Boiler-turbine control system design using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.; Lee, K.Y.
1995-12-01
This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.
Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous
NASA Technical Reports Server (NTRS)
Karr, C. L.; Freeman, L. M.; Meredith, D. L.
1990-01-01
The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.
Hall, Taryn O; Renz, Anne D; Snapinn, Katherine W; Bowen, Deborah J; Edwards, Karen L
2012-07-01
To determine if awareness of, interest in, and use of direct-to-consumer (DTC) genetic testing is greater in a sample of high-risk individuals (cancer cases and their relatives), compared to controls. Participants were recruited from the Northwest Cancer Genetics Network. A follow-up survey was mailed to participants to assess DTC genetic testing awareness, interest, and use. One thousand two hundred sixty-seven participants responded to the survey. Forty-nine percent of respondents were aware of DTC genetic testing. Of those aware, 19% indicated interest in obtaining and <1% reported having used DTC genetic testing. Additional information supplied by respondents who reported use of DTC genetic tests indicated that 55% of these respondents likely engaged in clinical genetic testing, rather than DTC genetic testing. Awareness of DTC genetic testing was greater in our sample of high-risk individuals than in controls and population-based studies. Although interest in and use of these tests among cases in our sample were equivalent to other population-based studies, interest in testing was higher among relatives and people who self-referred for a registry focused on cancer than among cases and controls. Additionally, our results suggest that there may be some confusion about what constitutes DTC genetic testing.
Genetics-based control of a mimo boiler-turbine plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.M.; Lee, K.Y.
1994-12-31
A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.
A synthetic mammalian electro-genetic transcription circuit.
Weber, Wilfried; Luzi, Stefan; Karlsson, Maria; Sanchez-Bustamante, Carlota Diaz; Frey, Urs; Hierlemann, Andreas; Fussenegger, Martin
2009-03-01
Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts.
A synthetic mammalian electro-genetic transcription circuit
Weber, Wilfried; Luzi, Stefan; Karlsson, Maria; Sanchez-Bustamante, Carlota Diaz; Frey, Urs; Hierlemann, Andreas; Fussenegger, Martin
2009-01-01
Electric signal processing has evolved to manage rapid information transfer in neuronal networks and muscular contraction in multicellular organisms and controls the most sophisticated man-built devices. Using a synthetic biology approach to assemble electronic parts with genetic control units engineered into mammalian cells, we designed an electric power-adjustable transcription control circuit able to integrate the intensity of a direct current over time, to translate the amplitude or frequency of an alternating current into an adjustable genetic readout or to modulate the beating frequency of primary heart cells. Successful miniaturization of the electro-genetic devices may pave the way for the design of novel hybrid electro-genetic implants assembled from electronic and genetic parts. PMID:19190091
Genetic algorithms for adaptive real-time control in space systems
NASA Technical Reports Server (NTRS)
Vanderzijp, J.; Choudry, A.
1988-01-01
Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.
Can merely learning about obesity genes affect eating behavior?
Dar-Nimrod, Ilan; Cheung, Benjamin Y; Ruby, Matthew B; Heine, Steven J
2014-10-01
Public discourse on genetic predispositions for obesity has flourished in recent decades. In three studies, we investigated behaviorally-relevant correlates and consequences of a perceived genetic etiology for obesity. In Study 1, beliefs about etiological explanations for obesity were assessed. Stronger endorsement of genetic etiology was predictive of a belief that obese people have no control over their weight. In Study 2, beliefs about weight and its causes were assessed following a manipulation of the perceived underlying cause. Compared with a genetic attribution, a non-genetic physiological attribution led to increased perception of control over one's weight. In Study 3, participants read a fictional media report presenting either a genetic explanation, a psychosocial explanation, or no explanation (control) for obesity. Results indicated that participants who read the genetic explanation ate significantly more on a follow-up task. Taken together, these studies demonstrate potential effects of genetic attributions for obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hooker, Gillian W.; Peay, Holly; Erby, Lori; Bayless, Theodore; Biesecker, Barbara B.; Roter, Debra L.
2014-01-01
Background Findings from inflammatory bowel disease (IBD) genome-wide association studies are being translated clinically into prognostic and diagnostic indicators of disease. Yet, patient perception and understanding of these tests and their applicability to providing risk information is unclear. The goal of this study was to determine, using hypothetical scenarios, whether patients with IBD perceive genetic testing to be useful for risk assessment, whether genetic test results impact perceived control, and whether low genetic literacy may be a barrier to patient understanding of these tests. Methods Two hundred fifty seven patients with IBD from the Johns Hopkins gastroenterology clinics were randomized to receive a vignette depicting either a genetic testing scenario or a standard blood testing scenario. Participants were asked questions about the vignette and responses were compared between groups. Results Perceptions of test utility for risk assessment were higher among participants responding to the genetic vignette (P < 0.001). There were no significant differences in perceptions of control over IBD after hypothetical testing between vignettes (P = 0.24). Participant responses were modified by genetic literacy, measured using a scale developed for this study. Participants randomized to the genetic vignette who scored higher on the genetic literacy scale perceived greater utility of testing for risk assessment (P = 0.008) and more control after testing (P = 0.02). Conclusions Patients with IBD perceive utility in genetic testing for providing information relevant to family members, and this appreciation is promoted by genetic literacy. Low genetic literacy among patients poses a potential threat to effective translation of genetic and genomic tests. PMID:24691112
He, Ding-Xin; Ling, Guang; Guan, Zhi-Hong; Hu, Bin; Liao, Rui-Quan
2018-02-01
This paper focuses on the collective dynamics of multisynchronization among heterogeneous genetic oscillators under a partial impulsive control strategy. The coupled nonidentical genetic oscillators are modeled by differential equations with uncertainties. The definition of multisynchronization is proposed to describe some more general synchronization behaviors in the real. Considering that each genetic oscillator consists of a large number of biochemical molecules, we design a more manageable impulsive strategy for dynamic networks to achieve multisynchronization. Not all the molecules but only a small fraction of them in each genetic oscillator are controlled at each impulsive instant. Theoretical analysis of multisynchronization is carried out by the control theory approach, and a sufficient condition of partial impulsive controller for multisynchronization with given error bounds is established. At last, numerical simulations are exploited to demonstrate the effectiveness of our results.
Hodgson, Jan; Metcalfe, Sylvia; Gaff, Clara; Donath, Susan; Delatycki, Martin B; Winship, Ingrid; Skene, Loane; Aitken, MaryAnne; Halliday, Jane
2016-03-01
When an inherited genetic condition is diagnosed in an individual it has implications for other family members. Privacy legislation and ethical considerations can restrict health professionals from communicating directly with other family members, and so it is frequently the responsibility of the first person in a family to receive the diagnosis (the proband) to share this news. Communication of genetic information is challenging and many at-risk family members remain unaware of important information that may be relevant to their or their children's health. We conducted a randomised controlled trial in six public hospitals to assess whether a specifically designed telephone counselling intervention improved family communication about a new genetic diagnosis. Ninety-five probands/parents of probands were recruited from genetics clinics and randomised to the intervention or control group. The primary outcome measure was the difference between the proportion of at-risk relatives who contacted genetics services for information and/or genetic testing. Audit of the family genetic file after 18 months revealed that 25.6% of intervention group relatives compared with 20.9% of control group relatives made contact with genetic services (adjusted odds ratio (OR) 1.30, 95% confidence interval 0.70-2.42, P=0.40). Although no major difference was detected overall between the intervention and control groups, there was more contact in the intervention group where the genetic condition conferred a high risk to offspring (adjusted OR 24.0, 95% confidence interval 3.4-168.5, P=0.001). The increasing sophistication and scope of genetic testing makes it imperative for health professionals to consider additional ways of supporting families in communicating genetic information.
Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai'i
Hansen, H.; Hess, S.C.; Cole, D.; Banko, P.C.
2007-01-01
Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai'i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools. ?? CSIRO 2007.
Drescher, Charles W; Beatty, J David; Resta, Robert; Andersen, M Robyn; Watabayashi, Kate; Thorpe, Jason; Hawley, Sarah; Purkey, Hannah; Chubak, Jessica; Hanson, Nancy; Buist, Diana S M; Urban, Nicole
2016-07-22
Guidelines recommend genetic counseling and testing for women who have a pedigree suggestive of an inherited susceptibility for ovarian cancer. The authors evaluated the effect of referral to genetic counseling on genetic testing and prophylactic oophorectomy in a randomized controlled trial. Data from an electronic mammography reporting system identified 12,919 women with a pedigree that included breast cancer, of whom 625 were identified who had a high risk for inherited susceptibility to ovarian cancer using a risk-assessment questionnaire. Of these, 458 women provided informed consent and were randomized 1:1 to intervention consisting of a genetic counseling referral (n = 228) or standard clinical care (n = 230). Participants were predominantly aged 45 to 65 years, and 30% and 20% reported a personal history of breast cancer or a family history of ovarian cancer, respectively. Eighty-five percent of women in the intervention group participated in a genetic counseling session. Genetic testing was reported by 74 (33%) and 20 (9%) women in the intervention and control arms (P < .005), respectively. Five women in the intervention arm and 2 in the control arm were identified as germline mutation carriers. Ten women in the intervention arm and 3 in the control arm underwent prophylactic bilateral salpingo-oophorectomy (P < .05). Routine referral of women at high risk for ovarian cancer to genetic counseling promotes genetic testing and prophylactic surgery. The findings from the current randomized controlled trial demonstrate the value of implementing strategies that target women at high risk for ovarian cancer to ensure they are offered access to recommended care. CA Cancer J Clin 2016. © 2016 American Cancer Society, Inc. © 2016 American Cancer Society.
Hernandez-Valladares, Maria; Rihet, Pascal; Iraqi, Fuad A
2014-01-01
There is growing evidence for human genetic factors controlling the outcome of malaria infection, while molecular basis of this genetic control is still poorly understood. Case-control and family-based studies have been carried out to identify genes underlying host susceptibility to malarial infection. Parasitemia and mild malaria have been genetically linked to human chromosomes 5q31-q33 and 6p21.3, and several immune genes located within those regions have been associated with malaria-related phenotypes. Association and linkage studies of resistance to malaria are not easy to carry out in human populations, because of the difficulty in surveying a significant number of families. Murine models have proven to be an excellent genetic tool for studying host response to malaria; their use allowed mapping 14 resistance loci, eight of them controlling parasitic levels and six controlling cerebral malaria. Once quantitative trait loci or genes have been identified, the human ortholog may then be identified. Comparative mapping studies showed that a couple of human and mouse might share similar genetically controlled mechanisms of resistance. In this way, char8, which controls parasitemia, was mapped on chromosome 11; char8 corresponds to human chromosome 5q31-q33 and contains immune genes, such as Il3, Il4, Il5, Il12b, Il13, Irf1, and Csf2. Nevertheless, part of the genetic factors controlling malaria traits might differ in both hosts because of specific host-pathogen interactions. Finally, novel genetic tools including animal models were recently developed and will offer new opportunities for identifying genetic factors underlying host phenotypic response to malaria, which will help in better therapeutic strategies including vaccine and drug development.
Mosing, Miriam A; Pedersen, Nancy L; Cesarini, David; Johannesson, Magnus; Magnusson, Patrik K E; Nakamura, Jeanne; Madison, Guy; Ullén, Fredrik
2012-01-01
Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious) and feel that they are in control of their own destiny (internal locus of control). We discuss that some of the genes underlying this relationship may include those influencing the function of dopaminergic neural systems.
Uncovering the transmission dynamics of Plasmodium vivax using population genetics
Barry, Alyssa E.; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo
2015-01-01
Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes. PMID:25891915
Not all GMOs are crop plants: non-plant GMO applications in agriculture.
Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J
2014-12-01
Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.
Marcet, PL; Mora, MS; Cutrera, AP; Jones, L; Gürtler, RE; Kitron, U; Dotson, EM
2008-01-01
To gain an understanding of the genetic structure and dispersal dynamics of T. infestans populations, we analyzed the multilocus genotype of 10 microsatellite loci for 352 T. infestans collected in 21 houses of 11 rural communities in October 2002. Genetic structure was analyzed at the community and house compound levels. Analysis revealed that vector control actions affected the genetic structure of T. infestans populations. Bug populations from communities under sustained vector control (core area) were highly structured and genetic differentiation between neighboring house compounds was significant. In contrast, bug populations from communities with sporadic vector control actions were more homogeneous and lacked defined genetic clusters. Genetic differentiation between population pairs did not fit a model of isolation by distance at the microgeographical level. Evidence consistent with flight or walking bug dispersal was detected within and among communities, dispersal was more female-biased in the core area and results suggested that houses received immigrants from more than one source. Putative sources and mechanisms of re-infestation are described. These data may be use to design improved vector control strategies PMID:18773972
Nishigaki, M; Tokunaga-Nakawatase, Y; Nishida, J; Kazuma, K
2014-10-01
The aim of this study is to investigate the effect of diabetes genetic counseling on attitudes toward diabetes and its heredity in relatives of type 2 diabetes patients. This study was an unmasked, randomized controlled trial at a medical check-up center in Japan. Subjects in this study are healthy adults between 30 and 60 years of age who have a family history of type 2 diabetes in their first degree relatives. Participants in the intervention group received a brief genetic counseling session for approximately 10 min. Genetic counseling was structured based on the Health Belief Model. Both intervention and control groups received a booklet for general diabetes prevention. Risk perception and recognition of diabetes, and attitude towards its prevention were measured at baseline, 1 week and 1 year after genetic counseling. Participants who received genetic counseling showed significantly higher recognition about their sense of control over diabetes onset than control group both at 1 week and 1 year after the session. On the other hand, anxiety about diabetes did not change significantly. The findings show that genetic counseling for diabetes at a medical check center helped adults with diabetes family history understand they are able to exert control over the onset of their disease through lifestyle modification.
What Is Direct-to-Consumer Genetic Testing?
... consumer genetic testing? What is direct-to-consumer genetic testing? Most of the time, genetic testing is ... testing. For more information about direct-to-consumer genetic testing: Centers for Disease Control and Prevention (CDC) ...
Amplifying Riboswitch Signal Output using Cellular Wiring
2017-01-30
riboswitches are developed within a specific genetic context. This becomes challenging when using a riboswitch to control a reporter gene that it was...survive well outside of controlled environmental conditions. Biological circuits utilize molecules that connect different genetic ‘components’, so that the...engineering to construct genetic logic gates to form genetic programs within and between cells.8-10,12-14 We have applied biological circuitry to
Genetically engineered nanocarriers for drug delivery.
Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew
2014-01-01
Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.
Genetically engineered nanocarriers for drug delivery
Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew
2014-01-01
Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. PMID:24741309
Brooker, Rebecca J; Neiderhiser, Jenae M; Ganiban, Jody M; Leve, Leslie D; Shaw, Daniel S; Reiss, David
2014-05-01
Attention control plays an important role in the development of internalizing symptoms in children. We explored the degree to which infants' genetic and environmentally based risk moderated the link between attention control and internalizing problems during toddlerhood. These associations were examined within a prospective adoption design, enabling the disentanglement of genetic and environmental risk for internalizing problems. Attention control in adopted infants was observed during periods of distress at age 9 months. Birth parents' anxiety symptoms were used as an index of genetic risk, while adoptive parents' anxiety symptoms were used as an index of environmental risk. Adoptive mothers and fathers reported on children's internalizing problems when children were 18 and 27 months old. Greater attention control in infancy appeared to mitigate genetically based risk for internalizing problems during toddlerhood when children were raised by adoptive parents who were low in anxiety. Findings suggest that for genetically susceptible children who are raised in low-risk environments, attention control may provide a protective factor against developing internalizing problems across early life.
Brooker, Rebecca J.; Neiderhiser, Jenae M.; Ganiban, Jody M.; Leve, Leslie D.; Shaw, Daniel S.; Reiss, David
2013-01-01
Attention control plays an important role in the development of internalizing symptoms in children. We explored the degree to which infants' genetic- and environmentally-based risk moderated the link between attention control and internalizing problems during toddlerhood. These associations were examined within a prospective adoption design, enabling the disentanglement of genetic and environmental risk for internalizing problems. Attention control in adopted infants was observed during periods of distress at age 9 months. Birth parents' anxiety symptoms were used as an index of genetic risk, while adoptive parents' anxiety symptoms were used as an index of environmental risk. Adoptive mothers and fathers reported on children's internalizing problems when children were 18- and 27-months old. Greater attention control in infancy appeared to mitigate genetically-based risk for internalizing problems during toddlerhood when children were raised by adoptive parents who were low in anxiety. Findings suggest that for genetically-susceptible children who are raised in low-risk environments, attention control may provide a protective factor against developing internalizing problems across early life. PMID:24472311
da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira
2010-04-01
Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.
Socioeconomic Status and Lung Cancer: Unraveling the Contribution of Genetic Admixture
Selvin, Steve; Wrensch, Margaret R.; Sison, Jennette D.; Hansen, Helen M.; Quesenberry, Charles P.; Seldin, Michael F.; Barcellos, Lisa F.; Buffler, Patricia A.; Wiencke, John K.
2013-01-01
Objectives. We examined the relationship between genetic ancestry, socioeconomic status (SES), and lung cancer among African Americans and Latinos. Methods. We evaluated SES and genetic ancestry in a Northern California lung cancer case–control study (1998–2003) of African Americans and Latinos. Lung cancer case and control participants were frequency matched on age, gender, and race/ethnicity. We assessed case–control differences in individual admixture proportions using the 2-sample t test and analysis of covariance. Logistic regression models examined associations among genetic ancestry, socioeconomic characteristics, and lung cancer. Results. Decreased Amerindian ancestry was associated with higher education among Latino control participants and greater African ancestry was associated with decreased education among African lung cancer case participants. Education was associated with lung cancer among both Latinos and African Americans, independent of smoking, ancestry, age, and gender. Genetic ancestry was not associated with lung cancer among African Americans. Conclusions. Findings suggest that socioeconomic factors may have a greater impact than genetic ancestry on lung cancer among African Americans. The genetic heterogeneity and recent dynamic migration and acculturation of Latinos complicate recruitment; thus, epidemiological analyses and findings should be interpreted cautiously. PMID:23948011
Pike, Andrew; Dimopoulos, George
2018-01-01
Mosquitoes that have been genetically engineered for resistance to human pathogens are a potential new tool for controlling vector-borne disease. However, genetic modification may have unintended off-target effects that could affect the mosquitoes' utility for disease control. We measured the resistance of five genetically modified Plasmodium-suppressing Anopheles stephensi lines to o'nyong'nyong virus, four classes of insecticides, and diverse Plasmodium falciparum field isolates and characterized the interactions between our genetic modifications and infection with the bacterium Wolbachia. The genetic modifications did not alter the mosquitoes' resistance to either o'nyong'nyong virus or insecticides, and the mosquitoes were equally resistant to all tested P. falciparum strains, regardless of Wolbachia infection status. These results indicate that mosquitoes can be genetically modified for resistance to malaria parasite infection and remain compatible with other vector-control measures without becoming better vectors for other pathogens.
Shiloh, S; Reznik, H; Bat-Miriam-Katznelson, M; Goldman, B
1995-11-01
Semi-structured interviews were conducted with 65 Israeli subjects who received genetic counselling while considering marriage to a close relative, 40 subjects married to a close relative who did not receive pre-marital genetic counselling, and 125 controls married to a nonrelative and never having considered marrying a relative. It was found that 72% of the consanguineous couples who received pre-marital genetic counselling proceeded with their plans and married their relative; 86% of them reported that the counselling influenced their final decision to some degree. Counsellees' appraisals of genetic counselling revealed unfulfilled expectations to obtain more definitive answers, and mixed reactions to the nondirective approach applied by the counsellors. Comparisons between consanguineous and control couples revealed different views about consanguinity in general, and genetic risks in particular. Consanguineous couples, unlike controls, perceived consanguinity as an ordinary form of marriage, and had more favorable attitudes towards it. Compared to the noncounselled consanguineous group, consanguineous couples who received pre-marital genetic counselling had fewer children, estimated their genetic risk as lower but its subjective significance as higher, and perceived genetic disorders as more severe. The implications of these results are discussed from both theoretical and practical standpoints.
The application of immune genetic algorithm in main steam temperature of PID control of BP network
NASA Astrophysics Data System (ADS)
Li, Han; Zhen-yu, Zhang
In order to overcome the uncertainties, large delay, large inertia and nonlinear property of the main steam temperature controlled object in the power plant, a neural network intelligent PID control system based on immune genetic algorithm and BP neural network is designed. Using the immune genetic algorithm global search optimization ability and good convergence, optimize the weights of the neural network, meanwhile adjusting PID parameters using BP network. The simulation result shows that the system is superior to conventional PID control system in the control of quality and robustness.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.
Gooding, R H
1996-01-01
An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462
Immunotoxicological evaluation of wheat genetically modified with TaDREB4 gene on BALB/c mice.
Liang, Chun Lai; Zhang, Xiao Peng; Song, Yan; Jia, Xu Dong
2013-08-01
To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%) for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
The genetic validation of heterogeneity in schizophrenia.
Tsutsumi, Atsushi; Glatt, Stephen J; Kanazawa, Tetsufumi; Kawashige, Seiya; Uenishi, Hiroyuki; Hokyo, Akira; Kaneko, Takao; Moritani, Makiko; Kikuyama, Hiroki; Koh, Jun; Matsumura, Hitoshi; Yoneda, Hiroshi
2011-10-07
Schizophrenia is a heritable disorder, however clear genetic architecture has not been detected. To overcome this state of uncertainty, the SZGene database has been established by including all published case-control genetic association studies appearing in peer-reviewed journals. In the current study, we aimed to determine if genetic variants strongly suggested by SZGene are associated with risk of schizophrenia in our case-control samples of Japanese ancestry. In addition, by employing the additive model for aggregating the effect of seven variants, we aimed to verify the genetic heterogeneity of schizophrenia diagnosed by an operative diagnostic manual, the DSM-IV. Each positively suggested genetic polymorphism was ranked according to its p-value, then the seven top-ranked variants (p < 0.0005) were selected from DRD2, DRD4, GRIN2B, TPH1, MTHFR, and DTNBP1 (February, 2007). 407 Schizophrenia cases and 384 controls participated in this study. To aggregate the vulnerability of the disorder based on the participants' genetic information, we calculated the "risk-index" by adding the number of genetic risk factors. No statistically significant deviation between cases and controls was observed in the genetic risk-index derived from all seven variants on the top-ranked polymorphisms. In fact, the average risk-index score in the schizophrenia group (6.5+/-1.57) was slightly lower than among controls (6.6+/-1.39). The current work illustrates the difficulty in identifying universal and definitive risk-conferring polymorphisms for schizophrenia. Our employed number of samples was small, so we can not preclude the possibility that some or all of these variants are minor risk factors for schizophrenia in the Japanese population. It is also important to aggregate the updated positive variants in the SZGene database when the replication work is conducted.
A model for family-based case-control studies of genetic imprinting and epistasis.
Li, Xin; Sui, Yihan; Liu, Tian; Wang, Jianxin; Li, Yongci; Lin, Zhenwu; Hegarty, John; Koltun, Walter A; Wang, Zuoheng; Wu, Rongling
2014-11-01
Genetic imprinting, or called the parent-of-origin effect, has been recognized to play an important role in the formation and pathogenesis of human diseases. Although the epigenetic mechanisms that establish genetic imprinting have been a focus of many genetic studies, our knowledge about the number of imprinting genes and their chromosomal locations and interactions with other genes is still scarce, limiting precise inference of the genetic architecture of complex diseases. In this article, we present a statistical model for testing and estimating the effects of genetic imprinting on complex diseases using a commonly used case-control design with family structure. For each subject sampled from a case and control population, we not only genotype its own single nucleotide polymorphisms (SNPs) but also collect its parents' genotypes. By tracing the transmission pattern of SNP alleles from parental to offspring generation, the model allows the characterization of genetic imprinting effects based on Pearson tests of a 2 × 2 contingency table. The model is expanded to test the interactions between imprinting effects and additive, dominant and epistatic effects in a complex web of genetic interactions. Statistical properties of the model are investigated, and its practical usefulness is validated by a real data analysis. The model will provide a useful tool for genome-wide association studies aimed to elucidate the picture of genetic control over complex human diseases. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Food control and a citizen science approach for improving teaching of Genetics in universities.
Borrell, Y J; Muñoz-Colmenero, A M; Dopico, E; Miralles, L; Garcia-Vazquez, E
2016-09-10
A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home (students as samplers) were employed as teaching material in three different courses of Genetics during the academic year 2014-2015: Experimental Methods in Food Production (MBTA) (Master level), and Applied Molecular Biology (BMA) and Conservation Genetics and Breeding (COMGE) (Bachelor/Degree level). Molecular genetics based on PCR amplification of DNA markers was employed for species identification of 22 seafood products in COMGE and MBTA, and for detection of genetically modified (GM) maize from nine products in BMA. In total six seafood products incorrectly labeled (27%), and two undeclared GM maize (22%) were found. A post-Laboratory survey was applied for assessing the efficacy of the approach for improving motivation in the Laboratory Practices of Genetics. Results confirmed that students that worked on their own samples from local markets were significantly more motivated and better evaluated their Genetic laboratory practices than control students (χ(2) = 12.11 p = 0.033). Our results suggest that citizen science approaches could not be only useful for improving teaching of Genetics in universities but also to incorporate students and citizens as active agents in food control. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):450-462, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Nutrient-gene interactions in early pregnancy: a vascular hypothesis.
Steegers-Theunissen, R P M; Steegers, E A P
2003-02-10
It is hypothesized that the following periconceptional and early pregnancy nutrient-gene interactions link vascular-related reproductive complications and cardiovascular diseases in adulthood: (1) Maternal and paternal genetically controlled nutrient status affects the quality of gametes and fertilization capacity; (2) The embryonic genetic constitution, derived from both parents, and the maternal genetically controlled nutrient environment determine embryogenesis and fetal growth; (3) Trophoblast invasion of decidua and spiral arteries is driven by genes derived from both parents as well as by maternal nutritional factors; (4) Angiogenesis, vasculogenesis and vascular function are dependent on the genetic constitution of the embryo, derived from both parents, and the maternal genetically controlled nutritional environment.Early intra-uterine programming of vessels may concern the same (in)dependent determinants of vascular-related complications during pregnancy and cardiovascular diseases in later life.
Genetical genomics of Populus leaf shape variation
Drost, Derek R.; Puranik, Swati; Novaes, Evandro; ...
2015-06-30
Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree tomore » identify genetic factors controlling leaf shape. Here, the approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis.« less
Merriman, Tony R; Choi, Hyon K; Dalbeth, Nicola
2014-05-01
Gout results from deposition of monosodium urate (MSU) crystals. Elevated serum urate concentrations (hyperuricemia) are not sufficient for the development of disease. Genome-wide association studies (GWAS) have identified 28 loci controlling serum urate levels. The largest genetic effects are seen in genes involved in the renal excretion of uric acid, with others being involved in glycolysis. Whereas much is understood about the genetic control of serum urate levels, little is known about the genetic control of inflammatory responses to MSU crystals. Extending knowledge in this area depends on recruitment of large, clinically ascertained gout sample sets suitable for GWAS. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of genetic polymorphisms on development of gout.
Urano, Wako; Taniguchi, Atsuo; Inoue, Eisuke; Sekita, Chieko; Ichikawa, Naomi; Koseki, Yumi; Kamatani, Naoyuki; Yamanaka, Hisashi
2013-08-01
To validate the association between genetic polymorphisms and gout in Japanese patients, and to investigate the cumulative effects of multiple genetic factors on the development of gout. Subjects were 153 Japanese male patients with gout and 532 male controls. The genotypes of 11 polymorphisms in the 10 genes that have been indicated to be associated with serum uric acid levels or gout were determined. The cumulative effects of the genetic polymorphisms were investigated using a weighted genotype risk score (wGRS) based on the number of risk alleles and the OR for gout. A model to discriminate between patients with gout and controls was constructed by incorporating the wGRS and clinical factors. C statistics method was applied to evaluate the capability of the model to discriminate gout patients from controls. Seven polymorphisms were shown to be associated with gout. The mean wGRS was significantly higher in patients with gout (15.2 ± 2.01) compared to controls (13.4 ± 2.10; p < 0.0001). The C statistic for the model using genetic information alone was 0.72, while the C statistic was 0.81 for the full model that incorporated all genetic and clinical factors. Accumulation of multiple genetic factors is associated with the development of gout. A prediction model for gout that incorporates genetic and clinical factors may be useful for identifying individuals who are at risk of gout.
The Genetic Privacy Act and commentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annas, G.J.; Glantz, L.H.; Roche, P.A.
1995-02-28
The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. Therefore, to effectively protect genetic privacy unauthorized collection and analysis of individually identifiable DNA must be prohibited. As a result, the premise of the Act is that no stranger should have or control identifiable DNA samples or genetic information about an individual unless that individual specifically authorizes the collection of DNA samples for the purpose of genetic analysis, authorized the creation of that private information, andmore » has access to and control over the dissemination of that information.« less
Moore, J H
1995-06-01
A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.
Food Control and a Citizen Science Approach for Improving Teaching of Genetics in Universities
ERIC Educational Resources Information Center
Borrell, Y. J.; Muñoz-Colmenero, A. M.; Dopico, E.; Miralles, L.; Garcia-Vazquez, E.
2016-01-01
A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home ("students as samplers") were employed as teaching material in three different courses of Genetics during the academic…
Unraveling the covariation of low self-control and victimization: a behavior genetic approach.
Boutwell, Brian B; Franklin, Cortney A; Barnes, J C; Tamplin, Amanda K; Beaver, Kevin M; Petkovsek, Melissa
2013-08-01
A growing body of literature examining the antecedents of victimization experiences has suggested that personality constructs play a role in the origins of victimization. Low self-control, in particular, represents a trait thought to directly increase the risk of victimization. At the same time, different lines of evidence suggest that genetic factors account for portions of the variance in both self-control and victimization. These findings leave open the possibility that the two traits might covary because of previously unmeasured genetic factors. The current analysis seeks to test this possibility. Additionally, we examine whether the covariation between self-control and victimization persists once genetic effects are held constant. Our findings suggest a nuanced explanation for the relationship between self-control and experiences of victimization. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Knerr, Sarah; Bowen, Deborah J; Beresford, Shirley A A; Wang, Catharine
2016-01-01
Obesity is a heritable condition with well-established risk-reducing behaviours. Studies have shown that beliefs about the causes of obesity are associated with diet and exercise behaviour. Identifying mechanisms linking causal beliefs and behaviours is important for obesity prevention and control. Cross-sectional multi-level regression analyses of self-efficacy for weight control as a possible mediator of obesity attributions (diet, physical activity, genetic) and preventive behaviours in 487 non-Hispanic White women from South King County, Washington. Self-reported daily fruit and vegetable intake and weekly leisure-time physical activity. Diet causal beliefs were positively associated with fruit and vegetable intake, with self-efficacy for weight control partially accounting for this association. Self-efficacy for weight control also indirectly linked physical activity attributions and physical activity behaviour. Relationships between genetic causal beliefs, self-efficacy for weight control, and obesity-related behaviours differed by obesity status. Self-efficacy for weight control contributed to negative associations between genetic causal attributions and obesity-related behaviours in non-obese, but not obese, women. Self-efficacy is an important construct to include in studies of genetic causal beliefs and behavioural self-regulation. Theoretical and longitudinal work is needed to clarify the causal nature of these relationships and other mediating and moderating factors.
Feltus, F Alex
2014-06-01
Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Design of Genetic Algorithms for Topology Control of Unmanned Vehicles
2010-01-01
decentralised topology control mechanism distributed among active running software agents to achieve a uniform spread of terrestrial unmanned vehicles...14. ABSTRACT We present genetic algorithms (GAs) as a decentralised topology control mechanism distributed among active running software agents to...inspired topology control algorithm. The topology control of UVs using a decentralised solution over an unknown geographical terrain is a challenging
Recent molecular genetic studies and methodological issues in suicide research.
Tsai, Shih-Jen; Hong, Chen-Jee; Liou, Ying-Jay
2011-06-01
Suicide behavior (SB) spans a spectrum ranging from suicidal ideation to suicide attempts and completed suicide. Strong evidence suggests a genetic susceptibility to SB, including familial heritability and common occurrence in twins. This review addresses recent molecular genetic studies in SB that include case-control association, genome gene-expression microarray, and genome-wide association (GWA). This work also reviews epigenetics in SB and pharmacogenetic studies of antidepressant-induced suicide. SB fulfills criteria for a complex genetic phenotype in which environmental factors interact with multiple genes to influence susceptibility. So far, case-control association approaches are still the mainstream in SB genetic studies, although whole genome gene-expression microarray and GWA studies have begun to emerge in recent years. Genetic association studies have suggested several genes (e.g., serotonin transporter, tryptophan hydroxylase 2, and brain-derived neurotrophic factor) related to SB, but not all reports support these findings. The case-control approach while useful is limited by present knowledge of disease pathophysiology. Genome-wide studies of gene expression and genetic variation are not constrained by our limited knowledge. However, the explanatory power and path to clinical translation of risk estimates for common variants reported in genome-wide association studies remain unclear because of the presence of rare and structural genetic variation. As whole genome sequencing becomes increasingly widespread, available genomic information will no longer be the limiting factor in applying genetics to clinical medicine. These approaches provide exciting new avenues to identify new candidate genes for SB genetic studies. The other limitation of genetic association is the lack of a consistent definition of the SB phenotype among studies, an inconsistency that hampers the comparability of the studies and data pooling. In summary, SB involves multiple genes interacting with non-genetic factors. A better understanding of the SB genes by combining whole genome approaches with case-control association studies, may potentially lead to developing effective screening, prevention, and management of SB. Copyright © 2010 Elsevier Inc. All rights reserved.
Biological Basis for Chemoprevention of Ovarian Cancer
2003-10-01
birth control pill use are strongly protective. To achieve a better understanding of the etiology of ovarian cancer, which can then be translated into effective prevention strategies, we have initiated a case-control study that considers genetic susceptibility, epidemiologic risk factors and acquired genetic alterations. Subjects are interviewed in their homes and about 650 cases and 650 controls have been accrued thus far. Blood and cancer samples have been collected and molecular analyses of genetic polymorphisms (BRCA1/2, progesterone receptor) have been performed. An
Biological Basis for Chemoprevention of Ovarian Cancer
2004-10-01
birth control pill use are strongly protective. To achieve a better understanding of the etiology of ovarian cancer, which can then be translated into effective prevention strategies, we have initiated a case-control study that considers genetic susceptibility, epidemiologic risk factors and acquired genetic alterations. Subjects are interviewed in their homes and about 750 cases and 750 controls have been accrued thus far. Blood and cancer samples have been collected and molecular analyses of genetic polymorphisms (BRCA1/2, progesterone receptor, vitamin D receptor,
Roederer, Mario; Quaye, Lydia; Mangino, Massimo; Beddall, Margaret H.; Mahnke, Yolanda; Chattopadhyay, Pratip; Tosi, Isabella; Napolitano, Luca; Barberio, Manuela Terranova; Menni, Cristina; Villanova, Federica; Di Meglio, Paola; Spector, Tim D.; Nestle, Frank O.
2015-01-01
Summary Despite recent discoveries of genetic variants associated with autoimmunity and infection, genetic control of the human immune system during homeostasis is poorly understood. We undertook a comprehensive immunophenotyping approach, analysing 78,000 immune traits in 669 female twins. From the top 151 heritable traits (up to 96% heritable), we used replicated GWAS to obtain 297 SNP associations at 11 genetic loci explaining up to 36% of the variation of 19 traits. We found multiple associations with canonical traits of all major immune cell subsets, and uncovered insights into genetic control for regulatory T cells. This dataset also revealed traits associated with loci known to confer autoimmune susceptibility, providing mechanistic hypotheses linking immune traits with the etiology of disease. Our data establish a bioresource that links genetic control elements associated with normal immune traits to common autoimmune and infectious diseases, providing a shortcut to identifying potential mechanisms of immune-related diseases. PMID:25772697
Mamantopoulos, Michail; Ronchi, Francesca; McCoy, Kathy D; Wullaert, Andy
2018-04-19
Several human diseases are thought to evolve due to a combination of host genetic mutations and environmental factors that include alterations in intestinal microbiota composition termed dysbiosis. Although in some cases, host genetics may shape the gut microbiota and enable it to provoke disease, experimentally disentangling cause and consequence in such host-microbe interactions requires strict control over non-genetic confounding factors. Mouse genetic studies previously proposed Nlrp6/ASC inflammasomes as innate immunity regulators of the intestinal ecosystem. In contrast, using littermate-controlled experimental setups, we recently showed that Nlrp6/ASC inflammasomes do not alter the gut microbiota composition. Our analyses indicated that maternal inheritance and long-term separate housing are non-genetic confounders that preclude the use of non-littermate mice when analyzing host genetic effects on intestinal ecology. Here, we summarize and discuss our gut microbiota analyses in inflammasome-deficient mice for illustrating the importance of littermate experimental design in studying host-microbiota interactions.
Roederer, Mario; Quaye, Lydia; Mangino, Massimo; Beddall, Margaret H; Mahnke, Yolanda; Chattopadhyay, Pratip; Tosi, Isabella; Napolitano, Luca; Terranova Barberio, Manuela; Menni, Cristina; Villanova, Federica; Di Meglio, Paola; Spector, Tim D; Nestle, Frank O
2015-04-09
Despite recent discoveries of genetic variants associated with autoimmunity and infection, genetic control of the human immune system during homeostasis is poorly understood. We undertook a comprehensive immunophenotyping approach, analyzing 78,000 immune traits in 669 female twins. From the top 151 heritable traits (up to 96% heritable), we used replicated GWAS to obtain 297 SNP associations at 11 genetic loci, explaining up to 36% of the variation of 19 traits. We found multiple associations with canonical traits of all major immune cell subsets and uncovered insights into genetic control for regulatory T cells. This data set also revealed traits associated with loci known to confer autoimmune susceptibility, providing mechanistic hypotheses linking immune traits with the etiology of disease. Our data establish a bioresource that links genetic control elements associated with normal immune traits to common autoimmune and infectious diseases, providing a shortcut to identifying potential mechanisms of immune-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
The potential European genetic predisposition for non-contact anterior cruciate ligament injury.
Astur, Diego Costa; Andrade, Edilson; Arliani, Gustavo Gonçalves; Debieux, Pedro; Loyola, Leonor Casilla; Dos Santos, Sidney Emanuel Batista; Burbano, Rommel Mario Rodriguez; Leal, Mariana Ferreira; Cohen, Moises
2018-05-04
Previous research has provided evidence of a hereditary predisposition for anterior cruciate ligament (ACL) injury. The purpose of this study was to evaluate the association between ancestral population genetics and risk of non-contact ACL injuries. Blood samples were collected from 177 individuals with a history of non-contact ACL injury and 556 non-injured control individuals for analysis of the genetic material through the use of a panel of 48 INDELs ancestry genetic markers from three ancestral origins. Among patients with non-contact ACL injury, 82% were male and 18% were female. In the control group, 78% were male, and 22% were female. The mean age of the non-contact ACL injury group was 31.7 years (± 10.2), and the control group was 33.8 years (± 13.2). The individual genetic contribution from INDELs of each ancestral origin varied considerably: ranging between 1.5-94.8% contribution for INDELs of African origin (mean of 21.4% of INDELs); between 2 and 96.1% contribution for INDELs of European origin (mean of 66.7% of INDELs); and between 1.3-96.4% contribution for INDELs of Amerindian origin (mean of 11.7% of INDELs). When comparing paired subjects from the non-contact ACL and control groups, the genetic analysis showed that the European ancestry score was higher in the non-contact ACL group than control group (0.70 ± 0.21 vs 0.63 ± 0.22 respectively, p < 0.001), whereas African ancestry scores (ACL group 0.18 ± 0.18 vs control group 0.24 ± 0.21, p < 0.001) and Amerindian ancestry scores (ACL group 0.11 ± 0.09 vs control group 0.12 ± 0.10, n.s.) were lower among the non-contact ACL group than in controls. European INDELs markers were found to represent a potential genetic predisposition for non-contact ACL injuries when compared to African and Amerindian INDELs. This study has the potential to correlate a measurable and distinct genetic marker with risk of a non-contact ACL injury. Thus, it increases knowledge base and volume of molecular and genetical factors associated with this pathology. Furthermore, this study provides guidance and evidence for the development of genetic risk-screening panels for non-contact ACL injury. Level III Diagnostic Study.
Hughes, Travis; Kim-Howard, Xana; Kelly, Jennifer A; Kaufman, Kenneth M; Langefeld, Carl D; Ziegler, Julie; Sanchez, Elena; Kimberly, Robert P; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Reveille, John D; Martín, Javier; Brown, Elizabeth E; Vilá, Luis M; Alarcón, Graciela S; James, Judith A; Gilkeson, Gary S; Moser, Kathy L; Gaffney, Patrick M; Merrill, Joan T; Vyse, Timothy J; Alarcón-Riquelme, Marta E; Nath, Swapan K; Harley, John B; Sawalha, Amr H
2011-06-01
Genetic association of the IL2/IL21 region at chromosome 4q27 has previously been reported in lupus and a number of autoimmune and inflammatory diseases. This study was undertaken to determine whether this genetic effect could be localized, using a very large cohort of lupus patients and controls. We genotyped 45 tag single-nucleotide polymorphisms (SNPs) across the IL2/IL21 locus in 2 large independent lupus sample sets. We studied a set of subjects of European descent consisting of 4,248 lupus patients and 3,818 healthy controls, and an African American set of 1,569 patients and 1,893 healthy controls. Imputation in 3,004 additional controls from the Wellcome Trust Case Control Consortium was also performed. Genetic association between the genotyped markers was determined, and pairwise conditional analysis was performed to localize the independent genetic effect in the IL2/IL21 locus in lupus. We established and confirmed the genetic association between IL2/IL21 and lupus. Using conditional analysis and transethnic mapping, we localized the genetic effect in this locus to 2 SNPs in high linkage disequilibrium: rs907715 located within IL21 (odds ratio 1.16 [95% confidence interval 1.10-1.22], P=2.17×10(-8)) and rs6835457 located in the 3'-untranslated flanking region of IL21 (odds ratio 1.11 [95% confidence interval 1.05-1.17], P=9.35×10(-5)). Our findings establish the genetic association between lupus and IL2/IL21 with a genome-wide level of significance. Further, our findings indicate that this genetic association within the IL2/IL21 linkage disequilibrium block is localized to IL21. If other autoimmune IL2/IL21 genetic associations are similarly localized, then the IL21 risk alleles would be predicted to operate by a fundamental mechanism that influences the course of a number of autoimmune disease processes. Copyright © 2011 by the American College of Rheumatology.
ERIC Educational Resources Information Center
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
Zalewski, Andrzej; Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz
2016-01-01
Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates.
Legal aspects of genetic information.
Andrews, L. B.
1991-01-01
The federally funded Human Genome Initiative will lead to the development of new capabilities to learn about an individual's genetic status. Legal issues are raised concerning patients' and other parties' access to that information. This article discusses the effect of existing statutes and case law on three pivotal questions: To what sort of information are people entitled? What control should people have over their genetic information? Do people have a right to refuse genetic information? The article emphasizes that the law protects a patient's right to obtain or refuse genetic information about oneself, as well as the right to control the dissemination of that information to others. PMID:1897258
Genetic analysis of captive proboscis monkeys.
Ogata, Mitsuaki; Seino, Satoru
2015-01-01
Information on the genetic relationships of captive founders is important for captive population management. In this study, we investigated DNA polymorphisms of four microsatellite loci and the mitochondrial control region sequence of five proboscis monkeys residing in a Japanese zoo as captive founders, to clarify their genetic relationship. We found that two of the five monkeys appeared to be genetically related. Furthermore, the haplotypes of the mitochondrial control region of the five monkeys were well differentiated from the haplotypes previously reported from wild populations from the northern area of Borneo, indicating a greater amount of genetic diversity in proboscis monkeys than previously reported. © 2014 Wiley Periodicals, Inc.
2011-01-01
Background The intertidal zone of seacoasts, being affected by the superimposed tidal, diurnal and lunar cycles, is temporally the most complex environment on earth. Many marine organisms exhibit lunar rhythms in reproductive behaviour and some show experimental evidence of endogenous control by a circalunar clock, the molecular and genetic basis of which is unexplored. We examined the genetic control of lunar and diurnal rhythmicity in the marine midge Clunio marinus (Chironomidae, Diptera), a species for which the correct timing of adult emergence is critical in natural populations. Results We crossed two strains of Clunio marinus that differ in the timing of the diurnal and lunar rhythms of emergence. The phenotype distribution of the segregating backcross progeny indicates polygenic control of the lunar emergence rhythm. Diurnal timing of emergence is also under genetic control, and is influenced by two unlinked genes with major effects. Furthermore, the lunar and diurnal timing of emergence is correlated in the backcross generation. We show that both the lunar emergence time and its correlation to the diurnal emergence time are adaptive for the species in its natural environment. Conclusions The correlation implies that the unlinked genes affecting lunar timing and the two unlinked genes affecting diurnal timing could be the same, providing an unexpectedly close interaction of the two clocks. Alternatively, the genes could be genetically linked in a two-by-two fashion, suggesting that evolution has shaped the genetic architecture to stabilize adaptive combinations of lunar and diurnal emergence times by tightening linkage. Our results, the first on genetic control of lunar rhythms, offer a new perspective to explore their molecular clockwork. PMID:21599938
Kaiser, Tobias S; Neumann, Dietrich; Heckel, David G
2011-05-20
The intertidal zone of seacoasts, being affected by the superimposed tidal, diurnal and lunar cycles, is temporally the most complex environment on earth. Many marine organisms exhibit lunar rhythms in reproductive behaviour and some show experimental evidence of endogenous control by a circalunar clock, the molecular and genetic basis of which is unexplored. We examined the genetic control of lunar and diurnal rhythmicity in the marine midge Clunio marinus (Chironomidae, Diptera), a species for which the correct timing of adult emergence is critical in natural populations. We crossed two strains of Clunio marinus that differ in the timing of the diurnal and lunar rhythms of emergence. The phenotype distribution of the segregating backcross progeny indicates polygenic control of the lunar emergence rhythm. Diurnal timing of emergence is also under genetic control, and is influenced by two unlinked genes with major effects. Furthermore, the lunar and diurnal timing of emergence is correlated in the backcross generation. We show that both the lunar emergence time and its correlation to the diurnal emergence time are adaptive for the species in its natural environment. The correlation implies that the unlinked genes affecting lunar timing and the two unlinked genes affecting diurnal timing could be the same, providing an unexpectedly close interaction of the two clocks. Alternatively, the genes could be genetically linked in a two-by-two fashion, suggesting that evolution has shaped the genetic architecture to stabilize adaptive combinations of lunar and diurnal emergence times by tightening linkage. Our results, the first on genetic control of lunar rhythms, offer a new perspective to explore their molecular clockwork.
A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies.
Bodea, Corneliu A; Neale, Benjamin M; Ripke, Stephan; Daly, Mark J; Devlin, Bernie; Roeder, Kathryn
2016-05-05
One goal of human genetics is to understand the genetic basis of disease, a challenge for diseases of complex inheritance because risk alleles are few relative to the vast set of benign variants. Risk variants are often sought by association studies in which allele frequencies in case subjects are contrasted with those from population-based samples used as control subjects. In an ideal world we would know population-level allele frequencies, releasing researchers to focus on case subjects. We argue this ideal is possible, at least theoretically, and we outline a path to achieving it in reality. If such a resource were to exist, it would yield ample savings and would facilitate the effective use of data repositories by removing administrative and technical barriers. We call this concept the Universal Control Repository Network (UNICORN), a means to perform association analyses without necessitating direct access to individual-level control data. Our approach to UNICORN uses existing genetic resources and various statistical tools to analyze these data, including hierarchical clustering with spectral analysis of ancestry; and empirical Bayesian analysis along with Gaussian spatial processes to estimate ancestry-specific allele frequencies. We demonstrate our approach using tens of thousands of control subjects from studies of Crohn disease, showing how it controls false positives, provides power similar to that achieved when all control data are directly accessible, and enhances power when control data are limiting or even imperfectly matched ancestrally. These results highlight how UNICORN can enable reliable, powerful, and convenient genetic association analyses without access to the individual-level data. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Does Childhood Anxiety Evoke Maternal Control? A Genetically Informed Study
ERIC Educational Resources Information Center
Eley, Thalia C.; Napolitano, Maria; Lau, Jennifer Y. F.; Gregory, Alice M.
2010-01-01
Background: Despite theoretical and empirical support for an association between maternal control and child anxiety, few studies have examined the origins of this association. Furthermore, none use observer-ratings of maternal control within a genetically informative design. This study addressed three questions: 1) do children who experience…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): The Association of Genetic... meeting will include the initial review, discussion, and evaluation of ``The Association of Genetic...
Ibeagha-Awemu, Eveline M.; Kgwatalala, Patrick; Ibeagha, Aloysius E.
2008-01-01
Genetic variations through their effects on gene expression and protein function underlie disease susceptibility in farm animal species. The variations are in the form of single nucleotide polymorphisms, deletions/insertions of nucleotides or whole genes, gene or whole chromosomal rearrangements, gene duplications, and copy number polymorphisms or variants. They exert varying degrees of effects on gene action, such as substitution of an amino acid for another, shift in reading frame and premature termination of translation, and complete deletion of entire exon(s) or gene(s) in diseased individuals. These factors influence gene function by affecting mRNA splicing pattern or by altering/eliminating protein function. Elucidating the genetic bases of diseases under the control of many genes is very challenging, and it is compounded by several factors, including host × pathogen × environment interactions. In this review, the genetic variations that underlie several diseases of livestock (under monogenic and polygenic control) are analyzed. Also, factors hampering research efforts toward identification of genetic influences on animal disease identification and control are highlighted. A better understanding of the factors analyzed could be better harnessed to effectively identify and control, genetically, livestock diseases. Finally, genetic control of animal diseases can reduce the costs associated with diseases, improve animal welfare, and provide healthy animal products to consumers, and should be given more attention. PMID:18350334
Tsairidou, Smaragda; Brotherstone, Susan; Coffey, Mike; Bishop, Stephen C; Woolliams, John A
2016-11-24
Bovine tuberculosis (bTB) is a disease of significant economic importance and is a persistent animal health problem with implications for public health worldwide. Control of bTB in the UK has relied on diagnosis through the single intradermal comparative cervical test (SICCT). However, limitations in the sensitivity of this test hinder successful eradication and the control of bTB remains a major challenge. Genetic selection for cattle that are more resistant to bTB infection can assist in bTB control. The aim of this study was to conduct a quantitative genetic analysis of SICCT measurements collected during bTB herd testing. Genetic selection for bTB resistance will be partially informed by SICCT-based diagnosis; therefore it is important to know whether, in addition to increasing bTB resistance, this might also alter genetically the epidemiological characteristics of SICCT. Our main findings are that: (1) the SICCT test is robust at the genetic level, since its hierarchy and comparative nature provide substantial protection against random genetic changes that arise from genetic drift and from correlated responses among its components due to either natural or artificial selection; (2) the comparative nature of SICCT provides effective control for initial skin thickness and age-dependent differences; and (3) continuous variation in SICCT is only lowly heritable and has a weak correlation with SICCT positivity among healthy animals which was not significantly different from zero (P > 0.05). These emerging results demonstrate that genetic selection for bTB resistance is unlikely to change the probability of correctly identifying non-infected animals, i.e. the test's specificity, while reducing the overall number of cases. This study cannot exclude all theoretical risks from selection on resistance to bTB infection but the role of SICCT in disease control is unlikely to be rapidly undermined, with any adverse correlated responses expected to be weak and slow, which allow them to be monitored and managed.
Knerr, Sarah; Bowen, Deborah J.; Beresford, Shirley A.A.; Wang, Catharine
2015-01-01
Objective Obesity is a heritable condition with well-established risk-reducing behaviours. Studies have shown that beliefs about the causes of obesity are associated with diet and exercise behaviour. Identifying mechanisms linking causal beliefs and behaviours is important for obesity prevention and control. Design Cross-sectional multi-level regression analyses of self-efficacy for weight control as a possible mediator of obesity attributions (diet, physical activity, genetic) and preventive behaviours in 487 non-Hispanic White women from South King County, Washington. Main Outcome Measures Self-reported daily fruit and vegetable intake and weekly leisure-time physical activity. Results Diet causal beliefs were positively associated with fruit and vegetable intake, with self-efficacy for weight control partially accounting for this association. Self-efficacy for weight control also indirectly linked physical activity attributions and physical activity behaviour. Relationships between genetic causal beliefs, self-efficacy for weight control, and obesity-related behaviours differed by obesity status. Self-efficacy for weight control contributed to negative associations between genetic causal attributions and obesity-related behaviours in non-obese, but not obese, women. Conclusion Self-efficacy is an important construct to include in studies of genetic causal beliefs and behavioural self-regulation. Theoretical and longitudinal work is needed to clarify the causal nature of these relationships and other mediating and moderating factors. PMID:26542069
Perrotte, Justine; Guédon, Yann; Gaston, Amèlia; Denoyes, Béatrice
2016-01-01
The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years. PMID:27664957
A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae.
Nishida, Nao; Noguchi, Misa; Kuroda, Kouichi; Ueda, Mitsuyoshi
2014-01-01
We have engineered a system that holds potential for use as a safety switch in genetically modified yeasts. Human apoptotic factor BAX (no homolog in yeast), under the control of the FBP1 (gluconeogenesis enzyme) promoter, was conditionally expressed to induce yeast cell apoptosis after glucose depletion. Such systems might prove useful for the safe use of genetically modified organisms.
Smith, Rachel A.; Hong, Soo Jung; Worthington, Amber
2015-01-01
Genomics makes possible the isolation of multiple genes as co-factors that increase, but do not determine, risk for many adult-onset medical conditions, including alpha-1 antitrypsin deficiency (AATD). Those diagnosed with an adult-onset medical condition, such as AATD, are often married and make decisions about testing and care as a couple. We examined genetic essentialist and threat beliefs, focusing on beliefs about the genetic contribution to disease susceptibility and severity, as well as perceptions of control related to genes and health for married couples (N =59), in which one spouse has been tested for genetic mutations associated with AATD. The intraclass correlation for spouses’ beliefs about genetic essentialism was strong and statistically significant, but the associations for their other beliefs were not. Incongruence between AATD participants and their spouses regarding genes’ influence on disease severity directly related to incongruent perceptions of control and genetic contribution to disease susceptibility. Results revealed an inverse relationship to AATD participants’ perceptions of behavioral control and a direct relationship to their beliefs about genes’ influence on disease severity. This suggests a pattern of incongruence in which AATD participants have low levels of perceived control over genes’ influence on health and high levels of perceived genetic influence on disease severity compared to spouses. With public health communication efforts lagging behind the science of genomics, insights regarding the congruence or incongruence associated with married couples’ beliefs about genes’ influence on disease afford pathways to guide clinical and public health communication about genomics. PMID:25413221
Parrott, Roxanne L; Smith, Rachel A; Hong, Soo Jung; Worthington, Amber
2015-06-01
Genomics makes possible the isolation of multiple genes as co-factors that increase, but do not determine, risk for many adult-onset medical conditions, including alpha-1 antitrypsin deficiency (AATD). Those diagnosed with an adult-onset medical condition, such as AATD, are often married and make decisions about testing and care as a couple. We examined genetic essentialist and threat beliefs, focusing on beliefs about the genetic contribution to disease susceptibility and severity, as well as perceptions of control related to genes and health for married couples (N =59), in which one spouse has been tested for genetic mutations associated with AATD. The intraclass correlation for spouses' beliefs about genetic essentialism was strong and statistically significant, but the associations for their other beliefs were not. Incongruence between AATD participants and their spouses regarding genes' influence on disease severity directly related to incongruent perceptions of control and genetic contribution to disease susceptibility. Results revealed an inverse relationship to AATD participants' perceptions of behavioral control and a direct relationship to their beliefs about genes' influence on disease severity. This suggests a pattern of incongruence in which AATD participants have low levels of perceived control over genes' influence on health and high levels of perceived genetic influence on disease severity compared to spouses. With public health communication efforts lagging behind the science of genomics, insights regarding the congruence or incongruence associated with married couples' beliefs about genes' influence on disease afford pathways to guide clinical and public health communication about genomics.
