Science.gov

Sample records for genetic network controlling

  1. Genetically determined phenotype covariation networks control bone strength.

    PubMed

    Jepsen, Karl J; Courtland, Hayden-William; Nadeau, Joseph H

    2010-07-01

    To identify genes affecting bone strength, we studied how genetic variants regulate components of a phenotypic covariation network that was previously shown to accurately characterize the compensatory trait interactions involved in functional adaptation during growth. Quantitative trait loci (QTLs) regulating femoral robustness, morphologic compensation, and mineralization (tissue quality) were mapped at three ages during growth using AXB/BXA Recombinant Inbred (RI) mouse strains and adult B6-i(A) Chromosome Substitution Strains (CSS). QTLs for robustness were identified on chromosomes 8, 12, 18, and 19 and confirmed at all three ages, indicating that genetic variants established robustness postnatally without further modification. A QTL for morphologic compensation, which was measured as the relationship between cortical area and body weight, was identified on chromosome 8. This QTL limited the amount of bone formed during growth and thus acted as a setpoint for diaphyseal bone mass. Additional QTLs were identified from the CSS analysis. QTLs for robustness and morphologic compensation regulated bone structure independently (ie, in a nonpleiotropic manner), indicating that each trait may be targeted separately to individualize treatments aiming to improve strength. Multiple regression analyses showed that variation in morphologic compensation and tissue quality, not bone size, determined femoral strength relative to body weight. Thus an individual inheriting slender bones will not necessarily inherit weak bones unless the individual also inherits a gene that impairs compensation. This systems genetic analysis showed that genetically determined phenotype covariation networks control bone strength, suggesting that incorporating functional adaptation into genetic analyses will advance our understanding of the genetic basis of bone strength.

  2. Genetic and epigenetic networks controlling T helper 1 cell differentiation.

    PubMed

    Placek, Katarzyna; Coffre, Maryaline; Maiella, Sylvie; Bianchi, Elisabetta; Rogge, Lars

    2009-06-01

    Significant progress has been made during the past years in our understanding of the mechanisms that control the differentiation of naïve CD4(+) T cells into effector T-cell subsets with distinct functional properties. Previous work allowed the identification of key molecules involved in regulating this highly complex process, such as cytokines and their receptors, signal transducers and transcription factors. More recently, the emphasis of research in this field has been to elucidate how the multiplicity of signals is integrated to shape a T helper subset-specific gene-expression program controlling differentiation and effector functions. In this review we will highlight advances that have been made in unravelling the genetic and epigenetic networks controlling differentiation of naïve CD4(+) T cells into interferon-gamma(IFN-gamma)-secreting T helper type 1 (Th1) cells.

  3. Genetic and epigenetic networks controlling T helper 1 cell differentiation

    PubMed Central

    Placek, Katarzyna; Coffre, Maryaline; Maiella, Sylvie; Bianchi, Elisabetta; Rogge, Lars

    2009-01-01

    Significant progress has been made during the past years in our understanding of the mechanisms that control the differentiation of naïve CD4+ T cells into effector T-cell subsets with distinct functional properties. Previous work allowed the identification of key molecules involved in regulating this highly complex process, such as cytokines and their receptors, signal transducers and transcription factors. More recently, the emphasis of research in this field has been to elucidate how the multiplicity of signals is integrated to shape a T helper subset-specific gene-expression program controlling differentiation and effector functions. In this review we will highlight advances that have been made in unravelling the genetic and epigenetic networks controlling differentiation of naïve CD4+ T cells into interferon-γ(IFN-γ)-secreting T helper type 1 (Th1) cells. PMID:19476511

  4. Genetic network driven control of PHBV copolymer composition.

    PubMed

    Iadevaia, Sergio; Mantzaris, Nikos V

    2006-03-09

    We developed a detailed mathematical model describing the coupling between the molecular weight distribution dynamics of poly(3-hydroxybutyrate-co-3hydroxyvalerate) (PHBV) copolymer chains with those of hydroxybutyrate (HB) and hydroxyvalerate (HV) monomer formation. Sensitivity analysis of the model revealed that both the monomer composition and the molecular weight distribution of the copolymer chains are strongly affected by the ratio between the rates at which the two-monomer units are incorporated into the chains. This ratio depends on the relative HB and HV availability, which in turn is a function of the expression levels of genes encoding enzymes that catalyze monomer formation. Regulation of gene expression was accomplished through the aid of an artificial genetic network, the patterns of expression of which can be controlled by appropriately tuning the concentration of an extracellular inducer. Extensive simulations were used to study the effects of operating conditions and parameter uncertainties on the range of achievable copolymer compositions. Since the predicted conditions fell in the range of feasible bioprocessing manipulations, it is expected that such strategy could be successfully employed. Thus, the presented model constitutes a powerful tool for designing genetic networks that can drive the formation of PHBV copolymer structures with desirable characteristics.

  5. Genetic control of root growth: from genes to networks

    PubMed Central

    Slovak, Radka; Ogura, Takehiko; Satbhai, Santosh B.; Ristova, Daniela; Busch, Wolfgang

    2016-01-01

    Background Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. Scope This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. Conclusions While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics. PMID

  6. Buying and Selling Stocks of Multi Brands Using Genetic Network Programming with Control Nodes

    NASA Astrophysics Data System (ADS)

    Ohkawa, Etsushi; Chen, Yan; Bao, Zhiguo; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    A new evolutionary method named “Genetic Network Programming with control nodes, GNPcn” has been applied to determine the timing of buying or selling stocks. GNPcn represents its solutions as directed graph structures which has some useful features inherently. For example, GNPcn has an implicit memory function which memorizes the past action sequences of agents and GNPcn can re-use nodes repeatedly in the network flow, so very compact graph structures can be made. GNPcn can determine the strategy of buying and selling stocks of multi issues. The effectiveness of the proposed method is confirmed by simulations.

  7. The effect of network topology on the stability of discrete state models of genetic control

    PubMed Central

    Pomerance, Andrew; Ott, Edward; Girvan, Michelle; Losert, Wolfgang

    2009-01-01

    Boolean networks have been proposed as potentially useful models for genetic control. An important aspect of these networks is the stability of their dynamics in response to small perturbations. Previous approaches to stability have assumed uncorrelated random network structure. Real gene networks typically have nontrivial topology significantly different from the random network paradigm. To address such situations, we present a general method for determining the stability of large Boolean networks of any specified network topology and predicting their steady-state behavior in response to small perturbations. Additionally, we generalize to the case where individual genes have a distribution of “expression biases,” and we consider a nonsynchronous update, as well as extension of our method to non-Boolean models in which there are more than two possible gene states. We find that stability is governed by the maximum eigenvalue of a modified adjacency matrix, and we test this result by comparison with numerical simulations. We also discuss the possible application of our work to experimentally inferred gene networks. PMID:19416903

  8. Robust control of uncertain nonlinear switched genetic regulatory networks with time delays: A redesign approach.

    PubMed

    Moradi, Hojjatullah; Majd, Vahid Johari

    2016-05-01

    In this paper, the problem of robust stability of nonlinear genetic regulatory networks (GRNs) is investigated. The developed method is an integral sliding mode control based redesign for a class of perturbed dissipative switched GRNs with time delays. The control law is redesigned by modifying the dissipativity-based control law that was designed for the unperturbed GRNs with time delays. The switched GRNs are switched from one mode to another based on time, state, etc. Although, the active subsystem is known in any instance, but the switching law and the transition probabilities are not known. The model for each mode is considered affine with matched and unmatched perturbations. The redesigned control law forces the GRN to always remain on the sliding surface and the dissipativity is maintained from the initial time in the presence of the norm-bounded perturbations. The global stability of the perturbed GRNs is maintained if the unperturbed model is globally dissipative. The designed control law for the perturbed GRNs guarantees robust exponential or asymptotic stability of the closed-loop network depending on the type of stability of the unperturbed model. The results are applied to a nonlinear switched GRN, and its convergence to the origin is verified by simulation.

  9. Understanding genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Kauffman, Stuart

    2003-04-01

    Random Boolean networks (RBM) were introduced about 35 years ago as first crude models of genetic regulatory networks. RBNs are comprised of N on-off genes, connected by a randomly assigned regulatory wiring diagram where each gene has K inputs, and each gene is controlled by a randomly assigned Boolean function. This procedure samples at random from the ensemble of all possible NK Boolean networks. The central ideas are to study the typical, or generic properties of this ensemble, and see 1) whether characteristic differences appear as K and biases in Boolean functions are introducted, and 2) whether a subclass of this ensemble has properties matching real cells. Such networks behave in an ordered or a chaotic regime, with a phase transition, "the edge of chaos" between the two regimes. Networks with continuous variables exhibit the same two regimes. Substantial evidence suggests that real cells are in the ordered regime. A key concept is that of an attractor. This is a reentrant trajectory of states of the network, called a state cycle. The central biological interpretation is that cell types are attractors. A number of properties differentiate the ordered and chaotic regimes. These include the size and number of attractors, the existence in the ordered regime of a percolating "sea" of genes frozen in the on or off state, with a remainder of isolated twinkling islands of genes, a power law distribution of avalanches of gene activity changes following perturbation to a single gene in the ordered regime versus a similar power law distribution plus a spike of enormous avalanches of gene changes in the chaotic regime, and the existence of branching pathway of "differentiation" between attractors induced by perturbations in the ordered regime. Noise is serious issue, since noise disrupts attractors. But numerical evidence suggests that attractors can be made very stable to noise, and meanwhile, metaplasias may be a biological manifestation of noise. As we learn more

  10. Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks

    NASA Astrophysics Data System (ADS)

    Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin

    Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.

