nephritis: New Perspectives.

    PubMed

    Bao, Lihua; Cunningham, Patrick N; Quigg, Richard J

    2015-09-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder caused by loss of tolerance to self-antigens, the production of autoantibodies and deposition of complement-fixing immune complexes (ICs) in injured tissues. SLE is characterized by a wide range of clinical manifestations and targeted organs, with lupus nephritis being one of the most serious complications. The complement system consists of three pathways and is tightly controlled by a set of regulatory proteins to prevent injudicious complement activation on host tissue. The involvement of the complement system in the pathogenesis of SLE is well accepted; yet, its exact role is still not clear. Complement plays dual roles in the pathogenesis of SLE. On the one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classical pathway components, such as C1q and C4, are associated with an increased risk for SLE. On the other hand, IC-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathological features that are logical consequences of complement activation. Studies in genetically altered mice have shown that lack of complement inhibitors, such as complement factor H (CFH) or decay-accelerating factor (DAF) accelerates the development of experimental lupus nephritis, while treatment with recombinant protein inhibitors, such as Crry-Ig, CR2-Crry, CR2-DAF and CR2-CFH, ameliorates the disease development. Complement-targeted drugs, including soluble complement receptor 1 (TP10), C1 esterase inhibitor and a monoclonal anti-C5 antibody (eculizumab), have been shown to inhibit complement safely, and are now being investigated in a variety of clinical conditions. SLE is an autoimmune disorder which targets multiple systems. Complement is centrally involved and plays dual roles in the pathogenesis of SLE. Studies from experimental lupus models and clinical trials support the use of complement-targeted therapy in the treatment of SLE.

  18. Alternative complement pathway activation increases mortality in a model of burn injury in mice.

    PubMed Central

    Gelfand, J A; Donelan, M; Hawiger, A; Burke, J F

    1982-01-01

    We have studied the role of the complement system in burn injury in an experimental model in mice. A 25% body surface area, full-thickness scald wound was produced in anesthetized animals. Massive activation of the alternative complement pathway, but not the classical pathway, was seen. This activation was associated with the generation of neutrophil aggregating activity in the plasma, neutrophil aggregates in the lungs, increased pulmonary vascular permeability, and increased lung edema formation. Decomplementation with cobra venom factor (CVF) or genetic C5 deficiency diminished these pathologic changes, and CVF pretreatment substantially reduced burn mortality in the first 24 h. Preliminary data show that human burn patients have a similar pattern of complement activation involving predominantly the alternative pathway, indicating the possible relevance of the murine model to human disease. Images PMID:7174787

  19. Finding Fingerprints of Selection in Poplar Genomes

    ScienceCinema

    Tuskan, Gerald

    2018-05-30

    Jerry Tuskan of Oak Ridge National Laboratory and the DOE JGI talks about poplar trees as models for selective adaptation to an environment. This video complements a study published ahead online August 24, 2014 in Nature Genetics.

  20. Protective immune responses against West Nile virus are primed by distinct complement activation pathways.

    PubMed

    Mehlhop, Erin; Diamond, Michael S

    2006-05-15

    West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3(-/-) and complement receptor 1/2(-/-) mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.

  1. A Genetic and Molecular Analysis of the 46c Chromosomal Region Surrounding the Fmrfamide Neuropeptide Gene in Drosophila Melanogaster

    PubMed Central

    O'Brien, M. A.; Roberts, M. S.; Taghert, P. H.

    1994-01-01

    We have analyzed the FMRFamide neuropeptide gene region of Drosophila melanogaster. This gene maps to the 46C region of chromosome 2R; this interval previously was not well characterized. For this genetic and molecular analysis, we have used X-ray mutagenesis, EMS mutagenesis, and the recently reported local P element transposition method. We identified four overlapping deletions, two of which have proximal breakpoints that define a 50-60-kb region surrounding the FMRFamide gene in 46C. To this small region, we mapped three lethal complementation groups; 10 additional lethal complementation groups were mapped to more distal regions of 46CD. One of these groups corresponds to even-skipped, the other 12 are previously unidentified. Using various lines of evidence we excluded the possibility that FMRFamide corresponds to any of the three lethal complementation groups mapping to its immediate 50-60-kb vicinity. The positions of two of the three lethal complementation groups were identified with P elements using a local transposition scheme. The third lethal complementation group was excluded as being FMRFamide mutants by sequence analysis and by immunocytochemistry with proFMRFamide precursor-specific antibodies. This analysis has (1) provided a genetic map of the 46CD chromosomal region and a detailed molecular map of a portion of the 46C region and (2) provided additional evidence of the utility of local transposition for targeting nearby genes. PMID:8056304

  2. High prevalence of the point mutation in exon 6 of the xeroderma pigmentosum group A-complementing (XPAC) gene in xeroderma pigmentosum group A patients in Tunisia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishigori, Chikako; Imamura, Sadao; Yagi, Takashi

    1993-11-01

    Xeroderma pigmentosum (XP) patients in Tunisia who belong to the genetic complementation group A (XPA) have milder skin symptoms than do Japanese XPA patients. Such difference in the clinical features might be caused by the difference in the site of mutation in the XP A-complementing (XPAC) gene. The purpose of this study is to identify the genetic alterations in the XPAC gene in the Tunisian XPA patients and to investigate the relationship between the clinical symptoms and the genetic alterations. Three sites of mutation in the XPAC gene have been identified in the Japanese XPA patients, and about 85% ofmore » them have a G [yields] C point mutation at the splicing acceptor site of intron 3. The authors found that six (86%) of seven Tunisian XPA patients had a nonsense mutation in codon 228 in exon 6, because of a CGA [yields] TGA point mutation, which can be detected by the HphI RFLP. This type of mutation is the same as those found in two Japanese XPA patients with mild clinical RFLP. Milder skin symptoms in the XPA patients in Tunisia than in those in Japan, despite mostly sunny weather and the unsatisfactory sun protection in Tunisia, should be due to the difference in the mutation site. 11 refs., 2 figs., 2 tabs.« less

  3. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: Involvement of the human ERCC2 DNA repair gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flejter, W.L.; McDaniel, L.D.; Johns, D.

    1992-01-01

    Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. The authors now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2)more » gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.« less

  4. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    PubMed Central

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact epistatically with mutant alleles. PMID:27459710

  5. Complement Activation in Inflammatory Skin Diseases

    PubMed Central

    Giang, Jenny; Seelen, Marc A. J.; van Doorn, Martijn B. A.; Rissmann, Robert; Prens, Errol P.; Damman, Jeffrey

    2018-01-01

    The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention. PMID:29713318

  6. A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    PubMed Central

    Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.

    2011-01-01

    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235

  7. Theory, Method, and Triangulation in the Study of Street Children.

    ERIC Educational Resources Information Center

    Lucchini, Riccardo

    1996-01-01

    Describes how a comparative study of street children in Montevideo (Uruguay), Rio de Janeiro, and Mexico City contributes to a synergism between theory and method. Notes how theoretical approaches of symbolic interactionism, genetic structuralism, and habitus theory complement interview, participant observation, and content analysis methods;…

  8. Genome-Wide Association Studies of Drug-Resistance Determinants.

    PubMed

    Volkman, Sarah K; Herman, Jonathan; Lukens, Amanda K; Hartl, Daniel L

    2017-03-01

    Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance. Copyright © 2016. Published by Elsevier Ltd.

  9. Genetics Home Reference: complement factor I deficiency

    MedlinePlus

    ... F, Zelazko M, Marquart H, Muller K, Sjöholm AG, Truedsson L, Villoutreix BO, Blom AM. Genetic, molecular ... qualified healthcare professional . About Selection Criteria for Links Data Files & API Site Map Subscribe Customer Support USA. ...

  10. Genetic manipulation of the obligate chemolithoautotrophic bacterium Thiobacillus denitrificans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, H.R.; Legler, T.C.; Kane, S.R.

    2011-07-15

    Chemolithoautotrophic bacteria can be of industrial and environmental importance, but they present a challenge for systems biology studies, as their central metabolism deviates from that of model organisms and there is a much less extensive experimental basis for their gene annotation than for typical organoheterotrophs. For microbes with sequenced genomes but unconventional metabolism, the ability to create knockout mutations can be a powerful tool for functional genomics and thereby render an organism more amenable to systems biology approaches. In this chapter, we describe a genetic system for Thiobacillus denitrificans, with which insertion mutations can be introduced by homologous recombination andmore » complemented in trans. Insertion mutations are generated by in vitro transposition, the mutated genes are amplified by the PCR, and the amplicons are introduced into T. denitrificans by electroporation. Use of a complementation vector, pTL2, based on the IncP plasmid pRR10 is also addressed.« less

  11. A Nonsense Mutation in Mycobacterium marinum That Is Suppressible by a Novel Mechanism

    PubMed Central

    Williams, Emily A.; Mba Medie, Felix; Bosserman, Rachel E.; Johnson, Benjamin K.; Reyna, Cristal; Ferrell, Micah J.; Champion, Matthew M.; Abramovitch, Robert B.

    2016-01-01

    ABSTRACT Mycobacterial pathogens use the ESAT-6 system 1 (Esx-1) exporter to promote virulence. Previously, we used gene disruption and complementation to conclude that the MMAR_0039 gene in Mycobacterium marinum is required to promote Esx-1 export. Here we applied molecular genetics, proteomics, and whole-genome sequencing to demonstrate that the MMAR_0039 gene is not required for Esx-1 secretion or virulence. These findings suggest that we initially observed an indirect mechanism of genetic complementation. We identified a spontaneous nonsense mutation in a known Esx-1-associated gene which causes a loss of Esx-1 activity. We show that the Esx-1 function was restored by nonsense suppression. Moreover, we identified a polar mutation in the ppsC gene which reduced cellular impermeability but did not impact cytotoxicity in macrophages. Our studies reveal insight into Esx-1 export, nonsense suppression, and cell envelope lipid biogenesis. PMID:27789543

  12. Role of Complement Activation in a Model of Adult Respiratory Distress Syndrome

    PubMed Central

    Hosea, Stephen; Brown, Eric; Hammer, Carl; Frank, Michael

    1980-01-01

    The adult respiratory distress syndrome is characterized by arterial hypoxemia as a result of increased alveolar capillary permeability to serum proteins in the setting of normal capillary hydrostatic pressures. Because bacterial sepsis is prominent among the various diverse conditions associated with altered alveolar capillary permeability, we studied the effect of bacteremia with attendant complement activation on the sequestration of microorganisms and the leakage of albumin in the lungs of guinea pigs. Pneumococci were injected intravenously into guinea pigs and their localization was studied. Unlike normal guinea pigs, complement-depleted guinea pigs did not localize injected bacteria to the lungs. Preopsonization of organisms did not correct this defect in pulmonary localization of bacteria in complement-depleted animals, suggesting that a fluid-phase component of complement activation was required. Genetically C5-deficient mice showed no pulmonary localization of bacteria. C5-sufficient mice demonstrated the usual pulmonary localization, thus further suggesting that the activation of C5 might be important in this localization. The infusion of activated C5 increased alveolar capillary permeability to serum proteins as assayed by the amount of radioactive albumin sequestered in the lung. Neutropenic animals did not develop altered capillary permeability after challenge with activated C5. Thus, complement activation through C5, in the presence of neutrophils, induces alterations in pulmonary alveolar capillary permeability and causes localization of bacteria to the pulmonary parenchyma. Complement activation in other disease states could potentially result in similar clinical manifestations. PMID:7400321

  13. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    PubMed Central

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  14. Mining drug-disease relationships as a complement to medical genetics-based drug repositioning: Where a recommendation system meets genome-wide association studies.

    PubMed

    Wang, H; Gu, Q; Wei, J; Cao, Z; Liu, Q

    2015-05-01

    A novel recommendation-based drug repositioning strategy is presented to simultaneously determine novel drug indications and side effects in one integrated framework. This strategy provides a complementary method to medical genetics-based drug repositioning, which reduces the occurrence of false positives in medical genetics-based drug repositioning, resulting in a ranked list of new candidate indications and/or side effects with different confidence levels. Several new drug indications and side effects are reported with high prediction confidences. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  15. Molecular and Genetic Characterization of the Drosophila Melanogaster 87e Actin Gene Region

    PubMed Central

    Manseau, L. J.; Ganetzky, B.; Craig, E. A.

    1988-01-01

    A combined molecular and genetic analysis of the 87E actin gene (Act87E) in Drosophila melanogaster was undertaken. A clone of Act87E was isolated and characterized. The Act87E transcription unit is 1.57 kb and includes a 556-base intervening sequence in the 5' leader of the gene. The protein-coding region is contiguous and encodes a protein that is >93% identical to the other Drosophila actins. By in situ hybridization with a series of deficiencies that break in 87E, Act87E was localized to a region encompassing one to three faint, polytene chromosome bands. The region between the deficiency endpoints that flank the actin gene was isolated and measures approximately 24-30 kb. The closest proximal deficiency endpoint lies 8-10 kb 5' to the actin gene; the closest distal deficiency endpoint lies 16-20 kb 3' to the actin gene. A single, recessive lethal complementation group lies between the deficiency endpoints that flank the actin gene. An EMS mutagenesis screen produced four additional members of this recessive lethal complementation group. Molecular analysis of the members of this complementation group indicated that two of the newly induced mutations have deletions of approximately 1 kb in a transcribed region 4-5 kb 3' (distal) to the actin gene. This result suggests that the recessive lethal complementation group represents a gene separate from and distal to the actin gene. The mutagenesis screen failed to identify additional recessive lethal complementation groups in the actin gene-containing region. The implications of the failure to identify recessive lethal mutations in the actin gene are discussed in reference to studies of other conserved multigene families and other muscle protein mutations. PMID:2840338

  16. Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica.

    PubMed

    Ratelade, Julien; Verkman, A S

    2014-11-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. X and Y Chromosome Complement Influence Adiposity and Metabolism in Mice

    PubMed Central

    Chen, Xuqi; McClusky, Rebecca; Itoh, Yuichiro; Reue, Karen

    2013-01-01

    Three different models of MF1 strain mice were studied to measure the effects of gonadal secretions and sex chromosome type and number on body weight and composition, and on related metabolic variables such as glucose homeostasis, feeding, and activity. The 3 genetic models varied sex chromosome complement in different ways, as follows: 1) “four core genotypes” mice, comprising XX and XY gonadal males, and XX and XY gonadal females; 2) the XY* model comprising groups similar to XO, XX, XY, and XXY; and 3) a novel model comprising 6 groups having XO, XX, and XY chromosomes with either testes or ovaries. In gonadally intact mice, gonadal males were heavier than gonadal females, but sex chromosome complement also influenced weight. The male/female difference was abolished by adult gonadectomy, after which mice with 2 sex chromosomes (XX or XY) had greater body weight and percentage of body fat than mice with 1 X chromosome. A second sex chromosome of either type, X or Y, had similar effects, indicating that the 2 sex chromosomes each possess factors that influence body weight and composition in the MF1 genetic background. Sex chromosome complement also influenced metabolic variables such as food intake and glucose tolerance. The results reveal a role for the Y chromosome in metabolism independent of testes and gonadal hormones and point to a small number of X–Y gene pairs with similar coding sequences as candidates for causing these effects. PMID:23397033

  18. Employability of genetic counselors with a PhD in genetic counseling.

    PubMed

    Wallace, Jody P; Myers, Melanie F; Huether, Carl A; Bedard, Angela C; Warren, Nancy Steinberg

    2008-06-01

    The development of a PhD in genetic counseling has been discussed for more than 20 years, yet the perspectives of employers have not been assessed. The goal of this qualitative study was to gain an understanding of the employability of genetic counselors with a PhD in genetic counseling by conducting interviews with United States employers of genetic counselors. Study participants were categorized according to one of the following practice areas: academic, clinical, government, industry, laboratory, or research. All participants were responsible for hiring genetic counselors in their institutions. Of the 30 employers interviewed, 23 envisioned opportunities for individuals with a PhD degree in genetic counseling, particularly in academic and research settings. Performing research and having the ability to be a principal investigator on a grant was the primary role envisioned for these individuals by 22/30 participants. Employers expect individuals with a PhD in genetic counseling to perform different roles than MS genetic counselors with a master's degree. This study suggests there is an employment niche for individuals who have a PhD in genetic counseling that complements, and does not compete with, master's prepared genetic counselors.

  19. Allelic Variants of Complement Genes Associated with Dense Deposit Disease

    PubMed Central

    Abrera-Abeleda, Maria Asuncion; Nishimura, Carla; Frees, Kathy; Jones, Michael; Maga, Tara; Katz, Louis M.; Zhang, Yuzhou

    2011-01-01

    The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies. PMID:21784901

  20. Functional analyses of rare genetic variants in complement component C9 identified in patients with age-related macular degeneration.

    PubMed

    Kremlitzka, Mariann; Geerlings, Maartje J; de Jong, Sarah; Bakker, Bjorn; Nilsson, Sara C; Fauser, Sascha; Hoyng, Carel B; de Jong, Eiko K; den Hollander, Anneke I; Blom, Anna M

    2018-05-14

    Age-related macular degeneration (AMD) is a progressive disease of the central retina and the leading cause of irreversible vision loss in the western world. The involvement of abnormal complement activation in AMD has been suggested by association of variants in genes encoding complement proteins with disease development. A low-frequency variant (p.P167S) in the complement component C9 (C9) gene was recently shown to be highly associated with AMD, however its functional outcome remains largely unexplored. In this study, we reveal five novel rare genetic variants (p.M45L, p.F62S, p.G126R, p.T170I and p.A529T) in C9 in AMD patients, and evaluate their functional effects in vitro together with the previously identified (p.R118W and p.P167S) C9 variants.Our results demonstrate that the concentration of C9 is significantly elevated in patients' sera carrying the p.M45L, p.F62S, p.P167S and p.A529T variants compared to non-carrier controls. However, no difference can be observed in soluble terminal complement complex levels between the carrier and non-carrier groups. Comparing the polymerization of the C9 variants we reveal that the p.P167S mutant spontaneously aggregates, while the other mutant proteins (except for C9 p.A529T) fail to polymerize in the presence of zinc. Altered polymerization of the p.F62S and p.P167S proteins associated with decreased lysis of sheep erythrocytes and ARPE-19 cells by carriers' sera. Our data suggest that the analysed C9 variants affect only the secretion and polymerization of C9, without influencing its classical lytic activity. Future studies need to be performed to understand the implications of the altered polymerization of C9 in AMD pathology.

  1. Cluster Analysis Identifies Distinct Pathogenetic Patterns in C3 Glomerulopathies/Immune Complex-Mediated Membranoproliferative GN.

    PubMed

    Iatropoulos, Paraskevas; Daina, Erica; Curreri, Manuela; Piras, Rossella; Valoti, Elisabetta; Mele, Caterina; Bresin, Elena; Gamba, Sara; Alberti, Marta; Breno, Matteo; Perna, Annalisa; Bettoni, Serena; Sabadini, Ettore; Murer, Luisa; Vivarelli, Marina; Noris, Marina; Remuzzi, Giuseppe

    2018-01-01

    Membranoproliferative GN (MPGN) was recently reclassified as alternative pathway complement-mediated C3 glomerulopathy (C3G) and immune complex-mediated membranoproliferative GN (IC-MPGN). However, genetic and acquired alternative pathway abnormalities are also observed in IC-MPGN. Here, we explored the presence of distinct disease entities characterized by specific pathophysiologic mechanisms. We performed unsupervised hierarchical clustering, a data-driven statistical approach, on histologic, genetic, and clinical data and data regarding serum/plasma complement parameters from 173 patients with C3G/IC-MPGN. This approach divided patients into four clusters, indicating the existence of four different pathogenetic patterns. Specifically, this analysis separated patients with fluid-phase complement activation (clusters 1-3) who had low serum C3 levels and a high prevalence of genetic and acquired alternative pathway abnormalities from patients with solid-phase complement activation (cluster 4) who had normal or mildly altered serum C3, late disease onset, and poor renal survival. In patients with fluid-phase complement activation, those in clusters 1 and 2 had massive activation of the alternative pathway, including activation of the terminal pathway, and the highest prevalence of subendothelial deposits, but those in cluster 2 had additional activation of the classic pathway and the highest prevalence of nephrotic syndrome at disease onset. Patients in cluster 3 had prevalent activation of C3 convertase and highly electron-dense intramembranous deposits. In addition, we provide a simple algorithm to assign patients with C3G/IC-MPGN to specific clusters. These distinct clusters may facilitate clarification of disease etiology, improve risk assessment for ESRD, and pave the way for personalized treatment. Copyright © 2018 by the American Society of Nephrology.

  2. Evaluation of serum levels of C3 and C4 complement factors in patients with beta thalassemia major in Khuzestan Province, Southwest Iran.

    PubMed

    Ghafourian, Mehri; Esmaeili, Mehrnosh; Dashti-Gerdabi, Nader; Sadeghi, Alireza; Malekei Naseri, Ali; Kazemi, Akhtar

    2017-01-01

    Thalassemia syndrome is the most common genetic disorder in the world and infection is the second cause of death in these patients. Measurement of serum C3 and C4 complement factors in serum was done in 60 patients with beta thalassemia major in comparison with 30 healthy subjects as control group. The serum level of C3 and C4 complement factors in 60 patients with beta thalassemia major who were randomly selected from among the patients referred to Shafa Hospital of Ahvaz was evaluated and compared with 30 samples from healthy individuals with no history of recent infectious or autoimmune diseases. It should be noted that single-radial-immunodiffusion assay was used in this study. This study has shown a significant reduction in serum levels of C3 and C4 in patients compared to controls (P value < 0.05). Decreased synthesis or increased consumption of complement factors in patients receiving multiple blood transfusions might lead to continuous contact between the immune system and various antigens, causing nonstop use of complement factors, recurrent infections, changes in parameters of the immune system due to iron overload as well as exposure to infectious factors such as HBV, HCV, HIV, and HTLV through blood transfusion.

  3. Emerging from the bottleneck: Benefits of the comparative approach to modern neuroscience

    PubMed Central

    Brenowitz, Eliot A.; Zakon, Harold H.

    2015-01-01

    Neuroscience historically exploited a wide diversity of animal taxa. Recently, however, research focused increasingly on a few model species. This trend accelerated with the genetic revolution, as genomic sequences and genetic tools became available for a few species, which formed a bottleneck. This coalescence on a small set of model species comes with several costs often not considered, especially in the current drive to use mice explicitly as models for human diseases. Comparative studies of strategically chosen non-model species can complement model species research and yield more rigorous studies. As genetic sequences and tools become available for many more species, we are poised to emerge from the bottleneck and once again exploit the rich biological diversity offered by comparative studies. PMID:25800324

  4. Complement inhibition in pre-clinical models of periodontitis and prospects for clinical application.

    PubMed

    Hajishengallis, George; Hajishengallis, Evlambia; Kajikawa, Tetsuhiro; Wang, Baomei; Yancopoulou, Despina; Ricklin, Daniel; Lambris, John D

    2016-06-01

    Periodontitis is a dysbiotic inflammatory disease leading to the destruction of the tooth-supporting tissues. Current therapies are not always effective and this prevalent oral disease continues to be a significant health and economic burden. Early clinical studies have associated periodontitis with elevated complement activity. Consistently, subsequent genetic and pharmacological studies in rodents have implicated the central complement component C3 and downstream signaling pathways in periodontal host-microbe interactions that promote dysbiosis and inflammatory bone loss. This review discusses these mechanistic advances and moreover focuses on the compstatin family of C3 inhibitors as a novel approach to treat periodontitis. In this regard, local application of the current lead analog Cp40 was recently shown to block both inducible and naturally occurring periodontitis in non-human primates. These promising results from non-human primate studies and the parallel development of Cp40 for clinical use highlight the feasibility for developing an adjunctive, C3-targeted therapy for human periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A comprehensive strategy for the subtyping of patients with Fanconi anaemia: conclusions from the Spanish Fanconi Anemia Research Network.

    PubMed

    Antonio Casado, José; Callén, Elsa; Jacome, Ariana; Río, Paula; Castella, Maria; Lobitz, Stephan; Ferro, Teresa; Muñoz, Arturo; Sevilla, Julián; Cantalejo, Angeles; Cela, Elena; Cervera, José; Sánchez-Calero, Jesús; Badell, Isabel; Estella, Jesús; Dasí, Angeles; Olivé, Teresa; José Ortega, Juan; Rodriguez-Villa, Antonia; Tapia, María; Molinés, Antonio; Madero, Luis; Segovia, José C; Neveling, Kornelia; Kalb, Reinhard; Schindler, Detlev; Hanenberg, Helmut; Surrallés, Jordi; Bueren, Juan A

    2007-04-01

    Fanconi anaemia is a heterogeneous genetic disease, where 12 complementation groups have been already described. Identifying the complementation group in patients with Fanconi anaemia constitutes a direct procedure to confirm the diagnosis of the disease and is required for the recruitment of these patients in gene therapy trials. To determine the subtype of Fanconi anaemia patients in Spain, a Mediterranean country with a relatively high population (23%) of Fanconi anaemia patients belonging to the gypsy race. Most patients could be subtyped by retroviral complementation approaches in peripheral blood T cells, although some mosaic patients were subtyped in cultured skin fibroblasts. Other approaches, mainly based on western blot analysis and generation of nuclear RAD51 and FANCJ foci, were required for the subtyping of a minor number of patients. From a total of 125 patients included in the Registry of Fanconi Anaemia, samples from 102 patients were available for subtyping analyses. In 89 cases the subtype could be determined and in 8 cases exclusions of common complementation groups were made. Compared with other international studies, a skewed distribution of complementation groups was observed in Spain, where 80% of the families belonged to the Fanconi anaemia group A (FA-A) complementation group. The high proportion of gypsy patients, all of them FA-A, and the absence of patients with FA-C account for this characteristic distribution of complementation groups.

  6. Restoration seed reserves for assisted gene flow within seed orchards

    Treesearch

    C.S. Echt; B.S. Crane

    2017-01-01

    Changing climate and declining forest populations imperil the future of certain forest tree species. To complement forest management and genetic conservation plans, we propose a new paradigm for seedling seed orchards: foster genetic mixing among a variety of seed sources to increase genetic diversity and adaptive potential of seed supplies used for forest restoration...

  7. Analysis of single nucleotide polymorphisms in case-control studies.

    PubMed

    Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer

    2011-01-01

    Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.

  8. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy.

    PubMed

    Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong

    2015-05-01

    Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. Copyright © 2015 by the American Society of Nephrology.

  9. The updated concept of genome and its implications in biotechnological research and molecular diagnostics.

    PubMed

    Xiao, Li; Saldivar, Juan-Sebastian; Zhou, Cuilan; Chen, Chengli; Zhang, Jia; Sirois, Pierre; Li, Kai

    2009-02-01

    We propose a short definition of The full complement of genetic materials possessed by an intracellular parasite, a cell, or an organism. Accordingly, the human genome is the entire complement of inherited genetic materials possessed by an individual person, or possessed by a cell in an individual person. For higher species, the genomic makeup includes DNA in the nucleus and in the organelles regardless of the number of chromosomes and the homoplasmic or heteroplasmic status of the mitochondrial or chloroplastic DNA. Practically, GENOME can be referred to at the molecular, cellular, individual, and species levels, which has various implications in biotechnological research and molecular diagnostics.

  10. Microinjection of cytoplasm as a test of complementation in Paramecium

    PubMed Central

    1982-01-01

    Mutants in Paramecium tetraurelia, unable to generate action potentials, have been isolated as cells which show no backward swimming in response to ionic stimulation. These "pawn" mutants belong to at least three complementation groups designated pwA, pwB, and pwC. We have found that microinjection of cytoplasm from a wild-type donor into a pawn recipient of any of the three complementation groups restores the ability of the pawn to generate action potentials and hence swim backward. In addition, the cytoplasm from a pawn cannot restore a recipient of the same complementation group, but that from a pawn of a different group can. Electrophysiological analysis had demonstrated that the restoration of backward swimming is not due to a simple addition of ions but represents a profound change in the excitable membrane of the recipient pawn cells. Using known pawn mutants and those which had previously been unclassified, we have been able to establish a perfect concordance of genetic complementation and complementation by cytoplasmic transfer through microinjection. This method has been used to classify pawn mutants that are sterile or hard- to-mate and to examine the ability of cytoplasms from different species of ciliated protozoa to restore the ability to swim backward in the pawn mutants of P. tetraurelia. A cell homogenate has also been fractionated by centrifugation to further purify the active components. These results demonstrate that transfer of cytoplasm between cells by microinjection can be a valid and systematic method to classify mutants. This test is simpler to perform than the genetic complementation test and can be used under favorable conditions in mutants that are sterile and in cells of different species. PMID:7061597

  11. Bioluminescent indicators for Ca2+ based on split Renilla luciferase complementation in living cells.

    PubMed

    Kaihara, Asami; Umezawa, Yoshio; Furukawa, Tetsushi

    2008-01-01

    Genetically encoded bioluminescent indicators for intracellular Ca2+ are described here with CaM-M13 interaction-induced complementation of split Renilla luciferase. The Ca2+-induced interaction between CaM and M13 leads to complementation of the N- and C-terminal halves of split Renilla luciferase in living cells. This intramolecular interaction results in the spontaneous and simultaneous emission of bioluminescence split Renilla luciferase. This is how intracellular Ca2+ is illuminated with the intramolecular complementation of split Renilla luciferase. The Ca2+-dependent spontaneous and simultaneous emission of bioluminescence promises to reveal Ca2+ dynamics in living cells, and also in vivo using the present indicators.

  12. Development of resources and tools for mapping genetic sources of phenotypic variation

    USDA-ARS?s Scientific Manuscript database

    Commercial and experimental genetic resources were established and investigated for a range of reproductive and disease susceptibility phenotypes. The phenotyping efforts were accompanied with RNA and whole genome sequencing and novel assemblies of the swine genome. The efforts were complemented wit...

  13. Induction of Vermillion in Pyralid moths using CRISPR mutagenesis

    USDA-ARS?s Scientific Manuscript database

    Eye color mutations have been useful markers of genetic activity or alteration in insect genetics. Complementation or disruption of transport or biosynthesis of ommochrome (brown) or pteridine (red) pigments have provided useful targets for transgenic procedures. Tryptophan oxygenase (To) (EC 1.13.1...

  14. Genetic Complementation of the Obligate Marine Actinobacterium Salinispora tropica with the Large Mechanosensitive Channel Gene mscL Rescues Cells from Osmotic Downshock

    PubMed Central

    Bucarey, Sergio A.; Penn, Kevin; Paul, Lauren; Fenical, William

    2012-01-01

    Marine actinomycetes in the genus Salinispora fail to grow when seawater is replaced with deionized (DI) water in complex growth media. While bioinformatic analyses have led to the identification of a number of candidate marine adaptation genes, there is currently no experimental evidence to support the genetic basis for the osmotic requirements associated with this taxon. One hypothesis is that the lineage-specific loss of mscL is responsible for the failure of strains to grow in media prepared with DI water. The mscL gene encodes a conserved transmembrane protein that reduces turgor pressure under conditions of acute osmotic downshock. In the present study, the mscL gene from a Micromonospora strain capable of growth on media prepared with DI water was transformed into S. tropica strain CNB-440. The single-copy, chromosomal genetic complementation yielded a recombinant Salinispora mscL+ strain that demonstrated an increased capacity to survive osmotic downshock. The enhanced survival of the S. tropica transformant provides experimental evidence that the loss of mscL is associated with the failure of Salinispora spp. to grow in low-osmotic-strength media. PMID:22492446

  15. Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi.

    PubMed

    Schoberle, Taylor J; Nguyen-Coleman, C Kim; May, Gregory S

    2013-01-01

    Fungal species are continuously being studied to not only understand disease in humans and plants but also to identify novel antibiotics and other metabolites of industrial importance. Genetic manipulations, such as gene deletion, gene complementation, and gene over-expression, are common techniques to investigate fungal gene functions. Although advances in transformation efficiency and promoter usage have improved genetic studies, some basic steps in vector construction are still laborious and time-consuming. Gateway cloning technology solves this problem by increasing the efficiency of vector construction through the use of λ phage integrase proteins and att recombination sites. We developed a series of Gateway-compatible vectors for use in genetic studies in a range of fungal species. They contain nutritional and drug-resistance markers and can be utilized to manipulate different filamentous fungal genomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Novel and recently evolved miRNA clusters regulate expansive F-box gene networks through phasiRNAs in wild diploid strawberry

    USDA-ARS?s Scientific Manuscript database

    The wild strawberry, Fragaria vesca, has recently emerged as an excellent model for investigating flower and fruit traits in economically important fruit crops. Its history of physiological studies combined with sequenced genome and a full complement of molecular genetic tools facilitate investigat...

  17. A comprehensive strategy for the subtyping of patients with Fanconi anaemia: conclusions from the Spanish Fanconi Anemia Research Network

    PubMed Central

    Casado, José Antonio; Callén, Elsa; Jacome, Ariana; Río, Paula; Castella, Maria; Lobitz, Stephan; Ferro, Teresa; Muñoz, Arturo; Sevilla, Julián; Cantalejo, Ángeles; Cela, Elena; Cervera, José; Sánchez‐Calero, Jesús; Badell, Isabel; Estella, Jesús; Dasí, Ángeles; Olivé, Teresa; Ortega, Juan José; Rodriguez‐Villa, Antonia; Tapia, María; Molinés, Antonio; Madero, Luis; Segovia, José C; Neveling, Kornelia; Kalb, Reinhard; Schindler, Detlev; Hanenberg, Helmut; Surrallés, Jordi; Bueren, Juan A

    2007-01-01

    Background Fanconi anaemia is a heterogeneous genetic disease, where 12 complementation groups have been already described. Identifying the complementation group in patients with Fanconi anaemia constitutes a direct procedure to confirm the diagnosis of the disease and is required for the recruitment of these patients in gene therapy trials. Objective To determine the subtype of Fanconi anaemia patients in Spain, a Mediterranean country with a relatively high population (23%) of Fanconi anaemia patients belonging to the gypsy race. Methods Most patients could be subtyped by retroviral complementation approaches in peripheral blood T cells, although some mosaic patients were subtyped in cultured skin fibroblasts. Other approaches, mainly based on western blot analysis and generation of nuclear RAD51 and FANCJ foci, were required for the subtyping of a minor number of patients. Results and conclusions From a total of 125 patients included in the Registry of Fanconi Anaemia, samples from 102 patients were available for subtyping analyses. In 89 cases the subtype could be determined and in 8 cases exclusions of common complementation groups were made. Compared with other international studies, a skewed distribution of complementation groups was observed in Spain, where 80% of the families belonged to the Fanconi anaemia group A (FA‐A) complementation group. The high proportion of gypsy patients, all of them FA‐A, and the absence of patients with FA‐C account for this characteristic distribution of complementation groups. PMID:17105750

  18. A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer

    PubMed Central

    Elvington, Michelle; Huang, Yuxiang; Morgan, B. Paul; Qiao, Fei; van Rooijen, Nico; Atkinson, Carl

    2012-01-01

    Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer. PMID:22442351

  19. l-Alanine Auxotrophy of Lactobacillus johnsonii as Demonstrated by Physiological, Genomic, and Gene Complementation Approaches

    PubMed Central

    van der Kaaij, Hengameh; Desiere, Frank; Mollet, Beat; Germond, Jacques-Edouard

    2004-01-01

    Using a chemically defined medium without l-alanine, Lactobacillus johnsonii was demonstrated to be strictly auxotrophic for that amino acid. A comparative genetic analysis showed that all known genes involved in l-alanine biosynthesis are absent from the genome of L. johnsonii. This auxotrophy was complemented by heterologous expression of the Bacillus subtilis l-alanine dehydrogenase. PMID:15006820

  20. A local complement response by RPE causes early-stage macular degeneration

    PubMed Central

    Fernandez-Godino, Rosario; Garland, Donita L.; Pierce, Eric A.

    2015-01-01

    Inherited and age-related macular degenerations (AMDs) are important causes of vision loss. An early hallmark of these disorders is the formation of sub-retinal pigment epithelium (RPE) basal deposits. A role for the complement system in MDs was suggested by genetic association studies, but direct functional connections between alterations in the complement system and the pathogenesis of MD remain to be defined. We used primary RPE cells from a mouse model of inherited MD due to a p.R345W mutation in EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to investigate the role of the RPE in early MD pathogenesis. Efemp1R345W RPE cells recapitulate the basal deposit formation observed in vivo by producing sub-RPE deposits in vitro. The deposits share features with basal deposits, and their formation was mediated by EFEMP1R345W or complement component 3a (C3a), but not by complement component 5a (C5a). Increased activation of complement appears to occur in response to an abnormal extracellular matrix (ECM), generated by the mutant EFEMP1R345W protein and reduced ECM turnover due to inhibition of matrix metalloproteinase 2 by EFEMP1R345W and C3a. Increased production of C3a also stimulated the release of cytokines such as interleukin (IL)-6 and IL-1B, which appear to have a role in deposit formation, albeit downstream of C3a. These studies provide the first direct indication that complement components produced locally by the RPE are involved in the formation of basal deposits. Furthermore, these results suggest that C3a generated by RPE is a potential therapeutic target for the treatment of EFEMP1-associated MD as well as AMD. PMID:26199322

  1. [Fanconi Anemia, Complementation Group D1 Caused by Biallelic Mutations of BRCA2 Gene--Case Report].

    PubMed

    Puchmajerová, A; Švojgr, K; Novotná, D; Macháčková, E; Sumerauer, D; Smíšek, P; Kodet, R; Kynčl, M; Křepelová, A; Foretová, L

    2016-01-01

    Fanconi anemia is a rare autosomal recessive disorder, clinically and genetically heterogeneous, characterized by typical clinical features, such as short stature, microcephaly, skeletal abnormalities, abnormal skin pigmentations, developmental delay and congenital heart, kidney anomalies etc. Pancytopenia leading to bone marrow failure occurs in the first decade. Patients with Fanconi anemia have a high risk of hematologic malignancies and solid tumors. The diagnosis of Fanconi anemia is based on cytogenetic testing for increased rates of spontaneous chromosomal breakage and increased sensitivity to diepoxybutane or mitomycin C. Fanconi anemia is a heterogeneous disorder, at least 15 complementation groups are described, and 15 genes in which mutations are responsible for all of the 15 Fanconi anemia complementation groups have been identified. Unlike other Fanconi anemia complementation groups, for complementation group D1 (FANCD1), the bone marrow failure is not a typical feature, but early-onset leukemia and specific solid tumors, most often medulloblastoma and Wilms tumor, are typical for this complementation group.

  2. Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value.

    PubMed

    Shin, Donghyun; Lee, Chul; Park, Kyoung-Do; Kim, Heebal; Cho, Kwang-Hyeon

    2017-03-01

    Holsteins are known as the world's highest-milk producing dairy cattle. The purpose of this study was to identify genetic regions strongly associated with milk traits (milk production, fat, and protein) using Korean Holstein data. This study was performed using single nucleotide polymorphism (SNP) chip data (Illumina BovineSNP50 Beadchip) of 911 Korean Holstein individuals. We inferred each genomic estimated breeding values based on best linear unbiased prediction (BLUP) and ridge regression using BLUPF90 and R. We then performed a genome-wide association study and identified genetic regions related to milk traits. We identified 9, 6, and 17 significant genetic regions related to milk production, fat and protein, respectively. These genes are newly reported in the genetic association with milk traits of Holstein. This study complements a recent Holstein genome-wide association studies that identified other SNPs and genes as the most significant variants. These results will help to expand the knowledge of the polygenic nature of milk production in Holsteins.

  3. Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value

    PubMed Central

    Shin, Donghyun; Lee, Chul; Park, Kyoung-Do; Kim, Heebal; Cho, Kwang-hyeon

    2017-01-01

    Objective Holsteins are known as the world’s highest-milk producing dairy cattle. The purpose of this study was to identify genetic regions strongly associated with milk traits (milk production, fat, and protein) using Korean Holstein data. Methods This study was performed using single nucleotide polymorphism (SNP) chip data (Illumina BovineSNP50 Beadchip) of 911 Korean Holstein individuals. We inferred each genomic estimated breeding values based on best linear unbiased prediction (BLUP) and ridge regression using BLUPF90 and R. We then performed a genome-wide association study and identified genetic regions related to milk traits. Results We identified 9, 6, and 17 significant genetic regions related to milk production, fat and protein, respectively. These genes are newly reported in the genetic association with milk traits of Holstein. Conclusion This study complements a recent Holstein genome-wide association studies that identified other SNPs and genes as the most significant variants. These results will help to expand the knowledge of the polygenic nature of milk production in Holsteins. PMID:26954162

  4. Autoantibodies against complement components in systemic lupus erythematosus - role in the pathogenesis and clinical manifestations.

    PubMed

    Hristova, M H; Stoyanova, V S

    2017-12-01

    Many complement structures and a number of additional factors, i.e. autoantibodies, receptors, hormones and cytokines, are implicated in the complex pathogenesis of systemic lupus erythematosus. Genetic defects in the complement as well as functional deficiency due to antibodies against its components lead to different pathological conditions, usually clinically presented. Among them hypocomplementemic urticarial vasculitis, different types of glomerulonephritis as dense deposit disease, IgA nephropathy, atypical haemolytic uremic syndrome and lupus nephritis are very common. These antibodies cause conformational changes leading to pathological activation or inhibition of complement with organ damage and/or limited capacity of the immune system to clear immune complexes and apoptotic debris. Finally, we summarize the role of complement antibodies in the pathogenesis of systemic lupus erythematosus and discuss the mechanism of some related clinical conditions such as infections, thyroiditis, thrombosis, acquired von Willebrand disease, etc.

  5. Genetic Manipulation of Streptococcus pyogenes (The Group A Streptococcus, GAS)

    PubMed Central

    Le Breton, Yoann; McIver, Kevin S.

    2013-01-01

    Streptococcus pyogenes (the group A streptococcus, GAS) is a Gram-positive bacterium responsible for a wide spectrum of diseases ranging from mild superficial infections (pharyngitis, impetigo) to severe often life-threatening invasive diseases (necrotizing fasciitis, streptococcal toxic shock syndrome) in humans. This unit describes molecular techniques for the genetic manipulation of S. pyogenes with detailed protocols for transformation, gene disruption, allelic exchange, transposon mutagenesis, and genetic complementation. PMID:24510894

  6. Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: complement component C1q and Prnp polymorphisms

    USGS Publications Warehouse

    Blanchong, Julie A.; Heisey, Dennis M.; Scribner, Kim T.; Libants, Scot V.; Johnson, Chad; Aiken, Judd M.; Langenberg, Julia A.; Samuel, Michael D.

    2009-01-01

    The genetic basis of susceptibility to chronic wasting disease (CWD) in free-ranging cervids is of great interest. Association studies of disease susceptibility in free-ranging populations, however, face considerable challenges including: the need for large sample sizes when disease is rare, animals of unknown pedigree create a risk of spurious results due to population admixture, and the inability to control disease exposure or dose. We used an innovative matched case–control design and conditional logistic regression to evaluate associations between polymorphisms of complement C1q and prion protein (Prnp) genes and CWD infection in white-tailed deer from the CWD endemic area in south-central Wisconsin. To reduce problems due to admixture or disease-risk confounding, we used neutral genetic (microsatellite) data to identify closely related CWD-positive (n = 68) and CWD-negative (n = 91) female deer to serve as matched cases and controls. Cases and controls were also matched on factors (sex, location, age) previously demonstrated to affect CWD infection risk. For Prnp, deer with at least one Serine (S) at amino acid 96 were significantly less likely to be CWD-positive relative to deer homozygous for Glycine (G). This is the first characterization of genes associated with the complement system in white-tailed deer. No tests for association between any C1q polymorphism and CWD infection were significant at p < 0.05. After controlling for Prnp, we found weak support for an elevated risk of CWD infection in deer with at least one Glycine (G) at amino acid 56 of the C1qC gene. While we documented numerous amino acid polymorphisms in C1q genes none appear to be strongly associated with CWD susceptibility.

  7. Studies of Dynamic Protein-Protein Interactions in Bacteria Using Renilla Luciferase Complementation Are Undermined by Nonspecific Enzyme Inhibition

    PubMed Central

    Hatzios, Stavroula K.; Ringgaard, Simon; Davis, Brigid M.; Waldor, Matthew K.

    2012-01-01

    The luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein interactions in live bacteria. As proof of concept and to develop a new tool for studies of bacterial chemotaxis, fragments of Renilla luciferase (Rluc) were fused to the chemotaxis-associated response regulator CheY3 and its phosphatase CheZ in the enteric pathogen Vibrio cholerae. Luciferase activity was dependent on the presence of both CheY3 and CheZ fusion proteins, demonstrating the specificity of the assay. Furthermore, enzyme activity was markedly reduced in V. cholerae chemotaxis mutants, suggesting that this approach can measure defects in chemotactic signaling. However, attempts to measure changes in dynamic CheY3-CheZ interactions in response to various chemoeffectors were undermined by nonspecific inhibition of the full-length luciferase. These observations reveal an unexpected limitation of split Rluc complementation that may have implications for existing data and highlight the need for great caution when evaluating small molecule effects on dynamic protein-protein interactions using the split luciferase technology. PMID:22905225

  8. Studies of dynamic protein-protein interactions in bacteria using Renilla luciferase complementation are undermined by nonspecific enzyme inhibition.

    PubMed

    Hatzios, Stavroula K; Ringgaard, Simon; Davis, Brigid M; Waldor, Matthew K

    2012-01-01

    The luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein interactions in live bacteria. As proof of concept and to develop a new tool for studies of bacterial chemotaxis, fragments of Renilla luciferase (Rluc) were fused to the chemotaxis-associated response regulator CheY3 and its phosphatase CheZ in the enteric pathogen Vibrio cholerae. Luciferase activity was dependent on the presence of both CheY3 and CheZ fusion proteins, demonstrating the specificity of the assay. Furthermore, enzyme activity was markedly reduced in V. cholerae chemotaxis mutants, suggesting that this approach can measure defects in chemotactic signaling. However, attempts to measure changes in dynamic CheY3-CheZ interactions in response to various chemoeffectors were undermined by nonspecific inhibition of the full-length luciferase. These observations reveal an unexpected limitation of split Rluc complementation that may have implications for existing data and highlight the need for great caution when evaluating small molecule effects on dynamic protein-protein interactions using the split luciferase technology.

  9. Complementation of a red-light-indifferent cyanobacterial mutant.

    PubMed Central

    Chiang, G G; Schaefer, M R; Grossman, A R

    1992-01-01

    Many cyanobacteria alter their phycobilisome composition in response to changes in light wavelength in a process termed complementary chromatic adaptation. Mutant strains FdR1 and FdR2 of the filamentous cyanobacterium Fremyella diplosiphon are characterized by aberrant chromatic adaptation. Instead of adjusting to different wavelengths of light, FdR1 and FdR2 behave as if they are always in green light; they do not respond to red light. We have previously reported complementation of FdR1 by conjugal transfer of a wild-type genomic library. The complementing DNA has now been localized by genetic analysis to a region on the rescued genomic subclone that contains a gene designated rcaC. This region of DNA is also able to complement FdR2. Southern blot analysis of genomic DNA from FdR1 and FdR2 indicates that these strains harbor DNA insertions within the rcaC sequence that may have resulted from the activity of transposable genetic elements. The predicted amino acid sequence of RcaC shares strong identity to response regulators of bacterial two-component regulatory systems. This relationship is discussed in the context of the signal-transduction pathway mediating regulation of genes encoding phycobilisome polypeptides during chromatic adaptation. Images PMID:1409650

  10. Mammalian synthetic biology for studying the cell

    PubMed Central

    Mathur, Melina; Xiang, Joy S.

    2017-01-01

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576

  11. Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience.

    PubMed

    Brenowitz, Eliot A; Zakon, Harold H

    2015-05-01

    Neuroscience has historically exploited a wide diversity of animal taxa. Recently, however, research has focused increasingly on a few model species. This trend has accelerated with the genetic revolution, as genomic sequences and genetic tools became available for a few species, which formed a bottleneck. This coalescence on a small set of model species comes with several costs that are often not considered, especially in the current drive to use mice explicitly as models for human diseases. Comparative studies of strategically chosen non-model species can complement model species research and yield more rigorous studies. As genetic sequences and tools become available for many more species, we are poised to emerge from the bottleneck and once again exploit the rich biological diversity offered by comparative studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System

    PubMed Central

    Stynen, Bram; Tournu, Hélène; Tavernier, Jan

    2012-01-01

    Summary: The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays. PMID:22688816

  13. Integration of genomic resources to uncover pleiotropic regions associated with age at puberty and reproductive longevity in sows

    USDA-ARS?s Scientific Manuscript database

    Commercial and experimental genetic resources were used to investigate genetic pleiotropic factors that influence age at puberty, litter-size and reproductive longevity. The phenotypes were complemented by high-density genotyping and whole genome and RNA sequencing. The SNPs from Porcine SNP60 BeadA...

  14. Genetic diversity, virulence, and Meloidogyne incognita interactions of Fusarium oxysporum isolates causing cotton wilt in Georgia

    USDA-ARS?s Scientific Manuscript database

    Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. ox...

  15. Cfh genotype interacts with dietary glycemic index to modulate age-related macular degeneration-like features in mice

    USDA-ARS?s Scientific Manuscript database

    Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Genetics and diet contribute to the relative risk for developing AMD, but their interactions are poorly understood. Genetic variations in Complement Factor H (CFH), and dietary glycemic index (GI) are major ris...

  16. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.

    PubMed

    Bland, David M; Eisele, Nicholas A; Keleher, Lauren L; Anderson, Paul E; Anderson, Deborah M

    2011-03-02

    Molecular studies of bacterial virulence are enhanced by expression of recombinant DNA during infection to allow complementation of mutants and expression of reporter proteins in vivo. For highly pathogenic bacteria, such as Yersinia pestis, these studies are currently limited because deliberate introduction of antibiotic resistance is restricted to those few which are not human treatment options. In this work, we report the development of alternatives to antibiotics as tools for host-pathogen research during Yersinia pestis infections focusing on the diaminopimelic acid (DAP) pathway, a requirement for cell wall synthesis in eubacteria. We generated a mutation in the dapA-nlpB(dapX) operon of Yersinia pestis KIM D27 and CO92 which eliminated the expression of both genes. The resulting strains were auxotrophic for diaminopimelic acid and this phenotype was complemented in trans by expressing dapA in single and multi-copy. In vivo, we found that plasmids derived from the p15a replicon were cured without selection, while selection for DAP enhanced stability without detectable loss of any of the three resident virulence plasmids. The dapAX mutation rendered Y. pestis avirulent in mouse models of bubonic and septicemic plague which could be complemented when dapAX was inserted in single or multi-copy, restoring development of disease that was indistinguishable from the wild type parent strain. We further identified a high level, constitutive promoter in Y. pestis that could be used to drive expression of fluorescent reporters in dapAX strains that had minimal impact to virulence in mouse models while enabling sensitive detection of bacteria during infection. Thus, diaminopimelic acid selection for single or multi-copy genetic systems in Yersinia pestis offers an improved alternative to antibiotics for in vivo studies that causes minimal disruption to virulence.

  17. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis

    PubMed Central

    Woehrl, Bianca; Brouwer, Matthijs C.; Murr, Carmen; Heckenberg, Sebastiaan G.B.; Baas, Frank; Pfister, Hans W.; Zwinderman, Aeilko H.; Morgan, B. Paul; Barnum, Scott R.; van der Ende, Arie; Koedel, Uwe; van de Beek, Diederik

    2011-01-01

    Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the proinflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. Additionally, SNPs in genes encoding complement pathway proteins have been linked to susceptibility to pneumococcal infection, although no associations with disease severity or outcome have been established. Here, we have performed a robust prospective nationwide genetic association study in patients with bacterial meningitis and found that a common nonsynonymous complement component 5 (C5) SNP (rs17611) is associated with unfavorable disease outcome. C5 fragment levels in cerebrospinal fluid (CSF) of patients with bacterial meningitis correlated with several clinical indicators of poor prognosis. Consistent with these human data, C5a receptor–deficient mice with pneumococcal meningitis had lower CSF wbc counts and decreased brain damage compared with WT mice. Adjuvant treatment with C5-specific monoclonal antibodies prevented death in all mice with pneumococcal meningitis. Thus, our results suggest C5-specific monoclonal antibodies could be a promising new antiinflammatory adjuvant therapy for pneumococcal meningitis. PMID:21926466

  18. Gene Copy-Number Variations (CNVs) of Complement C4 and C4A Deficiency in Genetic Risk and Pathogenesis of Juvenile Dermatomyositis

    PubMed Central

    Lintner, Katherine E.; Patwardhan, Anjali; Rider, Lisa G.; Abdul-Aziz, Rabheh; Wu, Yee Ling; Lundström, Emeli; Padyukov, Leonid; Zhou, Bi; Alhomosh, Alaaedin; Newsom, David; White, Peter; Jones, Karla B.; O’Hanlon, Terrance P.; Miller, Frederick W.; Spencer, Charles H.; Yu, C. Yung

    2017-01-01

    Objective Complement-mediated vasculopathy of muscle and skin are clinical features of juvenile dermatomyositis (JDM). We assess gene copy-number variations (CNVs) for complement C4 and its isotypes, C4A and C4B, in genetic risks and pathogenesis of JDM. Methods The study population included 105 JDM patients and 500 healthy European Americans. Gene copy-numbers (GCNs) for total C4, C4A, C4B and HLA-DRB1 genotypes were determined by Southern blots and PCRs. Processed activation product C4d bound to erythrocytes (E-C4d) was measured by flow cytometry. Global gene-expression microarrays were performed in 19 JDM and 7 controls using PAXgene-blood RNA. Differential expression levels for selected genes were validated by qPCR. Results Significantly lower GCNs and differences in distribution of GCN groups for total C4 and C4A were observed between JDM and controls. Lower GCN of C4A in JDM remained among HLA DR3-positive subjects (p=0.015). Homozygous or heterozygous C4A-deficiency was present in 40.0% of JDM compared to 18.2% of controls [odds ratio (OR)=3.00 (1.87–4.79), p=8.2x10−6]. JDM had higher levels of E-C4d than controls (p=0.004). In JDM, C4A-deficient subjects had higher levels of E-C4d (p=0.0003) and higher frequency of elevated levels of multiple serum muscle enzymes at diagnosis (p=0.004). Microarray profiling of blood RNA revealed upregulation of type I Interferon-stimulated genes and lower abundance of transcripts for T-cell and chemokine function genes in JDM, but this was less prominent among C4A-deficient or DR3-positive patients. Conclusions Complement C4A-deficiency appears to be an important factor for the genetic risk and pathogenesis of JDM, particularly in patients with a DR3-positive background. PMID:26493816

  19. Age-Related Macular Degeneration: Genetics and Biology Coming Together

    PubMed Central

    Fritsche, Lars G.; Fariss, Robert N.; Stambolian, Dwight; Abecasis, Gonçalo R.; Curcio, Christine A.

    2014-01-01

    Genetic and genomic studies have enhanced our understanding of complex neurodegenerative diseases that exert a devastating impact on individuals and society. One such disease, age-related macular degeneration (AMD), is a major cause of progressive and debilitating visual impairment. Since the pioneering discovery in 2005 of complement factor H (CFH) as a major AMD susceptibility gene, extensive investigations have confirmed 19 additional genetic risk loci, and more are anticipated. In addition to common variants identified by now-conventional genome-wide association studies, targeted genomic sequencing and exome-chip analyses are uncovering rare variant alleles of high impact. Here, we provide a critical review of the ongoing genetic studies and of common and rare risk variants at a total of 20 susceptibility loci, which together explain 40–60% of the disease heritability but provide limited power for diagnostic testing of disease risk. Identification of these susceptibility loci has begun to untangle the complex biological pathways underlying AMD pathophysiology, pointing to new testable paradigms for treatment. PMID:24773320

  20. Lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuffanelli, D.L.

    1981-02-01

    Lupus erythematosus (LE) is a multisystem disease. Genetic predisposition, altered immunity, hormones, drugs, viruses, and ultraviolet light all may play a role in etiology. A wide range of cutaneous lesions occur, and variants such as subacute cutaneous LE, complement-deficient LE, and neonatal LE have recently been emphasized. Management of the LE patient, including appropriate diagnostic studies and therapy relevant to the dermatologist, is discussed in the review.

  1. Dense Deposit Disease

    PubMed Central

    Smith, Richard J.H; Harris, Claire L.; Pickering, Matthew C.

    2011-01-01

    Dense deposit disease (DDD) is an orphan disease that primarily affects children and young adults without sexual predilection. Studies of its pathophysiology have shown conclusively that it is caused by fluid-phase dysregulation of the alternative pathway of complement, however the role played by genetics and autoantibodies like C3 nephritic factors must be more thoroughly defined if we are to make an impact in the clinical management of this disease. There are currently no mechanism-directed therapies to offer affected patients, half of whom progress to end stage renal failure disease within 10 years of diagnosis. Transplant recipients face the dim prospect of disease recurrence in their allografts, half of which ultimately fail. More detailed genetic and complement studies of DDD patients may make it possible to identify protective factors prognostic for naïve kidney and transplant survival, or conversely risk factors associated with progression to renal failure and allograft loss. The pathophysiology of DDD suggests that a number of different treatments warrant consideration. As advances are made in these areas, there will be a need to increase healthcare provider awareness of DDD by making resources available to clinicians to optimize care for DDD patients. PMID:21601923

  2. Linkage analysis of the Fanconi anemia gene FACC with chromosome 9q markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, A.D.; Shin, H.T.; Kaporis, A.G.