Polderman, Tinca J C; de Geus, Eco J C; Hoekstra, Rosa A; Bartels, Meike; van Leeuwen, Marieke; Verhulst, Frank C; Posthuma, Danielle; Boomsma, Dorret I
2009-05-01
It is assumed that attention problems (AP) are related to impaired executive functioning. We investigated the association between AP and inhibitory control and tested to what extent the association was due to genetic factors shared with IQ. Data were available from 3 independent samples of 9-, 12-, and 18-year-old twins and their siblings (1,209 participants). AP were assessed with checklists completed by multiple informants. Inhibitory control was measured with the Stroop Color Word Task (Stroop, 1935), and IQ with the Wechsler Intelligence Scale for Children (Wechsler et al., 2002) or Wechsler Adult Intelligence Scale (Wechsler, 1997). AP and inhibitory control were only correlated in the 12-year-old cohort (r = .18), but appeared non-significant after controlling for IQ. Significant correlations existed between AP and IQ in 9- and 12-year olds (r = -.26/-.34). Inhibitory control and IQ were correlated in all cohorts (r = -.16, -.24 and -.35, respectively). Genetic factors that influenced IQ also influenced inhibitory control. We conclude that the association between AP and inhibitory control as reported in the literature may largely derive from genetic factors that are shared with IQ.
Mabuchi, Fumihiko; Sakurada, Yoichi; Kashiwagi, Kenji; Yamagata, Zentaro; Iijima, Hiroyuki; Tsukahara, Shigeo
2015-03-01
To investigate the associations between the non-intraocular pressure (IOP)-related genetic variants (genetic variants associated with vulnerability of the optic nerve independent of IOP) and primary open-angle glaucoma (POAG), including normal-tension glaucoma (NTG) and high-tension glaucoma (HTG), and between the non-IOP-related genetic variants and a family history of glaucoma. Case-control study. Japanese patients with NTG (n = 213) and HTG (n = 212) and 191 control subjects were genotyped for 5 non-IOP-related genetic variants predisposing to POAG near the SRBD1, ELOVL5, CDKN2B/CDKN2B-AS1, SIX1/SIX6, and ATOH7 genes. The load of these genetic variants was compared between the control subjects and patients with NTG or HTG and between the POAG patients with and without a family history of glaucoma. The total number of POAG risk alleles and the product of the odds ratios (POAG risk) of these genetic variants were significantly larger (P < .0025) in patients with both NTG and HTG than in the control subjects, and were significantly larger (P = .0042 and P = .023, respectively) in POAG patients with a family history of glaucoma than in those without. As the number of relatives with glaucoma increased, the total number of risk alleles and the product of the odds ratios increased (P = .012 and P = .047, respectively). Non-IOP-related genetic variants contribute to the pathogenesis of HTG as well as NTG. A positive family history of glaucoma in cases of POAG is thought to reflect the influence of genetic variants predisposing to POAG. Copyright © 2015 Elsevier Inc. All rights reserved.
Attitudes to Gun Control in an American Twin Sample: Sex Differences in the Causes of Variation.
Eaves, Lindon J; Silberg, Judy L
2017-10-01
The genetic and social causes of individual differences in attitudes to gun control are estimated in a sample of senior male and female twin pairs in the United States. Genetic and environmental parameters were estimated by weighted least squares applied to polychoric correlations for monozygotic (MZ) and dizygotic (DZ) twins of both sexes. The analysis suggests twin similarity for attitudes to gun control in men is entirely genetic while that in women is purely social. Although the volunteer sample is small, the analysis illustrates how the well-tested concepts and methods of genetic epidemiology may be a fertile resource for deepening our scientific understanding of biological and social pathways that affect individual risk to gun violence.
Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-02-01
The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.
Lessons from 25 years of genetic mapping in onion: where next?
USDA-ARS?s Scientific Manuscript database
Genetic maps are useful tools for both basic research and plant improvement. Close association of genetic markers with genes controlling economically important traits allows for indirect selection, avoiding often time-consuming and expensive phenotypic evaluations. As a result, detailed genetic maps...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... Engineered Eucalyptus Hybrid AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... for a proposed controlled field release of a genetically engineered clone of a Eucalyptus hybrid. This... proposed controlled field release of a genetically engineered clone of a Eucalyptus hybrid. \\1\\ To view the...
ERIC Educational Resources Information Center
Lemery-Chalfant, Kathryn; Doelger, Lisa; Goldsmith, H. Hill
2008-01-01
Elucidating the genetic and environmental aetiology of effortful control (mother and father reports at two time points), attentional control (observer reports), and their associations with internalizing and externalizing symptoms (mother and father reports) is the central focus of this paper. With a sample of twins in middle childhood…
Yao, Yuan; Yu, Chuan-xin
2013-08-01
Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.
Spatial working memory function in twins with schizophrenia and bipolar disorder.
Pirkola, Tiia; Tuulio-Henriksson, Annamari; Glahn, David; Kieseppä, Tuula; Haukka, Jari; Kaprio, Jaakko; Lönnqvist, Jouko; Cannon, Tyrone D
2005-12-15
Family studies are in conflict as to whether schizophrenia and bipolar disorder have independent genetic etiologies. Given the relatively low prevalence (approximately 1%) of these disorders, the use of quantitative endophenotypic markers of genetic liability might provide a more sensitive strategy for evaluating their genetic overlap. We have previously demonstrated that spatial working memory deficits increase in a dose-dependent fashion with increasing genetic proximity to a proband among the unaffected co-twins of schizophrenic patients. Here, we evaluated whether such deficits might also mark genetic susceptibility to bipolar disorder. The Wechsler Memory Scale-Revised Visual Memory Span and Digit Span subtests were administered to 46 schizophrenic patients, 32 of their unaffected co-twins, 22 bipolar patients, 16 of their unaffected co-twins, and 100 control twins, representing unselectively nationwide twin samples. Schizophrenic patients and their unaffected co-twins performed significantly worse than control subjects on the spatial working memory task, whereas only the schizophrenic patients performed significantly below the control subjects on the verbal working memory task. Neither bipolar patients nor their unaffected co-twins differed from control subjects on these measures. Our findings support the hypothesis that impairment in spatial working memory might effectively reflect an expression of genetic liability to schizophrenia but less clearly to bipolar disorder.
Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?
Macias, Vanessa M.; Ohm, Johanna R.; Rasgon, Jason L.
2017-01-01
Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease. PMID:28869513
Crossett, Andrew; Kent, Brian P.; Klei, Lambertus; Ringquist, Steven; Trucco, Massimo; Roeder, Kathryn; Devlin, Bernie
2015-01-01
We propose a method to analyze family-based samples together with unrelated cases and controls. The method builds on the idea of matched case–control analysis using conditional logistic regression (CLR). For each trio within the family, a case (the proband) and matched pseudo-controls are constructed, based upon the transmitted and untransmitted alleles. Unrelated controls, matched by genetic ancestry, supplement the sample of pseudo-controls; likewise unrelated cases are also paired with genetically matched controls. Within each matched stratum, the case genotype is contrasted with control pseudo-control genotypes via CLR, using a method we call matched-CLR (mCLR). Eigenanalysis of numerous SNP genotypes provides a tool for mapping genetic ancestry. The result of such an analysis can be thought of as a multidimensional map, or eigenmap, in which the relative genetic similarities and differences amongst individuals is encoded in the map. Once constructed, new individuals can be projected onto the ancestry map based on their genotypes. Successful differentiation of individuals of distinct ancestry depends on having a diverse, yet representative sample from which to construct the ancestry map. Once samples are well-matched, mCLR yields comparable power to competing methods while ensuring excellent control over Type I error. PMID:20862653
Knipe, Duleeka W; Evans, David M; Kemp, John P.; Eeles, Rosalind; Easton, Douglas F; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Donovan, Jenny L.; Hamdy, Freddie C.; Neal, David E
2014-01-01
Background Only a minority of the genetic component of prostate cancer (PrCa) risk has been explained. Some observed associations of single nucleotide polymorphisms (SNPs) with PrCa might arise from associations of these SNPs with circulating prostate specific antigen (PSA) because PSA values are used to select controls. Methods We undertook a genome-wide association study (GWAS) of screen detected PrCa (ProtecT 1146 cases and 1804 controls); meta-analysed the results with those from the previously published UK Genetic Prostate Cancer Study (1854 cases and 1437 controls); investigated associations of SNPs with PrCa using either ‘low’ (PSA <0.5ng/ml) or ‘high’ (PSA ≥3ng/ml, biopsy negative) PSA controls; and investigated associations of SNPs with PSA. Results The ProtecT GWAS confirmed previously reported associations of PrCa at 3 loci: 10q11.23, 17q24.3 and 19q13.33. The meta-analysis confirmed associations of PrCa with SNPs near 4 previously identified loci (8q24.21,10q11.23, 17q24.3 and 19q13.33). When comparing PrCa cases with low PSA controls, alleles at genetic markers rs1512268, rs445114, rs10788160, rs11199874, rs17632542, rs266849 and rs2735839 were associated with an increased risk of PrCa, but the effect-estimates were attenuated to the null when using high PSA controls (p for heterogeneity in effect-estimates<0.04). We found a novel inverse association of rs9311171-T with circulating PSA. Conclusions Differences in effect estimates for PrCa observed when comparing low vs. high PSA controls, may be explained by associations of these SNPs with PSA. Impact These findings highlight the need for inferences from genetic studies of PrCa risk to carefully consider the influence of control selection criteria. PMID:24753544
Accurate population genetic measurements require cryptic species identification in corals
NASA Astrophysics Data System (ADS)
Sheets, Elizabeth A.; Warner, Patricia A.; Palumbi, Stephen R.
2018-06-01
Correct identification of closely related species is important for reliable measures of gene flow. Incorrectly lumping individuals of different species together has been shown to over- or underestimate population differentiation, but examples highlighting when these different results are observed in empirical datasets are rare. Using 199 single nucleotide polymorphisms, we assigned 768 individuals in the Acropora hyacinthus and A. cytherea morphospecies complexes to each of eight previously identified cryptic genetic species and measured intraspecific genetic differentiation across three geographic scales (within reefs, among reefs within an archipelago, and among Pacific archipelagos). We then compared these calculations to estimated genetic differentiation at each scale with all cryptic genetic species mixed as if we could not tell them apart. At the reef scale, correct genetic species identification yielded lower F ST estimates and fewer significant comparisons than when species were mixed, raising estimates of short-scale gene flow. In contrast, correct genetic species identification at large spatial scales yielded higher F ST measurements than mixed-species comparisons, lowering estimates of long-term gene flow among archipelagos. A meta-analysis of published population genetic studies in corals found similar results: F ST estimates at small spatial scales were lower and significance was found less often in studies that controlled for cryptic species. Our results and these prior datasets controlling for cryptic species suggest that genetic differentiation among local reefs may be lower than what has generally been reported in the literature. Not properly controlling for cryptic species structure can bias population genetic analyses in different directions across spatial scales, and this has important implications for conservation strategies that rely on these estimates.
KLAHR, ASHLEA M.; THOMAS, KATHERINE M.; HOPWOOD, CHRISTOPHER J.; KLUMP, KELLY L.; BURT, S. ALEXANDRA
2014-01-01
The behavior genetic literature suggests that genetically influenced characteristics of the child elicit specific behaviors from the parent. However, little is known about the processes by which genetically influenced child characteristics evoke parental responses. Interpersonal theory provides a useful framework for identifying reciprocal behavioral processes between children and mothers. The theory posits that, at any given moment, interpersonal behavior varies along the orthogonal dimensions of warmth and control and that the interpersonal behavior of one individual tends to elicit corresponding or contrasting behavior from the other (i.e., warmth elicits warmth, whereas control elicits submission). The current study thus examined these dimensions of interpersonal behavior as they relate to the parent–child relationship in 546 twin families. A computer joystick was used to rate videos of mother–child interactions in real time, yielding information on mother and child levels of warmth and control throughout the interaction. Analyses indicated that maternal control, but not maternal warmth, was influenced by evocative gene–environment correlational processes, such that genetic influences on maternal control and child control were largely overlapping. Moreover, these common genetic influences were present both cross-sectionally and over the course of the interaction. Such findings not only confirm the presence of evocative gene–environment correlational processes in the mother–child relationship but also illuminate at least one of the specific interpersonal behaviors that underlie this evocative process. PMID:23398756
The role of self-defined race/ethnicity in population structure control.
Liu, X-Q; Paterson, A D; John, E M; Knight, J A
2006-07-01
Population-based association studies are powerful tools for the genetic mapping of complex diseases. However, this method is sensitive to potential confounding by population structure. While statistical methods that use genetic markers to detect and control for population structure have been the focus of current literature, the utility of self-defined race/ethnicity in controlling for population structure has been controversial. In this study of 1334 individuals, who self-identified as either African American, European American or Hispanic, we demonstrated that when the true underlying genetic structure and the self-defined racial/ethnic groups were roughly in agreement with each other, the self-defined race/ethnicity information was useful in the control of population structure.
Social Relationships Moderate Genetic Influences on Heavy Drinking in Young Adulthood.
Barr, Peter B; Salvatore, Jessica E; Maes, Hermine H; Korhonen, Tellervo; Latvala, Antti; Aliev, Fazil; Viken, Richard; Rose, Richard J; Kaprio, Jaakko; Dick, Danielle M
2017-11-01
Social relationships, such as committed partnerships, limit risky behaviors like heavy drinking, in part, because of increased social control. The current analyses examine whether involvement in committed relationships or social support extend beyond a main effect to limit genetic liability in heavy drinking (gene-environment interaction) during young adulthood. Using data from the young adult wave of the Finnish Twin Study, FinnTwin12 (n = 3,269), we tested whether involvement in romantic partnerships or social support moderated genetic influences on heavy drinking using biometric twin modeling for gene-environment interaction. Involvement in a romantic partnership was associated with a decline in genetic variance in both males and females, although the overall magnitude of genetic influence was greater in males. Sex differences emerged for social support: increased social support was associated with increased genetic influence for females and reduced genetic influence for males. These findings demonstrate that social relationships are important moderators of genetic influences on young adult alcohol use. Mechanisms of social control that are important in limiting genetic liability during adolescence extend into young adulthood. In addition, although some relationships limit genetic liability equally, others, such as extensive social networks, may operate differently across sex.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Wolfe, Christopher R.; Reyna, Valerie F.; Widmer, Colin L.; Cedillos, Elizabeth M.; Fisher, Christopher R.; Brust-Renck, Priscila G.; Weil, Audrey M.
2014-01-01
Background Many healthy women consider genetic testing for breast cancer risk, yet BRCA testing issues are complex. Objective Determining whether an intelligent tutor, BRCA Gist, grounded in fuzzy-trace theory (FTT), increases gist comprehension and knowledge about genetic testing for breast cancer risk, improving decision-making. Design In two experiments, 410 healthy undergraduate women were randomly assigned to one of three groups: an online module using a web-based tutoring system (BRCA Gist) that uses artificial intelligence technology, a second group read highly similar content from the NCI web site, and a third completed an unrelated tutorial. Intervention BRCA Gist applied fuzzy trace theory and was designed to help participants develop gist comprehension of topics relevant to decisions about BRCA genetic testing, including how breast cancer spreads, inherited genetic mutations, and base rates. Measures We measured content knowledge, gist comprehension of decision-relevant information, interest in testing, and genetic risk and testing judgments. Results Control knowledge scores ranged from 54% to 56%, NCI improved significantly to 65% and 70%, and BRCA Gist improved significantly more to 75% and 77%, p<.0001. BRCA Gist scored higher on gist comprehension than NCI and control, p<.0001. Control genetic risk-assessment mean was 48% correct; BRCA Gist (61%), and NCI (56%) were significantly higher, p<.0001. BRCA Gist participants recommended less testing for women without risk factors (not good candidates), (24% and 19%) than controls (50%, both experiments) and NCI, (32%) Experiment 2, p<.0001. BRCA Gist testing interest was lower than controls, p<.0001. Limitations BRCA Gist has not been tested with older women from diverse groups. Conclusions Intelligent tutors, such as BRCA Gist, are scalable, cost effective ways of helping people understand complex issues, improving decision-making. PMID:24829276
de Leon, Jose; Diaz, Francisco J.
2012-01-01
The association between schizophrenia and tobacco smoking has been described in more than 1,000 articles, many with inadequate methodology. The studies on this association can focus on: (1) current smoking, ever smoking or smoking cessation; (2) non-psychiatric controls or controls with severe mental illness (e.g., bipolar disorder); and (3) higher smoking frequency or greater usage in smokers. The association with the most potential for genetic studies is that between ever daily smoking and schizophrenia; it may reflect a shared genetic vulnerability. To reduce the number of false-positive genes, we propose a three-stage approach derived from epidemiological knowledge. In the first stage, only genetic variations associated with ever daily smoking that are simultaneously significant within the non-psychiatric controls, the bipolar disorder controls and the schizophrenia cases will be selected. Only those genetic variations that are simultaneously significant in the three hypothesis tests will be tested in the second stage, where the prevalence of the genes must be significantly higher in schizophrenia than in bipolar disorder, and significantly higher in bipolar disorder than in controls. The genes simultaneously significant in the second stage will be included in a third stage where the gene variations must be significantly more frequent in schizophrenia patients who did not start smoking daily until their 20s (late start) versus those who had an early start. Any genetic approach to psychiatric disorders may fail if attention is not given to comorbidity and epidemiological studies that suggest which comorbidities are likely to be explained by genetics and which are not. Our approach, which examines the results of epidemiological studies on comorbidities and then looks for genes that simultaneously satisfy epidemiologically suggested sets of hypotheses, may also apply to the study of other major illnesses. PMID:22190153
Bearoff, Frank; del Rio, Roxana; Case, Laure K.; Dragon, Julie A.; Nguyen-Vu, Trang; Lin, Chin-Yo; Blankenhorn, Elizabeth P.; Teuscher, Cory; Krementsov, Dimitry N.
2016-01-01
Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases, such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naïve immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific, and sex-specific. Bioinformatic analysis of the genetically-controlled transcript networks reveals reduced cell type-specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared to PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease. PMID:27653816
Relationship between polycystic ovary syndrome and ancestry in European Americans.
Bjonnes, Andrew C; Saxena, Richa; Welt, Corrine K
2016-12-01
To determine whether European Americans with polycystic ovary syndrome (PCOS) exhibit genetic differences associated with PCOS status and phenotypic features. Case-control association study in European Americans. Academic center. Women with PCOS diagnosed with the use of the National Institutes of Health criteria (n = 532) and control women with regular menstrual cycles and no evidence of hyperandrogenism (n = 432). Blood was drawn for measurement of sex steroids, metabolic parameters, and genotyping. Associations among PCOS status, phenotype, and genetic background identified with the use of principal component analysis. Principal component analysis identified five principal components (PCs). PC1 captured northwest-to-southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, and larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east-to-west European genetic variation and cholesterol levels. These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
The Relationship Between Polycystic Ovary Syndrome and Ancestry in European Americans
Bjonnes, Andrew C.; Saxena, Richa; Welt, Corrine K.
2016-01-01
Objective To determine whether European Americans with PCOS would exhibit genetic differences associated with PCOS status and phenotypic features. Design The study was a case-control association study in European Americans. Setting Subjects were studied in an academic center. Subjects Women with PCOS diagnosed using the NIH criteria (n=532) and controls with regular menstrual cycles and no evidence of hyperandrogenism (n=432) were studied. Interventions Blood was drawn for measurement of sex steroids, metabolic parameters and genotyping. Main outcome measure Associations were identified between PCOS status, phenotype and genetic background determined using principal components. Results Principal component analysis identified 5 principal components (PCs). PC1 captured northwest to southeast European genetic variation and was associated with PCOS status. Acanthosis was associated with southern European ancestry, while larger waist:hip ratio was associated with northern European ancestry. PC2 was associated with east to west European genetic variation and cholesterol levels. Conclusions These data provide evidence for genetic influence based on European ethnicity in women with PCOS. There is also evidence for a genetic component in the phenotypic features of PCOS within a mixed European population. The data point to the need to control for population stratification in genetic studies in women of mixed European ethnicity. They also emphasize the need for better studies of PCOS prevalence and phenotype as a function of genetic background. PMID:27666562
Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D
2017-05-01
Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.
Tercyak, Kenneth P.; Peshkin, Beth N.; Abraham, Anisha; Wine, Lauren; Walker, Leslie R.
2007-01-01
Purpose Preventing adolescents from smoking and becoming addicted to nicotine is an important public health issue. New research on the genetics of susceptibility to nicotine addition is emerging and may someday help identify adolescents at high risk. Over time, genetic counseling and testing for nicotine addiction susceptibility may become incorporated into tobacco control practice, and providers in primary care settings are likely to be at the forefront of these services. As such, it is important to understand the attitudes and practices of adolescent medicine providers toward tobacco control and genetic testing to better anticipate their needs and interests and prepare for the future. This study describes adolescent medicine providers’ interest, and correlates of their interest, in genetic counseling and testing for nicotine addiction susceptibility among their adolescent patients--a test which is not yet clinically available. Methods Adolescent medicine providers attending a national scientific conference (N = 232) completed a survey about their patient tobacco control and other screening behaviors, perceptions of their patients’ attitudes and beliefs toward tobacco control, and their own attitudes and beliefs about smoking and genetics. Results Providers who engaged in more regular tobacco screening behaviors with their adolescent patients (Odds Ratio [OR] = 4.07, 95% Confidence Interval [CI] = 2.20, 7.751, p = .00) and those who were more optimistic that biobehavioral research would lead to significant improvements in adolescent smoking prevention and treatment (OR = 2.47, 95% CI = 1.40, 4.37, p = .00), were more interested in counseling and testing. Conclusions Someday, adolescent wellness visits may present an opportunity to offer genetic counseling and testing for nicotine addiction susceptibility. Implementation at the provider level may depend on tobacco screening behavior and research optimism. Educating providers about safe and effective adolescent tobacco control strategies incorporating genetics will be essential. PMID:17577533
Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster
Vonesch, Sibylle Chantal; Lamparter, David; Mackay, Trudy F. C.; Bergmann, Sven; Hafen, Ernst
2016-01-01
Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity. PMID:26751788
Engineering genetic circuit interactions within and between synthetic minimal cells
NASA Astrophysics Data System (ADS)
Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.
2017-05-01
Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.
Xie, Zheng; Lin, Haijiang; Fang, Renfei; Shen, Weiwei; Li, Shuguang; Chen, Bo
2015-05-06
Coke oven workers (COWs) are exposed to high level of genotoxic chemicals that induce oxidative stress and genetic damage. The dietary intake of certain types of foods may reverse these effects. We conducted a cross-sectional study with 51 topside COWs, 79 other COWs, and 67 controls, to assess the effects of dietary patterns on oxidative stress and genetic damage. Compared to the controls, both topside and other COWs had significantly higher urinary 1-hydroxypyrene levels, serum oxidant levels [malondialdehyde, (MDA)], and genetic damage [micronucleus (MN) frequency & 8-oxo-2'-deoxyguanosine (8-OH-dG)], but lower antioxidant levels [superoxide dismutase (SOD) and glutathione peroxidase, (GPx)]. The fruit-vegetable (FV) dietary pattern was positively correlated with serum SOD levels and negative correlated with serum MDA, MN frequency, and urinary 8-OH-dG. COWs with an FV patter in the highest quartile (Q4) had significantly increased antioxidant levels (SOD and GPx) and decreased oxidant levels (MDA) and genetic damage (MN frequency and 8-OH-dG) than those with an FV pattern in the lowest quartile (Q1). Compared to control subjects, COWs had increased oxidative stress and genetic damage. A FV dietary pattern may reverse oxidative stress and genetic damage in COWs.
Li, Sherly X; Ye, Zheng; Whelan, Kevin; Truby, Helen
2016-09-01
Genetic risk prediction of chronic conditions including obesity, diabetes and CVD currently has limited predictive power but its potential to engage healthy behaviour change has been of immense research interest. We aimed to understand whether the latter is indeed true by conducting a systematic review and meta-analysis investigating whether genetic risk communication affects motivation and actual behaviour change towards preventative lifestyle modification. We included all randomised controlled trials (RCT) since 2003 investigating the impact of genetic risk communication on health behaviour to prevent cardiometabolic disease, without restrictions on age, duration of intervention or language. We conducted random-effects meta-analyses for perceived motivation for behaviour change and clinical changes (weight loss) and a narrative analysis for other outcomes. Within the thirteen studies reviewed, five were vignette studies (hypothetical RCT) and seven were clinical RCT. There was no consistent effect of genetic risk on actual motivation for weight loss, perceived motivation for dietary change (control v. genetic risk group standardised mean difference (smd) -0·15; 95 % CI -1·03, 0·73, P=0·74) or actual change in dietary behaviour. Similar results were observed for actual weight loss (control v. high genetic risk SMD 0·29 kg; 95 % CI -0·74, 1·31, P=0·58). This review found no clear or consistent evidence that genetic risk communication alone either raises motivation or translates into actual change in dietary intake or physical activity to reduce the risk of cardiometabolic disorders in adults. Of thirteen studies, eight were at high or unclear risk of bias. Additional larger-scale, high-quality clinical RCT are warranted.
Genetic Signatures of Exceptional Longevity in Humans
Sebastiani, Paola; Solovieff, Nadia; DeWan, Andrew T.; Walsh, Kyle M.; Puca, Annibale; Hartley, Stephen W.; Melista, Efthymia; Andersen, Stacy; Dworkis, Daniel A.; Wilk, Jemma B.; Myers, Richard H.; Steinberg, Martin H.; Montano, Monty; Baldwin, Clinton T.; Hoh, Josephine; Perls, Thomas T.
2012-01-01
Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity. PMID:22279548
Lukindu, Martin; Bergey, Christina M; Wiltshire, Rachel M; Small, Scott T; Bourke, Brian P; Kayondo, Jonathan K; Besansky, Nora J
2018-04-16
Understanding population genetic structure in the malaria vector Anopheles gambiae (s.s.) is crucial to inform genetic control and manage insecticide resistance. Unfortunately, species characteristics such as high nucleotide diversity, large effective population size, recent range expansion, and high dispersal ability complicate the inference of genetic structure across its range in sub-Saharan Africa. The ocean, along with the Great Rift Valley, is one of the few recognized barriers to gene flow in this species, but the effect of inland lakes, which could be useful sites for initial testing of genetic control strategies, is relatively understudied. Here we examine Lake Victoria as a barrier between the Ugandan mainland and the Ssese Islands, which lie up to 60 km offshore. We use mitochondrial DNA (mtDNA) from populations sampled in 2002, 2012 and 2015, and perform Bayesian cluster analysis on mtDNA combined with microsatellite data previously generated from the same 2002 mosquito DNA samples. Hierarchical analysis of molecular variance and Bayesian clustering support significant differentiation between the mainland and lacustrine islands. In an mtDNA haplotype network constructed from this and previous data, haplotypes are shared even between localities separated by the Rift Valley, a result that more likely reflects retention of shared ancestral polymorphism than contemporary gene flow. The relative genetic isolation of An. gambiae on the Ssese Islands, their small size, level terrain and ease of access from the mainland, the relative simplicity of the vectorial system, and the prevalence of malaria, are all attributes that recommend these islands as possible sites for the testing of genetic control strategies.
Kurreeman, Fina; Liao, Katherine; Chibnik, Lori; Hickey, Brendan; Stahl, Eli; Gainer, Vivian; Li, Gang; Bry, Lynn; Mahan, Scott; Ardlie, Kristin; Thomson, Brian; Szolovits, Peter; Churchill, Susanne; Murphy, Shawn N.; Cai, Tianxi; Raychaudhuri, Soumya; Kohane, Isaac; Karlson, Elizabeth; Plenge, Robert M.
2011-01-01
Discovering and following up on genetic associations with complex phenotypes require large patient cohorts. This is particularly true for patient cohorts of diverse ancestry and clinically relevant subsets of disease. The ability to mine the electronic health records (EHRs) of patients followed as part of routine clinical care provides a potential opportunity to efficiently identify affected cases and unaffected controls for appropriate-sized genetic studies. Here, we demonstrate proof-of-concept that it is possible to use EHR data linked with biospecimens to establish a multi-ethnic case-control cohort for genetic research of a complex disease, rheumatoid arthritis (RA). In 1,515 EHR-derived RA cases and 1,480 controls matched for both genetic ancestry and disease-specific autoantibodies (anti-citrullinated protein antibodies [ACPA]), we demonstrate that the odds ratios and aggregate genetic risk score (GRS) of known RA risk alleles measured in individuals of European ancestry within our EHR cohort are nearly identical to those derived from a genome-wide association study (GWAS) of 5,539 autoantibody-positive RA cases and 20,169 controls. We extend this approach to other ethnic groups and identify a large overlap in the GRS among individuals of European, African, East Asian, and Hispanic ancestry. We also demonstrate that the distribution of a GRS based on 28 non-HLA risk alleles in ACPA+ cases partially overlaps with ACPA- subgroup of RA cases. Our study demonstrates that the genetic basis of rheumatoid arthritis risk is similar among cases of diverse ancestry divided into subsets based on ACPA status and emphasizes the utility of linking EHR clinical data with biospecimens for genetic studies. PMID:21211616
Dingel, M.J.; Hicks, A.D.; Robinson, M.E.; Koenig, B.A.
2011-01-01
Objective: Will emerging genetic research strengthen tobacco control programs? In this empirical study, we interview stakeholders in tobacco control to illuminate debates about the role of genomics in public health. Methods: The authors performed open-ended interviews with 86 stakeholders from 5 areas of tobacco control: basic scientists, clinicians, tobacco prevention specialists, health payers, and pharmaceutical industry employees. Interviews were qualitatively analyzed using standard techniques. Results: The central tension is between the hope that an expanding genomic knowledge base will improve prevention and smoking cessation therapies and the fear that genetic research might siphon resources away from traditional and proven public health programs. While showing strong support for traditional public health approaches to tobacco control, stakeholders recognize weaknesses, specifically the difficulty of countering the powerful voice of the tobacco industry when mounting public campaigns and the problem of individuals who are resistant to treatment and continue smoking. Conclusions: In order for genetic research to be effectively translated into efforts to minimize the harm of smoking-related disease, the views of key stakeholders must be voiced and disagreements reconciled. Effective translation requires honest evaluation of both the strengths and limitations of genetic approaches. PMID:21757875
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
...; Comment Request; NCI Cancer Genetics Services Directory Web-Based Application Form and Update Mailer... currently valid OMB control number. Proposed Collection: Title: NCI Cancer Genetics Services Directory Web... application form and the Web-based update mailer is to collect information about genetics professionals to be...
ERIC Educational Resources Information Center
Guo, Guang; Roettger, Michael E.; Cai, Tianji
2008-01-01
This study, drawing on approximately 1,100 males from the National Longitudinal Study of Adolescent Health, demonstrates the importance of genetics, and genetic-environmental interactions, for understanding adolescent delinquency and violence. Our analyses show that three genetic polymorphisms--specifically, the 30-bp promoter-region variable…
USDA-ARS?s Scientific Manuscript database
Background: Understanding the role of host genetics in resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection, and the effects of PRRS on pig health and related growth, are goals of the PRRS Host Genetics Consortium (PHGC). Methods: The project uses a nursery pig model ...
Potential International Approaches to Ownership/Control of Human Genetic Resources.
Rhodes, Catherine
2016-09-01
In its governance activities for genetic resources, the international community has adopted various approaches to their ownership, including: free access; common heritage of mankind; intellectual property rights; and state sovereign rights. They have also created systems which combine elements of these approaches. While governance of plant and animal genetic resources is well-established internationally, there has not yet been a clear approach selected for human genetic resources. Based on assessment of the goals which international governance of human genetic resources ought to serve, and the implications for how they will be accessed and utilised, it is argued that common heritage of mankind will be the most appropriate approach to adopt to their ownership/control. It does this with the aim of stimulating discussion in this area and providing a starting point for deeper consideration of how a common heritage of mankind, or similar, regime for human genetic resources would function and be implemented.
Li, Tianxin; Zhang, Minjie; Lu, Zhongming; Herman, Uwizeyimana; Mumbengegwi, Dzivaidzo; Crittenden, John
2016-01-01
Air and soil pollution from mining activities has been considered as a critical issue to the health of living organisms. However, few efforts have been made in distinguishing the main pathway of organism genetic damage by heavy metals related to mining activities. Therefore, we investigated the genetic damage of Leymus chinensis leaf cells, the air particulate matter (PM) contents, and concentrations of the main heavy metals (Pb, Cd, Cr, Hg) in soil and foliar dust samples collected from seven experiment points at the core mining area and one control point 20 kilometers away from the core mining area in Inner Mongolia in 2013. Comet assay was used to test the genetic damage of the Leymus chinensis leaf cells; the Tail DNA% and Tail Moment were used to characterize the genetic damage degree of the plant cells. The comet assay results showed that the cell genetic damage ratio was up to 77.0% in experiment points but was only 35.0% in control point. The control point also had the slight Tail DNA% and Tail Moment values than other experiment groups. The cell damage degree of the control group was 0.935 and experiment groups were 1.299–1.815. The geo-accumulation index and comperehensive pollution index(CPI) were used to characterize heavy metal pollution in foliar dust samples, and single factor pollution index and CPI were used to characterize the heavy metal pollution in soil samples. The CPIfoliar dust of control group was 0.36 and experiment groups were 1.45–2.57; the CPIsoil of control group was 0.04 and experiment groups were 0.07–0.12. The results of correlation analyze showed that Air Quality Index (AQI) -CPIfoliar dust(r = 0.955**)>Damage degree-CPIfoliar dust(r = 0.923**)>Damage degree-AQI(r = 0.908**)>Damage degree-CPIsoil (r = 0.824*). The present research proved that mining activity had a high level of positive correlation with organism genetic damage caused by heavy metals through comparing with the control point; soil and atmosphere were both the important action pathway for heavy metal induced genetic damage in mining area. Furthermore, heavy metal contents in foliar dust showed a higher positive correlation with genetic damage than when compared with soil. This means the heavy metal contents that L.chinensis absorbed through respiration from the atmosphere could make more serious genetic damage than when absorbed by root systems from soil in the mining area. This study can provide theoretical support for research on plant genetic damage mechanisms and exposure pathways induced by environmental pollution. PMID:27935969
Li, Tianxin; Zhang, Minjie; Lu, Zhongming; Herman, Uwizeyimana; Mumbengegwi, Dzivaidzo; Crittenden, John
2016-01-01
Air and soil pollution from mining activities has been considered as a critical issue to the health of living organisms. However, few efforts have been made in distinguishing the main pathway of organism genetic damage by heavy metals related to mining activities. Therefore, we investigated the genetic damage of Leymus chinensis leaf cells, the air particulate matter (PM) contents, and concentrations of the main heavy metals (Pb, Cd, Cr, Hg) in soil and foliar dust samples collected from seven experiment points at the core mining area and one control point 20 kilometers away from the core mining area in Inner Mongolia in 2013. Comet assay was used to test the genetic damage of the Leymus chinensis leaf cells; the Tail DNA% and Tail Moment were used to characterize the genetic damage degree of the plant cells. The comet assay results showed that the cell genetic damage ratio was up to 77.0% in experiment points but was only 35.0% in control point. The control point also had the slight Tail DNA% and Tail Moment values than other experiment groups. The cell damage degree of the control group was 0.935 and experiment groups were 1.299-1.815. The geo-accumulation index and comperehensive pollution index(CPI) were used to characterize heavy metal pollution in foliar dust samples, and single factor pollution index and CPI were used to characterize the heavy metal pollution in soil samples. The CPIfoliar dust of control group was 0.36 and experiment groups were 1.45-2.57; the CPIsoil of control group was 0.04 and experiment groups were 0.07-0.12. The results of correlation analyze showed that Air Quality Index (AQI) -CPIfoliar dust(r = 0.955**)>Damage degree-CPIfoliar dust(r = 0.923**)>Damage degree-AQI(r = 0.908**)>Damage degree-CPIsoil (r = 0.824*). The present research proved that mining activity had a high level of positive correlation with organism genetic damage caused by heavy metals through comparing with the control point; soil and atmosphere were both the important action pathway for heavy metal induced genetic damage in mining area. Furthermore, heavy metal contents in foliar dust showed a higher positive correlation with genetic damage than when compared with soil. This means the heavy metal contents that L.chinensis absorbed through respiration from the atmosphere could make more serious genetic damage than when absorbed by root systems from soil in the mining area. This study can provide theoretical support for research on plant genetic damage mechanisms and exposure pathways induced by environmental pollution.
Hussein, Norita; Weng, Stephen F; Kai, Joe; Kleijnen, Jos; Qureshi, Nadeem
2015-08-12
Globally, about five per cent of children are born with congenital or genetic disorders. The most common autosomal recessive conditions are thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease, with higher carrier rates in specific patient populations. Identifying and counselling couples at genetic risk of the conditions before pregnancy enables them to make fully informed reproductive decisions, with some of these choices not being available if genetic counselling is only offered in an antenatal setting. To assess the effectiveness of systematic preconception genetic risk assessment to improve reproductive outcomes in women and their partners who are identified as carriers of thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease in healthcare settings when compared to usual care. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Registers. In addition, we searched for all relevant trials from 1970 (or the date at which the database was first available if after 1970) to date using electronic databases (MEDLINE, Embase, CINAHL, PsycINFO), clinical trial databases (National Institutes of Health, Clinical Trials Search portal of the World Health Organization, metaRegister of controlled clinical trials), and hand searching of key journals and conference abstract books from 1998 to date (European Journal of Human Genetics, Genetics in Medicine, Journal of Community Genetics). We also searched the reference lists of relevant articles, reviews and guidelines and also contacted subject experts in the field to request any unpublished or other published trials.Date of latest search of the registers: 25 June 2015.Date of latest search of all other sources: 10 December 2014. Any randomised or quasi-randomised control trials (published or unpublished) comparing reproductive outcomes of systematic preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease when compared to usual care. We identified 19 papers, describing 13 unique trials which were potentially eligible for inclusion in the review. However, after assessment, no randomised controlled trials of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease were found. No randomised controlled trials of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease were found. As no randomised controlled trials of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis, or Tay-Sachs disease were found for inclusion in this review, the research evidence for current policy recommendations is limited to non-randomised studies.Information from well-designed, adequately powered, randomised trials is desirable in order to make more robust recommendations for practice. However, such trials must also consider the legal, ethical, and cultural barriers to implementation of preconception genetic risk assessment.
Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng
2012-06-01
Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.
Genetics of Parenting: The Power of the Dark Side
ERIC Educational Resources Information Center
Oliver, Bonamy R.; Trzaskowski, Maciej; Plomin, Robert
2014-01-01
Reviews of behavioral genetic studies note that "control" aspects of parenting yield low estimates of heritability, while "affective" aspects (parental feelings) yield moderate estimates. Research to date has not specifically considered whether positive and negative aspects of parenting--for both feelings and control--may…
USDA-ARS?s Scientific Manuscript database
Subterranean rhizome branches facilitate vegetative dispersal, survival, and regrowth of perennial grasses. Developmental differences between upright, prostrate, and subterranean stem branching patterns may involve auxin-mediated responses to gravity or light, but genetic mechanisms controlling the...
Injeyan, Marie C; Shuman, Cheryl; Shugar, Andrea; Chitayat, David; Atenafu, Eshetu G; Kaiser, Amy
2011-10-01
Compassion fatigue (CMF) arises as a consequence of secondary exposure to distress and can be elevated in some health practitioners. Locus of control and dispositional optimism are aspects of personality known to influence coping style. To investigate whether these personality traits influence CMF risk, we surveyed 355 genetic counselors about their CMF, locus of control orientation, and degree of dispositional optimism. Approximately half of respondents reported they experience CMF; 26.6% had considered leaving their job due to CMF symptoms. Mixed-method analyses revealed that genetic counselors having an external locus of control and low optimism were at highest risk for CMF. Those at highest risk experienced moderate-to-high burnout, low-to-moderate compassion satisfaction, and tended to rely on religion/spirituality when coping with stress. CMF risk was not influenced by years in practice, number of genetic counselor colleagues in the workplace, or completion of graduate training in this area. Recommendations for practice and education are outlined.
Differences between blood donors and a population sample: implications for case-control studies.
Golding, Jean; Northstone, Kate; Miller, Laura L; Davey Smith, George; Pembrey, Marcus
2013-08-01
Selecting appropriate controls for studies of genetic variation in case series is important. The two major candidates involve the use of blood donors or a random sample of the population. We compare and contrast the two different populations of controls for studies of genetic variation using data from parents enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC). In addition we compute different biases using a series of hypothetical assumptions. The study subjects who had been blood donors differed markedly from the general population in social, health-related, anthropometric, and personality-related variables. Using theoretical examples, we show that blood donors are a poor control group for non-genetic studies of diseases related to environmentally, behaviourally, or socially patterned exposures. However, we show that if blood donors are used as controls in genetic studies, these factors are unlikely to make a major difference in detecting true associations with relatively rare disorders (cumulative incidence through life of <10%). Nevertheless, for more common disorders, the reduction in accuracy resulting from the inclusion in any control population of individuals who have or will develop the disease in question can create a greater bias than can socially patterned factors. Information about the medical history of a control and the parents of the control (as a proxy for whether the control will develop the disease) is more important with regard to the choice of controls than whether the controls are a random population sample or blood donors.
Genome-wide association study of colorectal cancer identifies six new susceptibility loci.
Schumacher, Fredrick R; Schmit, Stephanie L; Jiao, Shuo; Edlund, Christopher K; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P; Harju, John F; Idos, Gregory E; Lejbkowicz, Flavio; Manion, Frank J; McDonnell, Kevin; McNeil, Caroline E; Melas, Marilena; Rennert, Hedy S; Shi, Wei; Thomas, Duncan C; Van Den Berg, David J; Hutter, Carolyn M; Aragaki, Aaron K; Butterbach, Katja; Caan, Bette J; Carlson, Christopher S; Chanock, Stephen J; Curtis, Keith R; Fuchs, Charles S; Gala, Manish; Giovannucc, Edward L; Giocannucci, Edward L; Gogarten, Stephanie M; Hayes, Richard B; Henderson, Brian; Hunter, David J; Jackson, Rebecca D; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Kury, Sebastian; LaCroix, Andrea; Laurie, Cathy C; Laurie, Cecelia A; Lemire, Mathieu; Lemire, Mathiew; Levine, David; Ma, Jing; Makar, Karen W; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M; Wu, Kana; Kono, Suminori; West, Dee W; Berndt, Sonja I; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T; Chan, Andrew T; Chang-Claude, Jenny; Coetzee, Gerhard A; Conti, David V; Duggan, David; Figueiredo, Jane C; Fortini, Barbara K; Gallinger, Steven J; Gauderman, W James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A; Potter, John D; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B; Peters, Ulrike
2015-07-07
Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.
Chang, Xuling; Salim, Agus; Dorajoo, Rajkumar; Han, Yi; Khor, Chiea-Chuen; van Dam, Rob M; Yuan, Jian-Min; Koh, Woon-Puay; Liu, Jianjun; Goh, Daniel Yt; Wang, Xu; Teo, Yik-Ying; Friedlander, Yechiel; Heng, Chew-Kiat
2017-01-01
Background Although numerous phenotype based equations for predicting risk of 'hard' coronary heart disease are available, data on the utility of genetic information for such risk prediction is lacking in Chinese populations. Design Case-control study nested within the Singapore Chinese Health Study. Methods A total of 1306 subjects comprising 836 men (267 incident cases and 569 controls) and 470 women (128 incident cases and 342 controls) were included. A Genetic Risk Score comprising 156 single nucleotide polymorphisms that have been robustly associated with coronary heart disease or its risk factors ( p < 5 × 10 -8 ) in at least two independent cohorts of genome-wide association studies was built. For each gender, three base models were used: recalibrated Adult Treatment Panel III (ATPIII) Model (M 1 ); ATP III model fitted using Singapore Chinese Health Study data (M 2 ) and M 3 : M 2 + C-reactive protein + creatinine. Results The Genetic Risk Score was significantly associated with incident 'hard' coronary heart disease ( p for men: 1.70 × 10 -10 -1.73 × 10 -9 ; p for women: 0.001). The inclusion of the Genetic Risk Score in the prediction models improved discrimination in both genders (c-statistics: 0.706-0.722 vs. 0.663-0.695 from base models for men; 0.788-0.790 vs. 0.765-0.773 for women). In addition, the inclusion of the Genetic Risk Score also improved risk classification with a net gain of cases being reclassified to higher risk categories (men: 12.4%-16.5%; women: 10.2% (M 3 )), while not significantly reducing the classification accuracy in controls. Conclusions The Genetic Risk Score is an independent predictor for incident 'hard' coronary heart disease in our ethnic Chinese population. Inclusion of genetic factors into coronary heart disease prediction models could significantly improve risk prediction performance.
CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins
Londin, Eric R.; Keller, Margaret A.; Maista, Cathleen; Smith, Gretchen; Mamounas, Laura A.; Zhang, Ran; Madore, Steven J.; Gwinn, Katrina; Corriveau, Roderick A.
2010-01-01
Background Genetic ancestry is known to impact outcomes of genotype-phenotype studies that are designed to identify risk for common diseases in human populations. Failure to control for population stratification due to genetic ancestry can significantly confound results of disease association studies. Moreover, ancestry is a critical factor in assessing lifetime risk of disease, and can play an important role in optimizing treatment. As modern medicine moves towards using personal genetic information for clinical applications, it is important to determine genetic ancestry in an accurate, cost-effective and efficient manner. Self-identified race is a common method used to track and control for population stratification; however, social constructs of race are not necessarily informative for genetic applications. The use of ancestry informative markers (AIMs) is a more accurate method for determining genetic ancestry for the purposes of population stratification. Methodology/Principal Findings Here we introduce a novel panel of 36 microsatellite (MSAT) AIMs that determines continental admixture proportions. This panel, which we have named Continental Ancestry Informative Markers or CoAIMs, consists of MSAT AIMs that were chosen based upon their measure of genetic variance (Fst), allele frequencies and their suitability for efficient genotyping. Genotype analysis using CoAIMs along with a Bayesian clustering method (STRUCTURE) is able to discern continental origins including Europe/Middle East (Caucasians), East Asia, Africa, Native America, and Oceania. In addition to determining continental ancestry for individuals without significant admixture, we applied CoAIMs to ascertain admixture proportions of individuals of self declared race. Conclusion/Significance CoAIMs can be used to efficiently and effectively determine continental admixture proportions in a sample set. The CoAIMs panel is a valuable resource for genetic researchers performing case-control genetic association studies, as it can control for the confounding effects of population stratification. The MSAT-based approach used here has potential for broad applicability as a cost effective tool toward determining admixture proportions. PMID:20976178
Esposito, Susanna; Cerutti, Marta; Milani, Donatella; Menni, Francesca; Principi, Nicola
2016-01-01
Abstract Despite the fact that the achievement of appropriate immunization coverage for routine vaccines is a priority for health authorities worldwide, vaccination delays or missed opportunities for immunization are common in children with chronic diseases. The main aim of this cross-sectional study was to evaluate immunization coverage and the timeliness of vaccination in children suffering from 3 different rare genetic diseases: Rubinstein-Taybi syndrome (RSTS), Sotos syndrome (SS), and Beckwith-Wiedemann syndrome (BWS). A total of 57 children with genetic diseases (15 with RSTS, 14 children with SS, and 28 with BWS) and 57 healthy controls with similar characteristics were enrolled. The coverage of all the recommended vaccines in children with genetic syndromes was significantly lower than that observed in healthy controls (p < 0.05 for all the comparisons). However, when vaccinated, all of the patients, independent of the genetic syndrome from which they suffer, were administered the primary series and the booster doses at a similar time to healthy controls. In comparison with parents of healthy controls, parents of children with genetic diseases were found to more frequently have negative attitudes toward vaccination (p < 0.05 for all the comparisons), mainly for fear of the emergence of adverse events or deterioration of the underlying disease. This study shows that vaccination coverage is poor in pediatric patients with RSTS, BWS, and SS and significantly lower than that observed in healthy children. These results highlight the need for educational programs specifically aimed at both parents and pediatricians to increase immunization coverage in children with these rare genetic diseases. PMID:26337545
Genetic architecture of domestication-related traits in maize
USDA-ARS?s Scientific Manuscript database
Strong directional selection occurred during the domestication of maize from its wild ancestor teosinte, reducing its genetic diversity, particularly at genes controlling domestication-related traits. Nevertheless, variability for some domestication-related traits is maintained in maize. The genet...
Genetic Control of Contagious Asexuality in the Pea Aphid
Jaquiéry, Julie; Stoeckel, Solenn; Larose, Chloé; Nouhaud, Pierre; Rispe, Claude; Mieuzet, Lucie; Bonhomme, Joël; Mahéo, Frédérique; Legeai, Fabrice; Gauthier, Jean-Pierre; Prunier-Leterme, Nathalie; Tagu, Denis; Simon, Jean-Christophe
2014-01-01
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages. PMID:25473828
Identification of milling and baking quality QTL in multiple soft wheat mapping populations
USDA-ARS?s Scientific Manuscript database
Wheat derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wh...
Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment.
Cain, Jason E; Di Giovanni, Valeria; Smeeton, Joanna; Rosenblum, Norman D
2010-08-01
Renal hypoplasia, defined as abnormally small kidneys with normal morphology and reduced nephron number, is a common cause of pediatric renal failure and adult-onset disease. Genetic studies performed in humans and mutant mice have implicated a number of critical genes, in utero environmental factors and molecular mechanisms that regulate nephron endowment and kidney size. Here, we review current knowledge regarding the genetic contributions to renal hypoplasia with particular emphasis on the mechanisms that control nephron endowment in humans and mice.
Khovaev, A A; Nesterenko, L N; Naroditskiĭ, B S
2011-01-01
Methods of identification of genetically modified microorganisms (GMM), used in manufacture food on control probes are presented. Results of microbiological and molecular and genetic analyses of food products and their components important in microbiological and genetic expert examination of GMM in foods are considered. Examination of biosafety of GMM are indicated.
ERIC Educational Resources Information Center
Smith, Mike U.
Both teachers and students alike acknowledge that genetics and genetics problem-solving are extremely difficult to learn and to teach. Therefore, a number of recommendations for teaching college genetics are offered. Although few of these ideas have as yet been tested in controlled experiments, they are supported by research and experience and may…
Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.
Juang, C F; Lin, J Y; Lin, C T
2000-01-01
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.
Robust PD Sway Control of a Lifted Load for a Crane Using a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kawada, Kazuo; Sogo, Hiroyuki; Yamamoto, Toru; Mada, Yasuhiro
PID control schemes still continue to be widely used for most industrial control systems. This is mainly because PID controllers have simple control structures, and are simple to maintain and tune. However, it is difficult to find a set of suitable control parameters in the case of time-varying and/or nonlinear systems. For such a problem, the robust controller has been proposed.Although it is important to choose the suitable nominal model in designing the robust controller, it is not usually easy.In this paper, a new robust PD controller design scheme is proposed, which utilizes a genetic algorithm.
... condition damages parts of the brain that control reasoning, personality, social skills, speech, and language. Personality changes, ... Clearinghouse: Paget's Disease of Bone: An Endocrine Society Clinical Practice Guideline Genetic Testing (1 link) Genetic Testing ...
Gupta, Shilpi; Lemenze, Alexander; Donnelly, Robert J; Connell, Nancy D; Kadouri, Daniel E
2018-05-08
The use of predatory bacteria as a potential live therapeutic to control human infection is gaining increased attention. Earlier work with Micavibrio spp. and Bdellovibrio spp. has demonstrated the ability of these predators to control drug-resistant Gram-negative pathogens, Tier-1 select agents and biofilms. Additional studies also confirmed that introducing high doses of the predators into animals does not negatively impact animal well-being and might assist in reducing bacterial burden in vivo. The survival of predators requires extreme proximity to the prey cell, which might bring about horizontal transfer of genetic material, such as genes encoding for pathogenic genetic islands that would indirectly facilitate the spread of genetic material to other organisms. In this study, we examined the genetic makeup of several lab isolates of the predators B. bacteriovorus and M. aeruginosavorus that were cultured repeatedly and stored over a course of 13 years. We also conducted controlled experiments in which the predators were sequentially co-cultured on Klebsiella pneumoniae followed by genetic analysis of the predator. In both cases, we saw little genetic variation and no evidence of horizontally transferred chromosomal DNA from the prey during predator-prey interaction. Culturing the predators repeatedly did not cause any change in predation efficacy. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Biological control is an important and environmentally preferred management option for invasive insect pests and weeds. Implementation of new international regulations governing exchange of genetic materials impacts the availability of candidate biocontrol agents, and exchange policies need to be ca...
Peredo, Elena L; Revilla, M Angeles; Arroyo-García, Rosa
2006-10-01
Organogenic calli induced from internodal segments were subcultured three times. Regenerated plants obtained from each subculture were analysed by molecular methods. No major genetic rearrangements were detected in the callus-derived plants since none of the amplified fragment-length polymorphism (AFLP) loci were found to be polymorphic. However, epigenetic changes due to a demethylation process were detected by methylation-sensitive amplified polymorphism (MSAP) technique. The results allowed inference of the possible relationship among the plants derived from different calli subcultures and the in vitro control. The plants recovered from the first and second callus subcultures clustered with the in vitro control pools in the phenogram while the regenerants from the third callus subculture showed the highest genetic distance with the controls. This is the first study reporting data about the genetic stability of callus-derived Humulus lupulus L. plants.
Synthesizing genetic sequential logic circuit with clock pulse generator.
Chuang, Chia-Hua; Lin, Chun-Liang
2014-05-28
Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.
Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure
NASA Astrophysics Data System (ADS)
Wang, Hua; Zhang, Jian; Yang, Fan; Wang, Kai; Shen, Si-Le; Liu, Bing-Bing; Zou, Bo; Zou, Guang-Tian
2011-01-01
The mutant strains of aspergillus oryzae (HP300a) are screened under 300 MPa for 20 min. Compared with the control strains, the screened mutant strains have unique properties such as genetic stability, rapid growth, lots of spores, and high protease activity. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) are used to analyze the DNA fingerprinting of HP300a and the control strains. There are 67.9% and 51.3% polymorphic bands obtained by these two markers, respectively, indicating significant genetic variations between HP300a and the control strains. In addition, comparison of HP300a and the control strains, the genetic distances of random sequence and simple sequence repeat of DNA are 0.51 and 0.34, respectively.
Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses
Zhang, S; Meng, L; Wang, J; Zhang, L
2017-01-01
Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population. PMID:28722705
Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses.
Zhang, S; Meng, L; Wang, J; Zhang, L
2017-10-01
Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population.