  11. Boolean genetic network model for the control of C. elegans early embryonic cell cycles

    PubMed Central

    2013-01-01

    Background In Caenorhabditis elegans early embryo, cell cycles only have two phases: DNA synthesis and mitosis, which are different from the typical 4-phase cell cycle. Modeling this cell-cycle process into network can fill up the gap in C. elegans cell-cycle study and provide a thorough understanding on the cell-cycle regulations and progressions at the network level. Methods In this paper, C. elegans early embryonic cell-cycle network has been constructed based on the knowledge of key regulators and their interactions from literature studies. A discrete dynamical Boolean model has been applied in computer simulations to study dynamical properties of this network. The cell-cycle network is compared with random networks and tested under several perturbations to analyze its robustness. To investigate whether our proposed network could explain biological experiment results, we have also compared the network simulation results with gene knock down experiment data. Results With the Boolean model, this study showed that the cell-cycle network was stable with a set of attractors (fixed points). A biological pathway was observed in the simulation, which corresponded to a whole cell-cycle progression. The C. elegans network was significantly robust when compared with random networks of the same size because there were less attractors and larger basins than random networks. Moreover, the network was also robust under perturbations with no significant change of the basin size. In addition, the smaller number of attractors and the shorter biological pathway from gene knock down network simulation interpreted the shorter cell-cycle lengths in mutant from the RNAi gene knock down experiment data. Hence, we demonstrated that the results in network simulation could be verified by the RNAi gene knock down experiment data. Conclusions A C. elegans early embryonic cell cycles network was constructed and its properties were analyzed and compared with those of random networks

  12. Synchronization of electronic genetic networks.

    PubMed

    Wagemakers, Alexandre; Buldú, Javier M; García-Ojalvo, Jordi; Sanjuán, Miguel A F

    2006-03-01

    We describe a simple analog electronic circuit that mimics the behavior of a well-known synthetic gene oscillator, the repressilator, which represents a set of three genes repressing one another. Synchronization of a population of such units is thoroughly studied, with the aim to compare the role of global coupling with that of global forcing on the population. Our results show that coupling is much more efficient than forcing in leading the gene population to synchronized oscillations. Furthermore, a modification of the proposed analog circuit leads to a simple electronic version of a genetic toggle switch, which is a simple network of two mutual repressor genes, where control by external forcing is also analyzed.

  13. Designing Genetic Feedback Controllers.

    PubMed

    Harris, Andreas W K; Dolan, James A; Kelly, Ciarán L; Anderson, James; Papachristodoulou, Antonis

    2015-08-01

    By incorporating feedback around systems we wish to manipulate, it is possible to improve their performance and robustness properties to meet pre-specified design objectives. For decades control engineers have been successfully implementing feedback controllers for complex mechanical and electrical systems such as aircraft and sports cars. Natural biological systems use feedback extensively for regulation and adaptation but apart from the most basic designs, there is no systematic framework for designing feedback controllers in Synthetic Biology. In this paper we describe how classical approaches from linear control theory can be used to close the loop. This includes the design of genetic circuits using feedback control and the presentation of a biological phase lag controller.

  14. Network growth models and genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Foster, D. V.; Kauffman, S. A.; Socolar, J. E. S.

    2006-03-01

    We study a class of growth algorithms for directed graphs that are candidate models for the evolution of genetic regulatory networks. The algorithms involve partial duplication of nodes and their links, together with the innovation of new links, allowing for the possibility that input and output links from a newly created node may have different probabilities of survival. We find some counterintuitive trends as the parameters are varied, including the broadening of the in-degree distribution when the probability for retaining input links is decreased. We also find that both the scaling of transcription factors with genome size and the measured degree distributions for genes in yeast can be reproduced by the growth algorithm if and only if a special seed is used to initiate the process.

  15. Network growth models and genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Socolar, Joshua; Foster, David; Kauffman, Stuart

    2006-03-01

    We study a class of growth algorithms for directed graphs that are candidate models for the evolution of genetic regulatory networks. The algorithms involve partial duplication of nodes and their links, together with innovation of new links, allowing for the possibility that input and output links from a newly created node may have different probabilities of survival. We find some counterintuitive trends as parameters are varied, including the broadening of indegree distribution when the probability for retaining input links is decreased. We also find that both the scaling of transcription factors with genome size and the measured degree distributions for genes in yeast can be reproduced by the growth algorithm if and only if a special seed is used to initiate the process.

  16. Adaptation by Plasticity of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Brenner, Naama

    2007-03-01

    Genetic regulatory networks have an essential role in adaptation and evolution of cell populations. This role is strongly related to their dynamic properties over intermediate-to-long time scales. We have used the budding yeast as a model Eukaryote to study the long-term dynamics of the genetic regulatory system and its significance in evolution. A continuous cell growth technique (chemostat) allows us to monitor these systems over long times under controlled condition, enabling a quantitative characterization of dynamics: steady states and their stability, transients and relaxation. First, we have demonstrated adaptive dynamics in the GAL system, a classic model for a Eukaryotic genetic switch, induced and repressed by different carbon sources in the environment. We found that both induction and repression are only transient responses; over several generations, the system converges to a single robust steady state, independent of external conditions. Second, we explored the functional significance of such plasticity of the genetic regulatory network in evolution. We used genetic engineering to mimic the natural process of gene recruitment, placing the gene HIS3 under the regulation of the GAL system. Such genetic rewiring events are important in the evolution of gene regulation, but little is known about the physiological processes supporting them and the dynamics of their assimilation in a cell population. We have shown that cells carrying the rewired genome adapted to a demanding change of environment and stabilized a population, maintaining the adaptive state for hundreds of generations. Using genome-wide expression arrays we showed that underlying the observed adaptation is a global transcriptional programming that allowed tuning expression of the recruited gene to demands. Our results suggest that non-specific properties reflecting the natural plasticity of the regulatory network support adaptation of cells to novel challenges and enhance their evolvability.

  17. Temporal Genetic Modifications after Controlled Cortical Impact—Understanding Traumatic Brain Injury through a Systematic Network Approach

    PubMed Central

    Wong, Yung-Hao; Wu, Chia-Chou; Wu, John Chung-Che; Lai, Hsien-Yong; Chen, Kai-Yun; Jheng, Bo-Ren; Chen, Mien-Cheng; Chang, Tzu-Hao; Chen, Bor-Sen

    2016-01-01

    Traumatic brain injury (TBI) is a primary injury caused by external physical force and also a secondary injury caused by biological processes such as metabolic, cellular, and other molecular events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common disease process (as opposed to an event) that causes disabilities and high death rates. In order to treat all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h), using a controlled cortical impact (CCI) model. We identified 27, 50, 48, and 59 significant proteins as network biomarkers at these four time points, respectively. We present their network structures to illustrate the protein–protein interactions (PPIs). We also identified UBC (Ubiquitin C), SUMO1, CDKN1A (cyclindependent kinase inhibitor 1A), and MYC as the core network biomarkers at the four time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory mechanisms and biological processes and conducted a statistical analysis of the four networks. The analytical results support some recent findings regarding TBI and provide additional guidance and directions for future research. PMID:26861311

  18. Boolean Modelingof Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka

    Biological systems form complex networks of interaction on several scales, ranging from the molecular to the ecosystem level. On the subcellular scale, interaction between genes and gene products (mRNAs, proteins) forms the basis of essential processes like signal transduction, cell metabolism or embryonic development. Recent experimental advances helped uncover the qualitative structure of many gene control networks, creating a surge of interest in the quantitative description of gene regulation. We give a brief description of the main frameworks and methods used in modeling gene regulatory networks, then focus on a recent model of the segment polarity genes of the fruit fly Drosophila melanogaster. The basis of this model is the known interactions between the products of the segment polarity genes, and the network topology these interactions form. The interactions between mRNAs and proteins are described as logical (Boolean) functions. The success in reproducing both wild type and mutant gene expression patterns suggests that the kinetic details of the interactions are not essential as long as the network of interactions is unperturbed. The model predicts the gene patterns for cases that were not yet studied experimentally, and implies a remarkable robustness toward changes in internal parameters, initial conditions and even some mutations.

  19. Genetic Network Programming with Reconstructed Individuals

    NASA Astrophysics Data System (ADS)

    Ye, Fengming; Mabu, Shingo; Wang, Lutao; Eto, Shinji; Hirasawa, Kotaro

    A lot of research on evolutionary computation has been done and some significant classical methods such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strategies (ES) have been studied. Recently, a new approach named Genetic Network Programming (GNP) has been proposed. GNP can evolve itself and find the optimal solution. It is based on the idea of Genetic Algorithm and uses the data structure of directed graphs. Many papers have demonstrated that GNP can deal with complex problems in the dynamic environments very efficiently and effectively. As a result, recently, GNP is getting more and more attentions and is used in many different areas such as data mining, extracting trading rules of stock markets, elevator supervised control systems, etc., and GNP has obtained some outstanding results. Focusing on the GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP-RI). The aim of GNP-RI is to balance the exploitation and exploration of GNP, that is, to strengthen the exploitation ability by using the exploited information extensively during the evolution process of GNP and finally obtain better performances than that of GNP. In the proposed method, the worse individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worse individuals mimics the maturing phenomenon in nature, where bad individuals can become smarter after receiving a good education. In this paper, GNP-RI is applied to the tile-world problem which is an excellent bench mark for evaluating the proposed architecture. The performance of GNP-RI is compared with that of the conventional GNP. The simulation results show some advantages of GNP-RI demonstrating its superiority over the conventional GNPs.