    1994-09-01

    Fanconi anemia (FA) is a genetically heterogeneous syndrome, with at least four different complementation groups as determined by cell fusion studies. The gene for complementation group C, FACC, has been cloned and mapped to chromosome 9q22.3 by in situ hybridization, while linkage analysis has supported the placement of another gene on chromosome 20q. We have analyzed five microsatellite markers and one RFLP on chromosome 9q in a panel of FA families from the International Fanconi Anemia Registry (IFAR) in order to place FACC on the genetic map. Polymorphisms were typed in 308 individuals from 51 families. FACC is tightly linkedmore » to both D9S151 [{Theta}{sub max}=0.025, Z{sub max}=7.75] and to D9S196 [{Theta}{sub max}=0.041, Z{sub max}=7.89]; multipoint analysis is in progress. We are currently screening a YAC clone that contains the entire FACC gene for additional microsatellite markers suitable for haplotype analysis of FA families.« less

  3. Genetic relatedness of Brazilian Colletotrichum truncatum isolates assessed by vegetative compatibility groups and RAPD analysis.

    PubMed

    Sant'Anna, Juliane R; Miyamoto, Cláudia T; Rosada, Lúcia J; Franco, Claudinéia C S; Kaneshima, Edilson N; Castro-Prado, Marialba A A

    2010-01-01

    The genetic variation among nine soybean-originating isolates of Colletotrichum truncatum from different Brazilian states was studied. Nitrate non-utilizing (nit) mutants were obtained with potassium chlorate and used to characterize vegetative compatibility reactions, heterokaryosis and RAPD profile. Based on pairings of nit mutants from the different isolates, five vegetative complementation groups (VCG) were identified, and barriers to the formation of heterokaryons were observed among isolates derived from the same geographic area. No complementation was observed among any of the nit mutants recovered from the isolate A, which was designed heterokaryon-self-incompatible. Based on RAPD analysis, a polymorphism was detected among the wild isolate C and their nit1 and NitM mutants. RAPD amplification, with five different primers, also showed polymorphic profiles among Brazilian C. truncatum isolates. Dendrogram analysis resulted in a similarity degree ranging between 0.331 and 0.882 among isolates and identified three RAPD groups. Despite the lack of a correlation between the RAPD analysis and the vegetative compatibility grouping, results demonstrated the potential of VCG analysis to differentiate C. truncatum isolates genotypically similar when compared by RAPD.

  4. Modulation of risk of squamous cell carcinoma head and neck in North Indian population with polymorphisms in xeroderma pigmentosum complementation Group C gene.

    PubMed

    Yadav, Suresh Kumar; Singh, Sudhir; Gupta, Shalini; Brahma Bhatt, Madan Lal; Mishra, Durga P; Roy, D; Sanyal, Somali

    2018-01-01

    Genetic variations in nucleotide excision repair genes can alter the risk of squamous cell carcinoma of head and neck (SCCHN). The present study has genotyped 334 subjects from North Indian population for xeroderma pigmentosum complementation Group C (XPC) rs2228001A>C, XPC rs77907221 polyadenylate (PAT) deletion/insertion (D/I), xeroderma pigmentosum complementation Group D - rs13181A>C, and xeroderma pigmentosum complementation Type G rs17655 G>C polymorphisms with polymerase chain reaction (PCR)-restriction-fragment length polymorphism or allele-specific PCR methods. Compared to D allele, I allele for XPC PAT D/I polymorphism was associated with significantly decreased the risk of SCCHN (odds ratios = 0.67, 95% confidence interval [CI] =0.48-0.94, P = 0.03). Haplotype CI constituted from XPC polymorphisms was also associated with decreased risk of SCCHN (P = 0.004). In contrast, haplotype Crohn's disease significantly increased the risk for SCCHN (P < 0.00). A significant early onset of SCCHN was observed in individuals with CC genotype for XPC A>C polymorphism (P = 0.004). Our results suggest a possible risk modulation for SCCHN with XPC polymorphisms in North Indian population.

  5. Mammalian synthetic biology for studying the cell.

    PubMed

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  6. Cytogenetic Analysis of the South American Fruit Fly Anastrepha fraterculus (Diptera:Tephritidae) Species Complex: Construction of Detailed Photographic Polytene Chromosome Maps of the Argentinian Af. sp.1 Member

    PubMed Central

    Augustinos, Antonios A.; Drosopoulou, Elena; Lanzavecchia, Silvia B.; Cladera, Jorge L.; Caceres, Carlos; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope; Zacharopoulou, Antigone

    2016-01-01

    Genetic and cytogenetic studies constitute a significant basis for understanding the biology of insect pests and the design and the construction of genetic tools for biological control strategies. Anastrepha fraterculus is an important pest of the Tephritidae family. It is distributed from southern Texas through eastern Mexico, Central America and South America causing significant crop damage and economic losses. Currently it is considered as a species complex; until now seven members have been described based on multidisciplinary approaches. Here we report the cytogenetic analysis of an Argentinian population characterized as Af. sp.1 member of the Anastrepha fraterculus species complex. The mitotic karyotype and the first detailed photographic maps of the salivary gland polytene chromosomes are presented. The mitotic metaphase complement consists of six (6) pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes that correspond to the five autosomes of the mitotic karyotype and a heterochromatic network corresponding to the sex chromosomes. Comparison of the polytene chromosome maps between this species and Anastrepha ludens shows significant similarity. The polytene maps presented here are suitable for cytogenetic studies that could shed light on the species limits within this species complex and support the development of genetic tools for sterile insect technique (SIT) applications. PMID:27362546

  7. Transient Receptor Potential Channel 6 (TRPC6) Protects Podocytes during Complement-mediated Glomerular Disease*

    PubMed Central

    Kistler, Andreas D.; Singh, Geetika; Altintas, Mehmet M.; Yu, Hao; Fernandez, Isabel C.; Gu, Changkyu; Wilson, Cory; Srivastava, Sandeep Kumar; Dietrich, Alexander; Walz, Katherina; Kerjaschki, Dontscho; Ruiz, Phillip; Dryer, Stuart; Sever, Sanja; Dinda, Amit K.; Faul, Christian; Reiser, Jochen

    2013-01-01

    Gain-of-function mutations in the calcium channel TRPC6 lead to autosomal dominant focal segmental glomerulosclerosis and podocyte expression of TRPC6 is increased in some acquired human glomerular diseases, particularly in membranous nephropathy. These observations led to the hypothesis that TRPC6 overactivation is deleterious to podocytes through pathological calcium signaling, both in genetic and acquired diseases. Here, we show that the effects of TRPC6 on podocyte function are context-dependent. Overexpression of TRPC6 alone did not directly affect podocyte morphology and cytoskeletal structure. Unexpectedly, however, overexpression of TRPC6 protected podocytes from complement-mediated injury, whereas genetic or pharmacological TRPC6 inactivation increased podocyte susceptibility to complement. Mechanistically, this effect was mediated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. Podocyte-specific TRPC6 transgenic mice showed stronger CaMKII activation, reduced podocyte foot process effacement and reduced levels of proteinuria during nephrotoxic serum nephritis, whereas TRPC6 null mice exhibited reduced CaMKII activation and higher levels of proteinuria compared with wild type littermates. Human membranous nephropathy biopsy samples showed podocyte staining for active CaMKII, which correlated with the degree of TRPC6 expression. Together, these data suggest a dual and context dependent role of TRPC6 in podocytes where acute activation protects from complement-mediated damage, but chronic overactivation leads to focal segmental glomerulosclerosis. PMID:24194522

  8. AmpliSeq Screening of Genes Encoding the C-Type Lectin Receptors and Their Signaling Components Reveals a Common Variant in MASP1 Associated with Pulmonary Tuberculosis in an Indian Population.

    PubMed

    Klassert, Tilman E; Goyal, Surabhi; Stock, Magdalena; Driesch, Dominik; Hussain, Abid; Berrocal-Almanza, Luis Carlos; Myakala, Rajashekar; Sumanlatha, Gaddam; Valluri, Vijayalakshmi; Ahmed, Niyaz; Schumann, Ralf R; Flores, Carlos; Slevogt, Hortense

    2018-01-01

    Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p  = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro . In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance.

  9. AmpliSeq Screening of Genes Encoding the C-Type Lectin Receptors and Their Signaling Components Reveals a Common Variant in MASP1 Associated with Pulmonary Tuberculosis in an Indian Population

    PubMed Central

    Klassert, Tilman E.; Goyal, Surabhi; Stock, Magdalena; Driesch, Dominik; Hussain, Abid; Berrocal-Almanza, Luis Carlos; Myakala, Rajashekar; Sumanlatha, Gaddam; Valluri, Vijayalakshmi; Ahmed, Niyaz; Schumann, Ralf R.; Flores, Carlos; Slevogt, Hortense

    2018-01-01

    Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro. In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance. PMID:29515573

  10. Mathematical and computational approaches can complement experimental studies of host-pathogen interactions.

    PubMed

    Kirschner, Denise E; Linderman, Jennifer J

    2009-04-01

    In addition to traditional and novel experimental approaches to study host-pathogen interactions, mathematical and computer modelling have recently been applied to address open questions in this area. These modelling tools not only offer an additional avenue for exploring disease dynamics at multiple biological scales, but also complement and extend knowledge gained via experimental tools. In this review, we outline four examples where modelling has complemented current experimental techniques in a way that can or has already pushed our knowledge of host-pathogen dynamics forward. Two of the modelling approaches presented go hand in hand with articles in this issue exploring fluorescence resonance energy transfer and two-photon intravital microscopy. Two others explore virtual or 'in silico' deletion and depletion as well as a new method to understand and guide studies in genetic epidemiology. In each of these examples, the complementary nature of modelling and experiment is discussed. We further note that multi-scale modelling may allow us to integrate information across length (molecular, cellular, tissue, organism, population) and time (e.g. seconds to lifetimes). In sum, when combined, these compatible approaches offer new opportunities for understanding host-pathogen interactions.

  11. Genetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum.

    PubMed

    El Bissati, Kamal; Downie, Megan J; Kim, Seong-Kyoun; Horowitz, Michael; Carter, Nicola; Ullman, Buddy; Ben Mamoun, Choukri

    2008-10-01

    The malaria parasite, Plasmodium falciparum, is unable to synthesize the purine ring de novo and is therefore wholly dependent upon purine salvage from the host for survival. Previous studies have indicated that a P. falciparum strain in which the purine transporter PfNT1 had been disrupted was unable to grow on physiological concentrations of adenosine, inosine and hypoxanthine. We have now used an episomally complemented pfnt1Delta knockout parasite strain to confirm genetically the functional role of PfNT1 in P. falciparum purine uptake and utilization. Episomal complementation by PfNT1 restored the ability of pfnt1Delta parasites to transport and utilize adenosine, inosine and hypoxanthine as purine sources. The ability of wild-type and pfnt1Delta knockout parasites to transport and utilize the other physiologically relevant purines adenine, guanine, guanosine and xanthine was also examined. Unlike wild-type and complemented P. falciparum parasites, pfnt1Delta parasites could not proliferate on guanine, guanosine or xanthine as purine sources, and no significant transport of these substrates could be detected in isolated parasites. Interestingly, whereas isolated pfnt1Delta parasites were still capable of adenine transport, these parasites grew only when adenine was provided at high, non-physiological concentrations. Taken together these results demonstrate that, in addition to hypoxanthine, inosine and adenosine, PfNT1 is essential for the transport and utilization of xanthine, guanine and guanosine.

  12. Comprehensive approach to study complement C4 in systemic lupus erythematosus: Gene polymorphisms, protein levels and functional activity.

    PubMed

    Tsang-A-Sjoe, M W P; Bultink, I E M; Korswagen, L A; van der Horst, A; Rensink, I; de Boer, M; Hamann, D; Voskuyl, A E; Wouters, D

    2017-12-01

    Genetic variation of the genes encoding complement component C4 is strongly associated with systemic lupus erythematosus (SLE), a chronic multi-organ auto-immune disease. This study examined C4 and its isotypes on a genetic, protein, and functional level in 140 SLE patients and 104 healthy controls. Gene copy number (GCN) variation, silencing CT-insertion, and the retroviral HERV-K(C4) insertion) were analyzed with multiplex ligation-dependent probe amplification. Increased susceptibility to SLE was found for low GCN (≪2) of C4A. Serositis was the only clinical manifestation associated with low C4A GCN. One additional novel silencing mutation in the C4A gene was found by Sanger sequencing. This mutation causes a premature stop codon in exon 11. Protein concentrations of C4 isoforms C4A and C4B were determined with ELISA and were significantly lower in SLE patients compared to healthy controls. To study C4 isotypes on a functional level, a new C4 assay was developed, which distinguishes C4A from C4B by its binding capacity to amino or hydroxyl groups, respectively. This assay showed high correlation with ELISA and detected crossing over of Rodgers and Chido antigens in 3.2% (8/244) of individuals. The binding capacity of available C4 to its substrates was unaffected in SLE. Our study provides, for the first time, a complete overview of C4 in SLE from genetic variation to binding capacity using a novel test. As this test detects crossing over of Rodgers and Chido antigens, it will allow for more accurate measurement of C4 in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Generation of EMS-Mutagenized Populations of Arabidopsis thaliana for Polyamine Genetics.

    PubMed

    Atanasov, Kostadin E; Liu, Changxin; Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    In the recent years, genetic engineering of polyamine biosynthetic genes has provided evidence for their involvement in plant stress responses and different aspects of plant development. Such approaches are being complemented with the use of reverse genetics, in which mutants affected on a particular trait, tightly associated with polyamines, are isolated and the causal genes mapped. Reverse genetics enables the identification of novel genes in the polyamine pathway, which may be involved in downstream signaling, transport, homeostasis, or perception. Here, we describe a basic protocol for the generation of ethyl methanesulfonate (EMS) mutagenized populations of Arabidopsis thaliana for its use in reverse genetics applied to polyamines.

  14. X-ray cross-complementing groups 1 rs1799782 C>T polymorphisms and colorectal cancer susceptibility: A meta-analysis based on Chinese Han population.

    PubMed

    Wang, Liming; Qian, Junfeng; Ying, Chunxiao; Zhuang, Yongwei; Shang, Xingjie; Xu, Fang

    2016-12-01

    X-ray cross-complementing groups 1 (XRCC1) rs1799782 C>T polymorphisms and colorectal cancer susceptibility were not clear. The purpose of this study was to evaluate the association between XRCC1 rs1799782 C>T polymorphisms and colorectal cancer susceptibility by meta-analysis. Related databases of Medline, CNKI, and Wanfang were systematic searched for the studies related to XRCC1 rs1799782 C>T polymorphisms and colorectal cancer risk in Chinese Han population. The genotype distribution of CC, CT and TT were extracted from each included studies in the colorectal cancer patients and healthy control subjects. The odds ratio (OR) and its 95% confidence interval (95% CI) was used to assess the correlation between genetype and colorectal cancer risk. The publications for this study was evaluated by Begg's funnel plot and Egger's line regression test. The median frequency of CC, CT, and TT genotype in cancer group were 48%, 41% and 11%; For control group, they were 51%, 40% and 8%; the pooled results showed that OR = 1.32 (95% CI: 1.041-1.67, P < 0.05). The pooled results indicated that XRCC1 rs1799782 C>T polymorphisms was associated with colorectal cancer susceptibility in recessive genetic model OR = 1.32 (95% CI: 1.041-1.67, P < 0.05), dominant genetic model OR = 1.21 (95% CI: 1.00-1.46, P < 0.05) and homozygous genetic model OR = 1.43 (95% CI: 1.07-1.91, P < 0.05). The funnel plot was significant asymmetric at the bottom and the Egger's test also indicated significant publication bias (t = 2.43, P = 0.04) for recessive genetic model. But, no publication bias was found in dominant and homozygous model (P > 0.05). Chinese Han people with rs1799782 TT/CT genotype of XRCC1 gene may have increased risk of developing colorectal.

  15. The role of molecular genetics in diagnosing familial hematuria(s).

    PubMed

    Deltas, Constantinos; Pierides, Alkis; Voskarides, Konstantinos

    2012-08-01

    Familial microscopic hematuria (MH) of glomerular origin represents a heterogeneous group of monogenic conditions involving several genes, some of which remain unknown. Recent advances have increased our understanding and our ability to use molecular genetics for diagnosing such patients, enabling us to study their clinical characteristics over time. Three collagen IV genes, COL4A3, COL4A4, and COL4A5 explain the autosomal and X-linked forms of Alport syndrome (AS), and a subset of thin basement membrane nephropathy (TBMN). A number of X-linked AS patients follow a milder course reminiscent of that of patients with heterozygous COL4A3/COL4A4 mutations and TBMN, while at the same time a significant subset of patients with TBMN and familial MH progress to chronic kidney disease (CKD) or end-stage kidney disease (ESKD). A mutation in CFHR5, a member of the complement factor H family of genes that regulate complement activation, was recently shown to cause isolated C3 glomerulopathy, presenting with MH in childhood and demonstrating a significant risk for CKD/ESKD after 40 years old. Through these results molecular genetics emerges as a powerful tool for a definite diagnosis when all the above conditions enter the differential diagnosis, while in many at-risk related family members, a molecular diagnosis may obviate the need for another renal biopsy.

  16. Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening.

    PubMed

    Schallmey, Marcus; Ly, Anh; Wang, Chunxia; Meglei, Gabriela; Voget, Sonja; Streit, Wolfgang R; Driscoll, Brian T; Charles, Trevor C

    2011-08-01

    We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Xeroderma pigmentosum: biochemical and genetic characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Bootsma, D.

    1975-01-01

    Biochemical and genetic studies on xeroderma pigmentosum are reviewed under the following headings: clinical features of xeroderma pigmentosum; karyotype; cell killing and host cell reactivation after irradiation or exposure to chemical carcinogens; SV40 transformation of xeroderma pigmentosum cells; biochemical defects in the common and de Sanctis-Cacchione forms of xeroderma pigmentosum; cell hybridization and complementation groups; biochemical defects in the xeroderma pigmentosum variant and the role of caffeine in DNA repair; DNA repair in xeroderma pigmentosum heterozygotes; response of xeroderma pigmentosum cells to various mutagens and chemical carcinogens; other high and low repair diseases; and possible significance of DNA repair inmore » theories of aging and carcinogenesis. (HLW)« less

  18. The alternative complement component factor B regulates UV-induced oedema, systemic suppression of contact and delayed hypersensitivity, and mast cell infiltration into the skin.

    PubMed

    Byrne, Scott N; Hammond, Kirsten J L; Chan, Carling Y-Y; Rogers, Linda J; Beaugie, Clare; Rana, Sabita; Marsh-Wakefield, Felix; Thurman, Joshua M; Halliday, Gary M

    2015-04-01

    Ultraviolet (UV) wavelengths in sunlight are the prime cause of skin cancer in humans with both the UVA and UVB wavebands making a contribution to photocarcinogenesis. UV has many different biological effects on the skin that contribute to carcinogenesis, including suppression of adaptive immunity, sunburn and altering the migration of mast cells into and away from irradiated skin. Many molecular mechanisms have been identified as contributing to skin responses to UV. Recently, using gene set enrichment analysis of microarray data, we identified the alternative complement pathway with a central role for factor B (fB) in UVA-induced immunosuppression. In the current study we used mice genetically deficient in fB (fB-/- mice) to study the functional role of the alternative complement pathway in skin responses to UV. We found that fB is required for not only UVA but also UVB-induced immunosuppression and solar-simulated UV induction of the oedemal component of sunburn. Factor B-/- mice had a larger number of resident skin mast cells than control mice, but unlike the controls did not respond to UV by increasing mast cell infiltration into the skin. This study provides evidence for a function role for fB in skin responses to UV radiation. Factor B regulates UVA and UVB induced immunosuppression, UV induced oedema and mast cell infiltration into the skin. The alternative complement pathway is therefore an important regulator of skin responses to UV.

  19. Application of Genetic/Genomic Approaches to Allergic Disorders

    PubMed Central

    Baye, Tesfaye M.; Martin, Lisa J.; Khurana Hershey, Gurjit K.

    2010-01-01

    Completion of the human genome project and rapid progress in genetics and bioinformatics have enabled the development of large public databases, which include genetic and genomic data linked to clinical health data. With the massive amount of information available, clinicians and researchers have the unique opportunity to complement and integrate their daily practice with the existing resources to clarify the underlying etiology of complex phenotypes such as allergic diseases. The genome itself is now often utilized as a starting point for many studies and multiple innovative approaches have emerged applying genetic/genomic strategies to key questions in the field of allergy and immunology. There have been several successes, which have uncovered new insights into the biologic underpinnings of allergic disorders. Herein, we will provide an in depth review of genomic approaches to identifying genes and biologic networks involved in allergic diseases. We will discuss genetic and phenotypic variation, statistical approaches for gene discovery, public databases, functional genomics, clinical implications, and the challenges that remain. PMID:20638111

  20. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes

    PubMed Central

    Multhaup, Michael L.; Seldin, Marcus; Jaffe, Andrew E.; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R.; Wong, G. William; Feinberg, Andrew P.

    2015-01-01

    SUMMARY Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211

  1. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    NASA Astrophysics Data System (ADS)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-10-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of such a situated learning approach. What content knowledge do biology teachers need for teaching genetics in the personal health context of genetic testing? This study describes the required content knowledge by exploring the educational practice and clinical genetic practices. Nine experienced teachers and 12 respondents representing the clinical genetic practices (clients, medical professionals, and medical ethicists) were interviewed about the biological concepts and ethical, legal, and social aspects (ELSA) of testing they considered relevant to empowering students as future health care clients. The ELSA suggested by the respondents were complemented by suggestions found in the literature on genetic counselling. The findings revealed that the required teacher knowledge consists of multiple layers that are embedded in specific genetic test situations: on the one hand, the knowledge of concepts represented by the curricular framework and some additional concepts (e.g. multifactorial and polygenic disorder) and, on the other hand, more knowledge of ELSA and generic characteristics of genetic test practice (uncertainty, complexity, probability, and morality). Suggestions regarding how to translate these characteristics, concepts, and ELSA into context-based genetics education are discussed.

  2. Age-related macular degeneration: genome-wide association studies to translation.

    PubMed

    Black, James R M; Clark, Simon J

    2016-04-01

    In recent years, genome-wide association studies (GWAS), which are able to analyze the contribution to disease of genetic variations that are common within a population, have attracted considerable investment. Despite identifying genetic variants for many conditions, they have been criticized for yielding data with minimal clinical utility. However, in this regard, age-related macular degeneration (AMD), the most common form of blindness in the Western world, is a striking exception. Through GWAS, common genetic variants at a number of loci have been discovered. Two loci in particular, including genes of the complement cascade on chromosome 1 and the ARMS2/HTRA1 genes on chromosome 10, have been shown to convey significantly increased susceptibility to developing AMD. Today, although it is possible to screen individuals for a genetic predisposition to the disease, effective interventional strategies for those at risk of developing AMD are scarce. Ongoing research in this area is nonetheless promising. After providing brief overviews of AMD and common disease genetics, we outline the main recent advances in the understanding of AMD, particularly those made through GWAS. Finally, the true merit of these findings and their current and potential translational value is examined.Genet Med 18 4, 283-289.

  3. Genome-Wide Association Studies Identify Heavy Metal ATPase3 as the Primary Determinant of Natural Variation in Leaf Cadmium in Arabidopsis thaliana

    PubMed Central

    Chao, Dai-Yin; Silva, Adriano; Baxter, Ivan; Huang, Yu S.; Nordborg, Magnus; Danku, John; Lahner, Brett; Yakubova, Elena; Salt, David E.

    2012-01-01

    Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report on a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-wide collection of 349 wild collected Arabidopsis thaliana accessions. We identified a 4-fold variation (0.5–2 µg Cd g−1 dry weight) in leaf Cd accumulation when these accessions were grown in a controlled common garden. By combining genome-wide association mapping, linkage mapping in an experimental F2 population, and transgenic complementation, we reveal that HMA3 is the sole major locus responsible for the variation in leaf Cd accumulation we observe in this diverse population of A. thaliana accessions. Analysis of the predicted amino acid sequence of HMA3 from 149 A. thaliana accessions reveals the existence of 10 major natural protein haplotypes. Association of these haplotypes with leaf Cd accumulation and genetics complementation experiments indicate that 5 of these haplotypes are active and 5 are inactive, and that elevated leaf Cd accumulation is associated with the reduced function of HMA3 caused by a nonsense mutation and polymorphisms that change two specific amino acids. PMID:22969436

  4. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects

    PubMed Central

    Choi, Lin; DeNieu, Michael; Sonnenschein, Anne; Hummel, Kristen; Marier, Christian; Victory, Andrew; Porter, Cody; Mammel, Anna; Holms, Julie; Sivaratnam, Gayatri

    2017-01-01

    For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development) of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis. PMID:29166655

  5. Genetic Code Expansion as a Tool to Study Regulatory Processes of Transcription

    NASA Astrophysics Data System (ADS)

    Schmidt, Moritz; Summerer, Daniel

    2014-02-01

    The expansion of the genetic code with noncanonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.

  6. Genetic analysis of indefinite division in human cells: Evidence for a cell senescence-related gene(s) on human chromosome 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Ning; Ledbetter, D.H.; Smith, J.R.

    1991-07-01

    Earlier studies had demonstrated that fusion of normal with immortal human cells yielded hybrids having limited division potential. This indicated that the phenotype of limited proliferation (cellular senescence) is dominant and that immortal cells result from recessive changes in normal growth-regulatory genes. In additional studies, the authors exploited the fact that the immortal phenotype is recessive and, by fusing various immortal human cell lines with each other, identified four complementation groups for indefinite division. Assignment of cell lines to specific groups allowed us to take a focused approach to identify the chromosomes and genes involved in growth regulation that havemore » been modified in immortal cells. They report here that introduction of a normal human chromosome 4 into three immortal cell lines (HeLa, J82, T98G) assigned to complementation group B resulted in loss of proliferation and reversal of the immortal phenotype. No effect on the proliferation potential of cell lines representative of the other complementation groups was observed. This result suggests that a gene(s) involved in cellular senescence and normal growth regulation resides on chromosome 4.« less

  7. Genetics of hemolytic uremic syndromes.

    PubMed

    Malina, Michal; Roumenina, Lubka T; Seeman, Tomáš; Le Quintrec, Moglie; Dragon-Durey, Marie-Agnes; Schaefer, Franz; Fremeaux-Bacchi, Véronique

    2012-03-01

    Hemolytic uremic syndrome (HUS) is a very rare disease (two cases per year per 1 million population) but represents the most common cause of acute renal failure in young children that require dialysis. The majority of cases in childhood (90%) is caused by Shiga toxin producing Escherichia coli infection. This typical form of the disease does not relapse and has a good prognosis if the acute status can be managed successfully. Atypical HUS (aHUS) is a severe and frequently relapsing disorder with the same triad of thrombocytopenia, hemolysis and acute renal failure in the absence of Shiga toxin E. coli infection. More than 50% of patients with atypical HUS progress to chronic renal dysfunction and 10% die due to complications of the disease. Atypical HUS appears to have a genetic basis. Mutations in genes coding for components of the alternative complement pathway are found in about 60% of cases. The clinical presentation of aHUS overlaps with that of other thrombotic microangiopathies, rendering the diagnosis on clinical grounds alone extremely difficult. In recent years, genetic testing has opened the way for molecular diagnostics and helped establishing therapeutically and prognostically useful genotype-phenotype correlations. This review summarizes recent findings regarding the genetic basis of the HUS. The pathophysiology of the disease and the implication of genetic abnormalities in the complement system for the different types of HUS are discussed. Copyright © 2012. Published by Elsevier Masson SAS.

  8. Maternal smoking during pregnancy and offspring conduct problems: evidence from 3 independent genetically sensitive research designs.

    PubMed

    Gaysina, Darya; Fergusson, David M; Leve, Leslie D; Horwood, John; Reiss, David; Shaw, Daniel S; Elam, Kit K; Natsuaki, Misaki N; Neiderhiser, Jenae M; Harold, Gordon T

    2013-09-01

    Several studies report an association between maternal smoking during pregnancy and offspring conduct disorder. However, past research evidences difficulty in disaggregating prenatal environmental influences from genetic and postnatal environmental influences. To examine the relationship between maternal smoking during pregnancy and offspring conduct problems among children reared by genetically related mothers and genetically unrelated mothers. The following 3 studies using distinct but complementary research designs were used: The Christchurch Health and Development Study (a longitudinal cohort study that includes biological and adopted children), the Early Growth and Development Study (a longitudinal adoption-at-birth study), and the Cardiff IVF (In Vitro Fertilization) Study (an adoption-at-conception study among genetically related families and genetically unrelated families). Maternal smoking during pregnancy was measured as the mean number of cigarettes per day (0, 1-9, or 10) smoked during pregnancy. Possible covariates were controlled for in the analyses, including child sex, birth weight, race/ethnicity, placement age, and breastfeeding, as well as maternal education and maternal age at birth and family breakdown, parenting practices, and family socioeconomic status. Offspring conduct problems (age range, 4-10 years) reported by parents or teachers using the behavior rating scales by Rutter and Conners, the Child Behavior Checklist and the Children's Behavior Questionnaire Short Form, and the Strengths and Difficulties Questionnaire. A significant association between maternal smoking during pregnancy and offspring conduct problems was observed among children reared by genetically related mothers and genetically unrelated mothers. Results from a meta-analysis affirmed this pattern of findings across pooled study samples. Findings across 3 studies using a complement of genetically sensitive research designs suggest that smoking during pregnancy is a prenatal risk factor for offspring conduct problems when controlling for specific perinatal and postnatal confounding factors.

  9. Isolation, characterization, and genetic complementation of a cellular mutant resistant to retroviral infection

    PubMed Central

    Agarwal, Sumit; Harada, Josephine; Schreifels, Jeffrey; Lech, Patrycja; Nikolai, Bryan; Yamaguchi, Tomoyuki; Chanda, Sumit K.; Somia, Nikunj V.

    2006-01-01

    By using a genetic screen, we have isolated a mammalian cell line that is resistant to infection by retroviruses that are derived from the murine leukemia virus, human immunodeficiency virus type 1, and feline immunodeficiency virus. We demonstrate that the cell line is genetically recessive for the resistance, and hence it is lacking a factor enabling infection by retroviruses. The block to infection is early in the life cycle, at the poorly understood uncoating stage. We implicate the proteasome at uncoating by completely rescuing the resistant phenotype with the proteasomal inhibitor MG-132. We further report on the complementation cloning of a gene (MRI, modulator of retrovirus infection) that can also act to reverse the inhibition of infection in the mutant cell line. These data implicate a role for the proteasome during uncoating, and they suggest that MRI is a regulator of this activity. Finally, we reconcile our findings and other published data to suggest a model for the involvement of the proteasome in the early phase of the retroviral life cycle. PMID:17043244

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chi Ho; Levar, Caleb E.; Zacharoff, Lori

    Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellarmore » regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented Δ imcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. Lastly, these tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.« less

  11. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    PubMed

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-07-14

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.

  12. Flicker-induced retinal vasodilatation is not dependent on complement factor H polymorphism in healthy young subjects.

    PubMed

    Told, Reinhard; Palkovits, Stefan; Boltz, Agnes; Schmidl, Doreen; Napora, Katarzyna J; Werkmeister, René M; Haslacher, Helmuth; Frantal, Sophie; Popa-Cherecheanu, Alina; Schmetterer, Leopold; Garhöfer, Gerhard

    2014-11-01

    The complement factor H (CFH) tyrosine 402 histidine (Y402H, rs1061170) variant is known to be significantly associated with age-related macular degeneration (AMD). Whether this genetic variant may impact retinal blood flow regulation is largely unknown. This study investigated whether flicker-induced vasodilation, an indicator for the coupling between neural activity and blood flow, is altered in subjects carrying the rs1061170 risk allele. One hundred healthy subjects (aged between 18 and 45 years) were included in this study. Retinal blood flow regulation was tested by assessing retinal vessel calibres in response to stimulation with diffuse flicker light. Retinal vascular flicker responses were determined with a Dynamic Vessel Analyzer (DVA). In addition, genotyping for rs1061170 was performed. Eighteen subjects were homozygous for the risk allele C, 50 were homozygous for the ancestral allele T, and 31 subjects were heterozygous (CT). One subject had to be excluded from data evaluation, as no genetic analysis could be performed due to technical difficulties. Baseline diameters of retinal arteries (p = 0.39) and veins (p = 0.64) were comparable between the three groups. Flicker-induced vasodilation in both retinal arteries (p = 0.38) and retinal veins (p = 0.62) was also comparable between the three studied groups. Our data indicate that homozygous healthy young carriers of the C risk allele at rs1061170 do not show abnormal flicker-induced vasodilation in the retina. This suggests that the high-risk genetic variant of CFH polymorphism does not impact neuro-vascular coupling in healthy subjects. © 2014 The Authors. Acta Ophthalmologica published by John Wiley & Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation.

  13. Transgenic horticultural crops in Asia

    USDA-ARS?s Scientific Manuscript database

    Modern biotechnology applications, including genetic engineering, are a powerful tool to complement the conventional methods of crop improvement. Asia currently has three countries cultivating biotech/transgenic crops – China, India, and the Philippines, but only China commercially grows a transgen...

  14. Isolation of a complementary DNA clone for the human complement protein C2 and its use in the identification of a restriction fragment length polymorphism.

    PubMed Central

    Woods, D E; Edge, M D; Colten, H R

    1984-01-01

    Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718

  15. Range expansion of heterogeneous populations.

    PubMed

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  16. The SaeRS Two-Component System Controls Survival of Staphylococcus aureus in Human Blood through Regulation of Coagulase

    PubMed Central

    Guo, Haiyong; Hall, Jeffrey W.; Yang, Junshu; Ji, Yinduo

    2017-01-01

    The SaeRS two-component system plays important roles in regulation of key virulence factors and pathogenicity. In this study, however, we found that the deletion mutation of saeRS enhanced bacterial survival in human blood, whereas complementation of the mutant with SaeRS returned survival to wild-type levels. Moreover, these phenomena were observed in different MRSA genetic background isolates, including HA-MRSA WCUH29, CA-MRSA 923, and MW2. To elucidate which gene(s) regulated by SaeRS contribute to the effect, we conducted a series of complementation studies with selected known SaeRS target genes in trans. We found coagulase complementation abolished the enhanced survival of the SaeRS mutant in human blood. The coa and saeRS deletion mutants exhibited a similar survival phenotype in blood. Intriguingly, heterologous expression of coagulase decreased survival of S. epidermidis in human blood. Further, the addition of recombinant coagulase to blood significantly decreased the survival of S. aureus. Further, analysis revealed staphylococcal resistance to killing by hydrogen peroxide was partially dependent on the presence or absence of coagulase. Furthermore, complementation with coagulase, but not SaeRS, returned saeRS/coa double mutant survival in blood to wild-type levels. These data indicate SaeRS modulates bacterial survival in blood in coagulase-dependent manner. Our results provide new insights into the role of staphylococcal SaeRS and coagulase on bacterial survival in human blood. PMID:28611950

  17. Expression of Human Complement Factor H Prevents Age-Related Macular Degeneration–Like Retina Damage and Kidney Abnormalities in Aged Cfh Knockout Mice

    PubMed Central

    Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B.; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G.; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M.; Bowes Rickman, Catherine

    2016-01-01

    Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh−/−) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh−/− mice, and transgenics had a thicker outer nuclear layer and less sub–retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets. PMID:25447048

  18. Maternal smoking during pregnancy and offspring conduct problems: Evidence from three independent genetically-sensitive research designs

    PubMed Central

    Gaysina, Darya; Fergusson, David M.; Leve, Leslie D.; Horwood, John; Reiss, David; Shaw, Daniel S.; Elam, Kit K.; Natsuaki, Misaki N.; Neiderhiser, Jenae M.; Harold, Gordon T.

    2013-01-01

    Context A number of studies report an association between maternal smoking during pregnancy and offspring conduct disorder. However, past research evidences difficulty disaggregating prenatal environmental from genetic and postnatal environmental influences. Objective To examine the relationship between maternal smoking during pregnancy and offspring conduct problems among children reared by genetically-related and genetically-unrelated mothers. Design, Setting and Participants Three studies employing distinct but complementary research designs were utilized: The Christchurch Health and Development Study (a longitudinal cohort study that includes biological and adopted children), the Early Growth and Development Study (a longitudinal adoption at birth study), and the Cardiff IVF Study (genetically-related and -unrelated families; an adoption at conception study). Maternal smoking during pregnancy was measured as the average number of cigarettes/day (0, 1–9 or 10+) smoked during pregnancy. A number of possible covariates (child gender, ethnicity, birth weight, breast feeding, maternal age at birth, maternal education, family SES, family breakdown, placement age, and parenting practices) were controlled in the analyses. Main Outcome Measure Child conduct problems (age 4–10 years) reported by parents and/or teachers using the Rutter and Conners behaviour scales, the Child Behavior Checklist and Children's Behavior Questionnaire, and the Strengths and Difficulties Questionnaire. Results A significant association between maternal smoking during pregnancy and child conduct problems was observed among children reared by genetically-related and genetically-unrelated mothers. Results from a meta-analysis affirmed this pattern of findings across pooled study samples. Conclusions Findings across the three studies using a complement of genetically-sensitive research designs suggest smoking during pregnancy is a prenatal risk factor for offspring conduct problems, when specific perinatal and postnatal confounding factors are controlled. PMID:23884431

  19. Evaluating Secondary Students' Scientific Reasoning in Genetics Using a Two-Tier Diagnostic Instrument

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Yan; Treagust, David

    2010-05-01

    While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two-tier multiple-choice instrument for diagnosing grades 10 and 12 students' understanding of genetics in terms of reasoning. The pretest and posttest forms of the diagnostic instrument were used alongside other methods in evaluating students' understanding of genetics in a case-based qualitative study on teaching and learning with multiple representations in three Western Australian secondary schools. Previous studies have shown that a two-tier diagnostic instrument is useful in probing students' understanding or misunderstanding of scientific concepts and ideas. The diagnostic instrument in this study was designed and then progressively refined, improved, and implemented to evaluate student understanding of genetics in three case schools. The final version of the instrument had Cronbach's alpha reliability of 0.75 and 0.64, respectively, for its pretest and the posttest forms when it was administered to a group of grade 12 students (n = 17). This two-tier diagnostic instrument complemented other qualitative data collection methods in this research in generating a more holistic picture of student conceptual learning of genetics in terms of scientific reasoning. Implications of the findings of this study using the diagnostic instrument are discussed.

  20. A Novel ESX-1 Locus Reveals that Surface-Associated ESX-1 Substrates Mediate Virulence in Mycobacterium marinum

    PubMed Central

    Kennedy, George M.; Hooley, Gwendolyn C.; Champion, Matthew M.; Mba Medie, Felix

    2014-01-01

    EsxA (ESAT-6) and EsxB (CFP-10) are virulence factors exported by the ESX-1 system in mycobacterial pathogens. In Mycobacterium marinum, an established model for ESX-1 secretion in Mycobacterium tuberculosis, genes required for ESX-1 export reside at the extended region of difference 1 (RD1) locus. In this study, a novel locus required for ESX-1 export in M. marinum was identified outside the RD1 locus. An M. marinum strain bearing a transposon-insertion between the MMAR_1663 and MMAR_1664 genes exhibited smooth-colony morphology, was deficient for ESX-1 export, was nonhemolytic, and was attenuated for virulence. Genetic complementation revealed a restoration of colony morphology and a partial restoration of virulence in cell culture models. Yet hemolysis and the export of ESX-1 substrates into the bacteriological medium in vitro as measured by both immunoblotting and quantitative proteomics were not restored. We show that genetic complementation of the transposon insertion strain partially restored the translocation of EsxA and EsxB to the mycobacterial cell surface. Our findings indicate that the export of EsxA and EsxB to the cell surface, rather than secretion into the bacteriological medium, correlates with virulence in M. marinum. Together, these findings not only expand the known genetic loci required for ESX-1 secretion in M. marinum but also provide an explanation for the observed disparity between in vitro ESX-1 export and virulence. PMID:24610712

  1. Role of Cystathionine β-Lyase in Catabolism of Amino Acids to Sulfur Volatiles by Genetic Variants of Lactobacillus helveticus CNRZ 32▿

    PubMed Central

    Lee, Won-Jae; Banavara, Dattatreya S.; Hughes, Joanne E.; Christiansen, Jason K.; Steele, James L.; Broadbent, Jeffery R.; Rankin, Scott A.

    2007-01-01

    Catabolism of sulfur-containing amino acids plays an important role in the development of cheese flavor. During ripening, cystathionine β-lyase (CBL) is believed to contribute to the formation of volatile sulfur compounds (VSCs) such as methanethiol and dimethyl disulfide. However, the role of CBL in the generation of VSCs from the catabolism of specific sulfur-containing amino acids is not well characterized. The objective of this study was to investigate the role of CBL in VSC formation by Lactobacillus helveticus CNRZ 32 using genetic variants of L. helveticus CNRZ 32 including the CBL-null mutant, complementation of the CBL-null mutant, and the CBL overexpression mutant. The formation of VSCs from methionine, cystathionine, and cysteine was determined in a model system using gas chromatography-mass spectrometry with solid-phase microextraction. With methionine as a substrate, CBL overexpression resulted in higher VSC production than that of wild-type L. helveticus CNRZ 32 or the CBL-null mutant. However, there were no differences in VSC production between the wild type and the CBL-null mutant. With cystathionine, methanethiol production was detected from the CBL overexpression variant and complementation of the CBL-null mutant, implying that CBL may be involved in the conversion of cystathionine to methanethiol. With cysteine, no differences in VSC formation were observed between the wild type and genetic variants, indicating that CBL does not contribute to the conversion of cysteine. PMID:17337535

  2. Complement Factor D in Age-Related Macular Degeneration

    PubMed Central

    Stanton, Chloe M.; Yates, John R.W.; den Hollander, Anneke I.; Seddon, Johanna M.; Swaroop, Anand; Stambolian, Dwight; Fauser, Sascha; Hoyng, Carel; Yu, Yi; Atsuhiro, Kanda; Branham, Kari; Othman, Mohammad; Chen, Wei; Kortvely, Elod; Chalmers, Kevin; Hayward, Caroline; Moore, Anthony T.; Dhillon, Baljean; Ueffing, Marius

    2011-01-01

    Purpose. To examine the role of complement factor D (CFD) in age-related macular degeneration (AMD) by analysis of genetic association, copy number variation, and plasma CFD concentrations. Methods. Single nucleotide polymorphisms (SNPs) in the CFD gene were genotyped and the results analyzed by binary logistic regression. CFD gene copy number was analyzed by gene copy number assay. Plasma CFD was measured by an enzyme-linked immunosorbent assay. Results. Genetic association was found between CFD gene SNP rs3826945 and AMD (odds ratio 1.44; P = 0.028) in a small discovery case-control series (462 cases and 325 controls) and replicated in a combined cohorts meta-analysis of 4765 cases and 2693 controls, with an odds ratio of 1.11 (P = 0.032), with the association almost confined to females. Copy number variation in the CFD gene was identified in 13 out of 640 samples examined but there was no difference in frequency between AMD cases (1.3%) and controls (2.7%). Plasma CFD concentration was measured in 751 AMD cases and 474 controls and found to be elevated in AMD cases (P = 0.00025). The odds ratio for those in the highest versus lowest quartile for plasma CFD was 1.81. The difference in plasma CFD was again almost confined to females. Conclusions. CFD regulates activation of the alternative complement pathway, which is implicated in AMD pathogenesis. The authors found evidence for genetic association between a CFD gene SNP and AMD and a significant increase in plasma CFD concentration in AMD cases compared with controls, consistent with a role for CFD in AMD pathogenesis. PMID:22003108

  3. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    PubMed

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The Symbiotic Relationship of Science and Technology in the 21st Century.

    ERIC Educational Resources Information Center

    Wiens, A. Emerson

    1999-01-01

    There are many examples in which science and technology complement each other. This is especially evident in biotechnology and genetic engineering. This symbiotic relationship is foundational to the technological culture of contemporary society. (SK)

  5. Genetics Home Reference: complement component 2 deficiency

    MedlinePlus

    ... deficiency Sources for This Page Jönsson G, Sjöholm AG, Truedsson L, Bengtsson AA, Braconier JH, Sturfelt G. ... L, Sturfelt G, Oxelius VA, Braconier JH, Sjöholm AG. Hereditary C2 deficiency in Sweden: frequent occurrence of ...

  6. Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives.

    PubMed

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong

    2013-11-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.

  7. Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises.

    PubMed

    Ciofi, Claudio; Milinkovitch, Michel C; Gibbs, James P; Caccone, Adalgisa; Powell, Jeffrey R

    2002-11-01

    Giant Galápagos tortoises represent an interesting model for the study of patterns of genetic divergence and adaptive differentiation related to island colonization events. Recent mitochondrial DNA work elucidated the evolutionary history of the species and helped to clarify aspects of nomenclature. We used 10 microsatellite loci to assess levels of genetic divergence among and within island populations. In particular, we described the genetic structure of tortoises on the island of Isabela, where discrimination of different taxa is still subject of debate. Individual island populations were all genetically distinct. The island of Santa Cruz harboured two distinct populations. On Isabela, populations of Volcan Wolf, Darwin and Alcedo were significantly different from each other. On the other hand, Volcan Wolf showed allelic similarity with the island of Santiago. On Southern Isabela, lower genetic divergence was found between Northeast Sierra Negra and Volcan Alcedo, while patterns of gene flow were recorded among tortoises of Cerro Azul and Southeast Sierra Negra. These tortoises have endured heavy exploitation during the last three centuries and recently attracted much concern due to the current number of stochastic and deterministic threats to extant populations. Our study complements previous investigation based on mtDNA diversity and provides further information that may help devising tortoise management plans.

  8. From Drosophila to humans: Reflections on the roles of the prolyl-isomerases and chaperones, cyclophilins, in cell function and disease

    PubMed Central

    Ferreira, Paulo A.; Orry, Andrew

    2013-01-01

    Despite remarkable advances in human genetics and other genetic model systems, the fruit fly, Drosophila melanogaster, remains a powerful experimental tool to probe with ease the inner workings of a myriad of biological and pathological processes, even when evolutionary forces impart apparent divergences to some of such processes. The understanding of such evolutionary differences provides mechanistic insights into genotype-phenotype correlations underpinning biological processes across metazoans. The pioneering work developed by the William Pak laboratory for the past four decades, and the work of others, epitomize the notion of how the Drosophila system breaks new fertile ground or complements research fields of high scientific and medical relevance. Among the three major genetic complementation groups produced by the Pak's laboratory and impairing distinct facets of photoreceptor neuronal function, the nina group (ninaA….J) selectively affects the biogenesis of G protein-coupled receptors (GPCR) mediating the photoconversion and transduction of light-stimuli. Among the nina genes identified, ninaA arguably assumes heightened significance for several reasons. First, it presents unique physiological selectivity toward the biogenesis of a subset of GPCRs, a standalone biological manifestation yet to be discerned for most mammalian homologues of NinaA. Second, NinaA belongs to a family of proteins, immunophilins, which are the primary targets for immunosuppressive drugs at the therapeutic forefront of a multitude of medical conditions. Third, NinaA closest homologue, cyclophilin-B (CyPB/PPIB), is an immunophilin whose loss-of-function was found recently to cause osteogenesis imperfecta in the human. This report highlights advances made by studies on some members of immunophilins, the cyclophilins. Finally, it re-examines critically data and dogmas derived from past and recent genetic, structural, biological and pathological studies on NinaA and few other cyclophilins that support some of such paradigms to be less than definite and advance our understanding of cyclophilins' roles in cell function, disease and therapeutic interventions. PMID:22332926

  9. In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light.

    PubMed

    Hoppmann, Christian; Maslennikov, Innokentiy; Choe, Senyon; Wang, Lei

    2015-09-09

    Optical modulation of proteins provides superior spatiotemporal resolution for understanding biological processes, and photoswitches built on light-sensitive proteins have been significantly advancing neuronal and cellular studies. Small molecule photoswitches could complement protein-based switches by mitigating potential interference and affording high specificity for modulation sites. However, genetic encodability and responsiveness to nonultraviolet light, two desired properties possessed by protein photoswitches, are challenging to be engineered into small molecule photoswitches. Here we developed a small molecule photoswitch that can be genetically installed onto proteins in situ and controlled by visible light. A pentafluoro azobenzene-based photoswitchable click amino acid (F-PSCaa) was designed to isomerize in response to visible light. After genetic incorporation into proteins via the expansion of the genetic code, F-PSCaa reacts with a nearby cysteine within the protein generating an azo bridge in situ. The resultant bridge is switchable by visible light and allows conformation and binding of CaM to be regulated by such light. This photoswitch should prove valuable in optobiology for its minimal interference, site flexibility, genetic encodability, and response to the more biocompatible visible light.

  10. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY.

    PubMed

    Sasidhar, Manda V; Itoh, Noriko; Gold, Stefan M; Lawson, Gregory W; Voskuhl, Rhonda R

    2012-08-01

    Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.

  11. Symposium on Oxygen Binding Heme Proteins Structure, Dynamics, Function and Genetics Held in Pacific Grove, California on 9-13 October 1988

    DTIC Science & Technology

    1989-08-15

    hemoglobin, hemoglobin that has been internally crosslinked, polymerized crosslinked-hemoglobin, and I hemoglobin that is conjugated to carriers such as...dextran and polyethyleneglycol are also under intense study. To date, only unmodified hemoglobin and crosslinked- polymerized hemoglobin have been...complement and may bind bacterial endotoxins in vivo . I During the past 3 years, the US Army has supported the industrial scaleup of one such product

  12. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.

  13. Understanding Xeroderma Pigmentosum Complementation Groups Using Gene Expression Profiling after UV-Light Exposure.

    PubMed

    Bowden, Nikola A; Beveridge, Natalie J; Ashton, Katie A; Baines, Katherine J; Scott, Rodney J

    2015-07-14

    Children with the recessive genetic disorder Xeroderma Pigmentosum (XP) have extreme sensitivity to UV-light, a 10,000-fold increase in skin cancers from age 2 and rarely live beyond 30 years. There are seven genetic subgroups of XP, which are all resultant of pathogenic mutations in genes in the nucleotide excision repair (NER) pathway and a XP variant resultant of a mutation in translesion synthesis, POLH. The clinical symptoms and severity of the disease is varied across the subgroups, which does not correlate with the functional position of the affected protein in the NER pathway. The aim of this study was to further understand the biology of XP subgroups, particularly those that manifest with neurological symptoms. Whole genome gene expression profiling of fibroblasts from each XP complementation group was assessed before and after UV-light exposure. The biological pathways with altered gene expression after UV-light exposure were distinct for each subtype and contained oncogenic related functions such as perturbation of cell cycle, apoptosis, proliferation and differentiation. Patients from the subgroups XP-B and XP-F were the only subgroups to have transcripts associated with neuronal activity altered after UV-light exposure. This study will assist in furthering our understanding of the different subtypes of XP which will lead to better diagnosis, treatment and management of the disease.

  14. Understanding Xeroderma Pigmentosum Complementation Groups Using Gene Expression Profiling after UV-Light Exposure

    PubMed Central

    Bowden, Nikola A.; Beveridge, Natalie J.; Ashton, Katie A.; Baines, Katherine J.; Scott, Rodney J.

    2015-01-01

    Children with the recessive genetic disorder Xeroderma Pigmentosum (XP) have extreme sensitivity to UV-light, a 10,000-fold increase in skin cancers from age 2 and rarely live beyond 30 years. There are seven genetic subgroups of XP, which are all resultant of pathogenic mutations in genes in the nucleotide excision repair (NER) pathway and a XP variant resultant of a mutation in translesion synthesis, POLH. The clinical symptoms and severity of the disease is varied across the subgroups, which does not correlate with the functional position of the affected protein in the NER pathway. The aim of this study was to further understand the biology of XP subgroups, particularly those that manifest with neurological symptoms. Whole genome gene expression profiling of fibroblasts from each XP complementation group was assessed before and after UV-light exposure. The biological pathways with altered gene expression after UV-light exposure were distinct for each subtype and contained oncogenic related functions such as perturbation of cell cycle, apoptosis, proliferation and differentiation. Patients from the subgroups XP-B and XP-F were the only subgroups to have transcripts associated with neuronal activity altered after UV-light exposure. This study will assist in furthering our understanding of the different subtypes of XP which will lead to better diagnosis, treatment and management of the disease. PMID:26184184

  15. Quantitative genetic models of sexual conflict based on interacting phenotypes.

    PubMed

    Moore, Allen J; Pizzari, Tommaso

    2005-05-01

    Evolutionary conflict arises between reproductive partners when alternative reproductive opportunities are available. Sexual conflict can generate sexually antagonistic selection, which mediates sexual selection and intersexual coevolution. However, despite intense interest, the evolutionary implications of sexual conflict remain unresolved. We propose a novel theoretical approach to study the evolution of sexually antagonistic phenotypes based on quantitative genetics and the measure of social selection arising from male-female interactions. We consider the phenotype of one sex as both a genetically influenced evolving trait as well as the (evolving) social environment in which the phenotype of the opposite sex evolves. Several important points emerge from our analysis, including the relationship between direct selection on one sex and indirect effects through selection on the opposite sex. We suggest that the proposed approach may be a valuable tool to complement other theoretical approaches currently used to study sexual conflict. Most importantly, our approach highlights areas where additional empirical data can help clarify the role of sexual conflict in the evolutionary process.

  16. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

    PubMed Central

    Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.

    2008-01-01

    The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021

  17. In silico Evolutionary Developmental Neurobiology and the Origin of Natural Language

    NASA Astrophysics Data System (ADS)

    Szathmáry, Eörs; Szathmáry, Zoltán; Ittzés, Péter; Orbaán, Geroő; Zachár, István; Huszár, Ferenc; Fedor, Anna; Varga, Máté; Számadó, Szabolcs

    It is justified to assume that part of our genetic endowment contributes to our language skills, yet it is impossible to tell at this moment exactly how genes affect the language faculty. We complement experimental biological studies by an in silico approach in that we simulate the evolution of neuronal networks under selection for language-related skills. At the heart of this project is the Evolutionary Neurogenetic Algorithm (ENGA) that is deliberately biomimetic. The design of the system was inspired by important biological phenomena such as brain ontogenesis, neuron morphologies, and indirect genetic encoding. Neuronal networks were selected and were allowed to reproduce as a function of their performance in the given task. The selected neuronal networks in all scenarios were able to solve the communication problem they had to face. The most striking feature of the model is that it works with highly indirect genetic encoding--just as brains do.

  18. Scarless genome editing and stable inducible expression vectors for Geobacter sulfurreducens

    DOE PAGES

    Chan, Chi Ho; Levar, Caleb E.; Zacharoff, Lori; ...

    2015-08-07

    Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellarmore » regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented Δ imcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. Lastly, these tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.« less

  19. Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study.

    PubMed

    McCarthy, Alex J; Lindsay, Jodi A

    2013-10-01

    Staphylococcus aureus is a major human pathogen, and is targeted by the host innate immune system. In response, S. aureus genomes encode dozens of secreted proteins that inhibit complement, chemotaxis and neutrophil activation resulting in successful evasion of innate immune responses. These proteins include immune evasion cluster proteins (IEC; Chp, Sak, Scn), staphylococcal superantigen-like proteins (SSLs), phenol soluble modulins (PSMs) and several leukocidins. Biochemical studies have indicated that genetic variants of these proteins can have unique functions. To ascertain the scale of genetic variation in secreted immune evasion proteins, whole genome sequences of 88 S. aureus isolates, representing 25 clonal complex (CC) lineages, in the public domain were analysed across 43 genes encoding 38 secreted innate immune evasion protein complexes. Twenty-three genes were variable, with between 2 and 15 variants, and the variants had lineage-specific distributions. They include genes encoding Eap, Ecb, Efb, Flipr/Flipr-like, Hla, Hld, Hlg, Sbi, Scin-B/C and 13 SSLs. Most of these protein complexes inhibit complement, chemotaxis and neutrophil activation suggesting that isolates from each S. aureus lineage respond to the innate immune system differently. In contrast, protein complexes that lyse neutrophils (LukSF-PVL, LukMF, LukED and PSMs) were highly conserved, but can be carried on mobile genetic elements (MGEs). MGEs also encode proteins with narrow host-specificities arguing that their acquisition has important roles in host/environmental adaptation. In conclusion, this data suggests that each lineage of S. aureus evades host immune responses differently, and that isolates can adapt to new host environments by acquiring MGEs and the immune evasion protein complexes that they encode. Cocktail therapeutics that targets multiple variant proteins may be the most appropriate strategy for controlling S. aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Rituximab fails where eculizumab restores renal function in C3nef-related DDD.