Heinig, Matthias; Adriaens, Michiel E; Schafer, Sebastian; van Deutekom, Hanneke W M; Lodder, Elisabeth M; Ware, James S; Schneider, Valentin; Felkin, Leanne E; Creemers, Esther E; Meder, Benjamin; Katus, Hugo A; Rühle, Frank; Stoll, Monika; Cambien, François; Villard, Eric; Charron, Philippe; Varro, Andras; Bishopric, Nanette H; George, Alfred L; Dos Remedios, Cristobal; Moreno-Moral, Aida; Pesce, Francesco; Bauerfeind, Anja; Rüschendorf, Franz; Rintisch, Carola; Petretto, Enrico; Barton, Paul J; Cook, Stuart A; Pinto, Yigal M; Bezzina, Connie R; Hubner, Norbert
2017-09-14
Genetic variation is an important determinant of RNA transcription and splicing, which in turn contributes to variation in human traits, including cardiovascular diseases. Here we report the first in-depth survey of heart transcriptome variation using RNA-sequencing in 97 patients with dilated cardiomyopathy and 108 non-diseased controls. We reveal extensive differences of gene expression and splicing between dilated cardiomyopathy patients and controls, affecting known as well as novel dilated cardiomyopathy genes. Moreover, we show a widespread effect of genetic variation on the regulation of transcription, isoform usage, and allele-specific expression. Systematic annotation of genome-wide association SNPs identifies 60 functional candidate genes for heart phenotypes, representing 20% of all published heart genome-wide association loci. Focusing on the dilated cardiomyopathy phenotype we found that eQTL variants are also enriched for dilated cardiomyopathy genome-wide association signals in two independent cohorts. RNA transcription, splicing, and allele-specific expression are each important determinants of the dilated cardiomyopathy phenotype and are controlled by genetic factors. Our results represent a powerful resource for the field of cardiovascular genetics.
Unique genetic loci identified for emotional behavior in control and chronic stress conditions.
Carhuatanta, Kimberly A K; Shea, Chloe J A; Herman, James P; Jankord, Ryan
2014-01-01
An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.
Unique genetic loci identified for emotional behavior in control and chronic stress conditions
Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan
2014-01-01
An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior. PMID:25374516
ERIC Educational Resources Information Center
Hoagland, Hudson
1972-01-01
Biological evolution can be carried out in the laboratory. With new knowledge available in genetics, possibilities are raised that genetic characters can be transferred in the future to embryos according to a predetermined plan. (PS)
Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric
The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less
Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon
Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric; ...
2016-10-14
The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less
Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease
Chen, Haoyan; Hayashi, Genki; Lai, Olivia Y.; Dilthey, Alexander; Kuebler, Peter J.; Wong, Tami V.; Martin, Maureen P.; Fernandez Vina, Marcelo A.; McVean, Gil; Wabl, Matthias; Leslie, Kieron S.; Maurer, Toby; Martin, Jeffrey N.; Deeks, Steven G.; Carrington, Mary; Bowcock, Anne M.; Nixon, Douglas F.; Liao, Wilson
2012-01-01
An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis. PMID:22577363
Methodological issues of genetic association studies.
Simundic, Ana-Maria
2010-12-01
Genetic association studies explore the association between genetic polymorphisms and a certain trait, disease or predisposition to disease. It has long been acknowledged that many genetic association studies fail to replicate their initial positive findings. This raises concern about the methodological quality of these reports. Case-control genetic association studies often suffer from various methodological flaws in study design and data analysis, and are often reported poorly. Flawed methodology and poor reporting leads to distorted results and incorrect conclusions. Many journals have adopted guidelines for reporting genetic association studies. In this review, some major methodological determinants of genetic association studies will be discussed.
Genetic Adaptive Control for PZT Actuators
NASA Technical Reports Server (NTRS)
Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.
1995-01-01
A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.
Wolfe, Christopher R; Reyna, Valerie F; Widmer, Colin L; Cedillos, Elizabeth M; Fisher, Christopher R; Brust-Renck, Priscila G; Weil, Audrey M
2015-01-01
. Many healthy women consider genetic testing for breast cancer risk, yet BRCA testing issues are complex. . To determine whether an intelligent tutor, BRCA Gist, grounded in fuzzy-trace theory (FTT), increases gist comprehension and knowledge about genetic testing for breast cancer risk, improving decision making. . In 2 experiments, 410 healthy undergraduate women were randomly assigned to 1 of 3 groups: an online module using a Web-based tutoring system (BRCA Gist) that uses artificial intelligence technology, a second group read highly similar content from the National Cancer Institute (NCI) Web site, and a third that completed an unrelated tutorial. . BRCA Gist applied FTT and was designed to help participants develop gist comprehension of topics relevant to decisions about BRCA genetic testing, including how breast cancer spreads, inherited genetic mutations, and base rates. . We measured content knowledge, gist comprehension of decision-relevant information, interest in testing, and genetic risk and testing judgments. . Control knowledge scores ranged from 54% to 56%, NCI improved significantly to 65% and 70%, and BRCA Gist improved significantly more to 75% and 77%, P < 0.0001. BRCA Gist scored higher on gist comprehension than NCI and control, P < 0.0001. Control genetic risk-assessment mean was 48% correct; BRCA Gist (61%) and NCI (56%) were significantly higher, P < 0.0001. BRCA Gist participants recommended less testing for women without risk factors (not good candidates; 24% and 19%) than controls (50%, both experiments) and NCI (32%), experiment 2, P < 0.0001. BRCA Gist testing interest was lower than in controls, P < 0.0001. . BRCA Gist has not been tested with older women from diverse groups. . Intelligent tutors, such as BRCA Gist, are scalable, cost-effective ways of helping people understand complex issues, improving decision making. © The Author(s) 2014.
Dar-Nimrod, Ilan; Zuckerman, Miron; Duberstein, Paul R
2013-02-01
Increased accessibility of direct-to-consumer personalized genetic reports raises the question: how are people affected by information about their own genetic predispositions? Participants were led to believe that they had entered a study on the genetics of alcoholism and sleep disorders. Participants provided a saliva sample purportedly to be tested for the presence of relevant genes. While awaiting the results, they completed a questionnaire assessing their emotional state. They subsequently received a bogus report about their genetic susceptibility and completed a questionnaire about their emotional state and items assessing perceived control over drinking, relevant future drinking-related intentions, and intervention-related motivation and behavior. Participants who were led to believe that they had a gene associated with alcoholism showed an increase in negative affect, decrease in positive affect, and reduced perceived personal control over drinking. Reported intentions for alcohol consumption in the near future were not affected; however, individuals were more likely to enroll in a "responsible drinking" workshop after learning of their alleged genetic susceptibility. The first complete randomized experiment to examine the psychological and behavioral effects of receiving personalized genetic susceptibility information indicates some potential perils and benefits of direct-to-consumer genetic tests.
Xue, Angli; Wang, Hongcheng; Zhu, Jun
2017-09-28
Startle behavior is important for survival, and abnormal startle responses are related to several neurological diseases. Drosophila melanogaster provides a powerful system to investigate the genetic underpinnings of variation in startle behavior. Since mechanically induced, startle responses and environmental conditions can be readily quantified and precisely controlled. The 156 wild-derived fully sequenced lines of the Drosophila Genetic Reference Panel (DGRP) were used to identify SNPs and transcripts associated with variation in startle behavior. The results validated highly significant effects of 33 quantitative trait SNPs (QTSs) and 81 quantitative trait transcripts (QTTs) directly associated with phenotypic variation of startle response. We also detected QTT variation controlled by 20 QTSs (tQTSs) and 73 transcripts (tQTTs). Association mapping based on genomic and transcriptomic data enabled us to construct a complex genetic network that underlies variation in startle behavior. Based on principles of evolutionary conservation, human orthologous genes could be superimposed on this network. This study provided both genetic and biological insights into the variation of startle response behavior of Drosophila melanogaster, and highlighted the importance of genetic network to understand the genetic architecture of complex traits.
Schermerhorn, Alice C; D'Onofrio, Brian M; Slutske, Wendy S; Emery, Robert E; Turkheimer, Eric; Harden, K Paige; Heath, Andrew C; Martin, Nicholas G
2012-12-01
Previous studies have found that child attention-deficit/hyperactivity disorder (ADHD) is associated with more parental marital problems. However, the reasons for this association are unclear. The association might be due to genetic or environmental confounds that contribute to both marital problems and ADHD. Data were drawn from the Australian Twin Registry, including 1,296 individual twins, their spouses, and offspring. We studied adult twins who were discordant for offspring ADHD.Using a discordant twin pairs design, we examined the extent to which genetic and environmental confounds,as well as measured parental and offspring characteristics, explain the ADHD-marital problems association. Offspring ADHD predicted parental divorce and marital conflict. The associations were also robust when comparing differentially exposed identical twins to control for unmeasured genetic and environmental factors, when controlling for measured maternal and paternal psychopathology,when restricting the sample based on timing of parental divorce and ADHD onset, and when controlling for other forms of offspring psychopathology. Each of these controls rules out alternative explanations for the association. The results of the current study converge with those of prior research in suggesting that factors directly associated with offspring ADHD increase parental marital problems.
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Schermerhorn, Alice C.; D’Onofrio, Brian M.; Slutske, Wendy S.; Emery, Robert E.; Turkheimer, Eric; Harden, K. Paige; Heath, Andrew C.; Martin, Nicholas G.
2013-01-01
Background Previous studies have found that child attention-deficit/hyperactivity disorder (ADHD) is associated with more parental marital problems. The reasons for this association are unclear, however. The association might be due to genetic or environmental confounds that contribute to both marital problems and ADHD. Method Data were drawn from the Australian Twin Registry, including 1296 individual twins, their spouses, and offspring. We studied adult twins who were discordant for offspring ADHD. Using a discordant twin pairs design, we examined the extent to which genetic and environmental confounds, as well as measured parental and offspring characteristics, explain the ADHD-marital problems association. Results Offspring ADHD predicted parental divorce and marital conflict. The associations were also robust when comparing differentially exposed identical twins to control for unmeasured genetic and environmental factors, when controlling for measured maternal and paternal psychopathology, when restricting the sample based on timing of parental divorce and ADHD onset, and when controlling for other forms of offspring psychopathology. Each of these controls rules out alternative explanations for the association. Conclusion The results of the current study converge with those of prior research in suggesting that factors directly associated with offspring ADHD increase parental marital problems. PMID:22958575
Ellingson, J M; Richmond-Rakerd, L S; Statham, D J; Martin, N G; Slutske, W S
2016-10-01
Mental health disorders commonly co-occur, even between conceptually distinct syndromes, such as internalizing and externalizing disorders. The current study investigated whether phenotypic, genetic, and environmental variance in negative emotionality and behavioral control account for the covariation between major depressive disorder (MDD) and alcohol use disorder (AUD). A total of 3623 members of a national twin registry were administered structured diagnostic telephone interviews that included assessments of lifetime histories of MDD and AUD, and were mailed self-report personality questionnaires that assessed stress reactivity (SR) and behavioral control (CON). A series of biometric models were fitted to partition the proportion of covariance between MDD and AUD into SR and CON. A statistically significant proportion of the correlation between MDD and AUD was due to variance specific to SR (men = 0.31, women = 0.27) and CON (men = 0.20, women = 0.19). Further, genetic factors explained a large proportion of this correlation (0.63), with unique environmental factors explaining the rest. SR explained a significant proportion of the genetic (0.33) and environmental (0.23) overlap between MDD and AUD. In contrast, variance specific to CON accounted for genetic overlap (0.32), but not environmental overlap (0.004). In total, SR and CON accounted for approximately 70% of the genetic and 20% of the environmental covariation between MDD and AUD. This is the first study to demonstrate that negative emotionality and behavioral control confer risk for the co-occurrence of MDD and AUD via genetic factors. These findings are consistent with the aims of NIMH's RDoC proposal to elucidate how transdiagnostic risk factors drive psychopathology.
Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith
2011-05-01
Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic susceptibility to endomyocardial fibrosis
Beaton, Andrea; Sable, Craig; Brown, Juliette; Hoffman, Joshua; Mungoma, Michael; Mondo, Charles; Cereb, Nezith; Brown, Colin; Summar, Marshall; Freers, Jurgen; Ferreira, Maria Beatriz; Yacoub, Magdi; Mocumbi, Ana Olga
2014-01-01
Background: Endomyocardial fibrosis (EMF) is the most common form of restrictive cardiomyopathy worldwide. It has been linked to poverty and various environmental factors, but—for unknown reasons—only some people who live in similar conditions develop the disease. EMF cases cluster within both families and ethnic groups, suggesting a role for a genetic factor in host susceptibility. The human leukocyte antigen (HLA) system is associated with predisposition to various diseases. This two-center study was designed to investigate variation in the HLA system between EMF patients and unaffected controls. We provide the first genetic investigation of patients with EMF, as well as a comprehensive review of the literature. Methods: HLA class I (HLA-A, -B, -C) and class II (DRB1, DQB1) types were determined in 71 patients with severe EMF and 137 controls from Uganda and Mozambique. Chi Square analysis was used to identify any significant difference in frequency of class I and class II HLA types between cases and controls. Results: Compared to ethnically matched controls, HLA-B*58 occurred more frequently in Mozambique patients with EMF and HLA-A*02:02 occurred more frequently in Ugandan patients with EMF. Conclusions: Ample subjective evidence in the historical literature suggests the importance of a genetically susceptible host in EMF development. In this first formal genetic study, we found HLA alleles associated with cases of EMF in two populations from sub-Saharan Africa, with EMF patients being more likely than controls to have the HLA-B*58 allele in Mozambique (p-0.03) and the HLA-A*02:02 in Uganda (p = 0.005). Further investigations are needed to more fully understand the role of genetics in EMF development. PMID:25780800
Mann, Gulay; Diffey, Simon; Cullis, Brian; Azanza, Fermin; Martin, David; Kelly, Alison; McIntyre, Lynne; Schmidt, Adele; Ma, Wujun; Nath, Zena; Kutty, Ibrahim; Leyne, P Emmett; Rampling, Lynette; Quail, Ken J; Morell, Matthew K
2009-05-01
While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.
Genetic control of inflorescence architecture in legumes
Benlloch, Reyes; Berbel, Ana; Ali, Latifeh; Gohari, Gholamreza; Millán, Teresa; Madueño, Francisco
2015-01-01
The architecture of the inflorescence, the shoot system that bears the flowers, is a main component of the huge diversity of forms found in flowering plants. Inflorescence architecture has also a strong impact on the production of fruits and seeds, and on crop management, two highly relevant agronomical traits. Elucidating the genetic networks that control inflorescence development, and how they vary between different species, is essential to understanding the evolution of plant form and to being able to breed key architectural traits in crop species. Inflorescence architecture depends on the identity and activity of the meristems in the inflorescence apex, which determines when flowers are formed, how many are produced and their relative position in the inflorescence axis. Arabidopsis thaliana, where the genetic control of inflorescence development is best known, has a simple inflorescence, where the primary inflorescence meristem directly produces the flowers, which are thus borne in the main inflorescence axis. In contrast, legumes represent a more complex inflorescence type, the compound inflorescence, where flowers are not directly borne in the main inflorescence axis but, instead, they are formed by secondary or higher order inflorescence meristems. Studies in model legumes such as pea (Pisum sativum) or Medicago truncatula have led to a rather good knowledge of the genetic control of the development of the legume compound inflorescence. In addition, the increasing availability of genetic and genomic tools for legumes is allowing to rapidly extending this knowledge to other grain legume crops. This review aims to describe the current knowledge of the genetic network controlling inflorescence development in legumes. It also discusses how the combination of this knowledge with the use of emerging genomic tools and resources may allow rapid advances in the breeding of grain legume crops. PMID:26257753
Hussein, Norita; Weng, Stephen F; Kai, Joe; Kleijnen, Jos; Qureshi, Nadeem
2018-03-14
Globally, about five per cent of children are born with congenital or genetic disorders. The most common autosomal recessive conditions are thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease, with higher carrier rates in specific patient populations. Identifying and counselling couples at genetic risk of the conditions before pregnancy enables them to make fully informed reproductive decisions, with some of these choices not being available if genetic counselling is only offered in an antenatal setting. This is an update of a previously published review. To assess the effectiveness of systematic preconception genetic risk assessment to improve reproductive outcomes in women and their partners who are identified as carriers of thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease in healthcare settings when compared to usual care. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Registers. In addition, we searched for all relevant trials from 1970 (or the date at which the database was first available if after 1970) to date using electronic databases (MEDLINE, Embase, CINAHL, PsycINFO), clinical trial databases (National Institutes of Health, Clinical Trials Search portal of the World Health Organization, metaRegister of controlled clinical trials), and hand searching of key journals and conference abstract books from 1998 to date (European Journal of Human Genetics, Genetics in Medicine, Journal of Community Genetics). We also searched the reference lists of relevant articles, reviews and guidelines and also contacted subject experts in the field to request any unpublished or other published trials.Date of latest search of the registers: 20 June 2017.Date of latest search of all other sources: 16 November 2017. Any randomised or quasi-randomised controlled trials (published or unpublished) comparing reproductive outcomes of systematic preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease when compared to usual care. We identified 25 papers, describing 16 unique trials which were potentially eligible for inclusion in the review. However, after assessment, no randomised controlled trials of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease were found. No randomised controlled trials of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease were included. One ongoing trial has been identified which may potentially eligible for inclusion once completed. As no randomised controlled trials of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis, or Tay-Sachs disease were found for inclusion in this review, the research evidence for current policy recommendations is limited to non-randomised studies.Information from well-designed, adequately powered, randomised trials is desirable in order to make more robust recommendations for practice. However, such trials must also consider the legal, ethical, and cultural barriers to implementation of preconception genetic risk assessment.
Genetic control of disease resistance and immunoresponsiveness.
Kelm, S C; Freeman, A E; Kehrli, M E
2001-11-01
A great deal of evidence points to substantial genetic control over at least some of the immune responses, although genetic parameters for clinical disease have been less favorable. The past two decades have illustrated that single genes with a large impact on food animal health do exist and can be used to improve the health of domestic populations. The current focus on molecular genetics within food animal species will likely unveil numerous other examples of single genes with large effects, although the use of animals possessing favorable genotypes for disease resistance may represent a compromise in selection for increased production of raw product. Moreover, it is also clear that genetic control over the immune system is not limited to a few genes but is more likely influenced by many genes, each with small effects. The use of this information in animal improvement programs is not straightforward because of factors complicating the identification of superior individuals within the population. The scarcity of information dealing with phenotypic and genetic relationships between measures of disease resistance and aspects of immune response complicates the situation even further. Despite these potential hurdles, the potential for permanent improvement of disease resistance within food animal species in the future is tantalizing and merits intensified future study.
Gao, Tianxiang; Wan, Zhenzhen; Song, Na; Zhang, Xiumei; Han, Zhiqiang
2014-12-01
A number of evolutionary mechanisms have been suggested for generating significant genetic structuring among marine fish populations in Northwestern Pacific. We used mtDNA control region to assess the factors in shaping the genetic structure of Japanese grenadier anchovy, Coilia nasus, an anadromous and estuarine coastal species, in Northwestern Pacific. Sixty seven individuals from four locations in Northwestern Pacific were sequenced for mitochondrial control region, detecting 61 haplotypes. The length of amplified control region varied from 677 to 754 bp. This length variability was due to the presence of varying numbers of a 38-bp tandemly repeated sequence. Two distinct lineages were detected, which might have diverged during Pleistocene low sea levels. There were strong differences in the geographical distribution of the two lineages. Analyses of molecular variance and the population statistic ΦST revealed significant genetic structure between China and Ariake Bay populations. Based on the frequency distribution of tandem repeat units, significant genetic differentiation was also detected between China and Ariake Bay populations. Isolation by distance seems to be the main factor driving present genetic structuring of C. nasus populations, indicating coastal dispersal pattern in this coastal species. Such an evolutionary process agrees well with some of the biological features characterizing this species.
Field performance of a genetically engineered strain of pink bollworm.
Simmons, Gregory S; McKemey, Andrew R; Morrison, Neil I; O'Connell, Sinead; Tabashnik, Bruce E; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S; Phillips, Caroline E; Miller, Ernie D; Rose, Robert I; Staten, Robert T; Donnelly, Christl A; Alphey, Luke
2011-01-01
Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.
Maki, S; Hirai, Y; Niino, T; Matsumoto, T
2015-01-01
Maintaining the genetic integrity in long-term tissue cultured and cryopreserved plants is important for the conservation of plant genetic resources. In this study, the genetic stability of cryopreserved wasabi shoot tips stored for 10 years at -150 degree C was visualized using Amplified Fragment Length Polymorphism (AFLP) and Methylation Sensitive Amplified Polymorphism (MSAP). The study included plants derived from cryopreserved shoot tips after 10.5 years storage at -150 degree C (LN10yr), after 2 h storage at -196 degree C (LN2hr), cryopreservation controls (No LN cooling (TC)) and non-treated controls without LN cooling (LC). The donor plants for LN2hr, TC and LC were also maintained in vitro at 20 degree C for the same period. Neither technique detected genetic variations in either control or cryopreserved plants. Some mutations were noted in plants maintained in tissue culture for 10 years. Comparison of genome stability for TC and LN2hr plants showed only a minor change in DNA. However, when comparing the LC and Ln10yr, many differences were found. We conclude that cryopreservation is a superior conservation method compared to tissue culture in maintaining genetic stability for a long-term storage of wasabi germplasm.
Green, J W M; Snoek, L B; Kammenga, J E; Harvey, S C
2013-10-01
In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved.
Strong Genetic Overlap Between Executive Functions and Intelligence
Engelhardt, Laura E.; Mann, Frank D.; Briley, Daniel A.; Church, Jessica A.; Harden, K. Paige; Tucker-Drob, Elliot M.
2016-01-01
Executive functions (EFs) are cognitive processes that control, monitor, and coordinate more basic cognitive processes. EFs play instrumental roles in models of complex reasoning, learning, and decision-making, and individual differences in EFs have been consistently linked with individual differences in intelligence. By middle childhood, genetic factors account for a moderate proportion of the variance in intelligence, and these effects increase in magnitude through adolescence. Genetic influences on EFs are very high, even in middle childhood, but the extent to which these genetic influences overlap with those on intelligence is unclear. We examined genetic and environmental overlap between EFs and intelligence in a racially and socioeconomically diverse sample of 811 twins ages 7-15 years (M = 10.91, SD = 1.74) from the Texas Twin Project. A general EF factor representing variance common to inhibition, switching, working memory, and updating domains accounted for substantial proportions of variance in intelligence, primarily via a genetic pathway. General EF continued to have a strong, genetically-mediated association with intelligence even after controlling for processing speed. Residual variation in general intelligence was influenced only by shared and nonshared environmental factors, and there remained no genetic variance in general intelligence that was unique of EF. Genetic variance independent of EF did remain, however, in a more specific perceptual reasoning ability. These results provide evidence that genetic influences on general intelligence are highly overlapping with those on EF. PMID:27359131
Disease-Concordant Twins Empower Genetic Association Studies.
Tan, Qihua; Li, Weilong; Vandin, Fabio
2017-01-01
Genome-wide association studies with moderate sample sizes are underpowered, especially when testing SNP alleles with low allele counts, a situation that may lead to high frequency of false-positive results and lack of replication in independent studies. Related individuals, such as twin pairs concordant for a disease, should confer increased power in genetic association analysis because of their genetic relatedness. We conducted a computer simulation study to explore the power advantage of the disease-concordant twin design, which uses singletons from disease-concordant twin pairs as cases and ordinary healthy samples as controls. We examined the power gain of the twin-based design for various scenarios (i.e., cases from monozygotic and dizygotic twin pairs concordant for a disease) and compared the power with the ordinary case-control design with cases collected from the unrelated patient population. Simulation was done by assigning various allele frequencies and allelic relative risks for different mode of genetic inheritance. In general, for achieving a power estimate of 80%, the sample sizes needed for dizygotic and monozygotic twin cases were one half and one fourth of the sample size of an ordinary case-control design, with variations depending on genetic mode. Importantly, the enriched power for dizygotic twins also applies to disease-concordant sibling pairs, which largely extends the application of the concordant twin design. Overall, our simulation revealed a high value of disease-concordant twins in genetic association studies and encourages the use of genetically related individuals for highly efficiently identifying both common and rare genetic variants underlying human complex diseases without increasing laboratory cost. © 2016 John Wiley & Sons Ltd/University College London.
Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm
Svečko, Rajko
2014-01-01
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749
The Genetic Etiology of Inhibitory Control and Behavior Problems at 24 Months of Age
ERIC Educational Resources Information Center
Gagne, Jeffrey R.; Saudino, Kimberly J.; Asherson, Philip
2011-01-01
Background: To investigate links between inhibitory control (IC) and behavior problems in early childhood, as well as genetic and environmental covariances between these two constructs. Methods: Parent and laboratory ratings of IC and parent ratings of externalizing and attention deficit hyperactivity disorder behaviors were administered at 24…
Molecular genetic analysis of seed protein control at Linkage Group I in soybean near-isogenic lines
USDA-ARS?s Scientific Manuscript database
The molecular mechanisms that influence soybean seed composition are not well understood. Because the profitability of the soybean crop is affected by seed protein and oil content, insight into the genetic controls involved in these traits is important for future soybean improvement. Here we examine...
USDA-ARS?s Scientific Manuscript database
More knowledge about diversity of Quantitative Trait Loci (QTL) controlling polygenic disease resistance in natural genetic variation of crop species is required for durably improving plant genetic resistances to pathogens. Polygenic partial resistance to Aphanomyces root rot, due to Aphanomcyces eu...
USDA-ARS?s Scientific Manuscript database
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed twelve controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinan...
Darcy, Diana C; Lewis, Eleanor T; Ormond, Kelly E; Clark, David J; Trafton, Jodie A
2011-11-02
Genetic testing is increasingly used as a tool throughout the health care system. In 2011 the number of clinically available genetic tests is approaching 2,000, and wide variation exists between these tests in their sensitivity, specificity, and clinical implications, as well as the potential for discrimination based on the results. As health care systems increasingly implement electronic medical record systems (EMRs) they must carefully consider how to use information from this wide spectrum of genetic tests, with whom to share information, and how to provide decision support for clinicians to properly interpret the information. Although some characteristics of genetic tests overlap with other medical test results, there are reasons to make genetic test results widely available to health care providers and counterbalancing reasons to restrict access to these test results to honor patient preferences, and avoid distracting or confusing clinicians with irrelevant but complex information. Electronic medical records can facilitate and provide reasonable restrictions on access to genetic test results and deliver education and decision support tools to guide appropriate interpretation and use. This paper will serve to review some of the key characteristics of genetic tests as they relate to design of access control and decision support of genetic test information in the EMR, emphasizing the clear need for health information technology (HIT) to be part of optimal implementation of genetic medicine, and the importance of understanding key characteristics of genetic tests when designing HIT applications.
Gandhi, Gursatej; Kaur, Gurpreet; Nisar, Uzma
2015-01-01
Mobile phone base stations facilitate good communication, but the continuously emitting radiations from these stations have raised health concerns. Hence in this study, genetic damage using the single cell gel electrophoresis (comet) assay was assessed in peripheral blood leukocytes of individuals residing in the vicinity of a mobile phone base station and comparing it to that in healthy controls. The power density in the area within 300 m from the base station exceeded the permissive limits and was significantly (p = 0.000) higher compared to the area from where control samples were collected. The study participants comprised 63 persons with residences near a mobile phone tower, and 28 healthy controls matched for gender, age, alcohol drinking and occupational sub-groups. Genetic damage parameters of DNA migration length, damage frequency (DF) and damage index were significantly (p = 0.000) elevated in the sample group compared to respective values in healthy controls. The female residents (n = 25) of the sample group had significantly (p = 0.004) elevated DF than the male residents (n = 38). The linear regression analysis further revealed daily mobile phone usage, location of residence and power density as significant predictors of genetic damage. The genetic damage evident in the participants of this study needs to be addressed against future disease-risk, which in addition to neurodegenerative disorders, may lead to cancer.
40 CFR 725.424 - Requirements for the Tier I exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
... introduced genetic material meets the criteria under § 725.421. (3) The physical containment and control... including the criteria for the recipient microorganism, the introduced genetic material, the physical... following: (i) Compliance with the introduced genetic material criteria described in § 725.421. (ii...
40 CFR 725.424 - Requirements for the Tier I exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... introduced genetic material meets the criteria under § 725.421. (3) The physical containment and control... including the criteria for the recipient microorganism, the introduced genetic material, the physical... following: (i) Compliance with the introduced genetic material criteria described in § 725.421. (ii...
40 CFR 725.424 - Requirements for the Tier I exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... introduced genetic material meets the criteria under § 725.421. (3) The physical containment and control... including the criteria for the recipient microorganism, the introduced genetic material, the physical... following: (i) Compliance with the introduced genetic material criteria described in § 725.421. (ii...
40 CFR 725.424 - Requirements for the Tier I exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... introduced genetic material meets the criteria under § 725.421. (3) The physical containment and control... including the criteria for the recipient microorganism, the introduced genetic material, the physical... following: (i) Compliance with the introduced genetic material criteria described in § 725.421. (ii...
40 CFR 725.424 - Requirements for the Tier I exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... introduced genetic material meets the criteria under § 725.421. (3) The physical containment and control... including the criteria for the recipient microorganism, the introduced genetic material, the physical... following: (i) Compliance with the introduced genetic material criteria described in § 725.421. (ii...
Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture
Martínez, Paulino; Viñas, Ana M.; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc
2014-01-01
Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of the European aquaculture, and salmonids and tilapia, representing the fish for which there are well established breeding programs. PMID:25324858
Genetic engineering possibilities for CELSS: A bibliography and summary of techniques
NASA Technical Reports Server (NTRS)
Johnson, E. J.
1982-01-01
A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.
2014-01-01
Background Individuals with a personal or family history of cancer, can opt for genetic counseling and DNA-testing. Approximately 25% of these individuals experience clinically relevant levels of psychosocial distress, depression and/or anxiety after counseling. These problems are frequently left undetected by genetic counselors. The aim of this study is to evaluate the efficacy of a cancer genetics-specific screening questionnaire for psychosocial problems, the ‘Psychosocial Aspects of Hereditary Cancer (PAHC) questionnaire’ together with the Distress Thermometer, in: (1) facilitating personalized counselor-counselee communication; (2) increasing counselors’ awareness of their counselees’ psychosocial problems; and (3) facilitating the management of psychosocial problems during and after genetic counseling. Methods This multicenter, randomized controlled trial will include 264 individuals undergoing cancer genetic counseling in two family cancer clinics in the Netherlands. Participants will be randomized to either: (1) an intervention group that completes the PAHC questionnaire, the results of which are made available to the genetic counselor prior to the counseling session; or (2) a control group that completes the PAHC questionnaire, but without feedback being given to the genetic counselor. The genetic counseling sessions will be audiotaped for content analysis. Additionally, study participants will be asked to complete questionnaires at baseline, three weeks after the initial counseling session, and four months after a telephone follow-up counseling session. The genetic counselors will be asked to complete questionnaires at the start of and at completion of the study, as well as a checklist directly after each counseling session. The questionnaires/checklists of the study include items on communication during genetic counseling, counselor awareness of their clients’ psychosocial problems, the (perceived) need for professional psychosocial support, cancer worries, general distress, specific psychosocial problems, satisfaction with care received, and experience using the PAHC questionnaire. Discussion This study will provide empirical evidence regarding the efficacy of a relatively brief psychosocial screening questionnaire in terms of facilitating personalized communication, increasing counselors’ awareness, and optimizing management of psychosocial problems in the cancer genetic counseling setting. Trial registration This study is registered at the Netherlands Trial Register (NTR3205) and ClinicalTrials.gov (NCT01562431). PMID:24428912
Eijzenga, Willem; Aaronson, Neil K; Kluijt, Irma; Sidharta, Grace N; Hahn, Daniela Ee; Ausems, Margreet Gem; Bleiker, Eveline Ma
2014-01-15
Individuals with a personal or family history of cancer, can opt for genetic counseling and DNA-testing. Approximately 25% of these individuals experience clinically relevant levels of psychosocial distress, depression and/or anxiety after counseling. These problems are frequently left undetected by genetic counselors. The aim of this study is to evaluate the efficacy of a cancer genetics-specific screening questionnaire for psychosocial problems, the 'Psychosocial Aspects of Hereditary Cancer (PAHC) questionnaire' together with the Distress Thermometer, in: (1) facilitating personalized counselor-counselee communication; (2) increasing counselors' awareness of their counselees' psychosocial problems; and (3) facilitating the management of psychosocial problems during and after genetic counseling. This multicenter, randomized controlled trial will include 264 individuals undergoing cancer genetic counseling in two family cancer clinics in the Netherlands. Participants will be randomized to either: (1) an intervention group that completes the PAHC questionnaire, the results of which are made available to the genetic counselor prior to the counseling session; or (2) a control group that completes the PAHC questionnaire, but without feedback being given to the genetic counselor. The genetic counseling sessions will be audiotaped for content analysis. Additionally, study participants will be asked to complete questionnaires at baseline, three weeks after the initial counseling session, and four months after a telephone follow-up counseling session. The genetic counselors will be asked to complete questionnaires at the start of and at completion of the study, as well as a checklist directly after each counseling session. The questionnaires/checklists of the study include items on communication during genetic counseling, counselor awareness of their clients' psychosocial problems, the (perceived) need for professional psychosocial support, cancer worries, general distress, specific psychosocial problems, satisfaction with care received, and experience using the PAHC questionnaire. This study will provide empirical evidence regarding the efficacy of a relatively brief psychosocial screening questionnaire in terms of facilitating personalized communication, increasing counselors' awareness, and optimizing management of psychosocial problems in the cancer genetic counseling setting. This study is registered at the Netherlands Trial Register (NTR3205) and ClinicalTrials.gov (NCT01562431).
Synthesizing genetic sequential logic circuit with clock pulse generator
2014-01-01
Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665
Caseras, X; Tansey, K E; Foley, S; Linden, D
2015-12-08
Previous research has shown coincident abnormal regional brain volume in patients with schizophrenia (SCZ) and bipolar disorder (BD) compared with controls. Whether these abnormalities are genetically driven or explained by secondary effects of the disorder or environmental factors is unknown. We aimed to investigate the association between genetic risk scoring (GRS) for SCZ and BD with volume of brain areas previously shown to be different between these clinical groups and healthy controls. We obtained subcortical brain volume measures and GRS for SCZ and BD from a sample of 274 healthy volunteers (71.4% females, mean age 24.7 (s.d. 6.9)). Volume of the globus pallidus was associated with the shared GRS between SCZ and BD, and also with the independent GRS for each of these disorders. Volume of the amygdala was associated with the non-shared GRS between SCZ and BD, and with the independent GRS for BD. Our results for volume of the globus pallidus support the idea of SCZ and BD sharing a common underlying neurobiological abnormality associated with a common genetic risk for both these disorders. Results for volume of the amygdala, though, would suggest the existence of a distinct mechanism only associated with genetic risk for BD. Finally, the lack of association between genetic risk and volume of most subcortical structures suggests that the volumetric differences reported in patient-control comparisons may not be genetically driven, but a consequence of the disorder or co-occurring environmental factors.
Liu, I-Chao; Blacker, Deborah L; Xu, Ronghui; Fitzmaurice, Garrett; Tsuang, Ming T; Lyons, Michael J
2004-11-01
To investigate genetic and environmental influences on the development of specific alcohol dependence symptoms. A classical twin study of 3372 male-male twin pairs in the Vietnam Era Twin (VET) Registry based on telephone interviews about alcohol use. The nine diagnostic symptoms according to the Diagnostic and Statistical Manual of Mental Disorder, version III (revised) (DSM-III-R) definition of alcohol dependence. Symptoms were grouped into those based on impaired control, biological effects and social consequences (Beresford's classification) or early versus late symptoms (Nelson's classification). Survival models with random effects were used to examine the age of onset of each symptom. Approximately 38% of the variation in age of onset of each symptom group based on Beresford's classification is due to additive genetic factors. The age of onset of late symptoms from Nelson's classification appears to be most affected by genetic factors. Estimates of genetic effects for impaired control symptoms are greatly decreased when twins with comorbid psychiatric disorders are excluded. Our results support the heritability of age of onset of DSM-III-R-defined symptoms for alcohol dependence. However, no symptom group in Beresford's classification could be identified as more heritable than other symptom groups. A strong association between genetic vulnerability and co-occurring diseases for symptoms indicative of impaired control could be found. In addition, our findings show that the late symptom group could be a good candidate for subsequent genetic research.
Genetic and Environmental Influences on Testosterone in Adolescents: Evidence for Sex Differences
Harden, K. Paige; Kretsch, Natalie; Tackett, Jennifer L.; Tucker-Drob, Elliot M.
2015-01-01
The current study investigated the genetic and environmental etiology of individual differences in salivary testosterone during adolescence, using data from 49 pairs of monozygotic twins and 68 pairs of dizygotic twins, ages 14–19 years (M = 16.0 years). Analyses tested for sex differences in genetic and environmental influences on testosterone and its relation to pubertal development. Among adolescent males, individual differences in testosterone were substantially heritable (55%), and significantly associated with self-reported pubertal status (controlling for age) via common genetic influences. In contrast, there was no heritable variation in testosterone for females, and testosterone in females was not significantly associated with pubertal status after controlling for age. Rather, environmental influences shared by twins raised together accounted for all of the familial similarity in female testosterone (53%). This study adds to a small but growing body of research that investigates genetic influences on individual differences in behaviorally-relevant hormones. PMID:24523135
Role of genetics in infection-associated arthritis.
Benham, Helen; Robinson, Philip C; Baillet, Athan C; Rehaume, Linda M; Thomas, Ranjeny
2015-04-01
Genetic discoveries in arthritis and their associated biological pathways spanning the innate and adaptive immune system demonstrate the strong association between susceptibility to arthritis and control of exogenous organisms. The canonical theory of the aetiology of immune-mediated arthritis and other immune-mediated diseases is that the introduction of exogenous antigenic stimuli to a genetically susceptible host sets up the environment for an abnormal immune response manifesting as disease. A disruption in host-microbe homeostasis driven by disease-associated genetic variants could ultimately provide the source of exogenous antigen triggering disease development. We discuss genetic variants impacting the innate and adaptive arms of the immune system and their relationship to microbial control and arthritic disease. We go on to consider the evidence for a relationship between HLA-B27, infection and arthritis, and then emerging evidence for an interaction between microbiota and rheumatoid arthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moore, A D
2000-04-01
In this article I argue that the proper subjects of intangible property claims include medical records, genetic profiles, and gene enhancement techniques. Coupled with a right to privacy these intangible property rights allow individuals a zone of control that will, in most cases, justifiably exclude governmental or societal invasions into private domains. I argue that the threshold for overriding privacy rights and intangible property rights is higher, in relation to genetic enhancement techniques and sensitive personal information, than is commonly suggested. Once the bar is raised, so-to-speak, the burden of overriding it is formidable. Thus many policy decisions that have been recently proposed or enacted--citywide audio and video surveillance, law enforcement DNA sweeps, genetic profiling, national bans on genetic testing and enhancement of humans, to name a few--will have to be backed by very strong arguments.
Nielsen, Daiva E; Shih, Sarah; El-Sohemy, Ahmed
2014-01-01
Direct-to-consumer (DTC) genetic tests have facilitated easy access to personal genetic information related to health and nutrition; however, consumer perceptions of the nutritional information provided by these tests have not been evaluated. The objectives of this study were to assess individual perceptions of personalized nutrition and genetic testing and to determine whether a personalized nutrition intervention modifies perceptions. A double-blind, parallel-group, randomized controlled trial was conducted among healthy men and women aged 20-35 years (n = 138). Participants in the intervention group (n = 92) were given a report of DNA-based dietary advice and those in the control group (n = 46) were given a general dietary advice report. A survey was completed at baseline and 3 and 12 months after distributing the reports to assess perceptions between the two groups. No significant differences in perceptions of personalized nutrition and genetic testing were observed between the intervention and control group, so responses of both groups were combined. As compared to baseline, participant responses increased significantly toward the positive end of a Likert scale at 3 months for the statement 'I am interested in the relationship between diet and genetics' (mean change ± SD: 0.28 ± 0.99, p = 0.0002). The majority of participants indicated that a university research lab (47%) or health care professional (41%) were the best sources for obtaining accurate personal genetic information, while a DTC genetic testing company received the fewest selections (12%). Most participants (56%) considered dietitians to be the best source of personalized nutrition followed by medical doctors (27%), naturopaths (8%) and nurses (6%). These results suggest that perceptions of personalized nutrition changed over the course of the intervention. Individuals view a research lab or health care professional as better providers of genetic information than a DTC genetic testing company, and registered dietitians are considered to be the best providers of personalized nutrition advice. © 2014 S. Karger AG, Basel.
Genetic Testing: MedlinePlus Health Topic
... Disease Control and Prevention) Glossary (National Center for Biotechnology Information) Talking Glossary of Genetic Terms (National Human Genome Research Institute) Also in Spanish Find an Expert ...
[The use of genetic angiogenesis inductors in surgical treatment of chronic lower limb ischemia].
Gavrilenko, A V; Voronov, D A; Bochkov, N P
2013-01-01
The efficacy and safety of gene-engineering recombinant constructions with endothelial growth factor gene and angiogenin for the treatment of the chronic lower limb ischemia were studied. 134 patients were included in prospective controlled study. The main group, who received both traditional treatment and genetic therapy, consisted of 74 patients. The rest 60 patients were included into the control group. Of 74 patients from the main group, genetic therapy was used together with conservative means in 39 patients and with reconstructive vascular operations in 35 patients. The gene-engineering angiogenesis stimulation therapy proved to be effective and safe. The combination of angiogenesis genetic stimulation with reconstructive vascular surgery demonstrated significantly better results, then monotherapy.
Wang, Hai-yan
2015-08-01
The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.
Genetic Engineering: The Modification of Man
ERIC Educational Resources Information Center
Sinsheimer, Robert L.
1970-01-01
Describes somatic and genetic manipulations of individual genotypes, using diabetes control as an example of the first mode that is potentially realizable be derepression or viral transduction of genes. Advocates the use of genetic engineering of the second mode to remove man from his biological limitations, but offers maxims to ensure the…
USDA-ARS?s Scientific Manuscript database
Population genetic studies are essential to the better application of pest management strategies, including the monitoring of the evolution of resistance to insecticides and genetically modified plants. Bt-crops have been instrumental in controlling Heliothis virescens (F.), a pest that has develop...
USDA-ARS?s Scientific Manuscript database
Genome-wide association studies (GWAS) are a powerful method to dissect the genetic basis of traits, though in practice the effects of complex genetic architecture and population structure remain poorly understood. To compare mapping strategies we dissect the genetic control of flavonoid pigmentatio...
Schwartz, Joseph A; Rowland, Meghan W; Beaver, Kevin M
2014-08-01
Low cholesterol levels have been found to be associated with a wide range of behavioral problems, including violent and criminal behavior, and a wide range of psychological problems including impulsivity, depression, and other internalizing problems. The casual mechanisms underlying these associations remain largely unknown, but genetic factors may play a role in the etiology of such associations as previous research has found significant genetic influence on cholesterol levels and various deleterious behavioral and psychological outcomes. The current study addressed this existing gap in the literature by performing a genetically sensitive test of the association between cholesterol levels and various outcomes including levels of self-control, depressive symptoms, anger expression, and neuroticism. DeFries-Fulker (DF) analysis was used to analyze data from 388 twin pairs nested within the Survey of Midlife Development in the United States (MIDUS). The results of the genetically informed models revealed that high-density lipoprotein (HDL) cholesterol levels were negatively and significantly associated with depressive symptoms, had a marginally significant effect on neuroticism, and a nonsignificant effect on both anger expression and self-control. The findings may not extrapolate to the larger population of American adults since the subsample of twins with cholesterol information may not be nationally representative. Genetic influences play a significant role in the association between cholesterol levels and various deleterious outcomes and failing to control for these influences may result in model misspecification and may increase the probability of detecting a significant association when one does not actually exist. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Caplan, Arnold I.
1981-01-01
Describes development of the limb and various interactions necessary for the expression of its unique form and phenotypes to uncover the hierarchical controlling steps in the development process for the potential of avoiding abnormal events and manipulating what might be detrimental genetic events into a normal sequence. (Author/SK)
USDA-ARS?s Scientific Manuscript database
Genotype variant effects of calpastatin (CAST) and µ-calpain (CAPN1) on mean beef tenderness have been widely characterized. We have tested whether these genetic variants also control residual (non-genetic) variation, and subsequently total phenotypic variation, of tenderness. Observation of rare ...
Controlled mass pollination in loblolly pine to increase genetic gains
F.E. Bridgwater; D.L. Bramlett; T.D. Byram; W.J. Lowe
1998-01-01
Controlled mass pollination (CMP) is one way to increase genetic gains from traditional wind-pollinated seed orchards. Methodology is under development by several forestry companies in the southern USA. Costs of CMP depend on the efficient installation, pollination, and removal of inexpensive paper bags. Even in pilot-scale studies these costs seem reasonable. Net...
2014-10-22
The Food and Drug Administration (FDA) is classifying nucleic acid-based in vitro diagnostic devices for the detection of Mycobacterium tuberculosis complex (MTB-complex) and the genetic mutations associated with MTB-complex antibiotic resistance in respiratory specimens devices into class II (special controls). The Agency is classifying the device into class II (special controls) because special controls, in addition to general controls, will provide a reasonable assurance of safety and effectiveness of the device.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Morselli, Lisa L; Gamazon, Eric R; Tasali, Esra; Cox, Nancy J; Van Cauter, Eve; Davis, Lea K
2018-01-01
Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and β-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and β-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate. © 2017 by the American Diabetes Association.
Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming
NASA Astrophysics Data System (ADS)
Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita
2018-03-01
We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.
A randomized trial Examining The Impact Of Communicating Genetic And Lifestyle Risks For Obesity.
Wang, Catharine; Gordon, Erynn S; Norkunas, Tricia; Wawak, Lisa; Liu, Ching-Ti; Winter, Michael; Kasper, Rachel S; Christman, Michael F; Green, Robert C; Bowen, Deborah J
2016-12-01
Genetic testing for obesity is available directly to consumers, yet little is understood about its behavioral impact and its added value to nongenetic risk communication efforts based on lifestyle factors. A randomized trial examined the short-term impact of providing personalized obesity risk information, using a 2 × 2 factorial design. Participants were recruited from the Coriell Personalized Medicine Collaborative (CPMC) and randomized to receive (1) no risk information (control), (2) genetic risk, (3) lifestyle risk, or (4) combined genetic/lifestyle risks. Baseline and 3-month follow-up survey data were collected. Analyses examined the impact of risk feedback on intentions to lose weight and self-reported weight. A total of 696 participants completed the study. A significant interaction effect was observed for genetic and lifestyle information on intent to lose weight (P = 0.0150). Those who received genetic risk alone had greater intentions at follow-up, compared with controls (P = 0.0034). The impact of receiving elevated risk information on intentions varied by source and combination of risks presented. Non-elevated genetic risk did not lower intentions. No group differences were observed for self-reported weight. Genetic risk information for obesity may add value to lifestyle risk information depending on the context in which it is presented. © 2016 The Obesity Society.
Viatte, Sebastien; Massey, Jonathan; Bowes, John; Duffus, Kate; Eyre, Stephen; Barton, Anne; Loughlin, John; Arden, Nigel; Birrell, Fraser; Carr, Andrew; Deloukas, Panos; Doherty, Michael; McCaskie, Andrew W.; Ollier, William E. R.; Rai, Ashok; Ralston, Stuart H.; Spector, Tim D.; Valdes, Ana M.; Wallis, Gillian A.; Wilkinson, J. Mark; Zeggini, Eleftheria
2016-01-01
Objective Genetic polymorphisms within the HLA region explain only a modest proportion of anti–cyclic citrullinated peptide (anti‐CCP)–negative rheumatoid arthritis (RA) heritability. However, few non‐HLA markers have been identified so far. This study was undertaken to replicate the associations of anti‐CCP–negative RA with non‐HLA genetic polymorphisms demonstrated in a previous study. Methods The Rheumatoid Arthritis Consortium International densely genotyped 186 autoimmune‐related regions in 3,339 anti‐CCP–negative RA patients and 15,870 controls across 6 different populations using the Illumina ImmunoChip array. We performed a case–control replication study of the anti‐CCP–negative markers with the strongest associations in that discovery study, in an independent cohort of anti‐CCP–negative UK RA patients. Individuals from the arcOGEN Consortium and Wellcome Trust Case Control Consortium were used as controls. Genotyping in cases was performed using Sequenom MassArray technology. Genome‐wide data from controls were imputed using the 1000 Genomes Phase I integrated variant call set release version 3 as a reference panel. Results After genotyping and imputation quality control procedures, data were available for 15 non‐HLA single‐nucleotide polymorphisms in 1,024 cases and 6,348 controls. We confirmed the known markers ANKRD55 (meta‐analysis odds ratio [OR] 0.80; P = 2.8 × 10−13) and BLK (OR 1.13; P = 7.0 × 10−6) and identified new and specific markers of anti‐CCP–negative RA (prolactin [PRL] [OR 1.13; P = 2.1 × 10−6] and NFIA [OR 0.85; P = 2.5 × 10−6]). Neither of these loci is associated with other common, complex autoimmune diseases. Conclusion Anti‐CCP–negative RA and anti‐CCP–positive RA are genetically different disease subsets that only partially share susceptibility factors. Genetic polymorphisms located near the PRL and NFIA genes represent examples of genetic susceptibility factors specific for anti‐CCP–negative RA. PMID:26895230
Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom
2016-01-01
Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386
A Longitudinal Analysis of Anger and Inhibitory Control in Twins from 12–36 Months of Age
Goldsmith, H. Hill
2010-01-01
Inhibitory control (IC) is a dimension of child temperament that involves the self-regulation of behavioral responses under some form of instruction or expectation. Although IC is posited to appear in toddlerhood, the voluntary control of emotions such as anger begins earlier. Little research has analyzed relations between emotional development in infancy and later emerging IC. We examined phenotypic associations and genetic and environmental influences on parent-and laboratory-assessed anger and IC in a twin sample from 12 to 36 months of age. Typically, twins with low levels of IC had high levels of anger. Behavioral genetic findings confirmed significant genetic influences on anger and IC as assessed by parents, and on lab-based anger assessments. Shared environmental factors contributed to twin similarity on lab-assessed anger and IC at 36 months. Phenotypic covariance between anger and IC was largely due to overlapping genetic factors for parent ratings, and environmental factors in the laboratory. PMID:21159093
Diniz, Fabio M; Maclean, Norman; Ogawa, Masayoshi; Cintra, Israel H A; Bentzen, Paul
2005-01-01
Atlantic spiny lobsters support major fisheries in northeastern Brazilian waters and in the Caribbean Sea. To avoid reduction in diversity and elimination of distinct stocks, understanding their population dynamics, including structuring of populations and genetic diversity, is critical. We here explore the potential of using the hypervariable domain in the control region of the mitochondrial DNA as a genetic marker to characterize population subdivision in spiny lobsters, using Panulirus argus as the species model. The primers designed on the neighboring conserved genes have amplified the entire control region (approx. 780 bases) of P. argus and other closely related species. Average nucleotide and haplotype diversity within P. argus were found to be high, and population structuring was hypothesized. The data suggest a division of P. argus into genetically different phylogeographic groups. The hypervariable domain seems to be useful for determining genetic differentiation of geographically distinct stocks of P. argus and other Atlantic spiny lobsters.
A portable expression resource for engineering cross-species genetic circuits and pathways
Kushwaha, Manish; Salis, Howard M.
2015-01-01
Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts. PMID:26184393
Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom
2016-06-14
Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.
Bennett, Paul; Phelps, Ceri; Brain, Kate; Hood, Kerenza; Gray, Jonathon
2007-07-01
The aim of this study was to evaluate the effectiveness of a distraction-based coping leaflet in reducing distress in women undergoing genetic risk assessment for breast/ovarian cancer. One hundred sixty-two women participated in a randomized controlled trial, receiving either the intervention or standard information. Data were collected through a postal questionnaire at entry into a genetic risk assessment programme and 1 month later. Analysis of covariance revealed a nonsignificant reduction in distress in all women, and a significant reduction of distress among those with high baseline stress, who received the intervention. No gains were found among the control group. Measures of emotional response while thinking about cancer genetic assessment suggested these benefits were achieved in the absence of any rebound emotional response. The intervention offers a low-cost effective coping intervention, which could be integrated into existing services with minimal disruption and may also be appropriate for other periods of waiting and uncertainty.
Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart
2018-04-25
To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Séne, Papa Diogoye; Park, Danny C.; Neafsey, Daniel E.; Schaffner, Stephen F.; Hamilton, Elizabeth J.; Lukens, Amanda K.; Van Tyne, Daria; Mboup, Souleymane; Sabeti, Pardis C.; Ndiaye, Daouda; Wirth, Dyann F.
2013-01-01
Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs), use of rapid diagnostic tests (RDTs) for malaria detection, and deployment of artemisinin combination therapy (ACT). Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign. PMID:23593309
Wehrs, Verena Hézser-V; Pfäfflin, Margarete; May, Theodor W
2007-05-01
To evaluate the efficacy of the e-learning course "Genetics of Epilepsies" and to assess the experiences of the participants and e-moderators with this new approach. Prospective, controlled study with waiting group (control group, n = 18) and e-learning group (n = 20). The control group got the same reference literature list as the e-learning group. Both groups were assessed twice: The e-learning group before and after the course; the control group was assessed at the same times. increase in knowledge about genetics of epilepsies using questionnaires based on items formulated by experts (internal consistency, Cronbach's alpha = 0.86). Main hypothesis: greater increase of knowledge in the e-learning group compared to control group. assessment of the educational course and learning environment by participants and by tutors/e-moderators. Significant time x group interaction and group effect (ANOVA, each p < 0.01) with regard to knowledge. At baseline, the groups did not differ with respect to knowledge about genetics of epilepsy. In contrast to the control group, the increase of knowledge in the e-learning group was highly significant (p < 0.001). The majority of the participants of the e-learning course was content with their personal learning process (75% agree, 15% strongly agree). Most of them reported a gain in competence in the treatment and counseling of people with epilepsy (38.9% agree, 50% strongly agree). All participants would recommend this course to others and all but one participant are interested in other e-learning courses. The study indicates e-learning courses are an appropriate tool to improve knowledge of physicians in genetics of epilepsy.