  20. Optimized intelligent control of a 2-degree of freedom robot for rehabilitation of lower limbs using neural network and genetic algorithm

    PubMed Central

    2013-01-01

    Background There is an increasing trend in using robots for medical purposes. One specific area is rehabilitation. Rehabilitation is one of the non-drug treatments in community health which means the restoration of the abilities to maximize independence. It is a prolonged work and costly labor. On the other hand, by using the flexible and efficient robots in rehabilitation area, this process will be more useful for handicapped patients. Methods In this study, a rule-based intelligent control methodology is proposed to mimic the behavior of a healthy limb in a satisfactory way by a 2-DOF planar robot. Inverse kinematic of the planar robot will be solved by neural networks and control parameters will be optimized by genetic algorithm, as rehabilitation progress. Results The results of simulations are presented by defining a physiotherapy simple mode on desired trajectory. MATLAB/Simulink is used for simulations. The system is capable of learning the action of the physiotherapist for each patient and imitating this behaviour in the absence of a physiotherapist that can be called robotherapy. Conclusions In this study, a therapeutic exercise planar 2-DOF robot is designed and controlled for lower-limb rehabilitation. The robot manipulator is controlled by combination of hybrid and adaptive controls. Some safety factors and stability constraints are defined and obtained. The robot is stopped when the safety factors are not satisfied. Kinematics of robot is estimated by an MLP neural network and proper control parameters are achieved using GA optimization. PMID:23945420

  1. Virtualized Network Control (VNC)

    SciTech Connect

    Lehman, Thomas; Guok, Chin; Ghani, Nasir

    2013-01-31

    The focus of this project was on the development of a "Network Service Plane" as an abstraction model for the control and provisioning of multi-layer networks. The primary motivation for this work were the requirements of next generation networked applications which will need to access advanced networking as a first class resource at the same level as compute and storage resources. A new class of "Intelligent Network Services" were defined in order to facilitate the integration of advanced network services into application specific workflows. This new class of network services are intended to enable real-time interaction between the application co-scheduling algorithms and the network for the purposes of workflow planning, real-time resource availability identification, scheduling, and provisioning actions.

  2. Evolving Neural Networks for Nonlinear Control.

    DTIC Science & Technology

    1996-09-30

    An approach to creating Amorphous Recurrent Neural Networks (ARNN) using Genetic Algorithms (GA) called 2pGA has been developed and shown to be...effective in evolving neural networks for the control and stabilization of both linear and nonlinear plants, the optimal control for a nonlinear regulator

  3. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.

    PubMed

    Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu

    2015-08-01

    This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties.

  4. Study on the idity fuzzy neural network controller based on improved genetic algorithm of intelligent temperature control system in vegetable greenhouse

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Yuan, Hongbo; Zhou, Yuhong; Wang, Nan

    2009-07-01

    In order to create the environment that the suitable crop grows, direct against the characteristic of the system of the greenhouse. The aim of the research was to study the intelligent temperature control system in vegetable greenhouse. Based on computer automatic control ,a kind of intelligent temperature control system in vegetable greenhouse was designed. The design thought of systematic hardwares such as temperature collection system, temperature display, control system, heater control circuit in the heater were expounded in detail The control algorithm of the system was improved and system simulation was made by using MATLAB finally. The control algorithm of the system was improved by a new fuzzy neural network controller. The stimulation curve showed that the system had better controlling and tracking performances ,higher accuracy of controlling the temperature. And this system and host epigyny computer could constitute the secondary computer control system which was favorable for realizing the centralized management of the production.

  5. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  6. Introduction to focus issue: quantitative approaches to genetic networks.

    PubMed

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  7. Genetic Network Inference Using Hierarchical Structure

    PubMed Central

    Kimura, Shuhei; Tokuhisa, Masato; Okada-Hatakeyama, Mariko

    2016-01-01

    Many methods for inferring genetic networks have been proposed, but the regulations they infer often include false-positives. Several researchers have attempted to reduce these erroneous regulations by proposing the use of a priori knowledge about the properties of genetic networks such as their sparseness, scale-free structure, and so on. This study focuses on another piece of a priori knowledge, namely, that biochemical networks exhibit hierarchical structures. Based on this idea, we propose an inference approach that uses the hierarchical structure in a target genetic network. To obtain a reasonable hierarchical structure, the first step of the proposed approach is to infer multiple genetic networks from the observed gene expression data. We take this step using an existing method that combines a genetic network inference method with a bootstrap method. The next step is to extract a hierarchical structure from the inferred networks that is consistent with most of the networks. Third, we use the hierarchical structure obtained to assign confidence values to all candidate regulations. Numerical experiments are also performed to demonstrate the effectiveness of using the hierarchical structure in the genetic network inference. The improvement accomplished by the use of the hierarchical structure is small. However, the hierarchical structure could be used to improve the performances of many existing inference methods. PMID:26941653

  8. Fusion techniques of fuzzy systems and neural networks, and fuzzy systems and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Takagi, Hideyuki

    1993-12-01

    This paper overviews four combinations of fuzzy logic, neural networks and genetic algorithms: (1) neural networks to auto-design fuzzy systems, (2) employing fuzzy rule structure to construct structured neural networks, (3) genetic algorithms to auto-design fuzzy systems, and (4) a fuzzy knowledge-based system to control genetic parameter dynamically.

  9. [China genetic counseling network (CGCN): a website on genetic counseling and genetic education].

    PubMed

    He, Min; Li, Wei

    2007-03-01

    In April 2005, with the voluntary involvement of more than 50 worldwide genetic counselors or medical geneticists, we developed a website for online genetic counseling and genetic education on common genetic disease throughout China (URL: http://www.gcnet.org.cn). This website is offering professional online genetic counseling, as well as providing information about common genetic diseases which is a resource for genetic counselors and online genetic counselees. Online genetic counseling is an alternative method to the widely accepted face-to-face counseling. The data warehouse of China Genetic Counseling Network (CGCN) will be a unique supplement to current status of Clinical Genetics and healthcare system in China.

  10. Evolving complex dynamics in electronic models of genetic networks

    NASA Astrophysics Data System (ADS)

    Mason, Jonathan; Linsay, Paul S.; Collins, J. J.; Glass, Leon

    2004-09-01

    Ordinary differential equations are often used to model the dynamics and interactions in genetic networks. In one particularly simple class of models, the model genes control the production rates of products of other genes by a logical function, resulting in piecewise linear differential equations. In this article, we construct and analyze an electronic circuit that models this class of piecewise linear equations. This circuit combines CMOS logic and RC circuits to model the logical control of the increase and decay of protein concentrations in genetic networks. We use these electronic networks to study the evolution of limit cycle dynamics. By mutating the truth tables giving the logical functions for these networks, we evolve the networks to obtain limit cycle oscillations of desired period. We also investigate the fitness landscapes of our networks to determine the optimal mutation rate for evolution.

  11. Bimodality in Network Control

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Liu, Yang-Yu; Posfai, Marton; Slotine, Jean-Jacques; Barabasi, Albert-Laszlo

    2013-03-01

    Controlling complex systems is a fundamental challenge of network science. Recent tools enable us to identify the minimum driver nodes, from which we can control a system. They also indicate a multiplicity of minimum driver node sets (MDS's): multiple combinations of the same number of nodes can achieve control over the system. This multiplicity allows us to classify individual nodes as critical if they are involved in all control configurations, intermittent if they occasionally act as driver nodes and redundant if they do not play any role in control. We develop computational and analytical framework analyzing nodes in each category in both model and real networks. We find that networks with identical degree distribution can be in two distinct control modes, ``centralized'' or ``distributed'', with drastic change on the role of each node in maintaining the controllability and orders of magnitude difference in the number of MDS's. In analyzing both model and real networks, we find that the two modes can be inferred directly from the network's degree distribution. Finally we show that the two control modes can be switched by small structural perturbations, leading to potential applications of control theory in real systems.

  12. Robust Reachability of Boolean Control Networks.

    PubMed

    Li, Fangfei; Tang, Yang

    2016-04-20

    Boolean networks serve a powerful tool in analysis of genetic regulatory networks since it emphasizes the fundamental principles and establishes a nature framework for capturing the dynamics of regulation of cellular states. In this paper, the robust reachability of Boolean control networks is investigated by means of semi-tensor product. Necessary and sufficient conditions for the robust reachability of Boolean control networks are provided, in which control inputs relying on disturbances or not are considered, respectively. Besides, the corresponding control algorithms are developed for these two cases. A reduced model of the lac operon in the Escherichia coli is presented to show the effectiveness of the presented results.

  13. Quantifying and analyzing the network basis of genetic complexity.

    PubMed

    Thompson, Ethan G; Galitski, Timothy

    2012-01-01

    Genotype-to-phenotype maps exhibit complexity. This genetic complexity is mentioned frequently in the literature, but a consistent and quantitative definition is lacking. Here, we derive such a definition and investigate its consequences for model genetic systems. The definition equates genetic complexity with a surplus of genotypic diversity over phenotypic diversity. Applying this definition to ensembles of Boolean network models, we found that the in-degree distribution and the number of periodic attractors produced determine the relative complexity of different topology classes. We found evidence that networks that are difficult to control, or that exhibit a hierarchical structure, are genetically complex. We analyzed the complexity of the cell cycle network of Sacchoromyces cerevisiae and pinpointed genes and interactions that are most important for its high genetic complexity. The rigorous definition of genetic complexity is a tool for unraveling the structure and properties of genotype-to-phenotype maps by enabling the quantitative comparison of the relative complexities of different genetic systems. The definition also allows the identification of specific network elements and subnetworks that have the greatest effects on genetic complexity. Moreover, it suggests ways to engineer biological systems with desired genetic properties.