    PubMed

    Rousset-Rouvière, Caroline; Cailliez, Mathilde; Garaix, Florentine; Bruno, Daniele; Laurent, Daniel; Tsimaratos, Michel

    2014-06-01

    Dense deposit disease (DDD), a C3 glomerulopathy (C3G), is a rare disease with unfavorable progression towards end-stage kidney disease. The pathogenesis of DDD is due to cytotoxic effects related to acquired or genetic dysregulation of the complement alternative pathway, which is at times accompanied by the production of C3 nephritic factor (C3NeF), an auto-antibody directed against the alternative C3 convertase. Available treatments include plasma exchange, CD20-targeted antibodies, and a terminal complement blockade via the anti-C5 monoclonal antibody eculizumab. We report here the case of an 8-year-old child with C3NeF and refractory DDD who presented with a nephritic syndrome. She tested positive for C3NeF activity; C3 was undetectable. Genetic analyses of the alternative complement pathway were normal. Methylprednisolone pulses and mycophenolate mofetil treatment resulted in complete recovery of renal function and a reduction in proteinuria. Corticosteroids were tapered and then withdrawn. Four months after corticosteroid discontinuation, hematuria and proteinuria recurred, and a renal biopsy confirmed an active DDD with a majority of extracapillary crescents. Despite an increase in immunosuppressive drugs, including methylprednisolone pulses and rituximab therapy, the patient suffered acute renal failure within 3 weeks, requiring dialysis. Eculizumab treatment resulted in a quick and impressive response. Hematuria very quickly resolved, kidney function improved, and no further dialysis was required. The patient received bimonthly eculizumab injections of 600 mg, allowing for normalization of renal function and reduction of proteinuria to <0.5 g per day. Since then, she continues to receive eculizumab. Complement regulation pathway-targeted therapy may be a specific and useful treatment for rapidly progressing DDD prior to the development of glomerulosclerosis. Our data provide evidence supporting the pivotal role of complement alternative pathway abnormalities in C3G with DDD.

  1. Genetic Map of Bacteriophage α

    PubMed Central

    Kejzlarovà, J.; Donini, P.; Eremenko-Volpe, T.; Graziosi, F.

    1970-01-01

    Temperature-sensitive mutants of phage α were obtained by means of various mutagens and assigned to 25 complementation groups. Temperature-sensitive mutants belonging to 21 complementation groups and a mutant giving turbid plaques were used to perform two- and three-factor crosses. Seventeen of the cistrons and the turbid mutant were shown to belong to the same linear linkage group, which showed no signs of circularity. The remaining four unlinked cistrons showed peculiarities in their recombination properties. Genes which are known to be expressed earlier apear to be grouped together in a terminal segment of the linkage group. PMID:4990532

  2. A Genetic Analysis of the Suppressor 2 of Zeste Complex of Drosophila Melanogaster

    PubMed Central

    Wu, C. T.; Howe, M.

    1995-01-01

    The zeste(1) (z(1)) mutation of Drosophila melanogaster produces a mutant yellow eye color instead of the wild-type red. Genetic and molecular data suggest that z(1) achieves this change by altering expression of the wild-type white gene in a manner that exhibits transvection effects. There exist suppressor and enhancer mutations that modify the z(1) eye color, and this paper summarizes our studies of those belonging to the Suppressor 2 of zeste complex [Su(z)2-C]. The Su(z)2-C consists of at least three subregions called Psc (Posterior sex combs), Su(z)2 and Su(z)2D (Distal). The products of these subregions are proposed to act at the level of chromatin. Complementation analyses predict that the products are functionally similar and interacting. The alleles of Psc define two overlapping phenotypic classes, the hopeful and hapless. The distinctions between these two classes and the intragenic complementation seen among some of the Psc alleles are consistent with a multidomain structure for the product of Psc. Psc is a member of the homeotic Polycomb group of genes. A general discussion of the Polycomb and trithorax group of genes, position-effect variegation, transvection, chromosome pairing and chromatin structure is presented. PMID:7635282

  3. Mannan-binding lectin (MBL) gene polymorphisms in ulcerative colitis and Crohn's disease.

    PubMed

    Rector, A; Lemey, P; Laffut, W; Keyaerts, E; Struyf, F; Wollants, E; Vermeire, S; Rutgeerts, P; Van Ranst, M

    2001-10-01

    The inflammatory bowel diseases (IBD), Crohn's disease (CD), and ulcerative colitis (UC), are complex multifactorial traits involving both environmental and genetic factors. Mannan-binding lectin (MBL) plays an important role in non-specific immunity and complement activation. Point mutations in codons 52, 54 and 57 of exon 1 of the MBL gene are associated with decreased MBL plasma concentrations and increased susceptibility to various infectious diseases. If these MBL mutations could lead to susceptibility to putative IBD-etiological microbial agents, or could temper the complement-mediated mucosal damage in IBD, MBL could function as the link between certain microbial, immunological and genetic factors in IBD. In this study, we investigated the presence of the codon 52, 54 and 57 mutations of the MBL gene in 431 unrelated IBD patients, 112 affected and 141 unaffected first-degree relatives, and 308 healthy control individuals. In the group of sporadic IBD patients (n = 340), the frequency of the investigated MBL variants was significantly lower in UC patients when compared with CD patients (P = 0.01) and with controls (P = 0.02). These results suggest that MBL mutations which decrease the formation of functional MBL could protect against the clinical development of sporadic UC, but not of CD. This could be explained by the differential T-helper response in both diseases.

  4. Preservation of renal function in atypical hemolytic uremic syndrome by eculizumab: a case report.

    PubMed

    Giordano, Mario; Castellano, Giuseppe; Messina, Giovanni; Divella, Claretta; Bellantuono, Rosa; Puteo, Flora; Colella, Vincenzo; Depalo, Tommaso; Gesualdo, Loreto

    2012-11-01

    Genetic mutations in complement components are associated with the development of atypical hemolytic uremic syndrome (aHUS), a rare disease with high morbidity rate triggered by infections or unidentified factors. The uncontrolled activation of the alternative pathway of complement results in systemic endothelial damage leading to progressive development of renal failure. A previously healthy 8-month-old boy was referred to our hospital because of onset of fever, vomiting, and a single episode of nonbloody diarrhea. Acute kidney injury with preserved diuresis, hemolytic anemia, and thrombocytopenia were detected, and common protocols for management of HUS were followed without considerable improvement. The persistent low levels of complement component C3 led us to hypothesize the occurrence of aHUS. In fact, the child carried a specific mutation in complement factor H (Cfh; nonsense mutation in 3514G>T, serum levels of Cfh 138 mg/L, normal range 350-750). Given the lack of response to therapy and the occurrence of kidney failure requiring dialysis, we used eculizumab as rescue therapy, a monoclonal humanized antibody against the complement component C5. One week from the first administration, we observed a significant improvement of all clinical and laboratory parameters with complete recovery from hemodialysis, even in the presence of systemic infections. Our case report shows that complement inhibiting treatment allows the preservation of renal function and avoids disease relapses during systemic infections.

  5. Genetic studies on a nitrogen-fixing cyanobacterium. [Anabaena; Escherichi coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolk, C.P.; Cardemil, L.; Elhai, J.

    1987-04-01

    Mutants of Anabaena PCC7120 capable of aerobic growth with NO/sub 3//sup -/ but not N/sub 2/, and capable of microaerobic reduction of C/sub 2/H/sub 2/, were isolated by penicillin enrichment after UV irradiation. Heterocysts of two mutants lack the principal envelope glycolipid, those of EF116 have a non-cohesive envelope polysaccharide, and those of other strains have other defects. A Nm/sup r/ cosmid library of DNA from wild type Anabaena PCC7120 was established in Escherichia coli bearing the Ap helper plasmid pDS4101. A conjugative plasmid was introduced, and the bacteria replicated to lawns of individual mutant strains of Anabaena. After onemore » day of non-selective growth, selection was applied for Nm/sup r/ and nitrogen fixation. Overlapping cosmids complementing EF116 and one complementing another mutant have been mapped. The complementing genes are thought to act early in differentiation. Inclusion, in an E. coli donor of an appropriate methylase gene enhanced, by a factor of 10/sup 2/ to 10/sup 3/, transfer to Anabaena PCC7120 of a plasmid containing numerous sites for the Anabaena restriction endonuclease, AvaII.« less

  6. The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice

    PubMed Central

    Chen, Xuqi; McClusky, Rebecca; Chen, Jenny; Beaven, Simon W.; Tontonoz, Peter

    2012-01-01

    Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the “four core genotypes,” to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism. PMID:22589744

  7. The chromosomes of the Didelphidae (Marsupialia) and their evolutionary significance

    USGS Publications Warehouse

    Reig, O.; Gardner, A.L.; Bianchi, N.O.; Patton, J.L.

    1977-01-01

    One hundred and seventy-seven specimens of American didelphids, representing 9 genera and 22 species have been studied for their chromosomal constitution. Didelphids are very conservative in chromosomal complements. All of the studied species can be sorted into one of three kinds of karyotypes: 2n= 14 (three species of Didelphis, one of Lutreolina, two of Philander, and one of Chironectes), 2n = 14 (eight species of Marmosa, one of Metachirus, three of Caluromys, and one of Dromiciops), and 2n= 18 (three species of Monodelphis). These karyotypes are stable, showing only minor variations within each basic pattern. It is concluded that chromosomals evolution in the Didelphidae proceededs from low numbers to higher numbers by a process of centromeric fissioning complemented by some pericentric inversions and/or translocations. The pattern of karyotypic stability is consistent with bradytely at the organismic level of evolution. This is explained by a low rate of regulatory genetic evolution promoted by epistatic selection favouring the retention of chromosomal arrangements highly advantageous for overall adaptation.

  8. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum

    PubMed Central

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-01-01

    Background Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Results Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Conclusion Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks. PMID:19298644

  9. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum.

    PubMed

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-03-19

    Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks.

  10. Modeling Human Cancers in Drosophila.

    PubMed

    Sonoshita, M; Cagan, R L

    2017-01-01

    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  11. Genetic and cytogenetic analysis of the fruit fly Rhagoletis cerasi (Diptera: Tephritidae).

    PubMed

    Kounatidis, Ilias; Papadopoulos, Nikolaos; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope

    2008-07-01

    The European cherry fruit fly, Rhagoletis cerasi, is a major agricultural pest for which biological, genetic, and cytogenetic information is limited. We report here a cytogenetic analysis of 4 natural Greek populations of R. cerasi, all of them infected with the endosymbiotic bacterium Wolbachia pipientis. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of this pest species are presented here. The mitotic metaphase complement consists of 6 pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement has shown a total of 5 long chromosomes (10 polytene arms) that correspond to the 5 autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes. The most prominent landmarks of each polytene chromosome, the "weak points", and the unusual asynapsis of homologous pairs of polytene chromosomes at certain regions of the polytene elements are also presented and discussed.

  12. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    PubMed Central

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  13. Identification of Bacillus subtilis men mutants which lack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase.

    PubMed Central

    Meganathan, R; Bentley, R; Taber, H

    1981-01-01

    Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis, whose growth requirement is satisfied by 1,4-dihydroxy-2-naphthoic acid but not by o-succinylbenzoic acid (OSB), have been analyzed for enzymatic defects. Complementation analysis of cell-free extracts of the mutants revealed that there are two groups, as already indicated by genetic analysis. The missing enzyme in each group was identified by complementation of the cell-free extracts with o-succinylbenzoyl-coenzyme A (CoA) synthetase and dihydroxynaphthoate synthase extracted from Mycobacterium phlei. Mutants found to lack dihydroxynaphthoate synthase, and which therefore complement with dihydroxynaphthoate synthase of M. phlei, were designated as menB; those lacking o-succinylbenzoyl-CoA synthetase, and therefore complementing with o-succinylbenzoyl-CoA synthetase, were designated as menE. The menB mutants RB413 (men-325) and RB415 (men-329), when incubated with [2,3-14C2]OSB, produced only the spirodilactone form of OSB in a reaction that was CoA and adenosine 5'-triphosphate dependent. PMID:6780515

  14. PpsA-mediated alternative pathway to complement RNase E essentiality in Escherichia coli.

    PubMed

    Tamura, Masaru; Honda, Naoko; Fujimoto, Hirofumi; Cohen, Stanley N; Kato, Atsushi

    2016-07-01

    Escherichia coli cells require RNase E, encoded by the essential gene rne, to propagate. The growth properties on different carbon sources of E. coli cells undergoing suppression of RNase E production suggested that reduction in RNase E is associated with decreased expression of phosphoenolpyruvate synthetase (PpsA), which converts pyruvate to phosphoenolpyruvate during gluconeogenesis. Western blotting and genetic complementation confirmed the role of RNase E in PpsA expression. Adventitious ppsA overexpression from a multicopy plasmid was sufficient to restore colony formation of ∆rne E. coli on minimal media containing glycerol or succinate as the sole carbon source. Complementation of ∆rne by ppsA overproduction was observed during growth on solid media but was only partial, and bacteria showed slowed cell division and grew as filamentous chains. We found that restoration of colony-forming ability by ppsA complementation occurred independent of the presence of endogenous RNase G or second-site suppressors of RNase E essentiality. Our investigations demonstrate the role of phosphoryl transfer catalyzable by PpsA as a determinant of RNase E essentiality in E. coli.

  15. Interallelic Complementation at the Suppressor of Forked Locus of Drosophila Reveals Complementation between Suppressor of Forked Proteins Mutated in Different Regions

    PubMed Central

    Simonelig, M.; Elliott, K.; Mitchelson, A.; O'Hare, K.

    1996-01-01

    The Su(f) protein of Drosophila melanogaster shares extensive homologies with proteins from yeast (RNA14) and man (77 kD subunit of cleavage stimulation factor) that are required for 3' end processing of mRNA. These homologies suggest that su(f) is involved in mRNA 3' end formation and that some aspects of this process are conserved throughout eukaryotes. We have investigated the genetic and molecular complexity of the su(f) locus. The su(f) gene is transcribed to produce three RNAs and could encode two proteins. Using constructs that contain different parts of the locus, we show that only the larger predicted gene product of 84 kD is required for the wild-type function of su(f). Some lethal alleles of su(f) complement to produce viable combinations. The structures of complementing and noncomplementing su(f) alleles indicate that 84-kD Su(f) proteins mutated in different domains can act in combination for partial su(f) function. Our results suggest protein-protein interaction between or within wild-type Su(f) molecules. PMID:8846900

  16. High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ.

    PubMed

    Berger, David; Bauerfeind, Stephanie Sandra; Blanckenhorn, Wolf Ulrich; Schäfer, Martin Andreas

    2011-10-01

    Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  17. In silico characterization of a novel pathogenic deletion mutation identified in XPA gene in a Pakistani family with severe xeroderma pigmentosum.

    PubMed

    Nasir, Muhammad; Ahmad, Nafees; Sieber, Christian M K; Latif, Amir; Malik, Salman Akbar; Hameed, Abdul

    2013-09-24

    Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation. The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system. Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain.

  18. An example of demographic anthropology, the study of matrimonial exchanges--endogamy, choice of spouse and preferential marriage.

    PubMed

    Cazes, Marie-Hélène

    2006-09-01

    The development of demographic studies in anthropology is directly linked to the success of population genetics. The anthropodemographic or anthropogenetic approach is thus underpinned by questions of genetics. While demographers focus on population dynamics and renewal in quantitative terms, population geneticists refer not to individuals but to the sets of genes carried by individuals in a population. Their aim is to detect the factors and processes which influence the genetic evolution of a group, i.e. which modify gene frequencies from one generation to the next. Among them are the factors which affect modes of reproduction. To illustrate the association of these three approaches, i.e. demographic, anthropological and genetic, I use here the example of matrimonial exchanges--which lie at the heart of the population renewal process--among the Dogon of Boni, a Malian ethnic group living in the southern Sahel. We can see how successive analyses--starting with endogamy at macroscopic level and moving down to the individual with choice of spouse and preferential marriage-- combining both quantitative and qualitative approaches, can be used to obtain a detailed description of matrimonial exchanges which shed light upon and complement the three different viewpoints.

  19. Complement activation and choriocapillaris loss in early AMD: Implications for pathophysiology and therapy

    PubMed Central

    Whitmore, S.Scott; Sohn, Elliott H.; Chirco, Kathleen R.; Drack, Arlene V.; Stone, Edwin M.; Tucker, Budd A.; Mullins, Robert F.

    2015-01-01

    Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies. PMID:25486088

  20. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy.

    PubMed

    Whitmore, S Scott; Sohn, Elliott H; Chirco, Kathleen R; Drack, Arlene V; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2015-03-01

    Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Enhancing Undergraduate Teaching and Research with a "Drosophila" Virginizing System

    ERIC Educational Resources Information Center

    Venema, Dennis R.

    2006-01-01

    Laboratory exercises using "Drosophila" crosses are an effective pedagogical method to complement traditional lecture and textbook presentations of genetics. Undergraduate thesis research is another common setting for using "Drosophila." A significant barrier to using "Drosophila" for undergraduate teaching or research is the time and skill…

  2. X exceptionalism in Caenorhabditis speciation.

    PubMed

    Cutter, Asher D

    2017-11-13

    Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation. © 2017 John Wiley & Sons Ltd.

  3. Donor Polymorphisms in Genes Related to B-Cell Biology Associated With Antibody-Mediated Rejection After Heart Transplantation.

    PubMed

    Marrón-Liñares, Grecia M; Núñez, Lucía; Crespo-Leiro, María G; Álvarez-López, Eloy; Barge-Caballero, Eduardo; Barge-Caballero, Gonzalo; Couto-Mallón, David; Pradas-Irun, Concepción; Muñiz, Javier; Tan, Carmela; Rodríguez, E Rene; Vázquez-Rodríguez, José Manuel; Hermida-Prieto, Manuel

    2018-04-25

    Heart transplantation (HT) is a well-established lifesaving treatment for endstage cardiac failure. Antibody-mediated rejection (AMR) represents one of the main problems after HT because of its diagnostic complexity and the poor evidence for supporting treatments. Complement cascade and B-cells play a key role in AMR and contribute to graft damage. This study explored the importance of variants in genes related to complement pathway and B-cell biology in HT and AMR in donors and in donor-recipient pairs.Methods and Results:Genetic variants in 112 genes (51 complement and 61 B-cell biology genes) were analyzed on next-generation sequencing in 28 donor-recipient pairs, 14 recipients with and 14 recipients without AMR. Statistical analysis was performed with SNPStats, R, and EPIDAT3.1. We identified one single nucleotide polymorphism (SNP) in donors in genes related to B-cell biology,interleukin-4 receptor subunitα (p.Ile75Val-IL4Rα), which correlated with the development of AMR. Moreover, in the analysis of recipient-donor genotype discrepancies, we identified another SNP, in this case inadenosine deaminase(ADA; p.Val178(p=)), which was related to B-cell biology, associated with the absence of AMR. Donor polymorphisms and recipient-donor discrepancies in genes related to the biology of B-cells, could have an important role in the development of AMR. In contrast, no variants in donor or in donor-recipient pairs in complement pathways seem to have an impact on AMR.

  4. The first genetic map of a synthesized allohexaploid Brassica with A, B and C genomes based on simple sequence repeat markers.

    PubMed

    Yang, S; Chen, S; Geng, X X; Yan, G; Li, Z Y; Meng, J L; Cowling, W A; Zhou, W J

    2016-04-01

    We present the first genetic map of an allohexaploid Brassica species, based on segregating microsatellite markers in a doubled haploid mapping population generated from a hybrid between two hexaploid parents. This study reports the first genetic map of trigenomic Brassica. A doubled haploid mapping population consisting of 189 lines was obtained via microspore culture from a hybrid H16-1 derived from a cross between two allohexaploid Brassica lines (7H170-1 and Y54-2). Simple sequence repeat primer pairs specific to the A genome (107), B genome (44) and C genome (109) were used to construct a genetic linkage map of the population. Twenty-seven linkage groups were resolved from 274 polymorphic loci on the A genome (109), B genome (49) and C genome (116) covering a total genetic distance of 3178.8 cM with an average distance between markers of 11.60 cM. This is the first genetic framework map for the artificially synthesized Brassica allohexaploids. The linkage groups represent the expected complement of chromosomes in the A, B and C genomes from the original diploid and tetraploid parents. This framework linkage map will be valuable for QTL analysis and future genetic improvement of a new allohexaploid Brassica species, and in improving our understanding of the genetic control of meiosis in new polyploids.

  5. Genetic diversity in a Poincianella pyramidalis (Tul.) L.P. Queiroz population assessed by RAPD molecular markers.

    PubMed

    Belarmino, K S; Rêgo, M M; Bruno, R L A; Medeiros, G D A; Andrade, A P; Rêgo, E R

    2017-08-31

    Poincianella pyramidalis (Tul.) L.P. Queiroz is an endemic Caatinga (Brazilian savannah biome) species that has been exploited for different purposes, although information is necessary about still existing natural populations. The objective of this study was to evaluate the genetic diversity among 20 P. pyramidalis individuals occurring in a population localized in the Caatinga biome of Paraíba State, aiming at seed collection, using RAPD markers. For the DNA extraction, young shoots of the individuals were used, and amplification was carried out using 20 primers. The obtained markers were converted to a binary matrix, from which a genetic dissimilarity matrix was built using the arithmetic complement of Jaccard's coefficient, and the dendrogram was built by the UPGMA analysis. No amplified fragment was monomorphic, resulting in 100% polymorphism of the analyzed population. The mean genetic diversity among the matrices was 63.28%, ranging from 30.9 to 97.7%. Individuals 09 and 17 showed relevant genetic proximity, and thus planting their seedlings at close sites would not be indicated. The population evaluated in this study showed high genetic diversity, originating twelve groups from the UPGMA hierarchical cluster analysis. Based on the results, individuals 09 and 17 can provide plant material for the evaluation of the physiological performance of P. pyramidalis seeds, and the set of individuals of this population has a high genetic diversity that characterizes them as adequate matrices for projects of restoration and conservation of the seed species.

  6. Two complement receptor one alleles have opposing associations with cerebral malaria and interact with α+thalassaemia.

    PubMed

    Opi, D Herbert; Swann, Olivia; Macharia, Alexander; Uyoga, Sophie; Band, Gavin; Ndila, Carolyne M; Harrison, Ewen M; Thera, Mahamadou A; Kone, Abdoulaye K; Diallo, Dapa A; Doumbo, Ogobara K; Lyke, Kirsten E; Plowe, Christopher V; Moulds, Joann M; Shebbe, Mohammed; Mturi, Neema; Peshu, Norbert; Maitland, Kathryn; Raza, Ahmed; Kwiatkowski, Dominic P; Rockett, Kirk A; Williams, Thomas N; Rowe, J Alexandra

    2018-04-25

    Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One ( CR1 ) gene, named Sl2 and McC b , occur at high frequencies, consistent with selection by malaria. Previous studies have been inconclusive. Using a large case-control study of severe malaria in Kenyan children and statistical models adjusted for confounders, we estimate the relationship between Sl2 and McC b and malaria phenotypes, and find they have opposing associations. The Sl2 polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the McC b polymorphism is associated with increased odds of cerebral malaria. We also identify an apparent interaction between Sl2 and α + thalassaemia, with the protective association of Sl2 greatest in children with normal α-globin. The complex relationship between these three mutations may explain previous conflicting findings, highlighting the importance of considering genetic interactions in disease-association studies. © 2018, Opi et al.

  7. Molecular Genetic Analysis of Chlamydia Species.

    PubMed

    Sixt, Barbara S; Valdivia, Raphael H

    2016-09-08

    Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.

  8. Genetic diversity and population genetic analysis of Donax vittatus (Mollusca: Bivalvia) and phylogeny of the genus with mitochondrial and nuclear markers

    NASA Astrophysics Data System (ADS)

    Fernández-Pérez, Jenyfer; Froufe, Elsa; Nantón, Ana; Gaspar, Miguel B.; Méndez, Josefina

    2017-10-01

    In this study, the genetic diversity of Donax vittatus across the Iberian Peninsula was investigated using four mitochondrial (COI, Cytb, 16S F and M types) and three nuclear (H3, 18S and 28S) genes. These same molecular markers were also sequenced in D. semistriatus and D variegatus to address the phylogenetic relationships of the species of the genus Donax common along the European coasts. Our results showed high haplotype diversity in combination with a low nucleotide diversity and a star-shaped network with a predominant haplotype, indicating a recent population expansion for the examined sampling sites of D. vittatus. Furthermore, analyses of population differentiation performed with COI mitochondrial marker, including global FST estimation and pairwise FST values, indicated the non-existence of significant genetic structure in D. vittatus of Northwest Iberian populations. Because these localities show a high genetic similarity, we suggest that D. vittatus could be a potentially alternative exploitable resource, as complement to the D. trunculus fisheries, whose natural stocks have decreased dramatically in some areas. Furthermore, we present for the first time, evidence of DUI in the clams D. vittatus and D. semistriatus.

  9. Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius

    PubMed Central

    Wagner, Michaela; van Wolferen, Marleen; Wagner, Alexander; Lassak, Kerstin; Meyer, Benjamin H.; Reimann, Julia; Albers, Sonja-Verena

    2012-01-01

    For reverse genetic approaches inactivation or selective modification of genes are required to elucidate their putative function. Sulfolobus acidocaldarius is a thermoacidophilic Crenarchaeon which grows optimally at 76°C and pH 3. As many antibiotics do not withstand these conditions the development of a genetic system in this organism is dependent on auxotrophies. Therefore we constructed a pyrE deletion mutant of S. acidocaldarius wild type strain DSM639 missing 322 bp called MW001. Using this strain as the starting point, we describe here different methods using single as well as double crossover events to obtain markerless deletion mutants, tag genes genomically and ectopically integrate foreign DNA into MW001. These methods enable us to construct single, double, and triple deletions strains that can still be complemented with the pRN1 based expression vector. Taken together we have developed a versatile and robust genetic tool box for the crenarchaeote S. acidocaldarius that will promote the study of unknown gene functions in this organism and makes it a suitable host for synthetic biology approaches. PMID:22707949

  10. A Phenotyping Regimen for Genetically Modified Mice Used to Study Genes Implicated in Human Diseases of Aging.

    PubMed

    Patterson, Victoria L; Thompson, Brian S; Cherry, Catherine; Wang, Shao-Bin; Chen, Bo; Hoh, Josephine

    2016-07-14

    Age-related diseases are becoming increasingly prevalent and the burden continues to grow as our population ages. Effective treatments are necessary to lessen the impact of debilitating conditions but remain elusive in many cases. Only by understanding the causes and pathology of diseases associated with aging, can scientists begin to identify potential therapeutic targets and develop strategies for intervention. The most common age-related conditions are neurodegenerative disorders such as Parkinson's disease and blindness. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Genome wide association studies have previously identified loci that are associated with increased susceptibility to this disease and identified two regions of interest: complement factor H (CFH) and the 10q26 locus, where the age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HtrA1) genes are located. CFH acts as a negative regulator of the alternative pathway (AP) of the complement system while HtrA1 is an extracellular serine protease. ARMS2 is located upstream of HtrA1 in the primate genome, although the gene is absent in mice. To study the effects of these genes, humanized knock-in mouse lines of Cfh and ARMS2, knockouts of Cfh, HtrA1, HtrA2, HtrA3 and HtrA4 as well as a conditional neural deletion of HtrA2 were generated. Of all the genetically engineered mice produced only mice lacking HtrA2, either systemically or in neural tissues, displayed clear phenotypes. In order to examine these mice thoroughly and systematically, an initial phenotyping schedule was established, consisting of a series of tests related to two main diseases of interest: AMD and Parkinson's. Genetically modified mice can be subjected to appropriate experiments to identify phenotypes that may be related to the associated diseases in humans. A phenotyping regimen with a mitochondrial focus is presented here alongside representative results from the tests of interest.

  11. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    PubMed

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Genetic organization of the unc-22 IV gene and the adjacent region in Caenorhabditis elegans.

    PubMed

    Rogalski, T M; Baillie, D L

    1985-01-01

    The genetic organization of the region immediately adjacent to the unc-22 IV gene in Caenorhabditis elegans has been studied. We have identified twenty essential genes in this interval of approximately 1.5-map units on Linkage Group IV. The mutations that define these genes were positioned by recombination mapping and complementation with several deficiencies. With few exceptions, the positions obtained by these two methods agreed. Eight of the twenty essential genes identified are represented by more than one allele. Three possible internal deletions of the unc-22 gene have been located by intra-genic mapping. In addition, the right end point of a deficiency or an inversion affecting the adjacent genes let-56 and unc-22 has been positioned inside the unc-22 gene.

  13. Genetic and Medical Considerations of Autism: A Literature Review.

    ERIC Educational Resources Information Center

    Silver, Kathi O.

    This literature review, from 1990 to the present, discusses the characteristics of autism and the comorbidity of mental retardation and autism. Specific medical syndromes that complement the heterogeneity concept are described, including epilepsy, fragile X syndrome, Rett syndrome, tuberous sclerosis, and Asperger syndrome. The paper presents some…

  14. The contribution of an animal model toward uncovering biological risk factors for PTSD.

    PubMed

    Cohen, Hagit; Matar, Michael A; Richter-Levin, Gal; Zohar, Joseph

    2006-07-01

    Clinical studies of posttraumatic stress disorder (PTSD) have elicited proposed risk factors for developing PTSD in the aftermath of stress exposure. Generally, these risk factors have arisen from retrospective analysis of premorbid characteristics of study populations. A valid animal model of PTSD can complement clinical studies and help to elucidate issues, such as the contribution of proposed risk factors, in ways which are not practicable in the clinical arena. Important qualities of animal models include the possibility to conduct controlled prospective studies, easy access to postmortem brains, and the availability of genetically manipulated subjects, which can be tailored to specific needs. When these qualities are further complemented by an approach which defines phenomenologic criteria to address the variance in individual response pattern and magnitude, enabling the animal subjects to be classified into definable groups for focused study, the model acquires added validity. This article presents an overview of a series of studies in such an animal model which examine the contribution of two proposed risk factors and the value of two early postexposure pharmacological manipulations on the prevalence rates of subjects displaying an extreme magnitude of behavioral response to a predator stress paradigm.

  15. Association of complementation group and mutation type with clinical outcome in fanconi anemia. European Fanconi Anemia Research Group.

    PubMed

    Faivre, L; Guardiola, P; Lewis, C; Dokal, I; Ebell, W; Zatterale, A; Altay, C; Poole, J; Stones, D; Kwee, M L; van Weel-Sipman, M; Havenga, C; Morgan, N; de Winter, J; Digweed, M; Savoia, A; Pronk, J; de Ravel, T; Jansen, S; Joenje, H; Gluckman, E; Mathew, C G

    2000-12-15

    Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder. Clinical care is complicated by variable age at onset and severity of hematologic symptoms. Recent advances in the molecular biology of FA have allowed us to investigate the relationship between FA genotype and the nature and severity of the clinical phenotype. Two hundred forty-five patients from all 7 known complementation groups (FA-A to FA-G) were studied. Mutations were detected in one of the cloned FANC genes in 169 patients; in the remainder the complementation group was assigned by cell fusion or Western blotting. A range of qualitative and quantitative clinical parameters was compared for each complementation group and for different classes of mutation. Significant phenotypic differences were found. FA-G patients had more severe cytopenia and a higher incidence of leukemia. Somatic abnormalities were less prevalent in FA-C, but more common in the rare groups FA-D, FA-E, and FA-F. In FA-A, patients homozygous for null mutations had an earlier onset of anemia and a higher incidence of leukemia than those with mutations producing an altered protein. In FA-C, there was a later age of onset of aplastic anemia and fewer somatic abnormalities in patients with the 322delG mutation, but there were more somatic abnormalities in patients with IVS4 + 4A --> T. This study indicates that FA patients with mutations in the FANCG gene and patients homozygous for null mutations in FANCA are high-risk groups with a poor hematologic outcome and should be considered as candidates both for frequent monitoring and early therapeutic intervention. (Blood. 2000;96:4064-4070)

  16. HLA in anthropology: the enigma of Easter Island.

    PubMed

    Sanchez-Mazas, Alicia; Thorsby, Erik

    2013-01-01

    In this article, we first present four significant cases where human leukocyte antigen (HLA) studies have been useful for the reconstruction of human peopling history on the worldwide scale; i.e., the spread of modern humans from East Africa, the colonization of East Asia along two geographic routes, the co-evolution of genes and languages in Africa, and the peopling of Europe through a main northward migration. These examples show that natural selection did not erase the genetic signatures of our past migrations in the HLA genetic diversity patterns observed today. In the second part, we summarize our studies on Easter Island. Using genomic HLA typing, we could trace an introduction of HLA alleles of native American (Amerindian) origin to Easter Island before the Peruvian slave trades; i.e., before the 1860s, and provide suggestive evidence that they may have already been introduced in prehistoric time. Our results give further support to an initial Polynesian population of the island, but also reveal an early contribution by Amerindians. Together, our data illustrate the usefulness of typing for HLA alleles to complement genetic analyses in anthropological investigations.

  17. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus

    PubMed Central

    Park, Joo Youn; Moon, Bo Youn; Park, Juw Won; Thornton, Justin A.; Park, Yong Ho; Seo, Keun Seok

    2017-01-01

    Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus. PMID:28322317

  18. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus.

    PubMed

    Park, Joo Youn; Moon, Bo Youn; Park, Juw Won; Thornton, Justin A; Park, Yong Ho; Seo, Keun Seok

    2017-03-21

    Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus.

  19. Transposable Element Genomic Fissuring in Pyrenophora teres Is Associated With Genome Expansion and Dynamics of Host–Pathogen Genetic Interactions

    PubMed Central

    Syme, Robert A.; Martin, Anke; Wyatt, Nathan A.; Lawrence, Julie A.; Muria-Gonzalez, Mariano J.; Friesen, Timothy L.; Ellwood, Simon R.

    2018-01-01

    Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influences the final gene annotations, an accurate and reproducible pipeline was developed to ensure comparability between isolates. The genomes of the two forms are highly collinear, each composed of 12 chromosomes. Genome evolution in P. teres is characterized by genome fissuring through the insertion and expansion of transposable elements (TEs), a process that isolates blocks of genic sequence. The phenomenon is particularly pronounced in PTT, which has a larger, more repetitive genome than PTM and more recent transposon activity measured by the frequency and size of genome fissures. PTT has a longer cultivated host association and, notably, a greater range of host–pathogen genetic interactions compared to other Pyrenophora spp., a property which associates better with genome size than pathogen lifestyle. The two forms possess similar complements of TE families with Tc1/Mariner and LINE-like Tad-1 elements more abundant in PTT. Tad-1 was only detectable as vestigial fragments in PTM and, within the forms, differences in genome sizes and the presence and absence of several TE families indicated recent lineage invasions. Gene differences between P. teres forms are mainly associated with gene-sparse regions near or within TE-rich regions, with many genes possessing characteristics of fungal effectors. Instances of gene interruption by transposons resulting in pseudogenization were detected in PTT. In addition, both forms have a large complement of secondary metabolite gene clusters indicating significant capacity to produce an array of different molecules. This study provides genomic resources for functional genetics to help dissect factors underlying the host–pathogen interactions. PMID:29720997

  20. Loss of diacylglycerol kinase epsilon in mice causes endothelial distress and impairs glomerular Cox-2 and PGE2 production

    PubMed Central

    Zhu, Jili; Chaki, Moumita; Lu, Dongmei; Ren, Chongyu; Wang, Shan-Shan; Rauhauser, Alysha; Li, Binghua; Zimmerman, Susan; Jun, Bokkyoo; Du, Yong; Vadnagara, Komal; Wang, Hanquin; Elhadi, Sarah; Quigg, Richard J.; Topham, Matthew K.; Mohan, Chandra; Ozaltin, Fatih; Zhou, Xin J.; Marciano, Denise K.; Bazan, Nicolas G.

    2016-01-01

    Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade. Recently, we and others have described a genetic form of TMA caused by mutations in the gene diacylglycerol kinase-ε (DGKE) that encodes the lipid kinase DGKε (Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi MR, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F, Ji WZ, Overton JD, Mane SM, Nurnberg G, Altmuller J, Thiele H, Morin D, Deschenes G, Baudouin V, Llanas B, Collard L, Majid MA, Simkova E, Nurnberg P, Rioux-Leclerc N, Moeckel GW, Gubler MC, Hwa J, Loirat C, Lifton RP. Nat Genet 45: 531–536, 2013; Ozaltin F, Li BH, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang CY, Chen P, Lu DM, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M. J Am Soc Nephrol 24: 377–384, 2013). DGKε is unrelated to the complement pathway, which suggests that unidentified pathogenic mechanisms independent of complement dysregulation may result in TMA. Studying Dgke knockout mice may help to understand the pathogenesis of this disease, but no glomerular phenotype has been described in these animals so far. Here we report that Dgke null mice present subclinical microscopic anomalies of the glomerular endothelium and basal membrane that worsen with age and develop glomerular capillary occlusion when exposed to nephrotoxic serum. We found that induction of cyclooxygenase-2 and of the proangiogenic prostaglandin E2 are impaired in Dgke null kidneys and are associated with reduced expression of the antithrombotic cell adhesion molecule platelet endothelial cell adhesion molecule-1/CD31 in the glomerular endothelium. Notably, prostaglandin E2 supplementation was able to rescue motility defects of Dgke knockdown cells in vitro and to restore angiogenesis in a test in vivo. Our results unveil an unexpected role of Dgke in the induction of cyclooxygenase-2 and in the regulation of glomerular prostanoids synthesis under stress. PMID:26887830

  1. Loss of diacylglycerol kinase epsilon in mice causes endothelial distress and impairs glomerular Cox-2 and PGE2 production.

    PubMed

    Zhu, Jili; Chaki, Moumita; Lu, Dongmei; Ren, Chongyu; Wang, Shan-Shan; Rauhauser, Alysha; Li, Binghua; Zimmerman, Susan; Jun, Bokkyoo; Du, Yong; Vadnagara, Komal; Wang, Hanquin; Elhadi, Sarah; Quigg, Richard J; Topham, Matthew K; Mohan, Chandra; Ozaltin, Fatih; Zhou, Xin J; Marciano, Denise K; Bazan, Nicolas G; Attanasio, Massimo

    2016-05-01

    Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade. Recently, we and others have described a genetic form of TMA caused by mutations in the gene diacylglycerol kinase-ε (DGKE) that encodes the lipid kinase DGKε (Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi MR, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F, Ji WZ, Overton JD, Mane SM, Nurnberg G, Altmuller J, Thiele H, Morin D, Deschenes G, Baudouin V, Llanas B, Collard L, Majid MA, Simkova E, Nurnberg P, Rioux-Leclerc N, Moeckel GW, Gubler MC, Hwa J, Loirat C, Lifton RP. Nat Genet 45: 531-536, 2013; Ozaltin F, Li BH, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang CY, Chen P, Lu DM, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M. J Am Soc Nephrol 24: 377-384, 2013). DGKε is unrelated to the complement pathway, which suggests that unidentified pathogenic mechanisms independent of complement dysregulation may result in TMA. Studying Dgke knockout mice may help to understand the pathogenesis of this disease, but no glomerular phenotype has been described in these animals so far. Here we report that Dgke null mice present subclinical microscopic anomalies of the glomerular endothelium and basal membrane that worsen with age and develop glomerular capillary occlusion when exposed to nephrotoxic serum. We found that induction of cyclooxygenase-2 and of the proangiogenic prostaglandin E2 are impaired in Dgke null kidneys and are associated with reduced expression of the antithrombotic cell adhesion molecule platelet endothelial cell adhesion molecule-1/CD31 in the glomerular endothelium. Notably, prostaglandin E2 supplementation was able to rescue motility defects of Dgke knockdown cells in vitro and to restore angiogenesis in a test in vivo. Our results unveil an unexpected role of Dgke in the induction of cyclooxygenase-2 and in the regulation of glomerular prostanoids synthesis under stress. Copyright © 2016 the American Physiological Society.

  2. Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chia-wei; Spike, Thomas; Klingeman, Dawn M.

    Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pHmore » 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Here, recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.« less

  3. Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85

    DOE PAGES

    Wu, Chia-wei; Spike, Thomas; Klingeman, Dawn M.; ...

    2017-05-23

    Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pHmore » 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Here, recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.« less

  4. A Drosophila SNAP-25 null mutant reveals context-dependent redundancy with SNAP-24 in neurotransmission.

    PubMed Central

    Vilinsky, Ilya; Stewart, Bryan A; Drummond, James; Robinson, Iain; Deitcher, David L

    2002-01-01

    The synaptic protein SNAP-25 is an important component of the neurotransmitter release machinery, although its precise function is still unknown. Genetic analysis of other synaptic proteins has yielded valuable information on their role in synaptic transmission. In this study, we performed a mutagenesis screen to identify new SNAP-25 alleles that fail to complement our previously isolated recessive temperature-sensitive allele of SNAP-25, SNAP-25(ts). In a screen of 100,000 flies, 26 F(1) progeny failed to complement SNAP-25(ts) and 21 of these were found to be null alleles of SNAP-25. These null alleles die at the pharate adult stage and electroretinogram recordings of these animals reveal that synaptic transmission is blocked. At the third instar larval stage, SNAP-25 nulls exhibit nearly normal neurotransmitter release at the neuromuscular junction. This is surprising since SNAP-25(ts) larvae exhibit a much stronger synaptic phenotype. Our evidence indicates that a related protein, SNAP-24, can substitute for SNAP-25 at the larval stage in SNAP-25 nulls. However, if a wild-type or mutant form of SNAP-25 is present, then SNAP-24 does not appear to take part in neurotransmitter release at the larval NMJ. These results suggest that the apparent redundancy between SNAP-25 and SNAP-24 is due to inappropriate genetic substitution. PMID:12242238

  5. Investigation of FANCA mutations in Greek patients.

    PubMed

    Selenti, Nikoletta; Sofocleous, Christalena; Kattamis, Antonis; Kolialexi, Aggeliki; Kitsiou, Sophia; Fryssira, Elena; Polychronopoulou, Sophia; Kanavakis, Emmanouel; Mavrou, Ariadni

    2013-08-01

    Fanconi anemia (FA) is a rare genetic disease characterized by considerable heterogeneity. Fifteen subtypes are currently recognised and deletions of the Fanconi anemia complementation group A (FANCA) gene account for more than 65% of FA cases. We report on the results from a cohort of 166 patients referred to the Department of Medical Genetics of Athens University for genetic investigation after the clinical suspicion of FA. For clastogen-induced chromosome damage, cultures were set up with the addition of mitomycin C (MMC) and diepoxybutane (DEB), respectively. Following a positive cytogenetic result, molecular analysis was performed to allow identification of causative mutations in the FANCA gene. A total of 13/166 patients were diagnosed with FA and 8/13 belonged to the FA-A subtype. A novel point mutation was identified in exon 26 of FANCA gene. In our study 62% of FA patients were classified in the FA-A subtype and a point mutation in exon 26 was noted for the first time.

  6. A bacterial genetic selection system for ubiquitylation cascade discovery.

    PubMed

    Levin-Kravets, Olga; Tanner, Neta; Shohat, Noa; Attali, Ilan; Keren-Kaplan, Tal; Shusterman, Anna; Artzi, Shay; Varvak, Alexander; Reshef, Yael; Shi, Xiaojing; Zucker, Ori; Baram, Tamir; Katina, Corine; Pilzer, Inbar; Ben-Aroya, Shay; Prag, Gali

    2016-11-01

    About one-third of the eukaryotic proteome undergoes ubiquitylation, but the enzymatic cascades leading to substrate modification are largely unknown. We present a genetic selection tool that utilizes Escherichia coli, which lack deubiquitylases, to identify interactions along ubiquitylation cascades. Coexpression of split antibiotic resistance protein tethered to ubiquitin and ubiquitylation target together with a functional ubiquitylation apparatus results in a covalent assembly of the resistance protein, giving rise to bacterial growth on selective media. We applied the selection system to uncover an E3 ligase from the pathogenic bacteria EHEC and to identify the epsin ENTH domain as an ultraweak ubiquitin-binding domain. The latter was complemented with a structure-function analysis of the ENTH-ubiquitin interface. We also constructed and screened a yeast fusion library, discovering Sem1 as a novel ubiquitylation substrate of Rsp5 E3 ligase. Collectively, our selection system provides a robust high-throughput approach for genetic studies of ubiquitylation cascades and for small-molecule modulator screening.

  7. Systemic human CR2-targeted complement alternative pathway inhibitor ameliorates mouse laser-induced choroidal neovascularization.

    PubMed

    Rohrer, Bärbel; Coughlin, Beth; Bandyopadhyay, Mausumi; Holers, V Michael

    2012-08-01

    Genetic associations and the presence of complement components within pathological structures of age-related macular degeneration (AMD) have generated the hypothesis that AMD is caused by chronic local complement activation. Since the majority of activity in the common terminal pathway results from engagement of the amplification loop, the alternative pathway has been proposed as a logical therapeutic target. We recently generated a factor H (fH)-based complement inhibitor (CR2-fH) with the capacity to be "targeted" to sites of complement C3 activation. We asked whether the human therapeutic (TT30) is effective in a mouse model of AMD. Choroidal neovascularization (CNV) was induced by argon laser photocoagulation of Bruch's membrane. Every other day, mice received intravenous injections of TT30 or vehicles, and after 6 days, the presence or absence of CNV and CNV-related changes were evaluated. Area of CNV, photoreceptor cell function, gene expression for complement components and cytokines, vascular endothelial growth factor (VEGF) protein levels, and TT30 bioavailability were determined. CNV development, which has previously been shown to require local complement activation, could be reduced by intravenous TT30 delivery. Specific inhibition of the alternative pathway not only reduced angiogenesis in CNV, but also ameliorated changes in several associated disease-related biomarkers, including diminished retinal function and molecular events known to be involved in AMD such as VEGF production. After intravenous injection, TT30 localized to CNV lesion sites in the retinal pigmented epithelium-choroid. Systemic administration of TT30 was found to reduce CNV pathology. These data may open new avenues for novel systemic AMD treatment strategies.

  8. The identification of novel loci required for appropriate nodule development in Medicago truncatula.

    PubMed

    Domonkos, Agota; Horvath, Beatrix; Marsh, John F; Halasz, Gabor; Ayaydin, Ferhan; Oldroyd, Giles E D; Kalo, Peter

    2013-10-11

    The formation of functional symbiotic nodules is the result of a coordinated developmental program between legumes and rhizobial bacteria. Genetic analyses in legumes have been used to dissect the signaling processes required for establishing the legume-rhizobial endosymbiotic association. Compared to the early events of the symbiotic interaction, less attention has been paid to plant loci required for rhizobial colonization and the functioning of the nodule. Here we describe the identification and characterization of a number of new genetic loci in Medicago truncatula that are required for the development of effective nitrogen fixing nodules. Approximately 38,000 EMS and fast neutron mutagenized Medicago truncatula seedlings were screened for defects in symbiotic nitrogen fixation. Mutant plants impaired in nodule development and efficient nitrogen fixation were selected for further genetic and phenotypic analysis. Nine mutants completely lacking in nodule formation (Nod-) represented six complementation groups of which two novel loci have been identified. Eight mutants with ineffective nodules (Fix-) represented seven complementation groups, out of which five were new monogenic loci. The Fix- M. truncatula mutants showed symptoms of nitrogen deficiency and developed small white nodules. Microscopic analysis of Fix- nodules revealed that the mutants have defects in the release of rhizobia from infection threads, differentiation of rhizobia and maintenance of persistence of bacteria in nodule cells. Additionally, we monitored the transcriptional activity of symbiosis specific genes to define what transcriptional stage of the symbiotic process is blocked in each of the Fix- mutants. Based on the phenotypic and gene expression analysis a functional hierarchy of the FIX genes is proposed. The new symbiotic loci of M. truncatula isolated in this study provide the foundation for further characterization of the mechanisms underpinning nodulation, in particular the later stages associated with bacterial release and nodule function.

  9. A replicative plasmid vector allows efficient complementation of pathogenic Leptospira strains.

    PubMed

    Pappas, Christopher J; Benaroudj, Nadia; Picardeau, Mathieu

    2015-05-01

    Leptospirosis, an emerging zoonotic disease, remains poorly understood because of a lack of genetic manipulation tools available for pathogenic leptospires. Current genetic manipulation techniques include insertion of DNA by random transposon mutagenesis and homologous recombination via suicide vectors. This study describes the construction of a shuttle vector, pMaORI, that replicates within saprophytic, intermediate, and pathogenic leptospires. The shuttle vector was constructed by the insertion of a 2.9-kb DNA segment including the parA, parB, and rep genes into pMAT, a plasmid that cannot replicate in Leptospira spp. and contains a backbone consisting of an aadA cassette, ori R6K, and oriT RK2/RP4. The inserted DNA segment was isolated from a 52-kb region within Leptospira mayottensis strain 200901116 that is not found in the closely related strain L. mayottensis 200901122. Because of the size of this region and the presence of bacteriophage-like proteins, it is possible that this region is a result of a phage-related genomic island. The stability of the pMaORI plasmid within pathogenic strains was tested by passaging cultures 10 times without selection and confirming the presence of pMaORI. Concordantly, we report the use of trans complementation in the pathogen Leptospira interrogans. Transformation of a pMaORI vector carrying a functional copy of the perR gene in a null mutant background restores the expression of PerR and susceptibility to hydrogen peroxide comparable to that of wild-type cells. In conclusion, we demonstrate the replication of a stable plasmid vector in a large panel of Leptospira strains, including pathogens. The shuttle vector described will expand our ability to perform genetic manipulation of Leptospira spp. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. On-Chip Cellomics: Constructive Understanding of Multicellular Network Using On-Chip Cellomics Technology

    NASA Astrophysics Data System (ADS)

    Yasuda, Kenji

    2012-08-01

    We have developed methods and systems of analyzing epigenetic information in cells to expand our understanding of how living systems are determined. Because cells are minimum units reflecting epigenetic information, which is considered to map the history of a parallel-processing recurrent network of biochemical reactions, their behaviors cannot be explained by considering only conventional deonucleotide (DNA) information-processing events. The role of epigenetic information on cells, which complements their genetic information, was inferred by comparing predictions from genetic information with cell behaviour observed under conditions chosen to reveal adaptation processes and community effects. A system of analyzing epigenetic information, on-chip cellomics technology, has been developed starting from the twin complementary viewpoints of cell regulation as an “algebraic” system (emphasis on temporal aspects) and as a “geometric” system (emphasis on spatial aspects) exploiting microfabrication technology and a reconstructive approach of cellular systems not only for single cell-based subjects such as Escherichia coli and macrophages but also for cellular networks like the community effect of cardiomyocytes and plasticity in neuronal networks. One of the most important contributions of this study was to be able to reconstruct the concept of a cell regulatory network from the “local” (molecules expressed at certain times and places) to the “global” (the cell as a viable, functioning system). Knowledge of epigenetic information, which we can control and change during cell lives, complements the genetic variety, and these two types of information are indispensable for living organisms. This new knowlege has the potential to be the basis of cell-based biological and medical fields such as those involving cell-based drug screening and the regeneration of organs from stem cells.

  11. Genetic mouse models relevant to schizophrenia: taking stock and looking forward.

    PubMed

    Harrison, Paul J; Pritchett, David; Stumpenhorst, Katharina; Betts, Jill F; Nissen, Wiebke; Schweimer, Judith; Lane, Tracy; Burnet, Philip W J; Lamsa, Karri P; Sharp, Trevor; Bannerman, David M; Tunbridge, Elizabeth M

    2012-03-01

    Genetic mouse models relevant to schizophrenia complement, and have to a large extent supplanted, pharmacological and lesion-based rat models. The main attraction is that they potentially have greater construct validity; however, they share the fundamental limitations of all animal models of psychiatric disorder, and must also be viewed in the context of the uncertain and complex genetic architecture of psychosis. Some of the key issues, including the choice of gene to target, the manner of its manipulation, gene-gene and gene-environment interactions, and phenotypic characterization, are briefly considered in this commentary, illustrated by the relevant papers reported in this special issue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Modeling Tumor Clonal Evolution for Drug Combinations Design.

    PubMed

    Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A

    2016-03-01

    Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs.

  13. Cryopreservation for preservation of potato genetic resources

    PubMed Central

    Niino, Takao; Arizaga, Miriam Valle

    2015-01-01

    Cryopreservation is becoming a very important tool for the long-term storage of plant genetic resources and efficient cryopreservation protocols have been developed for a large number of plant species. Practical procedures, developed using in vitro tissue culture, can be a simple and reliable preservation option of potato genetic resources rather than maintaining by vegetative propagation in genebanks due their allogamous nature. Cryopreserved materials insure a long-term backup of field collections against loss of plant germplasm. Occurrence of genetic variation, in tissue culture cells during prolonged subcultures, can be avoided with suitable cryopreservation protocols that provide high regrowth, leading and facilitating a systematic and strategic cryo-banking of plant genetic resources. Cryopreservation protocols for potato reviewed here, can efficiently complement field and in vitro conservation, providing for preservation of genotypes difficult to preserve by other methods, wild types and other species decided as priority collections. PMID:25931979

  14. Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations

    PubMed Central

    Salvadori, Maurizio; Bertoni, Elisabetta

    2013-01-01

    Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both “traditional therapy” (including plasma therapy, kidney and kidney-liver transplantation) and “new therapies”. The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody “eculizumab”. Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy. PMID:24255888

  15. An Integrative Genetic Study of Rice Metabolism, Growth and Stochastic Variation Reveals Potential C/N Partitioning Loci

    NASA Astrophysics Data System (ADS)

    Li, Baohua; Zhang, Yuanyuan; Mohammadi, Seyed Abolghasem; Huai, Dongxin; Zhou, Yongming; Kliebenstein, Daniel J.

    2016-07-01

    Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic and metabolic profiling advances. In this study, we use metabolomics and growth measurements to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused on identifying genes controlling major effect loci. To complement these studies, we conducted a replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred line population and focused on the genetic variation for primary metabolism. Using independent replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible that domestication has differentially impacted stochastic metabolite variation more than average metabolite variation.

  16. Chromosome-based genetic complementation system for Xylella fastidiosa.

    PubMed

    Matsumoto, Ayumi; Young, Glenn M; Igo, Michele M

    2009-03-01

    Xylella fastidiosa is a xylem-limited, gram-negative bacterium that causes Pierce's disease of grapevine. Here, we describe the construction of four vectors that facilitate the insertion of genes into a neutral site (NS1) in the X. fastidiosa chromosome. These vectors carry a colE1-like (pMB1) replicon and DNA sequences from NS1 flanking a multiple-cloning site and a resistance marker for one of the following antibiotics: chloramphenicol, erythromycin, gentamicin, or kanamycin. In X. fastidiosa, vectors with colE1-like (pMB1) replicons have been found to result primarily in the recovery of double recombinants rather than single recombinants. Thus, the ease of obtaining double recombinants and the stability of the resulting insertions at NS1 in the absence of selective pressure are the major advantages of this system. Based on in vitro and in planta characterizations, strains carrying insertions within NS1 are indistinguishable from wild-type X. fastidiosa in terms of growth rate, biofilm formation, and pathogenicity. To illustrate the usefulness of this system for complementation analysis, we constructed a strain carrying a mutation in the X. fastidiosa cpeB gene, which is predicted to encode a catalase/peroxidase, and showed that the sensitivity of this mutant to hydrogen peroxide could be overcome by the introduction of a wild-type copy of cpeB at NS1. Thus, this chromosome-based complementation system provides a valuable genetic tool for investigating the role of specific genes in X. fastidiosa cell physiology and virulence.

  17. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    PubMed

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m 2 was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  18. Initiation of a pan-genomic research project for Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Differences in genomic structure and nucleotide polymorphism among strains form the genetic basis for adaptability of a bacterial species. This can be described by a bacterial pan-genome, which is defined as the full complement of genes in all strains of a species. The pan-genome is composed of a "c...

  19. In silico characterization of a novel pathogenic deletion mutation identified in XPA gene in a Pakistani family with severe xeroderma pigmentosum

    PubMed Central

    2013-01-01

    Background Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation. Results The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system. Conclusions Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain. PMID:24063568

  20. Kikuchi-Fujimoto disease (histiocytic necrotizing lymphadenitis): report of a case with other autoimmune manifestations

    PubMed Central

    Merriman, Richard C.; Stone, Marvin J.

    2007-01-01

    Kikuchi-Fujimoto disease (KFD), or histiocytic necrotizing lymphadenitis, is a benign and self-limited disease that mainly affects young women. Patients present with localized lymphadenopathy, fever, and leukopenia in up to half of the cases. KFD can occur in association with systemic lupus erythematosus. We present the case of a patient with KFD and systemic lupus erythematosus, as well as relapsing polychondritis. This patient had persistently low C4 complement levels, so she was evaluated for a genetic defect in complement production and was found to have two “null” C4 alleles. We believe that this may have contributed to the development of her diseases. PMID:17431451

  1. Complement C2 receptor inhibitor trispanning: from man to schistosome.

    PubMed

    Inal, Jameel M

    2005-11-01

    Horizontal gene transfer (HGT), in relation to genetic transfer between hosts and parasites, is a little described mechanism. Since the complement inhibitor CRIT was first discovered in the human Schistosoma parasite (the causative agent of Bilharzia) and in Trypanosoma cruzi (a parasite causing Chagas' disease), it has been found to be distributed amongst various species, ranging from the early teleost cod to rats and humans. In terms of evolutionary distance, as measured in a phylogenetic analysis of these CRIT genes at nucleotide level, the parasitic species are as removed from their human host as is the rat sequence, suggesting HGT. The hypotheses that CRIT in humans and schistosomes is orthologous and that the presence of CRIT in schistosomes occurs as a result of host-to-parasite HGT are presented in the light of empirical data and the growing body of data on mobile genetic elements in human and schistosome genomes. In summary, these data indicate phylogenetic proximity between Schistosoma and human CRIT, identity of function, high nucleotide/amino acid identity and secondary protein structure, as well as identical genomic organization.