Blokland, Gabriëlla A M; Del Re, Elisabetta C; Mesholam-Gately, Raquelle I; Jovicich, Jorge; Trampush, Joey W; Keshavan, Matcheri S; DeLisi, Lynn E; Walters, James T R; Turner, Jessica A; Malhotra, Anil K; Lencz, Todd; Shenton, Martha E; Voineskos, Aristotle N; Rujescu, Dan; Giegling, Ina; Kahn, René S; Roffman, Joshua L; Holt, Daphne J; Ehrlich, Stefan; Kikinis, Zora; Dazzan, Paola; Murray, Robin M; Di Forti, Marta; Lee, Jimmy; Sim, Kang; Lam, Max; Wolthusen, Rick P F; de Zwarte, Sonja M C; Walton, Esther; Cosgrove, Donna; Kelly, Sinead; Maleki, Nasim; Osiecki, Lisa; Picchioni, Marco M; Bramon, Elvira; Russo, Manuela; David, Anthony S; Mondelli, Valeria; Reinders, Antje A T S; Falcone, M Aurora; Hartmann, Annette M; Konte, Bettina; Morris, Derek W; Gill, Michael; Corvin, Aiden P; Cahn, Wiepke; Ho, New Fei; Liu, Jian Jun; Keefe, Richard S E; Gollub, Randy L; Manoach, Dara S; Calhoun, Vince D; Schulz, S Charles; Sponheim, Scott R; Goff, Donald C; Buka, Stephen L; Cherkerzian, Sara; Thermenos, Heidi W; Kubicki, Marek; Nestor, Paul G; Dickie, Erin W; Vassos, Evangelos; Ciufolini, Simone; Reis Marques, Tiago; Crossley, Nicolas A; Purcell, Shaun M; Smoller, Jordan W; van Haren, Neeltje E M; Toulopoulou, Timothea; Donohoe, Gary; Goldstein, Jill M; Seidman, Larry J; McCarley, Robert W; Petryshen, Tracey L
2018-05-01
Schizophrenia has a large genetic component, and the pathways from genes to illness manifestation are beginning to be identified. The Genetics of Endophenotypes of Neurofunction to Understand Schizophrenia (GENUS) Consortium aims to clarify the role of genetic variation in brain abnormalities underlying schizophrenia. This article describes the GENUS Consortium sample collection. We identified existing samples collected for schizophrenia studies consisting of patients, controls, and/or individuals at familial high-risk (FHR) for schizophrenia. Samples had single nucleotide polymorphism (SNP) array data or genomic DNA, clinical and demographic data, and neuropsychological and/or brain magnetic resonance imaging (MRI) data. Data were subjected to quality control procedures at a central site. Sixteen research groups contributed data from 5199 psychosis patients, 4877 controls, and 725 FHR individuals. All participants have relevant demographic data and all patients have relevant clinical data. The sex ratio is 56.5% male and 43.5% female. Significant differences exist between diagnostic groups for premorbid and current IQ (both p<1×10 -10 ). Data from a diversity of neuropsychological tests are available for 92% of participants, and 30% have structural MRI scans (half also have diffusion-weighted MRI scans). SNP data are available for 76% of participants. The ancestry composition is 70% European, 20% East Asian, 7% African, and 3% other. The Consortium is investigating the genetic contribution to brain phenotypes in a schizophrenia sample collection of >10,000 participants. The breadth of data across clinical, genetic, neuropsychological, and MRI modalities provides an important opportunity for elucidating the genetic basis of neural processes underlying schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Kang-Hoon; Lim, Debora; Chiu, Sophia; Greenhalgh, David; Cho, Kiho
2016-04-01
Laboratory strains of mice, both conventional and genetically engineered, have been introduced as critical components of a broad range of studies investigating normal and disease biology. Currently, the genetic identity of laboratory mice is primarily confirmed by surveying polymorphisms in selected sets of "conventional" genes and/or microsatellites in the absence of a single completely sequenced mouse genome. First, we examined variations in the genomic landscapes of transposable repetitive elements, named the TREome, in conventional and genetically engineered mouse strains using murine leukemia virus-type endogenous retroviruses (MLV-ERVs) as a probe. A survey of the genomes from 56 conventional strains revealed strain-specific TREome landscapes, and certain families (e.g., C57BL) of strains were discernible with defined patterns. Interestingly, the TREome landscapes of C3H/HeJ (toll-like receptor-4 [TLR4] mutant) inbred mice were different from its control C3H/HeOuJ (TLR4 wild-type) strain. In addition, a CD14 knock-out strain had a distinct TREome landscape compared to its control/backcross C57BL/6J strain. Second, an examination of superantigen (SAg, a "TREome gene") coding sequences of mouse mammary tumor virus-type ERVs in the genomes of the 46 conventional strains revealed a high diversity, suggesting a potential role of SAgs in strain-specific immune phenotypes. The findings from this study indicate that unexplored and intricate genomic variations exist in laboratory mouse strains, both conventional and genetically engineered. The TREome-based high-resolution genetics surveillance system for laboratory mice would contribute to efficient study design with quality control and accurate data interpretation. This genetics system can be easily adapted to other species ranging from plants to humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Toenail selenium, genetic variation in selenoenzymes and risk and outcome in glioma.
Peeri, Noah C; Creed, Jordan H; Anic, Gabriella M; Thompson, Reid C; Olson, Jeffrey J; LaRocca, Renato V; Chowdhary, Sajeel A; Brockman, John D; Gerke, Travis A; Nabors, L Burton; Egan, Kathleen M
2018-05-16
Selenium is an essential trace element obtained through diet that plays a critical role in DNA synthesis and protection from oxidative damage. Selenium intake and polymorphisms in selenoproteins have been linked to the risk of certain cancers though data for glioma are sparse. In a case-control study of glioma, we examined the associations of selenium in toenails and genetic variants in the selenoenzyme pathway with the risk of glioma and patient survival. A total of 423 genetic variants in 29 candidate genes in the selenoenzyme pathway were studied in 1547 glioma cases and 1014 healthy controls. Genetic associations were also examined in the UK Biobank cohort comprised of 313,868 persons with 322 incident glioma cases. Toenail selenium was measured in a subcohort of 300 glioma cases and 300 age-matched controls from the case-control study. None of the 423 variants studied were consistently associated with glioma risk in the case-control and cohort studies. Moreover, toenail selenium in the case-control study had no significant association with glioma risk (p trend = 0.70) or patient survival among 254 patients with high grade tumors (p trend = 0.70). The present study offers no support for the hypothesis that selenium plays a role in the onset of glioma or patient outcome. Copyright © 2018 Elsevier Ltd. All rights reserved.
Strong genetic overlap between executive functions and intelligence.
Engelhardt, Laura E; Mann, Frank D; Briley, Daniel A; Church, Jessica A; Harden, K Paige; Tucker-Drob, Elliot M
2016-09-01
Executive functions (EFs) are cognitive processes that control, monitor, and coordinate more basic cognitive processes. EFs play instrumental roles in models of complex reasoning, learning, and decision making, and individual differences in EFs have been consistently linked with individual differences in intelligence. By middle childhood, genetic factors account for a moderate proportion of the variance in intelligence, and these effects increase in magnitude through adolescence. Genetic influences on EFs are very high, even in middle childhood, but the extent to which these genetic influences overlap with those on intelligence is unclear. We examined genetic and environmental overlap between EFs and intelligence in a racially and socioeconomically diverse sample of 811 twins ages 7 to 15 years (M = 10.91, SD = 1.74) from the Texas Twin Project. A general EF factor representing variance common to inhibition, switching, working memory, and updating domains accounted for substantial proportions of variance in intelligence, primarily via a genetic pathway. General EF continued to have a strong, genetically mediated association with intelligence even after controlling for processing speed. Residual variation in general intelligence was influenced only by shared and nonshared environmental factors, and there remained no genetic variance in general intelligence that was unique of EF. Genetic variance independent of EF did remain, however, in a more specific perceptual reasoning ability. These results provide evidence that genetic influences on general intelligence are highly overlapping with those on EF. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Carreras-Torres, Robert; Kundu, Suman; Zanetti, Daniela; Esteban, Esther
2014-01-01
Coronary artery disease (CAD) mortality and morbidity is present in the European continent in a four-fold gradient across populations, from the South (Spain and France) with the lowest CAD mortality, towards the North (Finland and UK). This observed gradient has not been fully explained by classical or single genetic risk factors, resulting in some cases in the so called Southern European or Mediterranean paradox. Here we approached population genetic risk estimates using genetic risk scores (GRS) constructed with single nucleotide polymorphisms (SNP) from nitric oxide synthases (NOS) genes. These SNPs appeared to be associated with myocardial infarction (MI) in 2165 cases and 2153 controls. The GRSs were computed in 34 general European populations. Although the contribution of these GRS was lower than 1% between cases and controls, the mean GRS per population was positively correlated with coronary incidence explaining 65–85% of the variation among populations (67% in women and 86% in men). This large contribution to CAD incidence variation among populations might be a result of colinearity with several other common genetic and environmental factors. These results are not consistent with the cardiovascular Mediterranean paradox for genetics and support a CAD genetic architecture mainly based on combinations of common genetic polymorphisms. Population genetic risk scores is a promising approach in public health interventions to develop lifestyle programs and prevent intermediate risk factors in certain subpopulations with specific genetic predisposition. PMID:24806096
'Battling my biology': psychological effects of genetic testing for risk of weight gain.
Meisel, S F; Wardle, J
2014-04-01
The availability of genetic tests for multifactorial conditions such as obesity raises concerns that higher-risk results could lead to fatalistic reactions or lower-risk results to complacency. No study has investigated the effects of genetic test feedback for the risk of obesity in non-clinical samples. The present study explored psychological and behavioral reactions to genetic test feedback for a weight related gene (FTO) in a volunteer sample (n = 18) using semi-structured interviews. Respondents perceived the gene test result as scientifically objective; removing some of the emotion attached to the issue of weight control. Those who were struggling with weight control reported relief of self-blame. There was no evidence for either complacency or fatalism; all respondents emphasized the importance of lifestyle choices in long-term weight management, although they recognized the role of both genes and environment. Regardless of the test result, respondents evaluated the testing positively and found it motivating and informative. Genetic test feedback for risk of weight gain may offer psychological benefits beyond its objectively limited clinical utility. As the role of genetic counselors is likely to expand, awareness of reasons for genetic testing for common, complex conditions and reactions to the test result is important.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jager, Yetta
2005-01-01
This study uses a genetic individual-based model of white sturgeon (Acipenser transmontanus) populations in a river to examine the genetic and demographic trade-offs associated with operating a conservation hatchery. Simulation experiments evaluated three management practices: (i) setting quotas to equalize family contributions in an effort to prevent genetic swamping, (ii) an adaptive management scheme that interrupts stocking when introgression exceeds a specified threshold, and (iii) alternative broodstock selection strategies that influence domestication. The first set of simulations, designed to evaluate equalizing the genetic contribution of families, did not show the genetic benefits expected. The second set of simulations showed thatmore » simulated adaptive management was not successful in controlling introgression over the long term, especially with uncertain feedback. The third set of simulations compared the effects of three alternative broodstock selection strategies on domestication for hypothetical traits controlling early density-dependent survival. Simulated aquaculture selected for a density-tolerant phenotype when broodstock were taken from a genetically connected population. Using broodstock from an isolated population (i.e., above an upstream barrier or in a different watershed) was more effective at preventing domestication than using wild broodstock from a connected population.« less
Sasaki, Joni Y; Mojaverian, Taraneh; Kim, Heejung S
2015-02-01
Using a genetic moderation approach, this study examines how an experimental prime of religion impacts self-control in a social context, and whether this effect differs depending on the genotype of an oxytocin receptor gene (OXTR) polymorphism (rs53576). People with different genotypes of OXTR seem to have different genetic orientations toward sociality, which may have consequences for the way they respond to religious cues in the environment. In order to determine whether the influence of religion priming on self-control is socially motivated, we examine whether this effect is stronger for people who have OXTR genotypes that should be linked to greater rather than less social sensitivity (i.e., GG vs. AA/AG genotypes). The results showed that experimentally priming religion increased self-control behaviors for people with GG genotypes more so than people with AA/AG genotypes. Furthermore, this Gene × Religion interaction emerged in a social context, when people were interacting face to face with another person. This research integrates genetic moderation and social psychological approaches to address a novel question about religion's influence on self-control behavior, which has implications for coping with distress and psychopathology. These findings also highlight the importance of the social context for understanding genetic moderation of psychological effects.
Wilkes, Michael S; Day, Frank C; Fancher, Tonya L; McDermott, Haley; Lehman, Erik; Bell, Robert A; Green, Michael J
2017-09-13
Screening and counseling for genetic conditions is an increasingly important part of primary care practice, particularly given the paucity of genetic counselors in the United States. However, primary care physicians (PCPs) often have an inadequate understanding of evidence-based screening; communication approaches that encourage shared decision-making; ethical, legal, and social implication (ELSI) issues related to screening for genetic mutations; and the basics of clinical genetics. This study explored whether an interactive, web-based genetics curriculum directed at PCPs in non-academic primary care settings was superior at changing practice knowledge, attitudes, and behaviors when compared to a traditional educational approach, particularly when discussing common genetic conditions. One hundred twenty one PCPs in California and Pennsylvania physician practices were randomized to either an Intervention Group (IG) or Control Group (CG). IG physicians completed a 6 h interactive web-based curriculum covering communication skills, basics of genetic testing, risk assessment, ELSI issues and practice behaviors. CG physicians were provided with a traditional approach to Continuing Medical Education (CME) (clinical review articles) offering equivalent information. PCPs in the Intervention Group showed greater increases in knowledge compared to the Control Group. Intervention PCPs were also more satisfied with the educational materials, and more confident in their genetics knowledge and skills compared to those receiving traditional CME materials. Intervention PCPs felt that the web-based curriculum covered medical management, genetics, and ELSI issues significantly better than did the Control Group, and in comparison with traditional curricula. The Intervention Group felt the online tools offered several advantages, and engaged in better shared decision making with standardized patients, however, there was no difference in behavior change between groups with regard to increases in ELSI discussions between PCPs and patients. While our intervention was deemed more enjoyable, demonstrated significant factual learning and retention, and increased shared decision making practices, there were few differences in behavior changes around ELSI discussions. Unfortunately, barriers to implementing behavior change in clinical genetics is not unique to our intervention. Perhaps the missing element is that busy physicians need systems-level support to engage in meaningful discussions around genetics issues. The next step in promoting active engagement between doctors and patients may be to put into place the tools needed for PCPs to easily access the materials they need at the point-of-care to engage in joint discussions around clinical genetics.
... for Diseases Control and Prevention (CDC) Shigella site . Biology & Genetics NIAID supports research to study how bacterial ... in the disease process. Read more about shigellosis biology and genetics Vaccines Researchers are developing vaccines to ...
Kaigala, Govind V; Hoang, Viet N; Backhouse, Christopher J
2008-07-01
Microvalves are key in realizing portable miniaturized diagnostic platforms. We present a scalable microvalve that integrates well with standard lab on a chip (LOC) implementations, yet which requires essentially no external infrastructure for its operation. This electrically controlled, phase-change microvalve is used to integrate genetic amplification and analysis via capillary electrophoresis--the basis of many diagnostics. The microvalve is actuated using a polymer (polyethylene glycol, PEG) that exhibits a large volumetric change between its solid and liquid phases. Both the phase change of the PEG and the genetic amplification via polymerase chain reaction (PCR) are thermally controlled using thin film resistive elements that are patterned using standard microfabrication methods. By contrast with many other valve technologies, these microvalves and their control interface scale down in size readily. The novelty here lies in the use of fully integrated microvalves that require only electrical connections to realize a portable and inexpensive genetic analysis platform.
Excessive appetitive arousal in Prader-Willi syndrome.
Hinton, E C; Isles, A R; Williams, N M; Parkinson, J A
2010-02-01
This study focused on genetic and behavioural aspects of one important component of the motivation to eat - how appetitive arousal is elicited through the presentation of food-associated stimuli. Individuals with Prader-Willi syndrome, a genetic disorder associated with hyperphagia, and control participants completed a computerised response task in the presence of motivational stimuli. In controls, appetitive arousal was specific to particular stimuli. In contrast, individuals with PWS showed a non-specific pattern of arousal. Over-activation of the anticipatory motivation system may be one consequence of the genetic disorder in PWS. 2009 Elsevier Ltd. All rights reserved.
Saujanya, K; Prasad, M Ghanashyam; Sushma, B; Kumar, J Raghavendra; Reddy, Y S N; Niranjani, K
2016-01-01
Determining the relative risk of cleft lip and palate (CL[P]) on the basis of lip prints and dermatoglyphics as genetic background may be useful for genetic counseling, and the development of future preventive measures. (1) To analyze the various pattern types of lip prints and dermatoglyphics in parents of CL(P) children and to detect if any specific type can be contemplated as a genetic marker in the transmission of CL(P). (2) To compare these patterns with that of parents of unaffected children. 31 parents of children with CL(P) as a study group, and 31 parents of unaffected children as control group were included. Lip prints and finger prints were collected from all subjects and analysis of both patterns was carried out followed by a comparison of the patterns of unaffected parents with the controls statistically. Among the mothers of the study group, type O followed by type IIa lip patterns were found to be significantly higher in upper and lower lips, and in fathers type IIa followed by type O were significantly higher. In the control group, type IIb followed by type III were higher in both fathers and mothers. Dermatoglyphic analysis of palm and finger prints revealed no significant difference in the pattern types and total ridge counts, but the Atd angle asymmetry was found to be significant between study and control group. Types IIa and O lip patterns, asymmetry of Atd angles can be considered as genetic markers for the transmission of CL(P) deformity to offsprings.
Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Genetic Engineering
ERIC Educational Resources Information Center
Ramsey, Paul
1972-01-01
Presented are issues related to genetic engineering. Increased knowledge of techniques to manipulate genes are apt to create confusion about moral values in relation to unborn babies and other living organisms on earth. Human beings may use this knowledge to disturb the balance maintained by nature. (PS)
USDA-ARS?s Scientific Manuscript database
Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...
USDA-ARS?s Scientific Manuscript database
We explored the population genetics of two European swallow-worts belonging to the Apocynaceae that have become established in the eastern United States and Canada. Population genetic data concerning both native and introduced populations are being used to pinpoint introduced population origin, and ...
USDA-ARS?s Scientific Manuscript database
We proposed a method to estimate the error variance among non-replicated genotypes, thus to estimate the genetic parameters by using replicated controls. We derived formulas to estimate sampling variances of the genetic parameters. Computer simulation indicated that the proposed methods of estimatin...
Plourde, Vickie; Boivin, Michel; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette
2017-10-01
Multiple studies have shown that reading abilities and attention-deficit/hyperactivity disorder symptoms, mainly inattention symptoms, are phenotypically and genetically associated during childhood. However, few studies have looked at these associations during adolescence to investigate possible developmental changes. The aim of the study is to examine the genetic and environmental etiology of the associations between inattention and hyperactivity reported by parents, and reading accuracy, reading speed, and word reading in a population-based twin sample (Quebec Newborn Twin Study). Participants were between 14 and 15 years of age at the time of testing (N = 668-837). Phenotypic results showed that when nonverbal and verbal abilities were controlled, inattention, but not hyperactivity/impulsivity, was a modest and significant predictor of reading accuracy, reading speed, and word reading. The associations between inattention and all reading abilities were partly explained by genetic and unique environmental factors. However, the genetic correlations were no longer significant after controlling for verbal abilities. In midadolescence, inattention is the attention-deficit/hyperactivity disorder dimension associated with reading abilities, but they could also share genetic factors with general verbal skills.
Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K
2015-04-01
Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.
Genetic shifting: a novel approach for controlling vector-borne diseases.
Powell, Jeffrey R; Tabachnick, Walter J
2014-06-01
Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve the introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used in plant and animal breeding. Because no artificially constructed genetically modified organisms (GMOs) are introduced into the environment, the method is minimally controversial. We use Aedes aegypti and dengue virus (DENV) for illustrative purposes but point out that the proposed program is generally applicable to vector-borne disease control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genetic Algorithm Approaches for Actuator Placement
NASA Technical Reports Server (NTRS)
Crossley, William A.
2000-01-01
This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.
J.W. Hanover; M.M. Furniss
1966-01-01
The concentration of monoterpenes in Pinus monticola Dougl. has been shown to be genetically controlled (Hanover, in preparation). Genetic control of terpene concentration has been implied, also, from analyses of parents or interspecies hybrids in other species (Bannister et al. 1959; Williams and Bannister 1962; Smith 1964, and Forde 1964). Evidence...
Timing of Bag Application and Removal in Controlled Mass Pollination
F.E. Bridgwater; D.L. Bramlett; V.D. Hipkins
1999-01-01
Controlled mass pollination (CMP) among outstanding parents is one way to increase genetic gains from traditional wind-pollinated seed orchards, but the economic success of CMP depends on both genetic gains and costs. CMP has been shown. to be cost-effective (Bridgwater et al. 1998) even when costs were adjusted for risk (Byram and Bridgwater 1999, These Proceedings...
USDA-ARS?s Scientific Manuscript database
Root diseases cause billions of dollars annually in losses to cereal growers. Resistance to foliar diseases is common, but resistance to root diseases is rare. Soilborne pathogens of cereals are managed through crop rotation, tillage, and chemical seed treatments. However, plants also defend themsel...
The Development of Inhibitory Control in Early Childhood: A Twin Study from 2-3 Years
ERIC Educational Resources Information Center
Gagne, Jeffrey R.; Saudino, Kimberly J.
2016-01-01
Parent- and lab-based observer ratings were employed to examine genetic and environmental influences on continuity and change in inhibitory control (IC) in over 300 twin-pairs assessed longitudinally at 2 and 3 years of age. Genetic influences accounted for approximately 60% of the variance in parent-rated IC at both ages. Although many of the…
Hu, Yichun; Zhuo, Qin; Gong, Zhaolong; Piao, Jianhua; Yang, Xiaoguang
2017-01-01
In the present work, we evaluated the three generation reproductive toxicity of the genetically modified rice with insectresistant cry1Ac and sck genes. 120 Sprague-Dawley (SD) rats were divided into three groups which were fed with genetically modified rice diet (GM group), parental control rice diet (PR group) and AIN-93 control diet (both used as negative control) respectively. Bodyweight, food consumption, reproductive data, hematological parameters, serum chemistry, relative organ weights and histopathology for each generation were examined respectively. All the hematology and serum chemistry parameters, organ/body weight indicators were within the normal range or no change to the adverse direction was observed, although several differences in hematology and serum chemistry parameters (WBC, BUN, LDH of male rat, PLT, PCT, MPV of female rats), reproductive data (rate of morphologically abnormal sperm) were observed between GM rice group and two control groups. No macroscopic or histological adverse effects were found or considered as treatment-related, either. Overall, the three generation study of genetically modified rice with cry1Ac and sck genes at a high level showed no unintended adverse effects on rats's reproductive system. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wu, Q. H.; Ma, J. T.
1993-09-01
A primary investigation into application of genetic algorithms in optimal reactive power dispatch and voltage control is presented. The application was achieved, based on (the United Kingdom) National Grid 48 bus network model, using a novel genetic search approach. Simulation results, compared with that obtained using nonlinear programming methods, are included to show the potential of applications of the genetic search methodology in power system economical and secure operations.
Direct-to-Consumer Genetic Testing: Helping Patients Make Informed Choices .
Mahon, Suzanne M
2018-02-01
Using direct-to-consumer genetic testing (DTCGT), individuals can order a genetic test, collect and submit a saliva sample, and obtain results about their genetic risk for a variety of traits and health conditions without involving a healthcare provider. Potential benefits of DTCGT include personal control over genetic information and health management decisions, whereas potential risks include misinterpretation of results, psychosocial distress, and lack of informed consent. Oncology nurses can provide education, support, and advocacy to enable patients to truly understand the positives and negatives associated with DTCGT. .
Scheuner, Maren T; Peredo, Jane; Tangney, Kelly; Schoeff, Diane; Sale, Taylor; Lubick-Goldzweig, Caroline; Hamilton, Alison; Hilborne, Lee; Lee, Martin; Mittman, Brian; Yano, Elizabeth M; Lubin, Ira M
2017-01-01
To determine whether electronic health record (EHR) tools improve documentation of pre- and postanalytic care processes for genetic tests ordered by nongeneticists. We conducted a nonrandomized, controlled, pre-/postintervention study of EHR point-of-care tools (informational messages and template report) for three genetic tests. Chart review assessed documentation of genetic testing processes of care, with points assigned for each documented item. Multiple linear and logistic regressions assessed factors associated with documentation. Preimplementation, there were no significant site differences (P > 0.05). Postimplementation, mean documentation scores increased (5.9 (2.1) vs. 5.0 (2.2); P = 0.0001) and records with clinically meaningful documentation increased (score >5: 59 vs. 47%; P = 0.02) at the intervention versus the control site. Pre- and postimplementation, a score >5 was positively associated with abnormal test results (OR = 4.0; 95% CI: 1.8-9.2) and trainee provider (OR = 2.3; 95% CI: 1.2-4.6). Postimplementation, a score >5 was also positively associated with intervention site (OR = 2.3; 95% CI: 1.1-5.1) and specialty clinic (OR = 2.0; 95% CI: 1.1-3.6). There were also significantly fewer tests ordered after implementation (264/100,000 vs. 204/100,000; P = 0.03), with no significant change at the control site (280/100,000 vs. 257/100,000; P = 0.50). EHR point-of-care tools improved documentation of genetic testing processes and decreased utilization of genetic tests commonly ordered by nongeneticists.Genet Med 19 1, 112-120.
Hecker, Laura A.; Edwards, Albert O.; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H.; Brown, William L.; Issa, Peter Charbel; Scholl, Hendrik P.; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E.; Bailey, Kent R.; Oppermann, Martin
2010-01-01
Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues. PMID:19825847
Multilocus genetic risk scores for venous thromboembolism risk assessment.
Soria, José Manuel; Morange, Pierre-Emmanuel; Vila, Joan; Souto, Juan Carlos; Moyano, Manel; Trégouët, David-Alexandre; Mateo, José; Saut, Noémi; Salas, Eduardo; Elosua, Roberto
2014-10-23
Genetics plays an important role in venous thromboembolism (VTE). Factor V Leiden (FVL or rs6025) and prothrombin gene G20210A (PT or rs1799963) are the genetic variants currently tested for VTE risk assessment. We hypothesized that primary VTE risk assessment can be improved by using genetic risk scores with more genetic markers than just FVL-rs6025 and prothrombin gene PT-rs1799963. To this end, we have designed a new genetic risk score called Thrombo inCode (TiC). TiC was evaluated in terms of discrimination (Δ of the area under the receiver operating characteristic curve) and reclassification (integrated discrimination improvement and net reclassification improvement). This evaluation was performed using 2 age- and sex-matched case-control populations: SANTPAU (248 cases, 249 controls) and the Marseille Thrombosis Association study (MARTHA; 477 cases, 477 controls). TiC was compared with other literature-based genetic risk scores. TiC including F5 rs6025/rs118203906/rs118203905, F2 rs1799963, F12 rs1801020, F13 rs5985, SERPINC1 rs121909548, and SERPINA10 rs2232698 plus the A1 blood group (rs8176719, rs7853989, rs8176743, rs8176750) improved the area under the curve compared with a model based only on F5-rs6025 and F2-rs1799963 in SANTPAU (0.677 versus 0.575, P<0.001) and MARTHA (0.605 versus 0.576, P=0.008). TiC showed good integrated discrimination improvement of 5.49 (P<0.001) for SANTPAU and 0.96 (P=0.045) for MARTHA. Among the genetic risk scores evaluated, the proportion of VTE risk variance explained by TiC was the highest. We conclude that TiC greatly improves prediction of VTE risk compared with other genetic risk scores. TiC should improve prevention, diagnosis, and treatment of VTE. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Multilocus Genetic Risk Scores for Venous Thromboembolism Risk Assessment
Soria, José Manuel; Morange, Pierre‐Emmanuel; Vila, Joan; Souto, Juan Carlos; Moyano, Manel; Trégouët, David‐Alexandre; Mateo, José; Saut, Noémi; Salas, Eduardo; Elosua, Roberto
2014-01-01
Background Genetics plays an important role in venous thromboembolism (VTE). Factor V Leiden (FVL or rs6025) and prothrombin gene G20210A (PT or rs1799963) are the genetic variants currently tested for VTE risk assessment. We hypothesized that primary VTE risk assessment can be improved by using genetic risk scores with more genetic markers than just FVL‐rs6025 and prothrombin gene PT‐rs1799963. To this end, we have designed a new genetic risk score called Thrombo inCode (TiC). Methods and Results TiC was evaluated in terms of discrimination (Δ of the area under the receiver operating characteristic curve) and reclassification (integrated discrimination improvement and net reclassification improvement). This evaluation was performed using 2 age‐ and sex‐matched case–control populations: SANTPAU (248 cases, 249 controls) and the Marseille Thrombosis Association study (MARTHA; 477 cases, 477 controls). TiC was compared with other literature‐based genetic risk scores. TiC including F5 rs6025/rs118203906/rs118203905, F2 rs1799963, F12 rs1801020, F13 rs5985, SERPINC1 rs121909548, and SERPINA10 rs2232698 plus the A1 blood group (rs8176719, rs7853989, rs8176743, rs8176750) improved the area under the curve compared with a model based only on F5‐rs6025 and F2‐rs1799963 in SANTPAU (0.677 versus 0.575, P<0.001) and MARTHA (0.605 versus 0.576, P=0.008). TiC showed good integrated discrimination improvement of 5.49 (P<0.001) for SANTPAU and 0.96 (P=0.045) for MARTHA. Among the genetic risk scores evaluated, the proportion of VTE risk variance explained by TiC was the highest. Conclusions We conclude that TiC greatly improves prediction of VTE risk compared with other genetic risk scores. TiC should improve prevention, diagnosis, and treatment of VTE. PMID:25341889
Genetics instruction with history of science: Nature of science learning
NASA Astrophysics Data System (ADS)
Kim, Sun Young
2007-12-01
This study explored the effect of history of genetics in teaching genetics and learning the nature of science (NOS). A quasi-experimental control group research design with pretests, posttests, and delayed posttests was used, combining qualitative data and quantitative data. Two classes which consisted of tenth grade biology students participated in this study. The present study involved two instructional interventions, Best Practice Instruction with History of Genetics (BPIw/HG) and Best Practice Instruction (BPI). The experimental group received BPIw/HG utilizing various historical materials from the history of genetics, while the control group was not introduced to historical materials. Scientific Attitude Inventory II, Genetics Terms' Definitions with Concept Mapping (GTDCM), NOS Terms' Definitions with Concept Mapping (NTDCM), and View of Nature of Science (VNOS-C) were used to investigate students' scientific attitude inventory, and their understanding of genetics as well as the NOS. The results showed that students' scientific attitude inventory, and their understanding of genetics and the NOS were not statistically significantly different in the pretest (p>.05). After the intervention, the experimental group of students who received BPIw/HG demonstrated better understanding of the NOS. NTDCM results showed that the experimental group was better in defining the NOS terms and constructing a concept map ( p<.01). In addition, the experimental group retained their understanding of the NOS two-months after the completion of the intervention, showing no statistically significant difference between the posttest and the delayed posttest of NTDCM (p>.05). Further, VNOS-C data indicated that a greater percentage of the experimental group than the control group improved their understanding of the NOS. However, the two groups' understanding of genetics concepts did not show any statistically significant difference in the pretest, the posttest, and the delayed posttest (p>.05). This result implicated that allocating classroom time in introducing history of science neither helped nor hindered learning science content.
Tuning of active vibration controllers for ACTEX by genetic algorithm
NASA Astrophysics Data System (ADS)
Kwak, Moon K.; Denoyer, Keith K.
1999-06-01
This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.
Arenas-Mena, Cesar; Coffman, James A.
2016-01-01
Summary It is proposed that the evolution of complex animals required repressive genetic mechanisms for controlling the transcriptional and proliferative potency of cells. Unicellular organisms are transcriptionally potent, able to express their full genetic complement as the need arises through their life cycle, whereas differentiated cells of multicellular organisms can only express a fraction of their genomic potential. Likewise, whereas cell proliferation in unicellular organisms is primarily limited by nutrient availability, cell proliferation in multicellular organisms is developmentally regulated. Repressive genetic controls limiting the potency of cells at the end of ontogeny would have stabilized the gene expression states of differentiated cells and prevented disruptive proliferation, allowing the emergence of diverse cell types and functional shapes. We propose that distal cis-regulatory elements represent the primary innovations that set the stage for the evolution of developmental gene regulatory networks and the repressive control of key multipotency and cell-cycle control genes. The testable prediction of this model is that the genomes of extant animals, unlike those of our unicellular relatives, encode gene regulatory circuits dedicated to the developmental control of transcriptional and proliferative potency. PMID:26173445
Swerdlow, Neal R; Gur, Raquel E; Braff, David L
2015-04-01
The COGS is a multi-site NIMH-sponsored investigation of the genetic basis of 12 primary and multiple secondary quantitative endophenotypes in schizophrenia. Since 2003, COGS has completed studies using a family-based ascertainment strategy (COGS-1), and a case-control ascertainment strategy (COGS-2) (cumulative "n">4000). COGS-1 family study confirmed robust deficits in, and heritability of, these endophenotypes in schizophrenia, and provided evidence for a coherent genetic architecture underlying the risk for neurocognitive and neurophysiological deficits in this disorder. COGS-2 case-control findings, many reported herein, establish a foundation for fine genomic mapping and other analyses of these endophenotypes and risk genes for SZ. Several reports in this Special Issue compare findings of endophenotype deficits generated by fundamentally different COGS-1 vs. COGS-2 ascertainment strategies. Despite the expectation that family-based and case-control designs would establish demographically and potentially biologically distinct patient cohorts, findings generally revealed comparable patterns of endophenotype deficits across studies. The COGS-2 case-control design facilitated the accrual of a larger "n", permitting detailed analyses of factors moderating endophenotype performance. Some COGS-2 endophenotypes not assessed in COGS-1 are also reported, as is a new factor analytic strategy for identifying shared vs. unique factors among the COGS endophenotypes which can be used to develop composite variables with distinct genetic signatures. The path to date of COGS-1 endophenotype and genetic findings, followed by replication and extension in COGS-2, establishes benchmarks for endophenotype deficits in SZ and their moderation by specific factors, and clear expectations for informative findings from upcoming COGS-2 genetic analyses. Published by Elsevier B.V.
Swerdlow, Neal R.; Gur, Raquel E.; Braff, David L.
2014-01-01
Background The COGS is a multi-site NIMH-sponsored investigation of the genetic basis of 12 primary and multiple secondary quantitative endophenotypes in schizophrenia. Methods Since 2003, COGS has completed studies using a family-based ascertainment strategy (COGS-1), and a case–control ascertainment strategy (COGS-2) (cumulative “n” > 4000). Results COGS-1 family study confirmed robust deficits in, and heritability of, these endophenotypes in schizophrenia, and provided evidence for a coherent genetic architecture underlying the risk for neurocognitive and neurophysiological deficits in this disorder. COGS-2 case–control findings, many reported herein, establish a foundation for fine genomic mapping and other analyses of these endophenotypes and risk genes for SZ. Several reports in this Special Issue compare findings of endophenotype deficits generated by fundamentally different COGS-1 vs. COGS-2 ascertainment strategies. Despite the expectation that family-based and case–control designs would establish demographically and potentially biologically distinct patient cohorts, findings generally revealed comparable patterns of endophenotype deficits across studies. The COGS-2 case–control design facilitated the accrual of a larger “n”, permitting detailed analyses of factors moderating endophenotype performance. Some COGS-2 endophenotypes not assessed in COGS-1 are also reported, as is a new factor analytic strategy for identifying shared vs. unique factors among the COGS endophenotypes which can be used to develop composite variables with distinct genetic signatures. Discussion The path to date of COGS-1 endophenotype and genetic findings, followed by replication and extension in COGS-2, establishes benchmarks for endophenotype deficits in SZ and their moderation by specific factors, and clear expectations for informative findings from upcoming COGS-2 genetic analyses. PMID:25454799
Martín-Blanco, Ana; Ferrer, Marc; Soler, Joaquim; Arranz, Maria Jesús; Vega, Daniel; Calvo, Natalia; Elices, Matilde; Sanchez-Mora, Cristina; García-Martinez, Iris; Salazar, Juliana; Carmona, Cristina; Bauzà, Joana; Prat, Mónica; Pérez, Víctor; Pascual, Juan C
2016-06-01
Current knowledge suggests that borderline personality disorder (BPD) results from the interaction between genetic and environmental factors. Research has mainly focused on monoaminergic genetic variants and their modulation by traumatic events, especially those occurring during childhood. However, to the best of our knowledge, there are no studies on the genetics of hypothalamus-pituitary-adrenal (HPA) axis, despite its vulnerability to early stress and its involvement in BPD pathogenesis. The aim of this study was to investigate the contribution of genetic variants in the HPA axis and to explore the modulating effect of childhood trauma in a large sample of BPD patients and controls. DNA was obtained from a sample of 481 subjects with BPD and 442 controls. Case-control differences in allelic frequencies of 47 polymorphisms in 10 HPA axis genes were analysed. Modulation of genetic associations by the presence of childhood trauma was also investigated by dividing the sample into three groups: BPD with trauma, BPD without trauma and controls. Two FKBP5 polymorphisms (rs4713902-C and rs9470079-A) showed significant associations with BPD. There were also associations between BPD and haplotype combinations of the genes FKBP5 and CRHR1. Two FKBP5 alleles (rs3798347-T and rs10947563-A) were more frequent in BPD subjects with history of physical abuse and emotional neglect and two CRHR2 variants (rs4722999-C and rs12701020-C) in BPD subjects with sexual and physical abuse. Our findings suggest a contribution of HPA axis genetic variants to BPD pathogenesis and reinforce the hypothesis of the modulating effect of childhood trauma in the development of this disorder.
Bell, Robert A; McDermott, Haley; Fancher, Tonya L; Green, Michael J; Day, Frank C; Wilkes, Michael S
2015-03-01
Many primary care physicians (PCPs) are ill-equipped to provide screening and counseling for inherited breast cancer. To evaluate the outcomes of an interactive web-based genetics curriculum versus text curriculum for primary care physicians. Randomized two-group design. 121 California and Pennsylvania community physicians. Web-based interactive genetics curriculum, evaluated against a control group of physicians who studied genetics review articles. After education, physicians interacted with an announced standardized patient (SP) at risk for inherited breast cancer. Transcripts of visit discussions were coded for presence or absence of 69 topics relevant to inherited breast cancer. Across all physicians, history-taking, discussions of test result implications, and exploration of ethical and legal issues were incomplete. Approximately half of physicians offered a genetic counseling referral (54.6%), and fewer (43.8%) recommended testing. Intervention physicians were more likely than controls to explore genetic counseling benefits (78.3% versus 60.7%, P = 0.048), encourage genetic counseling before testing (38.3% versus 21.3%, P = 0.048), ask about a family history of prostate cancer (25.0% versus 6.6%, P = 0.006), and report that a positive result indicated an increased risk of prostate cancer for male relatives (20.0% versus 1.6%, P = 0.001). Intervention-group physicians were less likely than controls to ask about Ashkenazi heritage (13.3% versus 34.4%, P = 0.01) or to reply that they would get tested when asked, "What would you do?" (33.3% versus 54.1%, P = 0.03). Physicians infrequently performed key counseling behaviors, and this was true regardless of whether they had completed the web-based interactive training or read clinical reviews.
Adiredjo, Afifuddin Latif; Navaud, Olivier; Muños, Stephane; Langlade, Nicolas B; Lamaze, Thierry; Grieu, Philippe
2014-01-01
High water use efficiency (WUE) can be achieved by coordination of biomass accumulation and water consumption. WUE is physiologically and genetically linked to carbon isotope discrimination (CID) in leaves of plants. A population of 148 recombinant inbred lines (RILs) of sunflower derived from a cross between XRQ and PSC8 lines was studied to identify quantitative trait loci (QTL) controlling WUE and CID, and to compare QTL associated with these traits in different drought scenarios. We conducted greenhouse experiments in 2011 and 2012 by using 100 balances which provided a daily measurement of water transpired, and we determined WUE, CID, biomass and cumulative water transpired by plants. Wide phenotypic variability, significant genotypic effects, and significant negative correlations between WUE and CID were observed in both experiments. A total of nine QTL controlling WUE and eight controlling CID were identified across the two experiments. A QTL for phenotypic response controlling WUE and CID was also significantly identified. The QTL for WUE were specific to the drought scenarios, whereas the QTL for CID were independent of the drought scenarios and could be found in all the experiments. Our results showed that the stable genomic regions controlling CID were located on the linkage groups 06 and 13 (LG06 and LG13). Three QTL for CID were co-localized with the QTL for WUE, biomass and cumulative water transpired. We found that CID and WUE are highly correlated and have common genetic control. Interestingly, the genetic control of these traits showed an interaction with the environment (between the two drought scenarios and control conditions). Our results open a way for breeding higher WUE by using CID and marker-assisted approaches and therefore help to maintain the stability of sunflower crop production.
Shah, Hetal S; Gao, He; Morieri, Mario Luca; Skupien, Jan; Marvel, Skylar; Paré, Guillaume; Mannino, Gaia C; Buranasupkajorn, Patinut; Mendonca, Christine; Hastings, Timothy; Marcovina, Santica M; Sigal, Ronald J; Gerstein, Hertzel C; Wagner, Michael J; Motsinger-Reif, Alison A; Buse, John B; Kraft, Peter; Mychaleckyj, Josyf C; Doria, Alessandro
2016-11-01
To identify genetic determinants of increased cardiovascular mortality among subjects with type 2 diabetes who underwent intensive glycemic therapy in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. A total of 6.8 million common variants were analyzed for genome-wide association with cardiovascular mortality among 2,667 self-reported white subjects in the ACCORD intensive treatment arm. Significant loci were examined in the entire ACCORD white genetic dataset (n = 5,360) for their modulation of cardiovascular responses to glycemic treatment assignment and in a Joslin Clinic cohort (n = 422) for their interaction with long-term glycemic control on cardiovascular mortality. Two loci, at 10q26 and 5q13, attained genome-wide significance as determinants of cardiovascular mortality in the ACCORD intensive arm (P = 9.8 × 10 -9 and P = 2 × 10 -8 , respectively). A genetic risk score (GRS) defined by the two variants was a significant modulator of cardiovascular mortality response to treatment assignment in the entire ACCORD white genetic dataset. Participants with GRS = 0 experienced a fourfold reduction in cardiovascular mortality in response to intensive treatment (hazard ratio [HR] 0.24 [95% CI 0.07-0.86]), those with GRS = 1 experienced no difference (HR 0.92 [95% CI 0.54-1.56]), and those with GRS ≥2 experienced a threefold increase (HR 3.08 [95% CI 1.82-5.21]). The modulatory effect of the GRS on the association between glycemic control and cardiovascular mortality was confirmed in the Joslin cohort (P = 0.029). Two genetic variants predict the cardiovascular effects of intensive glycemic control in ACCORD. Further studies are warranted to determine whether these findings can be translated into new strategies to prevent cardiovascular complications of diabetes. © 2016 by the American Diabetes Association.
Shah, Hetal S.; Gao, He; Morieri, Mario Luca; Skupien, Jan; Marvel, Skylar; Paré, Guillaume; Mannino, Gaia C.; Buranasupkajorn, Patinut; Mendonca, Christine; Hastings, Timothy; Marcovina, Santica M.; Sigal, Ronald J.; Gerstein, Hertzel C.; Wagner, Michael J.; Motsinger-Reif, Alison A.; Buse, John B.; Kraft, Peter; Mychaleckyj, Josyf C.
2016-01-01
OBJECTIVE To identify genetic determinants of increased cardiovascular mortality among subjects with type 2 diabetes who underwent intensive glycemic therapy in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. RESEARCH DESIGN AND METHODS A total of 6.8 million common variants were analyzed for genome-wide association with cardiovascular mortality among 2,667 self-reported white subjects in the ACCORD intensive treatment arm. Significant loci were examined in the entire ACCORD white genetic dataset (n = 5,360) for their modulation of cardiovascular responses to glycemic treatment assignment and in a Joslin Clinic cohort (n = 422) for their interaction with long-term glycemic control on cardiovascular mortality. RESULTS Two loci, at 10q26 and 5q13, attained genome-wide significance as determinants of cardiovascular mortality in the ACCORD intensive arm (P = 9.8 × 10−9 and P = 2 × 10−8, respectively). A genetic risk score (GRS) defined by the two variants was a significant modulator of cardiovascular mortality response to treatment assignment in the entire ACCORD white genetic dataset. Participants with GRS = 0 experienced a fourfold reduction in cardiovascular mortality in response to intensive treatment (hazard ratio [HR] 0.24 [95% CI 0.07–0.86]), those with GRS = 1 experienced no difference (HR 0.92 [95% CI 0.54–1.56]), and those with GRS ≥2 experienced a threefold increase (HR 3.08 [95% CI 1.82–5.21]). The modulatory effect of the GRS on the association between glycemic control and cardiovascular mortality was confirmed in the Joslin cohort (P = 0.029). CONCLUSIONS Two genetic variants predict the cardiovascular effects of intensive glycemic control in ACCORD. Further studies are warranted to determine whether these findings can be translated into new strategies to prevent cardiovascular complications of diabetes. PMID:27527847
An alternative experimental case-control design for genetic association studies on bovine mastitis.
Biffani, S; Del Corvo, M; Capoferri, R; Pedretti, A; Luini, M; Williams, J L; Pagnacco, G; Minvielle, F; Minozzi, G
2017-04-01
The possibility of using genetic control strategies to increase disease resistance to infectious diseases relies on the identification of markers to include in the breeding plans. Possible incomplete exposure of mastitis-free (control) animals, however, is a major issue to find relevant markers in genetic association studies for infectious diseases. Usually, designs based on elite dairy sires are used in association studies, but an epidemiological case-control strategy, based on cows repeatedly field-tested could be an alternative for disease traits. To test this hypothesis, genetic association results obtained in the present work from a cohort of Italian Holstein cows tested for mastitis over time were compared with those from a previous genome-wide scan on Italian Holstein sires genotyped with 50k single nucleotide polymorphisms for de-regressed estimated breeding values for somatic cell counts (SCCs) on Bos taurus autosome (BTA6) and BTA14. A total of 1121 cows were selected for the case-control approach (cases=550, controls=571), on a combination of herd level of SCC incidence and of within herd individual level of SCC. The association study was conducted on nine previously identified markers, six on BTA6 and four on BTA14, using the R statistical environment with the 'qtscore' function of the GenABEL package, on high/low adjusted linear score as a binomial trait. The results obtained in the cow cohort selected on epidemiological information were in agreement with those obtained from the previous sire genome-wide association study (GWAS). Six out of the nine markers showed significant association, four on BTA14 (rs109146371, rs109234250, rs109421300, rs109162116) and two on BTA6 (rs110527224 and rs42766480). Most importantly, using mastitis as a case study, the current work further validated the alternative use of historical field disease data in case-control designs for genetic analysis of infectious diseases in livestock.
Marshall, Patricia A; Adebamowo, Clement A; Adeyemo, Adebowale A; Ogundiran, Temidayo O; Strenski, Teri; Zhou, Jie; Rotimi, Charles N
2014-05-13
Studies on informed consent to medical research conducted in low or middle-income settings have increased, including empirical investigations of consent to genetic research. We investigated voluntary participation and comprehension of informed consent among women involved in a genetic epidemiological study on breast cancer in an urban setting of Nigeria comparing women in the case and control groups. Surveys were administered in face-to-face interviews with 215 participants following their enrollment in the genetic study (106 patients, 109 controls). Audio-taped in-depth interviews were conducted with a sub-sample of 17 (8%) women who completed the survey. The majority of all participants reported being told that participation in the genetic study was voluntary (97%), that they did not feel pressured to participate in the study (99%), and that they could withdraw from the study (81%). The majority of the breast cancer patients (83%) compared to 58% of women in the control group reported that the study purpose was to learn about the genetic inheritance of breast cancer (OR 3.44; 95% CI =1.66, 7.14, p value = 0.001). Most participants reported being told about study procedures (95%) and study benefits (98%). Sixty-eight percent of the patients, compared to 47% of the control group reported being told about study risks (p-value <0.001). Of the 165 married women, 19% reported asking permission from their husbands to enroll in the breast cancer study; no one sought permission from local elders. In-depth interviews highlight the use of persuasion and negotiation between a wife and her husband regarding study participation. The global expansion of genetic and genomic research highlights our need to understand informed consent practices for studies in ethnically diverse cultural environments such as Africa. Quantitative and qualitative empirical investigations of the informed consent process for genetic and genomic research will further our knowledge of complex issues associated with communication of information, comprehension, decisional authority and voluntary participation. In the future, the development and testing of innovative strategies to promote voluntary participation and comprehension of the goals of genomic research will contribute to our understanding of strategies that enhance the consent process.
A genetic algorithms approach for altering the membership functions in fuzzy logic controllers
NASA Technical Reports Server (NTRS)
Shehadeh, Hana; Lea, Robert N.
1992-01-01
Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.
Assessing the impact of breeding strategies on inherited disorders and genetic diversity in dogs.
Leroy, Grégoire; Rognon, Xavier
2012-12-01
In the context of management of genetic diversity and control of genetic disorders within dog breeds, a method is proposed for assessing the impact of different breeding strategies that takes into account the genealogical information specific to a given breed. Two types of strategies were investigated: (1) eradication of an identified monogenic recessive disorder, taking into account three different mating limitations and various initial allele frequencies; and (2) control of the population sire effect by limiting the number of offspring per reproducer. The method was tested on four dog breeds: Braque Saint Germain, Berger des Pyrénées, Coton de Tulear and Epagneul Breton. Breeding policies, such as the removal of all carriers from the reproduction pool, may have a range of effects on genetic diversity, depending on the breed and the frequency of deleterious alleles. Limiting the number of offspring per reproducer may also have a positive impact on genetic diversity. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Cytomixis, its nature, significance and the cytological consequences].
Kravets, E A
2012-01-01
Cytomixis is the widespread natural process of intercellular interaction which is characteristic for vegetative and generative tissues in both normal and pathological conditions. The origin significance and genetic control cytomixis still remain not completely clear. The popularity of view of the pathological nature of cytomixis based on its peculiar plants with genetic instability and impaired homeostasis. In the genetic control of cytomixis seem to be involved meiotic genes which are responsible for segregation and organization of chromosomes. Their activity is modified by environmental factors through signal transduction. It is assumed via cytomixis, from one side, the informational contact can be reached and meiosis and gametogenesis are synchronized, with another, increase of the genetic variety and level of the heterozygosis of microsporocytes. The activity of cytomixis varies over wide limits. The greatest influence on its activity have mutagenesis hybridization and polyploidy. In this context cytomixis can fulfill the function of cell selection which is activated by exceeding of the threshold level of the microsporocyte damages (or genetical disbalance).
History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science
NASA Astrophysics Data System (ADS)
Kim, Sun Young; Irving, Karen E.
2010-02-01
This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in genetics instruction; and (3) suggests a modified concept mapping assessment tool for both NOS and GCK. A quasi-experimental control group research design was utilized with pretests, posttests, and delayed posttests, combining qualitative data and quantitative data. The experimental group was taught with historical curricular lessons, while the control group was taught with non-historical curricular lessons. The results indicated that students in the experimental group developed better understanding in targeted aspects of NOS immediately after the intervention and retained their learning 2 months after the intervention. Both groups developed similar genetics knowledge in the posttest, and revealed a slight decay in their understanding in the delayed posttest.
Wu, Jiayun; Wu, Bo; Hou, Feixia; Chen, Yongbai; Li, Chong; Song, Zhaobin
2016-01-01
To restore the natural populations of Chinese sucker (Myxocyprinus asiaticus), a hatchery release program has been underway for nearly 10 years. Using DNA sequences of the mitochondrial control region, we assessed the genetic diversity and genetic structure among samples collected from three sites of the wild population as well as from three hatcheries. The haplotype diversity of the wild samples (h = 0.899-0.975) was significantly higher than that of the hatchery ones (h = 0.296-0.666), but the nucleotide diversity was almost identical between them (π = 0.0170-0.0280). Relatively high gene flow was detected between the hatchery and wild samples. Analysis of effective population size indicated that M. asiaticus living in the Yangtze River has been expanding following a bottleneck in the recent past. Our results suggest the hatchery release programs for M. asiaticus have not reduced the genetic diversity, but have influenced the genetic structure of the species in the upper Yangtze River.
Gutiérrez, Lina A.; Gómez, Giovan F.; González, John J.; Castro, Martha I.; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.
2010-01-01
Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia. PMID:20595475
Johnson, Michael R.; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O’Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico
2015-01-01
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo. PMID:25615886
Zhou, Lecong; Bailey, K L; Chen, C Y; Keri, Mario
2005-01-01
Molecular and genetic approaches were used to evaluate the genetic relatedness among isolates of the fungus Phoma macrostoma Montagne originating from Canada and Europe and to other species in the genus Phoma. Distinct differences were observed in genetic variation among nine species of the genus Phoma. Randomly amplified polymorphic DNA (RAPD) revealed the presence of intraspecific genetic variation among the isolates of P. macrostoma, with the isolates being used for biological weed control being distributed in a distinct phylogenetic cluster. Additional variation within the biocontrol isolate cluster in P. macrostoma was revealed by pulsed field gel electrophoresis (PFGE), which showed that biocontrol isolates generated two different chromosomal profiles, however the profiles did not relate to their Canadian ecozone origin. Mating studies showed that biocontrol isolates of P. macrostoma from Canada did not produce sexual reproductive structures and were incapable of crossing. These studies also confirmed that no obvious differentiation exists among the biocontrol isolates of P. macrostoma from Canadian Ecozones 3 and 4.
ERIC Educational Resources Information Center
Brooker, Rebecca J.; Neiderhiser, Jenae M.; Kiel, Elizabeth J.; Leve, Leslie D.; Shaw, Daniel S.; Reiss, David
2011-01-01
Infant social inhibition is associated with increased risk for anxiety later in life. Although both genetic and environmental factors are associated with anxiety, little empirical work has addressed how developing regulatory abilities work with genetic and environmental risk to exacerbate or mitigate problem behaviors. The current study was aimed…
Genetic variation in the microfibril angle of loblolly pine from two test sites
Jennifer H. Myszewski; Floyd E. Bridgwater; William J. Lowe; Thomas D. Byram; Robert A. Megraw
2004-01-01
In recent years, several studies have examined the effect of microfibril angle (MFA) on wood quality. However, little research has been conducted upon the genetic mechanisms controlling MFA. In this study, we examined the heritability of MFA in loblolly pine, Pinus taeda L., and its genetic relationships with height, diameter, volume, and specific...
Seventeen years of research on genetics of resistance to Aphanomyces root rot of pea
USDA-ARS?s Scientific Manuscript database
Aphanomyces root rot, caused by the oomycete Aphanomyces euteiches, is a major soil borne disease of pea in many countries. Genetic resistance is considered to be a main way to control the disease. Since 2000, INRA has engaged a long-term research program to study genetic resistance to A. euteiches ...
USDA-ARS?s Scientific Manuscript database
From a pest management perspective, limited knowledge on the genetics of released biocontrol agents has been repeatedly considered as one possible cause of failures in classical biological control. Introduced biocontrol agents are expected to experience a loss in genetic diversity as the result of s...
USDA-ARS?s Scientific Manuscript database
Background A host can adopt two response strategies to infection: resistance (reduce pathogen load) and tolerance (minimize impact of infection on performance). Both strategies may be under genetic control and could thus be targeted for genetic improvement. Although there is evidence in support of a...
Biotechnology, Genetic Engineering and Society. Monograph Series: III.
ERIC Educational Resources Information Center
Kieffer, George H.
New techniques have expanded the field of biotechnology and awarded scientists an unprecedented degree of control over the genetic constitutions of living things. The knowledge of DNA science is the basis for this burgeoning industry which may be a major force in human existence. Just as it is possible to move genetic material from one organism to…
The production of homozygous tree material
Reinhard F. Stettler; George E. Howe
1966-01-01
Homozygous trees will never be the desired ultimate step in a forest tree improvement program. However, they will serve many purposes in forest genetics research: (1) in the detection of genetic markers; (2) in the isolation of traits under simple genetic control for the study of growth and differentiation phenomena; (3) as a tool as well as reference material in the...
Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas
2014-08-01
Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
40 CFR 158.2100 - Microbial pesticides definition and applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to which the organism has been genetically modified. (4) Pest control organisms such as insect... and supported by data required in this subpart. (3) Genetically modified microbial pesticides may be...