  14. Inferring genetic networks from microarray data.

    SciTech Connect

    May, Elebeoba Eni; Davidson, George S.; Martin, Shawn Bryan; Werner-Washburne, Margaret C.; Faulon, Jean-Loup Michel

    2004-06-01

    In theory, it should be possible to infer realistic genetic networks from time series microarray data. In practice, however, network discovery has proved problematic. The three major challenges are: (1) inferring the network; (2) estimating the stability of the inferred network; and (3) making the network visually accessible to the user. Here we describe a method, tested on publicly available time series microarray data, which addresses these concerns. The inference of genetic networks from genome-wide experimental data is an important biological problem which has received much attention. Approaches to this problem have typically included application of clustering algorithms [6]; the use of Boolean networks [12, 1, 10]; the use of Bayesian networks [8, 11]; and the use of continuous models [21, 14, 19]. Overviews of the problem and general approaches to network inference can be found in [4, 3]. Our approach to network inference is similar to earlier methods in that we use both clustering and Boolean network inference. However, we have attempted to extend the process to better serve the end-user, the biologist. In particular, we have incorporated a system to assess the reliability of our network, and we have developed tools which allow interactive visualization of the proposed network.

  15. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  16. A Gene-Phenotype Network Based on Genetic Variability for Drought Responses Reveals Key Physiological Processes in Controlled and Natural Environments

    PubMed Central

    Rengel, David; Arribat, Sandrine; Maury, Pierre; Martin-Magniette, Marie-Laure; Hourlier, Thibaut; Laporte, Marion; Varès, Didier; Carrère, Sébastien; Grieu, Philippe; Balzergue, Sandrine; Gouzy, Jérôme

    2012-01-01

    Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions. PMID:23056196

  17. Exact controllability of complex networks

    PubMed Central

    Yuan, Zhengzhong; Zhao, Chen; Di, Zengru; Wang, Wen-Xu; Lai, Ying-Cheng

    2013-01-01

    Controlling complex networks is of paramount importance in science and engineering. Despite the recent development of structural controllability theory, we continue to lack a framework to control undirected complex networks, especially given link weights. Here we introduce an exact controllability paradigm based on the maximum multiplicity to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and link-weight distributions. The framework reproduces the structural controllability of directed networks characterized by structural matrices. We explore the controllability of a large number of real and model networks, finding that dense networks with identical weights are difficult to be controlled. An efficient and accurate tool is offered to assess the controllability of large sparse and dense networks. The exact controllability framework enables a comprehensive understanding of the impact of network properties on controllability, a fundamental problem towards our ultimate control of complex systems. PMID:24025746

  18. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  19. The causes of epistasis in genetic networks.

    PubMed

    Macía, Javier; Solé, Ricard V; Elena, Santiago F

    2012-02-01

    Epistasis refers to the nonadditive interactions between genes in determining phenotypes. Considerable efforts have shown that, even for a given organism, epistasis may vary both in intensity and sign. Recent comparative studies supported that the overall sign of epistasis switches from positive to negative as the complexity of an organism increases, and it has been hypothesized that this change shall be a consequence of the underlying gene network properties. Why should this be the case? What characteristics of genetic networks determine the sign of epistasis? Here we show, by evolving genetic networks that differ in their complexity and robustness against perturbations but that perform the same tasks, that robustness increased with complexity and that epistasis was positive for small nonrobust networks but negative for large robust ones. Our results indicate that robustness and negative epistasis emerge as a consequence of the existence of redundant elements in regulatory structures of genetic networks and that the correlation between complexity and epistasis is a byproduct of such redundancy, allowing for the decoupling of epistasis from the underlying network complexity.

  20. Controlling General Polynomial Networks

    NASA Astrophysics Data System (ADS)

    Cuneo, N.; Eckmann, J.-P.

    2014-06-01

    We consider networks of massive particles connected by non-linear springs. Some particles interact with heat baths at different temperatures, which are modeled as stochastic driving forces. The structure of the network is arbitrary, but the motion of each particle is 1D. For polynomial interactions, we give sufficient conditions for Hörmander's "bracket condition" to hold, which implies the uniqueness of the steady state (if it exists), as well as the controllability of the associated system in control theory. These conditions are constructive; they are formulated in terms of inequivalence of the forces (modulo translations) and/or conditions on the topology of the connections. We illustrate our results with examples, including "conducting chains" of variable cross-section. This then extends the results for a simple chain obtained in Eckmann et al. in (Commun Math Phys 201:657-697, 1999).

  1. Genetic control of inflorescence architecture in legumes

    PubMed Central

    Benlloch, Reyes; Berbel, Ana; Ali, Latifeh; Gohari, Gholamreza; Millán, Teresa; Madueño, Francisco

    2015-01-01

    The architecture of the inflorescence, the shoot system that bears the flowers, is a main component of the huge diversity of forms found in flowering plants. Inflorescence architecture has also a strong impact on the production of fruits and seeds, and on crop management, two highly relevant agronomical traits. Elucidating the genetic networks that control inflorescence development, and how they vary between different species, is essential to understanding the evolution of plant form and to being able to breed key architectural traits in crop species. Inflorescence architecture depends on the identity and activity of the meristems in the inflorescence apex, which determines when flowers are formed, how many are produced and their relative position in the inflorescence axis. Arabidopsis thaliana, where the genetic control of inflorescence development is best known, has a simple inflorescence, where the primary inflorescence meristem directly produces the flowers, which are thus borne in the main inflorescence axis. In contrast, legumes represent a more complex inflorescence type, the compound inflorescence, where flowers are not directly borne in the main inflorescence axis but, instead, they are formed by secondary or higher order inflorescence meristems. Studies in model legumes such as pea (Pisum sativum) or Medicago truncatula have led to a rather good knowledge of the genetic control of the development of the legume compound inflorescence. In addition, the increasing availability of genetic and genomic tools for legumes is allowing to rapidly extending this knowledge to other grain legume crops. This review aims to describe the current knowledge of the genetic network controlling inflorescence development in legumes. It also discusses how the combination of this knowledge with the use of emerging genomic tools and resources may allow rapid advances in the breeding of grain legume crops. PMID:26257753

  2. Genetic networks influencing fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato is a model for ripening control and the basis of many characterized genes underlying this process. Cloning of the CNR, RIN and NOR genes defined the first ripening-specific transcription factors and provided insight into a ripening control system upstream of ethylene. RIN is a central player ...

  3. Genetic Control Of Malaria Mosquitoes.

    PubMed

    McLean, Kyle Jarrod; Jacobs-Lorena, Marcelo

    2016-03-01

    Experiments demonstrating the feasibility of genetically modifying mosquito vectors to impair their ability to transmit the malaria parasite have been known for well over a decade. However, means to spread resistance or population control genes into wild mosquito populations remains an unsolved challenge. Two recent reports give hope that CRISPR technology may allow such challenge to be overcome.

  4. Genetic Control Of Malaria Mosquitoes

    PubMed Central

    McLean, Kyle Jarrod; Jacobs-Lorena, Marcelo

    2016-01-01

    Experiments demonstrating the feasibility of genetically modifying mosquito vectors to impair their ability to transmit the malaria parasite have been known for well over a decade. However, means to spread resistance or population control genes into wild mosquito populations remains an unsolved challenge. Two recent reports give hope that CRISPR technology may allow such challenge to be overcome. PMID:26809567

  5. Bridging genetic networks and queueing theory

    NASA Astrophysics Data System (ADS)

    Arazi, Arnon; Ben-Jacob, Eshel; Yechiali, Uri

    2004-02-01

    One of the main challenges facing biology today is the understanding of the joint action of genes, proteins and RNA molecules, interwoven in intricate interdependencies commonly known as genetic networks. To this end, several mathematical approaches have been introduced to date. In addition to developing the analytical tools required for this task anew, one can utilize knowledge found in existing disciplines, specializing in the representation and analysis of systems featuring similar aspects. We suggest queueing theory as a possible source of such knowledge. This discipline, which focuses on the study of workloads forming in a variety of scenarios, offers an assortment of tools allowing for the derivation of the statistical properties of the inspected systems. We argue that a proper adaptation of modeling techniques and analytical methods used in queueing theory can contribute to the study of genetic regulatory networks. This is demonstrated by presenting a queueing-inspired model of a genetic network of arbitrary size and structure, for which the probability distribution function is derived. This model is further applied to the description of the lac operon regulation mechanism. In addition, we discuss the possible benefits stemming for queueing theory from the interdisciplinary dialogue with molecular biology-in particular, the incorporation of various dynamical behaviours into queueing networks.

  6. Genetic control of Aedes mosquitoes

    PubMed Central

    Alphey, Luke; McKemey, Andrew; Nimmo, Derric; Neira Oviedo, Marco; Lacroix, Renaud; Matzen, Kelly; Beech, Camilla

    2013-01-01

    Aedes mosquitoes include important vector species such as Aedes aegypti, the major vector of dengue. Genetic control methods are being developed for several of these species, stimulated by an urgent need owing to the poor effectiveness of current methods combined with an increase in chemical pesticide resistance. In this review we discuss the various genetic strategies that have been proposed, their present status, and future prospects. We focus particularly on those methods that are already being tested in the field, including RIDL and Wolbachia-based approaches. PMID:23816508

  7. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  8. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc.

  9. Control efficacy of complex networks

    PubMed Central

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks. PMID:27324438

  10. Control efficacy of complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-06-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks.

  11. Effects of macromolecular crowding on genetic networks.

    PubMed

    Morelli, Marco J; Allen, Rosalind J; Wolde, Pieter Rein ten

    2011-12-21

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance.

  12. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  13. Neural Networks For Robot Control

    DTIC Science & Technology

    2001-04-17

    following: (a) Application of artificial neural networks (multi-layer perceptrons, MLPs) for 2D planar robot arm by using the dynamic backpropagation...methods for the adjustment of parameters; and optimization of the architecture; (b) Application of artificial neural networks in controlling closed...studies in controlling dynamic robot arms by using neural networks in real-time process; (2) Research of optimal architectures used in closed-loop systems in order to compare with adaptive and robust control.