  2. A unifying theory for genetic epidemiological analysis of binary disease data

    PubMed Central

    2014-01-01

    Background Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Results Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. Conclusions We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness. PMID:24552188

  3. A unifying theory for genetic epidemiological analysis of binary disease data.

    PubMed

    Lipschutz-Powell, Debby; Woolliams, John A; Doeschl-Wilson, Andrea B

    2014-02-19

    Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.

  4. The Lectin Pathway of Complement and Rheumatic Heart Disease

    PubMed Central

    Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José

    2014-01-01

    The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073

  5. Genetic diversity of popcorn genotypes using molecular analysis.

    PubMed

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-08-19

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.

  6. Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia

    PubMed Central

    Beheregaray, Luciano B.; Cooke, Georgina M.; Chao, Ning L.; Landguth, Erin L.

    2015-01-01

    Evolution creates and sustains biodiversity via adaptive changes in ecologically relevant traits. Ecologically mediated selection contributes to genetic divergence both in the presence or absence of geographic isolation between populations, and is considered an important driver of speciation. Indeed, the genetics of ecological speciation is becoming increasingly studied across a variety of taxa and environments. In this paper we review the literature of ecological speciation in the tropics. We report on low research productivity in tropical ecosystems and discuss reasons accounting for the rarity of studies. We argue for research programs that simultaneously address biogeographical and taxonomic questions in the tropics, while effectively assessing relationships between reproductive isolation and ecological divergence. To contribute toward this goal, we propose a new framework for ecological speciation that integrates information from phylogenetics, phylogeography, population genomics, and simulations in evolutionary landscape genetics (ELG). We introduce components of the framework, describe ELG simulations (a largely unexplored approach in ecological speciation), and discuss design and experimental feasibility within the context of tropical research. We then use published genetic datasets from populations of five codistributed Amazonian fish species to assess the performance of the framework in studies of tropical speciation. We suggest that these approaches can assist in distinguishing the relative contribution of natural selection from biogeographic history in the origin of biodiversity, even in complex ecosystems such as Amazonia. We also discuss on how to assess ecological speciation using ELG simulations that include selection. These integrative frameworks have considerable potential to enhance conservation management in biodiversity rich ecosystems and to complement historical biogeographic and evolutionary studies of tropical biotas. PMID:25653668

  7. Contribution of nonprimate animal models in understanding the etiology of schizophrenia

    PubMed Central

    Lazar, Noah L.; Neufeld, Richard W.J.; Cain, Donald P.

    2011-01-01

    Schizophrenia is a severe psychiatric disorder that is characterized by positive and negative symptoms and cognitive impairments. The etiology of the disorder is complex, and it is thought to follow a multifactorial threshold model of inheritance with genetic and neurodevelopmental contributions to risk. Human studies are particularly useful in capturing the richness of the phenotype, but they are often limited to the use of correlational approaches. By assessing behavioural abnormalities in both humans and rodents, nonprimate animal models of schizophrenia provide unique insight into the etiology and mechanisms of the disorder. This review discusses the phenomenology and etiology of schizophrenia and the contribution of current nonprimate animal models with an emphasis on how research with models of neurotransmitter dysregulation, environmental risk factors, neurodevelopmental disruption and genetic risk factors can complement the literature on schizophrenia in humans. PMID:21247514

  8. Fanconi anemia: correlating central nervous system malformations and genetic complementation groups.

    PubMed

    Johnson-Tesch, Benjamin A; Gawande, Rakhee S; Zhang, Lei; MacMillan, Margaret L; Nascene, David R

    2017-06-01

    Congenital central nervous system abnormalities in children with Fanconi anemia are poorly characterized, especially with regard to specific genetic complementation groups. To characterize the impact of genetic complementation groups on central nervous system anatomy. Through chart review we identified 36 patients with Fanconi anemia with available brain MRIs at the University of Minnesota (average age, 11.3 years; range, 1-43 years; M:F=19:17), which we reviewed and compared to 19 age- and sex-matched controls (average age, 7.9 years; range, 2-18 years; M:F=9:10). Genotypic information was available for 27 patients (15 FA-A, 2 FA-C, 3 FA-G, and 7 FA-D1 [biallelic mutations in BRCA2 gene]). Of the 36 patients, 61% had at least one congenital central nervous system or skull base abnormality. These included hypoplastic clivus (n=12), hypoplastic adenohypophysis (n=11), platybasia (n=8), pontocerebellar hypoplasia (n=7), isolated pontine hypoplasia (n=4), isolated vermis hypoplasia (n=3), and ectopic neurohypophysis (n=6). Average pituitary volume was significantly less in patients with Fanconi anemia (P<0.0001) than in controls. Basal angle was significantly greater in Fanconi anemia patients (P=0.006), but the basal angle of those with FA-D1 was not significantly different from controls (P=0.239). Clivus length was less in the Fanconi anemia group (P=0.002), but significance was only observed in the FA-D1 subgroup (P<0.0001). Of the seven patients meeting criteria for pontocerebellar hypoplasia, six belonged to the FA-D1 group. Patients with Fanconi anemia have higher incidences of ectopic neurohypophysis, adenohypophysis hypoplasia, platybasia and other midline central nervous system skull base posterior fossa abnormalities than age- and sex-matched controls. Patients with posterior fossa abnormalities, including pontocerebellar hypoplasia, are more likely to have biallelic BRCA2 mutations.

  9. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation.

    PubMed

    Heuermann, D; Haas, R

    1998-03-01

    A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (catGC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 x 10(-7) and 4.7 x 10(-7) transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H. pylori recipients, with pHel2 showing an efficiency of 2.0 x 10(-5) transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylori recA+ gene, and the expression of the heterologous green fluorescent protein (GFP) in H. pylori demonstrate the general usefulness of this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future.

  10. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    PubMed Central

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  11. Preclinical development of BCG.HIVA2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity.

    PubMed

    Mahant, Aakash; Saubi, Narcís; Eto, Yoshiki; Guitart, Núria; Gatell, Josep Ma; Hanke, Tomáš; Joseph, Joan

    2017-08-03

    One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVA int , expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA 2auxo.int . Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVA int was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA 2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on "double" auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.

  12. Age-related macular degeneration—emerging pathogenetic and therapeutic concepts

    PubMed Central

    GEHRS, KAREN M.; ANDERSON, DON H.; JOHNSON, LINCOLN V.; HAGEMAN, GREGORY S.

    2014-01-01

    Today, the average life expectancy in developed nations is over 80 years and climbing. And yet, the quality of life during those additional years is often significantly diminished by the effects of age-related, degenerative diseases, including age-related macular degeneration (AMD), the leading cause of blindness in the elderly worldwide. AMD is characterized by a progressive loss of central vision attributable to degenerative and neovascular changes in the macula, a highly specialized region of the ocular retina responsible for fine visual acuity. Estimates gathered from the most recent World Health Organization (WHO) global eye disease survey conservatively indicate that 14 million persons are blind or severely visually impaired because of AMD. The disease has a tremendous impact on the physical and mental health of the geriatric population and their families and is becoming a major public health burden. Currently, there is neither a cure nor a means to prevent AMD. Palliative treatment options for the less prevalent, late-stage ‘wet’ form of the disease include anti-neovascular agents, photodynamic therapy and thermal laser. There are no current therapies for the more common ‘dry’ AMD, except for the use of antioxidants that delay progression in 20%–25% of eyes. New discoveries, however, are beginning to provide a much clearer picture of the relevant cellular events, genetic factors, and biochemical processes associated with early AMD. Recently, compelling evidence has emerged that the innate immune system and, more specifically, uncontrolled regulation of the complement alternative pathway plays a central role in the pathobiology of AMD. The complement Factor H gene—which encodes the major inhibitor of the complement alternative pathway—is the first gene identified in multiple independent studies that confers a significant genetic risk for the development of AMD. The emergence of this new paradigm of AMD pathogenesis should hasten the development of novel diagnostic and therapeutic approaches for this disease that will dramatically improve the quality of our prolonged lifespan. PMID:17101537

  13. Vascular Cambium Development

    PubMed Central

    Nieminen, Kaisa; Blomster, Tiina; Helariutta, Ykä; Mähönen, Ari Pekka

    2015-01-01

    Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species. PMID:26078728

  14. Probing the evolution, ecology and physiology of marine protists using transcriptomics.

    PubMed

    Caron, David A; Alexander, Harriet; Allen, Andrew E; Archibald, John M; Armbrust, E Virginia; Bachy, Charles; Bell, Callum J; Bharti, Arvind; Dyhrman, Sonya T; Guida, Stephanie M; Heidelberg, Karla B; Kaye, Jonathan Z; Metzner, Julia; Smith, Sarah R; Worden, Alexandra Z

    2017-01-01

    Protists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases. A better understanding of these newly discovered genes will lead to a deeper appreciation of the functional diversity and metabolic processes in the ocean. In this Review, we summarize recent developments in our understanding of the ecology, physiology and evolution of protists, derived from transcriptomic studies of cultured strains and natural communities, and discuss how these novel large-scale genetic datasets will be used in the future.

  15. Accelerating global optimization of aerodynamic shapes using a new surrogate-assisted parallel genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mehdi; Jahangirian, Alireza

    2017-12-01

    An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.

  16. Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome.

    PubMed

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-09-05

    Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Data suggest that complement dysregulation influences the onset and disease severity in carriers of diacylglycerol kinase-ε mutations and that treatments on the basis of plasma infusions and complement inhibition are potentially useful in patients with combined diacylglycerol kinase-ε and complement mutations. A comprehensive understanding of the genetic component predisposing to atypical hemolytic uremic syndrome is, therefore, critical to guide an effective treatment. Copyright © 2014 by the American Society of Nephrology.

  17. Complement Mutations in Diacylglycerol Kinase-ε–Associated Atypical Hemolytic Uremic Syndrome

    PubMed Central

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-01-01

    Background and objectives Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Design, setting, participants, & measurements Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Results Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Conclusions Data suggest that complement dysregulation influences the onset and disease severity in carriers of diacylglycerol kinase-ε mutations and that treatments on the basis of plasma infusions and complement inhibition are potentially useful in patients with combined diacylglycerol kinase-ε and complement mutations. A comprehensive understanding of the genetic component predisposing to atypical hemolytic uremic syndrome is, therefore, critical to guide an effective treatment. PMID:25135762

  18. A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets

    PubMed Central

    Sanjak, Jaleal S.; Long, Anthony D.; Thornton, Kevin R.

    2017-01-01

    The genetic component of complex disease risk in humans remains largely unexplained. A corollary is that the allelic spectrum of genetic variants contributing to complex disease risk is unknown. Theoretical models that relate population genetic processes to the maintenance of genetic variation for quantitative traits may suggest profitable avenues for future experimental design. Here we use forward simulation to model a genomic region evolving under a balance between recurrent deleterious mutation and Gaussian stabilizing selection. We consider multiple genetic and demographic models, and several different methods for identifying genomic regions harboring variants associated with complex disease risk. We demonstrate that the model of gene action, relating genotype to phenotype, has a qualitative effect on several relevant aspects of the population genetic architecture of a complex trait. In particular, the genetic model impacts genetic variance component partitioning across the allele frequency spectrum and the power of statistical tests. Models with partial recessivity closely match the minor allele frequency distribution of significant hits from empirical genome-wide association studies without requiring homozygous effect sizes to be small. We highlight a particular gene-based model of incomplete recessivity that is appealing from first principles. Under that model, deleterious mutations in a genomic region partially fail to complement one another. This model of gene-based recessivity predicts the empirically observed inconsistency between twin and SNP based estimated of dominance heritability. Furthermore, this model predicts considerable levels of unexplained variance associated with intralocus epistasis. Our results suggest a need for improved statistical tools for region based genetic association and heritability estimation. PMID:28103232

  19. Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy.

    PubMed

    van Waning, Jaap I; Caliskan, Kadir; Hoedemaekers, Yvonne M; van Spaendonck-Zwarts, Karin Y; Baas, Annette F; Boekholdt, S Matthijs; van Melle, Joost P; Teske, Arco J; Asselbergs, Folkert W; Backx, Ad P C M; du Marchie Sarvaas, Gideon J; Dalinghaus, Michiel; Breur, Johannes M P J; Linschoten, Marijke P M; Verlooij, Laura A; Kardys, Isabella; Dooijes, Dennis; Lekanne Deprez, Ronald H; IJpma, Arne S; van den Berg, Maarten P; Hofstra, Robert M W; van Slegtenhorst, Marjon A; Jongbloed, Jan D H; Majoor-Krakauer, Danielle

    2018-02-20

    The clinical outcomes of noncompaction cardiomyopathy (NCCM) range from asymptomatic to heart failure, arrhythmias, and sudden cardiac death. Genetics play an important role in NCCM. This study investigated the correlations among genetics, clinical features, and outcomes in adults and children diagnosed with NCCM. A retrospective multicenter study from 4 cardiogenetic centers in the Netherlands classified 327 unrelated NCCM patients into 3 categories: 1) genetic, with a mutation in 32% (81 adults; 23 children) of patients; 2) probably genetic, familial cardiomyopathy without a mutation in 16% (45 adults; 8 children) of patients; or 3) sporadic, no family history, without mutation in 52% (149 adults; 21 children) of patients. Clinical features and major adverse cardiac events (MACE) during follow-up were compared across the children and adults. MYH7, MYBPC3, and TTN mutations were the most common mutations (71%) found in genetic NCCM. The risk of having reduced left ventricular (LV) systolic dysfunction was higher for genetic patients compared with the probably genetic and sporadic cases (p = 0.024), with the highest risk in patients with multiple mutations and TTN mutations. Mutations were more frequent in children (p = 0.04) and were associated with MACE (p = 0.025). Adults were more likely to have sporadic NCCM. High risk for cardiac events in children and adults was related to LV systolic dysfunction in mutation carriers, but not in sporadic cases. Patients with MYH7 mutations had low risk for MACE (p = 0.03). NCCM is a heterogeneous condition, and genetic stratification has a role in clinical care. Distinguishing genetic from nongenetic NCCM complements prediction of outcome and may lead to management and follow-up tailored to genetic status. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Craniofacial abnormalities in homozygous Small eye (Sey/Sey) embryos and newborn mice.

    PubMed

    Kaufman, M H; Chang, H H; Shaw, J P

    1995-06-01

    The Small eye (Sey) gene in the mouse is lethal in the homozygous state. It is located on chromosome 2, is a mutation in the Pax-6 gene, and is genetically homologous with the human aniridia 2 (AN2) gene mutation. Numerous studies over the last few years, using genetic and molecular biological approaches, have investigated both the location of the gene as well as its possible mode of action. In the homozygous state, the primary defect appears to be limited to the failure of differentiation of the presumptive lens and nasal placodes. Such mice therefore display a characteristic phenotype; they possess neither eyes nor any nasal derivatives. Their heterozygous (Sey/+) and normal (+/+) littermates may be distinguished before birth only by a detailed examination of their eyes. Few detailed morphological/histological studies have been undertaken to date in the Sey/Sey embryos and newborn, and in the present study we describe a variety of craniofacial abnormalities that have not previously been reported. We observed, with one exception, delayed closure of the palate, and the presence in 80% of mice of an abnormal complement of upper incisor teeth, so that 35% possessed 1 supernumerary tooth while 45% possessed 2 supernumerary teeth. In these mice, a total of either 3 or 4, rather than the normal complement of 2, upper incisor teeth were present. Possibly the most unexpected finding, however, was the presence of a median cartilaginous rod-like structure which protruded between the 2 maxillae to give the Alizarin red S and Alcian blue-stained 'cleared' skulls of the newborn mice a characteristic 'unicorn-like' appearance. While this structure appeared to be a rostral extension of the chondrocranium, its exact derivation is unclear.

  1. Incidence, prevalence and genetic determinants of neonatal diabetes mellitus: a systematic review and meta-analysis protocol.

    PubMed

    Nansseu, Jobert Richie N; Ngo-Um, Suzanne S; Balti, Eric V

    2016-11-10

    In the absence of existing data, the present review intends to determine the incidence, prevalence and/or genetic determinants of neonatal diabetes mellitus (NDM), with expected contribution to disease characterization. We will include cross-sectional, cohort or case-control studies which have reported the incidence, prevalence and/or genetic determinants of NDM between January 01, 2000 and May 31, 2016, published in English or French languages and without any geographical limitation. PubMed and EMBASE will be extensively screened to identify potentially eligible studies, completed by manual search. Two authors will independently screen, select studies, extract data, and assess the risk of bias; disagreements will be resolved by consensus. Clinical heterogeneity will be investigated by examining the design and setting (including geographic region), procedure used for genetic testing, calculation of incidence or prevalence, and outcomes in each study. Studies found to be clinically homogeneous will be pooled together through a random effects meta-analysis. Statistical heterogeneity will be assessed using the chi-square test of homogeneity and quantified using the I 2 statistic. In case of substantial heterogeneity, subgroup analyses will be undertaken. Publication bias will be assessed with funnel plots, complemented with the use of Egger's test of bias. This systematic review and meta-analysis is expected to draw a clear picture of phenotypic and genotypic presentations of NDM in order to better understand the condition and adequately address challenges in respect with its management. PROSPERO CRD42016039765.

  2. Risk factors for age-related maculopathy.

    PubMed

    Connell, Paul P; Keane, Pearse A; O'Neill, Evelyn C; Altaie, Rasha W; Loane, Edward; Neelam, Kumari; Nolan, John M; Beatty, Stephen

    2009-01-01

    Age-related maculopathy (ARM) is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition.

  3. Thrombomodulin Mutations in Atypical Hemolytic–Uremic Syndrome

    PubMed Central

    Delvaeye, Mieke; Noris, Marina; De Vriese, Astrid; Esmon, Charles T.; Esmon, Naomi L.; Ferrell, Gary; Del-Favero, Jurgen; Plaisance, Stephane; Claes, Bart; Lambrechts, Diether; Zoja, Carla; Remuzzi, Giuseppe; Conway, Edward M.

    2012-01-01

    BACKGROUND The hemolytic–uremic syndrome consists of the triad of microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. The common form of the syndrome is triggered by infection with Shiga toxin–producing bacteria and has a favorable outcome. The less common form of the syndrome, called atypical hemolytic–uremic syndrome, accounts for about 10% of cases, and patients with this form of the syndrome have a poor prognosis. Approximately half of the patients with atypical hemolytic–uremic syndrome have mutations in genes that regulate the complement system. Genetic factors in the remaining cases are unknown. We studied the role of thrombomodulin, an endothelial glycoprotein with anticoagulant, antiinflammatory, and cytoprotective properties, in atypical hemolytic–uremic syndrome. METHODS We sequenced the entire thrombomodulin gene (THBD) in 152 patients with atypical hemolytic–uremic syndrome and in 380 controls. Using purified proteins and cell-expression systems, we investigated whether thrombomodulin regulates the complement system, and we characterized the mechanisms. We evaluated the effects of thrombomodulin missense mutations associated with atypical hemolytic–uremic syndrome on complement activation by expressing thrombomodulin variants in cultured cells. RESULTS Of 152 patients with atypical hemolytic–uremic syndrome, 7 unrelated patients had six different heterozygous missense THBD mutations. In vitro, thrombomodulin binds to C3b and factor H (CFH) and negatively regulates complement by accelerating factor I–mediated inactivation of C3b in the presence of cofactors, CFH or C4b binding protein. By promoting activation of the plasma procarboxypeptidase B, thrombomodulin also accelerates the inactivation of anaphylatoxins C3a and C5a. Cultured cells expressing thrombomodulin variants associated with atypical hemolytic–uremic syndrome had diminished capacity to inactivate C3b and to activate procarboxypeptidase B and were thus less protected from activated complement. CONCLUSIONS Mutations that impair the function of thrombomodulin occur in about 5% of patients with atypical hemolytic–uremic syndrome. PMID:19625716

  4. Functional Analysis of Variants of Unknown Significance in BRCA1 and BRCA2 Using Complementation of a Synthetic Lethal Interaction with PARP Inhibition

    DTIC Science & Technology

    2014-12-01

    general population3-5. A pathogenic mutation in BRCA1 or BRCA2 is an important genetic biomarker for a high ovarian cancer risk in breast cancer patients...doxycycline induces cytological signs of synthetic lethality with Parp inhibitor by RAD51 and RH2AX focus formation. REPORTABLE OUTCOMES None RH2AX... genetics . Mar 2001;68(3):700-710. 3. Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. Journal of clinical oncology : official journal of

  5. Genetic analysis of biodegradation of tetralin by a Sphingomonas strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernaez, M.J.; Santero, E.; Reineke, W.

    Tetralin (1,2,3,4-tetrahydronaphthalene) is produced for industrial purposes from naphthalene by catalytic hydrogenation or from anthracene by cracking. A strain designated TFA which very efficiently utilizes tetralin has been isolated from the Rhine river. The strain has been identified as Sphingomonas macrogoltabidus, based on 16S rDNA sequence similarity. Genetic analysis of tetralin biodegradation has been performed by insertion mutagenesis and by physical analysis and analysis of complementation between the mutants. The genes involved in tetralin utilization are clustered in a region of 9 kb, comprising at least five genes grouped in two divergently transcribed operons.

  6. Human pluripotent stem cells: an emerging model in developmental biology.

    PubMed

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  7. Breeding-assisted genomics.

    PubMed

    Poland, Jesse

    2015-04-01

    The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Complement component C3 plays a critical role in protecting the aging retina in a murine model of age-related macular degeneration.

    PubMed

    Hoh Kam, Jaimie; Lenassi, Eva; Malik, Talat H; Pickering, Matthew C; Jeffery, Glen

    2013-08-01

    Complement component C3 is the central complement component and a key inflammatory protein activated in age-related macular degeneration (AMD). AMD is associated with genetic variation in complement proteins that results in enhanced activation of C3 through the complement alternative pathway. These include complement factor H (CFH), a negative regulator of C3 activation. Both C3 inhibition and/or CFH augmentation are potential therapeutic strategies in AMD. Herein, we examined retinal integrity in aged (12 months) mice deficient in both factors H and C3 (CFH(-/-).C3(-/-)), CFH alone (CFH(-/-)), or C3 alone (C3(-/-)), and wild-type mice (C57BL/6). Retinal function was assessed by electroretinography, and retinal morphological features were analyzed at light and electron microscope levels. Retinas were also stained for amyloid β (Aβ) deposition, inflammation, and macrophage accumulation. Contrary to expectation, electroretinograms of CFH(-/-).C3(-/-) mice displayed more severely reduced responses than those of other mice. All mutant strains showed significant photoreceptor loss and thickening of Bruch's membrane compared with wild-type C57BL/6, but these changes were greater in CFH(-/-).C3(-/-) mice. CFH(-/-).C3(-/-) mice had significantly more Aβ on Bruch's membrane, fewer macrophages, and high levels of retinal inflammation than the other groups. Our data show that both uncontrolled C3 activation (CFH(-/-)) and complete absence of C3 (CFH(-/-).C3(-/-) and C3(-/-)) negatively affect aged retinas. These findings suggest that strategies that inhibit C3 in AMD may be deleterious. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellett, O.L.; Smith, M.L.; Greene, A.A.

    Cystinosis is an autosomal recessive disease in which three clinical forms are recognized: infantile nephropathic, with renal tubular damage by 1 year of age and progressive glomerular insufficiency; intermediate, with tubular and glomerular insufficiency beginning at a later age; benign, with no kidney damage. Skin fibroblasts cultured from patients with all types of cystinosis show increased intralysosomal free (nonprotein) cystine; however, fibroblasts from heterozygotes have normal free-cystine values. To determine whether genetic complementation occurs between the different forms, somatic cell hybrids were constructed between cells from a patient with infantile nephropathic cystinosis and cells from patients with other types ofmore » cystinosis. If complementation occurred, the hybrids would be expected to have normal cystine levels. To construct hybrid cells, a universal parent cell type (TG1-neo), which was hypoxanthine/aminopterin/thymidine (HAT) sensitive and G418 resistant was constructed from an infantile nephropathic cystinosis fibroblast strain. Polyethylene glycol fusion of TG1-neo with other cells that are not HAT sensitive or G418 resistant allowed for selection of hybrid cells in a medium containing HAT and the aminoglycoside G418. As indicated by elevated cystine levels, complementation did not occur between TG1-neo and two different benign cystinosis strains, an intermediate cystinosis strain, or another nephropathic cystinosis cell strain. When a normal fibroblast strain was fused with TG1-neo, all 15 hybrid clones studied contained normal amounts of intracellular free cystine.« less

  10. Modeling Tumor Clonal Evolution for Drug Combinations Design

    PubMed Central

    Zhao, Boyang; Hemann, Michael T.; Lauffenburger, Douglas A.

    2016-01-01

    Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs. PMID:28435907

  11. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione.

    PubMed

    Dean, Melissa A; Olsen, Randall J; Long, S Wesley; Rosato, Adriana E; Musser, James M

    2014-04-01

    Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.

  12. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    PubMed Central

    Iyer, Janani; Wang, Qingyu; Le, Thanh; Pizzo, Lucilla; Grönke, Sebastian; Ambegaokar, Surendra S.; Imai, Yuzuru; Srivastava, Ashutosh; Troisí, Beatriz Llamusí; Mardon, Graeme; Artero, Ruben; Jackson, George R.; Isaacs, Adrian M.; Partridge, Linda; Lu, Bingwei; Kumar, Justin P.; Girirajan, Santhosh

    2016-01-01

    About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions. PMID:26994292

  13. Update on the role of genetics in the onset of age-related macular degeneration

    PubMed Central

    Francis, Peter James; Klein, Michael L

    2011-01-01

    Age-related macular degeneration (AMD), akin to other common age-related diseases, has a complex pathogenesis and arises from the interplay of genes, environmental factors, and personal characteristics. The past decade has seen very significant strides towards identification of those precise genetic variants associated with disease. That genes encoding proteins of the (alternative) complement pathway (CFH, C2, CFB, C3, CFI) are major players in etiology came as a surprise to many but has already lead to the development of therapies entering human clinical trials. Other genes replicated in many populations ARMS2, APOE, variants near TIMP3, and genes involved in lipid metabolism have also been implicated in disease pathogenesis. The genes discovered to date can be estimated to account for approximately 50% of the genetic variance of AMD and have been discovered by candidate gene approaches, pathway analysis, and latterly genome-wide association studies. Next generation sequencing modalities and meta-analysis techniques are being employed with the aim of identifying the remaining rarer but, perhaps, individually more significant sequence variations, linked to disease status. Complementary studies have also begun to utilize this genetic information to develop clinically useful algorithms to predict AMD risk and evaluate pharmacogenetics. In this article, contemporary commentary is provided on rapidly progressing efforts to elucidate the genetic pathogenesis of AMD as the field stands at the end of the first decade of the 21st century. PMID:21887094

  14. Golden Rice and 'Golden' crops for human nutrition.

    PubMed

    Beyer, Peter

    2010-11-30

    Micronutrients are essential for a healthy life. Humans do not produce micronutrients, and hence they must obtain them through the foodchain. Staple crops are the predominant food source of mankind, but need to be complemented by other foodstuffs because they are generally deficient in one or the other micronutrient. Breeding for micronutrient-dense crops is not always a viable option because of the absence of genetic variability for the desired trait. Moreover, sterility issues and the complex genetic makeup of some crop plants make them unamenable to conventional breeding. In these cases, genetic modification remains the only viable option. The tools to produce a number of micronutrients in staple crops have recently become available thanks to the identification of the genes involved in the corresponding biochemical pathways at an unprecedented rate. Discarding genetic modification as a viable option is definitely not in the interest of human wellbeing. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Molecular defects identified by whole exome sequencing in a child with Fanconi anemia.

    PubMed

    Zheng, Zhaojing; Geng, Juan; Yao, Ru-En; Li, Caihua; Ying, Daming; Shen, Yongnian; Ying, Lei; Yu, Yongguo; Fu, Qihua

    2013-11-10

    Fanconi anemia is a rare genetic disease characterized by bone marrow failure, multiple congenital malformations, and an increased susceptibility to malignancy. At least 15 genes have been identified that are involved in the pathogenesis of Fanconi anemia. However, it is still a challenge to assign the complementation group and to characterize the molecular defects in patients with Fanconi anemia. In the current study, whole exome sequencing was used to identify the affected gene(s) in a boy with Fanconi anemia. A recurring, non-synonymous mutation was found (c.3971C>T, p.P1324L) as well as a novel frameshift mutation (c.989_995del, p.H330LfsX2) in FANCA gene. Our results indicate that whole exome sequencing may be useful in clinical settings for rapid identification of disease-causing mutations in rare genetic disorders such as Fanconi anemia. © 2013 Elsevier B.V. All rights reserved.

  16. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage.

    PubMed

    Tulpule, Asmin; Lensch, M William; Miller, Justine D; Austin, Karyn; D'Andrea, Alan; Schlaeger, Thorsten M; Shimamura, Akiko; Daley, George Q

    2010-04-29

    Fanconi anemia (FA) is a genetically heterogeneous, autosomal recessive disorder characterized by pediatric bone marrow failure and congenital anomalies. The effect of FA gene deficiency on hematopoietic development in utero remains poorly described as mouse models of FA do not develop hematopoietic failure and such studies cannot be performed on patients. We have created a human-specific in vitro system to study early hematopoietic development in FA using a lentiviral RNA interference (RNAi) strategy in human embryonic stem cells (hESCs). We show that knockdown of FANCA and FANCD2 in hESCs leads to a reduction in hematopoietic fates and progenitor numbers that can be rescued by FA gene complementation. Our data indicate that hematopoiesis is impaired in FA from the earliest stages of development, suggesting that deficiencies in embryonic hematopoiesis may underlie the progression to bone marrow failure in FA. This work illustrates how hESCs can provide unique insights into human development and further our understanding of genetic disease.

  17. Adrenocortical Expression Profiling of Cattle with Distinct Juvenile Temperament Types.

    PubMed

    Friedrich, Juliane; Brand, Bodo; Graunke, Katharina Luise; Langbein, Jan; Schwerin, Manfred; Ponsuksili, Siriluck

    2017-01-01

    Temperament affects ease of handling, animal welfare, and economically important production traits in cattle. The use of gene expression profiles as molecular traits provides a novel means of gaining insight into behavioural genetics. In this study, differences in adrenocortical expression profiles between 60 F 2 cows (Charolais × German Holstein) of distinct temperament types were analysed. The cows were assessed in a novel-human test at an age of 90 days. Most of the adrenal cortex transcripts which were differentially expressed (FDR <0.05) were found between temperament types of 'fearful/neophobic-alert' and all other temperament types. These transcripts belong to several biological functions like NRF2-mediated oxidative stress response, Glucocorticoid Receptor Signalling and Complement System. Overall, the present study provides new insight into transcriptional differences in the adrenal cortex between cows of distinct temperament types. Genetic regulations of such molecular traits facilitate uncovering positional and functional gene candidates for temperament type in cattle.

  18. Clinical and molecular epidemiological study of xeroderma pigmentosum in China: A case series of 19 patients.

    PubMed

    Zhou, Eray Yihui; Wang, Huijun; Lin, Zhimiao; Xu, Guiwen; Ma, Zhihong; Zhao, Jiahui; Feng, Cheng; Duo, Lina; Yin, Jinghua; Yang, Yong

    2017-01-01

    Xeroderma pigmentosum (XP) is a rare genetic disorder which is divided into eight complementation groups: XP-A to XP-G and XP-V. Some XP patients demonstrate severe cutaneous and neurological manifestations, management of which requires timely diagnosis and intervention. We performed clinical evaluation and genetic analysis on 19 patients, the largest cohort of XP to date in China. Twenty-three mutations from six groups were identified, 16 of which were novel. All patients developed marked freckle-like pigmentation on sun-exposed sites while patients with XP-A, XP-D, XP-F and XP-G showed acute sunburn reactions. Only XP-A patients displayed progressive neurological degeneration. A relatively larger proportion of XP-A and XP-C were found in Chinese XP patients. One XP case and two carriers were prenatally determined. This study extended the mutation spectrum of XP in China and may aid in the diagnosis and treatment of Chinese XP patients. © 2016 Japanese Dermatological Association.

  19. Women as Mendelians and Geneticists

    NASA Astrophysics Data System (ADS)

    Richmond, Marsha L.

    2015-01-01

    After the rediscovery of Mendel's laws of heredity in 1900, the biologists who began studying heredity, variation, and evolution using the new Mendelian methodology—performing controlled hybrid crosses and statistically analyzing progeny to note the factorial basis of characters—made great progress. By 1910, the validity of Mendelism was widely recognized and the field William Bateson christened `genetics' was complemented by the chromosome theory of heredity of T. H. Morgan and his group in the United States. Historians, however, have largely overlooked an important factor in the early establishment of Mendelism and genetics: the large number of women who contributed to the various research groups. This article examines the social, economic, and disciplinary context behind this new wave of women's participation in science and describes the work of women Mendelians and geneticists employed at three leading experimental research institutes, 1900-1940. It argues that the key to more women working in science was the access to higher education and the receptivity of emerging interdisciplinary fields such as genetics to utilize the expertise of women workers, which not only advanced the discipline but also provided new opportunities for women's employment in science.

  20. High-Throughput, Motility-Based Sorter for Microswimmers such as C. elegans

    PubMed Central

    Yuan, Jinzhou; Zhou, Jessie; Raizen, David M.; Bau, Haim H.

    2015-01-01

    Animal motility varies with genotype, disease, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method is implemented in a simple microfluidic device capable of sorting thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriches for known C. elegans motility mutants. Furthermore, using this device, we isolate low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates C. elegans sleep. By performing genetic complementation tests, we demonstrate that our motility-based sorting device efficiently isolates mutants for the same gene identified by tedious visual inspection of behavior on an agar surface. Therefore, our motility-based sorter is capable of performing high throughput gene discovery approaches to investigate fundamental biological processes. PMID:26008643

  1. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  2. Null EPAC Mutants Reveal a Sequential Order of Versatile cAMP Effects during "Drosophila" Aversive Odor Learning

    ERIC Educational Resources Information Center

    Richlitzki, Antje; Latour, Philipp; Schwärzel, Martin

    2017-01-01

    Here, we define a role of the cAMP intermediate EPAC in "Drosophila" aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the "rutabaga" adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom…

  3. The Ptch1DL mouse: a new model to study lambdoid craniosynostosis and basal cell nevus syndrome associated skeletal defects

    PubMed Central

    Feng, Weiguo; Choi, Irene; Clouthier, David E.; Niswander, Lee; Williams, Trevor

    2013-01-01

    Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. Employing an ENU-based screen for recessive mutations affecting craniofacial anatomy we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. Using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1DL gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis. PMID:23897749

  4. Potential influences of complement factor H in autoimmune inflammatory and thrombotic disorders.

    PubMed

    Ferluga, Janez; Kouser, Lubna; Murugaiah, Valarmathy; Sim, Robert B; Kishore, Uday

    2017-04-01

    Complement system homeostasis is important for host self-protection and anti-microbial immune surveillance, and recent research indicates roles in tissue development and remodelling. Complement also appears to have several points of interaction with the blood coagulation system. Deficiency and altered function due to gene mutations and polymorphisms in complement effectors and regulators, including Factor H, have been associated with familial and sporadic autoimmune inflammatory - thrombotic disorders, in which autoantibodies play a part. These include systemic lupus erythematosus, rheumatoid arthritis, atypical haemolytic uremic syndrome, anti-phospholipid syndrome and age-related macular degeneration. Such diseases are generally complex - multigenic and heterogeneous in their symptoms and predisposition/susceptibility. They usually need to be triggered by vascular trauma, drugs or infection and non-complement genetic factors also play a part. Underlying events seem to include decline in peripheral regulatory T cells, dendritic cell, and B cell tolerance, associated with alterations in lymphoid organ microenvironment. Factor H is an abundant protein, synthesised in many cell types, and its reported binding to many different ligands, even if not of high affinity, may influence a large number of molecular interactions, together with the accepted role of Factor H within the complement system. Factor H is involved in mesenchymal stem cell mediated tolerance and also contributes to self-tolerance by augmenting iC3b production and opsonisation of apoptotic cells for their silent dendritic cell engulfment via complement receptor CR3, which mediates anti-inflammatory-tolerogenic effects in the apoptotic cell context. There may be co-operation with other phagocytic receptors, such as complement C1q receptors, and the Tim glycoprotein family, which specifically bind phosphatidylserine expressed on the apoptotic cell surface. Factor H is able to discriminate between self and nonself surfaces for self-protection and anti-microbe defence. Factor H, particularly as an abundant platelet protein, may also modulate blood coagulation, having an anti-thrombotic role. Here, we review a number of interaction pathways in coagulation and in immunity, together with associated diseases, and indicate where Factor H may be expected to exert an influence, based on reports of the diversity of ligands for Factor H. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The status of preimplantation genetic diagnosis in Japan: a criticism.

    PubMed

    Munné, Santiago; Cohen, Jacques

    2004-09-01

    Advances in preimplantation genetic diagnosis (PGD) are occurring worldwide. New clinics specializing in this approach to the control of disease genes or imbalanced chromosome numbers in human preimplantation embryos continue to increase. One exception is Japan, where the Japanese Society of Obstetrics and Gynecology disapproves of this practice because it discriminates against people with genetic abnormalities. Yet, some doctors there wish to introduce this method to help their couples to improved forms of IVF. This paper stresses the rights of patients to have a healthy baby, if necessary by the use of PGD. It argues against prohibition, since it complements the current nature of prenatal diagnosis and avoids the need for abortions in case of afflicted embryos. Consideration is also given to other attempts at restriction that have failed.

  6. The potential for using canopy spectral reflectance as an indirect selection tool for yield improvement in winter wheat

    NASA Astrophysics Data System (ADS)

    Prasad, Bishwajit

    Scope and methods of study. Complementing breeding effort by deploying alternative methods of identifying higher yielding genotypes in a wheat breeding program is important for obtaining greater genetic gains. Spectral reflectance indices (SRI) are one of the many indirect selection tools that have been reported to be associated with different physiological process of wheat. A total of five experiments (a set of 25 released cultivars from winter wheat breeding programs of the U.S. Great Plains and four populations of randomly derived recombinant inbred lines having 25 entries in each population) were conducted in two years under Great Plains winter wheat rainfed environments at Oklahoma State University research farms. Grain yield was measured in each experiment and biomass was measured in three experiments at three growth stages (booting, heading, and grainfilling). Canopy spectral reflectance was measured at three growth stages and eleven SRI were calculated. Correlation (phenotypic and genetic) between grain yield and SRI, biomass and SRI, heritability (broad sense) of the SRI and yield, response to selection and correlated response, relative selection efficiency of the SRI, and efficiency in selecting the higher yielding genotypes by the SRI were assessed. Findings and conclusions. The genetic correlation coefficients revealed that the water based near infrared indices (WI and NWI) were strongly associated with grain yield and biomass production. The regression analysis detected a linear relationship between the water based indices with grain yield and biomass. The two newly developed indices (NWI-3 and NWI-4) gave higher broad sense heritability than grain yield, higher direct response to selection compared to grain yield, correlated response equal to or higher than direct response for grain yield, relative selection efficiency greater than one, and higher efficiency in selecting higher yielding genotypes. Based on the overall genetic analysis required to establish any trait as an efficient indirect selection tool, the water based SRI (especially NWI-3 and NWI-4) have the potential to complement the classical breeding effort for selecting genotypes with higher yield potential in a winter wheat breeding program.

  7. Testing for biases in selection on avian reproductive traits and partitioning direct and indirect selection using quantitative genetic models.

    PubMed

    Reed, Thomas E; Gienapp, Phillip; Visser, Marcel E

    2016-10-01

    Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document microevolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here, we show, using a quantitative genetic framework and six decades of life-history data on two free-living populations of great tits Parus major, that selection estimates for egg-laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson-Price Identity were similar to those based on the multivariate breeder's equation (MVBE), indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. Recipient’s Genetic R702W NOD2 Variant Is Associated with an Increased Risk of Bacterial Infections after Orthotopic Liver Transplantation

    PubMed Central

    van Hoek, Bart; van den Berg, Arie P.; Porte, Robert J.; Blokzijl, Hans; Coenraad, Minneke J.; Hepkema, Bouke G.; Schaapherder, Alexander F.; Ringers, Jan; Weersma, Rinse K.; Verspaget, Hein W.

    2013-01-01

    Introduction Orthotopic liver transplantation (OLT) is accompanied by a significant postoperative infection risk. Immunosuppression to prevent rejection increases the susceptibility to infections, mainly by impairing the adaptive immune system. Genetic polymorphisms in the lectin complement pathway of the donor have recently been identified as important risk determinants of clinically significant bacterial infection (CSI) after OLT. Another genetic factor involved in innate immunity is NOD2, which was reported to be associated with increased risk of spontaneous bacterial peritonitis in cirrhotic patients. Methods We assessed association of three genetic NOD2 variants (R702W, G908R and 3020insC) with increased risk of CSI after OLT. 288 OLT recipient-donor pairs from two tertiary referral centers were genotyped for the three NOD2 variants. The probability of CSI in relation to NOD2 gene variants was determined with cumulative incidence curves and log-rank analysis. Results The R702W NOD2 variant in the recipient was associated with CSI after OLT. Eight out of 15 (53.3%) individuals with a mutated genotype compared to 80/273 (29.3%) with wild type genotype developed CSI (p=0.027, univariate cox regression), illustrated by a higher frequency of CSI after OLT over time (p=0.0003, log rank analysis). Multivariate analysis (including the donor lectin complement pathway profile) showed independence of this R702W NOD2 association from other risk factors (HR 2.0; p=0.04). The other NOD2 variants, G908R and 3020insC, in the recipient were not associated with CSI. There was no association with CSI after OLT for any of the NOD2 variants in the donor. Conclusion The mutated NOD2 R702W genotype in the recipient is independently associated with an increased risk of bacterial infections after liver transplantation, indicating a predisposing role for this genetic factor impairing the recipient’s innate immune system. PMID:23977330

  9. Identifying Key Networks Linked to Light-Independent Photoreceptor Degeneration in Visual Arrestin 1 Knockout Mice.

    PubMed

    Kim, Hwa Sun; Huang, Shun-Ping; Lee, Eun-Jin; Craft, Cheryl Mae

    2018-01-01

    When visual arrestin 1 (ARR1, S-antigen, 48 KDa protein) was genetically knocked out in mice (original Arr1 -/- , designated Arr1 -/-A ), rod photoreceptors degenerated in a light-dependent manner. Subsequently, a light-independent cone dystrophy was identified with minimal rod death in ARR1 knockout mice (Arr1 -/-A Arr4 +/+ , designated Arr1 -/-B ), which were F2 littermates from breeding the original Arr1 -/-A and cone arrestin knockout 4 (Arr4 -/- ) mice. To resolve the genetic and phenotypic differences between the two ARR1 knockouts, we performed Affymetrix™ exon array analysis to focus on the potential differential gene expression profile and to explore the molecular and cellular pathways leading to this observed susceptibility to cone dystrophy in Arr1 -/-B compared to Arr1 -/-A or control Arr1 +/+ Arr4 +/+ (wild type [WT]). Only in the Arr1 -/-B retina did we observe an up-regulation of retinal transcripts involved in the immune response, inflammatory response and JAK-STAT signaling molecules, OSMRβ and phosphorylation of STAT3. Of these responses, the complement system was significantly higher, and a variety of inflammatory responses by complement regulation and anti-inflammatory cytokine or factors were identified in Arr1 -/-B retinal transcripts. This discovery supports that Arr1 -/-B has a distinct genetic background from Arr1 -/-A that results in alterations in its retinal phenotype leading to susceptibility to cone degeneration induced by inappropriate inflammatory and immune responses.

  10. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    PubMed Central

    Joseph, Joan; Fernández-Lloris, Raquel; Pezzat, Elías; Saubi, Narcís; Cardona, Pere-Joan; Mothe, Beatriz; Gatell, Josep Maria

    2010-01-01

    Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors. PMID:20617151

  11. Using animal models to determine the significance of complement activation in Alzheimer's disease

    PubMed Central

    Loeffler, David A

    2004-01-01

    Complement inflammation is a major inflammatory mechanism whose function is to promote the removal of microorganisms and the processing of immune complexes. Numerous studies have provided evidence for an increase in this process in areas of pathology in the Alzheimer's disease (AD) brain. Because complement activation proteins have been demonstrated in vitro to exert both neuroprotective and neurotoxic effects, the significance of this process in the development and progression of AD is unclear. Studies in animal models of AD, in which brain complement activation can be experimentally altered, should be of value for clarifying this issue. However, surprisingly little is known about complement activation in the transgenic animal models that are popular for studying this disorder. An optimal animal model for studying the significance of complement activation on Alzheimer's – related neuropathology should have complete complement activation associated with senile plaques, neurofibrillary tangles (if present), and dystrophic neurites. Other desirable features include both classical and alternative pathway activation, increased neuronal synthesis of native complement proteins, and evidence for an increase in complement activation prior to the development of extensive pathology. In order to determine the suitability of different animal models for studying the role of complement activation in AD, the extent of complement activation and its association with neuropathology in these models must be understood. PMID:15479474

  12. ESCDL-1, a new cell line derived from chicken embryonic stem cells, supports efficient replication of Mardiviruses

    PubMed Central

    Jean, Christian; Fragnet-Trapp, Laetitia; Rémy, Sylvie; Chabanne-Vautherot, Danièle; Montillet, Guillaume; Fuet, Aurélie; Denesvre, Caroline; Pain, Bertrand

    2017-01-01

    Marek’s disease virus is the etiological agent of a major lymphoproliferative disorder in poultry and the prototype of the Mardivirus genus. Primary avian somatic cells are currently used for virus replication and vaccine production, but they are largely refractory to any genetic modification compatible with the preservation of intact viral susceptibility. We explored the concept of induction of viral replication permissiveness in an established pluripotent chicken embryonic stem cell-line (cES) in order to derive a new fully susceptible cell-line. Chicken ES cells were not permissive for Mardivirus infection, but as soon as differentiation was triggered, replication of Marek’s disease virus was detected. From a panel of cyto-differentiating agents, hexamethylene bis (acetamide) (HMBA) was found to be the most efficient regarding the induction of permissiveness. These initial findings prompted us to analyse the effect of HMBA on gene expression, to derive a new mesenchymal cell line, the so-called ESCDL-1, and monitor its susceptibility for Mardivirus replication. All Mardiviruses tested so far replicated equally well on primary embryonic skin cells and on ESCDL-1, and the latter showed no variation related to its passage number in its permissiveness for virus infection. Viral morphogenesis studies confirmed efficient multiplication with, as in other in vitro models, no extra-cellular virus production. We could show that ESCDL-1 can be transfected to express a transgene and subsequently cloned without any loss in permissiveness. Consequently, ESCDL-1 was genetically modified to complement viral gene deletions thus yielding stable trans-complementing cell lines. We herein claim that derivation of stable differentiated cell-lines from cES cell lines might be an alternative solution to the cultivation of primary cells for virology studies. PMID:28406989

  13. Chlamydia trachomatis dapF Encodes a Bifunctional Enzyme Capable of Both d-Glutamate Racemase and Diaminopimelate Epimerase Activities

    PubMed Central

    2018-01-01

    ABSTRACT Peptidoglycan is a sugar/amino acid polymer unique to bacteria and essential for division and cell shape maintenance. The d-amino acids that make up its cross-linked stem peptides are not abundant in nature and must be synthesized by bacteria de novo. d-Glutamate is present at the second position of the pentapeptide stem and is strictly conserved in all bacterial species. In Gram-negative bacteria, d-glutamate is generated via the racemization of l-glutamate by glutamate racemase (MurI). Chlamydia trachomatis is the leading cause of infectious blindness and sexually transmitted bacterial infections worldwide. While its genome encodes a majority of the enzymes involved in peptidoglycan synthesis, no murI homologue has ever been annotated. Recent studies have revealed the presence of peptidoglycan in C. trachomatis and confirmed that its pentapeptide includes d-glutamate. In this study, we show that C. trachomatis synthesizes d-glutamate by utilizing a novel, bifunctional homologue of diaminopimelate epimerase (DapF). DapF catalyzes the final step in the synthesis of meso-diaminopimelate, another amino acid unique to peptidoglycan. Genetic complementation of an Escherichia coli murI mutant demonstrated that Chlamydia DapF can generate d-glutamate. Biochemical analysis showed robust activity, but unlike canonical glutamate racemases, activity was dependent on the cofactor pyridoxal phosphate. Genetic complementation, enzymatic characterization, and bioinformatic analyses indicate that chlamydial DapF shares characteristics with other promiscuous/primordial enzymes, presenting a potential mechanism for d-glutamate synthesis not only in Chlamydia but also numerous other genera within the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum that lack recognized glutamate racemases. PMID:29615498

  14. Complement component 4 copy number variation and CYP21A2 genotype associations in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.

    PubMed

    Chen, Wuyan; Xu, Zhi; Nishitani, Miki; Van Ryzin, Carol; McDonnell, Nazli B; Merke, Deborah P

    2012-12-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is an autosomal recessive disorder of cortisol biosynthesis caused by CYP21A2 mutations. An increase in gene copy number variation (CNV) exists at the CYP21A2 locus. CNV of C4, a neighboring gene that encodes complement component 4, is associated with autoimmune disease susceptibility. In this study, we performed comprehensive genetic analysis of the RP-C4-CYP21-TNX (RCCX) region in 127 unrelated 21-OHD patients (100 classic, 27 nonclassic). C4 copy number was determined by Southern blot. C4 CNV and serum C4 levels were evaluated in relation to CYP21A2 mutations and relevant phenotypes. We found that the most common CYP21A2 mutation associated with the nonclassic form of CAH, V281L, was associated with high C4 copy number (p = 7.13 × 10(-16)). Large CYP21A2 deletion, a common mutation associated with the classic form of CAH, was associated with low C4 copy number (p = 1.61 × 10(-14)). Monomodular RCCX with a short C4 gene, a risk factor for autoimmune disease, was significantly less frequent in CAH patients compared to population estimates (2.8 vs. 10.6 %; p = 1.08 × 10(-4)). In conclusion, CAH patients have increased C4 CNV, with mutation-specific associations that may be protective for autoimmune disease. The study of CYP21A2 in relation to neighboring genes provides insight into the genetics of CNV hotspots, an important determinant of human health.

  15. Recent insights into C3 glomerulopathy

    PubMed Central

    Barbour, Thomas D.; Pickering, Matthew C.; Cook, H. Terence

    2013-01-01

    ‘C3 glomerulopathy’ is a recent disease classification comprising several rare types of glomerulonephritis (GN), including dense deposit disease (DDD), C3 glomerulonephritis (C3GN) and CFHR5 nephropathy. These disorders share the key histological feature of isolated complement C3 deposits in the glomerulus. A common aetiology involving dysregulation of the alternative pathway (AP) of complement has been elucidated in the past decade, with genetic defects and/or autoantibodies able to be identified in a proportion of patients. We review the clinical and histological features of C3 glomerulopathy, relating these to underlying molecular mechanisms. The role of uncontrolled C3 activation in pathogenesis is emphasized, with important lessons from animal models. Methods, advantages and limitations of gene testing in the assessment of individuals or families with C3 glomerulopathy are discussed. While no therapy has yet been shown consistently effective, clinical evaluation of agents targeting specific components of the complement system is ongoing. However, limits to current knowledge regarding the natural history and the appropriate timing and duration of proposed therapies need to be addressed. PMID:23479095

  16. Identification and Characterization of Mutations Affecting Sporulation in Saccharomyces Cerevisiae

    PubMed Central

    Smith, L. M.; Robbins, L. G.; Kennedy, A.; Magee, P. T.

    1988-01-01

    Mutations affecting the synthesis of the sporulation amyloglucosidase were isolated in a homothallic strain of Saccharomyces cerevisiae, SCMS7-1. Two were found, both of which were deficient in sporulation at 34°. One, SL484, sporulated to 50% normal levels at 30° but less than 5% at 34° or 22°. The other, SL641, failed to sporulate at any temperature. Both mutants were blocked before premeiotic DNA synthesis, and both complemented spo1, spo3, and spo7. Genetic analysis of the mutation in SL484 indicated linkage to TRP5 and placed the gene 10 map units from TRP5 on chromosome VII. A plasmid containing an insert which complements the mutation in SL484 fails to complement SL641. We therefore conclude that these two mutations are in separate genes and we propose to call these genes SPO17 and SPO18. These two genes are (with SPO7, SPO8, and SPO9) among the earliest identified in the sporulation pathway and may interact directly with the positive and negative regulators RME and IME. PMID:3147221

  17. Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes1

    PubMed Central

    Benlloch, Reyes; d'Erfurth, Isabelle; Ferrandiz, Cristina; Cosson, Viviane; Beltrán, José Pío; Cañas, Luis Antonio; Kondorosi, Adam; Madueño, Francisco; Ratet, Pascal

    2006-01-01

    Comparative studies help shed light on how the huge diversity in plant forms found in nature has been produced. We use legume species to study developmental differences in inflorescence architecture and flower ontogeny with classical models such as Arabidopsis thaliana or Antirrhinum majus. Whereas genetic control of these processes has been analyzed mostly in pea (Pisum sativum), Medicago truncatula is emerging as a promising alternative system for these studies due to the availability of a range of genetic tools. To assess the use of the retrotransposon Tnt1 for reverse genetics in M. truncatula, we screened a small Tnt1-mutagenized population using degenerate primers for MADS-box genes, known controllers of plant development. We describe here the characterization of mtpim, a new mutant caused by the insertion of Tnt1 in a homolog to the PROLIFERATING INFLORESCENCE MERISTEM (PIM)/APETALA1 (AP1)/SQUAMOSA genes. mtpim shows flower-to-inflorescence conversion and altered flowers with sepals transformed into leaves, indicating that MtPIM controls floral meristem identity and flower development. Although more extreme, this phenotype resembles the pea pim mutants, supporting the idea that M. truncatula could be used to complement analysis of reproductive development already initiated in pea. In fact, our study reveals aspects not shown by analysis of pea mutants: that the mutation in the AP1 homolog interferes with the specification of floral organs from common primordia and causes conversion of sepals into leaves, in addition to true conversion of flowers into inflorescences. The isolation of mtpim represents a proof of concept demonstrating that Tnt1 populations can be efficiently used in reverse genetics screenings in M. truncatula. PMID:16963524

  18. A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait

    PubMed Central

    Geroldinger, Ludwig; Bürger, Reinhard

    2014-01-01

    The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. PMID:24726489

  19. A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait.

    PubMed

    Geroldinger, Ludwig; Bürger, Reinhard

    2014-06-01

    The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex.

    PubMed

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-04-28

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability.

  1. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex

    PubMed Central

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-01-01

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability. PMID:25928134

  2. Head and neck mucosal melanoma: a review.

    PubMed

    Lourenço, Silvia V; Fernandes, Juliana D; Hsieh, Ricardo; Coutinho-Camillo, Claudia M; Bologna, Sheyla; Sangueza, Martin; Nico, Marcello M S

    2014-07-01

    Head and neck mucosal melanoma (MM) is an aggressive and rare neoplasm of melanocytic origin. To date, few retrospective series and case reports have been reported on MM. This article reviews the current evidence on head and neck MM and the molecular pathways that mediate the pathogenesis of this disease. Head and neck MM accounts for 0.7%-3.8% of all melanomas and involve (in decreasing order of frequency) the sinonasal cavity, oral cavity, pharynx, larynx, and upper esophagus. Although many studies have examined MM of the head and neck and the underlying molecular pathways, individual genetic and molecular alterations were less investigated. Further studies are needed to complement existing data and to increase our understanding of melanocytes tumorigenesis.

  3. Genomics of Systemic Lupus Erythematosus: Insights Gained by Studying Monogenic Young-Onset Systemic Lupus Erythematosus.

    PubMed

    Hiraki, Linda T; Silverman, Earl D

    2017-08-01

    Systemic lupus erythematosus (SLE) is a systemic, autoimmune, multisystem disease with a heterogeneous clinical phenotype. Genome-wide association studies have identified multiple susceptibility loci, but these explain a fraction of the estimated heritability. This is partly because within the broad spectrum of SLE are monogenic diseases that tend to cluster in patients with young age of onset, and in families. This article highlights insights into the pathogenesis of SLE provided by these monogenic diseases. It examines genetic causes of complement deficiency, abnormal interferon production, and abnormalities of tolerance, resulting in monogenic SLE with overlapping clinical features, autoantibodies, and shared inflammatory pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Host Genetic and Environmental Effects on Mouse Cecum Microbiota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana A

    2012-01-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived frommore » a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.« less

  5. Clinical endpoints for developing pharmaceuticals to manage patients with sporadic or genetic risk of colorectal cancer

    PubMed Central

    Rial, Nathaniel S.; Zell, Jason A.; Cohen, Alfred M.; Gerner, Eugene W.

    2013-01-01

    To reduce the morbidity and mortality from colorectal cancer, current clinical practice focuses on screening for early detection and polypectomy as a form of secondary prevention, complemented with surgical interventions when appropriate. No pharmaceutical agent is currently approved for use in clinical practice for the management of patients with risk of colorectal cancer. This article will review earlier attempts to develop pharmaceuticals for use in managing patients with sporadic or genetic risk of colorectal cancer. It will also discuss therapeutic endpoints under evaluation in current efforts to develop drugs for treating colorectal cancer risk factors. PMID:22928902

  6. Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5.