Travers, L M; Simmons, L W; Garcia-Gonzalez, F
2016-05-01
Polyandry is widespread despite its costs. The sexually selected sperm hypotheses ('sexy' and 'good' sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2 ) while controlling for sampling variance due to male × male × female interactions. We also measured additive genetic variance in egg-to-adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg-to-adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest that the evolution of polyandry may not be driven by sexy sperm or good sperm processes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Shared genetic basis for migraine and ischemic stroke
Malik, Rainer; Freilinger, Tobias; Winsvold, Bendik S.; Anttila, Verneri; Vander Heiden, Jason; Traylor, Matthew; de Vries, Boukje; Holliday, Elizabeth G.; Terwindt, Gisela M.; Sturm, Jonathan; Bis, Joshua C.; Hopewell, Jemma C.; Ferrari, Michel D.; Rannikmae, Kristiina; Wessman, Maija; Kallela, Mikko; Kubisch, Christian; Fornage, Myriam; Meschia, James F.; Lehtimäki, Terho; Sudlow, Cathie; Clarke, Robert; Chasman, Daniel I.; Mitchell, Braxton D.; Maguire, Jane; Kaprio, Jaakko; Farrall, Martin; Raitakari, Olli T.; Kurth, Tobias; Ikram, M. Arfan; Reiner, Alex P.; Longstreth, W.T.; Rothwell, Peter M.; Strachan, David P.; Sharma, Pankaj; Seshadri, Sudha; Quaye, Lydia; Cherkas, Lynn; Schürks, Markus; Rosand, Jonathan; Ligthart, Lannie; Boncoraglio, Giorgio B.; Davey Smith, George; van Duijn, Cornelia M.; Stefansson, Kari; Worrall, Bradford B.; Nyholt, Dale R.; Markus, Hugh S.; van den Maagdenberg, Arn M.J.M.; Cotsapas, Chris; Zwart, John A.; Palotie, Aarno
2015-01-01
Objective: To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. Methods: We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. Results: We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 × 10−28 for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 × 10−20 for the CE score in MO). Conclusions: Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype. PMID:25934857
Uncertainty in BRCA1 cancer susceptibility testing.
Baty, Bonnie J; Dudley, William N; Musters, Adrian; Kinney, Anita Y
2006-11-15
This study investigated uncertainty in individuals undergoing genetic counseling/testing for breast/ovarian cancer susceptibility. Sixty-three individuals from a single kindred with a known BRCA1 mutation rated uncertainty about 12 items on a five-point Likert scale before and 1 month after genetic counseling/testing. Factor analysis identified a five-item total uncertainty scale that was sensitive to changes before and after testing. The items in the scale were related to uncertainty about obtaining health care, positive changes after testing, and coping well with results. The majority of participants (76%) rated reducing uncertainty as an important reason for genetic testing. The importance of reducing uncertainty was stable across time and unrelated to anxiety or demographics. Yet, at baseline, total uncertainty was low and decreased after genetic counseling/testing (P = 0.004). Analysis of individual items showed that after genetic counseling/testing, there was less uncertainty about the participant detecting cancer early (P = 0.005) and coping well with their result (P < 0.001). Our findings support the importance to clients of genetic counseling/testing as a means of reducing uncertainty. Testing may help clients to reduce the uncertainty about items they can control, and it may be important to differentiate the sources of uncertainty that are more or less controllable. Genetic counselors can help clients by providing anticipatory guidance about the role of uncertainty in genetic testing. (c) 2006 Wiley-Liss, Inc.
Ligthart, Lannie; Hottenga, Jouke-Jan; Lewis, Cathryn M.; Farmer, Anne E.; Craig, Ian W.; Breen, Gerome; Willemsen, Gonneke; Vink, Jacqueline M.; Middeldorp, Christel M.; Byrne, Enda M.; Heath, Andrew C.; Madden, Pamela A.F.; Pergadia, Michele L.; Montgomery, Grant W.; Martin, Nicholas G.; Penninx, Brenda W.J.H.; McGuffin, Peter; Boomsma, Dorret I.; Nyholt, Dale R.
2013-01-01
Migraine and major depressive disorder (MDD) are comorbid, moderately heritable and to some extent influenced by the same genes. In a previous paper, we suggested the possibility of causality (one trait causing the other) underlying this comorbidity. We present a new application of polygenic (genetic risk) score analysis to investigate the mechanisms underlying the genetic overlap of migraine and MDD. Genetic risk scores were constructed based on data from two discovery samples in which genome-wide association analyses (GWA) were performed for migraine and MDD, respectively. The Australian Twin Migraine GWA study (N = 6350) included 2825 migraine cases and 3525 controls, 805 of whom met the diagnostic criteria for MDD. The RADIANT GWA study (N = 3230) included 1636 MDD cases and 1594 controls. Genetic risk scores for migraine and for MDD were used to predict pure and comorbid forms of migraine and MDD in an independent Dutch target sample (NTR-NESDA, N = 2966), which included 1476 MDD cases and 1058 migraine cases (723 of these individuals had both disorders concurrently). The observed patterns of prediction suggest that the ‘pure’ forms of migraine and MDD are genetically distinct disorders. The subgroup of individuals with comorbid MDD and migraine were genetically most similar to MDD patients. These results indicate that in at least a subset of migraine patients with MDD, migraine may be a symptom or consequence of MDD. PMID:24081561
How controlled release technology can aid gene delivery.
Jo, Jun-Ichiro; Tabata, Yasuhiko
2015-01-01
Many types of gene delivery systems have been developed to enhance the level of gene expression. Controlled release technology is a feasible gene delivery system which enables genes to extend the expression duration by maintaining and releasing them at the injection site in a controlled manner. This technology can reduce the adverse effects by the bolus dose administration and avoid the repeated administration. Biodegradable biomaterials are useful as materials for the controlled release-based gene delivery technology and various biodegradable biomaterials have been developed. Controlled release-based gene delivery plays a critical role in a conventional gene therapy and genetic engineering. In the gene therapy, the therapeutic gene is released from biodegradable biomaterial matrices around the tissue to be treated. On the other hand, the intracellular controlled release of gene from the sub-micro-sized matrices is required for genetic engineering. Genetic engineering is feasible for cell transplantation as well as research of stem cells biology and medicine. DNA hydrogel containing a sequence of therapeutic gene and the exosome including the individual specific nucleic acids may become candidates for controlled release carriers. Technologies to deliver genes to cell aggregates will play an important role in the promotion of regenerative research and therapy.
ERIC Educational Resources Information Center
Guimond, Fanny-Alexandra; Laursen, Brett; Vitaro, Frank; Brendgen, Mara; Dionne, Ginette; Boivin, Michel
2016-01-01
This study used a genetically controlled design to examine the direction and the magnitude of effects in the over-time associations between perceived relationship quality with mothers and adolescent maladjustment (i.e., depressive symptoms and delinquency). A total of 163 monozygotic (MZ) twins pairs (85 female pairs, 78 male pairs) completed…
Yang, Yingjie; Ren, Jie; Zhang, Qizhu
2016-02-01
HPV-16 varies geographically and is correlated with cervical cancer genesis and progression. This study aimed to determine the distribution of HPV-16 E6/E7 genetic variation in patients with invasive cervical cancer or precancer in Guizhou Province, China. A case-control study was designed, and the distribution of HPV-16 E6/E7 genetic variation was compared among women with cervical cancer, precancer, and sexually active without cervical lesion. HPV infection was detected through flow-through hybridization and gene chip techniques to determine the prevalence of HPV 16 E6/E7 genetic variation. Among 90 specimens (30 cervical cancer, 30 precancer, 30 controls), 81 were subjected to HPV-16 E6/E7 gene sequencing. The rates of DNA sequence mutation and amino acid mutation were 76.5% (62/81) and 66.7% (54/81), respectively. Both E6 and E7 genes showed higher mutation rate than their prototypes. The prevalence of E6/E7 mutation significantly differed between the cervical cancer and the controls (P < 0.05) and between the cervical precancer and the controls (P < 0.05). Mutations were simultaneously detected at the E6-D32E (T96A) and E7-M28V (A82G)/L94P (T281C) sites of the amino acid sequence. The most common genetic variation was D32E/M28V/L94P, which accounted for 35.8% of the cases (29/81). D32E/M28V/L94P mutation was higher in the cervical cancer and precancer compared with the prototype. HPV-16 E6/E7 genetic variations, such as D32E/M28V/L94P, are more prevalent in cervical cancer or precancer than those in the controls. The possible correlation between genetic variation and cancerigenesis may be used to design an HPV vaccine for cervical carcinoma. © 2015 Wiley Periodicals, Inc.
Alphey, Nina; Alphey, Luke; Bonsall, Michael B.
2011-01-01
Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions. PMID:21998654
Yamada, Hirokazu; Matsuda, Muneo; Oguma, Yuzuru
2002-11-01
Sexual isolation has been considered one of the primary causes of speciation and its genetic study has the potential to reveal the genetics of speciation. In Drosophila, the importance of courtship songs in sexual isolation between closely related species has been well investigated, but studies analysing the genetic basis of the difference in the courtship songs associated with sexual isolation are less well documented. Drosophila ananassae and Drosophila pallidosa are useful for studies of sexual isolation, because of their sympatric distribution and absence of postmating isolation. Courtship songs are known to play a crucial role in sexual isolation between these two species, and the female discrimination behaviour against the courting male has been revealed to be controlled by a very narrow region on the second chromosome. In this study we investigated the genetic basis controlling the song differences associated with their sexual isolation, using intact and wingless males with chromosomes substituted between species. The results obtained from F1 hybrid males between these species indicate the dominance of the song characters favoured by D. pallidosa females. In addition, the results obtained from backcross F2 males indicate that chromosome 2 had a major effect on the control of the song characters associated with sexual isolation.
Pereira, Patrícia de Araújo; Alvim-Soares, António Marcos; Sandrim, Valéria Cristina; Lanna, Carla Márcia Moreira; Souza-Costa, Débora Cristine; Belo, Vanessa de Almeida; de Paula, Jonas Jardim; Tanus-Santos, José Eduardo; Romano-Silva, Marco Aurélio; Miranda, Débora Marques de
2016-01-01
Obesity is a chronic disease caused by both environmental and genetic factors. Epidemiological studies have documented that increased energy intake and sedentary lifestyle, as well as a genetic contribution, are forces behind the obesity epidemic. Knowledge about the interaction between genetic and environmental components can facilitate the choice of the most effective and specific measures for the prevention of obesity. The aim of this study was to assess the association between the FTO, AKT1, and AKTIP genes and childhood obesity and insulin resistance. This was a case-control study in which SNPs in the FTO (rs99396096), AKT1, and AKTIP genes were genotyped in groups of controls and obese/overweight children. The study included 195 obese/overweight children and 153 control subjects. As expected, the obese/overweight group subjects had higher body mass index, higher fasting glucose, HOMA-IR index, total cholesterol, low-density lipoprotein, and triglycerides. However, no significant differences were observed in genes polymorphisms genotype or allele frequencies. The present results suggest that AKT1, FTO, and AKTIP polymorphisms were not associated with obesity/overweight in Brazilians children. Future studies on the genetics of obesity in Brazilian children and their environment interactions are needed. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Smith, Shad B.; Maixner, Dylan; Greenspan, Joel; Dubner, Ron; Fillingim, Roger; Ohrbach, Richard; Knott, Charles; Slade, Gary; Bair, Eric; Gibson, Dustin G.; Zaykin, Dmitri V.; Weir, Bruce; Maixner, William; Diatchenko, Luda
2011-01-01
Genetic factors play a role in the etiology of persistent pain conditions, putatively by modulating underlying processes such as nociceptive sensitivity, psychological well-being, inflammation, and autonomic response. However, to date, only a few genes have been associated with temporomandibular disorders (TMD). This study evaluated 358 genes involved in pain processes, comparing allelic frequencies between 166 cases with chronic TMD and 1442 controls enrolled in the OPPERA (Orofacial Pain: Prospective Evaluation and Risk Assessment) study cooperative agreement. To enhance statistical power, 182 TMD cases and 170 controls from a similar study were included in the analysis. Genotyping was performed using the Pain Research Panel, an Affymetrix gene chip representing 3295 single nucleotide polymorphisms, including ancestry-informative markers that were used to adjust for population stratification. Adjusted associations between genetic markers and TMD case status were evaluated using logistic regression. The OPPERA findings provided evidence supporting previously-reported associations between TMD and two genes: HTR2A and COMT. Other genes were revealed as potential new genetic risk factors for TMD, including NR3C1, CAMK4, CHRM2, IFRD1, and GRK5. While these findings need to be replicated in independent cohorts, the genes potentially represent important markers of risk for TMD and they identify potential targets for therapeutic intervention. PMID:22074755
Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G
2014-08-18
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.
Sousa, Ana Célia; Mendonça, Maria I; Pereira, Andreia; Gouveia, Sara; Freitas, Ana I; Guerra, Graça; Rodrigues, Mariana; Henriques, Eva; Freitas, Sónia; Borges, Sofia; Pereira, Décio; Brehm, António; Palma Dos Reis, Roberto
2017-10-01
Essential hypertension (EH) is a disease in which both environment and genes have an important role. This study was designed to identify the interaction model between genetic variants and environmental risk factors that most highly potentiates EH development. We performed a case-control study with 1641 participants (mean age 50.6 ± 8.1 years), specifically 848 patients with EH and 793 controls, adjusted for gender and age. Traditional risk factors, biochemical and genetic parameters, including the genotypic discrimination of 14 genetic variants previously associated with EH, were investigated. Multifactorial dimensionality reduction (MDR) software was used to analyze gene-environment interactions. Validation was performed using logistic regression analysis with environmental risk factors, significant genetic variants, and the best MDR model. The best model indicates that the interactions among the ADD1 rs4961 640T allele, diabetes, and obesity (body mass index ≥30) increase approximately four-fold the risk of EH (odds ratio = 3.725; 95% confidence interval: 2.945-4.711; p < 0.0001). This work showed that the interaction between the ADD1 rs4961 variant, obesity, and the presence of diabetes increased the susceptibility to EH four-fold. In these circumstances, lifestyle adjustment and diabetes control should be intensified in patients who carry the ADD1 variant.
Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.
2014-01-01
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013
Genetics Home Reference: congenital leptin deficiency
... control sexual development. However, the specifics of this involvement and how it may be altered in congenital ... 10 All Bulletins Features What is direct-to-consumer genetic testing? What are genome editing and CRISPR- ...
Structure and function of the homeotic gene complex (HOM-C) in the beetle, Tribolium castaneum
NASA Technical Reports Server (NTRS)
Beeman, R. W.; Stuart, J. J.; Brown, S. J.; Denell, R. E.; Spooner, B. S. (Principal Investigator)
1993-01-01
The powerful combination of genetic, developmental and molecular approaches possible with the fruit fly, Drosophila melanogaster, has led to a profound understanding of the genetic control of early developmental events. However, Drosophila is a highly specialized long germ insect, and the mechanisms controlling its early development may not be typical of insects or Arthropods in general. The beetle, Tribolium castaneum, offers a similar opportunity to integrate high resolution genetic analysis with the developmental/molecular approaches currently used in other organisms. Early results document significant differences between insect orders in the functions of genes responsible for establishing developmental commitments.
Structure and function of the homeotic gene complex (HOM-C) in the beetle, Tribolium castaneum.
Beeman, R W; Stuart, J J; Brown, S J; Denell, R E
1993-07-01
The powerful combination of genetic, developmental and molecular approaches possible with the fruit fly, Drosophila melanogaster, has led to a profound understanding of the genetic control of early developmental events. However, Drosophila is a highly specialized long germ insect, and the mechanisms controlling its early development may not be typical of insects or Arthropods in general. The beetle, Tribolium castaneum, offers a similar opportunity to integrate high resolution genetic analysis with the developmental/molecular approaches currently used in other organisms. Early results document significant differences between insect orders in the functions of genes responsible for establishing developmental commitments.
Dao, Hoc Tan; Smith-Keune, Carolyn; Wolanski, Eric; Jones, Clive M.; Jerry, Dean R.
2015-01-01
Here we utilize a combination of genetic data, oceanographic data, and local ecological knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fabricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mitochondrial DNA control region and 10 polymorphic microsatellites did not detect genetic structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam. Analyses show no evidence for genetic differentiation among populations (mtDNA control region sequences ΦST = -0.008; microsatellite loci FST = 0.003). A lack of evidence for regional or localized mtDNA haplotype clusters, or geographic clusters of microsatellite genotypes, reveals a pattern of high gene flow in P. ornatus throughout the South-East Asian Archipelago. This lack of genetic structure may be due to the oceanography-driven connectivity of the pelagic lobster larvae between spawning grounds in Papua New Guinea, the Philippines and, possibly, Indonesia. The connectivity cycle necessitates three generations. The lack of genetic structure of P. ornatus population in the South-East Asian archipelago has important implications for the sustainable management of this lobster in that the species within the region needs to be managed as one genetic stock. PMID:25951344
Dao, Hoc Tan; Smith-Keune, Carolyn; Wolanski, Eric; Jones, Clive M; Jerry, Dean R
2015-01-01
Here we utilize a combination of genetic data, oceanographic data, and local ecological knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fabricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mitochondrial DNA control region and 10 polymorphic microsatellites did not detect genetic structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam. Analyses show no evidence for genetic differentiation among populations (mtDNA control region sequences ΦST = -0.008; microsatellite loci FST = 0.003). A lack of evidence for regional or localized mtDNA haplotype clusters, or geographic clusters of microsatellite genotypes, reveals a pattern of high gene flow in P. ornatus throughout the South-East Asian Archipelago. This lack of genetic structure may be due to the oceanography-driven connectivity of the pelagic lobster larvae between spawning grounds in Papua New Guinea, the Philippines and, possibly, Indonesia. The connectivity cycle necessitates three generations. The lack of genetic structure of P. ornatus population in the South-East Asian archipelago has important implications for the sustainable management of this lobster in that the species within the region needs to be managed as one genetic stock.
Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia
2015-10-01
Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Engineering species-like barriers to sexual reproduction.
Maselko, Maciej; Heinsch, Stephen C; Chacón, Jeremy M; Harcombe, William R; Smanski, Michael J
2017-10-12
Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter.Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a 'species-like' barrier to reproduction between two otherwise compatible populations.
Jackson, J.V.; Talbot, S.L.; Farley, S.
2008-01-01
We collected data from 20 biparentally inherited microsatellite loci, and nucleotide sequence from the maternally inherited mitochondrial DNA (mtDNA) control region, to determine levels of genetic variation of the brown bears (Ursus arctos L., 1758) of the Kenai Peninsula, south central Alaska. Nuclear genetic variation was similar to that observed in other Alaskan peninsular populations. We detected no significant inbreeding and found no evidence of population substructuring on the Kenai Peninsula. We observed a genetic signature of a bottleneck under the infinite alleles model (IAM), but not under the stepwise mutation model (SMM) or the two-phase model (TPM) of microsatellite mutation. Kenai brown bears have lower levels of mtDNA haplotypic diversity relative to most other brown bear populations in Alaska. ?? 2008 NRC.
Capellini, Terence D.; Vaccari, Giulia; Ferretti, Elisabetta; Fantini, Sebastian; He, Mu; Pellegrini, Massimo; Quintana, Laura; Di Giacomo, Giuseppina; Sharpe, James; Selleri, Licia; Zappavigna, Vincenzo
2010-01-01
The genetic pathways underlying shoulder blade development are largely unknown, as gene networks controlling limb morphogenesis have limited influence on scapula formation. Analysis of mouse mutants for Pbx and Emx2 genes has suggested their potential roles in girdle development. In this study, by generating compound mutant mice, we examined the genetic control of scapula development by Pbx genes and their functional relationship with Emx2. Analyses of Pbx and Pbx1;Emx2 compound mutants revealed that Pbx genes share overlapping functions in shoulder development and that Pbx1 genetically interacts with Emx2 in this process. Here, we provide a biochemical basis for Pbx1;Emx2 genetic interaction by showing that Pbx1 and Emx2 can bind specific DNA sequences as heterodimers. Moreover, the expression of genes crucial for scapula development is altered in these mutants, indicating that Pbx genes act upstream of essential pathways for scapula formation. In particular, expression of Alx1, an effector of scapula blade patterning, is absent in all compound mutants. We demonstrate that Pbx1 and Emx2 bind in vivo to a conserved sequence upstream of Alx1 and cooperatively activate its transcription via this potential regulatory element. Our results establish an essential role for Pbx1 in genetic interactions with its family members and with Emx2 and delineate novel regulatory networks in shoulder girdle development. PMID:20627960
D'Cunha, Anitha; Pandit, Lekha; Malli, Chaithra
2017-06-01
Indian data have been largely missing from genome-wide databases that provide information on genetic variations in different populations. This hinders association studies for complex disorders in India. This study was aimed to determine whether the complex genetic structure and endogamy among Indians could potentially influence the design of case-control studies for autoimmune disorders in the south Indian population. A total of 12 single nucleotide variations (SNVs) related to genes associated with autoimmune disorders were genotyped in 370 healthy individuals belonging to six different caste groups in southern India. Allele frequencies were estimated; genetic divergence and phylogenetic relationship within the various caste groups and other HapMap populations were ascertained. Allele frequencies for all genotyped SNVs did not vary significantly among the different groups studied. Wright's FSTwas 0.001 per cent among study population and 0.38 per cent when compared with Gujarati in Houston (GIH) population on HapMap data. The analysis of molecular variance results showed a 97 per cent variation attributable to differences within the study population and <1 per cent variation due to differences between castes. Phylogenetic analysis showed a separation of Dravidian population from other HapMap populations and particularly from GIH population. Despite the complex genetic origins of the Indian population, our study indicated a low level of genetic differentiation among Dravidian language-speaking people of south India. Case-control studies of association among Dravidians of south India may not require stratification based on language and caste.
Krementsov, Dimitry N.; Case, Laure K.; Hickey, William F.; Teuscher, Cory
2015-01-01
Multiple sclerosis (MS) is a debilitating autoimmune neuroinflammatory disease influenced by genetics and the environment. MS incidence in female subjects has approximately tripled in the last century, suggesting a sex-specific environmental influence. Recent animal and human studies have implicated dietary sodium as a risk factor in MS, whereby high sodium augmented the generation of T helper (Th) 17 cells and exacerbated experimental autoimmune encephalomyelitis (EAE), the principal model of MS. However, whether dietary sodium interacts with sex or genetics remains unknown. Here, we show that high dietary sodium exacerbates EAE in a strain- and sex-specific fashion. In C57BL6/J mice, exposure to a high-salt diet exacerbated disease in both sexes, while in SJL/JCrHsd mice, it did so only in females. In further support of a genetic component, we found that sodium failed to modify EAE course in C57BL6/J mice carrying a 129/Sv-derived interval on chromosome 17. Furthermore, we found that the high-sodium diet did not augment Th17 or Th1 responses, but it did result in increased blood–brain barrier permeability and brain pathology. Our results demonstrate that the effects of dietary sodium on autoimmune neuroinflammation are sex specific, genetically controlled, and CNS mediated.—Krementsov, D. N., Case, L. K., Hickey, W. F., Teuscher, C. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. PMID:25917331
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Testing the effects of adolescent alcohol use on adult conflict-related theta dynamics.
Harper, Jeremy; Malone, Stephen M; Iacono, William G
2017-11-01
Adolescent alcohol use (AAU) is associated with brain anomalies, but less is known about long-term neurocognitive effects. Despite theoretical models linking AAU to diminished cognitive control, empirical work testing this relationship with specific cognitive control neural correlates (e.g., prefrontal theta-band EEG dynamics) remains scarce. A longitudinal twin design was used to test the hypothesis that greater AAU is associated with reduced conflict-related EEG theta-band dynamics in adulthood, and to examine the genetic/environmental etiology of this association. In a large (N=718) population-based prospective twin sample, AAU was assessed at ages 11/14/17. Twins completed a flanker task at age 29 to elicit EEG theta-band medial frontal cortex (MFC) power and medial-dorsal prefrontal cortex (MFC-dPFC) connectivity. Two complementary analytic methods (cotwin control analysis; biometric modeling) were used to disentangle the genetic/shared environmental risk towards AAU from possible alcohol exposure effects on theta dynamics. AAU was negatively associated with adult cognitive control-related theta-band MFC power and MFC-dPFC functional connectivity. Genetic influences primarily underlie these associations. Findings provide strong evidence that genetic factors underlie the comorbidity between AAU and diminished cognitive control-related theta dynamics in adulthood. Conflict-related theta-band dynamics appear to be candidate brain-based endophenotypes/mechanisms for AAU. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Genetics and evolution of triatomines: from phylogeny to vector control
Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E
2012-01-01
Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436
Lu, Chenqi; Liu, Xiaoqin; Wang, Lin; Jiang, Ning; Yu, Jun; Zhao, Xiaobo; Hu, Hairong; Zheng, Saihua; Li, Xuelian; Wang, Guiying
2017-01-10
Due to genetic heterogeneity and variable diagnostic criteria, genetic studies of polycystic ovary syndrome are particularly challenging. Furthermore, lack of sufficiently large cohorts limits the identification of susceptibility genes contributing to polycystic ovary syndrome. Here, we carried out a systematic search of studies deposited in the Gene Expression Omnibus database through August 31, 2016. The present analyses included studies with: 1) patients with polycystic ovary syndrome and normal controls, 2) gene expression profiling of messenger RNA, and 3) sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met the inclusion criteria and were performed for the subsequent integrated analyses. Through comprehensive analyses, there were 13 genetic factors overlapped in all datasets and identified as significant specific genes for polycystic ovary syndrome. After quality control assessment, there were six datasets remained. Further gene ontology enrichment and pathway analyses suggested that differentially expressed genes mainly enriched in oocyte pathways. These findings provide potential molecular markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth studies on the exact function and mechanism in polycystic ovary syndrome.
de Miguel, Marina; Sánchez-Gómez, David; Cervera, María Teresa; Aranda, Ismael
2012-01-01
Drought is an important environmental factor in Mediterranean ecosystems affecting seedling recruitment, productivity or susceptibility to fires and pathogens. Studying water use efficiency in these environments is crucial due to its adaptive value allowing trees to cope with low water availability. We studied the phenotypic variability and genetic control of intrinsic water use efficiency (WUE(i)) and related traits in a full-sib family of Pinus pinaster under drought imposition. We detected significant differences in WUE(i) between clones of the same family and moderate heritability estimates that indicate some degree of genetic control over this trait. Stomatal conductance to water vapor was the trait most affected by drought imposition and it showed the strongest influence in WUE(i). Stomatal conductance to water vapor and specific leaf area (SLA) were the traits with highest heritabilities and they showed a significant genetic correlation with WUE(i), suggesting that selection of needles with low SLA values will improve WUE(i) in this species by reducing water losses through stomatal control.
Research Issues in Genetic Testing of Adolescents for Obesity
Segal, Mary E.; Sankar, Pamela; Reed, Danielle R.
2006-01-01
Obesity is often established in adolescence, and advances are being made in identifying its genetic underpinnings. We examine issues related to the eventual likelihood of genetic tests for obesity targeted to adolescents: family involvement; comprehension of the test’s meaning; how knowledge of genetic status may affect psychological adaptation; minors’ ability to control events; parental/child autonomy; ability to make informed medical decisions; self-esteem; unclear distinctions between early/late onset for this condition; and social stigmatization. The public health arena will be important in educating families about possible future genetic tests for obesity. PMID:15478685
Stergiakouli, Evie; Davey Smith, George; Martin, Joanna; Skuse, David H; Viechtbauer, Wolfgang; Ring, Susan M; Ronald, Angelica; Evans, David E; Fisher, Simon E; Thapar, Anita; St Pourcain, Beate
2017-01-01
Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) symptoms and autism spectrum disorder (ASD) symptoms have been reported. Cross-trait genetic relationships are, however, subject to dynamic changes during development. We investigated the continuity of genetic overlap between ASD and ADHD symptoms in a general population sample during childhood and adolescence. We also studied uni- and cross-dimensional trait-disorder links with respect to genetic ADHD and ASD risk. Social-communication difficulties ( N ≤ 5551, Social and Communication Disorders Checklist, SCDC) and combined hyperactive-impulsive/inattentive ADHD symptoms ( N ≤ 5678, Strengths and Difficulties Questionnaire, SDQ-ADHD) were repeatedly measured in a UK birth cohort (ALSPAC, age 7 to 17 years). Genome-wide summary statistics on clinical ASD (5305 cases; 5305 pseudo-controls) and ADHD (4163 cases; 12,040 controls/pseudo-controls) were available from the Psychiatric Genomics Consortium. Genetic trait variances and genetic overlap between phenotypes were estimated using genome-wide data. In the general population, genetic influences for SCDC and SDQ-ADHD scores were shared throughout development. Genetic correlations across traits reached a similar strength and magnitude (cross-trait r g ≤ 1, p min = 3 × 10 -4 ) as those between repeated measures of the same trait (within-trait r g ≤ 0.94, p min = 7 × 10 -4 ). Shared genetic influences between traits, especially during later adolescence, may implicate variants in K-RAS signalling upregulated genes ( p -meta = 6.4 × 10 -4 ). Uni-dimensionally, each population-based trait mapped to the expected behavioural continuum: risk-increasing alleles for clinical ADHD were persistently associated with SDQ-ADHD scores throughout development (marginal regression R 2 = 0.084%). An age-specific genetic overlap between clinical ASD and social-communication difficulties during childhood was also shown, as per previous reports. Cross-dimensionally, however, neither SCDC nor SDQ-ADHD scores were linked to genetic risk for disorder. In the general population, genetic aetiologies between social-communication difficulties and ADHD symptoms are shared throughout child and adolescent development and may implicate similar biological pathways that co-vary during development. Within both the ASD and the ADHD dimension, population-based traits are also linked to clinical disorder, although much larger clinical discovery samples are required to reliably detect cross-dimensional trait-disorder relationships.
St Pourcain, B; Robinson, E B; Anttila, V; Sullivan, B B; Maller, J; Golding, J; Skuse, D; Ring, S; Evans, D M; Zammit, S; Fisher, S E; Neale, B M; Anney, R J L; Ripke, S; Hollegaard, M V; Werge, T; Ronald, A; Grove, J; Hougaard, D M; Børglum, A D; Mortensen, P B; Daly, M J; Davey Smith, G
2018-02-01
Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic influences between these clinical conditions and impairments in social communication depends on the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth (Avon Longitudinal Study of Parents and Children, N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases, 11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic influences between ASD and social communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of genetic factors influencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic influences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptoms.
Tansey, Katherine E; Guipponi, Michel; Perroud, Nader; Bondolfi, Guido; Domenici, Enrico; Evans, David; Hall, Stephanie K; Hauser, Joanna; Henigsberg, Neven; Hu, Xiaolan; Jerman, Borut; Maier, Wolfgang; Mors, Ole; O'Donovan, Michael; Peters, Tim J; Placentino, Anna; Rietschel, Marcella; Souery, Daniel; Aitchison, Katherine J; Craig, Ian; Farmer, Anne; Wendland, Jens R; Malafosse, Alain; Holmans, Peter; Lewis, Glyn; Lewis, Cathryn M; Stensbøl, Tine Bryan; Kapur, Shitij; McGuffin, Peter; Uher, Rudolf
2012-01-01
It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way. The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study). After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance p<5×10(-8)). No biological pathways were significantly overrepresented in the results. No significant associations (genome-wide significance p<5×10(-8)) were detected in a meta-analysis of NEWMEDS and another large sample (STAR*D), with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D. No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the Editors' Summary.
Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M
2017-09-01
The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h 2 SNP ]), partitioned heritability, and genetic correlations (r g ) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h 2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.
The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.
Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J; Telenti, Amalio; de Bakker, Paul I W; Walker, Bruce D; Ripke, Stephan; Brumme, Chanson J; Pulit, Sara L; Carrington, Mary; Kadie, Carl M; Carlson, Jonathan M; Heckerman, David; Graham, Robert R; Plenge, Robert M; Deeks, Steven G; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P; Guiducci, Candace; Gupta, Namrata; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L; Vine, Seanna; Addo, Marylyn M; Allen, Todd M; Altfeld, Marcus; Henn, Matthew R; Le Gall, Sylvie; Streeck, Hendrik; Haas, David W; Kuritzkes, Daniel R; Robbins, Gregory K; Shafer, Robert W; Gulick, Roy M; Shikuma, Cecilia M; Haubrich, Richard; Riddler, Sharon; Sax, Paul E; Daar, Eric S; Ribaudo, Heather J; Agan, Brian; Agarwal, Shanu; Ahern, Richard L; Allen, Brady L; Altidor, Sherly; Altschuler, Eric L; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C; Benson, Anne M; Berger, Judith; Bernard, Nicole F; Bernard, Annette M; Birch, Christopher; Bodner, Stanley J; Bolan, Robert K; Boudreaux, Emilie T; Bradley, Meg; Braun, James F; Brndjar, Jon E; Brown, Stephen J; Brown, Katherine; Brown, Sheldon T; Burack, Jedidiah; Bush, Larry M; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H; Carmichael, J Kevin; Casey, Kathleen K; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T; Chez, Nancy; Chirch, Lisa M; Cimoch, Paul J; Cohen, Daniel; Cohn, Lillian E; Conway, Brian; Cooper, David A; Cornelson, Brian; Cox, David T; Cristofano, Michael V; Cuchural, George; Czartoski, Julie L; Dahman, Joseph M; Daly, Jennifer S; Davis, Benjamin T; Davis, Kristine; Davod, Sheila M; DeJesus, Edwin; Dietz, Craig A; Dunham, Eleanor; Dunn, Michael E; Ellerin, Todd B; Eron, Joseph J; Fangman, John J W; Farel, Claire E; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A; French, Neel K; Fuchs, Jonathan D; Fuller, Jon D; Gaberman, Jonna; Gallant, Joel E; Gandhi, Rajesh T; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C; Gaultier, Cyril R; Gebre, Wondwoosen; Gilman, Frank D; Gilson, Ian; Goepfert, Paul A; Gottlieb, Michael S; Goulston, Claudia; Groger, Richard K; Gurley, T Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W David; Harrigan, P Richard; Hawkins, Trevor N; Heath, Sonya; Hecht, Frederick M; Henry, W Keith; Hladek, Melissa; Hoffman, Robert P; Horton, James M; Hsu, Ricky K; Huhn, Gregory D; Hunt, Peter; Hupert, Mark J; Illeman, Mark L; Jaeger, Hans; Jellinger, Robert M; John, Mina; Johnson, Jennifer A; Johnson, Kristin L; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C; Kauffman, Carol A; Khanlou, Homayoon; Killian, Robert K; Kim, Arthur Y; Kim, David D; Kinder, Clifford A; Kirchner, Jeffrey T; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P Todd; Kurisu, Wayne; Kwon, Douglas S; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M; Lee, David M; Lee, Jean M L; Lee, Marah J; Lee, Edward T Y; Lemoine, Janice; Levy, Jay A; Llibre, Josep M; Liguori, Michael A; Little, Susan J; Liu, Anne Y; Lopez, Alvaro J; Loutfy, Mono R; Loy, Dawn; Mohammed, Debbie Y; Man, Alan; Mansour, Michael K; Marconi, Vincent C; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N; Martin, Harold L; Mayer, Kenneth Hugh; McElrath, M Juliana; McGhee, Theresa A; McGovern, Barbara H; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X; Menezes, Prema; Mesa, Greg; Metroka, Craig E; Meyer-Olson, Dirk; Miller, Andy O; Montgomery, Kate; Mounzer, Karam C; Nagami, Ellen H; Nagin, Iris; Nahass, Ronald G; Nelson, Margret O; Nielsen, Craig; Norene, David L; O'Connor, David H; Ojikutu, Bisola O; Okulicz, Jason; Oladehin, Olakunle O; Oldfield, Edward C; Olender, Susan A; Ostrowski, Mario; Owen, William F; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M; Perlmutter, Aaron M; Pierce, Michael N; Pincus, Jonathan M; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J; Rhame, Frank S; Richards, Constance Shamuyarira; Richman, Douglas D; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C; Rosenberg, Eric S; Rosenthal, Daniel; Ross, Polly E; Rubin, David S; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R; Sanchez, William C; Sanjana, Veeraf M; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M; Shalit, Peter; Shay, William; Shirvani, Vivian N; Silebi, Vanessa I; Sizemore, James M; Skolnik, Paul R; Sokol-Anderson, Marcia; Sosman, James M; Stabile, Paul; Stapleton, Jack T; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F Lisa; Stone, Valerie E; Stone, David R; Tambussi, Giuseppe; Taplitz, Randy A; Tedaldi, Ellen M; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A; Trinh, Phuong D; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J; Vecino, Isabel; Vega, Vilma M; Veikley, Wenoah; Wade, Barbara H; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J; Warner, Daniel A; Weber, Robert D; Webster, Duncan; Weis, Steve; Wheeler, David A; White, David J; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G; van't Wout, Angelique; Wright, David P; Yang, Otto O; Yurdin, David L; Zabukovic, Brandon W; Zachary, Kimon C; Zeeman, Beth; Zhao, Meng
2010-12-10
Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.
Ecological genetics at the USGS National Wetlands Research Center
Travis, Steven
2006-01-01
The Ecological Genetics Program at the USGS National Wetlands Research Center (NWRC) employs state-of-the-art DNA fingerprinting technologies in characterizing critical management aspects of the population biology of species of concern (fig. 1). The overarching themes of this program have been (1) the critical role that genetic diversity plays in maintaining population viability and (2) how management strategies might incorporate genetic information in preventing the decline of desirable species or in controlling the spread of invasive species.
A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.
Li, Yuhong; Gong, Guanghong; Li, Ni
2018-01-01
In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.
Bruce A. Kimball; G.R. Johnson; Dale L. Nolte; Doreen L. Griffin
1999-01-01
Silvicultural practices can influence black bear (Ursus americanus) foraging preferences for Douglas-fir (Pseudotsuga menziesii) cambial-zone vascular tissues, but little is known about the role of genetics. To study the impact of genetic selection, vascular tissue samples were collected from Douglas-fir trees in six half-sib families from five...
Chen, S H; Anderson, J E; Giblett, E R
1977-01-01
Rare genetic variants of human red cell 2,3-diphosphoglycerate mutase (DPGM) and monophosphoglycerate mutase (MPGM) were compared by starch gel electrophoresis. The isozyme patterns showed that genetic variation of the enzymes were independent from each other, thus DPGM and MPGM must be controlled by two separate loci. Images Fig. 1 PMID:195467
The Effect of Different Molecular Models on High School Students' Conceptions of Molecular Genetics
ERIC Educational Resources Information Center
Rotbain, Yosi; Stavy, Ruth; Marbach-Ad, Gili
2008-01-01
Our main goal in this study was to explore whether the use of models in high school molecular genetics instruction can contribute to students' understanding of concepts and processes in genetics. Three hundred and nineteen students from four comparable groups of 11th- and 12th-grade students participated. The control group (116 students) was…
Effect of Bead and Illustrations Models on High School Students' Achievement in Molecular Genetics
ERIC Educational Resources Information Center
Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth
2006-01-01
Our main goal in this study was to explore whether the use of models in molecular genetics instruction in high school can contribute to students' understanding of concepts and processes in genetics. Three comparable groups of 11th and 12th graders participated: The control group (116 students) was taught in the traditional lecture format, while…
Bohun B. Kinloch Jr.; Roy W. Stonecypher
1969-01-01
Striking genetic variation in susceptibility to fusiform rust was observed among SS controlled-pollinated (CP) and 48 wind-pollinated (WP) families from parent trees of loblolly pine selected at random in a natural forest stand in southwest Georgia. The mating design permitted statistical tests for estimating both additive and total genetic variance. WP families were...
The New Human Genetics. How Gene Splicing Helps Researchers Fight Inherited Disease.
ERIC Educational Resources Information Center
Pines, Maya
The science of genetics is perceived to offer hope that a large number of the 3,000 inherited diseases which afflict human beings may be prevented or controlled. This document addresses some of the advances that have been made in this field. It includes an introduction and sections on: "The Beginning of Human Genetics"; "Unlocking the Secrets of…
G.R. Jonhson
2002-01-01
The incidence of Swiss needle cast on Douglas-fir has increased significantly in recent years on the Oregon coast. Genetic variation in symptoms of disease infection, as measured by foliage traits, was assessed in two series of progeny trials to determine whether these "crown health" indicators were under genetic control and correlated with tolerance;...
Genetics Home Reference: multiple epiphyseal dysplasia
... MedlinePlus (5 links) Diagnostic Tests Drug Therapy Genetic Counseling Palliative Care Surgery and Rehabilitation Related Information How ... manifestations of multiple epiphyseal dysplasia caused by MATN3 versus COMP mutations: a case control study. BMC Musculoskelet ...
Registration of Dicamba for Use on Genetically Engineered Crops
EPA has registered a new dicamba formulation, Extendimax™ with VaporGrip™, specifically designed to have lower volatility, to control weeds in cotton and soybean plants that have been genetically engineered (GE) to resist dicamba.
Kim, Sojung Claire; Cappella, Joseph N; Price, Vincent
2016-09-01
The National Human Genome Research Institute has emphasised community engagement and public dialogue in the U.S. on issues related to genetics. This study examines how online discussions among the U.S. public directly or indirectly influence psychosocial constructs of the Theory of Planned Behavior, including intention to take part in genetic research. After completing the baseline questionnaire, participants (n = 3754) were randomly assigned to one of the following three groups: the discussion group, the pre-/post-only group and the End-of-Project group. The discussion group (n = 1824) was invited and participated in up to three online discussions, which were held from November 2008 to May 2009. Behavioural intention, beliefs, attitudes, subjective norm and perceived behavioural control variables were assessed. The most interesting finding was that those participating in online discussions had fewer negative beliefs about volunteering for genetic research, which in turn contributed to more positive attitudes, increased injunctive and descriptive norms and enhanced behavioural control. These relationships, then, were associated with higher intention to participate in genetic research. These findings suggest that continuous public discussions seem to positively affect volunteer intention for genetic research through ameliorating fears of negative consequences.
Parreño, María A; Scannapieco, Alejandra C; Remis, María I; Juri, Marianela; Vera, María T; Segura, Diego F; Cladera, Jorge L; Lanzavecchia, Silvia B
2014-01-01
Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed.
Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli
2016-01-01
Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909
2014-01-01
Background Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. Methods The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. Discussion The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed. PMID:25471362
Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli
2016-01-01
Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.
Drag reduction of a car model by linear genetic programming control
NASA Astrophysics Data System (ADS)
Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien
2017-08-01
We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.
NordicDB: a Nordic pool and portal for genome-wide control data.
Leu, Monica; Humphreys, Keith; Surakka, Ida; Rehnberg, Emil; Muilu, Juha; Rosenström, Päivi; Almgren, Peter; Jääskeläinen, Juha; Lifton, Richard P; Kyvik, Kirsten Ohm; Kaprio, Jaakko; Pedersen, Nancy L; Palotie, Aarno; Hall, Per; Grönberg, Henrik; Groop, Leif; Peltonen, Leena; Palmgren, Juni; Ripatti, Samuli
2010-12-01
A cost-efficient way to increase power in a genetic association study is to pool controls from different sources. The genotyping effort can then be directed to large case series. The Nordic Control database, NordicDB, has been set up as a unique resource in the Nordic area and the data are available for authorized users through the web portal (http://www.nordicdb.org). The current version of NordicDB pools together high-density genome-wide SNP information from ∼5000 controls originating from Finnish, Swedish and Danish studies and shows country-specific allele frequencies for SNP markers. The genetic homogeneity of the samples was investigated using multidimensional scaling (MDS) analysis and pairwise allele frequency differences between the studies. The plot of the first two MDS components showed excellent resemblance to the geographical placement of the samples, with a clear NW-SE gradient. We advise researchers to assess the impact of population structure when incorporating NordicDB controls in association studies. This harmonized Nordic database presents a unique genome-wide resource for future genetic association studies in the Nordic countries.
NordicDB: a Nordic pool and portal for genome-wide control data
Leu, Monica; Humphreys, Keith; Surakka, Ida; Rehnberg, Emil; Muilu, Juha; Rosenström, Päivi; Almgren, Peter; Jääskeläinen, Juha; Lifton, Richard P; Kyvik, Kirsten Ohm; Kaprio, Jaakko; Pedersen, Nancy L; Palotie, Aarno; Hall, Per; Grönberg, Henrik; Groop, Leif; Peltonen, Leena; Palmgren, Juni; Ripatti, Samuli
2010-01-01
A cost-efficient way to increase power in a genetic association study is to pool controls from different sources. The genotyping effort can then be directed to large case series. The Nordic Control database, NordicDB, has been set up as a unique resource in the Nordic area and the data are available for authorized users through the web portal (http://www.nordicdb.org). The current version of NordicDB pools together high-density genome-wide SNP information from ∼5000 controls originating from Finnish, Swedish and Danish studies and shows country-specific allele frequencies for SNP markers. The genetic homogeneity of the samples was investigated using multidimensional scaling (MDS) analysis and pairwise allele frequency differences between the studies. The plot of the first two MDS components showed excellent resemblance to the geographical placement of the samples, with a clear NW–SE gradient. We advise researchers to assess the impact of population structure when incorporating NordicDB controls in association studies. This harmonized Nordic database presents a unique genome-wide resource for future genetic association studies in the Nordic countries. PMID:20664631
Oricchio, Elisa; Katanayeva, Natalya; Donaldson, Maria Christine; Sungalee, Stephanie; Pasion, Joyce P.; Béguelin, Wendy; Battistello, Elena; Sanghvi, Viraj R.; Jiang, Man; Jiang, Yanwen; Teater, Matt; Parmigiani, Anita; Budanov, Andrei V.; Chan, Fong Chun; Shah, Sohrab P.; Kridel, Robert; Melnick, Ari M.; Ciriello, Giovanni; Wendel, Hans-Guido
2017-01-01
Follicular lymphoma (FL) is an incurable form of B cell lymphoma. Genomic studies have cataloged common genetic lesions in FL such as translocation t(14;18), frequent losses of chromosome 6q, and mutations in epigenetic regulators such as EZH2. Using a focused genetic screen, we identified SESTRIN1 as a relevant target of the 6q deletion and demonstrate tumor suppression by SESTRIN1 in vivo. Moreover, SESTRIN1 is a direct target of the lymphoma-specific EZH2 gain-of-function mutation (EZH2Y641X). SESTRIN1 inactivation disrupts p53-mediated control of mammalian target of rapamycin complex 1 (mTORC1) and enables mRNA translation under genotoxic stress. SESTRIN1 loss represents an alternative to RRAGC mutations that maintain mTORC1 activity under nutrient starvation. The antitumor efficacy of pharmacological EZH2 inhibition depends on SESTRIN1, indicating that mTORC1 control is a critical function of EZH2 in lymphoma. Conversely, EZH2Y641X mutant lymphomas show increased sensitivity to RapaLink-1, a bifunctional mTOR inhibitor. Hence, SESTRIN1 contributes to the genetic and epigenetic control of mTORC1 in lymphoma and influences responses to targeted therapies. PMID:28659443
Hong, Seung Beom; Kim, Ki Cheol; Kim, Wook
2015-07-01
We generated complete mitochondrial DNA (mtDNA) control region sequences from 704 unrelated individuals residing in six major provinces in Korea. In addition to our earlier survey of the distribution of mtDNA haplogroup variation, a total of 560 different haplotypes characterized by 271 polymorphic sites were identified, of which 473 haplotypes were unique. The gene diversity and random match probability were 0.9989 and 0.0025, respectively. According to the pairwise comparison of the 704 control region sequences, the mean number of pairwise differences between individuals was 13.47±6.06. Based on the result of mtDNA control region sequences, pairwise FST genetic distances revealed genetic homogeneity of the Korean provinces on a peninsular level, except in samples from Jeju Island. This result indicates there may be a need to formulate a local mtDNA database for Jeju Island, to avoid bias in forensic parameter estimates caused by genetic heterogeneity of the population. Thus, the present data may help not only in personal identification but also in determining maternal lineages to provide an expanded and reliable Korean mtDNA database. These data will be available on the EMPOP database via accession number EMP00661. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhang, Ya-Jie; Li, Lei; Wang, Zhen-Jing; Zhang, Xiao-Jing; Zhao, Han; Zhao, Yan; Wang, Xie-Tong; Li, Chang-Zhong; Wan, Ji-Peng
2018-05-17
To evaluate the association between preeclampsia and three single nucleotide polymorphisms (rs13405728 in LHCGR gene; rs13429458 in THADA gene, and rs2479106 in DENND1A gene) which were identified to be genetic variants of polycystic ovary syndrome (PCOS) by genome-wide association study in Han Chinese populations. A total of 784 northern Han Chinese women (378 controls and 406 cases) were genotyped for the three genetic variants by polymerase chain reaction and direct sequencing. Unconditional logistic regression analysis was used to adjust the impact of prepregnancy body mass index, primiparas, and maternal age. No significant difference was found in the allele frequencies of the three genetic variants between cases and controls (p > .05), but genotype frequency of the SNP rs2479106 was significantly differ between cases and controls when analyzed under recessive models (p = .02). There was also a substantial difference in the genotype frequencies of the SNP rs13429458 between cases and controls under additive models (p = .01). Genetic variants of PCOS (rs13405728 in LHCGR gene; rs13429458 in THADA gene and rs2479106 in DENND1A gene) may not be involved in the development of preeclampsia in Han Chinese women.
Cartaxo, Marina F S; Ayres, Constância F J; Weetman, David
2011-09-01
Recife is one of the largest cities in north-eastern Brazil and is endemic for lymphatic filariasis transmitted by Culex quinquefasciatus. Since 2003 a control program has targeted mosquito larvae by elimination of breeding sites and bimonthly application of Bacillus sphaericus. To assess the impact of this program on the local vector population we monitored the genetic diversity and differentiation of Cx. quinquefasciatus using microsatellites and a B. sphaericus-resistance associated mutation (cqm1(REC)) over a 3-year period. We detected a significant but gradual decline in allelic diversity, which, coupled with subtle temporal genetic structure, suggests a major impact of the control program on the vector population. Selection on cqm1(REC) does not appear to be involved with loss of neutral diversity from the population, with no temporal trend in resistant allele frequency and no correlation with microsatellite differentiation. The evidence for short-term genetic drift we detected suggests a low ratio of effective population size: census population size for Cx. quinquefasciatus, perhaps coupled with strong geographically-restricted population structure. Spatial definition of populations will be an important step for success of an expanded vector control program. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria
Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona
2015-01-01
Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417
Deater-Deckard, Kirby
2016-05-01
Most of the individual difference variance in the population is found within families, yet studying the processes causing this variation is difficult due to confounds between genetic and nongenetic influences. Quasi-experiments can be used to test hypotheses regarding environment exposure (e.g., timing, duration) while controlling for genetic confounds. To illustrate, two studies of cognitive self-regulation in childhood (i.e., working memory [WM], effortful control [EC], attention span/persistence [A/P]) are presented. Study 1 utilized an identical twin differences design ( N = 85 to 98 pairs) to control for genetic differences while using relative twin birth weight difference to predict relative twin difference in WM and EC. Larger relative twin difference in WM and EF was predicted by the combination of shorter gestation and larger relative birth weight difference. Study 2 utilized an adoptive sibling relative difference design ( N = 123 same-sex pairs) to control for genetic similarity while using relative sibling difference in the age at time of adoption to predict relative sibling difference in A/P. Larger relative sibling difference in A/P was predicted by the combination of larger relative difference in time in the adoptive home and age at adoption. Within-family quasi-experimental designs allow stronger inferences about hypothesized environmental influences than between-family designs permit.
An update on the genetic architecture of hyperuricemia and gout.
Merriman, Tony R
2015-04-10
Genome-wide association studies that scan the genome for common genetic variants associated with phenotype have greatly advanced medical knowledge. Hyperuricemia is no exception, with 28 loci identified. However, genetic control of pathways determining gout in the presence of hyperuricemia is still poorly understood. Two important pathways determining hyperuricemia have been confirmed (renal and gut excretion of uric acid with glycolysis now firmly implicated). Major urate loci are SLC2A9 and ABCG2. Recent studies show that SLC2A9 is involved in renal and gut excretion of uric acid and is implicated in antioxidant defense. Although etiological variants at SLC2A9 are yet to be identified, it is clear that considerable genetic complexity exists at the SLC2A9 locus, with multiple statistically independent genetic variants and local epistatic interactions. The positions of implicated genetic variants within or near chromatin regions involved in transcriptional control suggest that this mechanism (rather than structural changes in SLC2A9) is important in regulating the activity of SLC2A9. ABCG2 is involved primarily in extra-renal uric acid under-excretion with the etiological variant influencing expression. At the other 26 loci, probable causal genes can be identified at three (PDZK1, SLC22A11, and INHBB) with strong candidates at a further 10 loci. Confirmation of the causal gene will require a combination of re-sequencing, trans-ancestral mapping, and correlation of genetic association data with expression data. As expected, the urate loci associate with gout, although inconsistent effect sizes for gout require investigation. Finally, there has been no genome-wide association study using clinically ascertained cases to investigate the causes of gout in the presence of hyperuricemia. In such a study, use of asymptomatic hyperurcemic controls would be expected to increase the ability to detect genetic associations with gout.
Population Stratification in the Context of Diverse Epidemiologic Surveys Sans Genome-Wide Data
Oetjens, Matthew T.; Brown-Gentry, Kristin; Goodloe, Robert; Dilks, Holli H.; Crawford, Dana C.
2016-01-01
Population stratification or confounding by genetic ancestry is a potential cause of false associations in genetic association studies. Estimation of and adjustment for genetic ancestry has become common practice thanks in part to the availability of ancestry informative markers on genome-wide association study (GWAS) arrays. While array data is now widespread, these data are not ubiquitous as several large epidemiologic and clinic-based studies lack genome-wide data. One such large epidemiologic-based study lacking genome-wide data accessible to investigators is the National Health and Nutrition Examination Surveys (NHANES), population-based cross-sectional surveys of Americans linked to demographic, health, and lifestyle data conducted by the Centers for Disease Control and Prevention. DNA samples (n = 14,998) were extracted from biospecimens from consented NHANES participants between 1991–1994 (NHANES III, phase 2) and 1999–2002 and represent three major self-identified racial/ethnic groups: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We as the Epidemiologic Architecture for Genes Linked to Environment study genotyped candidate gene and GWAS-identified index variants in NHANES as part of the larger Population Architecture using Genomics and Epidemiology I study for collaborative genetic association studies. To enable basic quality control such as estimation of genetic ancestry to control for population stratification in NHANES san genome-wide data, we outline here strategies that use limited genetic data to identify the markers optimal for characterizing genetic ancestry. From among 411 and 295 autosomal SNPs available in NHANES III and NHANES 1999–2002, we demonstrate that markers with ancestry information can be identified to estimate global ancestry. Despite limited resolution, global genetic ancestry is highly correlated with self-identified race for the majority of participants, although less so for ethnicity. Overall, the strategies outlined here for a large epidemiologic study can be applied to other datasets accessible for genotype–phenotype studies but are sans genome-wide data. PMID:27200085
Ratkiewicz, Mirosław; Matosiuk, Maciej; Saveljev, Alexander P; Sidorovich, Vadim; Ozolins, Janis; Männil, Peep; Balciauskas, Linas; Kojola, Ilpo; Okarma, Henryk; Kowalczyk, Rafał; Schmidt, Krzysztof
2014-01-01
Due to their high mobility, large terrestrial predators are potentially capable of maintaining high connectivity, and therefore low genetic differentiation among populations. However, previous molecular studies have provided contradictory findings in relation to this. To elucidate patterns of genetic structure in large carnivores, we studied the genetic variability of the Eurasian lynx, Lynx lynx throughout north-eastern Europe using microsatellite, mitochondrial DNA control region and Y chromosome-linked markers. Using SAMOVA we found analogous patterns of genetic structure based on both mtDNA and microsatellites, which coincided with a relatively little evidence for male-biased dispersal. No polymorphism for the cytochrome b and ATP6 mtDNA genes and Y chromosome-linked markers were found. Lynx inhabiting a large area encompassing Finland, the Baltic countries and western Russia formed a single genetic unit, while some marginal populations were clearly divergent from others. The existence of a migration corridor was suggested to correspond with distribution of continuous forest cover. The lowest variability (in both markers) was found in lynx from Norway and Białowieża Primeval Forest (BPF), which coincided with a recent demographic bottleneck (Norway) or high habitat fragmentation (BPF). The Carpathian population, being monomorphic for the control region, showed relatively high microsatellite diversity, suggesting the effect of a past bottleneck (e.g. during Last Glacial Maximum) on its present genetic composition. Genetic structuring for the mtDNA control region was best explained by latitude and snow cover depth. Microsatellite structuring correlated with the lynx's main prey, especially the proportion of red deer (Cervus elaphus) in its diet. Eurasian lynx are capable of maintaining panmictic populations across eastern Europe unless they are severely limited by habitat continuity or a reduction in numbers. Different correlations of mtDNA and microsatellite population divergence patterns with climatic and ecological factors may suggest separate selective pressures acting on males and females in this solitary carnivore.