  14. Enhanced energy transport in genetically engineered excitonic networks

    NASA Astrophysics Data System (ADS)

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

  15. Attack Vulnerability of Network Controllability

    PubMed Central

    2016-01-01

    Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability. PMID:27588941

  16. Character Recognition Using Genetically Trained Neural Networks

    SciTech Connect

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of

  17. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  18. Functional Localization of Genetic Network Programming

    NASA Astrophysics Data System (ADS)

    Eto, Shinji; Hirasawa, Kotaro; Hu, Jinglu

    According to the knowledge of brain science, it is suggested that there exists cerebral functional localization, which means that a specific part of the cerebrum is activated depending on various kinds of information human receives. The aim of this paper is to build an artificial model to realize functional localization based on Genetic Network Programming (GNP), a new evolutionary computation method recently developed. GNP has a directed graph structure suitable for realizing functional localization. We studied the basic characteristics of the proposed system by making GNP work in a functionally localized way.

  19. Realistic control of network dynamics.

    PubMed

    Cornelius, Sean P; Kath, William L; Motter, Adilson E

    2013-01-01

    The control of complex networks is of paramount importance in areas as diverse as ecosystem management, emergency response and cell reprogramming. A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behaviour or fail. Here we show that it is possible to exploit the same principle to control network behaviour. Our approach accounts for the nonlinear dynamics inherent to real systems, and allows bringing the system to a desired target state even when this state is not directly accessible due to constraints that limit the allowed interventions. Applications show that this framework permits reprogramming a network to a desired task, as well as rescuing networks from the brink of failure-which we illustrate through the mitigation of cascading failures in a power-grid network and the identification of potential drug targets in a signalling network of human cancer.

  20. Realistic Control of Network Dynamics

    PubMed Central

    Cornelius, Sean P.; Kath, William L.; Motter, Adilson E.

    2014-01-01

    The control of complex networks is of paramount importance in areas as diverse as ecosystem management, emergency response, and cell reprogramming. A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. Here, we show that it is possible to exploit the same principle to control network behavior. Our approach accounts for the nonlinear dynamics inherent to real systems, and allows bringing the system to a desired target state even when this state is not directly accessible due to constraints that limit the allowed interventions. Applications show that this framework permits reprogramming a network to a desired task as well as rescuing networks from the brink of failure—which we illustrate through the mitigation of cascading failures in a power-grid network and the identification of potential drug targets in a signaling network of human cancer. PMID:23803966

  1. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    PubMed Central

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  2. Physical controllability of complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Le-Zhi; Chen, Yu-Zhong; Wang, Wen-Xu; Lai, Ying-Cheng

    2017-01-01

    A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control.

  3. Physical controllability of complex networks

    PubMed Central

    Wang, Le-Zhi; Chen, Yu-Zhong; Wang, Wen-Xu; Lai, Ying-Cheng

    2017-01-01

    A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control. PMID:28074900

  4. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  5. Genetic Networks Activated by Blast Injury to the Eye

    DTIC Science & Technology

    2013-08-01

    AD_________________ Award Number: W81XWH-12-1-0255 TITLE: Genetic Networks Activated by Blast...DATES COVERED 15 July 2012 – 14 July 2013 4. TITLE AND SUBTITLE Genetic Networks Activated by Blast Injury to the Eye 5a. CONTRACT NUMBER 5b...following a blast injury to the eye. In this process the genetic networks activated by injury will be defined along with biological markers of

  6. Control of collective network chaos.

    PubMed

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A F; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  7. Control of collective network chaos

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A. F.; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  8. Secure network for beamline control

    NASA Astrophysics Data System (ADS)

    Ohata, T.; Fukui, T.; Ishii, M.; Furukawa, Y.; Nakatani, T.; Matsushita, T.; Takeuchi, M.; Tanaka, R.; Ishikawa, T.

    2001-07-01

    In SPring-8, beamline control system is constructed with a highly available distributed network system. The socket based communication protocol is used for the beamline control mainly. Beamline users can control the equipment by sending simple control commands to a server process, which is running on a beamline-managing computer (Ohata et al., SPring-8 beamline control system, ICALEPCS'99, Trieste, Italy, 1999). At the beginning the network was based on the shared topology at all beamlines. Consequently, it has a risk for misapplication of the user's program to access different machines on the network system cross over beamlines. It is serious problem for the SPring-8 beamline control system, because all beamlines controlled with unified software interfaces. We introduced the switching technology and the firewalls to support network access control. Also the virtual networking (VLAN: IEEE 802.1Q) and the gigabit Ethernet technology (IEEE 802.3ab) are introduced. Thus the network security and the reliability are guaranteed at the higher level in SPring-8 beamline.

  9. Controllability of asynchronous Boolean multiplex control networks

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Wang, Xingyuan; Liu, Hong

    2014-09-01

    In this article, the controllability of asynchronous Boolean multiplex control networks (ABMCNs) is studied. First, the model of Boolean multiplex control networks under Harvey' asynchronous update is presented. By means of semi-tensor product approach, the logical dynamics is converted into linear representation, and a generalized formula of control-depending network transition matrices is achieved. Second, a necessary and sufficient condition is proposed to verify that only control-depending fixed points of ABMCNs can be controlled with probability one. Third, using two types of controls, the controllability of system is studied and formulae are given to show: (a) when an initial state is given, the reachable set at time s under a group of specified controls; (b) the reachable set at time s under arbitrary controls; (c) the specific probability values from a given initial state to destination states. Based on the above formulae, an algorithm to calculate overall reachable states from a specified initial state is presented. Moreover, we also discuss an approach to find the particular control sequence which steers the system between two states with maximum probability. Examples are shown to illustrate the feasibility of the proposed scheme.

  10. Artificial neural networks reveal efficiency in genetic value prediction.

    PubMed

    Peixoto, L A; Bhering, L L; Cruz, C D

    2015-06-18

    The objective of this study was to evaluate the efficiency of artificial neural networks (ANNs) for predicting genetic value in experiments carried out in randomized blocks. Sixteen scenarios were simulated with different values of heritability (10, 20, 30, and 40%), coefficient of variation (5 and 10%), and the number of genotypes per block (150 and 200 for validation, and 5000 for neural network training). One hundred validation populations were used in each scenario. Accuracy of ANNs was evaluated by comparing the correlation of network value with genetic value, and of phenotypic value with genetic value. Neural networks were efficient in predicting genetic value with a 0.64 to 10.3% gain compared to the phenotypic value, regardless the simulated population size, heritability, or coefficient of variation. Thus, the artificial neural network is a promising technique for predicting genetic value in balanced experiments.

  11. Information transmission in genetic regulatory networks: a review

    NASA Astrophysics Data System (ADS)

    Tkačik, Gašper; Walczak, Aleksandra M.

    2011-04-01

    Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.

  12. Controlling centrality in complex networks

    PubMed Central

    Nicosia, V.; Criado, R.; Romance, M.; Russo, G.; Latora, V.

    2012-01-01

    Spectral centrality measures allow to identify influential individuals in social groups, to rank Web pages by popularity, and even to determine the impact of scientific researches. The centrality score of a node within a network crucially depends on the entire pattern of connections, so that the usual approach is to compute node centralities once the network structure is assigned. We face here with the inverse problem, that is, we study how to modify the centrality scores of the nodes by acting on the structure of a given network. We show that there exist particular subsets of nodes, called controlling sets, which can assign any prescribed set of centrality values to all the nodes of a graph, by cooperatively tuning the weights of their out-going links. We found that many large networks from the real world have surprisingly small controlling sets, containing even less than 5 – 10% of the nodes. PMID:22355732

  13. Control Capacity in Complex Networks

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Liu, Yang-Yu; Slotine, Jean-Jacques; Barabasi, Albert-Laszlo

    2012-02-01

    By combining tools from control theory and network science, an efficient methodology was proposed to identify the minimum sets of driver nodes, whose time-dependent control can guide the whole network to any desired final state. Yet, this minimum driver set (MDS) is usually not unique, but one can often achieve multiple potential control configurations with the same number of driver nodes. Given that some nodes may appear in some MDSs but not in other, a crucial question remain unanswered: what is the role of individual node in controlling a complex system? We first classify a node as critical, redundant, or ordinary if it appears in all, no, or some MDSs. Then we introduce the concept of control capacity as a measure of the frequency that a node is in the MDSs, which quantifies the importance of a given node in maintaining Controllability. To avoid impractical enumeration of all MDSs, we propose an algorithm that uniformly samples the MDS. We use it to explore the control capacity of nodes in complex networks and study how it is related to other characteristics of the network topology.

  14. Communicating Networked Control Systems

    DTIC Science & Technology

    2007-03-31

    Bahamas, pages 1010-1015. 64. Carmen Del Vecchio and I.C. Paschalidis, “Supply Contracts with Service Level Requirements”, Proceedings of the IFAC...control using Monte Carlo sensing,” Proc. IEEE International Conference on Robotics and Automation, pp. 3058-3063, 2005. 10. S.B. Andersson, A.A. Handzel, V...Analysis, Madrid Spain. 20. S. Andersson and D. Hristu-Varsakelis, “Language-based feedback control using Monte -Carlo sensing”, to be subm. To IEEE Int’l

  15. A control network of Triton

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Rogers, Patricia G.; Colvin, Tim R.