    PubMed

    Denise, Hubert; Poot, Jacqueline; Jiménez, Maribel; Ambit, Audrey; Herrmann, Daland C; Vermeulen, Arno N; Coombs, Graham H; Mottram, Jeremy C

    2006-11-13

    Visceral leishmaniasis caused by members of the Leishmania donovani complex is often fatal in the absence of treatment. Research has been hampered by the lack of good laboratory models and tools for genetic manipulation. In this study, we have characterised a L. infantum line (JPCM5) that was isolated from a naturally infected dog and then cloned. We found that JPCM5 has attributes that make it an excellent laboratory model; different stages of the parasite life cycle can be studied in vitro, it is accessible to genetic manipulation and it has retained its virulence. Furthermore, the L. infantum JPCM5 genome has now been fully sequenced. We have further focused our studies on LiCPA, the L. infantum homologue to L. mexicana cysteine peptidase CPA. LiCPA was found to share a high percentage of amino acid identity with CPA proteins of other Leishmania species. Two independent LiCPA-deficient promastigote clones (DeltaLicpa) were generated and their phenotype characterised. In contrast to L. mexicana CPA-deficient mutants, both clones of DeltaLicpa were found to have significantly reduced virulence in vitro and in vivo. Re-expression of just one LiCPA allele (giving DeltaLicpa::CPA) was sufficient to complement the reduced infectivity of both DeltaLicpa mutants for human macrophages, which confirms the importance of LiCPA for L. infantum virulence. In contrast, in vivo experiments did not show any virulence recovery of the re-expressor clone DeltaLicpaC1::CPA compared with the CPA-deficient mutant DeltaLicpaC1. The data suggest that CPA is not essential for replication of L. infantum promastigotes, but is important for the host-parasite interaction. Further studies will be necessary to elucidate the precise roles that LiCPA plays and why the re-expression of LiCPA in the DeltaLicpa mutants complemented the gene deletion phenotype only in in vitro and not in in vivo infection of hamsters.

  7. Benefits, Potential Harms, and Optimal Use of Nutritional Supplementation for Preventing Progression of Age-Related Macular Degeneration.

    PubMed

    Rojas-Fernandez, Carlos H; Tyber, Kevin

    2017-03-01

    To briefly review age-related macular degeneration (AMD), the main findings from the Age Related Eye Disease Study (AREDS) report number 8 on the use of nutritional supplements for AMD, and to focus on data suggesting that supplement use should be guided using genetic testing of AMD risk genes. A literature search (January 2001 through October 26, 2016) was conducted using MEDLINE and the following MeSH terms: Antioxidants/therapeutic use, Genotype, Macular Degeneration/drug therapy, Macular degeneration/genetics, Dietary Supplements, Proteins/genetics, and Zinc Compounds/therapeutic use. Bibliographies of publications identified were also reviewed. English-language studies assessing AREDS supplement response in patients with AMD in relation to complement factor H gene ( CFH) and age-related maculopathy susceptibility 2 gene ( ARMS2) risk alleles were evaluated. Three of the 4 studies demonstrated a treatment interaction between ARMS2 and CFH genotypes and a differential response to supplements. The fourth study documented an interaction for the CFH genotype only. Reported response interactions included attenuated response, no response, and good response, whereas a subset showed increased progression of AMD. Conversely, one study reported no interactions between CFH and ARMS2 risk alleles and response to supplements. The weight of the evidence supports using genetic testing to guide selection of ocular vitamin use. This approach will avoid using supplements that could speed the progression of AMD in vulnerable patients, avoid using supplements that will have little to no effect in others, and result in appropriately using supplements in those that are likely to derive meaningful benefits.

  8. Heterologous Expression of sahH Reveals That Biofilm Formation Is Autoinducer-2-independent in Streptococcus sanguinis but Is Associated with an Intact Activated Methionine Cycle*

    PubMed Central

    Redanz, Sylvio; Standar, Kerstin; Podbielski, Andreas; Kreikemeyer, Bernd

    2012-01-01

    Numerous studies have claimed deleterious effects of LuxS mutation on many bacterial phenotypes, including bacterial biofilm formation. Genetic complementation mostly restored the observed mutant phenotypes to WT levels, leading to the postulation that quorum sensing via a family of molecules generically termed autoinducer-2 (AI-2) is essential for many phenotypes. Because LuxS mutation has dual effects, this hypothesis needs to be investigated into the details for each bacterial species. In this study we used S. sanguinis SK36 as a model biofilm bacterium and employed physiological characterization and transcriptome approaches on WT and luxS-deficient strains, in combination with chemical, luxS, and sahH complementation experiments. SahH enables a direct conversion of SAH to homocysteine and thereby restores the activated methionine cycle in a luxS-negative background without formation of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione. With this strategy we were able to dissect the individual contribution of LuxS and AI-2 activity in detail. Our data revealed that S. sanguinis biofilm formation is independent from AI-2 substance pools and is rather supported by an intact activated methyl cycle. Of 216 differentially transcribed genes in the luxS mutant, 209 were restored by complementation with a gene encoding the S-adenosylhomocysteine hydrolase. Only nine genes, mainly involved in natural competence, were directly affected by the AI-2 quorum-sensing substance pool. Cumulatively, this suggested that biofilm formation in S. sanguinis is not under control of AI-2. Our study suggests that previously evaluated LuxS mutants in other species need to be revisited to resolve the precise contribution of AI-2 substance pools and the methionine pathways. PMID:22942290

  9. [Genetically modified plants and food safety. State of the art and discussion in the European Union].

    PubMed

    Schauzu, M

    2004-09-01

    Placing genetically modified (GM) plants and derived products on the European Union's (EU) market has been regulated by a Community Directive since 1990. This directive was complemented by a regulation specific for genetically modified and other novel foods in 1997. Specific labelling requirements have been applicable for GM foods since 1998. The law requires a pre-market safety assessment for which criteria have been elaborated and continuously adapted in accordance with the state of the art by national and international bodies and organisations. Consequently, only genetically modified products that have been demonstrated to be as safe as their conventional counterparts can be commercialized. However, the poor acceptance of genetically modified foods has led to a de facto moratorium since 1998. It is based on the lack of a qualified majority of EU member states necessary for authorization to place genetically modified plants and derived foods on the market. New Community Regulations are intended to end this moratorium by providing a harmonized and transparent safety assessment, a centralised authorization procedure, extended labelling provisions and a traceability system for genetically modified organisms (GMO) and derived food and feed.

  10. Estimation of the frequency of occult mutations for an autosomal recessive disease in the presence of genetic heterogeneity: application to genetic hearing loss disorders.

    PubMed

    Kimberling, William J

    2005-11-01

    The routine testing for pathologic mutation(s) in a patient's DNA has become the foundation of modern molecular genetic diagnosis. It is especially valuable when the phenotype shows genetic heterogeneity, and its importance will grow as treatments become genotype specific. However, the technology of mutation detection is imperfect and mutations are often missed. This can be especially troublesome when dealing with a recessive disorder where the combination of genetic heterogeneity and missed mutation creates an imprecision in the genotypic assessment of individuals who do not appear to have the expected complement of two pathologic mutations. This article describes a statistical approach to the estimation of the likelihood of a genetic diagnosis under these conditions. In addition to providing a means of testing for missed mutations, it also provides a method of estimating and testing for the presence of genetic heterogeneity in the absence of linkage data. Gene frequencies as well as estimates of sensitivity and specificity can be obtained as well. The test is applied to GJB2 recessive nonsyndromic deafness, Usher syndrome types Ib and IIa, and Pendred-enlarged vestibular aqueduct syndrome. Copyright 2005 Wiley-Liss, Inc.

  11. Natural Variation in Resistance to Virus Infection in Dipteran Insects

    PubMed Central

    Palmer, William H.; Varghese, Finny S.

    2018-01-01

    The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus–host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus–host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence. PMID:29522475

  12. Genetic analyses of linear profiling data on 3-year-old Swedish Warmblood horses.

    PubMed

    Viklund, Å; Eriksson, S

    2018-02-01

    A linear profiling protocol was introduced in 2013 at tests for 3-year-old Swedish Warmblood horses. In this protocol, traits are subjectively described on a nine-point linear scale from one biological extreme to the other. This complements the traditional scoring where horses are evaluated in relation to the breeding objective. This study aimed to investigate the suitability of the linear information for genetic evaluation. Data on 22 conformation traits, 17 movement traits, 14 jumping traits and one temperament trait from 3,410 horses tested between 2013 and 2016 were analysed using an animal model. For conformation traits, the heritabilities ranged from 0.10 for description of hock joint from behind to 0.52 for shape of the neck. For movement traits, the highest heritability (0.54) was estimated for elasticity in trot and the lowest (0.08) for energy in walk. The heritabilities for jumping traits ranged from 0.05 for the ability to focus on the assignment to 0.57 for scope. Genetic correlations between linear traits and corresponding traditionally scored traits were strong (-0.37 to in many cases <-0.9). The results show that the linear information is suitable for genetic evaluation and can be a useful tool for breeders. © 2018 Blackwell Verlag GmbH.

  13. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  14. Human pluripotent stem cells: an emerging model in developmental biology

    PubMed Central

    Zhu, Zengrong; Huangfu, Danwei

    2013-01-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development ‘in a dish’. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development. PMID:23362344

  15. Selenium Potentiates Chemotherapeutic Selectivity: Improving Efficacy and Reducing Toxicity

    DTIC Science & Technology

    2008-04-01

    C., et al., Genetic correction of DNA repair-deficient/cancer- prone xeroderma pigmentosum group C keratinocytes. Hum Gene Ther, 2003. 14(10): p...983-96. 4. Muotri, A.R., et al., Complementation of the DNA repair deficiency in human xeroderma pigmentosum group a and C cells by recombinant...survival Keywords: DNA-repair, carboplatin, cisplatin, myelosuppression Abbreviations: Xpc, protein encoded by the xeroderma pigmentosum XPC

  16. Two Types of Genetic Interaction Implicate the Whirligig Gene of Drosophila Melanogaster in Microtubule Organization in the Flagellar Axoneme

    PubMed Central

    Green, L. L.; Wolf, N.; McDonald, K. L.; Fuller, M. T.

    1990-01-01

    The mutant nc4 allele of whirligig (3-54.4) of Drosophila melanogaster fails to complement mutations in an α-tubulin locus, α1t, mutations in a β-tubulin locus, B2t, or a mutation in the haywire locus. However, wrl fails to map to any of the known α- or β-tubulin genes. The extragenic failure to complement could indicate that the wrl product participates in structural interactions with microtubule proteins. The whirligig locus appears to be haploinsufficient for male fertility. Both a deficiency of wrl and possible loss of function alleles obtained by reverting the failure to complement between wrl(nc4) and B2t(n) are dominant male sterile in a genetic background wild type for tubulin. The dominant male sterility of the revertant alleles is suppressed if the flies are also heterozygous for B2t(n), for a deficiency of α1t, or for the hay(nc2) allele. These results suggest that it is not the absolute level of wrl gene product but its level relative to tubulin or microtubule function that is important for normal spermatogenesis. The phenotype of homozygous wrl mutants suggests that the whirligig product plays a role in postmeiotic spermatid differentiation, possibly in organizing the microtubules of the sperm flagellar axoneme. Flies homozygous for either wrl(nc4) or revertant alleles are viable and female fertile but male sterile. Premeiotic and meiotic stages of spermatogenesis appear normal. However, in post-meiotic stages, flagellar axonemes show loss of the accessory microtubule on the B-subfiber of outer doublet microtubules, outer triplet instead of outer doublet microtubules, and missing central pair microtubules. PMID:2127579

  17. Complement C4 deficiency--a plausible risk factor for non-tuberculous mycobacteria (NTM) infection in apparently immunocompetent patients.

    PubMed

    Kotilainen, Hannele; Lokki, Marja-Liisa; Paakkanen, Riitta; Seppänen, Mikko; Tukiainen, Pentti; Meri, Seppo; Poussa, Tuija; Eskola, Jussi; Valtonen, Ville; Järvinen, Asko

    2014-01-01

    Non-tuberculous mycobacteria (NTM) are ubiquitous in the environment and they infect mainly persons with underlying pulmonary diseases but also previously healthy elderly women. Defects in host resistance that lead to pulmonary infections by NTM are relatively unknown. A few genetic defects have been associated with both pulmonary and disseminated mycobacterial infections. Rare disseminated NTM infections have been associated with genetic defects in T-cell mediated immunity and in cytokine signaling in families. We investigated whether there was an association between NTM infections and deficiencies of complement components C4A or C4B that are encoded by major histocompatibility complex (MHC). 50 adult patients with a positive NTM culture with symptoms and findings of a NTM disease were recruited. Patients' clinical history was collected and symptoms and clinical findings were categorized according to 2007 diagnostic criteria of The American Thoracic Society (ATS). To investigate the deficiencies of complement, C4A and C4B gene copy numbers and phenotype frequencies of the C4 allotypes were analyzed. Unselected, healthy, 149 Finnish adults were used as controls. NTM patients had more often C4 deficiencies (C4A or C4B) than controls (36/50 [72%] vs 83/149 [56%], OR = 2.05, 95%CI = 1.019-4.105, p = 0.042). C4 deficiencies for female NTM patients were more common than for controls (29/36 [81%] vs 55/100 [55%], OR = 3.39, 95% CI = 1.358-8.460, p = 0.007). C4 deficiences seemed not to be related to any specific underlying disease or C4 phenotype. C4 deficiency may be a risk factor for NTM infection in especially elderly female patients.

  18. Gender differences in autoimmunity associated with exposure to environmental factors

    PubMed Central

    Pollard, K. Michael

    2011-01-01

    Autoimmunity is thought to result from a combination of genetics, environmental triggers, and stochastic events. Gender is also a significant risk factor with many diseases exhibiting a female bias. Although the role of environmental triggers, especially medications, in eliciting autoimmunity is well established less is known about the interplay between gender, the environment and autoimmunity. This review examines the contribution of gender in autoimmunity induced by selected chemical, physical and biological agents in humans and animal models. Epidemiological studies reveal that environmental factors can be associated with a gender bias in human autoimmunity. However many studies show that the increased risk of autoimmunity is often influenced by occupational exposure or other gender biased activities. Animal studies, although often prejudiced by the exclusive use of female animals, reveal that gender bias can be strain specific suggesting an interaction between sex chromosome complement and background genes. This observation has important implications because it argues that within a gender biased disease there may be individuals in which gender does not contribute to autoimmunity. Exposure to environmental factors, which encompasses everything around us, adds an additional layer of complexity. Understanding how the environment influences the relationship between sex chromosome complement and innate and adaptive immune responses will be essential in determining the role of gender in environmentally-induced autoimmunity. PMID:22137891

  19. Molecular Imaging of Phosphorylation Events for Drug Development

    PubMed Central

    Chan, C. T.; Paulmurugan, R.; Reeves, R. E.; Solow-Cordero, D.; Gambhir, S. S.

    2014-01-01

    Purpose Protein phosphorylation mediated by protein kinases controls numerous cellular processes. A genetically encoded, generalizable split firefly luciferase (FL)-assisted complementation system was developed for noninvasive monitoring phosphorylation events and efficacies of kinase inhibitors in cell culture and in small living subjects by optical bioluminescence imaging. Procedures An Akt sensor (AST) was constructed to monitor Akt phosphorylation and the effect of different PI-3K and Akt inhibitors. Specificity of AST was determined using a non-phosphorylable mutant sensor containing an alanine substitution (ASA). Results The PI-3K inhibitor LY294002 and Akt kinase inhibitor perifosine led to temporal- and dose-dependent increases in complemented FL activities in 293T human kidney cancer cells stably expressing AST (293T/AST) but not in 293T/ASA cells. Inhibition of endogenous Akt phosphorylation and kinase activities by perifosine also correlated with increase in complemented FL activities in 293T/AST cells but not in 293T/ASA cells. Treatment of nude mice bearing 293T/AST xenografts with perifosine led to a 2-fold increase in complemented FL activities compared to that of 293T/ASA xenografts. Our system was used to screen a small chemical library for novel modulators of Akt kinase activity. Conclusion This generalizable approach for noninvasive monitoring of phosphorylation events will accelerate the discovery and validation of novel kinase inhibitors and modulators of phosphorylation events. PMID:19048345

  20. Glucose-6-Phosphate Dehydrogenase Deficiency Mimicking Atypical Hemolytic Uremic Syndrome.

    PubMed

    Walsh, Patrick R; Johnson, Sally; Brocklebank, Vicky; Salvatore, Jacobo; Christian, Martin; Kavanagh, David

    2018-02-01

    A 4-year-old boy presented with nonimmune hemolysis, thrombocytopenia, and acute kidney injury. Investigations for an underlying cause failed to identify a definitive cause and a putative diagnosis of complement-mediated atypical hemolytic uremic syndrome (aHUS) was made. The patient was started initially on plasma exchange and subsequently eculizumab therapy, after which his kidney function rapidly improved. While on eculizumab therapy, despite adequate complement blockade, he presented 2 more times with hemolytic anemia and thrombocytopenia, but without renal involvement. Genetic analysis did not uncover a mutation in any known aHUS gene (CFH, CFI, CFB, C3, CD46, THBD, INF2, and DGKE) and anti-factor H antibodies were undetectable. Whole-exome sequencing was undertaken to identify a cause for the eculizumab resistance. This revealed a pathogenic variant in G6PD (glucose-6-phosphate dehydrogenase), which was confirmed by functional analysis demonstrating decreased erythrocyte G6PD activity. Eculizumab therapy was withdrawn. Complement-mediated aHUS is a diagnosis of exclusion and this case highlights the diagnostic difficulty that remains without an immediately available biomarker for confirmation. This case of G6PD deficiency presented with a phenotype clinically indistinguishable from complement-mediated aHUS. We recommend that G6PD deficiency be included in the differential diagnosis of patients presenting with aHUS and suggest measuring erythrocyte G6PD concentrations in these patients. Copyright © 2017. Published by Elsevier Inc.

  1. The population genetics of Quechuas, the largest native South American group: autosomal sequences, SNPs, and microsatellites evidence high level of diversity.

    PubMed

    Scliar, Marilia O; Soares-Souza, Giordano B; Chevitarese, Juliana; Lemos, Livia; Magalhães, Wagner C S; Fagundes, Nelson J; Bonatto, Sandro L; Yeager, Meredith; Chanock, Stephen J; Tarazona-Santos, Eduardo

    2012-03-01

    Elucidating the pattern of genetic diversity for non-European populations is necessary to make the benefits of human genetics research available to individuals from these groups. In the era of large human genomic initiatives, Native American populations have been neglected, in particular, the Quechua, the largest South Amerindian group settled along the Andes. We characterized the genetic diversity of a Quechua population in a global setting, using autosomal noncoding sequences (nine unlinked loci for a total of 16 kb), 351 unlinked SNPs and 678 microsatellites and tested predictions of the model of the evolution of Native Americans proposed by (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496). European admixture is <5% and African ancestry is barely detectable in the studied population. The largest genetic distances were between African versus Quechua or Melanesian populations, which is concordant with the African origin of modern humans and the fact that South America was the last part of the world to be peopled. The diversity in the Quechua population is comparable with that of Eurasian populations, and the allele frequency spectrum based on resequencing data does not reflect a reduction in the proportion of rare alleles. Thus, the Quechua population is a large reservoir of common and rare genetic variants of South Amerindians. These results are consistent with and complement our evolutionary model of South Amerindians (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496), proposed based on Y-chromosome data, which predicts high genomic diversity due to the high level of gene flow between Andean populations and their long-term effective population size. Copyright © 2012 Wiley Periodicals, Inc.

  2. Strains Responsible for Invasive Meningococcal Disease in Patients With Terminal Complement Pathway Deficiencies.

    PubMed

    Rosain, Jérémie; Hong, Eva; Fieschi, Claire; Martins, Paula Vieira; El Sissy, Carine; Deghmane, Ala-Eddine; Ouachée, Marie; Thomas, Caroline; Launay, David; de Pontual, Loïc; Suarez, Felipe; Moshous, Despina; Picard, Capucine; Taha, Muhamed-Kheir; Frémeaux-Bacchi, Véronique

    2017-04-15

    Patients with terminal complement pathway deficiency (TPD) are susceptible to recurrent invasive meningococcal disease (IMD). Neisseria meningitidis (Nm) strains infecting these patients are poorly documented in the literature. We identified patients with TPD and available Nm strains isolated during IMD. We investigated the genetic basis of the different TPDs and the characteristics of the Nm strains. We included 56 patients with C5 (n = 8), C6 (n = 20), C7 (n = 18), C8 (n = 9), or C9 (n = 1) deficiency. Genetic study was performed in 47 patients and 30 pathogenic variants were identified in the genes coding for C5 (n = 4), C6 (n = 5), C7 (n = 12), C8 (n = 7), and C9 (n = 2). We characterized 61 Nm strains responsible for IMD in the 56 patients with TPD. The most frequent strains belonged to groups Y (n = 27 [44%]), B (n = 18 [30%]), and W (n = 8 [13%]). Hyperinvasive clonal complexes (CC11, CC32, CC41/44, and CC269) were responsible for 21% of IMD cases. The CC23 predominates and represented 26% of all invasive isolates. Eleven of the 15 clonal complexes identified fit to 12 different clonal complexes belonging to carriage strains. Unusual meningococcal strains with low level of virulence similar to carriage strains are most frequently responsible for IMD in patients with TPD. © The Author 217. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    PubMed

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  4. Asthma progression to airway remodeling and bone marrow eosinophil responses in genetically distinct strains of mice.

    PubMed

    Hogan, Mary Beth; Piktel, Debra; Hubbs, Ann F; McPherson, Leslie E; Landreth, Kenneth S

    2008-12-01

    Patient factors that cause long-term airway remodeling are largely unidentified. This suggests that genetic differences may determine which asthmatic patients develop airway remodeling. A murine model with repeated allergen exposure leading to peribronchial fibrosis in complement factor 5 (C5)-deficient A/J mice has been used to study asthma progression. No studies have addressed the systemic effects of allergen sensitization or chronic allergen exposure on bone marrow eosinophilopoiesis in this mouse strain. To investigate bone marrow eosinophil responses during acute sensitization and chronic allergen exposure using genetically distinct mouse strains differing in persistent airway reactivity and remodeling. The C5-sufficient BALB/c and C5-deficient A/J mice were repetitively exposed to intranasal ovalbumin for 12 weeks. Subsequently, the mice were evaluated for airway eosinophilia, mucus-containing goblet cells, and peribronchial fibrosis. Both strains of mice were also acutely sensitized to ovalbumin. Bone marrow eosinophil progenitor cells and mature eosinophils were enumerated. BALB/c and A/J mice have similar bone marrow responses after acute allergen exposure, with elevations in bone marrow eosinophil progenitor cell and eosinophil numbers. After chronic allergen exposure, only C5-deficient A/J mice that developed peribronchial fibrosis exhibited bone marrow eosinophilia. BALB/c mice lacked peribronchial fibrosis and extinguished accelerated eosinophil production after long-term allergen challenge. Chronic airway remodeling after repeated allergen exposure in genetically different mice correlated with differences in long-term bone marrow eosinophilopoiesis. Preventing asthma from progressing to chronic airway remodeling with fibrosis may involve identifying genetically determined influences on bone marrow responses to chronic allergen exposure.

  5. Host Genotype and Microbiota Contribute Asymmetrically to Transcriptional Variation in the Threespine Stickleback Gut

    PubMed Central

    Small, Clayton M.; Milligan-Myhre, Kathryn; Bassham, Susan; Guillemin, Karen

    2017-01-01

    Recent studies of interactions between hosts and their resident microbes have revealed important ecological and evolutionary consequences that emerge from these complex interspecies relationships, including diseases that occur when the interactions go awry. Given the preponderance of these interactions, we hypothesized that effects of the microbiota on gene expression in the developing gut—an important aspect of host biology—would be pervasive, and that these effects would be both comparable in magnitude to and contingent on effects of the host genetic background. To evaluate the effects of the microbiota, host genotype, and their interaction on gene expression in the gut of a genetically diverse, gnotobiotic host model, the threespine stickleback (Gasterosteus aculeatus), we compared RNA-seq data among 84 larval fish. Surprisingly, we found that stickleback population and family differences explained substantially more gene expression variation than the presence of microbes. Expression levels of 72 genes, however, were affected by our microbiota treatment. These genes, including many associated with innate immunity, comprise a tractable subset of host genetic factors for precise, systems-level study of host–microbe interactions in the future. Importantly, our data also suggest subtle signatures of a statistical interaction between host genotype and the microbiota on expression patterns of genetic pathways associated with innate immunity, coagulation and complement cascades, focal adhesion, cancer, and peroxisomes. These genotype-by-environment interactions may prove to be important leads to the understanding of host genetic mechanisms commonly at the root of sometimes complex molecular relationships between hosts and their resident microbes. PMID:28391321

  6. Identification of Point Mutations in Clinical Staphylococcus aureus Strains That Produce Small-Colony Variants Auxotrophic for Menadione

    PubMed Central

    Dean, Melissa A.; Olsen, Randall J.; Long, S. Wesley; Rosato, Adriana E.

    2014-01-01

    Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice. PMID:24452687

  7. A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida.

    PubMed

    Armstrong, M R; Blok, V C; Phillips, M S

    2000-01-01

    The mitochondrial genome (mtDNA) of the plant parasitic nematode Globodera pallida exists as a population of small, circular DNAs that, taken individually, are of insufficient length to encode the typical metazoan mitochondrial gene complement. As far as we are aware, this unusual structural organization is unique among higher metazoans, although interesting comparisons can be made with the multipartite mitochondrial genome organizations of plants and fungi. The variation in frequency between populations displayed by some components of the mtDNA is likely to have major implications for the way in which mtDNA can be used in population and evolutionary genetic studies of G. pallida.

  8. Complement factor H and susceptibility to major depressive disorder in Han Chinese.

    PubMed

    Zhang, Chen; Zhang, Deng-Feng; Wu, Zhi-Guo; Peng, Dai-Hui; Chen, Jun; Ni, Jianliang; Tang, Wenxin; Xu, Lin; Yao, Yong-Gang; Fang, Yi-Ru

    2016-05-01

    Accumulating evidence suggests that altered immunity contributes to the development of major depressive disorder (MDD). To examine whether complement factor H (CFH), a regulator of activation of the alternative pathway of the complement cascade, confers susceptibility to MDD. Expression analyses were tested in 53 unmedicated people with MDD and 55 healthy controls. A two-stage genetic association analysis was performed in 3323 Han Chinese with or without MDD. Potential associations between CFH single nucleotide polymorphisms and age at MDD onset were evaluated. CFH levels were significantly lower in the MDD group at both protein and mRNA levels (P = 0.009 and P = 0.014 respectively). A regulatory variant in the CFH gene, rs1061170, showed statistically significant genotypic and allelic differences between the MDD and control groups (genotypic P = 0.0005, allelic P = 0.0001). Kaplan-Meier survival analysis showed that age at onset of MDD was significantly associated with the C allele of rs1061170 (log rank statistic χ(2) = 6.82, P = 0.009). The C-allele carriers had a younger age at onset of MDD (22.2 years, s.d. = 4.0) than those without the C allele (23.6 years, s.d. = 4.3). CFH is likely to play an important role in the development of MDD. rs1061170 has an important effect on age at onset of MDD in Han Chinese and may therefore be related to early pathogenesis of MDD, although further study is needed. © The Royal College of Psychiatrists 2016.

  9. New data on epizootiology and genetics of piroplasms based on sequences of small ribosomal subunit and cytochrome b genes.

    PubMed

    Criado, A; Martinez, J; Buling, A; Barba, J C; Merino, S; Jefferies, R; Irwin, P J

    2006-12-20

    As a continuation of our studies on molecular epizootiology of piroplasmosis in Spain and other countries, we present in this contribution the finding of new hosts for some piroplasms, as well as information on their 18S rRNA gene sequences. Genetic data were complemented with sequences of apocytochrome b gene (whenever possible). The following conclusions were drawn from these molecular studies: Theileria annulata is capable of infecting dogs, since it was diagnosed in a symptomatic animal. According to cytochrome b sequences, isolates from cows and dog present slight differences. The same isolates showed, however, identical sequence in the 18S rRNA gene. This exemplifies well the usefulness of the mitochondrial gene for examining infra-specific variation. Babesia bovis is an occasional parasite of equines, since it was detected in two symptomatic horses. We found evidence of genetic polymorphism occurring in the 18S rRNA gene of Spanish T. equi-like and B. ovis isolates. B. bennetti from Spanish seagull is loosely related to B. ovis, and might represent a genetically distinct branch of babesids. A partial sequence of a cytochrome b pseudogene was obtained for the first time in Babesia canis rossi from South Africa. The pseudogene is distantly related to B. bigemina cytochrome b gene. These new findings confirm the ability of some piroplasms to infect multiple hosts, as well as the existence of a relatively wide genetic polymorphisms with respect to the cytochrome b gene. On the other hand, the existence of mtDNA-like pseudogenes of possible nuclear location in piroplasms is interesting due to their possible impact on molecular phylogeny studies.

  10. Allele-specific suppression as a tool to study protein-protein interactions in bacteria.

    PubMed

    Manson, M D

    2000-01-01

    Suppression analysis is well suited to study the interactions of gene products. It offers the advantage of simplicity for any organism for which a convenient genetic system has been developed, which holds for a wide spectrum of bacteria and an ever-increasing number of unicellular as well as complex eukaryotes. No other method provides as much information about the functional relationships of biological macromolecules. The intrinsic value of suppression analysis is enhanced by advances in genomics and in biophysical techniques for investigating the properties of nucleic acids and proteins, such as X-ray crystallography, liquid and solid-state nuclear magnetic resonance, electron spin labeling, and isothermal calorimetry. These approaches confirm and complement whatever is revealed by genetics. Despite these sterling qualities, suppression analysis has its dangers, less in execution than in conceptualization of experiments and interpretation of data. A consistent nomenclature is essential for a uniform and widespread understanding of the results. Familiarity with the genetic background and idiosyncracies of the organism studied is critical in avoiding extraneous phenomena that can affect the outcome. Finally, it is imperative not to underestimate potentially bizarre and improbable consequences that can transpire when rigorous genetic selection is maintained for an appreciable length of time. The article begins with a somewhat pedagogical discussion of genetic terminology. It then moves on to the necessary precautions to observe while planning and conducting suppression analysis. The remainder of the article considers different manifestations of suppression: bypass suppression; gradients of suppression; suppression by relaxed specificity; allele-specific "suppression at a distance"; and true conformational suppression. The treatment is not exhaustive, but representative examples have been gleaned from the recent bacterial literature. Copyright 2000 Academic Press.

  11. Biotechnological advances in mango (Mangifera indica L.) and their future implication in crop improvement: a review.

    PubMed

    Krishna, Hare; Singh, S K

    2007-01-01

    Biotechnology can complement conventional breeding and expedite the mango improvement programmes. Studies involving in vitro culture and selection, micropropagation, embryo rescue, genetic transformation, marker-assisted characterization and DNA fingerprinting, etc. are underway at different centers worldwide. In vitro culture and somatic embryogenesis of several different genotypes have been achieved. The nucellus excised from immature fruitlets is the appropriate explant for induction of embryogenic cultures. High frequency somatic embryogenesis has been achieved in some genotypes; however, some abnormalities can occur during somatic embryo germination. Embryo rescue from young and dropped fruitlets can improve the hybridization success in a limited flowering season. Protocols for protoplast culture and regeneration have also been developed. In vitro selections for antibiotic tolerance and fungal toxin resistance have been very promising for germplasm screening. Genetic transformation using Agrobacterium tumefaciens has been reported. Genes that are involved with fruit ripening have been cloned and there have been attempts to deliver these genes into plants. DNA fingerprinting and studies on genetic diversity of mango cultivars and Mangifera species are also being conducted at several research stations. The purpose of this review is to focus upon contemporary information on biotechnological advances made in mango. It also describes some ways of overcoming the problems encountered during in vitro propagation of mango.

  12. Comparing schizophrenia symptoms in the Iban of Sarawak with other populations to elucidate clinical heterogeneity.

    PubMed

    McLean, Duncan; Barrett, Robert; Loa, Peter; Thara, Rangaswamy; John, Sujit; McGrath, John; Gratten, Jake; Mowry, Bryan

    2015-03-01

    The symptom profile of schizophrenia can vary between ethnic groups. We explored selected symptom variables previously reported to be characteristic of schizophrenia in the Iban of Sarawak in transethnic populations from Australia, India, and Sarawak, Malaysia. We tested site differences to confirm previous research, and to explore implications of differences across populations for future investigations. We recruited schizophrenia samples in Australia (n = 609), India (n = 310) and Sarawak (n = 205) primarily for the purposes of genetic studies. We analyzed seven identified variables and their relationship to site using logistic regression, including: global delusions, bizarre delusions, thought broadcast/insertion/withdrawal delusions, global hallucinations, auditory hallucinations, disorganized behavior, and prodromal duration. We identified a distinct symptom profile in our Sarawak sample. Specifically, the Iban exhibit: low frequency of thought broadcast/insertion/withdrawal delusions, high frequency of auditory hallucinations and disorganized behavior, with a comparatively short prodrome when compared with Australian and Indian populations. Understanding between-site variation in symptom profile may complement future transethnic genetic studies, and provide important clues as to the nature of differing schizophrenia expression across ethnically distinct groups. A comprehensive approach to subtyping schizophrenia is warranted, utilizing comprehensively ascertained transethnic samples to inform both schizophrenia genetics and nosology. Copyright © 2013 Wiley Publishing Asia Pty Ltd.

  13. The Semantics of Complementation in English: A Cognitive Semantic Account of Two English Complement Constructions

    ERIC Educational Resources Information Center

    Smith, Michael B.

    2009-01-01

    Studies on complementation in English and other languages have traditionally focused on syntactic issues, most notably on the constituent structures of different complement types. As a result, they have neglected the role of meaning in the choice of different complements. This paper investigates the semantics of complementation within the…

  14. Comparative studies of gene expression and the evolution of gene regulation

    PubMed Central

    Romero, Irene Gallego; Ruvinsky, Ilya; Gilad, Yoav

    2014-01-01

    The hypothesis that differences in gene regulation play an important role in speciation and adaptation is more than 40 years old. With the advent of new sequencing technologies, we are able to characterize and study gene expression levels and associated regulatory mechanisms in a large number of individuals and species at unprecedented resolution and scale. We have thus gained new insights into the evolutionary pressures that shape gene expression levels, as well as developed an appreciation for the relative importance of evolutionary changes in different regulatory genetic and epigenetic mechanisms. The current challenge is to link gene regulatory changes to adaptive evolution of complex phenotypes. Here we mainly focus on comparative studies in primates, and how they are complemented by studies in model organisms. PMID:22705669

  15. Complementation of Conjugation Functions of Streptomyces lividans Plasmid pIJ101 by the Related Streptomyces Plasmid pSB24.2

    PubMed Central

    Pettis, Gregg S.; Prakash, Shubha

    1999-01-01

    A database search revealed extensive sequence similarity between Streptomyces lividans plasmid pIJ101 and Streptomyces plasmid pSB24.2, which is a deletion derivative of Streptomyces cyanogenus plasmid pSB24.1. The high degree of relatedness between the two plasmids allowed the construction of a genetic map of pSB24.2, consisting of putative transfer and replication loci. Two pSB24.2 loci, namely, the cis-acting locus for transfer (clt) and the transfer-associated korB gene, were shown to be capable of complementing the pIJ101 clt and korB functions, respectively, a result that is consistent with the notion that pIJ101 and the parental plasmid pSB24.1 encode highly similar, if not identical, conjugation systems. PMID:10419972

  16. Zebrafish for the Study of the Biological Effects of Nicotine

    PubMed Central

    Klee, Eric W.; Schneider, Henning; Hurt, Richard D.; Ekker, Stephen C.

    2011-01-01

    Introduction: Zebrafish are emerging as a powerful animal model for studying the molecular and physiological effects of nicotine exposure. The zebrafish have many advantageous physical characteristics, including small size, high fecundity rates, and externally developing transparent embryos. When combined with a battery of molecular–genetic tools and behavioral assays, these attributes enable studies to be conducted that are not practical using traditional animal models. Methods: We reviewed the literature on the application of the zebrafish model as a preclinical model to study the biological effects of nicotine exposure. Results: The identified studies used zebrafish to examine the effects of nicotine exposure on early development, addiction, anxiety, and learning. The methods used included green fluorescent protein–labeled proteins to track in vivo nicotine-altered neuron development, nicotine-conditioned place preference, and locomotive sensitization linked with high-throughput molecular and genetic screens and behavioral models of learning and stress response to nicotine. Data are presented on the complete homology of all known human neural nicotinic acetylcholine receptors in zebrafish and on the biological similarity of human and zebrafish dopaminergic signaling. Conclusions: Tobacco dependence remains a major health problem worldwide. Further understanding of the molecular effects of nicotine exposure and genetic contributions to dependence may lead to improvement in patient treatment strategies. While there are limitations to the use of zebrafish as a preclinical model, it should provide a valuable tool to complement existing model systems. The reviewed studies demonstrate the enormous opportunity zebrafish have to advance the science of nicotine and tobacco research. PMID:21385906

  17. Genetic and cytogenetic analysis of the olive fruit fly Bactrocera oleae (Diptera: Tephritidae).

    PubMed

    Mavragani-Tsipidou, P

    2002-09-01

    The genetic and cytogenetic characteristics of one of the major agricultural pests, the olive fruit fly Bactmcera oleae, are presented here. The mitotic metaphase complement of this insect consists of six pairs of chromosomes including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the polytene complements of three larval tissues, the fat body, the salivary glands and the Malpighian tubules of this pest has shown (a) a total number of five long chromosomes (10 polytene arms) that correspond to the five autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes, (b) the constancy of the banding pattern of the three somatic tissues, (c) the absence of a typical chromocenter as an accumulation of heterochromatin, (d) the existence of reverse tandem duplications, and (e) the presence of toroid tips of the chromosome arms. The in situ hybridization of genes or DNA sequences to the salivary gland polytene chromosomes of B. oleae provided molecular markers for all five autosomes and permitted the establishment of chromosomal homologies among B. olea, B. tryoni and Ceratitis capitata. The heat shock response of B. oleae, as revealed by heat-inducible puffing and protein pattern, shows a higher thermotolerance than Drosophila melanogaster.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, T.W.; Chantler, S.E.; Kahn, M.L.

    ADPglucose pyrophosphorylase (glucose-1-phosphate adenylytransferase; AD P:{alpha}-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27) catalyzes a key regulatory step in {alpha}-glucan synthesis in bacteria and higher plants. We have previously shown that the expression of the cDNA sequences of the potato tuber large (LS) and small (SS) subunits yielded a functional heterotetrameric enzyme capable of complementing a mutation in the single AGP (glgC) structural gene of Escherichia coli. This heterologous complementation provides a powerful genetic approach to obtain biochemical information on the specific roles of LS and SS in enzyme function. By mutagenizing the LS cDNA with hydroxylamine and then coexpressing with wild-type SS inmore » an E. coli glgC{sup {minus}} strain, >350 mutant colonies were identified that were impaired in glycogen production. One mutant exhibited enzymatic and antigen levels comparable to the wild-type recombinant enzyme but required 45-fold greater levels of the activator 3-phosphoglycerate for maximum activity. Sequence analysis identified a single nucleotide change that resulted in the change of Pro-52 to Leu. This heterologous genetic system provides and efficient means to identify residues important for catalysis and allosteric functioning and should lead to novel approaches to increase plant productivity. 31 refs., 4 figs., 1 tab.« less

  19. Molecular analysis of genetic diversity among vine accessions using DNA markers.

    PubMed

    da Costa, A F; Teodoro, P E; Bhering, L L; Tardin, F D; Daher, R F; Campos, W F; Viana, A P; Pereira, M G

    2017-04-13

    Viticulture presents a number of economic and social advantages, such as increasing employment levels and fixing the labor force in rural areas. With the aim of initiating a program of genetic improvement in grapevine from the State University of the state of Rio de Janeiro North Darcy Ribeiro, genetic diversity between 40 genotypes (varieties, rootstock, and species of different subgenera) was evaluated using Random amplified polymorphic DNA (RAPD) molecular markers. We built a matrix of binary data, whereby the presence of a band was assigned as "1" and the absence of a band was assigned as "0." The genetic distance was calculated between pairs of genotypes based on the arithmetic complement from the Jaccard Index. The results revealed the presence of considerable variability in the collection. Analysis of the genetic dissimilarity matrix revealed that the most dissimilar genotypes were Rupestris du Lot and Vitis rotundifolia because they were the most genetically distant (0.5972). The most similar were genotypes 31 (unidentified) and Rupestris du lot, which showed zero distance, confirming the results of field observations. A duplicate was confirmed, consistent with field observations, and a short distance was found between the variety 'Italy' and its mutation, 'Ruby'. The grouping methods used were somewhat concordant.

  20. Gramene 2013: comparative plant genomics resources.

    PubMed

    Monaco, Marcela K; Stein, Joshua; Naithani, Sushma; Wei, Sharon; Dharmawardhana, Palitha; Kumari, Sunita; Amarasinghe, Vindhya; Youens-Clark, Ken; Thomason, James; Preece, Justin; Pasternak, Shiran; Olson, Andrew; Jiao, Yinping; Lu, Zhenyuan; Bolser, Dan; Kerhornou, Arnaud; Staines, Dan; Walts, Brandon; Wu, Guanming; D'Eustachio, Peter; Haw, Robin; Croft, David; Kersey, Paul J; Stein, Lincoln; Jaiswal, Pankaj; Ware, Doreen

    2014-01-01

    Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.

  1. Genetic selection for a highly functional cysteine-less membrane protein using site-saturation mutagenesis

    PubMed Central

    Arendt, Cassandra S.; Ri, Keirei; Yates, Phillip A.; Ullman, Buddy

    2007-01-01

    We describe an efficient method for generating highly functional membrane proteins with variant amino acids at defined positions that couples a modified site-saturation strategy with functional genetic selection. We applied this method to the production of a cysteine-less variant of the Crithidia fasciculata inosine-guanosine permease CfNT2, in order to facilitate biochemical studies using thiol-specific modifying reagents. Of ten endogenous cysteine residues in CfNT2, two cannot be replaced with serine or alanine without loss of function. High-quality single- and double-mutant libraries were produced by combining a previously reported site-saturation mutagenesis scheme based on the Quikchange method with a novel gel purification step that effectively eliminated template DNA from the products. Following selection for functional complementation in S. cerevisiae cells auxotrophic for purines, several highly functional non-cysteine substitutions were efficiently identified at each desired position, allowing the construction of cysteine-less variants of CfNT2 that retained wild-type affinity for inosine. This combination of an improved site-saturation mutagenesis technique and positive genetic selection provides a simple and efficient means to identify functional and perhaps unexpected amino acid variants at a desired position. PMID:17481563

  2. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.

    PubMed

    Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad

    2018-04-25

    Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Molybdenum cofactor (chlorate-resistant) mutants of Klebsiella pneumoniae M5al can use hypoxanthine as the sole nitrogen source.

    PubMed Central

    Garzón, A; Li, J; Flores, A; Casadesus, J; Stewart, V

    1992-01-01

    Selection for chlorate resistance yields mol (formerly chl) mutants with defects in molybdenum cofactor synthesis. Complementation and genetic mapping analyses indicated that the Klebsiella pneumoniae mol genes are functionally homologous to those of Escherichia coli and occupy analogous genetic map positions. Hypoxanthine utilization in other organisms requires molybdenum cofactor as a component of xanthine dehydrogenase, and thus most chlorate-resistant mutants cannot use hypoxanthine as a sole source of nitrogen. Surprisingly, the K. pneumoniae mol mutants and the mol+ parent grew equally well with hypoxanthine as the sole nitrogen source, suggesting that K. pneumoniae has a molybdenum cofactor-independent pathway for hypoxanthine utilization. PMID:1400180

  4. Functional Evolution of a cis-Regulatory Module

    PubMed Central

    Palsson, Arnar; Alekseeva, Elena; Bergman, Casey M; Nathan, Janaki; Kreitman, Martin

    2005-01-01

    Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules. PMID:15757364

  5. [Molecular basis of Fanconi's anemia].

    PubMed

    Digweed, M

    1999-01-01

    Fanconi anaemia (FA) is an autosomal recessive genetic disorder characterised clinically by progressive bone marrow failure, skeletal deformities and a predisposition to neoplasia. Patient cells manifest an extreme chromosomal instability and hypersensitivity to polyfunctional alkylating agents. It is assumed that the basic defect is related to the repair of DNA damage, in particular that of so-called DNA crosslinks. Currently there are eight complementation groups in FA (FA-A-FA-H) which indicates that at least eight independent genes can lead to FA. Three of these genes have been identified: FANCA, FANCC and FANCG. In this review, the molecular biology and genetics of FA are presented and possible functions of the FANC proteins are discussed.

  6. Application of proteomics to ecology and population biology.

    PubMed

    Karr, T L

    2008-02-01

    Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.

  7. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with onemore » GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.« less

  8. Use of eculizumab and plasma exchange in successful combined liver-kidney transplantation in a case of atypical HUS associated with complement factor H mutation.

    PubMed

    Tran, Ha; Chaudhuri, Abanti; Concepcion, Waldo; Grimm, Paul C

    2014-03-01

    Atypical hemolytic uremic syndrome (aHUS) evolves into end-stage renal failure in nearly half of affected patients and is associated with defective regulation of the alternative complement pathway. Patients with a complement factor H (CFH) mutation have a 30-100% risk of graft loss due to aHUS recurrence or graft thrombosis. Since CFH is produced predominantly by the liver, combined liver-kidney transplant is a curative treatment option. One major unexpected risk includes liver failure secondary to uncontrolled complement activation. We report a successful combined liver-kidney transplantation with perioperative plasma exchange and use of the humanized anti-C5 monoclonal antibody eculizumab. An 11-month-old female presented with oliguric renal failure after 3 weeks of flu-like symptoms in the absence of diarrhea. Following the identification of Escherichia coli 0157:H7 in her stool, she was discharged home on peritoneal dialysis with a diagnosis of Shiga toxin-associated HUS. Three months later, she developed severe anemia, thrombocytopenia, and neurological involvement. aHUS was diagnosed and confirmed, and genetic testing revealed a mutation in CFH SCR20. Once donor organs became available, she received preoperative plasma exchange followed by eculizumab infusion with intra-operative fresh frozen plasma prior to combined liver-kidney transplant. At 19 months post-transplant, she continues to have excellent allograft and liver function without signs of disease recurrence. Perioperative use of eculizumab in conjunction with plasma exchange during simultaneous liver-kidney transplant can be used to inhibit terminal complement activity, thereby optimizing successful transplantation by reducing the risk of graft thrombosis.

  9. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay.

    PubMed

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil; Kim, Dong-Myung; Yoo, Tae Hyeon; Kim, Yong-Sung

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3-4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology.

    PubMed

    Harper, Joyce C; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2013-11-01

    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide an update of selected topics that have evolved since 2005.

  11. Linking neuroscience with modern concepts of impulse control disorders in Parkinson’s disease

    PubMed Central

    Napier, T. Celeste; Corvol, Jean-Christophe; Grace, Anthony A.; Roitman, Jamie D.; Rowe, James; Voon, Valerie; Strafella, Antonio P.

    2014-01-01

    Patients with Parkinson’s disease (PD) may experience impulse control disorders (ICDs) when on dopamine agonist therapy for their motor symptoms. In the last few years, there has been a rapid growth of interest for the recognition of these aberrant behaviors and their neurobiological correlates. Recent advances in neuroimaging are helping to identify the neuroanatomical networks responsible for these ICDs, and together with psychopharmacological assessments are providing new insights into the brain status of impulsive behavior. The genetic associations that may be unique to ICDs in PD are also being identified. Complementing human studies, electrophysiological and biochemical studies in animal models are providing insights into neuropathological mechanisms associated with these disorders. New animal models of ICDs in PD patients are being implemented that should provide critical means to identify efficacious therapies for PD-related motor deficits while avoiding ICD side effects. Here, we provide an overview of these recent advances, with a particular emphasis on the neurobiological correlates reported in animal models and patients along with their genetic underpinnings. PMID:25476402

  12. Long-Range Regulatory Polymorphisms Affecting a GABA Receptor Constitute a Quantitative Trait Locus (QTL) for Social Behavior in Caenorhabditis elegans

    PubMed Central

    Bendesky, Andres; Pitts, Jason; Rockman, Matthew V.; Chen, William C.; Tan, Man-Wah; Kruglyak, Leonid; Bargmann, Cornelia I.

    2012-01-01

    Aggregation is a social behavior that varies between and within species, providing a model to study the genetic basis of behavioral diversity. In the nematode Caenorhabditis elegans, aggregation is regulated by environmental context and by two neuromodulatory pathways, one dependent on the neuropeptide receptor NPR-1 and one dependent on the TGF-β family protein DAF-7. To gain further insight into the genetic regulation of aggregation, we characterize natural variation underlying behavioral differences between two wild-type C. elegans strains, N2 and CB4856. Using quantitative genetic techniques, including a survey of chromosome substitution strains and QTL analysis of recombinant inbred lines, we identify three new QTLs affecting aggregation in addition to the two known N2 mutations in npr-1 and glb-5. Fine-mapping with near-isogenic lines localized one QTL, accounting for 5%–8% of the behavioral variance between N2 and CB4856, 3′ to the transcript of the GABA neurotransmitter receptor gene exp-1. Quantitative complementation tests demonstrated that this QTL affects exp-1, identifying exp-1 and GABA signaling as new regulators of aggregation. exp-1 interacts genetically with the daf-7 TGF-β pathway, which integrates food availability and population density, and exp-1 mutations affect the level of daf-7 expression. Our results add to growing evidence that genetic variation affecting neurotransmitter receptor genes is a source of natural behavioral variation. PMID:23284308

  13. Heterozygosity-fitness correlations among wild populations of European tree frog (Hyla arborea) detect fixation load.

    PubMed

    Luquet, E; David, P; Lena, J-P; Joly, P; Konecny, L; Dufresnes, C; Perrin, N; Plenet, S

    2011-05-01

    Quantifying the impacts of inbreeding and genetic drift on fitness traits in fragmented populations is becoming a major goal in conservation biology. Such impacts occur at different levels and involve different sets of loci. Genetic drift randomly fixes slightly deleterious alleles leading to different fixation load among populations. By contrast, inbreeding depression arises from highly deleterious alleles in segregation within a population and creates variation among individuals. A popular approach is to measure correlations between molecular variation and phenotypic performances. This approach has been mainly used at the individual level to detect inbreeding depression within populations and sometimes at the population level but without consideration about the genetic processes measured. For the first time, we used in this study a molecular approach considering both the interpopulation and intrapopulation level to discriminate the relative importance of inbreeding depression vs. fixation load in isolated and non-fragmented populations of European tree frog (Hyla arborea), complemented with interpopulational crosses. We demonstrated that the positive correlations observed between genetic heterozygosity and larval performances on merged data were mainly caused by co-variations in genetic diversity and fixation load among populations rather than by inbreeding depression and segregating deleterious alleles within populations. Such a method is highly relevant in a conservation perspective because, depending on how populations lose fitness (inbreeding vs. fixation load), specific management actions may be designed to improve the persistence of populations. © 2011 Blackwell Publishing Ltd.

  14. Robust logistic regression to narrow down the winner's curse for rare and recessive susceptibility variants.

    PubMed

    Kesselmeier, Miriam; Lorenzo Bermejo, Justo

    2017-11-01

    Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package 'robustbase' with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Pediatric Lupus – Are There Differences in Presentation, Genetics, Response to Therapy, Damage Accrual Compared to Adult Lupus?

    PubMed Central

    Brunner, Hermine I

    2010-01-01

    Summary Some complement deficiencies predispose to SLE early in life. Currently, there are no known unique physiological or genetic pathways that can explain the variability in disease phenotypes, as is suggested by studies directly and indirectly comparing cohorts of children and adults with SLE. Children present with more acute illness and have more frequent renal, hematologic and central nervous system involvement at the time of diagnosis compared to adults with SLE. Almost all children require corticosteroids during the course of their disease, and many are treated with immunosuppressive drugs. Despite of a general lack of co-morbid conditions, mortality rates remain higher with pediatric SLE compared to aSLE. Children and adolescents accrue more damage as measured by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index, especially in the renal, ocular and musculoskeletal organ systems. Conversely, cardiovascular mortality is more prevalent in adults with SLE. PMID:20202591

  16. Geochemical Database for Igneous Rocks of the Ancestral Cascades Arc - Southern Segment, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Putirka, Keith; Cousens, Brian L.

    2009-01-01

    Volcanic rocks that form the southern segment of the Cascades magmatic arc are an important manifestation of Cenozoic subduction and associated magmatism in western North America. Until recently, these rocks had been little studied and no systematic compilation of existing composition data had been assembled. This report is a compilation of all available chemical data for igneous rocks that constitute the southern segment of the ancestral Cascades magmatic arc and complement a previously completed companion compilation that pertains to rocks that constitute the northern segment of the arc. Data for more than 2,000 samples from a diversity of sources were identified and incorporated in the database. The association between these igneous rocks and spatially and temporally associated mineral deposits is well established and suggests a probable genetic relationship. The ultimate goal of the related research is an evaluation of the time-space-compositional evolution of magmatism associated with the southern Cascades arc segment and identification of genetic associations between magmatism and mineral deposits in this region.

  17. Discovering Hematopoietic Mechanisms Through Genome-Wide Analysis of GATA Factor Chromatin Occupancy

    PubMed Central

    Fujiwara, Tohru; O'Geen, Henriette; Keles, Sunduz; Blahnik, Kimberly; Linnemann, Amelia K.; Kang, Yoon-A; Choi, Kyunghee; Farnham, Peggy J.; Bresnick, Emery H.

    2009-01-01

    SUMMARY GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis. PMID:19941826

  18. An 'integrative neuroscience' perspective on ADHD: linking cognition, emotion, brain and genetic measures with implications for clinical support.

    PubMed

    Williams, Leanne M; Tsang, Tracey W; Clarke, Simon; Kohn, Michael

    2010-10-01

    There remains a translational gap between research findings and their implementation in clinical practice that applies to attention-deficit/hyperactivity disorder (ADHD), as well as to other major disorders of brain health in childhood, adolescence and adulthood. Research studies have identified potential 'markers' to support diagnostic, functional assessment and treatment decisions, but there is little consensus about these markers. Of these potential markers, cognitive measures of thinking functions, such as sustaining attention and associated electrical brain activity, show promise in complementing the clinical management process. Emerging evidence highlights the relevance of emotional, as well as thinking, functions to ADHD. Here, we outline an integrative neuroscience framework for ADHD that offers one means to bring together cognitive measures of thinking functions with measures of emotion, and their brain and genetic correlates. Understanding these measures and the relationships between them is a first step towards the development of tools that will help to assess the heterogeneity of ADHD, and aid in tailoring treatment choices.

  19. Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis

    PubMed Central

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

    2014-01-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carney, H.J.; Hass, B.S.

    In order to test the thousands of man-made chemicals in the environment for carcinogenic and genetic hazards, a multitude of short-term screening tests has been developed to complement long-term mammalian bioassays and epidemiological studies. These tests cover a broad spectrum of organisms, and include the use of naked and viral nucleic acids, bacteria, fungi, higher plants, insects in vitro mammalian cell cultures (cell transformation, cell-mediated mutagenesis, DNA repair, and chromosome aberration tests) and live mammals. Assay end points include effects on nucleic acids, DNA repair synthesis, point or gene mutation, structural and numerical chromosome aberrations, cytological alterations, and in vitromore » cell transformation. The present review describes and compares these assays. In addition, it discusses their historical development, the problems and limitations associated with their use, and their implementation in comprehensive testing programs. It is intended to provide overview and specific information to the laboratory that is in the process of establishing genetic toxicological systems. (The literature is reviewed to January 1978.)« less

  1. Collaboration of Antibody and Inflammation in Clearance of Rabies Virus from the Central Nervous System

    PubMed Central

    Hooper, D. Craig; Morimoto, Kinjiro; Bette, Michael; Weihe, Eberhard; Koprowski, Hilary; Dietzschold, Bernhard

    1998-01-01

    To investigate the involvement of various cellular and humoral aspects of immunity in the clearance of rabies virus from the central nervous system, (CNS), we studied the development of clinical signs and virus clearance from the CNS in knockout mice lacking either B and T cells, CD8+ cytotoxic T cells, B cells, alpha/beta interferon (IFN-α/β) receptors, IFN-γ receptors, or complement components C3 and C4. Following intranasal infection with the attenuated rabies virus CVS-F3, normal adult mice of different genetic backgrounds developed a transient disease characterized by loss of body weight and appetite depression which peaked at 13 days postinfection (p.i.). While these animals had completely recovered by day 21 p.i., mice lacking either B and T cells or B cells alone developed a progressive disease and succumbed to infection. Mice lacking either CD8+ T cells, IFN receptors, or complement components C3 and C4 showed no significant differences in the development of clinical signs by comparison with intact counterparts having the same genetic background. However, while infectious virus and viral RNA could be detected in normal control mice only until day 8 p.i., in all of the gene knockout mice studied except those lacking C3 and C4, virus infection persisted through day 21 p.i. Analysis of rabies virus-specific antibody production together with histological assessment of brain inflammation in infected animals revealed that clearance of CVS-F3 by 21 days p.i. correlated with both a strong inflammatory response in the CNS early in the infection (day 8 p.i.), and the rapid (day 10 p.i.) production of significant levels of virus-neutralizing antibody (VNA). These studies confirm that rabies VNA is an absolute requirement for clearance of an established rabies virus infection. However, for the latter to occur in a timely fashion, collaboration between VNA and inflammatory mechanisms is necessary. PMID:9557653

  2. Influence of ethnic traditional cultures on genetic diversity of rice landraces under on-farm conservation in southwest China.