Sun, Yuhui; Gu, Jian; Ajani, Jaffer A; Chang, David W; Wu, Xifeng; Stroehlein, John R
2014-10-01
Hispanics are the largest nonwhite ethnic group in the US population, and they have higher incidence and mortality rates for gastric cancer (GC) than whites and Asians. Studies have identified several genetic susceptibility loci and intermediate phenotypic biomarkers for GC in whites and Asians. No studies have evaluated genetic susceptibility and intermediate phenotypic biomarkers in Hispanics. In a case-control study of 132 Hispanic patients with GC (cases) and a control group of 125 Hispanics (controls), the authors evaluated the association of 5 single nucleotide polymorphisms (SNPs) that predispose whites and/or Asians to GC and of 2 intermediate phenotypic markers in peripheral blood leukocytes, ie, telomere length and mitochondrial DNA (mtDNA) copy number, with the GC risk. The variant C allele of the reference SNP rs2294008 in the PSCA gene was associated with a significantly reduced risk of GC (per allele-adjusted odds ratio [aOR], 0.51; 95% confidence interval [CI], 0.33-0.77; P = .002). Leukocyte mtDNA copy numbers were significantly lower in GC cases (mean ± standard deviation, 0.91 ± 0.28) than in controls (1.29 ± 0.42; P < .001). When individuals were dichotomized into high and low mtDNA copy number groups based on the median mtDNA copy number value in the controls, those who had a low mtDNA copy number had a significantly increased risk of GC (aOR, 11.00; 95% CI, 4.79-25.23; P < .001) compared with those who had a high mtDNA copy number. Telomere length was not associated significantly with the risk of GC (aOR, 1.21; 95% CI, 0.65-2.27; P = .551). Hispanics share certain genetic susceptibility loci and intermediate phenotypic GC biomarkers with whites and Asians and may also have distinct genetic susceptibility factors. © 2014 American Cancer Society.
Wang, Jian; Spitz, Margaret R; Amos, Christopher I; Wu, Xifeng; Wetter, David W; Cinciripini, Paul M; Shete, Sanjay
2012-01-01
A mediation model explores the direct and indirect effects between an independent variable and a dependent variable by including other variables (or mediators). Mediation analysis has recently been used to dissect the direct and indirect effects of genetic variants on complex diseases using case-control studies. However, bias could arise in the estimations of the genetic variant-mediator association because the presence or absence of the mediator in the study samples is not sampled following the principles of case-control study design. In this case, the mediation analysis using data from case-control studies might lead to biased estimates of coefficients and indirect effects. In this article, we investigated a multiple-mediation model involving a three-path mediating effect through two mediators using case-control study data. We propose an approach to correct bias in coefficients and provide accurate estimates of the specific indirect effects. Our approach can also be used when the original case-control study is frequency matched on one of the mediators. We employed bootstrapping to assess the significance of indirect effects. We conducted simulation studies to investigate the performance of the proposed approach, and showed that it provides more accurate estimates of the indirect effects as well as the percent mediated than standard regressions. We then applied this approach to study the mediating effects of both smoking and chronic obstructive pulmonary disease (COPD) on the association between the CHRNA5-A3 gene locus and lung cancer risk using data from a lung cancer case-control study. The results showed that the genetic variant influences lung cancer risk indirectly through all three different pathways. The percent of genetic association mediated was 18.3% through smoking alone, 30.2% through COPD alone, and 20.6% through the path including both smoking and COPD, and the total genetic variant-lung cancer association explained by the two mediators was 69.1%.
Xie, Wenping; Liu, Min; Lv, Xiaomei; Lu, Wenqiang; Gu, Jiali; Yu, Hongwei
2014-01-01
Saccharomyces cerevisiae is an important platform organism for the synthesis of a great number of natural products. However, the assembly of controllable and genetically stable heterogeneous biosynthetic pathways in S. cerevisiae still remains a significant challenge. Here, we present a strategy for reconstructing controllable multi-gene pathways by employing the GAL regulatory system. A set of marker recyclable integrative plasmids (pMRI) was designed for decentralized assembly of pathways. As proof-of-principle, a controllable β-carotene biosynthesis pathway (∼16 kb) was reconstructed and optimized by repeatedly using GAL10-GAL1 bidirectional promoters with high efficiency (80-100%). By controling the switch time of the pathway, production of 11 mg/g DCW of total carotenoids (72.57 mg/L) and 7.41 mg/g DCW of β-carotene was achieved in shake-flask culture. In addition, the engineered yeast strain exhibited high genetic stability after 20 generations of subculture. The results demonstrated a controllable and genetically stable biosynthetic pathway capable of increasing the yield of target products. Furthermore, the strategy presented in this study could be extended to construct other pathways in S. cerevisisae. © 2013 Wiley Periodicals, Inc.
GENETICS OF WHITE MATTER DEVELOPMENT: A DTI STUDY OF 705 TWINS AND THEIR SIBLINGS AGED 12 TO 29
Chiang, Ming-Chang; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Hickie, Ian; Toga, Arthur W.; Wright, Margaret J.; Thompson, Paul M.
2011-01-01
White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient (IQ). We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4-Tesla), in 705 twins and their siblings (age range 12–29; 290 M/415 F). White matter integrity was quantified using a widely accepted measure, fractional anisotropy (FA). We fitted gene-environment interaction models pointwise, to visualize brain regions where age, sex, SES and IQ modulate heritability of fiber integrity. We hypothesized that environmental factors would start to outweigh genetic factors during late childhood and adolescence. Genetic influences were greater in adolescence versus adulthood, and greater in males than in females. Socioeconomic status significantly interacted with genes that affect fiber integrity: heritability was higher in those with higher SES. In people with above-average IQ, genetic factors explained over 800% of the observed FA variability in the thalamus, genu, posterior internal capsule, and superior corona radiata. In those with below-average IQ, however, only around 40% FA variability in the same regions was attributable to genetic factors. Genes affect fiber integrity, but their effects vary with age, sex, SES and IQ. Gene-environment interactions are vital to consider in the search for specific genetic polymorphisms that affect brain integrity and connectivity. PMID:20950689
Sample size requirements for indirect association studies of gene-environment interactions (G x E).
Hein, Rebecca; Beckmann, Lars; Chang-Claude, Jenny
2008-04-01
Association studies accounting for gene-environment interactions (G x E) may be useful for detecting genetic effects. Although current technology enables very dense marker spacing in genetic association studies, the true disease variants may not be genotyped. Thus, causal genes are searched for by indirect association using genetic markers in linkage disequilibrium (LD) with the true disease variants. Sample sizes needed to detect G x E effects in indirect case-control association studies depend on the true genetic main effects, disease allele frequencies, whether marker and disease allele frequencies match, LD between loci, main effects and prevalence of environmental exposures, and the magnitude of interactions. We explored variables influencing sample sizes needed to detect G x E, compared these sample sizes with those required to detect genetic marginal effects, and provide an algorithm for power and sample size estimations. Required sample sizes may be heavily inflated if LD between marker and disease loci decreases. More than 10,000 case-control pairs may be required to detect G x E. However, given weak true genetic main effects, moderate prevalence of environmental exposures, as well as strong interactions, G x E effects may be detected with smaller sample sizes than those needed for the detection of genetic marginal effects. Moreover, in this scenario, rare disease variants may only be detectable when G x E is included in the analyses. Thus, the analysis of G x E appears to be an attractive option for the detection of weak genetic main effects of rare variants that may not be detectable in the analysis of genetic marginal effects only.
Behavioral versus genetic determination of lipoproteins andidentical twins discordant for exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Paul T.; Blanche, Patricia J.; Krauss, Ronald M.
Lipoprotein and weight differences between vigorously active and sedentary MZ twins are used to: (1) estimate the effects of training while controlling for genotype; (2) estimate genetic concordance in the presence of divergent lifestyles.
Delmore, Kira E; Liedvogel, Miriam
2016-01-01
The amazing accuracy of migratory orientation performance across the animal kingdom is facilitated by the use of magnetic and celestial compass systems that provide individuals with both directional and positional information. Quantitative genetics analyses in several animal systems suggests that migratory orientation has a strong genetic component. Nevertheless, the exact identity of genes controlling orientation remains largely unknown, making it difficult to obtain an accurate understanding of this fascinating behavior on the molecular level. Here, we provide an overview of molecular genetic techniques employed thus far, highlight the pros and cons of various approaches, generalize results from species-specific studies whenever possible, and evaluate how far the field has come since early quantitative genetics studies. We emphasize the importance of examining different levels of molecular control, and outline how future studies can take advantage of high-resolution tracking and sequencing techniques to characterize the genomic architecture of migratory orientation.
Genetic and epigenetic variation in the lineage specification of regulatory T cells
Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y
2015-01-01
Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014
Russell, V N L; Green, L E; Bishop, S C; Medley, G F
2013-03-01
A stochastic, individual-based, simulation model of footrot in a flock of 200 ewes was developed that included flock demography, disease processes, host genetic variation for traits influencing infection and disease processes, and bacterial contamination of the environment. Sensitivity analyses were performed using ANOVA to examine the contribution of unknown parameters to outcome variation. The infection rate and bacterial death rate were the most significant factors determining the observed prevalence of footrot, as well as the heritability of resistance. The dominance of infection parameters in determining outcomes implies that observational data cannot be used to accurately estimate the strength of genetic control of underlying traits describing the infection process, i.e. resistance. Further work will allow us to address the potential for genetic selection to control ovine footrot. Copyright © 2012 Elsevier B.V. All rights reserved.
Sulfonylurea treatment before genetic testing in neonatal diabetes: pros and cons.
Carmody, David; Bell, Charles D; Hwang, Jessica L; Dickens, Jazzmyne T; Sima, Daniela I; Felipe, Dania L; Zimmer, Carrie A; Davis, Ajuah O; Kotlyarevska, Kateryna; Naylor, Rochelle N; Philipson, Louis H; Greeley, Siri Atma W
2014-12-01
Diabetes in neonates nearly always has a monogenic etiology. Earlier sulfonylurea therapy can improve glycemic control and potential neurodevelopmental outcomes in children with KCNJ11 or ABCC8 mutations, the most common gene causes. Assess the risks and benefits of initiating sulfonylurea therapy before genetic testing results become available. Observational retrospective study of subjects with neonatal diabetes within the University of Chicago Monogenic Diabetes Registry. Response to sulfonylurea (determined by whether insulin could be discontinued) and treatment side effects in those treated empirically. A total of 154 subjects were diagnosed with diabetes before 6 months of age. A genetic diagnosis had been determined in 118 (77%), with 73 (47%) having a mutation in KCNJ11 or ABCC8. The median time from clinical diagnosis to genetic diagnosis was 10.4 weeks (range, 1.6 to 58.2 wk). In nine probands, an empiric sulfonylurea trial was initiated within 28 days of diabetes diagnosis. A genetic cause was subsequently found in eight cases, and insulin was discontinued within 14 days of sulfonylurea initiation in all of these cases. Sulfonylurea therapy appears to be safe and often successful in neonatal diabetes patients before genetic testing results are available; however, larger numbers of cases must be studied. Given the potential beneficial effect on neurodevelopmental outcome, glycemic control, and the current barriers to expeditious acquisition of genetic testing, an empiric inpatient trial of sulfonylurea can be considered. However, obtaining a genetic diagnosis remains imperative to inform long-term management and prognosis.
Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants.
Malik, Rainer; Freilinger, Tobias; Winsvold, Bendik S; Anttila, Verneri; Vander Heiden, Jason; Traylor, Matthew; de Vries, Boukje; Holliday, Elizabeth G; Terwindt, Gisela M; Sturm, Jonathan; Bis, Joshua C; Hopewell, Jemma C; Ferrari, Michel D; Rannikmae, Kristiina; Wessman, Maija; Kallela, Mikko; Kubisch, Christian; Fornage, Myriam; Meschia, James F; Lehtimäki, Terho; Sudlow, Cathie; Clarke, Robert; Chasman, Daniel I; Mitchell, Braxton D; Maguire, Jane; Kaprio, Jaakko; Farrall, Martin; Raitakari, Olli T; Kurth, Tobias; Ikram, M Arfan; Reiner, Alex P; Longstreth, W T; Rothwell, Peter M; Strachan, David P; Sharma, Pankaj; Seshadri, Sudha; Quaye, Lydia; Cherkas, Lynn; Schürks, Markus; Rosand, Jonathan; Ligthart, Lannie; Boncoraglio, Giorgio B; Davey Smith, George; van Duijn, Cornelia M; Stefansson, Kari; Worrall, Bradford B; Nyholt, Dale R; Markus, Hugh S; van den Maagdenberg, Arn M J M; Cotsapas, Chris; Zwart, John A; Palotie, Aarno; Dichgans, Martin
2015-05-26
To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 × 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 × 10(-20) for the CE score in MO). Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype. © 2015 American Academy of Neurology.
Robinson, C L; Jouni, H; Kruisselbrink, T M; Austin, E E; Christensen, K D; Green, R C; Kullo, I J
2016-02-01
We investigated whether disclosure of coronary heart disease (CHD) genetic risk influences perceived personal control (PPC) and genetic counseling satisfaction (GCS). Participants (n = 207, age: 45-65 years) were randomized to receive estimated 10-year risk of CHD based on a conventional risk score (CRS) with or without a genetic risk score (GRS). Risk estimates were disclosed by a genetic counselor who also reviewed how GRS altered risk in those randomized to CRS+GRS. Each participant subsequently met with a physician and then completed surveys to assess PPC and GCS. Participants who received CRS+GRS had higher PPC than those who received CRS alone although the absolute difference was small (25.2 ± 2.7 vs 24.1 ± 3.8, p = 0.04). A greater proportion of CRS+GRS participants had higher GCS scores (17.3 ± 5.3 vs 15.9 ± 6.3, p = 0.06). In the CRS+GRS group, PPC and GCS scores were not correlated with GRS. Within both groups, PPC and GCS scores were similar in patients with or without family history (p = NS). In conclusion, patients who received their genetic risk of CHD had higher PPC and tended to have higher GCS. Our findings suggest that disclosure of genetic risk of CHD together with conventional risk estimates is appreciated by patients. Whether this results in improved outcomes needs additional investigation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Physical exercise counteracts genetic susceptibility to depression.
Haslacher, Helmuth; Michlmayr, Matthias; Batmyagmar, Delgerdalai; Perkmann, Thomas; Ponocny-Seliger, Elisabeth; Scheichenberger, Vanessa; Pilger, Alexander; Dal-Bianco, Peter; Lehrner, Johann; Pezawas, Lukas; Wagner, Oswald; Winker, Robert
2015-01-01
Depression is a highly prevalent disorder in elderly individuals. A genetic variant (rs6265) of the brain-derived neurotrophic factor (BDNF) impacting on emotion processing is known to increase the risk for depression. We aim to investigate whether intensive endurance sports might attenuate this genetic susceptibility in a cohort of elderly marathon athletes. Fifty-five athletes and 58 controls were included. rs6265 of the BDNF gene was genotyped by the TaqMan method. Depressive symptoms were assessed by standardized self-rating tests (BDI = Beck Depression Inventory, GDS = Geriatric Depression Scale). In multivariable analysis of BDI and GDS scores, the interaction between group (athletes vs. controls) and genotypes ([C];[C] vs. [C];[T] + [T];[T]) was found to be statistically significant (BDI: p = 0.027, GDS: p = 0.013). Among [C];[C] carriers, merely controls had an increased relative risk of 3.537 (95% CI = 1.276-9.802) of achieving a subclinical depression score ≥10 on the BDI. There was no such effect in carriers of the [T] allele. In a multivariable binary logistic regression, genetic information, group (athletes/controls), but no information on rs6265 allele carrier status presented as a significant predictor of BDI scores ≥10. Physical exercise positively affects BDNF effects on mood. Since 66Met BDNF secretion is impaired, this effect seems to be much stronger in [C];[C] homozygous individuals expressing the 66Val variant. This confirms that genetic susceptibility to depressive symptoms can indeed be influenced by endurance sports in elderly people. © 2015 S. Karger AG, Basel.
Resistance to genetic insect control: Modelling the effects of space.
Watkinson-Powell, Benjamin; Alphey, Nina
2017-01-21
Genetic insect control, such as self-limiting RIDL 2 (Release of Insects Carrying a Dominant Lethal) technology, is a development of the sterile insect technique which is proposed to suppress wild populations of a number of major agricultural and public health insect pests. This is achieved by mass rearing and releasing male insects that are homozygous for a repressible dominant lethal genetic construct, which causes death in progeny when inherited. The released genetically engineered ('GE') insects compete for mates with wild individuals, resulting in population suppression. A previous study modelled the evolution of a hypothetical resistance to the lethal construct using a frequency-dependent population genetic and population dynamic approach. This found that proliferation of resistance is possible but can be diluted by the introgression of susceptible alleles from the released homozygous-susceptible GE males. We develop this approach within a spatial context by modelling the spread of a lethal construct and resistance trait, and the effect on population control, in a two deme metapopulation, with GE release in one deme. Results show that spatial effects can drive an increased or decreased evolution of resistance in both the target and non-target demes, depending on the effectiveness and associated costs of the resistant trait, and on the rate of dispersal. A recurrent theme is the potential for the non-target deme to act as a source of resistant or susceptible alleles for the target deme through dispersal. This can in turn have a major impact on the effectiveness of insect population control. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Morinha, Francisco; Albuquerque, Carlos; Requicha, João; Dias, Isabel; Leitão, José; Gut, Ivo; Guedes-Pinto, Henrique; Viegas, Carlos; Bastos, Estela
2012-04-01
The molecular and genetic research has contributed to a better understanding of the periodontal disease (PD) in humans and has shown that many genes play a role in the predisposition and progression of this complex disease. Variations in human lactotransferrin (LTF) gene appear to affect anti-microbial functions of this molecule, influencing the PD susceptibility. PD is also a major health problem in small animal practice, being the most common inflammatory disease found in dogs. Nevertheless, the research in genetic predisposition to PD is an unexplored subject in this species. This work aims to contribute to the characterization of the genetic basis of canine PD. In order to identify genetic variations and verify its association with PD, was performed a molecular analysis of LTF gene in a case-control approach, including 40 dogs in the PD cases group and 50 dogs in the control group. In this study were detected and characterized eight new single nucleotide variations in the dog LTF gene. Genotype and allele frequencies of these variations showed no statistically significant differences between the control and PD cases groups. Our data do not give evidence for the contribution of these LTF variations to the genetic background of canine PD. Nevertheless, the sequence variant L/15_g.411C > T leads to an aminoacid change (Proline to Leucine) and was predicted to be possibly damaging to the LTF protein. Further investigations would be of extreme value to clarify the biological importance of these new findings.
Luckenbach, J Adam; Fairgrieve, William T
2016-02-01
Methods for sex control are needed to establish monosex aquaculture of sablefish (Anoplopoma fimbria). Here we conducted the first characterization of sex differentiation by histology and hormonal sex reversal experiment in sablefish. Ovarian differentiation was first discernible at ~80 mm fork length (FL) and characterized by development of lamellar structures and onset of meiosis. Testes exhibited a dual-lobe appearance over much of their length and remained non-meiotic until males were ≥520 mm FL (2 years post-fertilization). Juveniles with undifferentiated gonads were provided diets containing 0 (control), 5 or 50 mg 17α-methyltestosterone (MT)/kg for 2 months. Following treatment, controls possessed either ovaries or non-meiotic testes, whereas MT-treated fish exhibited meiotic testes (60% of the fish), intersex gonads (~30%), or gonads that appeared sterile (~10%). A genetic sex marker revealed that all intersex fish were genetic females, although other females appeared to be completely sex reversed (i.e., neomales). One year after treatment, MT-treated fish possessed non-meiotic testes similar to control males or intersex gonads with reduced ovarian features, presumably due to atresia following MT withdrawal. Milt collected from neomales and genetic males 3 years post-treatment permitted sperm motility analyses; however, neomale sperm were virtually immotile. These results demonstrated that sablefish are differentiated gonochorists and that MT treatment from 76 to 196 mm FL induced permanent masculinization of a portion of the genetic females, but acquisition of sperm motility was impaired. Earlier administration of MT may be necessary to sex reverse a higher proportion of genetic females and reduce negative effects on fertility.
Genetic utility of broadly defined bipolar schizoaffective disorder as a diagnostic concept
Hamshere, M. L.; Green, E. K.; Jones, I. R.; Jones, L.; Moskvina, V.; Kirov, G.; Grozeva, D.; Nikolov, I.; Vukcevic, D.; Caesar, S.; Gordon-Smith, K.; Fraser, C.; Russell, E.; Breen, G.; St Clair, D.; Collier, D. A.; Young, A. H.; Ferrier, I. N.; Farmer, A.; McGuffin, P.; Holmans, P. A.; Owen, M. J.; O’Donovan, M. C.; Craddock, N.
2009-01-01
Background Psychiatric phenotypes are currently defined according to sets of descriptive criteria. Although many of these phenotypes are heritable, it would be useful to know whether any of the various diagnostic categories in current use identify cases that are particularly helpful for biological–genetic research. Aims To use genome-wide genetic association data to explore the relative genetic utility of seven different descriptive operational diagnostic categories relevant to bipolar illness within a large UK case–control bipolar disorder sample. Method We analysed our previously published Wellcome Trust Case Control Consortium (WTCCC) bipolar disorder genome-wide association data-set, comprising 1868 individuals with bipolar disorder and 2938 controls genotyped for 276 122 single nucleotide polymorphisms (SNPs) that met stringent criteria for genotype quality. For each SNP we performed a test of association (bipolar disorder group v. control group) and used the number of associated independent SNPs statistically significant at P<0.00001 as a metric for the overall genetic signal in the sample. We next compared this metric with that obtained using each of seven diagnostic subsets of the group with bipolar disorder: Research Diagnostic Criteria (RDC): bipolar I disorder; manic disorder; bipolar II disorder; schizoaffective disorder, bipolar type; DSM–IV: bipolar I disorder; bipolar II disorder; schizoaffective disorder, bipolar type. Results The RDC schizoaffective disorder, bipolar type (v. controls) stood out from the other diagnostic subsets as having a significant excess of independent association signals (P<0.003) compared with that expected in samples of the same size selected randomly from the total bipolar disorder group data-set. The strongest association in this subset of participants with bipolar disorder was at rs4818065 (P = 2.42×10–7). Biological systems implicated included gamma amniobutyric acid (GABA)A receptors. Genes having at least one associated polymorphism at P<10–4 included B3GALTS, A2BP1, GABRB1, AUTS2, BSN, PTPRG, GIRK2 and CDH12. Conclusions Our findings show that individuals with broadly defined bipolar schizoaffective features have either a particularly strong genetic contribution or that, as a group, are genetically more homogeneous than the other phenotypes tested. The results point to the importance of using diagnostic approaches that recognise this group of individuals. Our approach can be applied to similar data-sets for other psychiatric and non-psychiatric phenotypes. PMID:19567891
Inference of genetic network of Xenopus frog egg: improved genetic algorithm.
Wu, Shinq-Jen; Chou, Chia-Hsien; Wu, Cheng-Tao; Lee, Tsu-Tian
2006-01-01
An improved genetic algorithm (IGA) is proposed to achieve S-system gene network modeling of Xenopus frog egg. Via the time-courses training datasets from Michaelis-Menten model, the optimal parameters are learned. The S-system can clearly describe activative and inhibitory interaction between genes as generating and consuming process. We concern the mitotic control in cell-cycle of Xenopus frog egg to realize cyclin-Cdc2 and Cdc25 for MPF activity. The proposed IGA can achieve global search with migration and keep the best chromosome with elitism operation. The generated gene regulatory networks can provide biological researchers for further experiments in Xenopus frog egg cell cycle control.
NASA Astrophysics Data System (ADS)
Stern, Arthur M.
1986-07-01
Economic incentives have spurred numerous applications of genetically engineered organisms in manufacture of pharmaceuticals and industrial chemicals. These successes, involving a variety of methods of genetic manipulation, have dispelled early fears that genetic engineering could not be handled safely, even in the laboratory. Consequently, the potential for applications in the wider environment without physical containment is being considered for agriculture, mining, pollution control, and pest control. These proposed applications range from modest extensions of current plant breeding techniques for new disease-resistant species to radical combinations of organisms (for example, nitrogen-fixing corn plants). These applications raise concerns about potential ecological impacts (see chapter 5), largely because of adverse experiences with both deliberate and inadvertent introductions of nonindigenous species.
Patch, Christine; Sequeiros, Jorge; Cornel, Martina C
2009-01-01
The development of tests for genetic susceptibility to common complex diseases has raised concerns. These concerns relate to evaluation of the scientific and clinical validity and utility of the tests, quality assurance of laboratories and testing services, advice and protection for the consumer and the appropriate regulatory and policy response. How these concerns are interpreted and addressed is an ongoing debate. If the possibility of using the discoveries from genomic science to improve health is to be realised without losing public confidence, then improvements in the evaluation and mechanisms for control of supply of tests may be as important as the science itself. PMID:19259126
Patch, Christine; Sequeiros, Jorge; Cornel, Martina C
2009-07-01
The development of tests for genetic susceptibility to common complex diseases has raised concerns. These concerns relate to evaluation of the scientific and clinical validity and utility of the tests, quality assurance of laboratories and testing services, advice and protection for the consumer and the appropriate regulatory and policy response. How these concerns are interpreted and addressed is an ongoing debate. If the possibility of using the discoveries from genomic science to improve health is to be realised without losing public confidence, then improvements in the evaluation and mechanisms for control of supply of tests may be as important as the science itself.
Bodner, Martin; Bastisch, Ingo; Butler, John M; Fimmers, Rolf; Gill, Peter; Gusmão, Leonor; Morling, Niels; Phillips, Christopher; Prinz, Mechthild; Schneider, Peter M; Parson, Walther
2016-09-01
The statistical evaluation of autosomal Short Tandem Repeat (STR) genotypes is based on allele frequencies. These are empirically determined from sets of randomly selected human samples, compiled into STR databases that have been established in the course of population genetic studies. There is currently no agreed procedure of performing quality control of STR allele frequency databases, and the reliability and accuracy of the data are largely based on the responsibility of the individual contributing research groups. It has been demonstrated with databases of haploid markers (EMPOP for mitochondrial mtDNA, and YHRD for Y-chromosomal loci) that centralized quality control and data curation is essential to minimize error. The concepts employed for quality control involve software-aided likelihood-of-genotype, phylogenetic, and population genetic checks that allow the researchers to compare novel data to established datasets and, thus, maintain the high quality required in forensic genetics. Here, we present STRidER (http://strider.online), a publicly available, centrally curated online allele frequency database and quality control platform for autosomal STRs. STRidER expands on the previously established ENFSI DNA WG STRbASE and applies standard concepts established for haploid and autosomal markers as well as novel tools to reduce error and increase the quality of autosomal STR data. The platform constitutes a significant improvement and innovation for the scientific community, offering autosomal STR data quality control and reliable STR genotype estimates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Epstein-Barr virus in oral shedding of children with multiple sclerosis
Yea, Carmen; Tellier, Raymond; Chong, Patrick; Westmacott, Garrett; Marrie, Ruth Ann; Bar-Or, Amit
2013-01-01
Objective: To investigate Epstein-Barr virus (EBV) oral shedding frequency and EBV genetic diversity in pediatric patients with multiple sclerosis (MS). Methods: This was a prospective case-control study. We used PCR-based assays to detect viral DNA in the monthly mouth swabs of 22 pediatric patients with MS and 77 age- and sex-matched healthy controls. EBV-positive samples were further analyzed for sequence variation in the EBV BCRF1 (ebvIL-10) gene using direct DNA sequencing methods, and in the EBV LMP1 gene by mass spectrometry. Results: Nineteen of the 22 (86.4%) children with MS were seropositive for remote EBV infection compared to 35 out of 77 (45.5%) healthy controls (p = 0.008). Baseline analysis of mouth swabs revealed a higher proportion of EBV-positive samples from EBV-seropositive patients with MS compared to EBV-seropositive healthy controls (52.6% vs 20%, p = 0.007). Longitudinal analysis of monthly swabs revealed average EBV detection rates of 50.6% in patients with MS and 20.4% in controls (p = 0.01). The oral shedding frequencies of Herpesviruses herpes simplex virus–1, cytomegalovirus, human herpesvirus (HHV)-6, and HHV-7 did not differ between groups. Changes in the predominant EBV genetic variants were detected more frequently in patients with MS; however, no specific EBV genetic variant was preferentially associated with MS. Conclusion: Children with MS demonstrate abnormally increased rates of EBV viral reactivation and a broader range of genetic variants, suggesting a selective impairment in their immunologic control of EBV. PMID:24014504
Should there be property rights in genes?
Dworkin, G
1997-01-01
This paper deals with the following questions. Are there property rights in the human body or its parts? What legal control is, or should be, available in respect of genetic material? Can, or should, patents be granted for genes or for products incorporating human genetic material? How extensive are patent rights over genetic material? Should ethical matters be a critical part of the patent granting process? PMID:9304674
ERIC Educational Resources Information Center
Holland, A.; Whittington, J.; Cohen, O.; Curfs, L.; Delahaye, F.; Dudley, O.; Horsthemke, B.; Lindgren, A. -C.; Nourissier, C.; Sharma, N.; Vogels, A.
2009-01-01
Background: Prader-Willi Syndrome (PWS) is a rare genetically determined neurodevelopmental disorder with a complex phenotype that changes with age. The rarity of the syndrome and the need to control for different variables such as genetic sub-type, age and gender limits clinical studies of sufficient size in any one country. A clinical research…
Davies, Neil M; Gaunt, Tom R; Lewis, Sarah J; Holly, Jeff; Donovan, Jenny L; Hamdy, Freddie C; Kemp, John P; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Neal, David; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Lathrop, Mark; Smith, George Davey; Martin, Richard M
2015-11-01
Epidemiological studies suggest a potential role for obesity and determinants of adult stature in prostate cancer risk and mortality, but the relationships described in the literature are complex. To address uncertainty over the causal nature of previous observational findings, we investigated associations of height- and adiposity-related genetic variants with prostate cancer risk and mortality. We conducted a case-control study based on 20,848 prostate cancers and 20,214 controls of European ancestry from 22 studies in the PRACTICAL consortium. We constructed genetic risk scores that summed each man's number of height and BMI increasing alleles across multiple single nucleotide polymorphisms robustly associated with each phenotype from published genome-wide association studies. The genetic risk scores explained 6.31 and 1.46% of the variability in height and BMI, respectively. There was only weak evidence that genetic variants previously associated with increased BMI were associated with a lower prostate cancer risk (odds ratio per standard deviation increase in BMI genetic score 0.98; 95% CI 0.96, 1.00; p = 0.07). Genetic variants associated with increased height were not associated with prostate cancer incidence (OR 0.99; 95% CI 0.97, 1.01; p = 0.23), but were associated with an increase (OR 1.13; 95 % CI 1.08, 1.20) in prostate cancer mortality among low-grade disease (p heterogeneity, low vs. high grade <0.001). Genetic variants associated with increased BMI were associated with an increase (OR 1.08; 95 % CI 1.03, 1.14) in all-cause mortality among men with low-grade disease (p heterogeneity = 0.03). We found little evidence of a substantial effect of genetically elevated height or BMI on prostate cancer risk, suggesting that previously reported observational associations may reflect common environmental determinants of height or BMI and prostate cancer risk. Genetically elevated height and BMI were associated with increased mortality (prostate cancer-specific and all-cause, respectively) in men with low-grade disease, a potentially informative but novel finding that requires replication.
Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin
2016-04-01
Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya. Copyright © 2015. Published by Elsevier B.V.
Genetics at school level: addressing the difficulties
NASA Astrophysics Data System (ADS)
Chu, Yu-Chien; Reid, Norman
2012-11-01
Background : A wide range of studies has offered suggestions why genetics is difficult and some of their key findings are summarised. Underpinning all of this is the way the brain works when handling information. The limitations of working memory capacity offer an interpretation of these difficulties Purpose : The aim is to confirm that working memory capacity (and the related concept of field dependency) controls performance in understanding genetics and whether it is possible to improve performance by changing the teaching approach to mininise overload. Programme description : The curriculum in Taiwan in genetics is outlined briefly. A wide range of measurements were made. Using a diagnostic test of understanding of underpinning ideas, the key areas of weakness were detected before the pupils started the course. Sample : Stage 1: 141 students in Taiwan, aged 13, boys and girls, drawn from a cross-section of Taiwanese pupils at this age, following their first course in genetics. Stage 2: 361 students, drawn from a cross-section of Taiwanese pupils at the same age, and divided into two groups (experimental-control) which both encompass the same ability range. Design and methods : Stage 1: test of pre-knowledge using structural communication grids, applied before the course commenced; working memory capacity using the figural intersection test; extent of field dependency using the group embedded figure test; understanding of genetics was measured at end of course; school test data collated. Stage 2: following a completely revised approach, performance in genetics was measured using traditional school tests and a word association test. Student perspectives were measured. Results : The test of pre-knowledge revealed key areas of difficulty. In addition, it was found that working memory capacity and extent of field dependency both correlated extremely highly with all measures of performance. Given that it has been established that working memory capacity controls performance, working memory demand explains why genetics is difficult. It was found that re-structuring the teaching approach to minimise mental overload brought about a very marked improvement in performance. Conclusions : The findings suggest that it is possible to reduce difficulties in understanding genetics by means of teaching re-design to minimise potential working memory overload, with concomitant improvements in learner confidence.
Wang, Yu; Bennewitz, Jörn; Wellmann, Robin
2017-05-12
Optimum contribution selection (OCS) is effective for increasing genetic gain, controlling the rate of inbreeding and enables maintenance of genetic diversity. However, this diversity may be caused by high migrant contributions (MC) in the population due to introgression of genetic material from other breeds, which can threaten the conservation of small local populations. Therefore, breeding objectives should not only focus on increasing genetic gains but also on maintaining genetic originality and diversity of native alleles. This study aimed at investigating whether OCS was improved by including MC and modified kinships that account for breed origin of alleles. Three objective functions were considered for minimizing kinship, minimizing MC and maximizing genetic gain in the offspring generation, and we investigated their effects on German Angler and Vorderwald cattle. In most scenarios, the results were similar for Angler and Vorderwald cattle. A significant positive correlation between MC and estimated breeding values of the selection candidates was observed for both breeds, thus traditional OCS would increase MC. Optimization was performed under the condition that the rate of inbreeding did not exceed 1% and at least 30% of the maximum progress was achieved for all other criteria. Although traditional OCS provided the highest breeding values under restriction of classical kinship, the magnitude of MC in the progeny generation was not controlled. When MC were constrained or minimized, the kinship at native alleles increased compared to the reference scenario. Thus, in addition to constraining MC, constraining kinship at native alleles is required to ensure that native genetic diversity is maintained. When kinship at native alleles was constrained, the classical kinship was automatically lowered in most cases and more sires were selected. However, the average breeding value in the next generation was also lower than that obtained with traditional OCS. For local breeds with historical introgressions, current breeding programs should focus on increasing genetic gain and controlling inbreeding, as well as maintaining the genetic originality of the breeds and the diversity of native alleles via the inclusion of MC and kinship at native alleles in the OCS process.
Genome-wide Association Study of Obsessive-Compulsive Disorder
Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L
2014-01-01
Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921
Disentangling privacy from property: toward a deeper understanding of genetic privacy.
Suter, Sonia M
2004-04-01
With the mapping of the human genome, genetic privacy has become a concern to many. People care about genetic privacy because genes play an important role in shaping us--our genetic information is about us, and it is deeply connected to our sense of ourselves. In addition, unwanted disclosure of our genetic information, like a great deal of other personal information, makes us vulnerable to unwanted exposure, stigmatization, and discrimination. One recent approach to protecting genetic privacy is to create property rights in genetic information. This Article argues against that approach. Privacy and property are fundamentally different concepts. At heart, the term "property" connotes control within the marketplace and over something that is disaggregated or alienable from the self. "Privacy," in contrast, connotes control over access to the self as well as things close to, intimately connected to, and about the self. Given these different meanings, a regime of property rights in genetic information would impoverish our understanding of that information, ourselves, and the relationships we hope will be built around and through its disclosure. This Article explores our interests in genetic information in order to deepen our understanding of the ongoing discourse about the distinction between property and privacy. It develops a conception of genetic privacy with a strong relational component. We ordinarily share genetic information in the context of relationships in which disclosure is important to the relationship--family, intimate, doctor-patient, researcher-participant, employer-employee, and insurer-insured relationships. Such disclosure makes us vulnerable to and dependent on the person to whom we disclose it. As a result, trust is essential to the integrity of these relationships and our sharing of genetic information. Genetic privacy can protect our vulnerability in these relationships and enhance the trust we hope to have in them. Property, in contrast, by connoting commodification, disaggregation, and arms-length dealings, can negatively affect the self and harm these relationships. This Article concludes that a deeper understanding of genetic privacy calls for remedies for privacy violations that address dignitary harm and breach of trust, as opposed to market harms, as the property model suggests.
Silva, L C; Batista, R O; Anjos, R S R; Souza, M H; Carneiro, P C S; Souza, T L P O; Barros, E G; Carneiro, J E S
2016-07-29
Recombinant inbred lines (RILs) are a valuable resource for building genetic linkage maps. The presence of genetic variability in the RILs is essential for detecting associations between molecular markers and loci controlling agronomic traits of interest. The main goal of this study was to quantify the genetic diversity of a common bean RIL population derived from a cross between Rudá (Mesoamerican gene pool) and AND 277 (Andean gene pool). This population was developed by the single seed descent method from 500 F2 plants until the F10 generation. Seven quantitative traits were evaluated in the field in 393 RILs, the parental lines, and five control cultivars. The plants were grown using a randomized block design with additional controls and three replicates. Significant differences were observed among the RILs for all evaluated traits (P < 0.01). A comparison of the RILs and parental lines showed significant differences (P < 0.01) for the number of days to flowering (DFL) and to harvest (DH), productivity (PROD) and mass of 100 beans (M100); however, there were no significant differences for plant architecture, degree of seed flatness, or seed shape. These results indicate the occurrence of additive x additive epistatic interactions for DFL, DH, PROD, and M100. The 393 RILs were shown to fall into 10 clusters using Tocher's method. This RIL population clearly contained genetic variability for the evaluated traits, and this variability will be crucial for future studies involving genetic mapping and quantitative trait locus identification and analysis.
Genetic overlap between diagnostic subtypes of ischemic stroke.
Holliday, Elizabeth G; Traylor, Matthew; Malik, Rainer; Bevan, Steve; Falcone, Guido; Hopewell, Jemma C; Cheng, Yu-Ching; Cotlarciuc, Ioana; Bis, Joshua C; Boerwinkle, Eric; Boncoraglio, Giorgio B; Clarke, Robert; Cole, John W; Fornage, Myriam; Furie, Karen L; Ikram, M Arfan; Jannes, Jim; Kittner, Steven J; Lincz, Lisa F; Maguire, Jane M; Meschia, James F; Mosley, Thomas H; Nalls, Mike A; Oldmeadow, Christopher; Parati, Eugenio A; Psaty, Bruce M; Rothwell, Peter M; Seshadri, Sudha; Scott, Rodney J; Sharma, Pankaj; Sudlow, Cathie; Wiggins, Kerri L; Worrall, Bradford B; Rosand, Jonathan; Mitchell, Braxton D; Dichgans, Martin; Markus, Hugh S; Levi, Christopher; Attia, John; Wray, Naomi R
2015-03-01
Despite moderate heritability, the phenotypic heterogeneity of ischemic stroke has hampered gene discovery, motivating analyses of diagnostic subtypes with reduced sample sizes. We assessed evidence for a shared genetic basis among the 3 major subtypes: large artery atherosclerosis (LAA), cardioembolism, and small vessel disease (SVD), to inform potential cross-subtype analyses. Analyses used genome-wide summary data for 12 389 ischemic stroke cases (including 2167 LAA, 2405 cardioembolism, and 1854 SVD) and 62 004 controls from the Metastroke consortium. For 4561 cases and 7094 controls, individual-level genotype data were also available. Genetic correlations between subtypes were estimated using linear mixed models and polygenic profile scores. Meta-analysis of a combined LAA-SVD phenotype (4021 cases and 51 976 controls) was performed to identify shared risk alleles. High genetic correlation was identified between LAA and SVD using linear mixed models (rg=0.96, SE=0.47, P=9×10(-4)) and profile scores (rg=0.72; 95% confidence interval, 0.52-0.93). Between LAA and cardioembolism and SVD and cardioembolism, correlation was moderate using linear mixed models but not significantly different from zero for profile scoring. Joint meta-analysis of LAA and SVD identified strong association (P=1×10(-7)) for single nucleotide polymorphisms near the opioid receptor μ1 (OPRM1) gene. Our results suggest that LAA and SVD, which have been hitherto treated as genetically distinct, may share a substantial genetic component. Combined analyses of LAA and SVD may increase power to identify small-effect alleles influencing shared pathophysiological processes. © 2015 American Heart Association, Inc.
The influence of sleep deprivation and obesity on DNA damage in female Zucker rats.
Tenorio, Neuli M; Ribeiro, Daniel A; Alvarenga, Tathiana A; Fracalossi, Ana Carolina C; Carlin, Viviane; Hirotsu, Camila; Tufik, Sergio; Andersen, Monica L
2013-01-01
The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group). The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.
Freyburger, Geneviève; Labrouche, Sylvie; Hubert, Christophe; Bauduer, Frédéric
2015-01-01
The Genetic Markers for Thrombosis (GMT) study compared the relative influence of ethnicity and thrombotic phenotype regarding the distribution of SNPs implicated in haemostasis pathophysiology ("haemostaseome"). We assessed 384 SNPs in three groups, each of 480 subjects: 1) general population of Aquitaine region (Southwestern France) used as control; 2) patients with venous thromboembolism from the same area; and 3) autochthonous Basques, a genetic isolate, who demonstrate unusual characteristics regarding the coagulation system. This study sought to evaluate i) the value of looking for a large number of genes in order to identify new genetic markers of thrombosis, ii) the value of investigating low risk factors and potential preferential associations, iii) the impact of ethnicity on the characterisation of markers for thrombosis. We did not detect any previously unrecognised SNP significantly associated with thrombosis risk or any preferential associations of low-risk factors in patients with thrombosis. The sum of ϰ² values for our 110 significant SNPs demonstrated a smaller genetic distance between patients and controls (321 cumulated ϰ² value) than between Basques and controls (1,570 cumulated ϰ² value). Hence, our study confirms the genetic particularity of Basques especially regarding a significantly lower expression of the non-O blood group (p< 0.0004). This is mitigated by a higher prevalence of factor II Leiden (p< 0.02) while factor V Leiden prevalence does not differ. Numerous other differences covering a wide range of proteins of the haemostaseome may result in an overall different genetic risk for venous thromboembolism.
Trichoderma-plant-pathogen interactions: advances in genetics of biological control.
Mukherjee, Mala; Mukherjee, Prasun K; Horwitz, Benjamin A; Zachow, Christin; Berg, Gabriele; Zeilinger, Susanne
2012-12-01
Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.
The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation
Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; de Bakker, Paul I.W.; Pereyra, Florencia; de Bakker, Paul I.W.; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Walker, Bruce D.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P.; Guiducci, Candace; Gupta, Namrata; Carrington, Mary; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Pereyra, Florencia; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O’Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Walker, Bruce D.; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; Deeks, Steven G.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J.W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M.L.; Lee, Marah J.; Lee, Edward T.Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O’Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.; Olender, Susan A.; Ostrowski, Mario; Owen, William F.; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M.; Perlmutter, Aaron M.; Pierce, Michael N.; Pincus, Jonathan M.; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C.; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J.; Rhame, Frank S.; Richards, Constance Shamuyarira; Richman, Douglas D.; Robbins, Gregory K.; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C.; Rosenberg, Eric S.; Rosenthal, Daniel; Ross, Polly E.; Rubin, David S.; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R.; Sanchez, William C.; Sanjana, Veeraf M.; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M.; Shalit, Peter; Shay, William; Shirvani, Vivian N.; Silebi, Vanessa I.; Sizemore, James M.; Skolnik, Paul R.; Sokol-Anderson, Marcia; Sosman, James M.; Stabile, Paul; Stapleton, Jack T.; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F. Lisa; Stone, Valerie E.; Stone, David R.; Tambussi, Giuseppe; Taplitz, Randy A.; Tedaldi, Ellen M.; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A.; Trinh, Phuong D.; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J.; Vecino, Isabel; Vega, Vilma M.; Veikley, Wenoah; Wade, Barbara H.; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J.; Warner, Daniel A.; Weber, Robert D.; Webster, Duncan; Weis, Steve; Wheeler, David A.; White, David J.; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G.; Wout, Angelique van’t; Wright, David P.; Yang, Otto O.; Yurdin, David L.; Zabukovic, Brandon W.; Zachary, Kimon C.; Zeeman, Beth; Zhao, Meng
2011-01-01
Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co; Arango, Carlos A.; Reyes, Andrés
2015-09-28
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding themore » interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.« less
Optimum Actuator Selection with a Genetic Algorithm for Aircraft Control
NASA Technical Reports Server (NTRS)
Rogers, James L.
2004-01-01
The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. For example, the desired actuators produce a pure roll moment without at the same time causing much pitch or yaw. For a typical wing, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements and mission constraints. A genetic algorithm has been developed for finding the best placement for four actuators to produce an uncoupled pitch moment. The genetic algorithm has been extended to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control. A simplified, untapered, unswept wing is the model for each application.
van Sluijs, Esther M. F.; Marteau, Theresa M.; Sutton, Stephen
2016-01-01
Background Information about genetic and phenotypic risk of type 2 diabetes is now widely available and is being incorporated into disease prevention programs. Whether such information motivates behavior change or has adverse effects is uncertain. We examined the effect of communicating an estimate of genetic or phenotypic risk of type 2 diabetes in a parallel group, open, randomized controlled trial. Methods and Findings We recruited 569 healthy middle-aged adults from the Fenland Study, an ongoing population-based, observational study in the east of England (Cambridgeshire, UK). We used a computer-generated random list to assign participants in blocks of six to receive either standard lifestyle advice alone (control group, n = 190) or in combination with a genetic (n = 189) or a phenotypic (n = 190) risk estimate for type 2 diabetes (intervention groups). After 8 wk, we measured the primary outcome, objectively measured physical activity (kJ/kg/day), and also measured several secondary outcomes (including self-reported diet, self-reported weight, worry, anxiety, and perceived risk). The study was powered to detect a between-group difference of 4.1 kJ/kg/d at follow-up. 557 (98%) participants completed the trial. There were no significant intervention effects on physical activity (difference in adjusted mean change from baseline: genetic risk group versus control group 0.85 kJ/kg/d (95% CI −2.07 to 3.77, p = 0.57); phenotypic risk group versus control group 1.32 (95% CI −1.61 to 4.25, p = 0.38); and genetic risk group versus phenotypic risk group −0.47 (95% CI −3.40 to 2.46, p = 0.75). No significant differences in self-reported diet, self-reported weight, worry, and anxiety were observed between trial groups. Estimates of perceived risk were significantly more accurate among those who received risk information than among those who did not. Key limitations include the recruitment of a sample that may not be representative of the UK population, use of self-reported secondary outcome measures, and a short follow-up period. Conclusions In this study, we did not observe short-term changes in behavior associated with the communication of an estimate of genetic or phenotypic risk of type 2 diabetes. We also did not observe changes in worry or anxiety in the study population. Additional research is needed to investigate the conditions under which risk information might enhance preventive strategies. (Current Controlled Trials ISRCTN09650496; Date applied: April 4, 2011; Date assigned: June 10, 2011). Trial Registration The trial is registered with Current Controlled Trials, ISRCTN09650496. PMID:27898672
Godino, Job G; van Sluijs, Esther M F; Marteau, Theresa M; Sutton, Stephen; Sharp, Stephen J; Griffin, Simon J
2016-11-01
Information about genetic and phenotypic risk of type 2 diabetes is now widely available and is being incorporated into disease prevention programs. Whether such information motivates behavior change or has adverse effects is uncertain. We examined the effect of communicating an estimate of genetic or phenotypic risk of type 2 diabetes in a parallel group, open, randomized controlled trial. We recruited 569 healthy middle-aged adults from the Fenland Study, an ongoing population-based, observational study in the east of England (Cambridgeshire, UK). We used a computer-generated random list to assign participants in blocks of six to receive either standard lifestyle advice alone (control group, n = 190) or in combination with a genetic (n = 189) or a phenotypic (n = 190) risk estimate for type 2 diabetes (intervention groups). After 8 wk, we measured the primary outcome, objectively measured physical activity (kJ/kg/day), and also measured several secondary outcomes (including self-reported diet, self-reported weight, worry, anxiety, and perceived risk). The study was powered to detect a between-group difference of 4.1 kJ/kg/d at follow-up. 557 (98%) participants completed the trial. There were no significant intervention effects on physical activity (difference in adjusted mean change from baseline: genetic risk group versus control group 0.85 kJ/kg/d (95% CI -2.07 to 3.77, p = 0.57); phenotypic risk group versus control group 1.32 (95% CI -1.61 to 4.25, p = 0.38); and genetic risk group versus phenotypic risk group -0.47 (95% CI -3.40 to 2.46, p = 0.75). No significant differences in self-reported diet, self-reported weight, worry, and anxiety were observed between trial groups. Estimates of perceived risk were significantly more accurate among those who received risk information than among those who did not. Key limitations include the recruitment of a sample that may not be representative of the UK population, use of self-reported secondary outcome measures, and a short follow-up period. In this study, we did not observe short-term changes in behavior associated with the communication of an estimate of genetic or phenotypic risk of type 2 diabetes. We also did not observe changes in worry or anxiety in the study population. Additional research is needed to investigate the conditions under which risk information might enhance preventive strategies. (Current Controlled Trials ISRCTN09650496; Date applied: April 4, 2011; Date assigned: June 10, 2011). The trial is registered with Current Controlled Trials, ISRCTN09650496.
Non-Genetic Determinants of Mosquito Competence for Malaria Parasites
Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna
2013-01-01
Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841
In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light.
Hoppmann, Christian; Maslennikov, Innokentiy; Choe, Senyon; Wang, Lei
2015-09-09
Optical modulation of proteins provides superior spatiotemporal resolution for understanding biological processes, and photoswitches built on light-sensitive proteins have been significantly advancing neuronal and cellular studies. Small molecule photoswitches could complement protein-based switches by mitigating potential interference and affording high specificity for modulation sites. However, genetic encodability and responsiveness to nonultraviolet light, two desired properties possessed by protein photoswitches, are challenging to be engineered into small molecule photoswitches. Here we developed a small molecule photoswitch that can be genetically installed onto proteins in situ and controlled by visible light. A pentafluoro azobenzene-based photoswitchable click amino acid (F-PSCaa) was designed to isomerize in response to visible light. After genetic incorporation into proteins via the expansion of the genetic code, F-PSCaa reacts with a nearby cysteine within the protein generating an azo bridge in situ. The resultant bridge is switchable by visible light and allows conformation and binding of CaM to be regulated by such light. This photoswitch should prove valuable in optobiology for its minimal interference, site flexibility, genetic encodability, and response to the more biocompatible visible light.
Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation.
Wang, Daxi; Young, Neil D; Korhonen, Pasi K; Gasser, Robin B
2018-01-01
Parasitic trematodes (flukes) cause substantial mortality and morbidity in humans. The Chinese liver fluke, Clonorchis sinensis, is one of the most destructive parasitic worms in humans in China, Vietnam, Korea and the Russian Far East. Although C. sinensis infection can be controlled relatively well using anthelmintics, the worm is carcinogenic, inducing cholangiocarcinoma and causing major suffering in ~15 million people in Asia. This chapter provides an account of C. sinensis and clonorchiasis research-covering aspects of biology, epidemiology, pathogenesis and immunity, diagnosis, treatment and control, genetics and genomics. It also describes progress in the area of molecular biology (genetics, genomics, transcriptomics and proteomics) and highlights challenges associated with comparative genomics and population genetics. It then reviews recent advances in the sequencing and characterisation of the mitochondrial and nuclear genomes for a Korean isolate of C. sinensis and summarises salient comparative genomic work and the implications thereof. The chapter concludes by considering how advances in genomic and informatics will enable research on the genetics of C. sinensis and related parasites, as well as the discovery of new fluke-specific intervention targets. © 2018 Elsevier Ltd All rights reserved.
[Genetic aspects of the Stroop test].
Nánási, Tibor; Katonai, Enikő Rózsa; Sasvári-Székely, Mária; Székely, Anna
2012-12-01
Impairment of executive control functions in depression is well documented, and performance on the Stroop Test is one of the most widely used markers to measure the decline. This tool provides reliable quantitative phenotype data that can be used efficiently in candidate gene studies investigating inherited components of executive control. Aim of the present review is to summarize research on genetic factors of Stroop performance. Interestingly, only a few such candidate gene studies have been carried out to date. Twin studies show a 30-60% heritability estimate for the Stroop test, suggesting a significant genetic component. A single genome-wide association study has been carried out on Stroop performance, and it did not show any significant association with any of the tested polymorphisms after correction for multiple testing. Candidate gene studies to date pointed to the polymorphisms of several neurotransmitter systems (dopamine, serotonin, acetylcholine) and to the role of the APOE ε4 allele. Surprisingly, little is known about the genetic role of neurothrophic factors and survival factors. In conclusion, further studies are needed for clarifying the genetic background of Stroop performance, characterizing attentional functions.
[Application of genetic algorithm in blending technology for extractions of Cortex Fraxini].
Yang, Ming; Zhou, Yinmin; Chen, Jialei; Yu, Minying; Shi, Xiufeng; Gu, Xijun
2009-10-01
To explore the feasibility of genetic algorithm (GA) on multiple objective blending technology for extractions of Cortex Fraxini. According to that the optimization objective was the combination of fingerprint similarity and the root-mean-square error of multiple key constituents, a new multiple objective optimization model of 10 batches extractions of Cortex Fraxini was built. The blending coefficient was obtained by genetic algorithm. The quality of 10 batches extractions of Cortex Fraxini that after blending was evaluated with the finger print similarity and root-mean-square error as indexes. The quality of 10 batches extractions of Cortex Fraxini that after blending was well improved. Comparing with the fingerprint of the control sample, the similarity was up, but the degree of variation is down. The relative deviation of the key constituents was less than 10%. It is proved that genetic algorithm works well on multiple objective blending technology for extractions of Cortex Fraxini. This method can be a reference to control the quality of extractions of Cortex Fraxini. Genetic algorithm in blending technology for extractions of Chinese medicines is advisable.
Lang, Andrew S.; Beatty, J. T.