    1991-01-01

    A control network for Triton has been computed using a bundle-type analytical triangulation program. The network contains 105 points that were measured on 57 Voyager-2 pictures. The adjustment contained 1010 observation equations and 382 normal equations and resulted in a standard measurement error of 13.36 microns. The coordinates of the control points, the camera orientation angles at the times when the pictures were taken, and Triton's mean radius were determined. A separate statistical analysis confirmed Triton's radius to be 1352.6 + or - 2.4 km. Attempts to tie the control network around the satellite were unsuccessful because discontinuities exist in high-resolution coverage between 66 deg and 289 deg longitude, north of 38 deg latitude, and south of 78 deg latitude.

  16. A unified lunar control network

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Colvin, Tim R.; Meyer, Donald L.

    1987-01-01

    Mapping network control on the Moon is composed of a number of independent regional networks. These networks frequently have different origins but never have common ties, even in overlapping areas. The objective of the unified network program is to tie the regional networks into a single consistent planetwide control network. The plan is to start with the best defined regions, create common ties with neighboring data sets, and then expand into poorly defined regions. The most accurately defined points on the Moon are locations of the laser ranging retroreflectors and the VLBI measurements of the locations of the Apollo 15, 16, 17 ALSEP stations. Recent values for the coordinates of the retroreflectors have been received. The accuracy of these locations is about 30 m and their locations are used to define the center-of-mass and, hence, the origin of the unified lunar coordinate system. The coordinates of the retroreflectors are given in both principal axis and mean Earth/Polar axis systems. Mean Earth/Polar axis coordinates have been recommended by the IAU for the Moon. The difference in the coordinates is important, more than 600 m in latitude and longitude.

  17. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  18. Control of Boolean networks: hardness results and algorithms for tree structured networks.

    PubMed

    Akutsu, Tatsuya; Hayashida, Morihiro; Ching, Wai-Ki; Ng, Michael K

    2007-02-21

    Finding control strategies of cells is a challenging and important problem in the post-genomic era. This paper considers theoretical aspects of the control problem using the Boolean network (BN), which is a simplified model of genetic networks. It is shown that finding a control strategy leading to the desired global state is computationally intractable (NP-hard) in general. Furthermore, this hardness result is extended for BNs with considerably restricted network structures. These results justify existing exponential time algorithms for finding control strategies for probabilistic Boolean networks (PBNs). On the other hand, this paper shows that the control problem can be solved in polynomial time if the network has a tree structure. Then, this algorithm is extended for the case where the network has a few loops and the number of time steps is small. Though this paper focuses on theoretical aspects, biological implications of the theoretical results are also discussed.

  19. Optimization of multicast optical networks with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  20. Gene networks controlling petal organogenesis.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2016-01-01

    One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology.

  1. Multilevel modeling for inference of genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Ng, Shu-Kay; Wang, Kui; McLachlan, Geoffrey J.

    2005-12-01

    Time-course experiments with microarrays are often used to study dynamic biological systems and genetic regulatory networks (GRNs) that model how genes influence each other in cell-level development of organisms. The inference for GRNs provides important insights into the fundamental biological processes such as growth and is useful in disease diagnosis and genomic drug design. Due to the experimental design, multilevel data hierarchies are often present in time-course gene expression data. Most existing methods, however, ignore the dependency of the expression measurements over time and the correlation among gene expression profiles. Such independence assumptions violate regulatory interactions and can result in overlooking certain important subject effects and lead to spurious inference for regulatory networks or mechanisms. In this paper, a multilevel mixed-effects model is adopted to incorporate data hierarchies in the analysis of time-course data, where temporal and subject effects are both assumed to be random. The method starts with the clustering of genes by fitting the mixture model within the multilevel random-effects model framework using the expectation-maximization (EM) algorithm. The network of regulatory interactions is then determined by searching for regulatory control elements (activators and inhibitors) shared by the clusters of co-expressed genes, based on a time-lagged correlation coefficients measurement. The method is applied to two real time-course datasets from the budding yeast (Saccharomyces cerevisiae) genome. It is shown that the proposed method provides clusters of cell-cycle regulated genes that are supported by existing gene function annotations, and hence enables inference on regulatory interactions for the genetic network.

  2. Synthesis of PHBV block copolymers driven by an oscillatory genetic network.

    PubMed

    Iadevaia, Sergio; Mantzaris, Nikos V

    2007-02-20

    Artificial genetic networks constitute a powerful tool to achieve various biotechnological objectives. In this work, we propose the modification of an oscillatory genetic network, known as the repressilator, to drive synthesis of poly(3hydroxybutyrate-co-3hydroxyvalerate) (PHBV) block copolymer chains in recombinant Escherichia coli cells. To study the feasibility of this idea, we developed a detailed mathematical model describing the dynamics of the genetic network, which drive the formation of monomer units that are subsequently incorporated into actively growing block copolymer chains. Extensive simulation studies have shown that appropriate choice of the molecular characteristics of the network and manipulation of extracelllular conditions lead to tight control of both the micro- and macro-structures of the resulting block copolymer chains. Thus, the model can guide network design aiming at producing block copolymer structures with desirable characteristics.

  3. Virtualized Network Control. Final Report

    SciTech Connect

    Ghani, Nasir

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  4. The AMSC network control system

    NASA Technical Reports Server (NTRS)

    Garner, William B.

    1990-01-01

    The American Mobile Satellite Corporation (AMSC) is going to construct, launch, and operate a satellite system in order to provide mobile satellite services to the United States. AMSC is going to build, own, and operate a Network Control System (NCS) for managing the communications usage of the satellites, and to control circuit switched access between mobile earth terminals and feeder-link earth stations. An overview of the major NCS functional and performance requirements, the control system physical architecture, and the logical architecture is provided.

  5. Controllability of the better chosen partial networks

    NASA Astrophysics Data System (ADS)

    Liu, Xueming; Pan, Linqiang

    2016-08-01

    How to control large complex networks is a great challenge. Recent studies have proved that the whole network can be sufficiently steered by injecting control signals into a minimum set of driver nodes, and the minimum numbers of driver nodes for many real networks are high, indicating that it is difficult to control them. For some large natural and technological networks, it is impossible and not feasible to control the full network. For example, in biological networks like large-scale gene regulatory networks it is impossible to control all the genes. This prompts us to explore the question how to choose partial networks that are easy for controlling and important in networked systems. In this work, we propose a method to achieve this goal. By computing the minimum driver nodes densities of the partial networks of Erdös-Rényi (ER) networks, scale-free (SF) networks and 23 real networks, we find that our method performs better than random method that chooses nodes randomly. Moreover, we find that the nodes chosen by our method tend to be the essential elements of the whole systems, via studying the nodes chosen by our method of a real human signaling network and a human protein interaction network and discovering that the chosen nodes from these networks tend to be cancer-associated genes. The implementation of our method shows some interesting connections between the structure and the controllability of networks, improving our understanding of the control principles of complex systems.

  6. Coverage Control in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wang, Bang

    Sensors are devices that convert physical stimulus into recordable signals. Sensors have facilitated people to understand, monitor, and control machines and environments for many decades. A sensor node consists of not only sensor unit but also microcontroller unit, communication unit, storage unit, and power supply for producing, collecting, storing, processing, and delivering sensory data. The size and cost of a single sensor node has been reducing with the continuous advances of micro-electro-mechanical systems (MEMS) techniques. The miniaturization of sensor nodes has promoted the emergence of sensor networks, which normally consists of a large number of sensor nodes collaborating to accomplish advanced tasks. Applications of sensor networks are in a wide range, including battlefield surveillance, environmental monitoring, biological detection, smart space, industrial diagnostics, etc. Despite promising applications, there are also great challenges in designing, implementing, and operating sensor networks. Many research issues have been studied, and many solution approaches have been proposed for sensor networks. In this chapter, we provide some backgrounds and introduction about sensors, sensor nodes, and sensor networks.

  7. Robustness of network controllability in cascading failure

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Ming; Xu, Yun-Fei; Nie, Sen

    2017-04-01

    It is demonstrated that controlling complex networks in practice needs more inputs than that predicted by the structural controllability framework. Besides, considering the networks usually faces to the external or internal failure, we define parameters to evaluate the control cost and the variation of controllability after cascades, exploring the effect of number of control inputs on the controllability for random networks and scale-free networks in the process of cascading failure. For different topological networks, the results show that the robustness of controllability will be stronger through allocating different control inputs and edge capacity.

  8. Genetic noise control via protein oligomerization

    SciTech Connect

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  9. Genetic Control of Potassium Channels.

    PubMed

    Amin, Ahmad S; Wilde, Arthur A M

    2016-06-01

    Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.

  10. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function

    PubMed Central

    Braun, Urs; Schäfer, Axel; Rausch, Franziska; Schweiger, Janina I.; Bilek, Edda; Erk, Susanne; Romanczuk-Seiferth, Nina; Grimm, Oliver; Geiger, Lena S.; Haddad, Leila; Otto, Kristina; Mohnke, Sebastian; Heinz, Andreas; Zink, Mathias; Walter, Henrik; Schwarz, Emanuel; Meyer-Lindenberg, Andreas; Tost, Heike

    2016-01-01

    Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation–inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified “network flexibility,” a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia. PMID:27791105

  11. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function.

    PubMed

    Braun, Urs; Schäfer, Axel; Bassett, Danielle S; Rausch, Franziska; Schweiger, Janina I; Bilek, Edda; Erk, Susanne; Romanczuk-Seiferth, Nina; Grimm, Oliver; Geiger, Lena S; Haddad, Leila; Otto, Kristina; Mohnke, Sebastian; Heinz, Andreas; Zink, Mathias; Walter, Henrik; Schwarz, Emanuel; Meyer-Lindenberg, Andreas; Tost, Heike

    2016-11-01

    Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation-inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified "network flexibility," a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia.