    PubMed

    Wang, Yanjie; Wang, Yanli; Sun, Xiaodong; Caiji, Zhuoma; Yang, Jingbiao; Cui, Di; Cao, Guilan; Ma, Xiaoding; Han, Bing; Xue, Dayuan; Han, Longzhi

    2016-10-27

    Crop genetic resources are important components of biodiversity. However, with the large-scale promotion of mono-cropping, genetic diversity has largely been lost. Ex-situ conservation approaches were widely used to protect traditional crop varieties worldwide. However, this method fails to maintain the dynamic evolutionary processes of crop genetic resources in their original habitats, leading to genetic diversity reduction and even loss of the capacity of resistance to new diseases and pests. Therefore, on-farm conservation has been considered a crucial complement to ex-situ conservation. This study aimed at clarifying the genetic diversity differences between ex-situ conservation and on-farm conservation and to exploring the influence of traditional cultures on genetic diversity of rice landraces under on-farm conservation. The conservation status of rice landrace varieties, including Indica and Japonica, non-glutinous rice (Oryza sativa) and glutinous rice (Oryza sativa var. glutinosa Matsum), was obtained through ethno-biology investigation method in 12 villages of ethnic groups from Guizhou, Yunnan and Guangxi provinces of China. The genetic diversity between 24 pairs of the same rice landraces from different times were compared using simple sequence repeat (SSR) molecular markers technology. The landrace paris studied were collected in 1980 and maintained ex-situ, while 2014 samples were collected on-farm in southwest of China. The results showed that many varieties of rice landraces have been preserved on-farm by local farmers for hundreds or thousands of years. The number of alleles (Na), effective number of alleles (Ne), Nei genetic diversity index (He) and Shannon information index (I) of rice landraces were significantly higher by 12.3-30.4 % under on-farm conservation than under ex-situ conservation. Compared with the ex-situ conservation approach, rice landraces under on-farm conservation programs had more alleles and higher genetic diversity. In every site we investigated, ethnic traditional cultures play a positive influence on rice landrace variety diversity and genetic diversity. Most China's rice landraces were conserved in the ethnic areas of southwest China. On-farm conservation can effectively promote the allelic variation and increase the genetic diversity of rice landraces over the past 35 years. Moreover, ethnic traditional culture practices are a crucial foundation to increase genetic diversity of rice landraces and implement on-farm conservation.

  3. Induced mutations in mice and genetic risk assessment in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, P.B.

    1980-01-01

    In studies on mice, in contrast to studies on humans, it is possible to perform carefully controlled experiments with the exposures one desires. The necessity for having separate mammalian tests for looking at the induction of gene mutations and small deficiencies, and at the induction of chromosomal aberrations, is obvious. Mutagens can differ as to which of these types of damage they are more likely to cause. The reason for focusing attention on the mouse in a discussion of hazard from induced gene mutations and small deficiencies is the existence of techniques in this mammal for readily studying the inductionmore » of such genetic effects. Many mutations at the molecular level cause no apparent changes at the gene-product level and many mutations that cause changes at the gene-product level cause no detectable phenotypic changes in heterozygotes. Many dominant mutations that change the phenotype cause no serious handicap. For these reasons, risk estimation for important chemicals must rely heavily on studies on the induction of those germinal mutations in mammals that are easily related to human dominant disorders, such as skeletal and cataract mutations. Molecular or enzyme studies cannot provide definitive answers about risk. The specific-locus method should help greatly in assessing the genetic risks to humans from chemicals. The new sensitive-indicator method should complement it in providing a tool for attacking the question of what treatments induce gene mutations and small deficiencies and for approximating first-generation damage to the skeleton. (ERB)« less

  4. Beyond main effects of gene-sets: harsh parenting moderates the association between a dopamine gene-set and child externalizing behavior.

    PubMed

    Windhorst, Dafna A; Mileva-Seitz, Viara R; Rippe, Ralph C A; Tiemeier, Henning; Jaddoe, Vincent W V; Verhulst, Frank C; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J

    2016-08-01

    In a longitudinal cohort study, we investigated the interplay of harsh parenting and genetic variation across a set of functionally related dopamine genes, in association with children's externalizing behavior. This is one of the first studies to employ gene-based and gene-set approaches in tests of Gene by Environment (G × E) effects on complex behavior. This approach can offer an important alternative or complement to candidate gene and genome-wide environmental interaction (GWEI) studies in the search for genetic variation underlying individual differences in behavior. Genetic variants in 12 autosomal dopaminergic genes were available in an ethnically homogenous part of a population-based cohort. Harsh parenting was assessed with maternal (n = 1881) and paternal (n = 1710) reports at age 3. Externalizing behavior was assessed with the Child Behavior Checklist (CBCL) at age 5 (71 ± 3.7 months). We conducted gene-set analyses of the association between variation in dopaminergic genes and externalizing behavior, stratified for harsh parenting. The association was statistically significant or approached significance for children without harsh parenting experiences, but was absent in the group with harsh parenting. Similarly, significant associations between single genes and externalizing behavior were only found in the group without harsh parenting. Effect sizes in the groups with and without harsh parenting did not differ significantly. Gene-environment interaction tests were conducted for individual genetic variants, resulting in two significant interaction effects (rs1497023 and rs4922132) after correction for multiple testing. Our findings are suggestive of G × E interplay, with associations between dopamine genes and externalizing behavior present in children without harsh parenting, but not in children with harsh parenting experiences. Harsh parenting may overrule the role of genetic factors in externalizing behavior. Gene-based and gene-set analyses offer promising new alternatives to analyses focusing on single candidate polymorphisms when examining the interplay between genetic and environmental factors.

  5. Engineering and Functional Analysis of Mitotic Kinases Through Chemical Genetics.

    PubMed

    Jones, Mathew J K; Jallepalli, Prasad V

    2016-01-01

    During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells.

  6. Optogenetic mutagenesis in Caenorhabditis elegans.

    PubMed

    Noma, Kentaro; Jin, Yishi

    2015-12-03

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations.

  7. Optogenetic mutagenesis in Caenorhabditis elegans

    PubMed Central

    Noma, Kentaro; Jin, Yishi

    2015-01-01

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations. PMID:26632265

  8. Protein domains connect cell cycle stimulation directly to initiation of DNA replication.

    PubMed Central

    Gjørup, O V; Rose, P E; Holman, P S; Bockus, B J; Schaffhausen, B S

    1994-01-01

    Polyoma large T antigen (LT) is the only viral gene product required for viral DNA replication. LT can be divided into two domains, one N-terminal (NT) spanning residues 1-260 and one C-terminal (CT) comprising approximately residues 264-785. NT is known to immortalize primary cells in a manner dependent on binding of pRB/p107. Here a CT construct comprising residues 264-785 was shown to have independent function in DNA replication. CT is entirely sufficient for driving viral DNA replication in vivo in growing mouse cells at a level approaching that of full-length LT. In contrast, CT is strikingly deficient for replication in serum-starved cells. However, this deficiency can be complemented by coexpression of NT. BrdUrd incorporation in transfected, starved cells showed that NT was sufficient for inducing S phase, suggesting a mechanism for complementation. By contrast, CT was unable to induce S phase when tested in the same assay. NT also promotes phosphorylation of sites in CT that are likely to be important for replication. Other DNA tumor virus gene products such as adenovirus E1A 12S and human papillomavirus 16 E7 could also complement CT for replication. Although NT, E1A 12S, and E7 all bind the retinoblastoma gene product (pRB) and p107, genetic analysis demonstrates an additional function, independent of that binding, is responsible for complementation. Images PMID:7991595

  9. The Complement System and Adverse Pregnancy Outcomes

    PubMed Central

    Regal, Jean F.; Gilbert, Jeffrey S.; Burwick, Richard M.

    2015-01-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the feta allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child. PMID:25802092

  10. Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures.

    PubMed

    Obermayer-Pietsch, Barbara M; Bonelli, Christine M; Walter, Daniela E; Kuhn, Regina J; Fahrleitner-Pammer, Astrid; Berghold, Andrea; Goessler, Walter; Stepan, Vinzenz; Dobnig, Harald; Leb, Georg; Renner, Wilfried

    2004-01-01

    Evidence that genetic disposition for adult lactose intolerance significantly affects calcium intake, bone density, and fractures in postmenopausal women is presented. PCR-based genotyping of lactase gene polymorphisms may complement diagnostic procedures to identify persons at risk for both lactose malabsorption and osteoporosis. Lactase deficiency is a common autosomal recessive condition resulting in decreased intestinal lactose degradation. A -13910 T/C dimorphism (LCT) near the lactase phlorizin hydrolase gene, reported to be strongly associated with adult lactase nonpersistence, may have an impact on calcium supply, bone density, and osteoporotic fractures in the elderly. We determined LCT genotypes TT, TC, and CC in 258 postmenopausal women using a polymerase chain reaction-based assay. Genotypes were related to milk intolerance, nutritional calcium intake, intestinal calcium absorption, bone mineral density (BMD), and nonvertebral fractures. Twenty-four percent of all women were found to have CC genotypes and genetic lactase deficiency. Age-adjusted BMD at the hip in CC genotypes and at the spine in CC and TC genotypes was reduced by -7% to -11% depending on the site measured (p = 0.04). LCT(T/C-13910) polymorphisms alone accounted for 2-4% of BMD in a multiple regression model. Bone fracture incidence was significantly associated with CC genotypes (p = 0.001). Milk calcium intake was significantly lower (-55%, p = 0.004) and aversion to milk consumption was significantly higher (+166%, p = 0.01) in women with the CC genotype, but there were no differences in overall dietary calcium intake or in intestinal calcium absorption test values. The LCT(T/C-13910) polymorphism is associated with subjective milk intolerance, reduced milk calcium intake, and reduced BMD at the hip and the lumbar spine and may predispose to bone fractures. Genetic testing for lactase deficiency may complement indirect methods in the detection of individuals at risk for both lactose malabsorption and osteoporosis.

  11. Genetic correlations between endo-parasite phenotypes and economically important traits in dairy and beef cattle.

    PubMed

    Twomey, Alan J; Carroll, Rebecca I; Doherty, Michael L; Byrne, Noel; Graham, David A; Sayers, Riona G; Blom, Astrid; Berry, Donagh P

    2018-03-06

    Parasitic diseases have economic consequences in cattle production systems. Although breeding for parasite resistance can complement current control practices to reduce the prevalence globally, there is little knowledge of the implications of such a strategy on other performance traits. Records on individual animal antibody responses to Fasciola hepatica, Ostertagia ostertagi, and Neospora caninum were available from cows in 68 dairy herds (study herds); national abattoir data on F. hepatica-damaged livers were also available from dairy and beef cattle. After data edits, 9,271 dairy cows remained in the study herd dataset, whereas 19,542 dairy cows and 68,048 young dairy and beef animals had a record for the presence or absence of F. hepatica-damaged liver in the national dataset. Milk, reproductive, and carcass phenotypes were also available for a proportion of these animals as well as their contemporaries. Linear mixed models were used to estimate variance components of antibody responses to the three parasites; covariance components were estimated between the parasite phenotypes and economically important traits. Heritability of antibody responses to the different parasites, when treated as a continuous trait, ranged from 0.07 (O. ostertagi) to 0.13 (F. hepatica), whereas the coefficient of genetic variation ranged from 4% (O. ostertagi) to 20% (F. hepatica). The antibody response to N. caninum was genetically correlated with the antibody response to both F. hepatica (-0.29) and O. ostertagi (-0.67); a moderately positive genetic correlation existed between the antibody response to F. hepatica and O. ostertagi (0.66). Genetic correlations between the parasite phenotypes and the milk production traits were all close to zero (-0.14 to 0.10), as were the genetic correlations between F. hepatica-damaged livers and the carcass traits of carcass weight, conformation, and fat score evaluated in cows and young animals (0.00 to 0.16). The genetic correlation between F. hepatica-damaged livers in cows and milk somatic cell score was 0.32 (SE = 0.20). Antibody responses to F. hepatica and O. ostertagi had favorable genetic correlations with fertility traits, but conversely, antibody response to N. caninum and F. hepatica-damaged livers were unfavorably genetically correlated with fertility. This study provides the necessary information to undertake national multitrait genetic evaluations for parasite phenotypes.

  12. Breast Cancer Risk Estimation and Personal Insurance: A Qualitative Study Presenting Perspectives from Canadian Patients and Decision Makers

    PubMed Central

    Dalpé, Gratien; Ngueng Feze, Ida; Salman, Shahad; Joly, Yann; Hagan, Julie; Lévesque, Emmanuelle; Dorval, Véronique; Blouin-Bougie, Jolyane; Amara, Nabil; Dorval, Michel; Simard, Jacques

    2017-01-01

    Genetic stratification approaches in personalized medicine may considerably improve our ability to predict breast cancer risk for women at higher risk of developing breast cancer. Notwithstanding these advantages, concerns have been raised about the use of the genetic information derived in these processes, outside of the research and medical health care settings, by third parties such as insurers. Indeed, insurance applicants are asked to consent to insurers accessing their medical information (implicitly including genetic) to verify or determine their insurability level, or eligibility to certain insurance products. This use of genetic information may result in the differential treatment of individuals based on their genetic information, which could lead to higher premium, exclusionary clauses or even the denial of coverage. This phenomenon has been commonly referred to as “Genetic Discrimination” (GD). In the Canadian context, where federal Bill S-201, An Act to prohibit and prevent genetic discrimination, has recently been enacted but may be subject to constitutional challenges, information about potential risks to insurability may raise issues in the clinical context. We conducted a survey with women in Quebec who have never been diagnosed with breast cancer to document their perspectives. We complemented the research with data from 14 semi-structured interviews with decision-makers in Quebec to discuss institutional issues raised by the use of genetic information by insurers. Our results provide findings on five main issues: (1) the reluctance to undergo genetic screening test due to insurability concerns, (2) insurers' interest in genetic information, (3) the duty to disclose genetic information to insurers, (4) the disclosure of potential impacts on insurability before genetic testing, and (5) the status of genetic information compared to other health data. Overall, both groups of participants (the women surveyed and the decision-makers interviewed) acknowledged having concerns about GD and reported a need for better communication tools discussing insurability risk. Our conclusions regarding concerns about GD and the need for better communication tools in the clinical setting may be transferable to the broader Canadian context. PMID:28983318

  13. Breast Cancer Risk Estimation and Personal Insurance: A Qualitative Study Presenting Perspectives from Canadian Patients and Decision Makers.

    PubMed

    Dalpé, Gratien; Ngueng Feze, Ida; Salman, Shahad; Joly, Yann; Hagan, Julie; Lévesque, Emmanuelle; Dorval, Véronique; Blouin-Bougie, Jolyane; Amara, Nabil; Dorval, Michel; Simard, Jacques

    2017-01-01

    Genetic stratification approaches in personalized medicine may considerably improve our ability to predict breast cancer risk for women at higher risk of developing breast cancer. Notwithstanding these advantages, concerns have been raised about the use of the genetic information derived in these processes, outside of the research and medical health care settings, by third parties such as insurers. Indeed, insurance applicants are asked to consent to insurers accessing their medical information (implicitly including genetic) to verify or determine their insurability level, or eligibility to certain insurance products. This use of genetic information may result in the differential treatment of individuals based on their genetic information, which could lead to higher premium, exclusionary clauses or even the denial of coverage. This phenomenon has been commonly referred to as "Genetic Discrimination" (GD). In the Canadian context, where federal Bill S-201, An Act to prohibit and prevent genetic discrimination , has recently been enacted but may be subject to constitutional challenges, information about potential risks to insurability may raise issues in the clinical context. We conducted a survey with women in Quebec who have never been diagnosed with breast cancer to document their perspectives. We complemented the research with data from 14 semi-structured interviews with decision-makers in Quebec to discuss institutional issues raised by the use of genetic information by insurers. Our results provide findings on five main issues: (1) the reluctance to undergo genetic screening test due to insurability concerns, (2) insurers' interest in genetic information, (3) the duty to disclose genetic information to insurers, (4) the disclosure of potential impacts on insurability before genetic testing, and (5) the status of genetic information compared to other health data. Overall, both groups of participants (the women surveyed and the decision-makers interviewed) acknowledged having concerns about GD and reported a need for better communication tools discussing insurability risk. Our conclusions regarding concerns about GD and the need for better communication tools in the clinical setting may be transferable to the broader Canadian context.

  14. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease.

    PubMed

    Uhlig, Holm H

    2013-12-01

    Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, has multifactorial aetiology with complex interactions between genetic and environmental factors. Over 150 genetic loci are associated with IBD. The genetic contribution of the majority of those loci towards explained heritability is low. Recent studies have reported an increasing spectrum of human monogenic diseases that can present with IBD-like intestinal inflammation. A substantial proportion of patients with those genetic defects present with very early onset of intestinal inflammation. The 40 monogenic defects with IBD-like pathology selected in this review can be grouped into defects in intestinal epithelial barrier and stress response, immunodeficiencies affecting granulocyte and phagocyte activity, hyper- and autoinflammatory disorders as well as defects with disturbed T and B lymphocyte selection and activation. In addition, there are defects in immune regulation affecting regulatory T cell activity and interleukin (IL)-10 signalling. Related to the variable penetrance of the IBD-like phenotype, there is a likely role for modifier genes and gene-environment interactions. Treatment options in this heterogeneous group of disorders range from anti-inflammatory and immunosuppressive therapy to blockade of tumour necrosis factor α and IL-1β, surgery, haematopoietic stem cell transplantation or gene therapy. Understanding of prototypic monogenic 'orphan' diseases cannot only provide treatment options for the affected patients but also inform on immunological mechanisms and complement the functional understanding of the pathogenesis of IBD.

  15. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions.

    PubMed

    Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui

    2016-01-01

    The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.

  16. Gene flow in environmental Legionella pneumophila leads to genetic and pathogenic heterogeneity within a Legionnaires' disease outbreak.

    PubMed

    McAdam, Paul R; Vander Broek, Charles W; Lindsay, Diane S J; Ward, Melissa J; Hanson, Mary F; Gillies, Michael; Watson, Mick; Stevens, Joanne M; Edwards, Giles F; Fitzgerald, J Ross

    2014-01-01

    Legionnaires' disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires' disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates. Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila. Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires' disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections.

  17. Gal knockout and beyond.

    PubMed

    Zhong, R

    2007-01-01

    Recently, Galalpha1-3Galbeta1-4GlcNAc (Gal) knockout (k/o) pigs have been developed using genetic cloning technologies. This remarkable achievement has generated great enthusiasm in xenotransplantation studies. This review summarizes the current status of nonhuman primate experiments using Gal k/o pig organs. Briefly, when Gal k/o pig organs are transplanted into primates, hyperacute rejection does not occur. Although graft survival has been prolonged up to a few months in some cases, the overall results were not better than those using Gal-positive pig organs with human complement regulatory protein transgenes. Gal k/o pig kidneys rapidly developed rejection which was associated with increased anti-non-Gal antibodies. Although the precise mechanisms of Gal k/o pig organ rejection are not clear, it could result from incomplete deletion of Gal, up-regulation of new antigen (non-Gal antigen) and/or production of non-Gal antibodies. Future work in xenotransplantation should place emphasis on further modification of donors, such as combining human complement regulatory genes with Gal k/o, deleting non-Gal antigens and adding protective/surviving genes or a gene that inhibits coagulation. Induction of donor-specific T- and B-cell tolerance and promotion of accommodation are also warranted.

  18. Transcriptome-Derived Tetranucleotide Microsatellites and Their Associated Genes from the Giant Panda (Ailuropoda melanoleuca).

    PubMed

    Song, Xuhao; Shen, Fujun; Huang, Jie; Huang, Yan; Du, Lianming; Wang, Chengdong; Fan, Zhenxin; Hou, Rong; Yue, Bisong; Zhang, Xiuyue

    2016-09-01

    Recently, an increasing number of microsatellites or simple sequence repeats (SSRs) have been found and characterized from transcriptomes. Such SSRs can be employed as putative functional markers to easily tag corresponding genes, which play an important role in biomedical studies and genetic analysis. However, the transcriptome-derived SSRs for giant panda (Ailuropoda melanoleuca) are not yet available. In this work, we identified and characterized 20 tetranucleotide microsatellite loci from a transcript database generated from the blood of giant panda. Furthermore, we assigned their predicted transcriptome locations: 16 loci were assigned to untranslated regions (UTRs) and 4 loci were assigned to coding regions (CDSs). Gene identities of 14 transcripts contained corresponding microsatellites were determined, which provide useful information to study the potential contribution of SSRs to gene regulation in giant panda. The polymorphic information content (PIC) values ranged from 0.293 to 0.789 with an average of 0.603 for the 16 UTRs-derived SSRs. Interestingly, 4 CDS-derived microsatellites developed in our study were also polymorphic, and the instability of these 4 CDS-derived SSRs was further validated by re-genotyping and sequencing. The genes containing these 4 CDS-derived SSRs were embedded with various types of repeat motifs. The interaction of all the length-changing SSRs might provide a way against coding region frameshift caused by microsatellite instability. We hope these newly gene-associated biomarkers will pave the way for genetic and biomedical studies for giant panda in the future. In sum, this set of transcriptome-derived markers complements the genetic resources available for giant panda. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy

    PubMed Central

    Harper, Joyce C; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2013-01-01

    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation – ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide an update of selected topics that have evolved since 2005. PMID:24225486

  20. Development of a New Aprepitant Liquisolid Formulation with the Aid of Artificial Neural Networks and Genetic Programming.

    PubMed

    Barmpalexis, Panagiotis; Grypioti, Agni; Eleftheriadis, Georgios K; Fatouros, Dimitris G

    2018-02-01

    In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min ) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).

  1. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases.

    PubMed Central

    Alfenito, M R; Souer, E; Goodman, C D; Buell, R; Mol, J; Koes, R; Walbot, V

    1998-01-01

    Glutathione S-transferases (GSTs) traditionally have been studied in plants and other organisms for their ability to detoxify chemically diverse herbicides and other toxic organic compounds. Anthocyanins are among the few endogenous substrates of plant GSTs that have been identified. The Bronze2 (Bz2) gene encodes a type III GST and performs the last genetically defined step of the maize anthocyanin pigment pathway. This step is the conjugation of glutathione to cyanidin 3-glucoside (C3G). Glutathionated C3G is transported to the vacuole via a tonoplast Mg-ATP-requiring glutathione pump (GS-X pump). Genetically, the comparable step in the petunia anthocyanin pathway is controlled by the Anthocyanin9 (An9) gene. An9 was cloned by transposon tagging and found to encode a type I plant GST. Bz2 and An9 have evolved independently from distinct types of GSTs, but each is regulated by the conserved transcriptional activators of the anthocyanin pathway. Here, a phylogenetic analysis is presented, with special consideration given to the origin of these genes and their relaxed substrate requirements. In particle bombardment tests, An9 and Bz2 functionally complement both mutants. Among several other GSTs tested, only soybean GmGST26A (previously called GmHsp26A and GH2/4) and maize GSTIII were found to confer vacuolar sequestration of anthocyanin. Previously, these genes had not been associated with the anthocyanin pathway. Requirements for An9 and Bz2 gene function were investigated by sequencing functional and nonfunctional germinal revertants of an9-T3529, bz2::Ds, and bz2::Mu1. PMID:9668133

  2. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation

    PubMed Central

    Macpherson, Lindsey J.; Zaharieva, Emanuela E.; Kearney, Patrick J.; Alpert, Michael H.; Lin, Tzu-Yang; Turan, Zeynep; Lee, Chi-Hon; Gallio, Marco

    2015-01-01

    Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system. PMID:26635273

  3. Engineering new mycobacterial vaccine design for HIV–TB pediatric vaccine vectored by lysine auxotroph of BCG

    PubMed Central

    Saubi, Narcís; Gea-Mallorquí, Ester; Ferrer, Pau; Hurtado, Carmen; Sánchez-Úbeda, Sara; Eto, Yoshiki; Gatell, Josep M; Hanke, Tomáš; Joseph, Joan

    2014-01-01

    In this study, we have engineered a new mycobacterial vaccine design by using an antibiotic-free plasmid selection system. We assembled a novel Escherichia coli (E. coli)–mycobacterial shuttle plasmid p2auxo.HIVA, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism for plasmid selection and maintenance based on glycine complementation in E. coli and lysine complementation in mycobacteria. This plasmid was first transformed into glycine auxotroph of E. coli strain and subsequently transformed into lysine auxotroph of Mycobacterium bovis BCG strain to generate vaccine BCG.HIVA2auxo. We demonstrated that the episomal plasmid p2auxo.HIVA was stable in vivo over a 7-week period and genetically and phenotypically characterized the BCG.HIVA2auxo vaccine strain. The BCG.HIVA2auxo vaccine in combination with modified vaccinia virus Ankara (MVA). HIVA was safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. Polyfunctional HIV-1-specific CD8+ T cells, which produce interferon-γ and tumor necrosis factor-α and express the degranulation marker CD107a, were induced. Thus, we engineered a novel, safer, good laboratory practice–compatible BCG-vectored vaccine using prototype immunogen HIVA. This antibiotic-free plasmid selection system based on “double” auxotrophic complementation might be a new mycobacterial vaccine platform to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective response soon after birth. PMID:26015961

  4. The functional basis of adaptive evolution in chemostats.

    PubMed

    Gresham, David; Hong, Jungeui

    2015-01-01

    Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. Pharmacogenetics of asthma

    PubMed Central

    Lima, John J.; Blake, Kathryn V.; Tantisira, Kelan G.; Weiss, Scott T.

    2009-01-01

    Purpose of review Patient response to the asthma drug classes, bronchodilators, inhaled corticosteroids and leukotriene modifiers, are characterized by a large degree of heterogeneity, which is attributable in part to genetic variation. Herein, we review and update the pharmacogenetics and pharmaogenomics of common asthma drugs. Recent findings Early studies suggest that bronchodilator reversibility and asthma worsening in patients on continuous short-acting and long-acting β-agonists are related to the Gly16Arg genotype for the ADRB2. More recent studies including genome-wide association studies implicate variants in other genes contribute to bronchodilator response heterogeneity and fail to replicate asthma worsening associated with continuous β-agonist use. Genetic determinants of the safety of long-acting β-agonist require further study. Variants in CRHR1, TBX21, and FCER2 contribute to variability in response for lung function, airways responsiveness, and exacerbations in patients taking inhaled corticosteroids. Variants in ALOX5, LTA4H, LTC4S, ABCC1, CYSLTR2, and SLCO2B1 contribute to variability in response to leukotriene modifiers. Summary Identification of novel variants that contribute to response heterogeneity supports future studies of single nucleotide polymorphism discovery and include gene expression and genome-wide association studies. Statistical models that predict the genomics of response to asthma drugs will complement single nucleotide polymorphism discovery in moving toward personalized medicine. PMID:19077707

  6. The practical and pedagogical advantages of an ambigraphic nucleic acid notation.

    PubMed

    Rozak, David A

    2006-01-01

    The universally applied IUPAC notation for nucleic acids was adopted primarily to facilitate the mental association of G, A, T, C, and the related ambiguity characters with the bases they represent. However it is possible to create a notation that offers greater support for the basic manipulations and analyses to which genetic sequences frequently are subjected. By designing a nucleic acid notation around ambigrams, it is possible to simplify the frequently applied process of reverse complementation and aid the visualization of palindromes. The ambigraphic notation presented here also uses common orthographic features such as stems and loops to highlight guanine and cytosine rich regions, support the derivation of ambiguity characters, and aid educators in teaching the fundamentals of molecular genetics.

  7. BAPJ69-4A: a yeast two-hybrid strain for both positive and negative genetic selection.

    PubMed

    Shaffer, Hally Anne; Rood, Michael Kenneth; Kashlan, Badar; Chang, Eileen I-ling; Doyle, Donald Francis; Azizi, Bahareh

    2012-10-01

    Genetic selection systems, such as the yeast two-hybrid system, are efficient methods to detect protein-protein and protein-ligand interactions. These systems have been further developed to assess negative interactions, such as inhibition, using the URA3 genetic selection marker. Previously, chemical complementation was used to assess positive selection in Saccharomyces cerevisiae. In this work, a new S. cerevisiae strain, called BAPJ69-4A, containing three selective markers ADE2, HIS3, and URA3 as well as the lacZ gene controlled by Gal4 response elements, was developed and characterized using the retinoid X receptor (RXR) and its ligand 9-cis retinoic acid (9cRA). Further characterization was performed using RXR variants and the synthetic ligand LG335. To assess the functionality of the strain, RXR was compared to the parent strain PJ69-4A in adenine, histidine, and uracil selective media. In positive selection, associating partners that lead to cell growth were observed in all media in the presence of ligand, whereas partners that did not associate due to the absence of ligand displayed no growth. Conversely, in negative selection, partners that did not associate in 5-FOA medium did not display cell death due to the lack of expression of the URA3 gene. The creation of the BAPJ69-4A yeast strain provides a high-throughput selection system, called negative chemical complementation, which can be used for both positive and negative selection, providing a fast, powerful tool for discovering novel ligand receptor pairs for applications in drug discovery and protein engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Looking forward in geriatric anxiety and depression: implications of basic science for the future.

    PubMed

    Gershenfeld, Howard K; Philibert, Robert A; Boehm, Gary W

    2005-12-01

    Major depression and anxiety are common psychiatric illnesses whose etiology remains incompletely understood. This review highlights progress in understanding the etiology of these illnesses through genetic strategies and looks forward to their impact on geriatric psychiatry. We briefly address three broad domains of progress, namely 1) genetic approaches to etiology, including linkage and association studies, pharmacogenetics ("personalized medicine"), and gene x environment interactions; 2) mechanisms of thyroid and testosterone action via nuclear receptors, given these hormones' status as possible augmenters of antidepressants; and 3) the role of the neuroimmune system as a contributor to the stress response. Genetic strategies offer one path for converting correlational findings into causal pathways while complementing studies of a gene's function at the molecular, cellular, network, and whole-organismal levels. Neuroendocrine supplementation (thyroid and testosterone) has a long history and tradition. A molecular understanding of nuclear receptor pathways and their coactivators, the mediator complex proteins, provides a rationale for improved targeting of hormonal action in a tissue-selective manner, yielding drugs with improved safety and efficacy. Neural-immune interactions in psychiatric illness remain tantalizing topics. Research suggests that cytokine pathways may contribute to the maintenance or susceptibility to stress, anxiety, and depressive disorders. The reciprocal and recursive interactions among basic science, drug discovery, and clinical science will continue to provide hopeful themes for improving the lives of patients with treatment-refractive psychiatric illness.

  9. Binding of Free and Immune Complex-Associated Hepatitis C Virus to Erythrocytes Is Mediated by the Complement System.

    PubMed

    Salam, Kazi Abdus; Wang, Richard Y; Grandinetti, Teresa; De Giorgi, Valeria; Alter, Harvey J; Allison, Robert D

    2018-05-09

    Erythrocytes bind circulating immune complexes (IC) and facilitate IC clearance from the circulation. Chronic hepatitis C virus (HCV) infection is associated with IC-related disorders. In this study we investigated the kinetics and mechanism of HCV and HCV-IC binding to and dissociation from erythrocytes. Cell culture-produced HCV was mixed with erythrocytes from healthy blood donors and erythrocyte-associated virus particles were quantified. Purified complement proteins, complement-depleted serum, and complement receptor antibodies were used to investigate complement-mediated HCV-erythrocyte binding. Purified HCV-specific immunoglobulin G from a chronic HCV-infected patient was used to study complement-mediated HCV-IC-erythrocyte binding. Binding of HCV to erythrocytes increased 200 to 1,000 fold after adding complement active human serum in the absence of antibody. Opsonization of free HCV occurred within 10 minutes and peak binding to erythrocytes was observed at 20-30 minutes. Complement protein C1 was required for binding, while C2, C3 and C4 significantly enhanced binding. Complement receptor 1 (CR1, CD35) antibodies blocked the binding of HCV to erythrocytes isolated from chronically infected HCV patients and healthy blood donors. HCV-ICs significantly enhanced complement-mediated binding to erythrocytes compared to unbound HCV. Dissociation of complement-opsonized HCV from erythrocytes depended on the presence of Factor I. HCV released by Factor I bound preferentially to CD19+ B cells compared to other leukocytes. These results demonstrate that complement mediates the binding of free and IC-associated HCV to CR1 on erythrocytes, and provide a mechanistic rationale for investigating the differential phenotypic expression of HCV-IC-related disease. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  10. Physicochemical characterization and study of in vitro interactions of pH-sensitive liposomes with the complement system.

    PubMed

    Carmo, Vildete A S; De Oliveira, Mônica C; Reis, Eduardo C O; Guimarães, Tânia M P D; Vilela, José M C; Andrade, Margareth S; Michalick, Marilene S M; Cardoso, Valbert N

    2008-01-01

    Complement activation is an important step in the acceleration of liposome clearance. The anaphylatoxins released following complement activation may motivate a wide variety of physiologic changes. We performed physicochemical characterization and in vitro studies of the interaction of complement system with both noncirculating and long-circulating pH-sensitive and nonpH-sensitive liposomes. The liposomes were characterized by diameter, zeta potential, and atomic force microscopy (AFM). The study of liposome interactions with complement system was conducted using hemolytic assay in rat serum. All liposomes presented a similar mean diameter (between 99.8 and 124.3 nm). The zeta potential was negative in all liposome preparations, except in liposomes modified with aminopoly (ethyleneglycol) 2000-distearoylphosphatidylethanolamine (aPEG(2000)-DSPE), which presented positive zeta potential. Atomic force microscopy images showed that non-long-circulating pH-sensitive liposomes are prone to vesicles aggregation. Non-pH-sensitive liposomes complement system activates, while pH-sensitive liposomes showed to be poor complement activators in rat serum.

  11. Biological safety concepts of genetically modified live bacterial vaccines.

    PubMed

    Frey, Joachim

    2007-07-26

    Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.

  12. Accelerating Genetic Gains in Legumes for the Development of Prosperous Smallholder Agriculture: Integrating Genomics, Phenotyping, Systems Modelling and Agronomy.

    PubMed

    Varshney, Rajeev K; Thudi, Mahendar; Pandey, Manish K; Tardieu, Francois; Ojiewo, Chris; Vadez, Vincent; Whitbread, Anthony M; Siddique, Kadambot H M; Nguyen, Henry T; Carberry, Peter S; Bergvinson, David

    2018-03-05

    Grain legumes form an important component of the human diet, feed for livestock and replenish soil fertility through biological nitrogen fixation. Globally, the demand for food legumes is increasing as they complement cereals in protein requirements and possess a high percentage of digestible protein. Climate change has enhanced the frequency and intensity of drought stress that is posing serious production constraints, especially in rainfed regions where most legumes are produced. Genetic improvement of legumes, like other crops, is mostly based on pedigree and performance-based selection over the last half century. For achieving faster genetic gains in legumes in rainfed conditions, this review article proposes the integration of modern genomics approaches, high throughput phenomics and simulation modelling as support for crop improvement that leads to improved varieties that perform with appropriate agronomy. Selection intensity, generation interval and improved operational efficiencies in breeding are expected to further enhance the genetic gain in experiment plots. Improved seed access to farmers, combined with appropriate agronomic packages in farmers' fields, will deliver higher genetic gains. Enhanced genetic gains including not only productivity but also nutritional and market traits will increase the profitability of farmers and the availability of affordable nutritious food especially in developing countries.

  13. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    PubMed

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool to equip modern crops with environment-tailored characteristics.

  14. Fine-Scale Genetic Structure of Monilinia fructicola During Brown Rot Epidemics Within Individual Peach Tree Canopies.

    PubMed

    Everhart, S E; Scherm, H

    2015-04-01

    The purpose of this study was to determine the fine-scale genetic structure of populations of the brown rot pathogen Monilinia fructicola within individual peach tree canopies to better understand within-tree plant pathogen diversity and to complement previous work on spatiotemporal development of brown rot disease at the canopy level. Across 3 years in a total of six trees, we monitored disease development, collected isolates from every M. fructicola symptom during the course of the season, and created high-resolution three-dimensional maps of all symptom and isolate locations within individual canopies using an electromagnetic digitizer. Each canopy population (65 to 173 isolates per tree) was characterized using a set of 13 microsatellite markers and analyzed for evidence of spatial genetic autocorrelation among isolates during the epidemic phase of the disease. Results showed high genetic diversity (average uh=0.529) and high genotypic diversity (average D=0.928) within canopies. The percentage of unique multilocus genotypes within trees was greater for blossom blight isolates (78.2%) than for fruit rot isolates (51.3%), indicating a greater contribution of clonal reproduction during the preharvest epidemic. For fruit rot isolates, between 54.2 and 81.7% of isolates were contained in one to four dominant clonal genotypes per tree having at least 10 members. All six fruit rot populations showed positive and significant spatial genetic autocorrelation for distance classes between 0.37 and 1.48 m. Despite high levels of within-tree pathogen diversity, the contribution of locally available inoculum combined with short-distance dispersal is likely the main factor generating clonal population foci and associated spatial genetic clustering within trees.

  15. Experimental Estimation of Mutation Rates in a Wheat Population With a Gene Genealogy Approach

    PubMed Central

    Raquin, Anne-Laure; Depaulis, Frantz; Lambert, Amaury; Galic, Nathalie; Brabant, Philippe; Goldringer, Isabelle

    2008-01-01

    Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 × 10−3 per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues. PMID:18689900

  16. Experimental estimation of mutation rates in a wheat population with a gene genealogy approach.

    PubMed

    Raquin, Anne-Laure; Depaulis, Frantz; Lambert, Amaury; Galic, Nathalie; Brabant, Philippe; Goldringer, Isabelle

    2008-08-01

    Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 x 10(-3) per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues.

  17. Genetic and Morphological Variation of the Forkbeard, Phycis phycis (Pisces, Phycidae): Evidence of Panmixia and Recent Population Expansion along Its Distribution Area

    PubMed Central

    Rodrigues, Ana Sofia B.; Sequeira, Vera; Neves, Ana; Paiva, Rafaela Barros

    2016-01-01

    The knowledge of population structure of a species is essential to effectively assess and manage fisheries. In the present study, genetics, by mitochondrial DNA cytochrome b sequence analysis, and body geometric morphometrics were used to evaluate the existence of distinct populations of the forkbeard (Phycis phycis), an important commercial species in several European countries, especially Portugal and Spain. For geometric morphometric analysis, specimens were collected in the Northeast Atlantic Ocean—Azores, Madeira and mainland Portugal, and for genetic analysis, these samples were complemented with samples collected in the Mediterranean Sea—Spain, Italy and Croatia, in order to cover the entire distribution area of the species. Body shape of the forkbeard from the Northeast Atlantic was found to be highly variable. This variation was probably associated with different environmental factors between the study areas. Despite morphological variation, a low genetic differentiation between samples from different areas was found, most likely due to gene flow that occurred in the past or with the demographic history of the species. Moreover, the presence of unique haplotypes in the Northeast Atlantic and in the Mediterranean suggests that recent gene flow between populations from these areas should be limited. Altogether, a high haplotype diversity, a low nucleotide diversity, a “star-like” network and the results of the mismatch distribution, indicate a possible signature of recent population expansions, which probably started during the end of the Last Glacial Maximum and led to the colonization of the Northeast Atlantic and the Mediterranean. PMID:27941988

  18. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    PubMed

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  19. Quantitative and Dynamic Imaging of ATM Kinase Activity by Bioluminescence Imaging.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA damage response, including DNA double strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter-expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  20. Quantitative and Dynamic Imaging of ATM Kinase Activity.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including DNA double-strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  1. Seed colour loci, homoeology and linkage groups of the C genome chromosomes revealed in Brassica rapa–B. oleracea monosomic alien addition lines

    PubMed Central

    Heneen, Waheeb K.; Geleta, Mulatu; Brismar, Kerstin; Xiong, Zhiyong; Pires, J. Chris; Hasterok, Robert; Stoute, Andrew I.; Scott, Roderick J.; King, Graham J.; Kurup, Smita

    2012-01-01

    Background and Aims Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes. Methods A new batch of B. rapa–B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow's carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used. Key Results The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups. Conclusions A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker-assisted selection and breeding for yellow seeds. PMID:22628364

  2. Association studies of excision repair cross-complementation group 1 (ERCC1) haplotypes with lung and head and neck cancer risk in a Caucasian population.

    PubMed

    Jones, Nathan R; Spratt, Thomas E; Berg, Arthur S; Muscat, Joshua E; Lazarus, Philip; Gallagher, Carla J

    2011-04-01

    The formation of bulky DNA adducts caused by diol epoxide derivatives of polycyclic aromatic hydrocarbons has been associated with tobacco-induced cancers, and inefficient repair of such adducts by the nucleotide excision repair (NER) system has been linked to increased risk of tobacco-induced lung and head and neck (H&N) cancers. The human excision repair cross-complementation group 1 (ERCC1) protein is essential for a functional NER system and genetic variation in ERCC1 may contribute to impaired DNA repair capacity and increased lung and H&N cancer risk. In order to comprehensively capture common genetic variation in the ERCC1 gene, Caucasian data from the International HapMap project was used to assess linkage disequilibrium and choose four tagSNPs (rs1319052, rs3212955, rs3212948, and rs735482) in the ERCC1 gene to genotype 452 lung cancer cases, 175 H&N cancer cases, and 790 healthy controls. Haplotypes were estimated using expectation maximization (EM) algorithm, and haplotype association with cancer was investigated using Haplo.stats software adjusting for known covariates. The genotype and haplotype frequencies matched previous estimates from Caucasians. There was no significant difference in the prevalence of rs1319052, rs3212955, rs3212948, and rs735482 when comparing lung or H&N cancer cases with controls (p-values>0.05). Similarly, there was no association between ERCC1 haplotypes and lung or H&N cancer susceptibility in this Caucasian population (p-values>0.05). No associations were found when stratifying lung cancer cases by histology, sex, smoking status, or smoking intensity. This study suggests that ERCC1 polymorphisms and haplotypes do not play a role in lung and H&N cancer susceptibility in Caucasians. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Genome-wide and gene-centric analyses of circulating myeloperoxidase levels in the charge and care consortia.

    PubMed

    Reiner, Alexander P; Hartiala, Jaana; Zeller, Tanja; Bis, Joshua C; Dupuis, Josée; Fornage, Myriam; Baumert, Jens; Kleber, Marcus E; Wild, Philipp S; Baldus, Stephan; Bielinski, Suzette J; Fontes, João D; Illig, Thomas; Keating, Brendan J; Lange, Leslie A; Ojeda, Francisco; Müller-Nurasyid, Martina; Munzel, Thomas F; Psaty, Bruce M; Rice, Kenneth; Rotter, Jerome I; Schnabel, Renate B; Tang, W H Wilson; Thorand, Barbara; Erdmann, Jeanette; Jacobs, David R; Wilson, James G; Koenig, Wolfgang; Tracy, Russell P; Blankenberg, Stefan; März, Winfried; Gross, Myron D; Benjamin, Emelia J; Hazen, Stanley L; Allayee, Hooman

    2013-08-15

    Increased systemic levels of myeloperoxidase (MPO) are associated with the risk of coronary artery disease (CAD). To identify the genetic factors that are associated with circulating MPO levels, we carried out a genome-wide association study (GWAS) and a gene-centric analysis in subjects of European ancestry and African Americans (AAs). A locus on chromosome 1q31.1 containing the complement factor H (CFH) gene was strongly associated with serum MPO levels in 9305 subjects of European ancestry (lead SNP rs800292; P = 4.89 × 10(-41)) and in 1690 AA subjects (rs505102; P = 1.05 × 10(-8)). Gene-centric analyses in 8335 subjects of European ancestry additionally identified two rare MPO coding sequence variants that were associated with serum MPO levels (rs28730837, P = 5.21 × 10(-12); rs35897051, P = 3.32 × 10(-8)). A GWAS for plasma MPO levels in 9260 European ancestry subjects identified a chromosome 17q22 region near MPO that was significantly associated (lead SNP rs6503905; P = 2.94 × 10(-12)), but the CFH locus did not exhibit evidence of association with plasma MPO levels. Functional analyses revealed that rs800292 was associated with levels of complement proteins in serum. Variants at chromosome 17q22 also had pleiotropic cis effects on gene expression. In a case-control analysis of ∼80 000 subjects from CARDIoGRAM, none of the identified single-nucleotide polymorphisms (SNPs) were associated with CAD. These results suggest that distinct genetic factors regulate serum and plasma MPO levels, which may have relevance for various acute and chronic inflammatory disorders. The clinical implications for CAD and a better understanding of the functional basis for the association of CFH and MPO variants with circulating MPO levels require further study.

  4. Mutants Resistant to anti-Microtubule Herbicides Map to a Locus on the Uni Linkage Group in Chlamydomonas Reinhardtii

    PubMed Central

    James, S. W.; Ranum, LPW.; Silflow, C. D.; Lefebvre, P. A.

    1988-01-01

    We have used genetic analysis to study the mode of action of two anti-microtubule herbicides, amiprophos-methyl (APM) and oryzalin (ORY). Over 200 resistant mutants were selected by growth on APM- or ORY-containing plates. The 21 independently isolated mutants examined in this study are 3- to 8-fold resistant to APM and are strongly cross-resistant to ORY and butamiphos, a close analog of APM. Two Mendelian genes, apm1 and apm2, are defined by linkage and complementation analysis. There are 20 alleles of apm1 and one temperature-sensitive lethal (33°) allele of apm2. Mapping by two-factor crosses places apm1 6.5 cM centromere proximal to uni1 and within 4 cM of pf7 on the uni linkage group, a genetically circular linkage group comprising genes which affect flagellar assembly or function; apm2 maps near the centromere of linkage group VIII. Allele-specific synthetic lethality is observed in crosses between apm2 and alleles of apm1. Also, self crosses of apm2 are zygotic lethal, whereas crosses of nine apm1 alleles inter se result in normal germination and tetrad viability. The mutants are recessive to their wild-type alleles but doubly heterozygous diploids (apm1 +/+ apm2) made with apm2 and any of 15 apm1 alleles display partial intergenic noncomplementation, expressed as intermediate resistance. Diploids homozygous for mutant alleles of apm1 are 4-6-fold resistant to APM and ORY; diploids homozygous for apm2 are ts(-) and 2-fold resistant to the herbicides. Doubly heterozygous diploids complement the ts(-) phenotype of apm2, but they are typically 1.5-2-fold resistant to APM and ORY. From the results described we suggest that the gene products of apm1 and apm2 may interact directly or function in the same structure or process. PMID:8608924

  5. Genetic effects of a large-scale Spartina alterniflora (smooth cordgrass) dieback and recovery in the northern Gulf of Mexico

    USGS Publications Warehouse

    Edwards, K.R.; Travis, S.E.; Proffitt, C.E.

    2005-01-01

    A large-scale dieback event struck marshes along the northwestern Gulf of Mexico coast during summer 2000, in apparent response to a prolonged and severe drought. Along the Louisiana coast, large areas of the dominant marsh species, Spartina alterniflora, turned brown, followed by death of at least the aboveground structures or entire plant mortality. Key ecological and genetic measures were studied in a dieback-affected marsh in southwest Louisiana (C83 marsh, Sabine National Wildlife Refuge), for which existed predieback ecologic and genetic datasets. Effects on genetic diversity only were studied in a second set of sites in southeastern Louisiana (near Bay Junop), where the dieback was more widespread. We hypothesized that stem density, live aboveground biomass, and genetic diversity would be significantly reduced compared to predieback conditions and to nearby unaffected marshes. Stem densities and biomass levels approached predieback conditions 14 months after first observance of the dieback in the Sabine marsh and were similar to or exceeded the same measures for a nearby unaffected marsh. DNA extracted from leaf samples in the Sabine and Bay Junop sites was used to construct genotype profiles using AFLPs and analyzed using the complement of Simpson's Index (1-D), the richness measure G/N, average heterozygosity ???H???, and the estimated proportion of polymorphic genes ???P???. Genetic diversity was relatively unaffected by the dieback at either the Sabine or Bay Junop sites. Evidence from field observations and the results of the genetic analyses suggest that seedling recruitment is an important factor in the recovery of both the Bay Junop and C83 sites, although re-growth from surviving below-ground rhizomes appeared to dominate recovery at the latter site. Survival of below-ground structures, leading to the rapid recovery observed, indicates a high level of resilience of the Sabine marsh to drought-induced stress. Still, the genetic diversity of S. alterniflora- dominated marshes may be promoted by occasional disturbance events, which produce open areas in which seedling recruitment can occur. ?? 2005 Estuarine Research Federation.

  6. Circum-Mediterranean phylogeography of a bat coupled with past environmental niche modeling: A new paradigm for the recolonization of Europe?

    PubMed

    Bilgin, Raşit; Gürün, Kanat; Rebelo, Hugo; Puechmaille, Sebastien J; Maracı, Öncü; Presetnik, Primoz; Benda, Petr; Hulva, Pavel; Ibáñez, Carlos; Hamidovic, Daniela; Fressel, Norma; Horáček, Ivan; Karataş, Ayşegül; Karataş, Ahmet; Allegrini, Benjamin; Georgiakakis, Panagiotis; Gazaryan, Suren; Nagy, Zoltan L; Abi-Said, Mounir; Lučan, Radek K; Bartonička, Tomáš; Nicolaou, Haris; Scaravelli, Dino; Karapandža, Branko; Uhrin, Marcel; Paunović, Milan; Juste, Javier

    2016-06-01

    The isolation of populations in the Iberian, Italian and Balkan peninsulas during the ice ages define four main paradigms that explain much of the known distribution of intraspecific genetic diversity in Europe. In this study we investigated the phylogeography of a wide-spread bat species, the bent-winged bat, Miniopterus schreibersii around the Mediterranean basin and in the Caucasus. Environmental Niche Modeling (ENM) analysis was applied to predict both the current distribution of the species and its distribution during the last glacial maximum (LGM). The combination of genetics and ENM results suggest that the populations of M. schreibersii in Europe, the Caucasus and Anatolia went extinct during the LGM, and the refugium for the species was a relatively small area to the east of the Levantine Sea, corresponding to the Mediterranean coasts of present-day Syria, Lebanon, Israel, and northeastern and northwestern Egypt. Subsequently the species first repopulated Anatolia, diversified there, and afterwards expanded into the Caucasus, continental Europe and North Africa after the end of the LGM. The fossil record in Iberia and the ENM results indicate continuous presence of Miniopterus in this peninsula that most probably was related to the Maghrebian lineage during the LGM, which did not persist afterwards. Using our results combined with similar findings in previous studies, we propose a new paradigm explaining the general distribution of genetic diversity in Europe involving the recolonization of the continent, with the main contribution from refugial populations in Anatolia and the Middle East. The study shows how genetics and ENM approaches can complement each other in providing a more detailed picture of intraspecific evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. False Belief, Complementation Language, and Contextual Bias in Preschoolers

    ERIC Educational Resources Information Center

    Ng, Lisa; Cheung, Him; Xiao, Wen

    2010-01-01

    In the present study, we address two questions concerning the relation between children's false belief and their understanding of complex object complements. The first question is whether the previously demonstrated association between tensed complements and false belief generalizes to infinitival complements (de Villiers & Pyers, 2002). The…

  8. Single nucleotide variations: Biological impact and theoretical interpretation

    PubMed Central

    Katsonis, Panagiotis; Koire, Amanda; Wilson, Stephen Joseph; Hsu, Teng-Kuei; Lua, Rhonald C; Wilkins, Angela Dawn; Lichtarge, Olivier

    2014-01-01

    Genome-wide association studies (GWAS) and whole-exome sequencing (WES) generate massive amounts of genomic variant information, and a major challenge is to identify which variations drive disease or contribute to phenotypic traits. Because the majority of known disease-causing mutations are exonic non-synonymous single nucleotide variations (nsSNVs), most studies focus on whether these nsSNVs affect protein function. Computational studies show that the impact of nsSNVs on protein function reflects sequence homology and structural information and predict the impact through statistical methods, machine learning techniques, or models of protein evolution. Here, we review impact prediction methods and discuss their underlying principles, their advantages and limitations, and how they compare to and complement one another. Finally, we present current applications and future directions for these methods in biological research and medical genetics. PMID:25234433

  9. Validation studies and proficiency testing.

    PubMed

    Ankilam, Elke; Heinze, Petra; Kay, Simon; Van den Eede, Guy; Popping, Bert

    2002-01-01

    Genetically modified organisms (GMOs) entered the European food market in 1996. Current legislation demands the labeling of food products if they contain <1% GMO, as assessed for each ingredient of the product. To create confidence in the testing methods and to complement enforcement requirements, there is an urgent need for internationally validated methods, which could serve as reference methods. To date, several methods have been submitted to validation trials at an international level; approaches now exist that can be used in different circumstances and for different food matrixes. Moreover, the requirement for the formal validation of methods is clearly accepted; several national and international bodies are active in organizing studies. Further validation studies, especially on the quantitative polymerase chain reaction methods, need to be performed to cover the rising demand for new extraction methods and other background matrixes, as well as for novel GMO constructs.

  10. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions.

    PubMed

    Koenekoop, Robert K; Lopez, Irma; den Hollander, Anneke I; Allikmets, Rando; Cremers, Frans P M

    2007-07-01

    Human retinal dystrophies have unparalleled genetic and clinical diversity and are currently linked to more than 185 genetic loci. Genotyping is a crucial exercise, as human gene-specific clinical trials to study photoreceptor rescue are on their way. Testing confirms the diagnosis at the molecular level and allows for a more precise prognosis of the possible future clinical evolution. As treatments are gene-specific and the 'window of opportunity' is time-sensitive; accurate, rapid and cost-effective genetic testing will play an ever-increasing crucial role. The gold standard is sequencing but is fraught with excessive costs, time, manpower issues and finding non-pathogenic variants. Therefore, no centre offers testing of all currently 132 known genes. Several new micro-array technologies have emerged recently, that offer rapid, cost-effective and accurate genotyping. The new disease chips from Asper Ophthalmics (for Stargardt dystrophy, Leber congenital amaurosis [LCA], Usher syndromes and retinitis pigmentosa) offer an excellent first pass opportunity. All known mutations are placed on the chip and in 4 h a patient's DNA is screened. Identification rates (identifying at least one disease-associated mutation) are currently approximately 70% (Stargardt), approximately 60-70% (LCA) and approximately 45% (Usher syndrome subtype 1). This may be combined with genotype-phenotype correlations that suggest the causal gene from the clinical appearance (e.g. preserved para-arteriolar retinal pigment epithelium suggests the involvement of the CRB1 gene in LCA). As approximately 50% of the retinal dystrophy genes still await discovery, these technologies will improve dramatically as additional novel mutations are added. Genetic testing will then become standard practice to complement the ophthalmic evaluation.

  11. Is complement good, bad, or both? New functions of the complement factors associated with inflammation mechanisms in the central nervous system.

    PubMed

    Tahtouh, Muriel; Croq, Françoise; Lefebvre, Christophe; Pestel, Joël

    2009-09-01

    The complement system is well known as an enzyme cascade that helps to defend against infections. Indeed, this ancestral system bridges innate and adaptive immunity. Its implication in diseases of the central nervous system (CNS), has led to an increased number of studies. Complement activation in the CNS has been generally considered to contribute to tissue damage. However, recent studies suggest that complement may be neuroprotective, and can participate in maintenance and repair of the adult brain. Here, we will review this dual role of complement proteins and some of their functional interactions with part of the chemokine and cytokine network associated with the protection of CNS integrity.

  12. How rare bone diseases have informed our knowledge of complex diseases.

    PubMed

    Johnson, Mark L

    2016-01-01

    Rare bone diseases, generally defined as monogenic traits with either autosomal recessive or dominant patterns of inheritance, have provided a rich database of genes and associated pathways over the past 2-3 decades. The molecular genetic dissection of these bone diseases has yielded some major surprises in terms of the causal genes and/or involved pathways. The discovery of genes/pathways involved in diseases such as osteopetrosis, osteosclerosis, osteogenesis imperfecta and many other rare bone diseases have all accelerated our understanding of complex traits. Importantly these discoveries have provided either direct validation for a specific gene embedded in a group of genes within an interval identified through a complex trait genome-wide association study (GWAS) or based upon the pathway associated with a monogenic trait gene, provided a means to prioritize a large number of genes for functional validation studies. In some instances GWAS studies have yielded candidate genes that fall within linkage intervals associated with monogenic traits and resulted in the identification of causal mutations in those rare diseases. Driving all of this discovery is a complement of technologies such as genome sequencing, bioinformatics and advanced statistical analysis methods that have accelerated genetic dissection and greatly reduced the cost. Thus, rare bone disorders in partnership with GWAS have brought us to the brink of a new era of personalized genomic medicine in which the prevention and management of complex diseases will be driven by the molecular understanding of each individuals contributing genetic risks for disease.

  13. Studying disorders of vertebrate iron and heme metabolism using zebrafish

    PubMed Central

    van der Vorm, Lisa N.; Paw, Barry H.