2000-01-01
An unusual system of genetic exchange exists in the purple nonsulfur bacterium Rhodobacter capsulatus. DNA transmission is mediated by a small bacteriophage-like particle called the gene transfer agent (GTA) that transfers random 4.5-kb segments of the producing cell's genome to recipient cells, where allelic replacement occurs. This paper presents the results of gene cloning, analysis, and mutagenesis experiments that show that GTA resembles a defective prophage related to bacteriophages from diverse genera of bacteria, which has been adopted by R. capsulatus for genetic exchange. A pair of cellular proteins, CckA and CtrA, appear to constitute part of a sensor kinase/response regulator signaling pathway that is required for expression of GTA structural genes. This signaling pathway controls growth-phase-dependent regulation of GTA gene messages, yielding maximal gene expression in the stationary phase. We suggest that GTA is an ancient prophage remnant that has evolved in concert with the bacterial genome, resulting in a genetic exchange process controlled by the bacterial cell. PMID:10639170
Human genetic susceptibility and infection with Leishmania peruviana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, M.A.; Davis, C.R.; Collins, A.
1995-11-01
Racial differences, familial clustering, and murine studies are suggestive of host genetic control of Leishmania infections. Complex segregation analysis has been carried out by use of the programs POINTER and COMDS and data from a total population survey, comprising 636 nuclear families, from an L. perurviana endemic area. The data support genetic components controlling susceptibility to clinical leishmaniasis, influencing severity of disease and resistance to disease among healthy individuals. A multifactorial model is favored over a sporadic model. Two-locus models provided the best fit to the data, the optimal model being a recessive gene (frequency .57) plus a modifier locus.more » Individuals infected at an early age and with recurrent lesions are genetically more susceptible than those infected with a single episode of disease at a later age. Among people with no lesions, those with a positive skin-test response are genetically less susceptible than those with a negative response. The possibility of the involvement of more than one gene together with environmental effects has implications for the design of future linkage studies. 31 refs., 7 tabs.« less
A Children of Twins Study of parental divorce and offspring psychopathology.
D'Onofrio, Brian M; Turkheimer, Eric; Emery, Robert E; Maes, Hermine H; Silberg, Judy; Eaves, Lindon J
2007-07-01
Although parental divorce is associated with increased substance use and internalizing problems, experiencing the separation of one's parents may not cause these outcomes. The relations may be due to genetic or environmental selection factors, characteristics that lead to both marital separation and offspring functioning. We used the Children of Twins (CoT) Design to explore whether unmeasured genetic or environmental factors related to the twin parent, and measured characteristics of both parents, account for the association between parental divorce and offspring substance use and internalizing problems. The association between parental divorce and offspring substance use problems remained robust when controlling for genetic and environmental risk from the twin parent associated with parental divorce, and measured characteristics of both parents. The results do not prove, but are consistent with, a causal connection. In contrast, the analyses suggest that shared genetic liability in parents and their offspring accounts for the increased risk of internalizing problems in adult offspring from divorced families. The study illustrates that unmeasured genetic and environmental selection factors must be considered when studying parental divorce. In explaining associations between parental divorce and young-adult adjustment, our evidence suggests that selection versus causal mechanisms may operate differently for substance abuse (a causal relation) and internalizing problems (an artifact of selection). The CoT design only controls for the genetic and environmental characteristics of one parent; thus, additional genetically informed analyses are needed.
Disruptions in Energy Balance: Does Nature overcome Nurture?
Fernández, José R.; Casazza, Krista; Divers, Jasmin; López-Alarcón, Mardya
2008-01-01
Fat accumulation, in general, is the result of a breakdown in the homeostatic regulation of energy balance. Although, the specific factors influencing the disruption of energy balance and why these factors affect individuals differently are not completely understood, numerous studies have identified multiple contributors. Environmental components influence food acquisition, eating, and lifestyle habits. However, the variability in obesity-related outcomes observed among individuals placed in similar controlled environments support the notion that genetic components also wield some control. Multiple genetic regions have been associated with measures related to energy balance; however, the replication of these genetic contributors to energy intake and energy expenditure in humans is relatively small perhaps because of the heterogeneity of human populations. Genetic tools such as genetic admixture account for individual’s genetic background in gene association studies, reducing the confounding effect of population stratification, and promise to be a relevant tool on the identification of genetic contributions to energy balance, particularly among individuals of diverse racial/ethnic backgrounds. Although it has been recognized that genes are expressed according to environmental influences, the search toward the understanding of nature and nurture in obesity will require the detailed study of the effect of genes under diverse physiologic and behavioral environments. It is evident that more research is needed to elucidate the methodological and statistical issues that underlie the interactions between genes and environments in obesity and its related comorbidities. PMID:18096193
Wu, Zheyang; Zhao, Hongyu
2012-01-01
For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies.
Nonsense-Mediated Decay in Genetic Disease: Friend or Foe?
Miller, Jake N.; Pearce, David A.
2014-01-01
Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target. PMID:25485595
Taber, Jennifer M; Aspinwall, Lisa G
2015-10-01
A CDKN2A/p16 mutation confers 76 % lifetime risk of developing melanoma to US residents, and high-risk individuals are counseled to use sunscreen. Generally, for patients at population risk, gain framing more effectively promotes prevention behaviors; however, it is unknown whether loss frames might more effectively promote behavioral intentions and perceived control over disease risk among high-risk patients. Undergraduates (N = 146) underwent a simulated genetic counseling and test reporting session for hereditary melanoma. Participants watched a video of a genetic counselor providing information in which genetic risk of melanoma (Low: 15 %; High: 76 %) and framed recommendations to use sunscreen (Loss: Risk may increase by 15 % if don't use sunscreen; Gain: Risk may decrease by 15 % if use sunscreen) were manipulated. Controlling for baseline sunscreen use, high-risk participants given loss frames reported greater beliefs that sunscreen would reduce risk than high-risk participants given gain frames. Further, high-risk participants with fair skin tended to report greater intentions to use sunscreen when given loss frames versus gain frames. Perceived control over risk mediated the effect of message frame and disease risk on intentions to use sunscreen. When counseling patients with elevated cancer risk, genetic counselors may consider framing prevention behavioral recommendations in terms of potential losses.
Wu, Zheyang; Zhao, Hongyu
2013-01-01
For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies. PMID:23956610
Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E.; Luebbe, Elizabeth A.; Moxley, Richard T.; Toji, Lorraine
2014-01-01
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3′ untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. PMID:23680132
Feldman, Max J.; Paul, Rachel E.; Banan, Darshi; ...
2017-06-23
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. For this research, we have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reducedmore » under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.« less
Yang, Jie; Wu, Bo; Lin, Sen; Zhou, Junshan; Li, Yingbin; Dong, Wei; Arima, Hisatomi; Zhang, Chanfei; Liu, Yukai; Liu, Ming
2014-06-15
To investigate the association between genetic variations of matrix metalloproteinase 9 (MMP9) gene and intracerebral hemorrhage (ICH) susceptibility in Chinese Han population. The clinical data and peripheral blood samples from the patients with ICH and hypertension, and controlled subjects with hypertension only, were collected. MassARRAY Analyzer was used to genotype the tagger single nucleotide polymorphism (SNP) of MMP9 gene. Haploview4.2 and Unphased3.1.7 were employed to construct haplotypes and to analyze the association between genetic variations (alleles, genotypes and haplotypes) of MMP9 gene and ICH susceptibility. 181 patients with ICH and hypertension, and 197 patients with hypertension only, were recruited between Sep 2009 and Oct 2010. Patients in the ICH group were younger (61.80 ± 13.27 vs. 72.44 ± 12.71 years, p<0.05). Other conventional risk factors between the ICH and control groups were similar. There were 6 Tagger SNPs and 4 haplotypes of MMP9 gene in our sample population. Our logistical regression analysis showed that there were no significant associations between genetic variations of the MPP9 gene and ICH susceptibility (all p>0.05). The genetic variations of MMP9 gene were not significantly associated with ICH susceptibility in the Chinese Han population. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Max J.; Paul, Rachel E.; Banan, Darshi
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. For this research, we have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reducedmore » under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.« less
Multivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture
Pauli, Duke; Ziegler, Greg; Ren, Min; Jenks, Matthew A.; Hunsaker, Douglas J.; Zhang, Min; Baxter, Ivan; Gore, Michael A.
2018-01-01
To mitigate the effects of heat and drought stress, a better understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the population were profiled in addition to those of soil samples taken from throughout the field site to better model environmental variation. The elements profiled in seeds exhibited moderate to high heritabilities, as well as strong phenotypic and genotypic correlations between elements that were not altered by the imposed irrigation regimes. Quantitative trait loci (QTL) mapping results from a Bayesian classification method identified multiple genomic regions where QTL for individual elements colocalized, suggesting that genetic control of the ionome is highly interrelated. To more fully explore this genetic architecture, multivariate QTL mapping was implemented among groups of biochemically related elements. This analysis revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic variation for elemental accumulation. Machine learning algorithms that utilized only ionomic data predicted the irrigation regime under which genotypes were evaluated with very high accuracy. Taken together, these results demonstrate the extent to which the seed ionome is genetically interrelated and predictive of plant physiological responses to adverse environmental conditions. PMID:29437829
Rewiring protein synthesis: From natural to synthetic amino acids.
Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang
2017-11-01
The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Paul, Rachel E.; Sebastian, Jose; Yee, Muh-Ching; Jiang, Hui; Lipka, Alexander E.; Brutnell, Thomas P.; Dinneny, José R.; Leakey, Andrew D. B.
2017-01-01
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development. PMID:28644860
Feldman, Max J; Paul, Rachel E; Banan, Darshi; Barrett, Jennifer F; Sebastian, Jose; Yee, Muh-Ching; Jiang, Hui; Lipka, Alexander E; Brutnell, Thomas P; Dinneny, José R; Leakey, Andrew D B; Baxter, Ivan
2017-06-01
Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.
Stoltenberg, Scott F.; Nag, Parthasarathi
2010-01-01
Despite more than a decade of empirical work on the role of genetic polymorphisms in the serotonin system on behavior, the details across levels of analysis are not well understood. We describe a mathematical model of the genetic control of presynaptic serotonergic function that is based on control theory, implemented using systems of differential equations, and focused on better characterizing pathways from genes to behavior. We present the results of model validation tests that include the comparison of simulation outcomes with empirical data on genetic effects on brain response to affective stimuli and on impulsivity. Patterns of simulated neural firing were consistent with recent findings of additive effects of serotonin transporter and tryptophan hydroxylase-2 polymorphisms on brain activation. In addition, simulated levels of cerebral spinal fluid 5-hydroxyindoleacetic acid (CSF 5-HIAA) were negatively correlated with Barratt Impulsiveness Scale (Version 11) Total scores in college students (r = −.22, p = .002, N = 187), which is consistent with the well-established negative correlation between CSF 5-HIAA and impulsivity. The results of the validation tests suggest that the model captures important aspects of the genetic control of presynaptic serotonergic function and behavior via brain activation. The proposed model can be: (1) extended to include other system components, neurotransmitter systems, behaviors and environmental influences; (2) used to generate testable hypotheses. PMID:20111992
Maintenance of genetic diversity through plant-herbivore interactions
Gloss, Andrew D.; Dittrich, Anna C. Nelson; Goldman-Huertas, Benjamin; Whiteman, Noah K.
2013-01-01
Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains functionally-important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to address this hypothesis. Population genomic studies of Arabidopsis thaliana and its relatives suggest spatial variation in herbivory maintains adaptive genetic variation controlling defense phenotypes, both within and among populations. Conversely, inter-species variation in plant defenses promotes adaptive genetic variation in herbivores. Emerging genomic model herbivores of Arabidopsis could illuminate how genetic variation in herbivores and plants interact simultaneously. PMID:23834766
Yao, Jun; Ding, Mei; Xing, Jiaxin; Xuan, Jinfeng; Pang, Hao; Pan, Yuqing; Wang, Baojie
2014-01-01
Dysregulation of dopaminergic neurotransmission at the D1 receptor in the prefrontal cortex has been implicated in the pathogenesis of schizophrenia. Genetic polymorphisms of the dopamine D1-receptor gene have a plausible role in modulating the risk of schizophrenia. To determine the role of DRD1 genetic polymorphisms as a risk factor for schizophrenia, we undertook a case-control study to look for an association between the DRD1 gene and schizophrenia. We genotyped eleven single-nucleotide polymorphisms within the DRD1 gene by deoxyribonucleic acid sequencing involving 173 paranoid schizophrenia patients and 213 unrelated healthy individuals. Statistical analysis was performed to identify the difference of genotype, allele, or haplotype distribution between cases and controls. A significantly lower risk of paranoid schizophrenia was associated with the AG + GG genotype of rs5326 and the AG + GG genotype of rs4532 compared to the AA genotype and the AA genotype, respectively. Distribution of haplotypes was no different between controls and paranoid schizophrenia patients. In the males, the genotype distribution of rs5326 was statistically different between cases and controls. In the females, the genotype distribution of rs4532 was statistically different between cases and controls. However, the aforementioned statistical significances were lost after Bonferroni correction. It is unlikely that DRD1 accounts for a substantial proportion of the genetic risk for schizophrenia. As an important dopaminergic gene, DRD1 may contribute to schizophrenia by interacting with other genes, and further relevant studies are warranted.
Oshodi, Y; Ojewunmi, O; Oshodi, T A; Ijarogbe, G T; Ogun, O C; Aina, O F; Lesi, Fea
2017-09-01
The role of oxidative stress has been identified in the development of autism spectrum disorder (ASD), and polymorphisms of glutathione S-transferase have been associated with some diseases linked to oxidative stress. Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a clinical interview were included in the study. Twenty-three age-matched controls without any known genetic/developmental disorder were also recruited. Oxidative stress markers along with the genetic polymorphisms of glutathione S-transferase were determined. Reduced glutathione in ASD patients was significantly lower than the control (P = 0.008), whereas other oxidative stress markers measured were not significantly different in both the control and case populations. The frequencies of GSTT1 and GSTM1 null genotypes were lower among the controls compared with the cases, however, no association risk was observed. The observed risk of carrying Val/Val genotype among the cases was approximately six times that of the controls. Individuals with ASD showed a significant diminished level of reduced glutathione, however, the distribution of GSTT1, GSTM1, and GSTP1 polymorphisms was not found to be associated with autism in this study population.
40 CFR 798.5460 - Rodent heritable translocation assays.
Code of Federal Regulations, 2010 CFR
2010-07-01
... treatment and control groups. (4) Control groups—(i) Concurrent controls. No concurrent positive or negative... control groups. Historical or concurrent controls shall be specified, as well as the randomization... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5460 Rodent...
40 CFR 798.5460 - Rodent heritable translocation assays.
Code of Federal Regulations, 2013 CFR
2013-07-01
... treatment and control groups. (4) Control groups—(i) Concurrent controls. No concurrent positive or negative... control groups. Historical or concurrent controls shall be specified, as well as the randomization... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5460 Rodent...
40 CFR 798.5460 - Rodent heritable translocation assays.
Code of Federal Regulations, 2012 CFR
2012-07-01
... treatment and control groups. (4) Control groups—(i) Concurrent controls. No concurrent positive or negative... control groups. Historical or concurrent controls shall be specified, as well as the randomization... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5460 Rodent...
40 CFR 798.5460 - Rodent heritable translocation assays.
Code of Federal Regulations, 2011 CFR
2011-07-01
... treatment and control groups. (4) Control groups—(i) Concurrent controls. No concurrent positive or negative... control groups. Historical or concurrent controls shall be specified, as well as the randomization... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5460 Rodent...
40 CFR 798.5460 - Rodent heritable translocation assays.
Code of Federal Regulations, 2014 CFR
2014-07-01
... treatment and control groups. (4) Control groups—(i) Concurrent controls. No concurrent positive or negative... control groups. Historical or concurrent controls shall be specified, as well as the randomization... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5460 Rodent...
Genetic Knowledge Among Participants in the Coriell Personalized Medicine Collaborative.
Schmidlen, Tara J; Scheinfeldt, Laura; Zhaoyang, Ruixue; Kasper, Rachel; Sweet, Kevin; Gordon, Erynn S; Keller, Margaret; Stack, Cathy; Gharani, Neda; Daly, Mary B; Jarvis, Joseph; Christman, Michael F
2016-04-01
Genetic literacy is essential for the effective integration of genomic information into healthcare; yet few recent studies have been conducted to assess the current state of this knowledge base. Participants in the Coriell Personalized Medicine Collaborative (CPMC), a prospective study assessing the impact of personalized genetic risk reports for complex diseases and drug response on behavior and health outcomes, completed genetic knowledge questionnaires and other surveys through an online portal. To assess the association between genetic knowledge and genetic education background, multivariate linear regression was performed. 4 062 participants completed a genetic knowledge and genetic education background questionnaire. Most were older (mean age: 50), Caucasian (90 %), female (59 %), highly educated (69 % bachelor's or higher), with annual household income over $100 000 (49 %). Mean percent correct was 76 %. Controlling for demographics revealed that health care providers, participants previously exposed to genetics, and participants with 'better than most' self-rated knowledge were significantly more likely to have a higher knowledge score (p < 0.001). Overall, genetic knowledge was high with previous genetic education experience predictive of higher genetic knowledge score. Education is likely to improve genetic literacy, an important component to expanded use of genomics in personalized medicine.
Chen, Bor-Sen; Hsu, Chih-Yuan
2012-10-26
Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.
2012-01-01
Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662
2014-01-01
Background Studies on informed consent to medical research conducted in low or middle-income settings have increased, including empirical investigations of consent to genetic research. We investigated voluntary participation and comprehension of informed consent among women involved in a genetic epidemiological study on breast cancer in an urban setting of Nigeria comparing women in the case and control groups. Methods Surveys were administered in face-to-face interviews with 215 participants following their enrollment in the genetic study (106 patients, 109 controls). Audio-taped in-depth interviews were conducted with a sub-sample of 17 (8%) women who completed the survey. Results The majority of all participants reported being told that participation in the genetic study was voluntary (97%), that they did not feel pressured to participate in the study (99%), and that they could withdraw from the study (81%). The majority of the breast cancer patients (83%) compared to 58% of women in the control group reported that the study purpose was to learn about the genetic inheritance of breast cancer (OR 3.44; 95% CI =1.66, 7.14, p value = 0.001). Most participants reported being told about study procedures (95%) and study benefits (98%). Sixty-eight percent of the patients, compared to 47% of the control group reported being told about study risks (p-value <0.001). Of the 165 married women, 19% reported asking permission from their husbands to enroll in the breast cancer study; no one sought permission from local elders. In-depth interviews highlight the use of persuasion and negotiation between a wife and her husband regarding study participation. Conclusions The global expansion of genetic and genomic research highlights our need to understand informed consent practices for studies in ethnically diverse cultural environments such as Africa. Quantitative and qualitative empirical investigations of the informed consent process for genetic and genomic research will further our knowledge of complex issues associated with communication of information, comprehension, decisional authority and voluntary participation. In the future, the development and testing of innovative strategies to promote voluntary participation and comprehension of the goals of genomic research will contribute to our understanding of strategies that enhance the consent process. PMID:24885380
[Knowledge and destiny or longevity and old age: the heritage of Homo sapiens].
Goddio, A S
1994-12-01
Several theories have been proposed to explain ageing: limitation of the number of cell divisions or Hayflick's limit, the genetic theory, the action of free radicals, immune deficiency, etc. All of these theories share several points in common: their genetic determinism or repercussions which appear to be part of the heritage of complex organisms. Progress in genetics with chromosome decoding to localise genes and genetic manipulations or control of gene expression will probably allow an increased life expectancy, perhaps in the near future.
Researcher responsibilities and genetic counseling for pure-bred dog populations.
Bell, Jerold S
2011-08-01
Breeders of dogs have ethical responsibilities regarding the testing and management of genetic disease. Molecular genetics researchers have their own responsibilities, highlighted in this article. Laboratories offering commercial genetic testing should have proper sample identification and quality control, official test result certificates, clear explanations of test results and reasonably priced testing fees. Providing test results to a publicly-accessible genetic health registry allows breeders and the public to search for health-tested parents to reduce the risk of producing or purchasing affected offspring. Counseling on the testing and elimination of defective genes must consider the effects of genetic selection on the population. Recommendations to breed quality carriers to normal-testing dogs and replacing them with quality normal-testing offspring will help to preserve breeding lines and breed genetic diversity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cuturilo, Goran; Vucinic, Olivera Kontic; Novakovic, Ivana; Ignjatovic, Svetlana; Mijovic, Marija; Sulovic, Nenad; Vukolic, Dusan; Komnenic, Milica; Tadic, Jasmina; Cetkovic, Aleksandar; Belic, Aleksandra; Ljubic, Aleksandar
2016-02-01
This is the first study in Serbia and the region of South-East Europe dedicated to clients' perception of outcome and efficiency of prenatal and reproductive genetic counseling. The primary aim of this study was to assess overall value and success of genetic counseling in prenatal and reproductive care with regard to perceived personal control of clients, reflecting also in a part patient comprehension, knowledge retention, and empowerment in decision-making. The standardized Perceived Personal Control questionnaire (PPC) was used for the assessment of 239 female participants. First, we performed a complete validation of the psychometric characteristics of the Serbian-language version of the PPC questionnaire. The validation of the questionnaire permits other researchers from Serbian-speaking regions of South-East Europe to use this standard instrument to assess the effectiveness of prenatal genetic counseling in their communities and analyze advantages and disadvantages of their counseling models. We also measured social and demographic characteristics of participants. Further, we analyzed effects of our team-based prenatal and reproductive genetic counseling model through (a) calculation of PPC scores at three different stages (before initial, after initial, and before second counseling session), and (b) by assessing participants' responses by indication for referral (advanced maternal age, abnormal biochemical screening, family history of hereditary disorders, maternal exposure to drugs, exposure to radiation, exposure to infective agents, infertility or recurrent abortions, and miscellaneous). The results indicate that participants' knowledge after initial counseling increased significantly and after that remained stable and sustainable. A satisfactory level of confidence among participants had been achieved, in that many felt an increased sense of control over their situation and emotional response to it. Indirectly, these results indicate the success of a team-based prenatal genetic counseling model, which has not been assessed in the literature to date.
Zhang, Yan; Yang, Jing; Zhang, Jing; Sun, Liangdan; Hirankarn, Nattiya; Pan, Hai-Feng; Lau, Chak Sing; Chan, Tak Mao; Lee, Tsz Leung; Leung, Alexander Moon Ho; Mok, Chi Chiu; Zhang, Lu; Wang, Yongfei; Shen, Jiangshan Jane; Wong, Sik Nin; Lee, Ka Wing; Ho, Marco Hok Kung; Lee, Pamela Pui Wah; Chung, Brian Hon-Yin; Chong, Chun Yin; Wong, Raymond Woon Sing; Mok, Mo Yin; Wong, Wilfred Hing Sang; Tong, Kwok Lung; Tse, Niko Kei Chiu; Li, Xiang-Pei; Avihingsanon, Yingyos; Rianthavorn, Pornpimol; Deekajorndej, Thavatchai; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk; Ying, Shirley King Yee; Fung, Samuel Ka Shun; Lai, Wai Ming; Wong, Chun-Ming; Ng, Irene Oi Lin; Garcia-Barcelo, Maria-Merce; Cherny, Stacey S; Cui, Yong; Sham, Pak Chung; Yang, Sen; Ye, Dong-Qing; Zhang, Xue-Jun; Lau, Yu Lung; Yang, Wanling
2016-05-01
Genetic interaction has been considered as a hallmark of the genetic architecture of systemic lupus erythematosus (SLE). Based on two independent genome-wide association studies (GWAS) on Chinese populations, we performed a genome-wide search for genetic interactions contributing to SLE susceptibility. The study involved a total of 1 659 cases and 3 398 controls in the discovery stage and 2 612 cases and 3 441 controls in three cohorts for replication. Logistic regression and multifactor dimensionality reduction were used to search for genetic interaction. Interaction of CD80 (rs2222631) and ALOX5AP (rs12876893) was found to be significantly associated with SLE (OR_int=1.16, P_int_all=7.7E-04 at false discovery rate<0.05). Single nuclear polymorphism rs2222631 was found associated with SLE with genome-wide significance (P_all=4.5E-08, OR=0.86) and is independent of rs6804441 in CD80, whose association was reported previously. Significant correlation was observed between expression of these two genes in healthy controls and SLE cases, together with differential expression of these genes between cases and controls, observed from individuals from the Hong Kong cohort. Genetic interactions between BLK (rs13277113) and DDX6 (rs4639966), and between TNFSF4 (rs844648) and PXK (rs6445975) were also observed in both GWAS data sets. Our study represents the first genome-wide evaluation of epistasis interactions on SLE and the findings suggest interactions and independent variants may help partially explain missing heritability for complex diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Yin, Xianyong; Wineinger, Nathan E.; Wang, Kai; Yue, Weihua; Norgren, Nina; Wang, Ling; Yao, Weiyi; Jiang, Xiaoyun; Wu, Bo; Cui, Yong; Shen, Changbing; Cheng, Hui; Zhou, Fusheng; Chen, Gang; Zuo, Xianbo; Zheng, Xiaodong; Fan, Xing; Wang, Hongyan; Wang, Lifang; Lee, Jimmy; Lam, Max; Tai, E. Shyong; Zhang, Zheng; Huang, Qiong; Sun, Liangdan; Xu, Jinhua; Yang, Sen; Wilhelmsen, Kirk C.; Liu, Jianjun; Schork, Nicholas J.; Zhang, Xuejun
2016-01-01
Background Previous studies have shown that individuals with schizophrenia have a greater risk for psoriasis than a typical person. This suggests that there might be a shared genetic etiology between the 2 conditions. We aimed to characterize the potential shared genetic susceptibility between schizophrenia and psoriasis using genome-wide marker genotype data. Methods We obtained genetic data on individuals with psoriasis, schizophrenia and control individuals. We applied a marker-based coheritability estimation procedure, polygenic score analysis, a gene set enrichment test and a least absolute shrinkage and selection operator regression model to estimate the potential shared genetic etiology between the 2 diseases. We validated the results in independent schizophrenia and psoriasis cohorts from Singapore. Results We included 1139 individuals with psoriasis, 744 with schizophrenia and 1678 controls in our analysis, and we validated the results in independent cohorts, including 441 individuals with psoriasis (and 2420 controls) and 1630 with schizophrenia (and 1860 controls). We estimated that a large fraction of schizophrenia and psoriasis risk could be attributed to common variants (h2SNP = 29% ± 5.0%, p = 2.00 × 10−8), with a coheritability estimate between the traits of 21%. We identified 5 variants within the human leukocyte antigen (HLA) gene region, which were most likely to be associated with both diseases and collectively conferred a significant risk effect (odds ratio of highest risk quartile = 6.03, p < 2.00 × 10−16). We discovered that variants contributing most to the shared heritable component between psoriasis and schizophrenia were enriched in antigen processing and cell endoplasmic reticulum. Limitations Our sample size was relatively small. The findings of 5 HLA gene variants were complicated by the complex structure in the HLA region. Conclusion We found evidence for a shared genetic etiology between schizophrenia and psoriasis. The mechanism for this shared genetic basis likely involves immune and calcium signalling pathways. PMID:27091718
Genetic factors controlling wool shedding in a composite Easycare sheep flock.
Matika, O; Bishop, S C; Pong-Wong, R; Riggio, V; Headon, D J
2013-12-01
Historically, sheep have been selectively bred for desirable traits including wool characteristics. However, recent moves towards extensive farming and reduced farm labour have seen a renewed interest in Easycare breeds. The aim of this study was to quantify the underlying genetic architecture of wool shedding in an Easycare flock. Wool shedding scores were collected from 565 pedigreed commercial Easycare sheep from 2002 to 2010. The wool scoring system was based on a 10-point (0-9) scale, with score 0 for animals retaining full fleece and 9 for those completely shedding. DNA was sampled from 200 animals of which 48 with extreme phenotypes were genotyped using a 50-k SNP chip. Three genetic analyses were performed: heritability analysis, complex segregation analysis to test for a major gene hypothesis and a genome-wide association study to map regions in the genome affecting the trait. Phenotypes were treated as a continuous or binary variable and categories. High estimates of heritability (0.80 when treated as a continuous, 0.65-0.75 as binary and 0.75 as categories) for shedding were obtained from linear mixed model analyses. Complex segregation analysis gave similar estimates (0.80 ± 0.06) to those above with additional evidence for a major gene with dominance effects. Mixed model association analyses identified four significant (P < 0.05) SNPs. Further analyses of these four SNPs in all 200 animals revealed that one of the SNPs displayed dominance effects similar to those obtained from the complex segregation analyses. In summary, we found strong genetic control for wool shedding, demonstrated the possibility of a single putative dominant gene controlling this trait and identified four SNPs that may be in partial linkage disequilibrium with gene(s) controlling shedding. © 2013 University of Edinburgh, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.
Huang, Jian Qun; Shahine, Lora K; Gupta, Nidhi; Westphal, Lynn M
2010-01-01
Cystic fibrosis (CF) is one of the most common genetic disorders that can often lead to chronic pulmonary disease. Patients with respiratory failure due to CF may achieve a good quality of life after lung transplant, and many will desire to have children. A 26-year-old, nulliparous female with CF and double lung transplant presented for fertility treatment. She was successfully treated with controlled ovarian hyperstimulation and gestational surrogacy. Controlled ovarian hyperstimulation and gestational surrogacy is a safe option for patients with lung transplant to have a genetic child.
Erim, Yesim; Scheel, Jennifer; Breidenstein, Anja; Metz, Claudia Hd; Lohmann, Dietmar; Friederich, Hans-Christoph; Tagay, Sefik
2016-07-07
Uveal melanoma patients with a poor prognosis can be detected through genetic analysis of the tumor, which has a very high sensitivity. A large number of patients with uveal melanoma decide to receive information about their individual risk and therefore routine prognostic genetic testing is being carried out on a growing number of patients. It is obvious that a positive prediction for recidivism in the future will emotionally burden the respective patients, but research on the psychosocial impact of this innovative method is lacking. The aim of the current study is therefore to investigate the psychosocial impact (psychological distress and quality of life) of prognostic genetic testing in patients with uveal melanoma. This study is a non-randomized controlled prospective clinical observational trial. Subjects are patients with uveal melanoma, in whom genetic testing is possible. Patients who consent to genetic testing are allocated to the intervention group and patients who refuse genetic testing form the observational group. Both groups receive cancer therapy and psycho-oncological intervention when needed. The psychosocial impact of prognostic testing is investigated with the following variables: resilience, social support, fear of tumor progression, depression, general distress, cancer-specific and general health-related quality of life, attitude towards genetic testing, estimation of the perceived risk of metastasis, utilization and satisfaction with psycho-oncological crisis intervention, and sociodemographic data. Data are assessed preoperatively (at initial admission in the clinic) and postoperatively (at discharge from hospital after surgery, 6-12 weeks, 6 and 12 months after initial admission). Genetic test results are communicated 6-12 weeks after initial admission to the clinic. We created optimal conditions for investigation of the psychosocial impact of prognostic genetic testing. This study will provide information on the course of disease and psychosocial outcomes after prognostic genetic testing. We expect that empirical data from our study will give a scientific basis for medico-ethical considerations.
Gent, R N
1999-09-01
Genetic engineering technology is starting to bring many commercial products to the market. These genetically modified organisms (GMOs) and their derived products are subject to topical debate as to their benefits and risks. The strengths and weaknesses of the regulatory framework that controls their development and application is central to the question of whether this technology poses significant risk to the public health during this critical phase of its evolution. A critical review was carried out of the legal framework regulating the contained use, deliberate release and some aspects of consumer protection relevant to the control of GMOs in Europe and the United Kingdom. The current legal framework is failing to provide a speed of adaptation commensurate with the development of the science of genetic engineering; failing to properly respond to democratic control; failing to resolve significant conflict between the protection of free markets and protection of public health and the environment; and failing to implement obligations on biodiversity. The present legal framework must be replaced. Current European Union proposals for new standards of regulation are welcome, but provide only for further incremental change, and do not address some significant fundamental flaws in our current laws.
Liang, Xia; Zhang, Yong-jing; Liu, Bing; Ni, Qin; Jin, Ming-juan; Ma, Xin-yuan; Yao, Kai-yan; Li, Qi-long; Chen, Kun
2009-06-01
To explore the distribution of HER-2 genetic polymorphism at codon 655 and its association with susceptibility of colorectal cancer in Chinese. A population-based case-control study was carried out. 292 patients with colorectal cancer and 842 healthy controls were interviewed. Meanwhile, the genetic polymorphism of HRE-2 was detected using polymerase chain reaction-restriction fragment length polymorphism. The frequencies of Ile/Val+Val/Val genotypes and Val allele were both higher in cases (25.34% and 13.36%) than those in controls (18.41% and 9.74%) (P<0.05). Compared with Ile/Ile genotype, Ile/Val+Val/Val genotypes were significantly associated with colorectal cancer [ORadjusted=1.54, 95% CI: 1.11-2.14]. The adjusted odds ratio of interactions between this polymorphism and smoking, alcohol drinking were 1.43 (95%CI: 0.88-2.30) and 1.29 (95%CI: 0.73-2.29), respectively. The present findings suggest that HER-2 genetic polymorphism at codon 655 may be associated with the risk of colorectal cancer in Chinese. In addition, there are no interactions between this polymorphism and smoking, alcohol drinking, respectively.
Sun, Lidan; Wang, Yaqun; Yan, Xiaolan; Cheng, Tangren; Ma, Kaifeng; Yang, Weiru; Pan, Huitang; Zheng, Chengfei; Zhu, Xuli; Wang, Jia; Wu, Rongling; Zhang, Qixiang
2014-01-01
Mei, Prunus mume Sieb. et Zucc., is an ornamental plant popular in East Asia and, as an important member of genus Prunus, has played a pivotal role in systematic studies of the Rosaceae. However, the genetic architecture of botanical traits in this species remains elusive. This paper represents the first genome-wide mapping study of quantitative trait loci (QTLs) that affect stem growth and form, leaf morphology and leaf anatomy in an intraspecific cross derived from two different mei cultivars. Genetic mapping based on a high-density linkage map constricted from 120 SSRs and 1,484 SNPs led to the detection of multiple QTLs for each trait, some of which exert pleiotropic effects on correlative traits. Each QTL explains 3-12% of the phenotypic variance. Several leaf size traits were found to share common QTLs, whereas growth-related traits and plant form traits might be controlled by a different set of QTLs. Our findings provide unique insights into the genetic control of tree growth and architecture in mei and help to develop an efficient breeding program for selecting superior mei cultivars.
Kennedy, Richard B.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; O’Byrne, Megan; Jacobson, Robert M.; Pankratz, V. Shane; Poland, Gregory A.
2012-01-01
Measles infection and vaccine response are complex biological processes that involve both viral and host genetic factors. We have previously investigated the influence of genetic polymorphisms on vaccine immune response, including measles vaccines, and have shown that polymorphisms in HLA, cytokine, cytokine receptor, and innate immune response genes are associated with variation in vaccine response but do not account for all of the inter-individual variance seen in vaccinated populations. In the current study we report the findings of a multigenic analysis of measles vaccine immunity, indicating a role for the measles virus receptor CD46, innate pattern-recognition receptors (DDX58, TLR2, 4, 5,7 and 8) and intracellular signaling intermediates (MAP3K7, NFKBIA), and key antiviral molecules (VISA, OAS2, MX1, PKR) as well as cytokines (IFNA1, IL4, IL6, IL8, IL12B) and cytokine receptor genes (IL2RB, IL6R, IL8RA) in the genetic control of both humoral and cellular immune responses. This multivariate approach provided additional insights into the genetic control of measles vaccine responses over and above the information gained by our previous univariate SNP association analyses. PMID:22265947
Efficient strategy for detecting gene × gene joint action and its application in schizophrenia.
Won, Sungho; Kwon, Min-Seok; Mattheisen, Manuel; Park, Suyeon; Park, Changsoon; Kihara, Daisuke; Cichon, Sven; Ophoff, Roel; Nöthen, Markus M; Rietschel, Marcella; Baur, Max; Uitterlinden, Andre G; Hofmann, A; Lange, Christoph
2014-01-01
We propose a new approach to detect gene × gene joint action in genome-wide association studies (GWASs) for case-control designs. This approach offers an exhaustive search for all two-way joint action (including, as a special case, single gene action) that is computationally feasible at the genome-wide level and has reasonable statistical power under most genetic models. We found that the presence of any gene × gene joint action may imply differences in three types of genetic components: the minor allele frequencies and the amounts of Hardy-Weinberg disequilibrium may differ between cases and controls, and between the two genetic loci the degree of linkage disequilibrium may differ between cases and controls. Using Fisher's method, it is possible to combine the different sources of genetic information in an overall test for detecting gene × gene joint action. The proposed statistical analysis is efficient and its simplicity makes it applicable to GWASs. In the current study, we applied the proposed approach to a GWAS on schizophrenia and found several potential gene × gene interactions. Our application illustrates the practical advantage of the proposed method. © 2013 WILEY PERIODICALS, INC.
ENDERSBY, N. M.; HOFFMANN, A. A.; WHITE, V. L.; LOWENSTEIN, S.; RITCHIE, S.; JOHNSON, P. H.; RAPLEY, L. P.; RYAN, P. A.; NAM, V. S.; YEN, N. T.; KITTIYAPONG, P.; WEEKS, A. R.
2009-01-01
The distribution of Aedes aegypti (L.) in Australia is currently restricted to northern Queensland, but it has been more extensive in the past. In this study, we evaluate the genetic structure of Ae. aegypti populations in Australia and Vietnam and consider genetic differentiation between mosquitoes from these areas and those from a population in Thailand. Six microsatellites and two exon primed intron crossing markers were used to assess isolation by distance across all populations and also within the Australian sample. Investigations of founder effects, amount of molecular variation between and within regions and comparison of FST values among Australian and Vietnamese populations were made to assess the scale of movement of Ae. aegypti. Genetic control methods are under development for mosquito vector populations including the dengue vector Ae. aegypti. The success of these control methods will depend on the population structure of the target species including population size and rates of movement among populations. Releases of modified mosquitoes could target local populations that show a high degree of isolation from surrounding populations, potentially allowing new variants to become established in one region with eventual dispersal to other regions. PMID:19769038
Genetic dissection of neural circuits underlying sexually dimorphic social behaviours
Bayless, Daniel W.; Shah, Nirao M.
2016-01-01
The unique hormonal, genetic and epigenetic environments of males and females during development and adulthood shape the neural circuitry of the brain. These differences in neural circuitry result in sex-typical displays of social behaviours such as mating and aggression. Like other neural circuits, those underlying sex-typical social behaviours weave through complex brain regions that control a variety of diverse behaviours. For this reason, the functional dissection of neural circuits underlying sex-typical social behaviours has proved to be difficult. However, molecularly discrete neuronal subpopulations can be identified in the heterogeneous brain regions that control sex-typical social behaviours. In addition, the actions of oestrogens and androgens produce sex differences in gene expression within these brain regions, thereby highlighting the neuronal subpopulations most likely to control sexually dimorphic social behaviours. These conditions permit the implementation of innovative genetic approaches that, in mammals, are most highly advanced in the laboratory mouse. Such approaches have greatly advanced our understanding of the functional significance of sexually dimorphic neural circuits in the brain. In this review, we discuss the neural circuitry of sex-typical social behaviours in mice while highlighting the genetic technical innovations that have advanced the field. PMID:26833830
Fuzzy fractional order sliding mode controller for nonlinear systems
NASA Astrophysics Data System (ADS)
Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.
2010-04-01
In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.
Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.
MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D
2016-07-01
Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.
Chelsea G. Drum; Eric J. Jokela; Jason G. Vogel; Edward A. G. Schuur; Salvador Gezan
2015-01-01
In the southeastern United States, fertilization and weed control treatments, with deployment of genetically improved seedlings planting stock, are routinely used to increase aboveground productivity (Jokela and others 2004).
The genetic control of phenformin 4-hydroxylation.
Shah, R R; Evans, D A; Oates, N S; Idle, J R; Smith, R L
1985-01-01
Previously published results of phenformin 4-hydroxylation in 195 unrelated white British volunteers and 87 family members of 27 randomly selected probands have been subjected to genetic analysis. The results clearly show that about 9% of this population has a genetically determined defect in carrying out this oxidation reaction. The character for the defect is inherited in a Mendelian autosomal recessive fashion. The polymorphism shows a substantial degree of dominance. PMID:4078865
Kim, Sojung Claire; Cappella, Joseph N.; Price, Vincent
2016-01-01
Objective The National Human Genome Research Institute has emphasized community engagement and public dialogue in the U. S. on issues related to genetics. This study examines how online discussions among the U.S. public directly or indirectly influence psychosocial constructs of the Theory of Planned Behavior (TPB), including intention to take part in genetic research. Design After completing the baseline questionnaire, participants (n = 3,754) were randomly assigned to one of the following three groups: the discussion group, the pre/post only group, and the End-Of-Project group. The discussion group (n = 1,824) was invited and participated in up to three online discussions, which were held from November 2008 to May 2009. Main Outcome Measures Behavioral intention, beliefs, attitudes, subjective norm, and perceived behavioral control variables were assessed. Results The most interesting finding was that those participating in online discussions had fewer negative beliefs about volunteering for genetic research, which in turn, contributed to more positive attitudes, increased injunctive and descriptive norms, and enhanced behavioral control. These relationships, then, were associated with higher intention to participate in genetic research. Conclusion These findings suggest that continuous public discussions seem to positively affect volunteer intention for genetic research through ameliorating fears of negative consequences. PMID:26979570
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.
2016-01-01
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751
Grady, Benjamin J.; Ritchie, Marylyn D.
2011-01-01
Research in human genetics and genetic epidemiology has grown significantly over the previous decade, particularly in the field of pharmacogenomics. Pharmacogenomics presents an opportunity for rapid translation of associated genetic polymorphisms into diagnostic measures or tests to guide therapy as part of a move towards personalized medicine. Expansion in genotyping technology has cleared the way for widespread use of whole-genome genotyping in the effort to identify novel biology and new genetic markers associated with pharmacokinetic and pharmacodynamic endpoints. With new technology and methodology regularly becoming available for use in genetic studies, a discussion on the application of such tools becomes necessary. In particular, quality control criteria have evolved with the use of GWAS as we have come to understand potential systematic errors which can be introduced into the data during genotyping. There have been several replicated pharmacogenomic associations, some of which have moved to the clinic to enact change in treatment decisions. These examples of translation illustrate the strength of evidence necessary to successfully and effectively translate a genetic discovery. In this review, the design of pharmacogenomic association studies is examined with the goal of optimizing the impact and utility of this research. Issues of ascertainment, genotyping, quality control, analysis and interpretation are considered. PMID:21887206
Genetic and hormonal control of hepatic steatosis in female and male mice.
Norheim, Frode; Hui, Simon T; Kulahcioglu, Emre; Mehrabian, Margarete; Cantor, Rita M; Pan, Calvin; Parks, Brian W; Lusis, Aldons J
2017-01-01
The etiology of nonalcoholic fatty liver disease is complex and influenced by factors such as obesity, insulin resistance, hyperlipidemia, and sex. We now report a study on sex difference in hepatic steatosis in the context of genetic variation using a population of inbred strains of mice. While male mice generally exhibited higher concentration of hepatic TG levels on a high-fat high-sucrose diet, sex differences showed extensive interaction with genetic variation. Differences in percentage body fat were the best predictor of hepatic steatosis among the strains and explained about 30% of the variation in both sexes. The difference in percent gonadal fat and HDL explained 9.6% and 6.7% of the difference in hepatic TGs between the sexes, respectively. Genome-wide association mapping of hepatic TG revealed some striking differences in genetic control of hepatic steatosis between females and males. Gonadectomy increased the hepatic TG to body fat percentage ratio among male, but not female, mice. Our data suggest that the difference between the sexes in hepatic TG can be partly explained by differences in body fat distribution, plasma HDL, and genetic regulation. Future studies are required to understand the molecular interactions between sex, genetics, and the environment. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.
Lee, S Hong; Ripke, Stephan; Neale, Benjamin M; Faraone, Stephen V; Purcell, Shaun M; Perlis, Roy H; Mowry, Bryan J; Thapar, Anita; Goddard, Michael E; Witte, John S; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E; Asherson, Philip; Azevedo, Maria H; Backlund, Lena; Badner, Judith A; Bailey, Anthony J; Banaschewski, Tobias; Barchas, Jack D; Barnes, Michael R; Barrett, Thomas B; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayés, Mònica; Bellivier, Frank; Bergen, Sarah E; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B; Black, Donald W; Blackwood, Douglas H R; Bloss, Cinnamon S; Boehnke, Michael; Boomsma, Dorret I; Breen, Gerome; Breuer, René; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G; Buitelaar, Jan K; Bunney, William E; Buxbaum, Joseph D; Byerley, William F; Byrne, Enda M; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Cloninger, C Robert; Collier, David A; Cook, Edwin H; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H; Craig, David W; Craig, Ian W; Crosbie, Jennifer; Cuccaro, Michael L; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J; Doyle, Alysa E; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P; Edenberg, Howard J; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E; Ferrier, I Nicol; Flickinger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B; Freitag, Christine M; Friedl, Marion; Frisén, Louise; Gallagher, Louise; Gejman, Pablo V; Georgieva, Lyudmila; Gershon, Elliot S; Geschwind, Daniel H; Giegling, Ina; Gill, Michael; Gordon, Scott D; Gordon-Smith, Katherine; Green, Elaine K; Greenwood, Tiffany A; Grice, Dorothy E; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P; Hamshere, Marian L; Hansen, Thomas F; Hartmann, Annette M; Hautzinger, Martin; Heath, Andrew C; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hipolito, Maria; Hoefels, Susanne; Holmans, Peter A; Holsboer, Florian; Hoogendijk, Witte J; Hottenga, Jouke-Jan; Hultman, Christina M; Hus, Vanessa; Ingason, Andrés; Ising, Marcus; Jamain, Stéphane; Jones, Edward G; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kähler, Anna K; Kahn, René S; Kandaswamy, Radhika; Keller, Matthew C; Kennedy, James L; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K; Klauck, Sabine M; Klei, Lambertus; Knowles, James A; Kohli, Martin A; Koller, Daniel L; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landén, Mikael; Långström, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B; Leboyer, Marion; Ledbetter, David H; Lee, Phil H; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F; Lewis, Cathryn M; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A; Lin, Dan-Yu; Linszen, Don H; Liu, Chunyu; Lohoff, Falk W; Loo, Sandra K; Lord, Catherine; Lowe, Jennifer K; Lucae, Susanne; MacIntyre, Donald J; Madden, Pamela A F; Maestrini, Elena; Magnusson, Patrik K E; Mahon, Pamela B; Maier, Wolfgang; Malhotra, Anil K; Mane, Shrikant M; Martin, Christa L; Martin, Nicholas G; Mattheisen, Manuel; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A; McGhee, Kevin A; McGough, James J; McGrath, Patrick J; McGuffin, Peter; McInnis, Melvin G; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W; McMahon, Francis J; McMahon, William M; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P; Montgomery, Grant W; Moran, Jennifer L; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W; Morrow, Eric M; Moskvina, Valentina; Muglia, Pierandrea; Mühleisen, Thomas W; Muir, Walter J; Müller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M; Myin-Germeys, Inez; Neale, Michael C; Nelson, Stan F; Nievergelt, Caroline M; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A; Nöthen, Markus M; Nurnberger, John I; Nwulia, Evaristus A; Nyholt, Dale R; O'Dushlaine, Colm; Oades, Robert D; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A; Osby, Urban; Owen, Michael J; Palotie, Aarno; Parr, Jeremy R; Paterson, Andrew D; Pato, Carlos N; Pato, Michele T; Penninx, Brenda W; Pergadia, Michele L; Pericak-Vance, Margaret A; Pickard, Benjamin S; Pimm, Jonathan; Piven, Joseph; Posthuma, Danielle; Potash, James B; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J; Quinn, Emma M; Ramos-Quiroga, Josep Antoni; Rasmussen, Henrik B; Raychaudhuri, Soumya; Rehnström, Karola; Reif, Andreas; Ribasés, Marta; Rice, John P; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rossin, Lizzy; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R; Sanders, Stephan J; Santangelo, Susan L; Sergeant, Joseph A; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F; Scheftner, William A; Schellenberg, Gerard D; Scherer, Stephen W; Schork, Nicholas J; Schulze, Thomas G; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J; Shi, Jianxin; Shilling, Paul D; Shyn, Stanley I; Silverman, Jeremy M; Slager, Susan L; Smalley, Susan L; Smit, Johannes H; Smith, Erin N; Sonuga-Barke, Edmund J S; St Clair, David; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S; Strohmaier, Jana; Stroup, T Scott; Sutcliffe, James S; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C; Todorov, Alexandre A; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M; Vieland, Veronica J; Vincent, John B; Visscher, Peter M; Walsh, Christopher A; Wassink, Thomas H; Watson, Stanley J; Weissman, Myrna M; Werge, Thomas; Wienker, Thomas F; Wijsman, Ellen M; Willemsen, Gonneke; Williams, Nigel; Willsey, A Jeremy; Witt, Stephanie H; Xu, Wei; Young, Allan H; Yu, Timothy W; Zammit, Stanley; Zandi, Peter P; Zhang, Peng; Zitman, Frans G; Zöllner, Sebastian; Devlin, Bernie; Kelsoe, John R; Sklar, Pamela; Daly, Mark J; O'Donovan, Michael C; Craddock, Nicholas; Sullivan, Patrick F; Smoller, Jordan W; Kendler, Kenneth S; Wray, Naomi R
2013-09-01
Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Mann, Frank D; Patterson, Megan W; Grotzinger, Andrew D; Kretsch, Natalie; Tackett, Jennifer L; Tucker-Drob, Elliot M; Harden, K Paige
2016-07-01
Both sensation seeking and affiliation with deviant peer groups are risk factors for delinquency in adolescence. In this study, we use a sample of adolescent twins (n = 549), 13 to 20 years old (M age = 15.8 years), in order to test the interactive effects of peer deviance and sensation seeking on delinquency in a genetically informative design. Consistent with a socialization effect, affiliation with deviant peers was associated with higher delinquency even after controlling for selection effects using a co-twin-control comparison. At the same time, there was evidence for person-environment correlation; adolescents with genetic dispositions toward higher sensation seeking were more likely to report having deviant peer groups. Genetic influences on sensation seeking substantially overlapped with genetic influences on adolescent delinquency. Finally, the environmentally mediated effect of peer deviance on adolescent delinquency was moderated by individual differences in sensation seeking. Adolescents reporting high levels of sensation seeking were more susceptible to deviant peers, a Person × Environment interaction. These results are consistent with both selection and socialization processes in adolescent peer relationships, and they highlight the role of sensation seeking as an intermediary phenotype for genetic risk for delinquency. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Impact of preimplantation genetic screening on donor oocyte-recipient cycles in the United States.
Barad, David H; Darmon, Sarah K; Kushnir, Vitaly A; Albertini, David F; Gleicher, Norbert
2017-11-01
Our objective was to estimate the contribution of preimplantation genetic screening to in vitro fertilization pregnancy outcomes in donor oocyte-recipient cycles. This was a retrospective cross-sectional study of US national data from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System between 2005 and 2013. Society for Assisted Reproductive Technology Clinic Outcome Reporting relies on voluntarily annual reports by more than 90% of US in vitro fertilization centers. We evaluated pregnancy and live birth rates in donor oocyte-recipient cycles after the first embryo transfer with day 5/6 embryos. Statistical models, adjusted for patient and donor ages, number of embryos transferred, race, infertility diagnosis, and cycle year were created to compare live birth rates in 392 preimplantation genetic screening and 20,616 control cycles. Overall, pregnancy and live birth rates were significantly lower in preimplantation genetic screening cycles than in control cycles. Adjusted odds of live birth for preimplantation genetic screening cycles were reduced by 35% (odds ratio, 0.65, 95% confidence interval, 0.53-0.80; P < .001). Preimplantation genetic screening, as practiced in donor oocyte-recipient cycles over the past 9 years, has not been associated with improved odds of live birth or reduction in miscarriage rates. Copyright © 2017 Elsevier Inc. All rights reserved.
Conomos, Matthew P.; Laurie, Cecelia A.; Stilp, Adrienne M.; Gogarten, Stephanie M.; McHugh, Caitlin P.; Nelson, Sarah C.; Sofer, Tamar; Fernández-Rhodes, Lindsay; Justice, Anne E.; Graff, Mariaelisa; Young, Kristin L.; Seyerle, Amanda A.; Avery, Christy L.; Taylor, Kent D.; Rotter, Jerome I.; Talavera, Gregory A.; Daviglus, Martha L.; Wassertheil-Smoller, Sylvia; Schneiderman, Neil; Heiss, Gerardo; Kaplan, Robert C.; Franceschini, Nora; Reiner, Alex P.; Shaffer, John R.; Barr, R. Graham; Kerr, Kathleen F.; Browning, Sharon R.; Browning, Brian L.; Weir, Bruce S.; Avilés-Santa, M. Larissa; Papanicolaou, George J.; Lumley, Thomas; Szpiro, Adam A.; North, Kari E.; Rice, Ken; Thornton, Timothy A.; Laurie, Cathy C.
2016-01-01
US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a “genetic-analysis group” variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness. PMID:26748518
Gaysina, Darya; Fergusson, David M; Leve, Leslie D; Horwood, John; Reiss, David; Shaw, Daniel S; Elam, Kit K; Natsuaki, Misaki N; Neiderhiser, Jenae M; Harold, Gordon T
2013-09-01
Several studies report an association between maternal smoking during pregnancy and offspring conduct disorder. However, past research evidences difficulty in disaggregating prenatal environmental influences from genetic and postnatal environmental influences. To examine the relationship between maternal smoking during pregnancy and offspring conduct problems among children reared by genetically related mothers and genetically unrelated mothers. The following 3 studies using distinct but complementary research designs were used: The Christchurch Health and Development Study (a longitudinal cohort study that includes biological and adopted children), the Early Growth and Development Study (a longitudinal adoption-at-birth study), and the Cardiff IVF (In Vitro Fertilization) Study (an adoption-at-conception study among genetically related families and genetically unrelated families). Maternal smoking during pregnancy was measured as the mean number of cigarettes per day (0, 1-9, or 10) smoked during pregnancy. Possible covariates were controlled for in the analyses, including child sex, birth weight, race/ethnicity, placement age, and breastfeeding, as well as maternal education and maternal age at birth and family breakdown, parenting practices, and family socioeconomic status. Offspring conduct problems (age range, 4-10 years) reported by parents or teachers using the behavior rating scales by Rutter and Conners, the Child Behavior Checklist and the Children's Behavior Questionnaire Short Form, and the Strengths and Difficulties Questionnaire. A significant association between maternal smoking during pregnancy and offspring conduct problems was observed among children reared by genetically related mothers and genetically unrelated mothers. Results from a meta-analysis affirmed this pattern of findings across pooled study samples. Findings across 3 studies using a complement of genetically sensitive research designs suggest that smoking during pregnancy is a prenatal risk factor for offspring conduct problems when controlling for specific perinatal and postnatal confounding factors.
Groen-Blokhuis, Maria M.; Pourcain, Beate St.; Greven, Corina U.; Pappa, Irene; Tiesler, Carla M.T.; Ang, Wei; Nolte, Ilja M.; Vilor-Tejedor, Natalia; Bacelis, Jonas; Ebejer, Jane L.; Zhao, Huiying; Davies, Gareth E.; Ehli, Erik A.; Evans, David M.; Fedko, Iryna O.; Guxens, Mònica; Hottenga, Jouke-Jan; Hudziak, James J.; Jugessur, Astanand; Kemp, John P.; Krapohl, Eva; Martin, Nicholas G.; Murcia, Mario; Myhre, Ronny; Ormel, Johan; Ring, Susan M.; Standl, Marie; Stergiakouli, Evie; Stoltenberg, Camilla; Thiering, Elisabeth; Timpson, Nicholas J.; Trzaskowski, Maciej; van der Most, Peter J.; Wang, Carol; Nyholt, Dale R.; Medland, Sarah E.; Neale, Benjamin; Jacobsson, Bo; Sunyer, Jordi; Hartman, Catharina A.; Whitehouse, Andrew J.O.; Pennell, Craig E.; Heinrich, Joachim; Plomin, Robert; Smith, George Davey; Tiemeier, Henning; Posthuma, Danielle; Boomsma, Dorret I.