  12. A genetic algorithm for solving supply chain network design model

    NASA Astrophysics Data System (ADS)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  13. Predicting and Controlling Complex Networks

    DTIC Science & Technology

    2015-06-22

    networks and control . . . . . . . . . . . . . . . . . . . 7 3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically...Ni, Y.-C. Lai, and C. Grebogi, “Pattern formation, synchronization and outbreak of biodiversity in cyclically competing games,” Physical Review E 83...of Physics B 76, 179-183 (2010). 3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically competing games Biodiversity is

  14. Opinion control in complex networks

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki

    2015-03-01

    In many political elections, the electorate appears to be a composite of partisan and independent voters. Given that partisans are not likely to convert to a different party, an important goal for a political party could be to mobilize independent voters toward the party with the help of strong leadership, mass media, partisans, and the effects of peer-to-peer influence. Based on the exact solution of classical voter model dynamics in the presence of perfectly partisan voters (i.e., zealots), we propose a computational method that uses pinning control strategy to maximize the share of a party in a social network of independent voters. The party, corresponding to the controller or zealots, optimizes the nodes to be controlled given the information about the connectivity of independent voters and the set of nodes that the opposing party controls. We show that controlling hubs is generally a good strategy, but the optimized strategy is even better. The superiority of the optimized strategy is particularly eminent when the independent voters are connected as directed (rather than undirected) networks.

  15. Network models. Comment on "Control profiles of complex networks".

    PubMed

    Campbell, Colin; Shea, Katriona; Albert, Réka

    2014-10-31

    Ruths and Ruths (Reports, 21 March 2014, p. 1373) find that existing synthetic random network models fail to generate control profiles that match those found in real network models. Here, we show that a straightforward extension to the Barabási-Albert model allows the control profile to be "tuned" across the control profile space, permitting more meaningful control profile analyses of real networks.

  16. Genetic regulatory network models of biological clocks: evolutionary history matters.

    PubMed

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    We study the evolvability and dynamics of artificial genetic regulatory networks (GRNs), as active control systems, realizing simple models of biological clocks that have evolved to respond to periodic environmental stimuli of various kinds with appropriate periodic behaviors. GRN models may differ in the evolvability of expressive regulatory dynamics. A new class of artificial GRNs with an evolvable number of complex cis-regulatory control sites--each involving a finite number of inhibitory and activatory binding factors--is introduced, allowing realization of complex regulatory logic. Previous work on biological clocks in nature has noted the capacity of clocks to oscillate in the absence of environmental stimuli, putting forth several candidate explanations for their observed behavior, related to anticipation of environmental conditions, compartmentation of activities in time, and robustness to perturbations of various kinds or to unselected accidents of neutral selection. Several of these hypotheses are explored by evolving GRNs with and without (Gaussian) noise and blackout periods for environmental stimulation. Robustness to certain types of perturbation appears to account for some, but not all, dynamical properties of the evolved networks. Unselected abilities, also observed for biological clocks, include the capacity to adapt to change in wavelength of environmental stimulus and to clock resetting.

  17. Optimal finite horizon control in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiuli

    2013-06-01

    As a paradigm for modeling gene regulatory networks, probabilistic Boolean networks (PBNs) form a subclass of Markov genetic regulatory networks. To date, many different stochastic optimal control approaches have been developed to find therapeutic intervention strategies for PBNs. A PBN is essentially a collection of constituent Boolean networks via a probability structure. Most of the existing works assume that the probability structure for Boolean networks selection is known. Such an assumption cannot be satisfied in practice since the presence of noise prevents the probability structure from being accurately determined. In this paper, we treat a case in which we lack the governing probability structure for Boolean network selection. Specifically, in the framework of PBNs, the theory of finite horizon Markov decision process is employed to find optimal constituent Boolean networks with respect to the defined objective functions. In order to illustrate the validity of our proposed approach, an example is also displayed.

  18. Combination of uniform design with artificial neural network coupling genetic algorithm: an effective way to obtain high yield of biomass and algicidal compound of a novel HABs control actinomycete.

    PubMed

    Cai, Guanjing; Zheng, Wei; Yang, Xujun; Zhang, Bangzhou; Zheng, Tianling

    2014-05-24

    Controlling harmful algae blooms (HABs) using microbial algicides is cheap, efficient and environmental-friendly. However, obtaining high yield of algicidal microbes to meet the need of field test is still a big challenge since qualitative and quantitative analysis of algicidal compounds is difficult. In this study, we developed a protocol to increase the yield of both biomass and algicidal compound present in a novel algicidal actinomycete Streptomyces alboflavus RPS, which kills Phaeocystis globosa. To overcome the problem in algicidal compound quantification, we chose algicidal ratio as the index and used artificial neural network to fit the data, which was appropriate for this nonlinear situation. In this protocol, we firstly determined five main influencing factors through single factor experiments and generated the multifactorial experimental groups with a U15(155) uniform-design-table. Then, we used the traditional quadratic polynomial stepwise regression model and an accurate, fully optimized BP-neural network to simulate the fermentation. Optimized with genetic algorithm and verified using experiments, we successfully increased the algicidal ratio of the fermentation broth by 16.90% and the dry mycelial weight by 69.27%. These results suggested that this newly developed approach is a viable and easy way to optimize the fermentation conditions for algicidal microorganisms.

  19. Topological constraints on network control profiles

    PubMed Central

    Campbell, Colin; Ruths, Justin; Ruths, Derek; Shea, Katriona; Albert, Réka

    2015-01-01

    Network models are designed to capture properties of empirical networks and thereby provide insight into the processes that underlie the formation of complex systems. As new information concerning network structure becomes available, it becomes possible to design models that more fully capture the properties of empirical networks. A recent advance in our understanding of network structure is the control profile, which summarizes the structural controllability of a network in terms of source nodes, external dilations, and internal dilations. Here, we consider the topological properties–and their formation mechanisms—that constrain the control profile. We consider five representative empirical categories of internal-dilation dominated networks, and show that the number of source and sink nodes, the form of the in- and out-degree distributions, and local complexity (e.g., cycles) shape the control profile. We evaluate network models that are sufficient to produce realistic control profiles, and conclude that holistic network models should similarly consider these properties. PMID:26691951

  20. Neural Network Controlled Visual Saccades

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey D.; Grogan, Timothy A.

    1989-03-01

    The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.

  1. Network Adaptive Deadband: NCS Data Flow Control for Shared Networks

    PubMed Central

    Díaz-Cacho, Miguel; Delgado, Emma; Prieto, José A. G.; López, Joaquín

    2012-01-01

    This paper proposes a new middleware solution called Network Adaptive Deadband (NAD) for long time operation of Networked Control Systems (NCS) through the Internet or any shared network based on IP technology. The proposed middleware takes into account the network status and the NCS status, to improve the global system performance and to share more effectively the network by several NCS and sensor/actuator data flows. Relationship between network status and NCS status is solved with a TCP-friendly transport flow control protocol and the deadband concept, relating deadband value and transmission throughput. This creates a deadband-based flow control solution. Simulation and experiments in shared networks show that the implemented network adaptive deadband has better performance than an optimal constant deadband solution in the same circumstances. PMID:23208556

  2. Structural Controllability of Temporal Networks with a Single Switching Controller

    PubMed Central

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538

  3. Structural Controllability of Temporal Networks with a Single Switching Controller.

    PubMed

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance.

  4. Genetic variants in Alzheimer disease - molecular and brain network approaches.

    PubMed

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher J; De Jager, Philip L; Bennett, David A

    2016-07-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models.

  5. Network Access Control List Situation Awareness

    ERIC Educational Resources Information Center

    Reifers, Andrew

    2010-01-01

    Network security is a large and complex problem being addressed by multiple communities. Nevertheless, current theories in networking security appear to overestimate network administrators' ability to understand network access control lists (NACLs), providing few context specific user analyses. Consequently, the current research generally seems to…

  6. Flow Control Using Neural Networks

    DTIC Science & Technology

    2007-11-02

    FEB 93 - 31 DEC 96 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS FLOW CONTROL USING NEURAL NETWORKS F49620-93-1-0135 61102F 6. AUTHOR(S) 2307/BS THORWALD...OFFICE OF SCIENTIFIC RESEARCH (AFOSRO AGENCY REPORT NUMBER 110 DUNCAN AVENUE, ROOM B115 BOLLING AFB DC 20332- 8050 11. SUPPLEMENTARY NOTES 12a...signals. Figure 5 shows a time series for an actuator that performs a ramp motion in the streamwise direction over about 1 % of the TS period and remains

  7. H ∞ predictive control of networked control systems

    NASA Astrophysics Data System (ADS)

    Xia, Yuanqing; Li, Li; Liu, Guo-Ping; Shi, Peng

    2011-06-01

    This article is concerned with the problem of H ∞ predictive control of networked control system with random network delay. A new control scheme termed networked predictive control is proposed. This scheme mainly consists of the control prediction generator and network delay compensator. While designing the predictor, the control input to the actuator may be different due to networked induced time-delay and data dropout, and two cases are considered depending on the way that the observer obtains the plant control input u t . The necessary and sufficient conditions are given for the closed-loop networked predictive control system to be stochastically stable for different u t and random network delays in controller to actuator channel (CAC) and sensor to controller channel (SCC). A simulation study shows the effectiveness of the proposed scheme.

  8. Adaptive optimization and control using neural networks

    SciTech Connect

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  9. Are genetically robust regulatory networks dynamically different from random ones?

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Rikvold, Per Arne

    We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.