    2017-01-01

    Iron is a crucial component of heme- and iron-sulfur clusters, involved in vital cellular functions such as oxygen transport, DNA synthesis, and respiration. Both excess and insufficient levels of iron and heme-precursors cause human disease, such as iron-deficiency anemia, hemochromatosis, and porphyrias. Hence, their levels must be tightly regulated, requiring a complex network of transporters and feedback mechanisms. The use of zebrafish to study these pathways and the underlying genetics offers many advantages, among others their optical transparency, ex-vivo development and high genetic and physiological conservations. This chapter first reviews well-established methods, such as large-scale mutagenesis screens that have led to the initial identification of a series of iron and heme transporters and the generation of a variety of mutant lines. Other widely used techniques are based on injection of RNA, including complementary morpholino knockdown and gene overexpression. In addition, we highlight several recently developed approaches, most notably endonuclease-based gene knockouts such as TALENs or the CRISPR/Cas9 system that have been used to study how loss of function can induce human disease phenocopies in zebrafish. Rescue by chemical complementation with iron-based compounds or small molecules can subsequently be used to confirm causality of the genetic defect for the observed phenotype. All together, zebrafish have proven to be – and will continue to serve as an ideal model to advance our understanding of the pathogenesis of human iron and heme-related diseases and to develop novel therapies to treat these conditions. PMID:28129844

  14. Genetic Diversity of White Sharks, Carcharodon carcharias, in the Northwest Atlantic and Southern Africa.

    PubMed

    O'Leary, Shannon J; Feldheim, Kevin A; Fields, Andrew T; Natanson, Lisa J; Wintner, Sabine; Hussey, Nigel; Shivji, Mahmood S; Chapman, Demian D

    2015-01-01

    The white shark, Carcharodon carcharias, is both one of the largest apex predators in the world and among the most heavily protected marine fish. Population genetic diversity is in part shaped by recent demographic history and can thus provide information complementary to more traditional population assessments, which are difficult to obtain for white sharks and have at times been controversial. Here, we use the mitochondrial control region and 14 nuclear-encoded microsatellite loci to assess white shark genetic diversity in 2 regions: the Northwest Atlantic (NWA, N = 35) and southern Africa (SA, N = 131). We find that these 2 regions harbor genetically distinct white shark populations (Φ ST = 0.10, P < 0.00001; microsatellite F ST = 0.1057, P < 0.021). M-ratios were low and indicative of a genetic bottleneck in the NWA (M-ratio = 0.71, P < 0.004) but not SA (M-ratio = 0.85, P = 0.39). This is consistent with other evidence showing a steep population decline occurring in the mid to late 20th century in the NWA, whereas the SA population appears to have been relatively stable. Estimates of effective population size ranged from 22.6 to 66.3 (NWA) and 188 to 1998.3 (SA) and evidence of inbreeding was found (primarily in NWA). Overall, our findings indicate that white population dynamics within NWA and SA are determined more by intrinsic reproduction than immigration and there is genetic evidence of a population decline in the NWA, further justifying the strong domestic protective measures that have been taken for this species in this region. Our study also highlights how assessment of genetic diversity can complement other sources of information to better understand the status of threatened marine fish populations. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Correlation of Physical and Cytogenetic Maps in Chromosomal Region 86e-87f

    PubMed Central

    Deak, P.; Omar, M. M.; Saunders, RDC.; Pal, M.; Komonyi, O.; Szidonya, J.; Maroy, P.; Zhang, Y.; Ashburner, M.; Benos, P.; Savakis, C.; Siden-Kiamos, I.; Louis, C.; Bolshakov, V. N.; Kafatos, F. C.; Madueno, E.; Modolell, J.; Glover, D. M.

    1997-01-01

    We have established a collection of 2460 lethal or semi-lethal mutant lines using a procedure thought to insert single P elements into vital genes on the third chromosome of Drosophila melanogaster. More than 1200 randomly selected lines were examined by in situ hybridization and 90% found to contain single insertions at sites that mark 89% of all lettered subdivisions of the Bridges' map. A set of chromosomal deficiencies that collectively uncover ~25% of the euchromatin of chromosome 3 reveal lethal mutations in 468 lines corresponding to 145 complementation groups. We undertook a detailed analysis of the cytogenetic interval 86E-87F and identified 87 P-element-induced mutations falling into 38 complementation groups, 16 of which correspond to previously known genes. Twenty-one of these 38 complementation groups have at least one allele that has a P-element insertion at a position consistent with the cytogenetics of the locus. We have rescued P elements and flanking chromosomal sequences from the 86E-87F region in 35 lines with either lethal or genetically silent P insertions, and used these as probes to identify cosmids and P1 clones from the Drosophila genome projects. This has tied together the physical and genetic maps and has linked 44 previously identified cosmid contigs into seven ``supercontigs'' that span the interval. STS data for sequences flanking one side of the P-element insertions in 49 lines has identified insertions in the αγ element at 87C, two known transposable elements, and the open reading frames of seven putative single copy genes. These correspond to five known genes in this interval, and two genes identified by the homology of their predicted products to known proteins from other organisms. PMID:9409831

  16. Kupffer cell complement receptor clearance function and host defense.

    PubMed

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  17. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona.

    PubMed

    Coty, Jean-Baptiste; Eleamen Oliveira, Elquio; Vauthier, Christine

    2017-11-05

    The understanding of complement activation by nanomaterials is a key to a rational design of safe and efficient nanomedicines. This work proposed a systematic study investigating how molecular design of nanoparticle coronas made of dextran impacts on mechanisms that trigger complement activation. The nanoparticles used for this work consisted of dextran-coated poly(isobutylcyanoacrylate) (PIBCA) nanoparticles have already been thoroughly characterized. Their different capacity to trigger complement activation established on the cleavage of the protein C3 was also already described making these nanoparticles good models to investigate the relation between the molecular feature of their corona and the mechanism by which they triggered complement activation. Results of this new study show that complement activation pathways can be selected by distinct architectures formed by dextran chains composing the nanoparticle corona. Assumptions that explain the relation between complement activation mechanisms triggered by the nanoparticles and the nanoparticle corona molecular feature were proposed. These results are of interest to better understand how the design of dextran-coated nanomaterials will impact interactions with the complement system. It can open perspectives with regard to the selection of a preferential complement activation pathway or prevent the nanoparticles to activate the complement system, based on a rational choice of the corona configuration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7.

    PubMed

    Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa

    2008-02-01

    RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.

  19. Caenorhabditis elegans ABCRNAi Transporters Interact Genetically With rde-2 and mut-7

    PubMed Central

    Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa

    2008-01-01

    RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABCRNAi mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABCRNAi gene class. Genetic complementation tests reveal functions for ABCRNAi transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABCRNAi proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABCRNAi mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABCRNAi gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABCRNAi transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity. PMID:18245353

  20. Increased HDL cholesterol levels in mice with XX versus XY sex chromosomes

    PubMed Central

    Link, Jenny C.; Chen, Xuqi; Prien, Christopher; Borja, Mark S.; Hammerson, Bradley; Oda, Michael N.; Arnold, Arthur P.; Reue, Karen

    2015-01-01

    Objective The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. Approach and Results We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the Four Core Genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male–female gonadal sex and XX–XY chromosome complement. Gonadectomy of adult mice revealed that the male–female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male–female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared to a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with two X chromosomes compared to mice with an X and Y chromosome. By generating mice with XX, XY and XXY chromosome complements, we determined that the presence of two X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. Conclusions We demonstrate that having two X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. PMID:26112012

  1. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.

    PubMed

    Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen

    2015-08-01

    The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.

  2. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial–nuclear interactions

    PubMed Central

    Cristina Kenney, M.; Chwa, Marilyn; Atilano, Shari R.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Cáceres-del-Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Vawter, Marquis; Michal Jazwinski, S.; Miceli, Michael; Wallace, Douglas C.; Udar, Nitin

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in developed countries. While linked to genetic polymorphisms in the complement pathway, there are many individuals with high risk alleles that do not develop AMD, suggesting that other ‘modifiers’ may be involved. Mitochondrial (mt) haplogroups, defined by accumulations of specific mtDNA single nucleotide polymorphisms (SNPs) which represent population origins, may be one such modifier. J haplogroup has been associated with high risk for AMD while the H haplogroup is protective. It has been difficult to assign biological consequences for haplogroups so we created human ARPE-19 cybrids (cytoplasmic hybrids), which have identical nuclei but mitochondria of either J or H haplogroups, to investigate their effects upon bioenergetics and molecular pathways. J cybrids have altered bioenergetic profiles compared with H cybrids. Q-PCR analyses show significantly lower expression levels for seven respiratory complex genes encoded by mtDNA. J and H cybrids have significantly altered expression of eight nuclear genes of the alternative complement, inflammation and apoptosis pathways. Sequencing of the entire mtDNA was carried out for all the cybrids to identify haplogroup and non-haplogroup defining SNPs. mtDNA can mediate cellular bioenergetics and expression levels of nuclear genes related to complement, inflammation and apoptosis. Sequencing data suggest that observed effects are not due to rare mtDNA variants but rather the combination of SNPs representing the J versus H haplogroups. These findings represent a paradigm shift in our concepts of mt–nuclear interactions. PMID:24584571

  3. Skipping of exon 27 in C3 gene compromises TED domain and results in complete human C3 deficiency.

    PubMed

    da Silva, Karina Ribeiro; Fraga, Tatiana Rodrigues; Lucatelli, Juliana Faggion; Grumach, Anete Sevciovic; Isaac, Lourdes

    2016-05-01

    Primary deficiency of complement C3 is rare and usually associated with increased susceptibility to bacterial infections. In this work, we investigated the molecular basis of complete C3 deficiency in a Brazilian 9-year old female patient with a family history of consanguinity. Hemolytic assays revealed complete lack of complement-mediated hemolytic activity in the patient's serum. While levels of the complement regulatory proteins Factor I, Factor H and Factor B were normal in the patient's and family members' sera, complement C3 levels were undetectable in the patient's serum and were reduced by at least 50% in the sera of the patient's parents and brother. Additionally, no C3 could be observed in the patient's plasma and cell culture supernatants by Western blot. We also observed that patient's skin fibroblasts stimulated with Escherichia coli LPS were unable to secrete C3, which might be accumulated within the cells before being intracellularly degraded. Sequencing analysis of the patient's C3 cDNA revealed a genetic mutation responsible for the complete skipping of exon 27, resulting in the loss of 99 nucleotides (3450-3549) located in the TED domain. Sequencing of the intronic region between the exons 26 and 27 of the C3 gene (nucleotides 6690313-6690961) showed a nucleotide exchange (T→C) at position 6690626 located in a splicing donor site, resulting in the complete skipping of exon 27 in the C3 mRNA. Copyright © 2016. Published by Elsevier GmbH.

  4. Continuous in vivo infusion of interferon-gamma (IFN-γ) enhances engraftment of syngeneic wild-type cells in Fanca–/– and Fancg–/– mice

    PubMed Central

    Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J.; Critser, John; Arwert, Fre; Haneline, Laura S.; Clapp, D. Wade

    2006-01-01

    Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc–/– cells to interferon-gamma (IFN-γ), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc–/– mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca–/– and Fancg–/– mice are hypersensitive to IFN-γ and that in vivo infusion of IFN-γ at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-γ conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients. PMID:16946306

  5. Continuous in vivo infusion of interferon-gamma (IFN-gamma) enhances engraftment of syngeneic wild-type cells in Fanca-/- and Fancg-/- mice.

    PubMed

    Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J; Critser, John; Arwert, Fre; Haneline, Laura S; Clapp, D Wade

    2006-12-15

    Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc-/- cells to interferon-gamma (IFN-gamma), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc-/- mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca-/- and Fancg-/- mice are hypersensitive to IFN-gamma and that in vivo infusion of IFN-gamma at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-gamma conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients.

  6. Hereditary properdin deficiency in three families of Tunisian Jews.

    PubMed

    Schlesinger, M; Mashal, U; Levy, J; Fishelson, Z

    1993-09-01

    Hereditary properdin deficiency is a rare genetic disorder of the complement system. Three propositi and six additional family members with properdin deficiency have been found following analysis of the hemolytic activity of the classical (CH50) and the alternative (AP50) complement pathways in the sera of 101 survivors of meningococcal infections and 59 survivors of severe pneumococcal and Haemophilus influenza infections. All the properdin-deficient individuals had undetectable levels of properdin by radial immunodiffusion and by Western blotting. They belonged to three non-related families of Tunisian Jews who came from different parts of Tunisia. Two patients had a meningococcal infection at 15 and 16 years of age, respectively, and one had Haemophilus influenza meningitis at 1.5 years of age. In contrast to the fulminant and fatal course of meningococcal infection which was previously described in some properdin-deficient patients, our patients had a relatively mild disease. Properdin deficiency may not be as rare as previously thought. Analysis of AP50, in addition to CH50, in sera of patients who had meningococcal infection, will probably disclose many more cases of hereditary properdin deficiency. In addition, our findings indicate that, as in other complement abnormalities, hereditary properdin deficiency may also be associated with the ethnic origin of the patient.

  7. Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics of Pulsatilla patens populations

    PubMed Central

    Szczecińska, Monika

    2016-01-01

    Background Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population’s ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population’s adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). Methods The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. Results SSR markers revealed a higher level of genetic variation than ISJ markers (He = 0.609, He = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters FST and ΦPT for SSR (20%) and ΦPT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish populations of P. patens for ISJ markers, but not for SSR markers. Conclusions The results of the present study suggest that ISJ markers can complement the analyses based on SSRs. However, neutral and adaptive markers should not be alternatively applied. Neutral microsatellite markers cannot depict the full range of genetic variation in a population because they do not enable to analyze functional variation. Although ISJ markers are less polymorphic, they can contribute to the reliability of analyses based on SSRs. PMID:27833793

  8. Guinea pig complement potently measures vibriocidal activity of human antibodies in response to cholera vaccines.

    PubMed

    Kim, Kyoung Whun; Jeong, Soyoung; Ahn, Ki Bum; Yang, Jae Seung; Yun, Cheol-Heui; Han, Seung Hyun

    2017-12-01

    The vibriocidal assay using guinea pig complement is widely used for the evaluation of immune responses to cholera vaccines in human clinical trials. However, it is unclear why guinea pig complement has been used over human complement in the measurement of vibriocidal activity of human sera and there have not been comparison studies for the use of guinea pig complement over those from other species. Therefore, we comparatively investigated the effects of complements derived from human, guinea pig, rabbit, and sheep on vibriocidal activity. Complements from guinea pig, rabbit, and human showed concentration-dependent vibriocidal activity in the presence of quality control serum antibodies. Of these complements, guinea pig complement was the most sensitive and effective over a wide concentration range. When the vibriocidal activity of complements was measured in the absence of serum antibodies, human, sheep, and guinea pig complements showed vibriocidal activity up to 40-fold, 20-fold, and 1-fold dilution, respectively. For human pre- and post-vaccination sera, the most potent vibriocidal activity was observed when guinea pig complement was used. In addition, the highest fold-increases between pre- and post- vaccinated sera were obtained with guinea pig complement. Furthermore, human complement contained a higher amount of V. cholerae- and its lipopolysaccharide-specific antibodies than guinea pig complement. Collectively, these results suggest that guinea pig complements are suitable for vibriocidal assays due to their high sensitivity and effectiveness to human sera.

  9. New technologies provide insights into genetic basis of psychiatric disorders and explain their co-morbidity.

    PubMed

    Rudan, Igor

    2010-06-01

    The completion of Human Genome Project and the "HapMap" project was followed by translational activities from companies within the private sector. This led to the introduction of genome-wide scans based on hundreds of thousands of single nucleotide polymorphysms (SNP). These scans were based on common genetic variants in human populations. This new and powerful technology was then applied to the existing DNA-based datasets with information on psychiatric disorders. As a result, an unprecedented amount of novel scientific insights related to the underlying biology and genetics of psychiatric disorders was obtained. The dominant design of these studies, so called "genome-wide association studies" (GWAS), used statistical methods which minimized the risk of false positive reports and provided much greater power to detect genotype-phenotype associations. All findings were entirely data-driven rather than hypothesis-driven, which often made it difficult for researchers to understand or interpret the findings. Interestingly, this work in genetics is indicating how non-specific some genes are for psychiatric disorders, having associations in common for schizophrenia, bipolar disorder and autism. This suggests that the earlier stages of psychiatric disorders may be multi-valent and that early detection, coupled with a clearer understanding of the environmental factors, may allow prevention. At the present time, the rich "harvest" from GWAS still has very limited power to predict the variation in psychiatric disease status at individual level, typically explaining less than 5% of the total risk variance. The most recent studies of common genetic variation implicated the role of major histocompatibility complex in schizophrenia and other disorders. They also provided molecular evidence for a substantial polygenic component to the risk of psychiatric diseases, involving thousands of common alleles of very small effect. The studies of structural genetic variation, such as copy number variants (CNV), coupled with the efforts targeting rare genetic variation (using the emerging whole-genome "deep" sequencing technologies) will become the area of the greatest interest in the field of genetic epidemiology. This will be complemented by the studies of epigenetic phoenomena, changes of expression at a large scale and understanding gene-gene interactions in complex networks using systems biology approaches. A deeper understanding of the underlying biology of psychiatric disorders is essential to improve diagnoses and therapies of these diseases. New technologies - genome-wide association studies, imaging and the optical manipulation of neural circuits - are promising to provide novel insights and lead to new treatments.

  10. Non-Finite Complements in Russian, Serbian/Croatian, and Macedonian

    ERIC Educational Resources Information Center

    Kim, Bo Ra

    2010-01-01

    This study investigates the coherence properties of non-finite complements in Russian, Serbian/Croatian, and Macedonian. I demonstrate that Slavic non-finite complements do not project a uniform syntactic structure. The maximal projection of non-finite complements is not fixed but depends on the selectional properties of the matrix verb. I present…

  11. Complement system biomarkers in epilepsy.

    PubMed

    Kopczynska, Maja; Zelek, Wioleta M; Vespa, Simone; Touchard, Samuel; Wardle, Mark; Loveless, Samantha; Thomas, Rhys H; Hamandi, Khalid; Morgan, B Paul

    2018-05-24

    To explore whether complement dysregulation occurs in a routinely recruited clinical cohort of epilepsy patients, and whether complement biomarkers have potential to be used as markers of disease severity and seizure control. Plasma samples from 157 epilepsy cases (106 with focal seizures, 46 generalised seizures, 5 unclassified) and 54 controls were analysed. Concentrations of 10 complement analytes (C1q, C3, C4, factor B [FB], terminal complement complex [TCC], iC3b, factor H [FH], Clusterin [Clu], Properdin, C1 Inhibitor [C1Inh] plus C-reactive protein [CRP]) were measured using enzyme linked immunosorbent assay (ELISA). Univariate and multivariate statistical analysis were used to test whether combinations of complement analytes were predictive of epilepsy diagnoses and seizure occurrence. Correlation between number and type of anti-epileptic drugs (AED) and complement analytes was also performed. We found: CONCLUSION: This study adds to evidence implicating complement in pathogenesis of epilepsy and may allow the development of better therapeutics and prognostic markers in the future. Replication in a larger sample set is needed to validate the findings of the study. Copyright © 2018. Published by Elsevier Ltd.

  12. Worldwide Distribution of Four SNPs in X‐Ray and Repair and Cross‐Complementing Group 1 (XRCC1)

    PubMed Central

    Takeshita, Haruo; Yasuda, Toshihiro; Kimura‐Kataoka, Kaori

    2014-01-01

    Abstract Purpose X‐ray repair cross‐complementing group 1 (XRCC1) repairs single‐strand breaks in DNA. Several reports have shown the association of single nucleotide polymorphisms (SNPs) (Arg194Trp, Pro206Pro, Arg280His, Arg399Gln) in XRCC1 to diseases. Limited population data are available regarding SNPs in XRCC1, especially in African populations. In this study, genotype distributions of four SNPs in worldwide populations were examined and compared with those reported previously. Materials and Methods Four SNPs (Arg194Trp, Pro206Pro, Arg280His, Arg399Gln) in XRCC1 from genomic DNA samples of 10 populations were evaluated by using polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results The frequency of the minor allele corresponding to the Trp allele of XRCC1Arg194Trp was higher in Asian populations than in African and Caucasian populations. As for XRCC1Pro206Pro, Africans showed higher minor allele frequencies than did Asian populations, except for Tamils and Sinhalese. XRCC1 Arg280His frequencies were similar among Africans and Caucasians but differed among Asian populations. Similarly, lower mutant XRCC1 Arg399Gln frequencies were observed in Africans. Conclusions This study is the first to show the existence of a certain genetic heterogeneity in the worldwide distribution of four SNPs in XRCC1. PMID:25387884

  13. Identification of four novel XPC mutations in two xeroderma pigmentosum complementation group C patients and functional study of XPC Q320X mutant.

    PubMed

    Gu, Yajuan; Chang, Xiaodan; Dai, Shan; Song, Qinghua; Zhao, Hongshan; Lei, Pengcheng

    2017-09-10

    Xeroderma pigmentosum (XP) is a rare, recessive hereditary disease characterized by sunlight hypersensitivity and high incidence of skin cancer with clinical and genetic heterogeneity. We collected two unrelated Chinese patients showing typical symptoms of XPC without neurologic symptoms. Direct sequencing of XPC gene revealed that patient 1 carried IVS1+1G>A and c.958 C>T mutations, and patient 2 carried c.545_546delTA and c.2257_2258insC mutations. All these four mutations introduced premature terminal codons (PTCs) in XPC gene. The nonsense mutation c.958 C>T yielded truncated mutant Q320X, and we studied its function for global genome repair kinetics. Overexpressed Q320X mutant can localize to site of DNA damage, but it is defective in CPD and 6-4PP repair. Readthrough of PTCs is a new approach to treatment of genetic diseases. We found that aminoglycosides could significantly increase the full length protein expression of Q320X mutant, but NER defects were not rescued in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. On the Functional Overlap between Complement and Anti-Microbial Peptides.

    PubMed

    Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J; Stover, Cordula M

    2014-01-01

    Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia).

  15. Genomic analysis of bone marrow failure and myelodysplastic syndromes reveals phenotypic and diagnostic complexity

    PubMed Central

    Zhang, Michael Y.; Keel, Siobán B.; Walsh, Tom; Lee, Ming K.; Gulsuner, Suleyman; Watts, Amanda C.; Pritchard, Colin C.; Salipante, Stephen J.; Jeng, Michael R.; Hofmann, Inga; Williams, David A.; Fleming, Mark D.; Abkowitz, Janis L.; King, Mary-Claire; Shimamura, Akiko

    2015-01-01

    Accurate and timely diagnosis of inherited bone marrow failure and inherited myelodysplastic syndromes is essential to guide clinical management. Distinguishing inherited from acquired bone marrow failure/myelodysplastic syndrome poses a significant clinical challenge. At present, diagnostic genetic testing for inherited bone marrow failure/myelodysplastic syndrome is performed gene-by-gene, guided by clinical and laboratory evaluation. We hypothesized that standard clinically-directed genetic testing misses patients with cryptic or atypical presentations of inherited bone marrow failure/myelodysplastic syndrome. In order to screen simultaneously for mutations of all classes in bone marrow failure/myelodysplastic syndrome genes, we developed and validated a panel of 85 genes for targeted capture and multiplexed massively parallel sequencing. In patients with clinical diagnoses of Fanconi anemia, genomic analysis resolved subtype assignment, including those of patients with inconclusive complementation test results. Eight out of 71 patients with idiopathic bone marrow failure or myelodysplastic syndrome were found to harbor damaging germline mutations in GATA2, RUNX1, DKC1, or LIG4. All 8 of these patients lacked classical clinical stigmata or laboratory findings of these syndromes and only 4 had a family history suggestive of inherited disease. These results reflect the extensive genetic heterogeneity and phenotypic complexity of bone marrow failure/myelodysplastic syndrome phenotypes. This study supports the integration of broad unbiased genetic screening into the diagnostic workup of children and young adults with bone marrow failure and myelodysplastic syndromes. PMID:25239263

  16. Morphoagronomic and molecular profiling of Capsicum spp from southwest Mato Grosso, Brazil.

    PubMed

    Campos, A L; Marostega, T N; Cabral, N S S; Araújo, K L; Serafim, M E; Seabra-Júnior, S; Sudré, C P; Rodrigues, R; Neves, L G

    2016-07-15

    The genus Capsicum ranks as the second most exported vegetable in Brazil, which is also considered to be a center of diversity for this genus. The aim of this study was to rescue genetic variability in the genus Capsicum in the southwest region of Mato Grosso, and to characterize and estimate the genetic diversity of accessions based on morphoagronomic descriptors and inter-simple sequence repeat molecular markers. Data were obtained following the criteria of the International Plant Genetic Resources Institute, renamed Bioversity International for Capsicum. Data were analyzed using different multivariate statistical techniques. An array of binary data was used to analyze molecular data, and the arithmetic complement of the Jaccard index was used to estimate the genetic dissimilarity among accessions. Six well-defined groups were formed based on the morphological characterization. The most divergent accessions were 142 and 126, with 125 and 126 being the most similar. The groups formed following agronomic characterization differed from those formed by morphological characterization, and there was a need to subdivide the groups for better distinction of accessions. Based on molecular analysis, accessions were divided into two groups, and there was also a need to subdivide the groups. Based on joint analysis (morphological + agronomic + molecular), six groups were formed with no duplicates. For all groups, the cophenetic correlation coefficient was higher than 0.8. These results provide useful information for the better management of the work collection. All correlations between the combined distance matrix were significant by the Mantel test.

  17. Phenylalanine 445 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences C-Ring cyclization and deprotonation reactions.

    PubMed

    Wu, Tung-Kung; Liu, Yuan-Ting; Chiu, Feng-Hsuan; Chang, Cheng-Hsiang

    2006-10-12

    [reaction: see text] We describe the Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase Phe445 site-saturated mutants that generate truncated tricyclic and altered deprotonation product profiles. Among these mutants, only polar side-chain group substitutions genetically complemented yeast viability and produced spatially related product diversity, supporting the Johnson model that cation-pi interactions between a carbocationic intermediate and an enzyme can be replaced by an electrostatic or polar side chain to stabilize the cationic intermediate, but with product differentiation.

  18. Complement activation in the tubulointerstitium: AKI, CKD, and in between.

    PubMed

    Brar, Jyoti E; Quigg, Richard J

    2014-10-01

    Complement activation is actively regulated to prevent injudicious activation, such as on peritubular endothelia and basolateral aspects of tubules. Miao et al. studied mice in which the key complement regulator, Crry, was deleted from tubular cells. This lacked functional consequence in unmanipulated animals. Yet, following ischemia-reperfusion, there was greater injury due to alternative pathway activation of C5. When the balance between complement activation and regulation is tipped towards the former, pathologic complement activation can ensue.

  19. The social and economic impact of biofortification through genetic modification.

    PubMed

    De Steur, Hans; Demont, Matty; Gellynck, Xavier; Stein, Alexander J

    2017-04-01

    Genetic modification (GM) has been advocated as an alternative or complement to micronutrient interventions such as supplementation, fortification or dietary diversification. While proof-of-concept of various GM biofortified crops looks promising, the decision tree of policy makers is much more complex, and requires insight on their socio-economic impacts: Will it actually work? Is it financially sound? Will people accept it? Can it be implemented in a globalized world? This review shows that GM biofortification could effectively reduce the burden of micronutrient deficiencies, in an economically viable way, and is generally well received by target beneficiaries, despite some resistance and uncertainty. Practically, however, protectionist and/or unscientific regulations in some developed countries raise the (perceived) bar for implementation in target countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri Net modelling and simulation.

    PubMed

    Marwan, Wolfgang; Sujatha, Arumugam; Starostzik, Christine

    2005-10-21

    We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner.

  1. Translational research impacting on crop productivity in drought-prone environments.

    PubMed

    Reynolds, Matthew; Tuberosa, Roberto

    2008-04-01

    Conventional breeding for drought-prone environments (DPE) has been complemented by using exotic germplasm to extend crop gene pools and physiological approaches that consider water uptake (WU), water-use efficiency (WUE), and harvest index (HI) as drivers of yield. Drivers are associated with proxy genetic markers, such as carbon-isotope discrimination for WUE, canopy temperature for WU, and anthesis-silking interval for HI in maize. Molecular markers associated with relevant quantitative trait loci are being developed. WUE has also been increased through combining understanding of root-to-shoot signaling with deficit irrigation. Impacts in DPE will be accelerated by combining proven technologies with promising new strategies such as marker-assisted selection, and genetic transformation, as well as conservation agriculture that can increase WU while averting soil degradation.

  2. Template switching between PNA and RNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  3. Pitfalls in genetic testing: the story of missed SCN1A mutations.

    PubMed

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa; Guerrini, Renzo; Hämäläinen, Eija; Hartmann, Corinna; Hernandez-Hernandez, Laura; Hjalgrim, Helle; Koeleman, Bobby P C; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R; Leu, Costin; Marini, Carla; McMahon, Jacinta M; Mei, Davide; Møller, Rikke S; Muhle, Hiltrud; Myers, Candace T; Nava, Caroline; Serratosa, Jose M; Sisodiya, Sanjay M; Stephani, Ulrich; Striano, Pasquale; van Kempen, Marjan J A; Verbeek, Nienke E; Usluer, Sunay; Zara, Federico; Palotie, Aarno; Mefford, Heather C; Scheffer, Ingrid E; De Jonghe, Peter; Helbig, Ingo; Suls, Arvid

    2016-07-01

    Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. We sent out a survey to 16 genetic centers performing SCN1A testing. We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

  4. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer.

    PubMed

    Brocks, David; Assenov, Yassen; Minner, Sarah; Bogatyrova, Olga; Simon, Ronald; Koop, Christina; Oakes, Christopher; Zucknick, Manuela; Lipka, Daniel Bernhard; Weischenfeldt, Joachim; Feuerbach, Lars; Cowper-Sal Lari, Richard; Lupien, Mathieu; Brors, Benedikt; Korbel, Jan; Schlomm, Thorsten; Tanay, Amos; Sauter, Guido; Gerhäuser, Clarissa; Plass, Christoph

    2014-08-07

    Despite much evidence on epigenetic abnormalities in cancer, it is currently unclear to what extent epigenetic alterations can be associated with tumors' clonal genetic origins. Here, we show that the prostate intratumor heterogeneity in DNA methylation and copy-number patterns can be explained by a unified evolutionary process. By assaying multiple topographically distinct tumor sites, premalignant lesions, and lymph node metastases within five cases of prostate cancer, we demonstrate that both DNA methylation and copy-number heterogeneity consistently reflect the life history of the tumors. Furthermore, we show cases of genetic or epigenetic convergent evolution and highlight the diversity in the evolutionary origins and aberration spectrum between tumor and metastatic subclones. Importantly, DNA methylation can complement genetic data by serving as a proxy for activity at regulatory domains, as we show through identification of high epigenetic heterogeneity at androgen-receptor-bound enhancers. Epigenome variation thereby expands on the current genome-centric view on tumor heterogeneity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Horror Autoinflammaticus: The Molecular Pathophysiology of Autoinflammatory Disease*

    PubMed Central

    Masters, Seth L.; Simon, Anna; Aksentijevich, Ivona; Kastner, Daniel L.

    2010-01-01

    The autoinflammatory diseases are characterized by seemingly unprovoked episodes of inflammation, without high-titer autoantibodies or antigen-specific T cells. The concept was proposed ten years ago with the identification of the genes underlying hereditary periodic fever syndromes. This nosology has taken root because of the dramatic advances in our knowledge of the genetic basis of both mendelian and complex autoinflammatory diseases, and with the recognition that these illnesses derive from genetic variants of the innate immune system. Herein we propose an updated classification scheme based on the molecular insights garnered over the past decade, supplanting a clinical classification that has served well but is opaque to the genetic, immunologic, and therapeutic interrelationships now before us. We define six categories of autoinflammatory disease: IL-1β activation disorders (inflammasomopathies), NF-κB activation syndromes, protein misfolding disorders, complement regulatory diseases, disturbances in cytokine signaling, and macrophage activation syndromes. A system based on molecular pathophysiology will bring greater clarity to our discourse while catalyzing new hypotheses both at the bench and at the bedside. PMID:19302049

  6. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes.

    PubMed

    Genuário, Diego Bonaldo; Andreote, Ana Paula Dini; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2017-04-01

    Studies investigating the diversity of cyanobacteria from tropical environments are scarce, especially those devoted to the isolation and molecular characterization of the isolated strains. Among the Brazilian biomes, Pantanal has mainly been examined through microscopic observation of environmental samples, resulting in lists of morphotypes without any genetic information. Recently, two studies were conducted evaluating the morphologic and genetic diversity of cultured non-heterocytous cyanobacteria in this biome, which resulted in the separation and description of two novel genera. In order to complement the diversity of cultured cyanobacteria from saline-alkaline lakes in Pantanal, the present study is dedicated to the examination of cultured nitrogen-fixing heterocytous cyanobacteria from this extreme and underexplored environment. A total of fourteen cyanobacterial strains were isolated. According to morphological examination they belong to the order Nostocales and to the subsections IV.I and IV.II, according to the International Code of Nomenclature for Algae, Fungi and Plants and the Bergey's Manual of Systematic Bacteriology, respectively. Phylogenetic evaluation of their 16S rRNA gene sequences resulted in the formation of five clusters. Among them, one is clearly related to the genus Anabaenopsis whilst the remaining clusters may represent new genetic lineages. These novel sequences aid in the delimitation of problematic groups, especially those containing sequences belonging to mixed genera. The application of both morphologic and phylogenetic studies has proven to be an important tool in resolving problematic groups in cyanobacteria systematics. This strategy is essential in order to detect novel cyanobacteria genera from other tropical environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. MGDB: a comprehensive database of genes involved in melanoma.

    PubMed

    Zhang, Di; Zhu, Rongrong; Zhang, Hanqian; Zheng, Chun-Hou; Xia, Junfeng

    2015-01-01

    The Melanoma Gene Database (MGDB) is a manually curated catalog of molecular genetic data relating to genes involved in melanoma. The main purpose of this database is to establish a network of melanoma related genes and to facilitate the mechanistic study of melanoma tumorigenesis. The entries describing the relationships between melanoma and genes in the current release were manually extracted from PubMed abstracts, which contains cumulative to date 527 human melanoma genes (422 protein-coding and 105 non-coding genes). Each melanoma gene was annotated in seven different aspects (General Information, Expression, Methylation, Mutation, Interaction, Pathway and Drug). In addition, manually curated literature references have also been provided to support the inclusion of the gene in MGDB and establish its association with melanoma. MGDB has a user-friendly web interface with multiple browse and search functions. We hoped MGDB will enrich our knowledge about melanoma genetics and serve as a useful complement to the existing public resources. Database URL: http://bioinfo.ahu.edu.cn:8080/Melanoma/index.jsp. © The Author(s) 2015. Published by Oxford University Press.

  8. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12.

    PubMed Central

    Vander Horn, P B; Backstrom, A D; Stewart, V; Begley, T P

    1993-01-01

    Escherichia coli K-12 synthesizes thiamine pyrophosphate (vitamin B1) de novo. Two precursors [4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate] are coupled to form thiamine monophosphate, which is then phosphorylated to make thiamine pyrophosphate. Previous studies have identified two classes of thi mutations, clustered at 90 min on the genetic map, which result in requirements for the thiazole or the hydroxymethylpryimidine. We report here our initial molecular genetic analysis of the thi cluster. We cloned the thi cluster genes and examined their organization, structure, and function by a combination of phenotypic testing, complementation analysis, polypeptide expression, and DNA sequencing. We found five tightly linked genes, designated thiCEFGH. The thiC gene product is required for the synthesis of the hydroxymethylpyrimidine. The thiE, thiF, thiG, and thiH gene products are required for synthesis of the thiazole. These mutants did not respond to 1-deoxy-D-threo-2-pentulose, indicating that they are blocked in the conversion of this precursor compound to the thiazole itself. Images PMID:8432721

  9. Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1.

    PubMed

    Mukherjee, Prasun K; Kenerley, Charles M

    2010-04-01

    Mycoparasitic strains of Trichoderma are applied as commercial biofungicides for control of soilborne plant pathogens. Although the majority of commercial biofungicides are Trichoderma based, chemical pesticides, which are ecological and environmental hazards, still dominate the market. This is because biofungicides are not as effective or consistent as chemical fungicides. Efforts to improve these products have been limited by a lack of understanding of the genetic regulation of biocontrol activities. In this study, using gene knockout and complementation, we identified the VELVET protein Vel1 as a key regulator of biocontrol, as well as morphogenetic traits, in Trichoderma virens, a commercial biocontrol agent. Mutants with mutations in vel1 were defective in secondary metabolism (antibiosis), mycoparasitism, and biocontrol efficacy. In nutrient-rich media they also lacked two types of spores important for survival and development of formulation products: conidia (on agar) and chlamydospores (in liquid shake cultures). These findings provide an opportunity for genetic enhancement of biocontrol and industrial strains of Trichoderma, since Vel1 is very highly conserved across three Trichoderma species.

  10. Regulation of Morphogenesis and Biocontrol Properties in Trichoderma virens by a VELVET Protein, Vel1▿ †

    PubMed Central

    Mukherjee, Prasun K.; Kenerley, Charles M.

    2010-01-01

    Mycoparasitic strains of Trichoderma are applied as commercial biofungicides for control of soilborne plant pathogens. Although the majority of commercial biofungicides are Trichoderma based, chemical pesticides, which are ecological and environmental hazards, still dominate the market. This is because biofungicides are not as effective or consistent as chemical fungicides. Efforts to improve these products have been limited by a lack of understanding of the genetic regulation of biocontrol activities. In this study, using gene knockout and complementation, we identified the VELVET protein Vel1 as a key regulator of biocontrol, as well as morphogenetic traits, in Trichoderma virens, a commercial biocontrol agent. Mutants with mutations in vel1 were defective in secondary metabolism (antibiosis), mycoparasitism, and biocontrol efficacy. In nutrient-rich media they also lacked two types of spores important for survival and development of formulation products: conidia (on agar) and chlamydospores (in liquid shake cultures). These findings provide an opportunity for genetic enhancement of biocontrol and industrial strains of Trichoderma, since Vel1 is very highly conserved across three Trichoderma species. PMID:20154111

  11. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    PubMed

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  12. A novel AARS mutation in a family with dominant myeloneuropathy.

    PubMed

    Motley, William W; Griffin, Laurie B; Mademan, Inès; Baets, Jonathan; De Vriendt, Els; De Jonghe, Peter; Antonellis, Anthony; Jordanova, Albena; Scherer, Steven S

    2015-05-19

    To determine the genetic cause of neurodegeneration in a family with myeloneuropathy. We studied 5 siblings in a family with a mild, dominantly inherited neuropathy by clinical examination and electrophysiology. One patient had a sural nerve biopsy. After ruling out common genetic causes of axonal Charcot-Marie-Tooth disease, we sequenced 3 tRNA synthetase genes associated with neuropathy. All affected family members had a mild axonal neuropathy, and 3 of 4 had lower extremity hyperreflexia, evidence of a superimposed myelopathy. A nerve biopsy showed evidence of chronic axonal loss. All affected family members had a heterozygous missense mutation c.304G>C (p.Gly102Arg) in the alanyl-tRNA synthetase (AARS) gene; this allele was not identified in unaffected individuals or control samples. The equivalent change in the yeast ortholog failed to complement a strain of yeast lacking AARS function, suggesting that the mutation is damaging. A novel mutation in AARS causes a mild myeloneuropathy, a novel phenotype for patients with mutations in one of the tRNA synthetase genes. © 2015 American Academy of Neurology.

  13. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster.

    PubMed Central

    Pasyukova, E G; Vieira, C; Mackay, T F

    2000-01-01

    In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested. PMID:11063689

  14. Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis.

    PubMed

    Kumar, Manoj; Mishra, Laxmi; Carr, Paul; Pilling, Michael; Gardner, Peter; Mansfield, Shawn D; Turner, Simon

    2018-05-01

    Cellulose microfibrils are the basic units of cellulose in plants. The structure of these microfibrils is at least partly determined by the structure of the cellulose synthase complex. In higher plants, this complex is composed of 18 to 24 catalytic subunits known as CELLULOSE SYNTHASE A (CESA) proteins. Three different classes of CESA proteins are required for cellulose synthesis and for secondary cell wall cellulose biosynthesis these classes are represented by CESA4, CESA7, and CESA8. To probe the relationship between CESA proteins and microfibril structure, we created mutant cesa proteins that lack catalytic activity but retain sufficient structural integrity to allow assembly of the cellulose synthase complex. Using a series of Arabidopsis ( Arabidopsis thaliana ) mutants and genetic backgrounds, we found consistent differences in the ability of these mutant cesa proteins to complement the cellulose-deficient phenotype of the cesa null mutants. The best complementation was observed with catalytically inactive cesa4, while the equivalent mutation in cesa8 exhibited significantly lower levels of complementation. Using a variety of biophysical techniques, including solid-state nuclear magnetic resonance and Fourier transform infrared microscopy, to study these mutant plants, we found evidence for changes in cellulose microfibril structure, but these changes largely correlated with cellulose content and reflected differences in the relative proportions of primary and secondary cell walls. Our results suggest that individual CESA classes have similar roles in determining cellulose microfibril structure, and it is likely that the different effects of mutating members of different CESA classes are the consequence of their different catalytic activity and their influence on the overall rate of cellulose synthesis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  15. Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis1[OPEN

    PubMed Central

    Mishra, Laxmi; Carr, Paul; Gardner, Peter

    2018-01-01

    Cellulose microfibrils are the basic units of cellulose in plants. The structure of these microfibrils is at least partly determined by the structure of the cellulose synthase complex. In higher plants, this complex is composed of 18 to 24 catalytic subunits known as CELLULOSE SYNTHASE A (CESA) proteins. Three different classes of CESA proteins are required for cellulose synthesis and for secondary cell wall cellulose biosynthesis these classes are represented by CESA4, CESA7, and CESA8. To probe the relationship between CESA proteins and microfibril structure, we created mutant cesa proteins that lack catalytic activity but retain sufficient structural integrity to allow assembly of the cellulose synthase complex. Using a series of Arabidopsis (Arabidopsis thaliana) mutants and genetic backgrounds, we found consistent differences in the ability of these mutant cesa proteins to complement the cellulose-deficient phenotype of the cesa null mutants. The best complementation was observed with catalytically inactive cesa4, while the equivalent mutation in cesa8 exhibited significantly lower levels of complementation. Using a variety of biophysical techniques, including solid-state nuclear magnetic resonance and Fourier transform infrared microscopy, to study these mutant plants, we found evidence for changes in cellulose microfibril structure, but these changes largely correlated with cellulose content and reflected differences in the relative proportions of primary and secondary cell walls. Our results suggest that individual CESA classes have similar roles in determining cellulose microfibril structure, and it is likely that the different effects of mutating members of different CESA classes are the consequence of their different catalytic activity and their influence on the overall rate of cellulose synthesis. PMID:29523715

  16. Genetic insights into age-related macular degeneration: Controversies addressing Risk, Causality, and Therapeutics

    PubMed Central

    Gorin, Michael B.

    2012-01-01

    Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews.(Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011) Large meta analysis of AMD GWAS has added new loci and variants to this collection.(Chen et al., 2010a; Kopplin et al., 2010; Yu et al., 2011) This paper will focus on the ongoing controversies that are confronting AMD genetics at this time, rather than attempting to summarize this field, which has exploded in the past 5 years. PMID:22561651

  17. Critical role of LuxS in the virulence of Campylobacter jejuni in a guinea pig model of abortion.

    PubMed

    Plummer, Paul; Sahin, Orhan; Burrough, Eric; Sippy, Rachel; Mou, Kathy; Rabenold, Jessica; Yaeger, Mike; Zhang, Qijing

    2012-02-01

    Previous studies on Campylobacter jejuni have demonstrated the role of LuxS in motility, cytolethal distending toxin production, agglutination, and intestinal colonization; however, its direct involvement in virulence has not been reported. In this study, we demonstrate a direct role of luxS in the virulence of C. jejuni in two different animal hosts. The IA3902 strain, a highly virulent sheep abortion strain recently described by our laboratory, along with its isogenic luxS mutant and luxS complement strains, was inoculated by the oral route into both a pregnant guinea pig virulence model and a chicken colonization model. In both cases, the IA3902 luxS mutant demonstrated a complete loss of ability to colonize the intestinal tract. In the pregnant model, the mutant also failed to induce abortion, while the wild-type strain was highly abortifacient. Genetic complementation of the luxS gene fully restored the virulent phenotype in both models. Interestingly, when the organism was inoculated into guinea pigs by the intraperitoneal route, no difference in virulence (abortion induction) was observed between the luxS mutant and the wild-type strain, suggesting that the defect in virulence following oral inoculation is likely associated with a defect in colonization and/or translocation of the organism out of the intestine. These studies provide the first direct evidence that LuxS plays an important role in the virulence of C. jejuni using an in vivo model of natural disease.

  18. Sex matters: Systemic complement activity of female C57BL/6J and BALB/cJ mice is limited by serum terminal pathway components.

    PubMed

    Kotimaa, Juha; Klar-Mohammad, Ngaisah; Gueler, Faikah; Schilders, Geurt; Jansen, Aswin; Rutjes, Helma; Daha, Mohamed R; van Kooten, Cees

    2016-08-01

    Experimental mouse models have been extensively used to elucidate the role of the complement system in different diseases and injuries. Contribution of gender has revealed an intriguing gender specific difference; female mice often show protection against most complement driven injuries such as ischemia/reperfusion injury, graft rejection and sepsis. Interestingly, early studies to the mouse complement system revealed that female mice have very low total complement activity (CH50), which is related to androgen regulation of hepatic complement synthesis. Here, our aim was to understand at which level the female specific differences in mouse complement resides. We have used recently developed complement assays to study the functional activities of female and male mice at the level of C3 and C9 activation, and furthermore assayed key complement factor levels in serum of age-matched female and male C57BL/6 mice. Our results show that the female mice have normal complement cascade functionality at the level of C3 activation, which was supported by determinations of early complement factors. However, all pathways are strongly reduced at the level of C9 activation, suggesting a terminal pathway specific difference. This was in line with C6 and C9 measurements, showing strongly decreased levels in females. Furthermore, similar gender differences were also found in BALB/cJ mice, but not in CD-1 mice. Our results clearly demonstrate that the complement system in females of frequently used mouse strains is restricted by the terminal pathway components and that the perceived female specific protection against experimental disease and injury might be in part explained by the inability promote inflammation through C5b-9. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.

    PubMed

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

  20. The OsPS1-F gene regulates growth and development in rice by modulating photosynthetic electron transport rate.

    PubMed

    Ramamoorthy, Rengasamy; Vishal, Bhushan; Ramachandran, Srinivasan; Kumar, Prakash P

    2018-02-01

    Ds insertion in rice OsPS1-F gene results in semi-dwarf plants with reduced tiller number and grain yield, while genetic complementation with OsPS1-F rescued the mutant phenotype. Photosynthetic electron transport is regulated in the chloroplast thylakoid membrane by multi-protein complexes. Studies about photosynthetic machinery and its subunits in crop plants are necessary, because they could be crucial for yield enhancement in the long term. Here, we report the characterization of OsPS1-F (encoding Oryza sativa PHOTOSYSTEM 1-F subunit) using a single copy Ds insertion rice mutant line. The homozygous mutant (osps1-f) showed striking difference in growth and development compared to the wild type (WT), including, reduction in plant height, tiller number, grain yield as well as pale yellow leaf coloration. Chlorophyll concentration and electron transport rate were significantly reduced in the mutant compared to the WT. OsPS1-F gene was highly expressed in rice leaves compared to other tissues at different developmental stages tested. Upon complementation of the mutant with proUBI::OsPS1-F, the observed mutant phenotypes were rescued. Our results illustrate that OsPS1-F plays an important role in regulating proper growth and development of rice plants.

  1. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies

    PubMed Central

    2010-01-01

    Background Genome reduction is a common evolutionary process in symbiotic and pathogenic bacteria. This process has been extensively characterized in bacterial endosymbionts of insects, where primary mutualistic bacteria represent the most extreme cases of genome reduction consequence of a massive process of gene inactivation and loss during their evolution from free-living ancestors. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, contains one of the few complete genomes of bacteria at the very beginning of the symbiotic association, allowing to evaluate the relative impact of mobile genetic element proliferation and gene inactivation over the structure and functional capabilities of this bacterial endosymbiont during the transition to a host dependent lifestyle. Results A detailed characterization of mobile genetic elements and pseudogenes reveals a massive presence of different types of prophage elements together with five different families of IS elements that have proliferated across the genome of Sodalis glossinidius at different levels. In addition, a detailed survey of intergenic regions allowed the characterization of 1501 pseudogenes, a much higher number than the 972 pseudogenes described in the original annotation. Pseudogene structure reveals a minor impact of mobile genetic element proliferation in the process of gene inactivation, with most of pseudogenes originated by multiple frameshift mutations and premature stop codons. The comparison of metabolic profiles of Sodalis glossinidius and tsetse fly primary endosymbiont Wiglesworthia glossinidia based on their whole gene and pseudogene repertoires revealed a novel case of pathway inactivation, the arginine biosynthesis, in Sodalis glossinidius together with a possible case of metabolic complementation with Wigglesworthia glossinidia for thiamine biosynthesis. Conclusions The complete re-analysis of the genome sequence of Sodalis glossinidius reveals novel insights in the evolutionary transition from a free-living ancestor to a host-dependent lifestyle, with a massive proliferation of mobile genetic elements mainly of phage origin although with minor impact in the process of gene inactivation that is taking place in this bacterial genome. The metabolic analysis of the whole endosymbiotic consortia of tsetse flies have revealed a possible phenomenon of metabolic complementation between primary and secondary endosymbionts that can contribute to explain the co-existence of both bacterial endosymbionts in the context of the tsetse host. PMID:20649993

  2. Identification of C3b-Binding Small-Molecule Complement Inhibitors Using Cheminformatics.

    PubMed

    Garcia, Brandon L; Skaff, D Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K; Wyckoff, Gerald J; Geisbrecht, Brian V

    2017-05-01

    The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of more than two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology, such as acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases, which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small-molecule inhibitors, small-molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study, we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies, we identified 45 small molecules that putatively bind C3b near ligand-guided functional hot spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand that guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small-molecule complement inhibitors and, to our knowledge, provides the first demonstration of cheminformatics-based, complement-directed drug discovery. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Identification of C3b-binding Small Molecule Complement Inhibitors Using Cheminformatics

    PubMed Central

    Garcia, Brandon L.; Skaff, D. Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K.; Wyckoff, Gerald J.; Geisbrecht, Brian V.

    2017-01-01

    The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of over two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology which include acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small molecule inhibitors, small molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies we identified 45 small molecules which putatively bind C3b near ligand-guided functional hot-spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand which guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small molecule complement inhibitors, and to our knowledge, provides the first demonstration of cheminformatics-based complement-directed drug discovery. PMID:28298523

  4. Dynamics and reproductive effects of complement factors in the spontaneous abortion model of CBA/J×DBA/2 mice.

    PubMed

    Takeshita, Ai; Kusakabe, Ken Takeshi; Hiyama, Masato; Kuniyoshi, Nobue; Kondo, Tomohiro; Kano, Kiyoshi; Kiso, Yasuo; Okada, Toshiya

    2014-05-01

    The complement system is one component of innate immunity that could participate in fetal loss. We have already reported that adipsin, a complement activator in the alternative pathway, is stably expressed in the placenta and that an increase in this expression is related to spontaneous abortion. However, complement inhibitor Crry was concurrently expressed in the placenta, and the role of complement factors during pregnancy was not clear. In the present study, we examined the endogenous regulation of complement factors in placenta and serum by using another model mouse for spontaneous abortion and studied the effect of exogenous complement disruption on pregnancy. Compared to control mice, the CBA/J×DBA/2 model mice had higher expression levels of adipsin in the placenta and serum. Adipsin and complement C3 were localized in the metrial gland and labyrinth regions, and both positive reactive ranges were limited in the maternal blood current in normal implantation sites. These results suggest that extrauterine adipsin hematogenously reaches the placenta, activates complement C3, and promotes destruction of the feto-maternal barrier in aborted implantation sites. Crry was consistently expressed in the placenta and serum and reduced in the resorption sites of CBA/J×DBA/2 mice as compared to normal sites. Injection of recombinant adipsin increased the resorption rate and changed the expression of Th-type cytokines toward a Th1 bias. The present study indicates that adipsin could induce the fetal loss that accompanies the Th1 bias and may be a crucial cause of spontaneous abortion. In addition, the local expression of Crry prevents complement activation in placenta in response to a systemic increase of adipsin. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Designing conservation strategies to preserve the genetic diversity of Astragalus edulis Bunge, an endangered species from western Mediterranean region.

    PubMed

    Peñas, Julio; Barrios, Sara; Bobo-Pinilla, Javier; Lorite, Juan; Martínez-Ortega, M Montserrat

    2016-01-01

    Astragalus edulis (Fabaceae) is an endangered annual species from the western Mediterranean region that colonized the SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans for A. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation of A. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.

  6. Designing conservation strategies to preserve the genetic diversity of Astragalus edulis Bunge, an endangered species from western Mediterranean region

    PubMed Central

    Barrios, Sara; Bobo-Pinilla, Javier; Lorite, Juan; Martínez-Ortega, M. Montserrat

    2016-01-01

    Astragalus edulis (Fabaceae) is an endangered annual species from the western Mediterranean region that colonized the SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans for A. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation of A. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species. PMID:26844014

  7. Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription.

    PubMed

    Angelard, Caroline; Colard, Alexandre; Niculita-Hirzel, Hélène; Croll, Daniel; Sanders, Ian R

    2010-07-13

    Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants, improving plant nutrition and diversity. Evidence exists suggesting that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. This potentially has two important consequences for their genetics. First, by random distribution of nuclei at spore formation, new offspring of an AMF could receive different complements of nucleotypes compared to the parent or siblings-we consider this as segregation. Second, genetic exchange between AMF would allow the mixing of nuclei, altering nucleotype diversity in new spores. Because segregation was assumed not to occur and genetic exchange has only recently been demonstrated, no attempts have been made to test whether this affects the symbiosis with plants. Here, we show that segregation occurs in the AMF Glomus intraradices and can enhance the growth of rice up to five times, even though neither parental nor crossed AMF lines induced a positive growth response. This process also resulted in an alteration of symbiosis-specific gene transcription in rice. Our results demonstrate that manipulation of AMF genetics has important consequences for the symbiotic effects on plants and could be used to enhance the growth of globally important crops. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. GM foods: is there a way forward?

    PubMed

    Jones, Huw D

    2015-08-01

    There are many quality targets in cereals that could generate step-change improvements in nutritional or food-processing characteristics. For instance, levels of acrylamide, soluble and insoluble fibre, antioxidants, allergens and intolerance factors in food are, to a large extent, determined by the genetics of the raw materials used. However, improvements to these traits pose significant challenges to plant breeders. For some traits, this is because the underlying genetic and biochemical basis of the traits is not fully understood but for others, there is simply a lack of natural genetic variation in commercially useful germplasm. One strategy to overcome the latter hindrance is to use wide crosses with more exotic germplasm; however, this can bring other difficulties such as yield loss and linkage drag of deleterious alleles. As DNA sequencing becomes cheaper and faster, it drives the research fields of reverse genetics and functional genomics which in turn will enable the incorporation of desirable traits into crop varieties via molecular breeding and biotechnology. I will discuss the evolution of these techniques from conventional genetic modification to more recent developments in targeted gene editing and the potential of biotechnology to complement conventional breeding methods. I will also discuss the role of risk assessment and regulation in the commercialisation of GM crops.

  9. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  10. Angiotensin II Moderately Decreases Plasmodium Infection and Experimental Cerebral Malaria in Mice.

    PubMed

    Gallego-Delgado, Julio; Baravian, Charlotte; Edagha, Innocent; Ty, Maureen C; Ruiz-Ortega, Marta; Xu, Wenyue; Rodriguez, Ana

    2015-01-01

    Angiotensin II, a peptide hormone that regulates blood pressure, has been proposed as a protective factor against cerebral malaria based on a genetic analysis. In vitro studies have documented an inhibitory effect of angiotensin II on Plasmodium growth, while studies using chemical inhibitors of angiotensin II in mice showed protection against experimental cerebral malaria but not major effects on parasite growth. To determine whether the level of angiotensin II affects Plasmodium growth and/or disease outcome in malaria, elevated levels of angiotensin II were induced in mice by intradermal implantation of osmotic mini-pumps providing constant release of this hormone. Mice were then infected with P. berghei and monitored for parasitemia and incidence of cerebral malaria. Mice infused with angiotensin II showed decreased parasitemia seven days after infection. The development of experimental cerebral malaria was delayed and a moderate increase in survival was observed in mice with elevated angiotensin II, as confirmed by decreased number of cerebral hemorrhages compared to controls. The results presented here show for the first time the effect of elevated levels of angiotensin II in an in vivo model of malaria. The decreased pathogenesis observed in mice complements a previous human genetic study, reinforcing the hypothesis of a beneficial effect of angiotensin II in malaria.

  11. Complement and the control of HIV infection: an evolving story.

    PubMed

    Frank, Michael M; Hester, Christopher; Jiang, Haixiang

    2014-05-01

    Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.