2016-01-01
Objective To elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis. Method Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (< 13 years) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated. Results SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46×10-6 and 2.66×10-6). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96. Conclusion The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and improve statistical power for identifying genetic variants. PMID:27663945
Multi-gene panel testing in Korean patients with common genetic generalized epilepsy syndromes.
Lee, Cha Gon; Lee, Jeehun; Lee, Munhyang
2018-01-01
Genetic heterogeneity of common genetic generalized epilepsy syndromes is frequently considered. The present study conducted a focused analysis of potential candidate or susceptibility genes for common genetic generalized epilepsy syndromes using multi-gene panel testing with next-generation sequencing. This study included patients with juvenile myoclonic epilepsy, juvenile absence epilepsy, and epilepsy with generalized tonic-clonic seizures alone. We identified pathogenic variants according to the American College of Medical Genetics and Genomics guidelines and identified susceptibility variants using case-control association analyses and family analyses for familial cases. A total of 57 patients were enrolled, including 51 sporadic cases and 6 familial cases. Twenty-two pathogenic and likely pathogenic variants of 16 different genes were identified. CACNA1H was the most frequently observed single gene. Variants of voltage-gated Ca2+ channel genes, including CACNA1A, CACNA1G, and CACNA1H were observed in 32% of variants (n = 7/22). Analyses to identify susceptibility variants using case-control association analysis indicated that KCNMA1 c.400G>C was associated with common genetic generalized epilepsy syndromes. Only 1 family (family A) exhibited a candidate pathogenic variant p.(Arg788His) on CACNA1H, as determined via family analyses. This study identified candidate genetic variants in about a quarter of patients (n = 16/57) and an average of 2.8 variants was identified in each patient. The results reinforced the polygenic disorder with very high locus and allelic heterogeneity of common GGE syndromes. Further, voltage-gated Ca2+ channels are suggested as important contributors to common genetic generalized epilepsy syndromes. This study extends our comprehensive understanding of common genetic generalized epilepsy syndromes.
Genetic Diversity of Plasmodium falciparum in Haiti: Insights from Microsatellite Markers
Carter, Tamar E.; Malloy, Halley; Existe, Alexandre; Memnon, Gladys; St. Victor, Yves; Okech, Bernard A.; Mulligan, Connie J.
2015-01-01
Hispaniola, comprising Haiti and the Dominican Republic, has been identified as a candidate for malaria elimination. However, incomplete surveillance data in Haiti hamper efforts to assess the impact of ongoing malaria control interventions. Characteristics of the genetic diversity of Plasmodium falciparum populations can be used to assess parasite transmission, which is information vital to evaluating malaria elimination efforts. Here we characterize the genetic diversity of P. falciparum samples collected from patients at seven sites in Haiti using 12 microsatellite markers previously employed in population genetic analyses of global P. falciparum populations. We measured multiplicity of infections, level of genetic diversity, degree of population geographic substructure, and linkage disequilibrium (defined as non-random association of alleles from different loci). For low transmission populations like Haiti, we expect to see few multiple infections, low levels of genetic diversity, high degree of population structure, and high linkage disequilibrium. In Haiti, we found low levels of multiple infections (12.9%), moderate to high levels of genetic diversity (mean number of alleles per locus = 4.9, heterozygosity = 0.61), low levels of population structure (highest pairwise Fst = 0.09 and no clustering in principal components analysis), and moderate linkage disequilibrium (ISA = 0.05, P<0.0001). In addition, population bottleneck analysis revealed no evidence for a reduction in the P. falciparum population size in Haiti. We conclude that the high level of genetic diversity and lack of evidence for a population bottleneck may suggest that Haiti’s P. falciparum population has been stable and discuss the implications of our results for understanding the impact of malaria control interventions. We also discuss the relevance of parasite population history and other host and vector factors when assessing transmission intensity from genetic diversity data. PMID:26462203
Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).
Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling
2014-04-01
This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.
Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.
Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico
2017-01-01
Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.
Furr, L Allen
2002-01-01
Genetics has the potential not only to find cures for diseases, but to possess the mechanisms to change the bio-social make-up of populations. A specific question that has arisen on this issue is how developments in genetic technology may intersect with existing race and ethnic relations. Evidence of the racialization of some genetic disorders has been demonstrated elsewhere. The purpose of this study is to compare and contrast African-American and European-American attitudes on the benefits of genetics research for society. Findings show that African-Americans were more likely to say genetics research is harmful for society. This relationship remained statistically significant after controls were introduced in a regression model. Demographic characteristics and self-rated knowledge of genetics had no effect on attitudes among African-Americans. A willingness to use genetic services correlated with favorable attitudes. Differences in social position may lead some groups to opposing interpretations and symbolic meanings of genetics. This may be true in the context of this study because the social meanings of genetics may be tainted by racialization, historical attempts at eugenics, and the potential abuse of genetics targeting groups partially defined by superficial genetic characteristics.
Nippert, Reinhardt Peter; Schmidtke, Jörg
2012-01-01
Service quality for patients with genetic conditions can be assessed through the analysis of clinical genetic data sets, as was the case in this study. It represents a secondary analysis of a compilation of a single genetic expert's medical opinions covering the years 2000 to 2009, solicited by private health insurance companies with the intention of probing into medical necessity and adequacy of genetic testing ordered by physicians. Genetic testing has become an increasingly important part of clinical diagnostic services. Controlling these services does not only reduce costs but also saves patients from unwarranted over-utilisation. Therefore, the reasons given by doctors when ordering genetic tests are part of the quality of service delivery. The study revealed that more than 30% of the molecular genetic tests ordered lack sound medical reasoning and 30% of the cases studied show violation or neglect of guidelines and recommendations for diagnostic procedures with respect to genetic testing. In essence, the findings indicate a need for human genetic information among physicians. Their professional organisations are called upon to design and offer CME/CPD programmes in medical genetics to maintain and continually improve the quality of medical genetic care for patients with genetic conditions. Copyright © 2012. Published by Elsevier GmbH.
McAllister, Marion; Wood, Alex M; Dunn, Graham; Shiloh, Shoshana; Todd, Chris
2012-02-01
Outcome measures are important assessment tools to evaluate clinical genetics services. Research suggests that perceived personal control (PPC) is an outcome valued by clinical genetics patients and clinicians. The PPC scale was developed in Hebrew to capture three dimensions of PPC: Cognitive, decisional, and behavioral control. This article reports on the first psychometric validation of the English translation of the PPC scale. Previous research has shown that the Hebrew and Dutch translations have good psychometric properties. However, the psychometric properties of the English translation have not been tested, and there is disagreement about the factor structure, with implications for how to score the measure. A total of 395 patients attending a clinical genetics appointment in the United Kingdom completed several measures at baseline, and a further 241 also completed measures at 2-4 weeks follow-up. The English language PPC has (a) a one-factor structure, (b) convergent validity with internal health locus of control (IHLC), satisfaction with life (SWL), depression, and authenticity, (c) high internal consistency (α = 0.83), and (d) sensitivity to change, being able to identify moderate changes in PPC following clinic attendance (Cohen's d = 0.40). These properties suggest the English language PPC measure is a useful tool for both clinical genetics research and for use as a Patient Reported Outcome Measure (PROM) in service evaluation. Copyright © 2011 Wiley Periodicals, Inc.
Benoit, Vivian M; Petrich, Annett; Alugupalli, Kishore R; Marty-Roix, Robin; Moter, Annette; Leong, John M; Boyartchuk, Victor L
2010-02-01
Host susceptibility to infection is controlled in large measure by the genetic makeup of the host. Spirochetes of the genus Borrelia include nearly 40 species of vector-borne spirochetes that are capable of infecting a wide range of mammalian hosts, causing Lyme disease and relapsing fever. Relapsing fever is associated with high-level bacteremia, as well as hematologic manifestations, such as thrombocytopenia (i.e., low platelet numbers) and anemia. To facilitate studies of genetic control of susceptibility to Borrelia hermsii infection, we performed a systematic analysis of the course of infection using immunocompetent and immunocompromised inbred strains of mice. Our analysis revealed that sensitivity to B. hermsii infections is genetically controlled. In addition, whereas the role of adaptive immunity to relapsing fever-causing spirochetes is well documented, we found that innate immunity contributes significantly to the reduction of bacterial burden. Similar to human infection, the progression of the disease in mice was associated with thrombocytopenia and anemia. Histological and fluorescence in situ hybridization (FISH) analysis of infected tissues indicated that red blood cells (RBCs) were removed by tissue-resident macrophages, a process that could lead to anemia. Spirochetes in the spleen and liver were often visualized associated with RBCs, lending support to the hypothesis that direct interaction of B. hermsii spirochetes with RBCs leads to clearance of bacteria from the bloodstream by tissue phagocytes.
Piperno, Dolores R.; Holst, Irene; Wessel-Beaver, Linda; Andres, Thomas C.
2002-01-01
Many angiosperms, both monocotyledons and dicotyledons, heavily impregnate their vegetative and reproductive organs with solid particles of silicon dioxide (SiO2) known as opaline phytoliths. The underlying mechanisms accounting for the formation of phytoliths in plants are poorly understood, however. Using wild and domesticated species in the genus Cucurbita along with their F1 and F2 progeny, we have demonstrated that the production of large diagnostic phytoliths in fruit rinds exhibits a one-to-one correspondence to the lignification of these structures. We propose that phytolith formation in Cucurbita fruits is primarily determined by a dominant genetic locus, called hard rind (Hr), previously shown to code for lignin deposition. If true, this evidence represents a demonstration of genetic control over phytolith production in a dicotyledon and provides considerable support to hypotheses that silica phytoliths constitute another important system of mechanical defense in plants. Our research also identifies Hr as another single locus controlling more than one important phenotypic difference between wild and domesticated plants, and establishes rind tissue cell structure and hardness under the effects of Hr as an important determinant of phytolith morphology. When recovered from pre-Columbian archaeological sites, Cucurbita phytoliths represent genetically controlled fossil markers of exploitation and domestication in this important economic genus. PMID:12149443
Chromosome instability on children with asthma.
Lialiaris, Theodore; Polyzou, Aggeliki; Mpountoukas, Panagiotis; Tsiggene, Anthi; Kouskoukis, Alexandros; Pouliliou, Stamatia; Paraskakis, Emmanouil; Tentes, Ioannis; Trypsianis, Grigorios; Chatzimichail, Athanasios
2009-10-01
Asthma is a complex disease with multiple interactions between genetic and environmental factors. The aim of our study was to investigate the possible genetic instability in asthmatic patients (AP) with asthma in human cultured peripheral blood lymphocytes. Furthermore, the presence of either cytostaticity or cytotoxicity was demonstrated. Human peripheral blood lymphocytes were cultured from 18 admitted children to the Pediatric Clinic of the University Hospital of Alexandroupolis (average age 7.2 years), and 9 healthy blood donors were used as control subjects (average age 6.5 years), none of whom was receiving drugs for medical or other reasons. A significant (p < 0.05) increase in spontaneous sister chromatid exchanges (SCEs) frequency in asthmatic patients compared with control subjects was observed. No statistically significant modification in the spontaneous proliferation rate index (PRI) in AP compared with the controls was demonstrated. Finally, MMC induced a statistically significant increase in SCEs frequency both to controls and to AP, with the MMC-induced SCEs rates in AP being statistically (p < 0.01) higher compared to the MMC-induced SCEs in controls. We try to improve a new diagnostic process of possible genetic instability by a combination of genotoxic, cytostatic and cytotoxic effects of asthma on human peripheral lymphocytes.
Genetic architecture of a hormonal response to gene knockdown in honey bees.
Ihle, Kate E; Rueppell, Olav; Huang, Zachary Y; Wang, Ying; Fondrk, M Kim; Page, Robert E; Amdam, Gro V
2015-01-01
Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general. © The American Genetic Association. 2015.
The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations1[OPEN
Pan, Qingchun; Xu, Yuancheng; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin
2017-01-01
Plant architecture is a key factor affecting planting density and grain yield in maize (Zea mays). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3, has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. PMID:28838954
Sulfonylurea Treatment Before Genetic Testing in Neonatal Diabetes: Pros and Cons
Carmody, David; Bell, Charles D.; Hwang, Jessica L.; Dickens, Jazzmyne T.; Sima, Daniela I.; Felipe, Dania L.; Zimmer, Carrie A.; Davis, Ajuah O.; Kotlyarevska, Kateryna; Naylor, Rochelle N.; Philipson, Louis H.
2014-01-01
Context: Diabetes in neonates nearly always has a monogenic etiology. Earlier sulfonylurea therapy can improve glycemic control and potential neurodevelopmental outcomes in children with KCNJ11 or ABCC8 mutations, the most common gene causes. Objective: Assess the risks and benefits of initiating sulfonylurea therapy before genetic testing results become available. Design, Setting, and Patients: Observational retrospective study of subjects with neonatal diabetes within the University of Chicago Monogenic Diabetes Registry. Main Outcome Measures: Response to sulfonylurea (determined by whether insulin could be discontinued) and treatment side effects in those treated empirically. Results: A total of 154 subjects were diagnosed with diabetes before 6 months of age. A genetic diagnosis had been determined in 118 (77%), with 73 (47%) having a mutation in KCNJ11 or ABCC8. The median time from clinical diagnosis to genetic diagnosis was 10.4 weeks (range, 1.6 to 58.2 wk). In nine probands, an empiric sulfonylurea trial was initiated within 28 days of diabetes diagnosis. A genetic cause was subsequently found in eight cases, and insulin was discontinued within 14 days of sulfonylurea initiation in all of these cases. Conclusions: Sulfonylurea therapy appears to be safe and often successful in neonatal diabetes patients before genetic testing results are available; however, larger numbers of cases must be studied. Given the potential beneficial effect on neurodevelopmental outcome, glycemic control, and the current barriers to expeditious acquisition of genetic testing, an empiric inpatient trial of sulfonylurea can be considered. However, obtaining a genetic diagnosis remains imperative to inform long-term management and prognosis. PMID:25238204
Sparks, Jeffrey A.; Chen, Chia-Yen; Jiang, Xia; Askling, Johan; Hiraki, Linda T.; Malspeis, Susan; Klareskog, Lars; Alfredsson, Lars; Costenbader, Karen H.; Karlson, Elizabeth W.
2014-01-01
Objective To develop and validate rheumatoid arthritis (RA) risk models based on family history, epidemiologic factors, and known genetic risk factors. Methods We developed and validated models for RA based on known RA risk factors, among women in two cohorts: the Nurses’ Health Study (NHS, 381 RA cases and 410 controls) and the Epidemiological Investigation of RA (EIRA, 1244 RA cases and 971 controls). Model discrimination was evaluated using the area under the receiver operating characteristic curve (AUC) in logistic regression models for the study population and for those with positive family history. The joint effect of family history with genetics, smoking, and body mass index (BMI) was evaluated using logistic regression models to estimate odds ratios (OR) for RA. Results The complete model including family history, epidemiologic risk factors, and genetics demonstrated AUCs of 0.74 for seropositive RA in NHS and 0.77 for anti-citrullinated protein antibody (ACPA)-positive RA in EIRA. Among women with positive family history, discrimination was excellent for complete models for seropositive RA in NHS (AUC 0.82) and ACPA-positive RA in EIRA (AUC 0.83). Positive family history, high genetic susceptibility, smoking, and increased BMI had an OR of 21.73 for ACPA-positive RA. Conclusions We developed models for seropositive and seronegative RA phenotypes based on family history, epidemiologic and genetic factors. Among those with positive family history, models utilizing epidemiologic and genetic factors were highly discriminatory for seropositive and seronegative RA. Assessing epidemiological and genetic factors among those with positive family history may identify individuals suitable for RA prevention strategies. PMID:24685909
A Validated Methodology for Genetic Identification of Tuna Species (Genus Thunnus)
Viñas, Jordi; Tudela, Sergi
2009-01-01
Background Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue. Methodology After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR), followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1). This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples. Conclusions Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned. PMID:19898615
A validated methodology for genetic identification of tuna species (genus Thunnus).
Viñas, Jordi; Tudela, Sergi
2009-10-27
Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue. After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR), followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1). This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples. Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned.
Zahoor, Imran; Ghayas, Abdul; Basheer, Atia
2018-02-01
Global poultry production is facing many challenges and is currently under pressure due to the presence of several diseases like Necrotic Enteritis (NE). It is estimated that NE-caused global economic losses has increased from 2 billion to 6 billion US$ in 2015 because it is not easy to diagnose and control disease at the earlier stage of occurrence. Additionally, ban on the in-feed antibiotics and some other genetic and non-genetic predisposing factors affect the occurrence of the disease. Though the incidence of the disease can be reduced by minimizing the predisposing factors and through immunization of birds but there is no single remedy to control the disease. Therefore, we suggest that there is need to find out the genetic variants that could help to select the birds resistant to NE. The current review details the pertinent features about the genetic and genomics of susceptibility and immune response of birds to Necrotic Enteritis. We report here the list of candidate gene reported for their involvement with the susceptibility and/or resistance to the disease. However, most of these genes are involved in immune-related functions. For better understanding of the role of Clostridium perfringens and its toxins in the pathogenesis of disease there is need to unveil the association between any specific genetic variation and clinical status of NE. However, the presence of substantial genetic variations among different breeds/strains of chicken shows that it is possible to develop broiler strain with genetic resistant against NE. It would help in the cost-effective and sustainable production of safe broiler meat.
Davies, Anna K; McGale, Nadine; Humphries, Steve E; Hirani, Shashivadan P; Beaney, Katherine E; Bappa, Dauda A S; McCabe, John G; Newman, Stanton P
2015-12-02
Many patients with type 2 diabetes fail to achieve good glycaemic control. Poor control is associated with complications including coronary heart disease (CHD). Effective self-management and engagement in health behaviours can reduce risks of complications. However, patients often struggle to adopt and maintain these behaviours. Self-management interventions have been found to be effective in improving glycaemic control. Recent developments in the field of genetics mean that patients can be given personalised information about genetic- and lifestyle-associated risk of developing CHD. Such information may increase patients' motivation to engage in self-management. The Coronary Risk in Diabetes (CoRDia) trial will compare the effectiveness of a self-management intervention, with and without provision of personalised genetic- and lifestyle-associated risk information, with usual care, on clinical and behavioural outcomes, the cognitive predictors of behaviour, and psychological wellbeing. Participants will be adults aged 25-74 years registered with general practices in the East of England, diagnosed with type 2 diabetes, with no history of heart disease, and with a glycated haemoglobin level of ≥6.45% (47 mmol/mol). Consenting participants will be randomised to one of three arms: usual care control, group self-management only, group self-management plus personalised genetic- and lifestyle-associated risk information. The self-management groups will receive four weekly 2-hour group sessions, focusing on knowledge and information sharing, problem solving, goal setting and action planning to promote medication adherence, healthy eating, and physical activity. Primary outcomes are glycaemic control and CHD risk. Clinical data will be collected from GP records, including HbA1c, weight, body mass index, blood pressure, and HDL and total cholesterol. Self-reported health behaviours, including medication adherence, healthy eating and physical activity, and cognitive outcomes will be assessed by questionnaire. Measures will be taken at baseline, 3 months (questionnaire only), 6 months and 12 months post-baseline. This study will determine whether the addition of personalised genetic- and lifestyle-associated CHD risk information to a group self-management intervention improves diabetes control and CHD risk compared with group self-management and usual care. Effectiveness of the combined intervention on health behaviours cognitions theorised to predict them, and psychological outcomes will also be investigated. This study has been registered at ClinicalTrials.gov; registration identifier NCT01891786 , registered 28 June 2013.
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
Light, heat, action: neural control of fruit fly behaviour.
Owald, David; Lin, Suewei; Waddell, Scott
2015-09-19
The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.
Chemical genetics and regeneration.
Sengupta, Sumitra; Zhang, Liyun; Mumm, Jeff S
2015-01-01
Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled.
Wen, Wei Xiong; Allen, Jamie; Lai, Kah Nyin; Mariapun, Shivaani; Hasan, Siti Norhidayu; Ng, Pei Sze; Lee, Daphne Shin-Chi; Lee, Sheau Yee; Yoon, Sook-Yee; Lim, Joanna; Lau, Shao Yan; Decker, Brennan; Pooley, Karen; Dorling, Leila; Luccarini, Craig; Baynes, Caroline; Conroy, Don M; Harrington, Patricia; Simard, Jacques; Yip, Cheng Har; Mohd Taib, Nur Aishah; Ho, Weang Kee; Antoniou, Antonis C; Dunning, Alison M; Easton, Douglas F
2018-01-01
Background Genetic testing for BRCA1 and BRCA2 is offered typically to selected women based on age of onset and family history of cancer. However, current internationally accepted genetic testing referral guidelines are built mostly on data from cancer genetics clinics in women of European descent. To evaluate the appropriateness of such guidelines in Asians, we have determined the prevalence of germ line variants in an unselected cohort of Asian patients with breast cancer and healthy controls. Methods Germ line DNA from a hospital-based study of 2575 unselected patients with breast cancer and 2809 healthy controls were subjected to amplicon-based targeted sequencing of exonic and proximal splice site junction regions of BRCA1 and BRCA2 using the Fluidigm Access Array system, with sequencing conducted on a Illumina HiSeq2500 platform. Variant calling was performed with GATK UnifiedGenotyper and were validated by Sanger sequencing. Results Fifty-five (2.1%) BRCA1 and 66 (2.6%) BRCA2 deleterious mutations were identified among patients with breast cancer and five (0.18%) BRCA1 and six (0.21%) BRCA2 mutations among controls. One thousand one hundred and eighty-six (46%) patients and 97 (80%) carriers fulfilled the National Comprehensive Cancer Network guidelines for genetic testing. Conclusion Five per cent of unselected Asian patients with breast cancer carry deleterious variants in BRCA1 or BRCA2. While current referral guidelines identified the majority of carriers, one in two patients would be referred for genetic services. Given that such services are largely unavailable in majority of low-resource settings in Asia, our study highlights the need for more efficient guidelines to identify at-risk individuals in Asia. PMID:28993434
Norheim, Katrine Brække; Le Hellard, Stephanie; Nordmark, Gunnel; Harboe, Erna; Gøransson, Lasse; Brun, Johan G; Wahren-Herlenius, Marie; Jonsson, Roland; Omdal, Roald
2014-02-01
Fatigue is prevalent and disabling in primary Sjögren's syndrome (pSS). Results from studies in chronic fatigue syndrome (CFS) indicate that genetic variation may influence fatigue. The aim of this study was to investigate single nucleotide polymorphism (SNP) variations in pSS patients with high and low fatigue. A panel of 85 SNPs in 12 genes was selected based on previous studies in CFS. A total of 207 pSS patients and 376 healthy controls were genotyped. One-hundred and ninety-three patients and 70 SNPs in 11 genes were available for analysis after quality control. Patients were dichotomized based on fatigue visual analogue scale (VAS) scores, with VAS <50 denominated "low fatigue" (n = 53) and VAS ≥50 denominated "high fatigue" (n = 140). We detected signals of association with pSS for one SNP in SLC25A40 (unadjusted p = 0.007) and two SNPs in PKN1 (both p = 0.03) in our pSS case versus control analysis. The association with SLC25A40 was stronger when only pSS high fatigue patients were analysed versus controls (p = 0.002). One SNP in PKN1 displayed an association in the case-only analysis of pSS high fatigue versus pSS low fatigue (p = 0.005). This candidate gene study in pSS did reveal a trend for associations between genetic variation in candidate genes and fatigue. The results will need to be replicated. More research on genetic associations with fatigue is warranted, and future trials should include larger cohorts and multicentre collaborations with sharing of genetic material to increase the statistical power.
Inheritance of bacterial spot resistance in Capsicum annuum var. annuum.
Silva, L R A; Rodrigues, R; Pimenta, S; Correa, J W S; Araújo, M S B; Bento, C S; Sudré, C P
2017-04-20
Since 2008, Brazil is the largest consumer of agrochemicals, which increases production costs and risks of agricultural products, environment, and farmers' contamination. Sweet pepper, which is one of the main consumed vegetables in the country, is on top of the list of the most sprayed crops. The bacterial spot, caused by Xanthomonas spp, is one of the most damaging diseases of pepper crops. Genetic resistant consists of a suitable way of disease control, but development of durable resistant cultivars as well as understanding of plant-bacterium interaction is being a challenge for plant breeders and pathologists worldwide. Inheritance of disease resistance is often variable, depending on genetic background of the parents. The knowledge of the genetic base controlling such resistance is the first step in a breeding program aiming to develop new genotypes, bringing together resistance and other superior agronomic traits. This study reports the genetic basis of bacterial spot resistance in Capsicum annuum var. annuum using mean generation analysis from crosses between accessions UENF 2285 (susceptible) and UENF 1381 (resistant). The plants of each generation were grown in a greenhouse and leaflets were inoculated with bacterial strain ENA 4135 at 10 5 CFU/mL in 1.0 cm 2 of the mesophyll. Evaluations were performed using a scoring scale whose grades ranged from 1.0 (resistant) to 5.0 (susceptible), depending on symptom manifestation. Genetic control of bacterial spot has a quantitative aspect, with higher additive effect. The quantitative analysis showed that five genes were the minimum number controlling bacterial spot resistance. Additive effect was higher (6.06) than dominant (3.31) and explained 86.36% of total variation.
Workalemahu, Tsegaselassie; Enquobahrie, Daniel A; Gelaye, Bizu; Sanchez, Sixto E; Garcia, Pedro J; Tekola-Ayele, Fasil; Hajat, Anjum; Thornton, Timothy A; Ananth, Cande V; Williams, Michelle A
2018-06-01
Accumulating epidemiological evidence points to strong genetic susceptibility to placental abruption (PA). However, characterization of genes associated with PA remains incomplete. We conducted a genome-wide association study (GWAS) of PA and a meta-analysis of GWAS. Participants of the Placental Abruption Genetic Epidemiology (PAGE) study, a population based case-control study of PA conducted in Lima, Peru, were genotyped using the Illumina HumanCore-24 BeadChip platform. Genotypes were imputed using the 1000 genomes reference panel, and >4.9 million SNPs that passed quality control were analyzed. We performed a GWAS in PAGE participants (507 PA cases and 1090 controls) and a GWAS meta-analysis in 2512 participants (959 PA cases and 1553 controls) that included PAGE and the previously reported Peruvian Abruptio Placentae Epidemiology (PAPE) study. We fitted population stratification-adjusted logistic regression models and fixed-effects meta-analyses using inverse-variance weighting. Independent loci (linkage-disequilibrium<0.80) suggestively associated with PA (P-value<5e-5) included rs4148646 and rs2074311 in ABCC8, rs7249210, rs7250184, rs7249100 and rs10401828 in ZNF28, rs11133659 in CTNND2, and rs2074314 and rs35271178 near KCNJ11 in the PAGE GWAS. Similarly, independent loci suggestively associated with PA in the GWAS meta-analysis included rs76258369 near IRX1, and rs7094759 and rs12264492 in ADAM12. Functional analyses of these genes showed trophoblast-like cell interaction, as well as networks involved in endocrine system disorders, cardiovascular diseases, and cellular function. We identified several genetic loci and related functions that may play a role in PA risk. Understanding genetic factors underlying pathophysiological mechanisms of PA may facilitate prevention and early diagnostic efforts. Published by Elsevier Ltd.
Quantitative genetics of disease traits.
Wray, N R; Visscher, P M
2015-04-01
John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics. © 2015 Blackwell Verlag GmbH.
[The international network and Italian modernization. Ruggero Ceppellini, genetics, and HLA].
Capocci, Mauro
2014-01-01
The paper reconstructs the scientific career of Ruggero Ceppellini, focusing especially on his role in the discovery of the genetic system underlying the Human Leucocyte Antigen. From his earliest investigations in blood group genetics, Ceppellini quickly became an internationally acknowledged authority in the field of immunogenetics--the study of genetics by means of immunological tools--and participated to the endeavor that ultimately yelded a new meaning for the word: thanks to the pioneering research in the HLA field, immunogenetics became the study of the genetic control of immune system. The paper will also place Ceppellini's scientific work against the backdrop of the modernization of Italian genetics after WWII, resulting from the efforts of a handful of scientists to connect to international networks and adopting new methodologies in life sciences.
Biotechnology of trees: Chestnut
C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi
2014-01-01
Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...
Genetics Home Reference: bladder cancer
... events in bladder tumors. Researchers believe that several genes that control cell growth and division are probably located on chromosome 9 . ... Kwast TH, Zwarthoff EC, Radvanyi F. Novel fibroblast growth factor receptor ... identified in non-lethal skeletal disorders. Eur J Hum Genet. 2002 Dec;10( ...
McKusick, V. A.
1976-01-01
With these three examples, examined in some detail, I have attempted to indicate new directions in medical genetics. Some of the recognizable generalities are the following: 1. With the application of cell culture techniques in the area called human somatic cell genetics, human genetics has become essentially an experimental science. Somaticcell studies have provided insight into genetic disorders that would not have been possible from studies in the whole organism. Even therapeutic possibilities can be explored. Somatic cell hyubridization has substituted for controlled matings in permitting linkage studies for mapping of the human chromosomes... Images Fig. 1 Fig. 8 Fig. 9 PMID:960419
Lessons learned from the dog genome.
Wayne, Robert K; Ostrander, Elaine A
2007-11-01
Extensive genetic resources and a high-quality genome sequence position the dog as an important model species for understanding genome evolution, population genetics and genes underlying complex phenotypic traits. Newly developed genomic resources have expanded our understanding of canine evolutionary history and dog origins. Domestication involved genetic contributions from multiple populations of gray wolves probably through backcrossing. More recently, the advent of controlled breeding practices has segregated genetic variability into distinct dog breeds that possess specific phenotypic traits. Consequently, genome-wide association and selective sweep scans now allow the discovery of genes underlying breed-specific characteristics. The dog is finally emerging as a novel resource for studying the genetic basis of complex traits, including behavior.
[Elucidation of key genes in sex determination in genetics teaching].
Li, Meng; He, Zhumei
2014-06-01
Sex is an important and complex feature of organisms, which is controlled by the genetic and environmental factors. The genetic factors, i.e., genes, are vital in sex determination. However, not all the related genes play the same roles, and some key genes play a vital role in the sex determination and differentiation. With the development of the modern genetics, a great progress on the key genes has been made in sex determination. In this review, we summarize the mechanism of sex determination and the strategy of how to study the key genes in sex determination. It will help us to understand the mechanism of sex determination better in the teaching of genetics.
Fas and FasL genetic polymorphisms in women with recurrent pregnancy loss: a case-control study.
Han, Ae Ra; Choi, Young Min; Hong, Min A; Kim, Jin Ju; Lee, Sung Ki; Yang, Kwang Moon; Paik, Eun Chan; Jeong, Hyeon Jeong; Jun, Jong Kwan
2018-05-20
Aberrant apoptosis at the trophoblast-maternal interface and abnormal expression of Fas and Fas ligand (FasL) have been reported in complicated pregnancies with recurrent pregnancy losses (RPL) and preeclampsia. We assessed the prevalence of Fas and FasL genetic polymorphisms in Korean women with RPL and in fertile controls. In total, 306 women with RPL and 298 fertile controls were enrolled. Genotype distributions of Fas and FasL in RPL patients versus fertile controls were examined under the Hardy-Weinberg equilibrium. Fas -670 A/G genotype (AA versus AG versus GG, p = 0.340) and allele frequencies (A versus G, p = 0.412) were not different between the RPL and control groups. There was no difference in each Fas -1377 G/A and FasL -844 C/T genotype, and their allele frequencies. In addition, the unions of two zygosities of each genotype and their combined genotypes did not differ between two groups. No difference in the prevalence of Fas and FasL single-nucleotide polymorphisms (SNPs) was observed between women with RPL and fertile controls among Korean women. To determine the possibility of genetic polymorphisms in Fas and its ligand as risk factors for RPL, further studies in various races and a large study population are needed.
Dario, Amabile B; Ferreira, Manuela L; Refshauge, Kathryn; Sánchez-Romera, Juan F; Luque-Suarez, Alejandro; Hopper, John L; Ordoñana, Juan R; Ferreira, Paulo H
2016-04-01
To investigate the relationship between different measures of obesity and chronic low back pain (LBP) using a within-pair twin case-control design that adjusts for genetics and early shared environment. A cross-sectional association between lifetime prevalence of chronic LBP and different measures of obesity (body mass index-BMI; percent body fat; waist circumference; waist-hip ratio) was investigated in 1128 female twins in three stages: (i) total sample analysis; (ii) within-pair case-control analysis for monozygotic (MZ) and dizygotic (DZ) twins together; (iii) within-pair case-control analysis separated by DZ and MZ. Odds ratios (OR) and 95% confidence intervals (CI) were calculated. BMI (OR 1.12; 95% CI 1.02-1.26) and percent body fat (OR 1.15; 95% CI 1.01-1.32) were weakly associated with lifetime prevalence of chronic LBP in the total sample analysis but were absent when shared environment and genetic factors were adjusted for using the within-pair case-control analysis. Greater waist-hip ratios were associated with smaller prevalence estimates of chronic LBP in the within-pair case-control analysis with both MZ and DZ twins (OR 0.67; 95% CI 0.47-0.94). However, this association did not remain after the full adjustment for genetic factors in the MZ within-pair case-control analysis. BMI, percent of fat mass and greater depositions of fat and mass around the hips are associated with increases in chronic LBP prevalence in women but these associations are small and appear to be confounded by the effects of genetics and early shared environment. Therefore, our results do not support a causal direct relationship between obesity and chronic LBP.
Landscape genetics and the spatial distribution of chronic wasting disease
Blanchong, Julie A.; Samuel, M.D.; Scribner, K.T.; Weckworth, B.V.; Langenberg, J.A.; Filcek, K.B.
2008-01-01
Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic differentiation of study area deer from deer in the area of disease origin (core-area). Genetic differentiation was greatest, and CWD prevalence lowest, in areas separated from the core-area by the Wisconsin River, indicating that this river reduced deer gene flow and probably disease spread. Features of the landscape that influence host dispersal and spatial patterns of disease can be identified based on host spatial genetic structure. Landscape genetics may be used to predict high-risk populations based on their genetic connection to infected populations and to target disease surveillance, control and preventative activities. ?? 2007 The Royal Society.
Development of forward genetics in Toxoplasma gondii
Sibley, L. David
2009-01-01
The development of forward genetics as a functional system in Toxoplasma gondii spanned more than three decades from the mid-1970s until now. The initial demonstration of experimental genetics relied on chemically-induced drug resistant mutants that were crossed by co-infecting cats, collecting oocysts, sporulating and hatching progeny in vitro. To capitalize on this, genetic markers were employed to develop linkage maps by tracking inheritance through experimental crosses. In all, three generations of genetic maps were developed to define the chromosomes, estimate recombination rates, and provide a system for linkage analysis. Ultimately this genetic map would become the foundation for the assembly of the T. gondii genome, which was derived from whole genome shotgun sequencing, into a chromosome-centric view. Finally, application of forward genetics to multigenic biological traits showed the potential to map and identify specific genes that control complex phenotypes including virulence. PMID:19254720
Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne YW; Martin, Nicholas G; Wright, Margaret J
2016-01-01
Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between schizophrenia cases and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. The current study provides proof-of-concept (albeit based on a limited set of structural brain measures), and defines a roadmap for future studies investigating the genetic covariance between structural/functional brain phenotypes and risk for psychiatric disorders. PMID:26854805
Evidence of a genetic link between endometriosis and ovarian cancer.
Lee, Alice W; Templeman, Claire; Stram, Douglas A; Beesley, Jonathan; Tyrer, Jonathan; Berchuck, Andrew; Pharoah, Paul P; Chenevix-Trench, Georgia; Pearce, Celeste Leigh
2016-01-01
To evaluate whether endometriosis-associated genetic variation affects risk of ovarian cancer. Pooled genetic analysis. University hospital. Genetic data from 46,176 participants (15,361 ovarian cancer cases and 30,815 controls) from 41 ovarian cancer studies. None. Endometriosis-associated genetic variation and ovarian cancer. There was significant evidence of an association between endometriosis-related genetic variation and ovarian cancer risk, especially for the high-grade serous and clear cell histotypes. Overall we observed 15 significant burden statistics, which was three times more than expected. By focusing on candidate regions from a phenotype associated with ovarian cancer, we have shown a clear genetic link between endometriosis and ovarian cancer that warrants further follow-up. The functional significance of the identified regions and SNPs is presently uncertain, though future fine mapping and histotype-specific functional analyses may shed light on the etiologies of both gynecologic conditions. Copyright © 2016. Published by Elsevier Inc.
Fuentes-Contreras, Eduardo; Espinoza, Juan L; Lavandero, Blas; Ramírez, Claudio C
2008-02-01
Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is the main pest of pome fruits worldwide. Despite its economic importance, little is known about the genetic structure and patterns of dispersal at the local and regional scale, which are important aspects for establishing a control strategy for this pest. An analysis of genetic variability using microsatellites was performed for 11 codling moth populations in the two major apple (Malus domestica Borkh) cropping regions in central Chile. Despite the geographical distances between some populations (approximately 185 km), there was low genetic differentiation among populations (F(ST) = 0.002176), with only slight isolation by distance. Only approximately 0.2% of the genetic variability was found among the populations. Geographically structured genetic variation was independent of apple orchard management (production or abandoned). These results suggest a high genetic exchange of codling moth between orchards, possibly mediated by human activities related to fruit production.
Recent genetic discoveries in osteoporosis, sarcopenia and obesity.
Urano, Tomohiko; Inoue, Satoshi
2015-01-01
Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and an increased susceptibility to fractures. Evidence from genetic studies indicates that BMD, a complex quantitative trait with a normal distribution, is genetically controlled. Genome-wide association studies (GWAS) as well as studies using candidate gene approaches have identified single-nucleotide polymorphisms (SNPs) that are associated with BMD, osteoporosis and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding WNT/β-catenin signaling proteins. Understanding the genetics of osteoporosis will help to identify novel candidates for diagnostic and therapeutic targets. Genetic factors are also important for the development of sarcopenia, which is characterized by a loss of lean body mass, and obesity, which is characterized by high fat mass. Hence, in this review, we discuss the genetic factors, identified by genetic studies, which regulate the body components related to osteoporosis, sarcopenia, and obesity.
Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept.
Franke, Barbara; Stein, Jason L; Ripke, Stephan; Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne Yw; Martin, Nicholas G; Wright, Margaret J; O'Donovan, Michael C; Thompson, Paul M; Neale, Benjamin M; Medland, Sarah E; Sullivan, Patrick F
2016-03-01
Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders.
Genetically Distinct Subsets within ANCA-Associated Vasculitis
Lyons, Paul A.; Rayner, Tim F.; Trivedi, Sapna; Holle, Julia U.; Watts, Richard A.; Jayne, David R.W.; Baslund, Bo; Brenchley, Paul; Bruchfeld, Annette; Chaudhry, Afzal N.; Tervaert, Jan Willem Cohen; Deloukas, Panos; Feighery, Conleth; Gross, Wolfgang L.; Guillevin, Loic; Gunnarsson, Iva; P, Lorraine Harper M.R.C; Hrušková, Zdenka; Little, Mark A.; Martorana, Davide; Neumann, Thomas; Ohlsson, Sophie; Padmanabhan, Sandosh; Pusey, Charles D.; Salama, Alan D.; Sanders, Jan-Stephan F.; Savage, Caroline O.; Segelmark, Mårten; Stegeman, Coen A.; Tesař, Vladimir; Vaglio, Augusto; Wieczorek, Stefan; Wilde, Benjamin; Zwerina, Jochen; Rees, Andrew J.; Clayton, David G.; Smith, Kenneth G.C.
2013-01-01
BACKGROUND Antineutrophil cytoplasmic antibody (ANCA)–associated vasculitis is a severe condition encompassing two major syndromes: granulomatosis with polyangiitis (formerly known as Wegener’s granulomatosis) and microscopic polyangiitis. Its cause is unknown, and there is debate about whether it is a single disease entity and what role ANCA plays in its pathogenesis. We investigated its genetic basis. METHODS A genomewide association study was performed in a discovery cohort of 1233 U.K. patients with ANCA-associated vasculitis and 5884 controls and was replicated in 1454 Northern European case patients and 1666 controls. Quality control, population stratification, and statistical analyses were performed according to standard criteria. RESULTS We found both major-histocompatibility-complex (MHC) and non-MHC associations with ANCA-associated vasculitis and also that granulomatosis with polyangiitis and microscopic polyangiitis were genetically distinct. The strongest genetic associations were with the antigenic specificity of ANCA, not with the clinical syndrome. Anti–proteinase 3 ANCA was associated with HLA-DP and the genes encoding α1-antitrypsin (SERPINA1) and proteinase 3 (PRTN3) (P = 6.2×10−89, P = 5.6×10−12, and P = 2.6×10−7, respectively). Anti–myeloperoxidase ANCA was associated with HLA-DQ (P = 2.1×10−8). CONCLUSIONS This study confirms that the pathogenesis of ANCA-associated vasculitis has a genetic component, shows genetic distinctions between granulomatosis with polyangiitis and microscopic polyangiitis that are associated with ANCA specificity, and suggests that the response against the autoantigen proteinase 3 is a central pathogenic feature of proteinase 3 ANCA–associated vasculitis. These data provide preliminary support for the concept that proteinase 3 ANCA–associated vasculitis and myeloperoxidase ANCA–associated vasculitis are distinct autoimmune syndromes. (Funded by the British Heart Foundation and others.) PMID:22808956
Nanayakkara, Shanika; Senevirathna, S T M L D; Abeysekera, Tilak; Chandrajith, Rohana; Ratnatunga, Neelakanthi; Gunarathne, E D L; Yan, Junxia; Hitomi, Toshiaki; Muso, Eri; Komiya, Toshiyuki; Harada, Kouji H; Liu, Wanyang; Kobayashi, Hatasu; Okuda, Hiroko; Sawatari, Hideyuki; Matsuda, Fumihiko; Yamada, Ryo; Watanabe, Takao; Miyataka, Hideki; Himeno, Seiichiro; Koizumi, Akio
2014-01-01
Previous investigations on chronic kidney disease of unknown etiology characterized by tubulointerstitial damages (CKDu) in the North Central Region (NCR) of Sri Lanka have supported the involvement of social, environmental and genetic factors in its pathogenesis. We conducted a social-environmental-and-genetic epidemiology study on a male population in NCR to investigate the genetic and environmental contributors. We recruited 311 case-series patients and 504 control candidates. Of the 504 control candidates, 218 (43%) were eliminated because of the presence of hypertension, proteinuria, high HbA1c, high serum creatinine or high alpha-1 microglobulin in urine. None of 18 metals measured (μg//) in urine, including Cd, As and Pb, showed significantly higher concentrations in cases compared with controls. As speciation results showed that 75-80% of total urinary As was in the form of arsenobetaine, which is non-toxic to humans. None of the metal concentrations in drinking water samples exceeded guideline values. A genome-wide association study (GWAS) was conducted to determine the genetic contributors. The GWAS yielded a genome-wide significant association with CKDu for a single nucleotide polymorphism (SNP; rs6066043; p=5.23 × 10(-9) in quantitative trait locus analysis; p=3.73 × 10(-9) in dichotomous analysis) in SLC13A3 (sodium-dependent dicarboxylate transporter member 3). The population attributable fraction and odds ratio for this SNP were 50% and 2.13. Genetic susceptibility was identified as the major risk factor for CKDu. However, 43% of the apparently healthy male population suffers from non-communicable diseases, suggesting their possible influence on CKDu progression.
Chiang, Han-Sun; Wu, Yi-No; Wu, Chien-Chih; Hwang, Jiann-Loung
2013-02-01
XX male is a rare sex chromosomal disorder in infertile men. The purpose of this study was to distinguish the clinical and genetic features of the 46,XX male syndrome from other more frequent, testicular-origin azoospermic causes of male infertility. To study 46,XX male syndrome, we compared clinical and endocrinological parameters to other groups with testicular-origin azoospermia, and to an age-matched group of healthy males and females as normal control. Fluorescent in situ hybridization for detection and localization of the sex-determining region of the Y gene (SRY), array-based comparative genomic hybridization screening, and real-time qualitative polymerase chain reaction of FGF9, WT1, NR5A1, and SPRY2 genes were performed in this genetic investigation. Our three patients with 46,XX male syndrome had a much higher follicular-stimulating hormone level, lower body height, lower testosterone level, and ambiguous external genitalia. One of the three patients with 46,XX male syndrome was SRY-negative. A further genetic study, including a comparative genomic hybridization array and real-time polymerase chain reaction, showed a gain of FGF9 copy numbers only in the SRY-negative 46,XX male. The genetic copy number of the FGF9 gene was duplicated in that case compared to the normal female control and was significantly lower than that of the normal male control. No such genomic gain was observed in the case of the two SRY-positive 46,XX males. Similar to clinical manifestations of 46,XX male syndrome, genetic evidence in this study suggests that FGF9 may contribute to sex reversal, but additional confirmation with more cases is still needed. Copyright © 2012. Published by Elsevier B.V.
Łuczyński, Włodzimierz; Głowińska-Olszewska, Barbara; Bossowski, Artur
2016-10-01
The exact cause of the obesity epidemic remains unknown; however, both environmental and genetic factors are involved. People at risk of developing obesity include children with type 1 diabetes mellitus (T1DM), which in turn increases their cardiovascular disease risk. Here, we discuss the clinical and genetic factors influencing weight in patients with T1DM. In children with T1DM, the presence of obesity depends mainly on sex, metabolic control, and disease duration. However, genetic factors, including the fat mass and obesity-associated (FTO) gene, are also associated with body weight. Indeed, children with the FTO gene rs9939609 obesity-risk allele (homozygous = AA or heterozygous = AT) are predisposed to a higher body mass index and have a greater risk of being overweight or obese. However, in this review, we show that FTO gene polymorphisms only have a small effect on body weight in children, much weaker than the effect of clinical factors. The association between FTO gene polymorphisms and body weight is only statistically significant in children without severe obesity. Moreover, other genetic factors had no effect on weight in patients with T1DM, and further research involving larger populations is required to confirm the genetic basis of diabetes and obesity. Therefore, identifying the clinical features of children with T1DM, such as their initial body mass index, sex, metabolic control, and disease duration, will still have the strongest effect on reducing risk factors for cardiovascular diseases. Physicians should pay close attention to modifiable elements of these relationships, for example, metabolic control and energy and insulin intake, when caring for patients with T1DM. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Genetic determinants of aggression and impulsivity in humans.
Pavlov, Konstantin A; Chistiakov, Dimitry A; Chekhonin, Vladimir P
2012-02-01
Human aggression/impulsivity-related traits have a complex background that is greatly influenced by genetic and non-genetic factors. The relationship between aggression and anxiety is regulated by highly conserved brain regions including amygdala, which controls neural circuits triggering defensive, aggressive, or avoidant behavioral models. The dysfunction of neural circuits responsible for emotional control was shown to represent an etiological factor of violent behavior. In addition to the amygdala, these circuits also involve the anterior cingulated cortex and regions of the prefrontal cortex. Excessive reactivity in the amygdala coupled with inadequate prefrontal regulation serves to increase the likelihood of aggressive behavior. Developmental alterations in prefrontal-subcortical circuitry as well as neuromodulatory and hormonal abnormality appear to play a role. Imbalance in testosterone/serotonin and testosterone/cortisol ratios (e.g., increased testosterone levels and reduced cortisol levels) increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation. Serotonin facilitates prefrontal inhibition, and thus insufficient serotonergic activity can enhance aggression. Genetic predisposition to aggression appears to be deeply affected by the polymorphic genetic variants of the serotoninergic system that influences serotonin levels in the central and peripheral nervous system, biological effects of this hormone, and rate of serotonin production, synaptic release and degradation. Among these variants, functional polymorphisms in the monoamine oxidase A (MAOA) and serotonin transporter (5-HTT) may be of particular importance due to the relationship between these polymorphic variants and anatomical changes in the limbic system of aggressive people. Furthermore, functional variants of MAOA and 5-HTT are capable of mediating the influence of environmental factors on aggression-related traits. In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.
Kapplinger, Jamie D; Pundi, Krishna N; Larson, Nicholas B; Callis, Thomas E; Tester, David J; Bikker, Hennie; Wilde, Arthur A M; Ackerman, Michael J
2018-02-01
Pathogenic RYR2 variants account for ≈60% of clinically definite cases of catecholaminergic polymorphic ventricular tachycardia. However, the rate of rare benign RYR2 variants identified in the general population remains a challenge for genetic test interpretation. Therefore, we examined the results of the RYR2 genetic test among patients referred for commercial genetic testing and examined factors impacting variant interpretability. Frequency and location comparisons were made for RYR2 variants identified among 1355 total patients of varying clinical certainty and 60 706 Exome Aggregation Consortium controls. The impact of the clinical phenotype on the yield of RYR2 variants was examined. Six in silico tools were assessed using patient- and control-derived variants. A total of 18.2% (218/1200) of patients referred for commercial testing hosted rare RYR2 variants, statistically less than the 59% (46/78) yield among clinically definite cases, resulting in a much higher potential genetic false discovery rate among referrals considering the 3.2% background rate of rare, benign RYR2 variants. Exclusion of clearly putative pathogenic variants further complicates the interpretation of the next novel RYR2 variant. Exonic/topologic analyses revealed overrepresentation of patient variants in exons covering only one third of the protein. In silico tools largely failed to show evidence toward enhancement of variant interpretation. Current expert recommendations have resulted in increased use of RYR2 genetic testing in patients with questionable clinical phenotypes. Using the largest to date catecholaminergic polymorphic ventricular tachycardia patient versus control comparison, this study highlights important variables in the interpretation of variants to overcome the 3.2% background rate that confounds RYR2 variant interpretation. © 2018 American Heart Association, Inc.
Yang, Q; Lin, S L; Au Yeung, S L; Kwok, M K; Xu, L; Leung, G M; Schooling, C M
2017-08-01
Milk provides protein and micronutrients, and is recommended by some dietary guidelines, particularly for bone health. Meta-analysis of small randomized controlled trials suggests that milk may increase bone mineral density, but they are very heterogeneous. No randomized controlled trial has assessed the effects of milk on major chronic diseases. Previous Mendelian randomization studies of milk did not consider bone health, found no effects on ischemic heart disease (IHD) or type 2 diabetes (T2D) but higher body mass index. Using larger genetic studies, we estimated the effects of milk on osteoporosis, IHD, T2D, adiposity, lipids and glycemic traits. Instrumental variable analysis based on a genetic variant endowing lactase persistence (rs4988235 (MCM6)) was used to obtain estimates for osteoporosis (GEFOS), IHD (CARDIoGRAMplusC4D), T2D (DIAGRAM), adiposity (GIANT), lipids (GLGC) and glycaemic traits (MAGIC). Eye color was a negative control for IHD, as it mirrors the distribution of lactase persistence and IHD in Western Europe. Genetically predicted adult milk consumption was not clearly associated with bone mineral density, IHD (odds ratio (OR): 1.03 per s.d., 95% confidence interval (CI): 0.95-1.12) and or T2D (OR: 0.92, 95% CI: 0.83-1.02) but was associated with higher log-transformed fasting insulin (0.05, 95% CI: 0.02-0.07) and body mass index (0.06, 95% CI: 0.03-0.09). Genetically predicted eye color was not associated with IHD. The lack of association of genetically predicted milk consumption with bone health, IHD or T2D suggests few beneficial effects but is more consistent with milk promoting adiposity.
Genetic Background and Climatic Droplet Keratopathy Incidence in a Mapuche Population from Argentina
Schurr, Theodore G.; Dulik, Matthew C.; Cafaro, Thamara A.; Suarez, María F.
2013-01-01
Purpose To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. Methods To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. Results This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. Conclusions These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK. PMID:24040292
Schurr, Theodore G; Dulik, Matthew C; Cafaro, Thamara A; Suarez, María F; Urrets-Zavalia, Julio A; Serra, Horacio M
2013-01-01
To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK.
Dolby, Greer A; Ellingson, Ryan A; Findley, Lloyd T; Jacobs, David K
2018-02-01
Plate tectonics and sediment processes control regional continental shelf topography. We examine the genetic consequences of how glacial-associated sea level change interacted with variable nearshore topography since the last glaciation. We reconstructed the size and distribution of areas suitable for tidal estuary formation from the last glacial maximum, ~20 thousand years ago, to present from San Francisco, California, USA (~38°N) to Reforma, Sinaloa, Mexico (~25°N). We assessed range-wide genetic structure and diversity of three codistributed tidal estuarine fishes (California Killifish, Shadow Goby, Longjaw Mudsucker) along ~4,600 km using mitochondrial control region and cytB sequence, and 16-20 microsatellite loci from a total of 524 individuals. Results show that glacial-associated sea level change limited estuarine habitat to few, widely separated refugia at glacial lowstand, and present-day genetic clades were sourced from specific refugia. Habitat increased during postglacial sea level rise and refugial populations admixed in newly formed habitats. Continental shelves with active tectonics and/or low sediment supply were steep and hosted fewer, smaller refugia with more genetically differentiated populations than on broader shelves. Approximate Bayesian computation favoured the refuge-recolonization scenarios from habitat models over isolation by distance and seaway alternatives, indicating isolation at lowstand is a major diversification mechanism among these estuarine (and perhaps other) coastal species. Because sea level change is a global phenomenon, we suggest this top-down physical control of extirpation-isolation-recolonization may be an important driver of genetic diversification in coastal taxa inhabiting other topographically complex coasts globally during the Mid- to Late Pleistocene and deeper timescales. © 2018 John Wiley & Sons Ltd.
Barratt, Daniel T.; Klepstad, Pål; Dale, Ola; Kaasa, Stein; Somogyi, Andrew A.
2015-01-01
Common adverse symptoms of cancer and chemotherapy are a major health burden; chief among these is pain, with opioids including transdermal fentanyl the mainstay of treatment. Innate immune activation has been implicated generally in pain, opioid analgesia, cognitive dysfunction, and sickness type symptoms reported by cancer patients. We aimed to determine if genetic polymorphisms in neuroimmune activation pathways alter the serum fentanyl concentration-response relationships for pain control, cognitive dysfunction, and other adverse symptoms, in cancer pain patients. Cancer pain patients (468) receiving transdermal fentanyl were genotyped for 31 single nucleotide polymorphisms in 19 genes: CASP1, BDNF, CRP, LY96, IL6, IL1B, TGFB1, TNF, IL10, IL2, TLR2, TLR4, MYD88, IL6R, OPRM1, ARRB2, COMT, STAT6 and ABCB1. Lasso and backward stepwise generalised linear regression were used to identify non-genetic and genetic predictors, respectively, of pain control (average Brief Pain Inventory < 4), cognitive dysfunction (Mini-Mental State Examination ≤ 23), sickness response and opioid adverse event complaint. Serum fentanyl concentrations did not predict between-patient variability in these outcomes, nor did genetic factors predict pain control, sickness response or opioid adverse event complaint. Carriers of the MYD88 rs6853 variant were half as likely to have cognitive dysfunction (11/111) than wild-type patients (69/325), with a relative risk of 0.45 (95% CI: 0.27 to 0.76) when accounting for major non-genetic predictors (age, Karnofsky functional score). This supports the involvement of innate immune signalling in cognitive dysfunction, and identifies MyD88 signalling pathways as a potential focus for predicting and reducing the burden of cognitive dysfunction in cancer pain patients. PMID:26332828