  12. The effects of intraspecific competition and stabilizing selection on a polygenic trait.

    PubMed Central

    Bürger, Reinhard; Gimelfarb, Alexander

    2004-01-01

    The equilibrium properties of an additive multilocus model of a quantitative trait under frequency- and density-dependent selection are investigated. Two opposing evolutionary forces are assumed to act: (i) stabilizing selection on the trait, which favors genotypes with an intermediate phenotype, and (ii) intraspecific competition mediated by that trait, which favors genotypes whose effect on the trait deviates most from that of the prevailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent component describing stabilizing selection and a frequency- and density-dependent component modeling competition. We study how the equilibrium structure, in particular, number, degree of polymorphism, and genetic variance of stable equilibria, is affected by the strength of frequency dependence, and what role the number of loci, the amount of recombination, and the demographic parameters play. To this end, we employ a statistical and numerical approach, complemented by analytical results, and explore how the equilibrium properties averaged over a large number of genetic systems with a given number of loci and average amount of recombination depend on the ecological and demographic parameters. We identify two parameter regions with a transitory region in between, in which the equilibrium properties of genetic systems are distinctively different. These regions depend on the strength of frequency dependence relative to pure stabilizing selection and on the demographic parameters, but not on the number of loci or the amount of recombination. We further study the shape of the fitness function observed at equilibrium and the extent to which the dynamics in this model are adaptive, and we present examples of equilibrium distributions of genotypic values under strong frequency dependence. Consequences for the maintenance of genetic variation, the detection of disruptive selection, and models of sympatric speciation are discussed. PMID:15280253

  13. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons.

    PubMed

    Griesi-Oliveira, K; Acab, A; Gupta, A R; Sunaga, D Y; Chailangkarn, T; Nicol, X; Nunez, Y; Walker, M F; Murdoch, J D; Sanders, S J; Fernandez, T V; Ji, W; Lifton, R P; Vadasz, E; Dietrich, A; Pradhan, D; Song, H; Ming, G-L; Gu, X; Haddad, G; Marchetto, M C N; Spitzer, N; Passos-Bueno, M R; State, M W; Muotri, A R

    2015-11-01

    An increasing number of genetic variants have been implicated in autism spectrum disorders (ASDs), and the functional study of such variants will be critical for the elucidation of autism pathophysiology. Here, we report a de novo balanced translocation disruption of TRPC6, a cation channel, in a non-syndromic autistic individual. Using multiple models, such as dental pulp cells, induced pluripotent stem cell (iPSC)-derived neuronal cells and mouse models, we demonstrate that TRPC6 reduction or haploinsufficiency leads to altered neuronal development, morphology and function. The observed neuronal phenotypes could then be rescued by TRPC6 complementation and by treatment with insulin-like growth factor-1 or hyperforin, a TRPC6-specific agonist, suggesting that ASD individuals with alterations in this pathway may benefit from these drugs. We also demonstrate that methyl CpG binding protein-2 (MeCP2) levels affect TRPC6 expression. Mutations in MeCP2 cause Rett syndrome, revealing common pathways among ASDs. Genetic sequencing of TRPC6 in 1041 ASD individuals and 2872 controls revealed significantly more nonsynonymous mutations in the ASD population, and identified loss-of-function mutations with incomplete penetrance in two patients. Taken together, these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a multiple-hit model. This is the first study to use iPSC-derived human neurons to model non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases using such cells.

  14. A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster.

    PubMed

    Kwon, Matt Hyoung; Callaway, Heather; Zhong, Jim; Yedvobnick, Barry

    2013-05-20

    Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell proliferation, homeotic gene regulation, histone exchange during DNA repair, and Notch signaling. To explore the wider gene network associated with Dom action, we used RNAi directed against domino (dom) to mediate loss-of-function at the wing margin, a tissue that is readily scored for phenotypic changes. Dom RNAi driven through GAL4-UAS elicited dominant wing nicking that responded phenotypically to the dose of dom and other loci known to function with dom. We screened for phenotypic modifiers of this wing phenotype among 2500 transpositions of the EP P element and found both enhancers and suppressors. Several classes of modifier were obtained, including those encoding transcription factors, RNA regulatory proteins, and factors that regulate cell growth, proliferation and autophagy, a lysosomal degradation pathway that affects cell growth under conditions of starvation and stress. Our analysis is consistent with prior studies, suggesting that Dom acts pleiotropically as a positive effector of Notch signaling and a repressor of proliferation. This genetic system should facilitate screens for additional loci associated with Dom function, and complement biochemical approaches to their regulatory activity.

  15. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons

    PubMed Central

    Griesi-Oliveira, Karina; Acab, Allan; Gupta, Abha R.; Sunaga, Daniele Yumi; Chailangkarn, Thanathom; Nicol, Xavier; Nunez, Yanelli; Walker, Michael F.; Murdoch, John D.; Sanders, Stephan J.; Fernandez, Thomas V.; Ji, Weizhen; Lifton, Richard P.; Vadasz, Estevão; Dietrich, Alexander; Pradhan, Dennis; Song, Hongjun; Ming, Guo-li; Guoe, Xiang; Haddad, Gabriel; Marchetto, Maria C. N.; Spitzer, Nicholas; Passos-Bueno, Maria Rita; State, Matthew W.; Muotri, Alysson R.

    2014-01-01

    An increasing number of genetic variants have been implicated in autism spectrum disorders (ASD), and the functional study of such variants will be critical for the elucidation of autism pathophysiology. Here, we report a de novo balanced translocation disruption of TRPC6, a cation channel, in a non-syndromic autistic individual. Using multiple models, such as dental pulp cells, iPSC-derived neuronal cells and mouse models, we demonstrate that TRPC6 reduction or haploinsufficiency leads to altered neuronal development, morphology, and function. The observed neuronal phenotypes could then be rescued by TRPC6 complementation and by treatment with IGF1 or hyperforin, a TRPC6-specific agonist, suggesting that ASD individuals with alterations in this pathway might benefit from these drugs. We also demonstrate that MeCP2 levels affect TRPC6 expression. Mutations in MeCP2 cause Rett syndrome, revealing common pathways among ASDs. Genetic sequencing of TRPC6 in 1041 ASD individuals and 2872 controls revealed significantly more nonsynonymous mutations in the ASD population, and identified loss-of-function mutations with incomplete penetrance in two patients. Taken together, these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a multiple-hit model. This is the first study to use iPSC-derived human neurons to model non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases using such cells. PMID:25385366

  16. Metal Resistance and Lithoautotrophy in the Extreme Thermoacidophile Metallosphaera sedula

    PubMed Central

    Maezato, Yukari; Johnson, Tyler; McCarthy, Samuel; Dana, Karl

    2012-01-01

    Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study, a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during biotransformation of the primary copper ore, chalcopyrite (CuFeS2). In this study, a genetic system was developed for M. sedula to investigate parameters that limit bioleaching of chalcopyrite. The functional role of the M. sedula copRTA operon was demonstrated by cross-species complementation of a copper-sensitive Sulfolobus solfataricus copR mutant. Inactivation of the gene encoding the M. sedula copper efflux protein, copA, using targeted recombination compromised metal resistance and eliminated chalcopyrite bioleaching. In contrast, a spontaneous M. sedula mutant (CuR1) with elevated metal resistance transformed chalcopyrite at an accelerated rate without affecting chemoheterotrophic growth. Proteomic analysis of CuR1 identified pleiotropic changes, including altered abundance of transport proteins having AAA-ATPase motifs. Addition of the insoluble carbonate mineral witherite (BaCO3) further stimulated chalcopyrite lithotrophy, indicating that carbon was a limiting factor. Since both mineral types were actively colonized, enhanced metal leaching may arise from the cooperative exchange of energy and carbon between surface-adhered populations. Genetic approaches provide a new means of improving the efficiency of metal bioleaching by enhancing the mechanistic understanding of thermophilic lithoautotrophy. PMID:23065978

  17. Complement anaphylatoxins as immune regulators in cancer.

    PubMed

    Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T

    2014-08-01

    The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediated suppression of immune effector cells responsible for immunosurveillance within the tumor microenvironment. This paradigm accords with models of immune dysregulation, such as autoimmunity and infectious disease, which have defined a pathophysiological role for abnormal complement signaling. Several types of immune cells express the cognate receptors for the complement anaphylatoxins, C3aR and C5aR, and demonstrate functional modulation in response to complement stimulation. In turn, impairment of antitumor immunity has been intimately tied to tumor progression in animal models of cancer. In this article, the literature was systematically reviewed to identify studies that have characterized the effects of the complement anaphylatoxins on the composition and function of immune cells within the tumor microenvironment. The search identified six studies based upon models of lymphoma and ovarian, cervical, lung, breast, and mammary cancer, which collectively support the paradigm of complement as an immune regulator in the tumor microenvironment. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. The role of molecular genetic analysis in the diagnosis of primary ciliary dyskinesia.

    PubMed

    Kim, Raymond H; A Hall, David; Cutz, Ernest; Knowles, Michael R; Nelligan, Kathleen A; Nykamp, Keith; Zariwala, Maimoona A; Dell, Sharon D

    2014-03-01

    Primary ciliary dyskinesia (PCD) is an autosomal recessive genetic disorder of motile cilia. The diagnosis of PCD has previously relied on ciliary analysis with transmission electron microscopy or video microscopy. However, patients with PCD may have normal ultrastructural appearance, and ciliary analysis has limited accessibility. Alternatively, PCD can be diagnosed by demonstrating biallelic mutations in known PCD genes. Genetic testing is emerging as a diagnostic tool to complement ciliary analysis where interpretation and access may delay diagnosis. To determine the diagnostic yield of genetic testing of patients with a confirmed or suspected diagnosis of PCD in a multiethnic urban center. Twenty-eight individuals with confirmed PCD on transmission electron microscopy of ciliary ultrastructure and 24 individuals with a probable diagnosis of PCD based on a classical PCD phenotype and low nasal nitric oxide had molecular analysis of 12 genes associated with PCD. Of 49 subjects who underwent ciliary biopsy, 28 (57%) were diagnosed with PCD through an ultrastructural defect. Of the 52 individuals who underwent molecular genetic analysis, 22 (42%) individuals had two mutations in known PCD genes. Twenty-four previously unreported mutations in known PCD genes were observed. Combining both diagnostic modalities of biopsy and molecular genetics, the diagnostic yield increased to 69% compared with 57% based on biopsy alone. The diagnosis of PCD is challenging and has traditionally relied on ciliary biopsy, which is unreliable as the sole criterion for a definitive diagnosis. Molecular genetic analysis can be used as a complementary test to increase the diagnostic yield.

  19. Complement factor H Y402H variant and risk of age-related macular degeneration in Asians: a systematic review and meta-analysis.

    PubMed

    Kondo, Naoshi; Bessho, Hiroaki; Honda, Shigeru; Negi, Akira

    2011-02-01

    To investigate whether the Y402H variant in the complement factor H gene is associated with age-related macular degeneration (AMD) in Asian populations. Meta-analysis of previous publications. Case-control groups of subjects with AMD and controls from 13 association studies. We performed a meta-analysis of the association between Y402H and AMD in Asian populations using data available from 13 case-control studies involving 3973 subjects. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using fixed- and random-effects models. The Q-statistic test was used to assess heterogeneity, and Egger's test was used to evaluate publication bias. Sensitivity analysis, cumulative meta-analysis, and meta-regression analysis were also performed. Allele and genotype frequencies of the Y402H variant. The Y402H variant showed a significant summary OR of 1.97 (95% CI, 1.54-2.52; P<0.001; allelic contrast model) per allele. Possession of at least 1 copy of the C allele increased the disease risk by 1.97-fold (95% CI, 1.63-2.39; P<0.001; dominant model) and accounted for 8.8% of the attributable risk of AMD in Asian populations. Sensitivity analysis indicated the robustness of our findings, and evidence of publication bias was not observed in our meta-analysis. Meta-regression analysis indicated no significant effect of baseline study characteristics on the summary effect size. Cumulative meta-analysis revealed that the summary ORs were stable and the 95% CIs narrowed with the accumulation of data over time. Our analysis provides substantial evidence that the Y402H variant is significantly associated with AMD in Asian populations. Our results expand the number of confirmed AMD susceptibility loci for Asians populations, which provide a better understanding of the genetic architecture underlying disease susceptibility and may advance the potential for preclinical prediction in future genetic tests by a combined evaluation of inherited susceptibility with previously established loci. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  20. A single ataxia telangiectasia gene with a product similar to PI-3 kinase.

    PubMed

    Savitsky, K; Bar-Shira, A; Gilad, S; Rotman, G; Ziv, Y; Vanagaite, L; Tagle, D A; Smith, S; Uziel, T; Sfez, S; Ashkenazi, M; Pecker, I; Frydman, M; Harnik, R; Patanjali, S R; Simmons, A; Clines, G A; Sartiel, A; Gatti, R A; Chessa, L; Sanal, O; Lavin, M F; Jaspers, N G; Taylor, A M; Arlett, C F; Miki, T; Weissman, S M; Lovett, M; Collins, F S; Shiloh, Y

    1995-06-23

    A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3' kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer.

  1. Functional conservation of RNA polymerase II in fission and budding yeasts.

    PubMed

    Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P

    2000-02-04

    The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.

  2. Isolation and preliminary characterization of temperature-sensitive mutants of influenza virus.

    PubMed

    Sugiura, A; Tobita, K; Kilbourne, E D

    1972-10-01

    Isolation of temperature-sensitive (ts) mutants was attempted from the WSN strain of influenza A virus which was grown and assayed in MDBK cells. After growth of wild-type virus in the presence of 5-fluorouracil, 15 ts mutants were selected for which the ratio of plaquing efficiency at 39.5 C to that at 33 C was 10(-3) or less. In pairwise crosses of ts mutants, recombination and complementation were either very efficient or undetectable. It is suggested, therefore, that the viral genome consists of physically discrete units and recombination occurs as an exchange of these units. All 15 mutants have been assigned with certainty into five recombination groups. Three mutants are suspected to be double mutants. Any two complementing mutants always recombined with each other, and noncomplementing mutants did not recombine. In physiological tests, mutants showed diverse patterns of functional defects at the nonpermissive temperature. However, it was not always possible to correlate these physiological defects with the results of genetic characterization.

  3. Phenotypic approaches to drought in cassava: review

    PubMed Central

    Okogbenin, Emmanuel; Setter, Tim L.; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2012-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12–18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID:23717282

  4. Whole-body transcriptome of selectively bred, resistant-, control-, and susceptible-line rainbow trout following experimental challenge with Flavobacterium psychrophilum

    PubMed Central

    Marancik, David; Gao, Guangtu; Paneru, Bam; Ma, Hao; Hernandez, Alvaro G.; Salem, Mohamed; Yao, Jianbo; Palti, Yniv; Wiens, Gregory D.

    2014-01-01

    Genetic improvement for enhanced disease resistance in fish is an increasingly utilized approach to mitigate endemic infectious disease in aquaculture. In domesticated salmonid populations, large phenotypic variation in disease resistance has been identified but the genetic basis for altered responsiveness remains unclear. We previously reported three generations of selection and phenotypic validation of a bacterial cold water disease (BCWD) resistant line of rainbow trout, designated ARS-Fp-R. This line has higher survival after infection by either standardized laboratory challenge or natural challenge as compared to two reference lines, designated ARS-Fp-C (control) and ARS-Fp-S (susceptible). In this study, we utilized 1.1 g fry from the three genetic lines and performed RNA-seq to measure transcript abundance from the whole body of naive and Flavobacterium psychrophilum infected fish at day 1 (early time-point) and at day 5 post-challenge (onset of mortality). Sequences from 24 libraries were mapped onto the rainbow trout genome reference transcriptome of 46,585 predicted protein coding mRNAs that included 2633 putative immune-relevant gene transcripts. A total of 1884 genes (4.0% genome) exhibited differential transcript abundance between infected and mock-challenged fish (FDR < 0.05) that included chemokines, complement components, tnf receptor superfamily members, interleukins, nod-like receptor family members, and genes involved in metabolism and wound healing. The largest number of differentially expressed genes occurred on day 5 post-infection between naive and challenged ARS-Fp-S line fish correlating with high bacterial load. After excluding the effect of infection, we identified 21 differentially expressed genes between the three genetic lines. In summary, these data indicate global transcriptome differences between genetic lines of naive animals as well as differentially regulated transcriptional responses to infection. PMID:25620978

  5. Rare genetic variants in Tunisian Jewish patients suffering from age-related macular degeneration.

    PubMed

    Pras, Eran; Kristal, Dana; Shoshany, Nadav; Volodarsky, Dina; Vulih, Inna; Celniker, Gershon; Isakov, Ofer; Shomron, Noam; Pras, Elon

    2015-07-01

    To explore the molecular basis of familial, early onset, age-related macular degeneration (AMD) with diverse phenotypes, using whole exome sequencing (WES). We performed WES on four patients (two sibs from two families) manifesting early-onset AMD and searched for disease-causing genetic variants in previously identified macular degeneration related genes. Validation studies of the variants included bioinformatics tools, segregation analysis of mutations within the families and mutation screening in an AMD cohort of patients. The index patients were in their 50s when diagnosed and displayed a wide variety of clinical AMD presentations: from limited drusen in the posterior pole to multiple basal-laminar drusen extending peripherally. Severe visual impairment due to extensive geographic atrophy and/or choroidal-neovascularisation was common by the age of 75 years. Approximately, 400 000 genomic variants for each DNA sample were included in the downstream bioinformatics analysis, which ended in the discovery of two novel variants; in one family a single bp deletion was identified in the Hemicentin (HMCN1) gene (c.4162delC), whereas in the other, a missense variant (p.V412M) in the Complement Factor-I (CFI) gene was found. Screening for these variants in a cohort of patients with AMD identified another family with the CFI variant. This report uses WES to uncover rare genetic variants in AMD. A null-variant in HMCN1 has been identified in one AMD family, and a missense variant in CFI was discovered in two other families. These variants confirm the genetic complexity and significance of rare genetic variants in the pathogenesis of AMD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor.

    PubMed

    van der Heijden, Michiel S; Brody, Jonathan R; Dezentje, David A; Gallmeier, Eike; Cunningham, Steven C; Swartz, Michael J; DeMarzo, Angelo M; Offerhaus, G Johan A; Isacoff, William H; Hruban, Ralph H; Kern, Scott E

    2005-10-15

    BRCA2, FANCC, and FANCG gene mutations are present in a subset of pancreatic cancer. Defects in these genes could lead to hypersensitivity to interstrand cross-linkers in vivo and a more optimal treatment of pancreatic cancer patients based on the genetic profile of the tumor. Two retrovirally complemented pancreatic cancer cell lines having defects in the Fanconi anemia pathway, PL11 (FANCC-mutated) and Hs766T (FANCG-mutated), as well as several parental pancreatic cancer cell lines with or without mutations in the Fanconi anemia/BRCA2 pathway, were assayed for in vitro and in vivo sensitivities to various chemotherapeutic agents. A distinct dichotomy of drug responses was observed. Fanconi anemia-defective cancer cells were hypersensitive to the cross-linking agents mitomycin C (MMC), cisplatin, chlorambucil, and melphalan but not to 5-fluorouracil, gemcitabine, doxorubicin, etoposide, vinblastine, or paclitaxel. Hypersensitivity to cross-linking agents was confirmed in vivo; FANCC-deficient xenografts of PL11 and BRCA2-deficient xenografts of CAPAN1 regressed on treatment with two different regimens of MMC whereas Fanconi anemia-proficient xenografts did not. The MMC response comprised cell cycle arrest, apoptosis, and necrosis. Xenografts of PL11 also regressed after a single dose of cyclophosphamide whereas xenografts of genetically complemented PL11(FANCC) did not. MMC or other cross-linking agents as a clinical therapy for pancreatic cancer patients with tumors harboring defects in the Fanconi anemia/BRCA2 pathway should be specifically investigated.

  7. Genetic characterization of enzymes involved in the priming steps of oxytetracycline biosynthesis in Streptomyces rimosus.

    PubMed

    Wang, Peng; Gao, Xue; Chooi, Yit-Heng; Deng, Zixin; Tang, Yi

    2011-08-01

    Tetracyclines are clinically important aromatic polyketides whose biosynthesis is catalysed by bacterial type II polyketide synthases (PKSs). Tetracyclines are biosynthesized starting with an amide-containing malonamate starter unit and the resulting C-2 carboxyamide is critical for the antibiotic activities. In this work, we genetically verified that an amidotransferase, OxyD, and a thiolase, OxyP, are involved in the biosynthesis and incorporation of the starter unit. First, two mutations, R248T and D268N, were found to be present in OxyD* encoded in Streptomyces rimosus ATCC 13224, a strain that produces the acetate-primed 2-acetyl-2-decarboxyamido-oxytetracycline (ADOTC) instead of the malonamate-primed oxytetracycline (OTC). Homology modelling suggested that in particular D268N may inactivate OxyD. Complementation of S. rimosus ATCC 13224 with wild-type OxyD restored OTC biosynthesis, thereby confirming the essential role of OxyD in the synthesis of the amide starter unit. Second, using a series of knockout and complementation approaches, we demonstrated that OxyP is most likely involved in maintaining fidelity of the amide-priming process via hydrolysis of the competing acetate priming starter units. While the inactivation of OxyP does not eliminate OTC biosynthesis, the ratio of acetate-primed ADOTC to malonamate-primed OTC is significantly increased. This suggests that OxyP plays an ancillary role in OTC biosynthesis and is important for minimizing the levels of ADOTC, a shunt product that has much weaker antibiotic activities than OTC.

  8. Language and false belief: evidence for general, not specific, effects in cantonese-speaking preschoolers.

    PubMed

    Tardif, Twila; So, Catherine Wing-Chee; Kaciroti, Niko

    2007-03-01

    Two studies were conducted with Cantonese-speaking preschoolers examining J. de Villiers's (1995) hypothesis that syntactic complements play a unique role in the acquisition of false belief (FB). In Study 1, the authors found a positive correlation between FB and syntactic complements in 72 four- to six-year-old Cantonese-speaking preschoolers. Study 2 followed 72 three- to five-year-old Cantonese-speaking children who initially failed an FB screening task and were then tested on general language abilities, short-term memory, inhibition, nonverbal IQ, and on FB and complement tasks. Once age and initial FB understanding were controlled for in both multiple regression and hierarchical linear modeling analyses, complements no longer uniquely predicted FB. Instead, individual differences in general language abilities and short-term memory contributed to the variation in both complements and FB.

  9. [Polymorphism of genes encoding proteins of DNA repair vs. occupational and environmental exposure to lead, arsenic and pesticides].

    PubMed

    Bukowski, Karol; Woźniak, Katarzyna

    2018-03-09

    Genetic polymorphism is associated with the occurrence of at least 2 different alleles in the locus with a frequency higher than 1% in the population. Among polymorphisms we can find single nucleotide polymorphism (SNP) and polymorphism of variable number of tandem repeats. The presence of certain polymorphisms in genes encoding DNA repair enzymes is associated with the speed and efficiency of DNA repair and can protect or expose humans to the effects provoked by xenobiotics. Chemicals, such as lead, arsenic pesticides are considered to exhibit strong toxicity. There are many different polymorphisms in genes encoding DNA repair enzymes, which determine the speed and efficiency of DNA damage repair induced by these xenobiotics. In the case of lead, the influence of various polymorphisms, such as APE1 (apurinic/apyrimidinic endonuclease 1) (rs1130409), hOGG1 (human 8-oxoguanine glycosylase) (rs1052133), XRCC1 (X-ray repair cross-complementing protein group 1) (rs25487), XRCC1 (rs1799782) and XRCC3 (X-ray repair cross-complementing protein group 3) (rs861539) were described. For arsenic polymorphisms, such as ERCC2 (excision repair cross-complementing) (rs13181), XRCC3 (rs861539), APE1 (rs1130409) and hOGG1 (rs1052133) were examined. As to pesticides, separate and combined effects of polymorphisms in genes encoding DNA repair enzymes, such as XRCC1 (rs1799782), hOGG1 (rs1052133), XRCC4 (X-ray repair cross-complementing protein group 4) (rs28360135) and the gene encoding the detoxification enzyme PON1 paraoxonase (rs662) were reported. Med Pr 2018;69(2):225-235. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. A Novel Quantitative Hemolytic Assay Coupled with Restriction Fragment Length Polymorphisms Analysis Enabled Early Diagnosis of Atypical Hemolytic Uremic Syndrome and Identified Unique Predisposing Mutations in Japan

    PubMed Central

    Yoshida, Yoko; Miyata, Toshiyuki; Matsumoto, Masanori; Shirotani-Ikejima, Hiroko; Uchida, Yumiko; Ohyama, Yoshifumi; Kokubo, Tetsuro; Fujimura, Yoshihiro

    2015-01-01

    For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (≥50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients. PMID:25951460

  11. Syntactic and Semantic Coordination in Finite Complement-Clause Constructions: A Diary-Based Case Study

    ERIC Educational Resources Information Center

    Köymen, Bahar; Lieven, Elena; Brandt, Silke

    2016-01-01

    This study investigates the coordination of matrix and subordinate clauses within finite complement-clause constructions. The data come from diary and audio recordings which include the utterances produced by an American English-speaking child, L, between the ages 1;08 and 3;05. We extracted all the finite complement-clause constructions that L…

  12. Islet xenotransplantation from genetically engineered pigs.

    PubMed

    Nagaraju, Santosh; Bottino, Rita; Wijkstrom, Martin; Hara, Hidetaka; Trucco, Massimo; Cooper, David K C

    2013-12-01

    Pigs have emerged as potential sources of islets for clinical transplantation. Wild-type porcine islets (adult and neonatal) transplanted into the portal vein have successfully reversed diabetes in nonhuman primates. However, there is a rapid loss of the transplanted islets on exposure to blood, known as the instant blood-mediated inflammatory reaction (IBMIR), as well as a T-cell response that leads to rejection of the graft. Genetically modified pig islets offer a number of potential advantages, particularly with regard to reducing the IBMIR-related graft loss and protecting the islets from the primate immune response. Emerging data indicate that transgenes specifically targeted to pig β cells using an insulin promoter (in order to maximize target tissue expression while limiting host effects) can be achieved without significant effects on the pig's glucose metabolism. Experience with the transplantation of islets from genetically engineered pigs into nonhuman primates is steadily increasing, and has involved the deletion of pig antigenic targets to reduce the primate humoral response, the expression of transgenes for human complement-regulatory and coagulation-regulatory proteins, and manipulations to reduce the effect of the T-cell response. There is increasing evidence of the advantages of using genetically engineered pigs as sources of islets for future clinical trials.

  13. Gene co-ops and the biotrade: translating genetic resource rights into sustainable development.

    PubMed

    Reid, W V

    1996-04-01

    The 1992 Convention on Biological Diversity marks a basic change in the international status of genetic resources. Prior to the Convention, these resources were considered to be the "heritage of mankind.' Although the intent of this open access regime was to ensure the widespread availability of genetic resources for agriculture and industry, commercial use of the resources provided no additional economic incentive for conservation by source countries. The Biodiversity Convention corrects this policy failure by establishing that states have sovereign rights over their genetic resources, thereby enabling market incentives to complement various multilateral mechanisms that might directly fund biodiversity conservation. A number of obstacles face countries that are translating this broad right to regulate access into specific policies, laws, and regulations designed to meet conservation and development objectives. A review of these obstacles and of trends in technological development suggest that nations and developing country institutions should take a set of actions to develop access legislation and Material Transfer Agreements, establish biodiversity "cooperatives' and intermediary institutions to facilitate information exchange, develop minimum standards for access legislation, and require that prior informed consent of local communities be obtained by all biodiversity collectors.

  14. A second-generation genetic linkage map of the domestic dog, Canis familiaris.

    PubMed Central

    Neff, M W; Broman, K W; Mellersh, C S; Ray, K; Acland, G M; Aguirre, G D; Ziegle, J S; Ostrander, E A; Rine, J

    1999-01-01

    Purebred strains, pronounced phenotypic variation, and a high incidence of heritable disease make the domestic dog uniquely suited to complement genetic analyses in humans and mice. A comprehensive genetic linkage map would afford many opportunities in dogs, ranging from the positional cloning of disease genes to the dissection of quantitative differences in size, shape, and behavior. Here we report a canine linkage map with the number of mapped loci expanded to 276 and 10-cM coverage extended to 75-90% of the genome. Most of the 38 canine autosomes are likely represented in the collection of 39 autosomal linkage groups. Eight markers were sufficiently informative to detect linkage at distances of 10-13 cM, yet remained unlinked to any other marker. Taken together, the results suggested a genome size of about 27 M. As in other species, the genetic length varied between sexes, with the female autosomal distance being approximately 1.4-fold greater than that of male meioses. Fifteen markers anchored well-described genes on the map, thereby serving as landmarks for comparative mapping in dogs. We discuss the utility of the current map and outline steps necessary for future map improvement. PMID:9927471

  15. Myasthenia gravis: the role of complement at the neuromuscular junction.

    PubMed

    Howard, James F

    2018-01-01

    Generalized myasthenia gravis (gMG) is a rare autoimmune disorder characterized by skeletal muscle weakness caused by disrupted neurotransmission at the neuromuscular junction (NMJ). Approximately 74-88% of patients with gMG have acetylcholine receptor (AChR) autoantibodies. Complement plays an important role in innate and antibody-mediated immunity, and activation and amplification of complement results in the formation of membrane attack complexes (MACs), lipophilic proteins that damage cell membranes. The role of complement in gMG has been demonstrated in animal models and patients. Studies in animals lacking specific complement proteins have confirmed that MAC formation is required to induce experimental autoimmune MG (EAMG) and NMJ damage. Complement inhibition in EAMG models can prevent disease induction and reverse its progression. Patients with anti-AChR + MG have autoantibodies and MACs present at NMJs. Damaged NMJs are associated with more severe disease, fewer AChRs, and MACs in synaptic debris. Current MG therapies do not target complement directly. Eculizumab is a humanized monoclonal antibody that inhibits cleavage of complement protein C5, preventing MAC formation. Eculizumab treatment improved symptoms compared with placebo in a phase II study in patients with refractory gMG. Direct complement inhibition could preserve NMJ physiology and muscle function in patients with anti-AChR + gMG. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  16. STUDIES ON THE ANTIGENIC PROPERTIES OF COMPLEMENT

    PubMed Central

    Klein, Paul G.; Burkholder, Peter M.

    1960-01-01

    Evidence is presented to show that guinea pig complement fixed on sensitized sheep red cells acts as a specific agglutinogen. Agglutinating antibodies that react with cell-fixed complement can be produced by immunizing rabbits with a complex of stromata-amboceptor-complement or with guinea pig serum globulin. These agglutinins can be removed by precipitation with guinea pig serum. They are, therefore, distinct from immunoconglutinins. PMID:14409702

  17. Coagulation cascade and complement system in systemic lupus erythematosus

    PubMed Central

    Liang, Yan; Xie, Shang-Bo; Wu, Chang-Hao; Hu, Yuan; Zhang, Qin; Li, Si; Fan, Yin-Guang; Leng, Rui-Xue; Pan, Hai-Feng; Xiong, Hua-Bao; Ye, Dong-Qing

    2018-01-01

    This study was conducted to (1) characterize coagulation cascade and complement system in systemic lupus erythematosus (SLE); (2) evaluate the associations between coagulation cascade, complement system, inflammatory response and SLE disease severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE patients and 24 healthy controls. The levels of ten coagulations, seven complements and three cytokines were measured in 112 SLE patients. Clinical data were collected from 2025 SLE patients. The analysis of multi-omics data revealed the common links for the components of coagulation cascade and complement system. The results of ELISA showed coagulation cascade and complement system had an interaction effect on SLE disease severity, this effect was pronounced among patients with excess inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 provided good diagnostic performance for lupus activity. This study suggested that coagulation cascade and complement system become ‘partners in crime’, contributing to SLE disease severity and identified the diagnostic value of D-dimer combined with C4for lupus activity. PMID:29599912

  18. Mycophenolate Mofetil in Combination with Steroids for Treatment of C3 Glomerulopathy: A Case Series.

    PubMed

    Avasare, Rupali S; Canetta, Pietro A; Bomback, Andrew S; Marasa, Maddalena; Caliskan, Yasar; Ozluk, Yasemin; Li, Yifu; Gharavi, Ali G; Appel, Gerald B

    2018-03-07

    C3 glomerulopathy is a form of complement-mediated GN. Immunosuppressive therapy may be beneficial in the treatment of C3 glomerulopathy. Mycophenolate mofetil is an attractive treatment option given its role in the treatment of other complement-mediated diseases and the results of the Spanish Group for the Study of Glomerular Diseases C3 Study. Here, we study the outcomes of patients with C3 glomerulopathy treated with steroids and mycophenolate mofetil. We conducted a retrospective chart review of patients in the C3 glomerulopathy registry at Columbia University and identified patients treated with mycophenolate mofetil for at least 3 months and follow-up for at least 1 year. We studied clinical, histologic, and genetic data for the whole group and compared data for those who achieved complete or partial remission (responders) with those who did not achieve remission (nonresponders). We compared remission with mycophenolate mofetil with remission with other immunosuppressive regimens. We identified 30 patients who met inclusion criteria. Median age was 25 years old (interquartile range, 18-36), median creatinine was 1.07 mg/dl (interquartile range, 0.79-1.69), and median proteinuria was 3200 mg/g creatinine (interquartile range, 1720-6759). The median follow-up time was 32 months (interquartile range, 21-68). Twenty (67%) patients were classified as responders. There were no significant differences in baseline characteristics between responders and nonresponders, although initial proteinuria was lower (median 2468 mg/g creatinine) in responders compared with nonresponders (median 5000 mg/g creatinine) and soluble membrane attack complex levels were higher in responders compared with nonresponders. For those tapered off mycophenolate mofetil, relapse rate was 50%. Genome-wide analysis on complement genes was done, and in 12 patients, we found 18 variants predicted to be damaging. None of these variants were previously reported to be pathogenic. Mycophenolate mofetil with steroids outperformed other immunosuppressive regimens. Among patients who tolerated mycophenolate mofetil, combination therapy with steroids induced remission in 67% of this cohort. Heavier proteinuria at the start of therapy and lower soluble membrane attack complex levels were associated with treatment resistance. Copyright © 2018 by the American Society of Nephrology.

  19. Effect of complement and its regulation on myasthenia gravis pathogenesis

    PubMed Central

    Kusner, Linda L; Kaminski, Henry J; Soltys, Jindrich

    2015-01-01

    Myasthenia gravis (MG) is primarily caused by antibodies directed towards the skeletal muscle acetylcholine receptor, leading to muscle weakness. Although these antibodies may induce compromise of neuromuscular transmission by blocking acetylcholine receptor function or antigenic modulation, the predominant mechanism of injury to the neuromuscular junction is complement-mediated lysis of the postsynaptic membrane. The vast majority of data to support the role of complement derives from experimentally acquired MG (EAMG). In this article, we review studies that demonstrate the central role of complement in EAMG and MG pathogenesis along with the emerging role of complement in T- and B-cell function, as well as the potential for complement inhibitor-based therapy to treat human MG. PMID:20477586

  20. A second generation genetic linkage map of Japanese flounder (Paralichthys olivaceus)

    PubMed Central

    2010-01-01

    Background Japanese flounder (Paralichthys olivaceus) is one of the most economically important marine species in Northeast Asia. Information on genetic markers associated with quantitative trait loci (QTL) can be used in breeding programs to identify and select individuals carrying desired traits. Commercial production of Japanese flounder could be increased by developing disease-resistant fish and improving commercially important traits. Previous maps have been constructed with AFLP markers and a limited number of microsatellite markers. In this study, improved genetic linkage maps are presented. In contrast with previous studies, these maps were built mainly with a large number of codominant markers so they can potentially be used to analyze different families and populations. Results Sex-specific genetic linkage maps were constructed for the Japanese flounder including a total of 1,375 markers [1,268 microsatellites, 105 single nucleotide polymorphisms (SNPs) and two genes]; 1,167 markers are linked to the male map and 1,067 markers are linked to the female map. The lengths of the male and female maps are 1,147.7 cM and 833.8 cM, respectively. Based on estimations of map lengths, the female and male maps covered 79 and 82% of the genome, respectively. Recombination ratio in the new maps revealed F:M of 1:0.7. All linkage groups in the maps presented large differences in the location of sex-specific recombination hot-spots. Conclusions The improved genetic linkage maps are very useful for QTL analyses and marker-assisted selection (MAS) breeding programs for economically important traits in Japanese flounder. In addition, SNP flanking sequences were blasted against Tetraodon nigroviridis (puffer fish) and Danio rerio (zebrafish), and synteny analysis has been carried out. The ability to detect synteny among species or genera based on homology analysis of SNP flanking sequences may provide opportunities to complement initial QTL experiments with candidate gene approaches from homologous chromosomal locations identified in related model organisms. PMID:20937088

  1. [Parental genome imprinting].

    PubMed

    Babinet, C

    1993-01-01

    Genetical as well as experimental embryology methods have permitted, in recent years, to uncover a very important feature of mammalian embryonic development: it has been shown that female and male genomic complements are differentially imprinted in such a way that contribution of both a maternally and a paternally derived genome are absolutely necessary for the embryo to complete its normal development. Differential genomic imprinting seems therefore to impose some new and essential kind of information to the one already contained in the genomic sequences. The differential imprinting should be imposed on the genetic material during gametogenesis and persist throughout somatic development after fertilization. It should then be erased in the germ cell line and be established again in sperm and egg genomes. The recent discovery of several mouse genes which are imprinted should permit to address the question of the molecular mechanisms of imprinting.

  2. Information and Communication Technologies, Genes, and Peer-Production of Knowledge to Empower Citizens' Health.

    PubMed

    Biggeri, Annibale; Tallacchini, Mariachiara

    2018-06-01

    The different and seemingly unrelated practices of Information and Communication Technologies (ICT) used to collect and share personal and scientific data within networked communities, and the organized storage of human genetic samples and information-namely biobanking-have merged with another recent epistemic and social phenomenon, namely scientists and citizens collaborating as "peers" in creating knowledge (or peer-production of knowledge). These different dimensions can be found in joint initiatives where scientists-and-citizens use genetic information and ICT as powerful ways to gain more control over their health and the environment. While this kind of initiative usually takes place only after rights have been infringed (or are put at risk)-as the two cases presented in the paper show-collaborative scientists-and-citizens' knowledge should be institutionally allowed to complement and corroborate official knowledge-supporting policies.

  3. Protocol for production of a genetic cross of the rodent malaria parasites.

    PubMed

    Pattaradilokrat, Sittiporn; Li, Jian; Su, Xin-zhuan

    2011-01-03

    Variation in response to antimalarial drugs and in pathogenicity of malaria parasites is of biologic and medical importance. Linkage mapping has led to successful identification of genes or loci underlying various traits in malaria parasites of rodents and humans. The malaria parasite Plasmodium yoelii is one of many malaria species isolated from wild African rodents and has been adapted to grow in laboratories. This species reproduces many of the biologic characteristics of the human malaria parasites; genetic markers such as microsatellite and amplified fragment length polymorphism (AFLP) markers have also been developed for the parasite. Thus, genetic studies in rodent malaria parasites can be performed to complement research on Plasmodium falciparum. Here, we demonstrate the techniques for producing a genetic cross in P. yoelii that were first pioneered by Drs. David Walliker, Richard Carter, and colleagues at the University of Edinburgh. Genetic crosses in P. yoelii and other rodent malaria parasites are conducted by infecting mice Mus musculus with an inoculum containing gametocytes of two genetically distinct clones that differ in phenotypes of interest and by allowing mosquitoes to feed on the infected mice 4 days after infection. The presence of male and female gametocytes in the mouse blood is microscopically confirmed before feeding. Within 48 hrs after feeding, in the midgut of the mosquito, the haploid gametocytes differentiate into male and female gametes, fertilize, and form a diploid zygote (Fig. 1). During development of a zygote into an ookinete, meiosis appears to occur. If the zygote is derived through cross-fertilization between gametes of the two genetically distinct parasites, genetic exchanges (chromosomal reassortment and cross-overs between the non-sister chromatids of a pair of homologous chromosomes; Fig. 2) may occur, resulting in recombination of genetic material at homologous loci. Each zygote undergoes two successive nuclear divisions, leading to four haploid nuclei. An ookinete further develops into an oocyst. Once the oocyst matures, thousands of sporozoites (the progeny of the cross) are formed and released into mosquito hemoceal. Sporozoites are harvested from the salivary glands and injected into a new murine host, where pre-erythrocytic and erythrocytic stage development takes place. Erythrocytic forms are cloned and classified with regard to the characters distinguishing the parental lines prior to genetic linkage mapping. Control infections of individual parental clones are performed in the same way as the production of a genetic cross.

  4. Quantification and Mood Distribution in Spanish Complements: On the Negative Features of "Poco/a/s" in Spanish

    ERIC Educational Resources Information Center

    Laskurain-Ibarluzea, Patxi

    2015-01-01

    This paper studies mood distribution in the complement of Spanish assertive matrices when the matrix subject is modified by the quantifier "poco/a/s". The focus of this study is solely complement clauses, and adjectival and adverbial clauses are not considered. Following Mejías-Bikandi's (1994, 1998) account that the distribution of mood…

  5. Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA

    PubMed Central

    Tegtmeyer, Nicole; Moodley, Yoshan; Yamaoka, Yoshio; Pernitzsch, Sandy Ramona; Schmidt, Vanessa; Traverso, Francisco Rivas; Schmidt, Thomas P.; Rad, Roland; Yeoh, Khay Guan; Bow, Ho; Torres, Javier; Gerhard, Markus; Schneider, Gisbert; Wessler, Silja

    2015-01-01

    Summary HtrA proteases and chaperones exhibit important roles in periplasmic protein quality control and stress responses. The genetic inactivation of htrA has been described for many bacterial pathogens. However, in some cases such as the gastric pathogen H elicobacter pylori, HtrA is secreted where it cleaves the tumour‐suppressor E‐cadherin interfering with gastric disease development, but the generation of htrA mutants is still lacking. Here, we show that the htrA gene locus is highly conserved in worldwide strains. HtrA presence was confirmed in 992 H . pylori isolates in gastric biopsy material from infected patients. Differential RNA‐sequencing (dRNA‐seq) indicated that htrA is encoded in an operon with two subsequent genes, HP1020 and HP1021. Genetic mutagenesis and complementation studies revealed that HP1020 and HP1021, but not htrA, can be mutated. In addition, we demonstrate that suppression of HtrA proteolytic activity with a newly developed inhibitor is sufficient to effectively kill H . pylori, but not other bacteria. We show that H elicobacter  htrA is an essential bifunctional gene with crucial intracellular and extracellular functions. Thus, we describe here the first microbe in which htrA is an indispensable gene, a situation unique in the bacterial kingdom. HtrA can therefore be considered a promising new target for anti‐bacterial therapy. PMID:26568477

  6. EVOLUTIONARY PERSPECTIVES IN A MUTUALISM OF SEPIOLID SQUID AND BIOLUMINESCENT BACTERIA: COMBINED USAGE OF MICROBIAL EXPERIMENTAL EVOLUTION AND TEMPORAL POPULATION GENETICS

    PubMed Central

    Soto, W.; Punke, E. B.; Nishiguchi, M. K.

    2013-01-01

    The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal–bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000–20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation. PMID:22519773

  7. Genome-scale approaches to the epigenetics of common human disease

    PubMed Central

    2011-01-01

    Traditionally, the pathology of human disease has been focused on microscopic examination of affected tissues, chemical and biochemical analysis of biopsy samples, other available samples of convenience, such as blood, and noninvasive or invasive imaging of varying complexity, in order to classify disease and illuminate its mechanistic basis. The molecular age has complemented this armamentarium with gene expression arrays and selective analysis of individual genes. However, we are entering a new era of epigenomic profiling, i.e., genome-scale analysis of cell-heritable nonsequence genetic change, such as DNA methylation. The epigenome offers access to stable measurements of cellular state and to biobanked material for large-scale epidemiological studies. Some of these genome-scale technologies are beginning to be applied to create the new field of epigenetic epidemiology. PMID:19844740

  8. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults

    PubMed Central

    MacLennan, Calman A.; Gilchrist, James J.; Gordon, Melita A.; Cunningham, Adam F.; Cobbold, Mark; Goodall, Margaret; Kingsley, Robert A.; van Oosterhout, Joep J. G.; Msefula, Chisomo L.; Mandala, Wilson L.; Leyton, Denisse L.; Marshall, Jennifer L.; Gondwe, Esther N.; Bobat, Saeeda; López-Macías, Constantino; Doffinger, Rainer; Henderson, Ian R.; Zijlstra, Eduard E.; Dougan, Gordon; Drayson, Mark T.; MacLennan, Ian C. M.; Molyneux, Malcolm E.

    2013-01-01

    Nontyphoidal Salmonellae are a major cause of life-threatening bacteremia among HIV-infected individuals. Although cell-mediated immunity controls intracellular infection, antibody protects against Salmonella bacteremia. We report that high titer antibodies specific for Salmonella lipopolysaccharide (LPS) associate with absent Salmonella-killing in HIV-infected African adults. Killing was restored by genetically shortening LPS from target Salmonella, or removing LPS-specific antibodies from serum. Complement-mediated killing of Salmonella by healthy serum is shown to be induced specifically by antibodies against outer membrane proteins. This killing is lost when excess antibody against Salmonella LPS is added. Thus our study indicates impaired immunity against nontyphoidal Salmonella bacteremia in HIV infection results from excess inhibitory antibodies against Salmonella LPS, whilst serum killing of Salmonella is induced by antibodies against outer membrane proteins. PMID:20413503

  9. Fixed-Cell Imaging of Schizosaccharomyces pombe.

    PubMed

    Hagan, Iain M; Bagley, Steven

    2016-07-01

    The acknowledged genetic malleability of fission yeast has been matched by impressive cytology to drive major advances in our understanding of basic molecular cell biological processes. In many of the more recent studies, traditional approaches of fixation followed by processing to accommodate classical staining procedures have been superseded by live-cell imaging approaches that monitor the distribution of fusion proteins between a molecule of interest and a fluorescent protein. Although such live-cell imaging is uniquely informative for many questions, fixed-cell imaging remains the better option for others and is an important-sometimes critical-complement to the analysis of fluorescent fusion proteins by live-cell imaging. Here, we discuss the merits of fixed- and live-cell imaging as well as specific issues for fluorescence microscopy imaging of fission yeast. © 2016 Cold Spring Harbor Laboratory Press.

  10. Deconstructing Pancreas Developmental Biology

    PubMed Central

    Benitez, Cecil M.; Goodyer, William R.

    2012-01-01

    The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development. PMID:22587935

  11. Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid

    PubMed Central

    Bhattacharyya, Paromik; Kumaria, Suman; Diengdoh, Reemavareen; Tandon, Pramod

    2014-01-01

    An efficient genetically stable regeneration protocol with increased phytochemical production has been established for Dendrobium nobile, a highly prized orchid for its economic and medicinal importance. Protocorm like bodies (PLBs) were induced from the pseudostem segments using thidiazuron (TDZ; 1.5 mg/l), by-passing the conventional auxin–cytokinin complement approach for plant regeneration. Although, PLB induction was observed at higher concentrations of TDZ, plantlet regeneration from those PLBs was affected adversely. The best rooting (5.41 roots/shoot) was achieved in MS medium with 1.5 mg/l TDZ and 0.25% activated charcoal. Plantlets were successfully transferred to a greenhouse with a survival rate of 84.3%, exhibiting normal development. Genetic stability of the regenerated plants was investigated using randomly amplified polymorphic DNA (RAPD) and start codon targeted (SCoT) polymorphism markers which detected 97% of genetic fidelity among the regenerants. The PIC values of RAPD and SCoT primers were recorded to be 0.92 and 0.76 and their Rp values ranged between 3.66 and 10, and 4 and 12 respectively. The amplification products of the regenerated plants showed similar banding patterns to that of the mother plant thus demonstrating the homogeneity of the micropropagated plants. A comparative phytochemical analysis among the mother and the micropropagated plants showed a higher yield of secondary metabolites. The regeneration protocol developed in this study provides a basis for ex-situ germplasm conservation and also harnesses the various secondary metabolite compounds of medicinal importance present in D. nobile. PMID:25606433

  12. Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease

    PubMed Central

    Lau, Cia-Hin; Suh, Yousin

    2016-01-01

    The recent advent of genome and epigenome editing technologies has provided a new paradigm in which the landscape of the human genome and epigenome can be precisely manipulated in their native context. Genome and epigenome editing technologies can be applied to many aspects of aging research and offer the potential to development novel therapeutics against age-related diseases. Here, we discuss the latest technological advances in the CRISPR-based genome and epigenome editing toolbox, and provide an insight into how these synthetic biology tools could facilitate aging research by establishing in vitro cell- and in vivo animal-models to dissect genetic and epigenetic mechanisms underlying aging and age-related diseases. We discuss recent developments in the field with the aims to precisely modulate gene expression and dynamic epigenetic landscapes in a spatial- and temporal- manner in cellular and animal models, by complementing the CRISPR-based editing capability with conditional genetic manipulation tools, including chemically inducible expression system, optogenetics, logic gate genetic circuits, tissue-specific promoters, and serotype-specific adeno-associated virus. We also discuss how the combined use of genome and epigenome editing tools permits investigators to uncover novel molecular pathways involved in pathophysiology and etiology conferred by risk variants associated with aging and aging-related disease. A better understanding of the genetic and epigenetic regulatory mechanisms underlying human aging and age-related disease will significantly contribute to the developments of new therapeutic interventions for extending healthspan and lifespan, ultimately improving the quality of life in the elderly populations. PMID:27974723

  13. Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease.

    PubMed

    Lau, Cia-Hin; Suh, Yousin

    2017-01-01

    The recent advent of genome and epigenome editing technologies has provided a new paradigm in which the landscape of the human genome and epigenome can be precisely manipulated in their native context. Genome and epigenome editing technologies can be applied to many aspects of aging research and offer the potential to develop novel therapeutics against age-related diseases. Here, we discuss the latest technological advances in the CRISPR-based genome and epigenome editing toolbox, and provide insight into how these synthetic biology tools could facilitate aging research by establishing in vitro cell and in vivo animal models to dissect genetic and epigenetic mechanisms underlying aging and age-related diseases. We discuss recent developments in the field with the aims to precisely modulate gene expression and dynamic epigenetic landscapes in a spatial and temporal manner in cellular and animal models, by complementing the CRISPR-based editing capability with conditional genetic manipulation tools including chemically inducible expression systems, optogenetics, logic gate genetic circuits, tissue-specific promoters, and the serotype-specific adeno-associated virus. We also discuss how the combined use of genome and epigenome editing tools permits investigators to uncover novel molecular pathways involved in the pathophysiology and etiology conferred by risk variants associated with aging and aging-related disease. A better understanding of the genetic and epigenetic regulatory mechanisms underlying human aging and age-related disease will significantly contribute to the developments of new therapeutic interventions for extending health span and life span, ultimately improving the quality of life in the elderly populations. © 2016 S. Karger AG, Basel.

  14. Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.

    PubMed

    Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard

    2017-04-01

    To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.

  15. Male Sterile2 Encodes a Plastid-Localized Fatty Acyl Carrier Protein Reductase Required for Pollen Exine Development in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W.; Shanklin, J.; Yu, X.-H.

    Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. Inmore » addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30 C), MS2 exhibits a K{sub m} for 16:0-Acyl Carrier Protein of 23.3 {+-} 4.0 {mu}m, a V{sub max} of 38.3 {+-} 4.5 nmol mg{sup -1} min{sup -1}, and a catalytic efficiency/K{sub m} of 1,873 m{sup -1} s{sup -1}. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.« less

  16. The dissonance mutation at the no-on-transient-A locus of D. melanogaster: genetic control of courtship song and visual behaviors by a protein with putative RNA-binding motifs.

    PubMed

    Rendahl, K G; Jones, K R; Kulkarni, S J; Bagully, S H; Hall, J C

    1992-02-01

    Genetic and molecular results are here presented revealing that the dissonance (diss) courtship song mutation is an allele of the no-on-transient-A (nonA) locus of Drosophila melanogaster. diss (now called nonAdiss) was originally isolated as a mutant with aberrant pulse song, although it was then noted to exhibit defects in responses to visual stimuli as well. The lack of transient spikes in the electroretinogram (ERG) and optomotor blindness associated with nonAdiss are shown to be similar to the visual abnormalities caused by the original nonA mutations. nonAdiss failed to complement either the ERG or optomotor defects associated with four other nonA mutations. However, all four of these nonA mutants--which were isolated on visual criteria alone--sang a normal courtship song. nonAdiss complemented at least three of the nonA mutations with regard to the singing phenotype, as assessed by a new method for temporal analysis of the male's pulse song. Both visual and song abnormalities caused by nonAdiss were rescued by P-element-mediated transformation with overlapping 11 and 16 kilobase (kb) fragments of genomic DNA (originally cloned from the nonA locus by Jones and Rubin, 1990). Analysis of behavioral phenotypes in transformed flies carrying mutagenized versions of the 11 kb genomic fragment (in a nonAdiss genomic background) localized the rescuing DNA to a region containing an open reading frame that encodes a polypeptide (NONA) with similarity to a family of RNA-binding proteins. Immunohistochemical determination of NONA's spatial and temporal expression revealed that it is localized to the nuclei of cells in many neural and non-neural tissues, at all stages of the life cycle after very early in development. Genetic connections between the control of two quite different behaviors--reproductive and visual--are discussed, along with precedences for generally expressed gene products playing roles in specific behaviors.

  17. The mitochondrial COB region in yeast codes for apocytochrome b and is mosaic.

    PubMed

    Haid, A; Schweyen, R J; Bechmann, H; Kaudewitz, F; Solioz, M; Schatz, G

    1979-03-01

    Mitochondrial mutants of Saccharomyces cerevisiae defective in cytochrome b were analyzed genetically and biochemically in order to elucidate the role of the mitochondrial genetic system in the biosynthesis of this cytochrome. The mutants mapped between OLI1 and OLI2 on mitochondrial DNA in a region called COB. A fine structure map of the COB region was constructed by rho- deletion mapping and recombination analysis. The combined genetic and biochemical data indicate that the COB region is mosaic and contains at least five distinct clusters of mutants, A-E, with A being closest to OLI2 and E being closest to OLI1. Clusters A, C and E are probably coding regions for apocytochrome b, whereas clusters B and D seem to be involved in as yet unknown functions. These conclusions rest on the following evidence. 1. Most mutants in clusters A, C and E have specifically lost cytochrome b. Many of them accumulate smaller mitochondrial translation products; some of these were identified as fragments of apocytochrome b by proteolytic fingerprinting. The molecular weight of these fragments depends on the map position of the mutant, increasing in the direction OLI2 leads to OLI1. The mutant closest to OLI1 accumulates an apocytochrome b which is slightly larger than that of wild type. 2. A mutant in cluster C exhibits a spectral absorption band of cytochrome b that is shifted 1.5 nm to the red. 3. Mutants in clusters B and D are pleiotropic. A majority of them are conditional and lack the absorption bands of both cytochrome b and cytochrome aa3; these mutants also fail to accumulate apocytochrome b and subunit I of cytochrome c oxidase and instead form a large number of abnormal translation products whose nature is unknown. 4. Zygotic complementation tests reveal at least two complementation groups: The first group includes all mutants in cluster B and the second group includes mutants in clusters (A + C + D + E).

  18. Evasion of Complement-Mediated Lysis and Complement C3 Deposition Are Regulated by Francisella tularensis Lipopolysaccharide O Antigen1

    PubMed Central

    Clay, Corey D.; Soni, Shilpa; Gunn, John S.; Schlesinger, Larry S.

    2009-01-01

    The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag. PMID:18832715

  19. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways

    PubMed Central

    Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph

    2016-01-01

    Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258

  20. Blood SC5b-9 complement levels increase at parturition during term and preterm labor.

    PubMed

    Segura-Cervantes, Enrique; Mancilla-Ramirez, Javier; Zurita, Luis; Paredes, Yuriria; Arredondo, José Luis; Galindo-Sevilla, Norma

    2015-06-01

    We explored the hypothesis that complement, an innate and adaptive immune effector, is active in the plasma of parturient women and is deposited on fetal membranes collected after delivery. A cross-sectional study was designed to evaluate complement activity at parturition. Pregnant women (n = 97) between 15 and 41 years of age were enrolled in a hospital protocol during the perinatal period to assess both SC5b-9 complement activity in blood and complement deposition on fetal membranes during parturition. Soluble SC5b-9 complement activity in plasma fractions was measured using a standard enzyme-linked immunosorbent assay (ELISA) that included specific anti-complement antibodies. Complement deposition on membranes was analyzed using immuno-dot blots and immunohistochemistry. Soluble SC5b-9 complement complex levels were increased in the plasma of women during term labor (TL; median 3361; range 1726-5670 ng/mL), preterm labor (PL; median 2958; range 1552-7092 ng/mL), and preterm premature rupture of membranes (PPROM; median 2272; range 167-6540 ng/mL) compared with pregnant women who were not in labor (P; median 1384; range 174-4570 ng/mL; P < 0.001, Kruskal-Wallis test). Active complement, as assessed by the C9 neo-antigen in C5b-9 complexes, was deposited on fetal membranes, with no difference between term and preterm delivery. The deposition of active complement on fetal membranes was confirmed by immunohistochemistry. Women who underwent non-labor-indicated Cesarean sections did not exhibit complement deposition. Soluble SC5b-9 complement complex levels increased in the plasma of women during parturition, and complement C5b-9 complexes were deposited on fetal membranes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

Top