  10. Genetic networks: between theory and experimentation

    NASA Astrophysics Data System (ADS)

    Bottani, Samuel; Mazurie, Aurélien

    Thanks to an increasing availability of data on cell components and progress in computers and computer science, a long awaited paradigm shift is running in biology from reductionism to holistic approaches. One of the consequences is the huge development of network-related representations of cell activity and an increasing involvement of researchers from computer science, physics and mathematics in their analysis. But what are the promises of these approaches for the biologist? What is the available biological data sustaining them and is it sufficient? After a presentation of the interaction network view of the cell, we shall focus on studies on gene network structure and dynamics. Then we shall discuss the difficulties of these approaches and their theoretical and practical usefulness for the biologist.

  11. The control network of Iapetus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1984-01-01

    A control network of the Saturnian satellite Iapetus has been established photogrammetrically from pictures taken by the two Voyager spacecraft. Coordinates of 62 control points have been computed and listed; pixel measurements of these points were made on 14 Voyager 1 and 66 Voyager 2 pictures. Some of these points are identified on the preliminary U.S. Geological Survey map of Iapetus and many are identified by name. The Voyager 1 and Voyager 2 pictures covered limited regions of the satellite's surface and contained no overlapping areas. The longitude system on Iapetus is defined by the crater Almeric; the 276 deg meridian passes through the center of this crater. The obliquity of Iapetus has been measured as 0.4 deg + or - 1.6 deg. The mean radius of Iapetus has been determined at 718 + or - 8 km.

  12. Phobos and Deimos control networks

    NASA Technical Reports Server (NTRS)

    Duxbury, Thomas C.; Callahan, John D.

    1989-01-01

    Viking Orbiter images of Phobos and Deimos have been measured to establish global control networks for 98 surface features of the former and 53 of the latter; photogrammetric triangulation has yielded body-fixed coordinates of these control-points, as well as mean triaxial radii of 13.3 x 11.1 x 9.3 km for Phobos and 7.5 x 6.2 x 5.4 for Deimos. Expressions are also obtained for the inertial orientations of these bodies' spin axes and prime meridians. While these expressions should be accurate to a few tenths of a deg for the 1971-1980 period, their accuracy will degrade with time as the orbit accuracy degrades.

  13. MicroRNA-dependent genetic networks during neural development.

    PubMed

    Abernathy, Daniel G; Yoo, Andrew S

    2015-01-01

    The development of the structurally and functionally diverse mammalian nervous system requires the integration of numerous levels of gene regulation. Accumulating evidence suggests that microRNAs are key mediators of genetic networks during neural development. Importantly, microRNAs are found to regulate both feedback and feedforward loops during neural development leading to large changes in gene expression. These repressive interactions provide an additional mechanism that facilitates the establishment of complexity within the nervous system. Here, we review studies that have enabled the identification of microRNAs enriched in the brain and discuss the way that genetic networks in neural development depend on microRNAs.

  14. A Full Bayesian Approach for Boolean Genetic Network Inference

    PubMed Central

    Han, Shengtong; Wong, Raymond K. W.; Lee, Thomas C. M.; Shen, Linghao; Li, Shuo-Yen R.; Fan, Xiaodan

    2014-01-01

    Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data. PMID:25551820

  15. Node-based measures of connectivity in genetic networks.

    PubMed

    Koen, Erin L; Bowman, Jeff; Wilson, Paul J

    2016-01-01

    At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal.

  16. Pinning impulsive control algorithms for complex network

    SciTech Connect

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  17. Controlling complex networks with conformity behavior

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Wen; Nie, Sen; Wang, Wen-Xu; Wang, Bing-Hong

    2015-09-01

    Controlling complex networks accompanied by common conformity behavior is a fundamental problem in social and physical science. Conformity behavior that individuals tend to follow the majority in their neighborhood is common in human society and animal communities. Despite recent progress in understanding controllability of complex networks, the existent controllability theories cannot be directly applied to networks associated with conformity. Here we propose a simple model to incorporate conformity-based decision making into the evolution of a network system, which allows us to employ the exact controllability theory to explore the controllability of such systems. We offer rigorous theoretical results of controllability for representative regular networks. We also explore real networks in different fields and some typical model networks, finding some interesting results that are different from the predictions of structural and exact controllability theory in the absence of conformity. We finally present an example of steering a real social network to some target states to further validate our controllability theory and tools. Our work offers a more realistic understanding of network controllability with conformity behavior and can have potential applications in networked evolutionary games, opinion dynamics and many other complex networked systems.

  18. Genetic Networks in Mouse Retinal Ganglion Cells

    PubMed Central

    Struebing, Felix L.; Lee, Richard K.; Williams, Robert W.; Geisert, Eldon E.

    2016-01-01

    Retinal ganglion cells (RGCs) are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin) were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs) being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma. PMID:27733864

  19. Genetic Network Programming with Intron-Like Nodes

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Chen, Yan; Eto, Shinji; Shimada, Kaoru; Hirasawa, Kotaro

    Recently, Genetic Network Programming (GNP) has been proposed, which is an extension of Genetic Algorithm(GA) and Genetic Programming(GP). GNP can make compact programs and can memorize the past history in it implicitly, because it expresses the solution by directed graphs and therefore, it can reuse the nodes. In this research, intron-like nodes are introduced for improving the performance of GNP. The aim of introducing intron-like nodes is to use every node as much as possible. It is found from simulations that the intron-like nodes are useful for improving the training speed and generalization ability.

  20. Genetic Adaptive Control for PZT Actuators

    NASA Technical Reports Server (NTRS)

    Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.

    1995-01-01

    A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.

  1. Genetic demographic networks: Mathematical model and applications.

    PubMed

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise

  2. Genetic origins of social networks in rhesus macaques

    PubMed Central

    Brent, Lauren J. N.; Heilbronner, Sarah R.; Horvath, Julie E.; Gonzalez-Martinez, Janis; Ruiz-Lambides, Angelina; Robinson, Athy G.; Skene, J. H. Pate; Platt, Michael L.

    2013-01-01

    Sociality is believed to have evolved as a strategy for animals to cope with their environments. Yet the genetic basis of sociality remains unclear. Here we provide evidence that social network tendencies are heritable in a gregarious primate. The tendency for rhesus macaques, Macaca mulatta, to be tied affiliatively to others via connections mediated by their social partners - analogous to friends of friends in people - demonstrated additive genetic variance. Affiliative tendencies were predicted by genetic variation at two loci involved in serotonergic signalling, although this result did not withstand correction for multiple tests. Aggressive tendencies were also heritable and were related to reproductive output, a fitness proxy. Our findings suggest that, like humans, the skills and temperaments that shape the formation of multi-agent relationships have a genetic basis in nonhuman primates, and, as such, begin to fill the gaps in our understanding of the genetic basis of sociality. PMID:23304433

  3. Combining epidemiological and genetic networks signifies the importance of early treatment in HIV-1 transmission.

    PubMed

    Zarrabi, Narges; Prosperi, Mattia; Belleman, Robert G; Colafigli, Manuela; De Luca, Andrea; Sloot, Peter M A

    2012-01-01

    Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients' virus to infer the past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking. The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a transmission network of the HIV-1 epidemic in central Italy.We introduce a novel filter-reduction method to build a network of HIV infected patients based on their social and treatment information. The network is then combined with a genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1 infected patients in central Italy and find that patients who are highly connected in the network have longer untreated infection periods. We also find that the network structures for homosexual males and heterosexual populations are heterogeneous, consisting of a majority of 'peripheral nodes' that have only a few sexual interactions and a minority of 'hub nodes' that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings signify the importance of early treatment and support the potential benefit of wide population screening, management of early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented here for reconstructing HIV-1 transmission networks

  4. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  5. Genetic control of inflorescence in common bean.

    PubMed

    Guilherme, S R; Ramalho, M A P; de F B Abreu, A; Pereira, L A

    2014-12-04

    The number of pods per common bean plant is a primary component of grain yield, which depends on the number of flowers produced and on the flower set. Thus, a larger number of flowers per plant would increase yield. Lines with inflorescences that had a large number of flowers compared to common bean plants now under cultivation were identified. We analyzed the genetic control of this trait and its association with grain yield. The cultivar BRSMG Talismã was crossed with 2 lines, L.59583 and L.59692, which have a large number of flowers. The F1, F2, and F3 generations were obtained. These generations were assessed together with the parents in a randomized block experimental design with 2 replications. The traits assessed included length of inflorescence, number of pods per inflorescence, number of pods per plant, number of grains per plant, 100-grain weight, and grain yield per plant. Mean genetic components and variance were estimated. The traits length of inflorescence and number of pods per inflorescence exhibited genetic control with predominance that showed an additive effect. In the 2 crosses, genetic control of grain yield and of its primary components showed that the allelic interaction of dominance was high. The wide variability in the traits assessed may be used to increase yield of the common bean plant by increasing the number of flowers on the plant.

  6. Integration of biological networks and pathways with genetic association studies.

    PubMed

    Sun, Yan V

    2012-10-01

    Millions of genetic variants have been assessed for their effects on the trait of interest in genome-wide association studies (GWAS). The complex traits are affected by a set of inter-related genes. However, the typical GWAS only examine the association of a single genetic variant at a time. The individual effects of a complex trait are usually small, and the simple sum of these individual effects may not reflect the holistic effect of the genetic system. High-throughput methods enable genomic studies to produce a large amount of data to expand the knowledge base of the biological systems. Biological networks and pathways are built to represent the functional or physical connectivity among genes. Integrated with GWAS data, the network- and pathway-based methods complement the approach of single genetic variant analysis, and may improve the power to identify trait-associated genes. Taking advantage of the biological knowledge, these approaches are valuable to interpret the functional role of the genetic variants, and to further understand the molecular mechanism influencing the traits. The network- and pathway-based methods have demonstrated their utilities, and will be increasingly important to address a number of challenges facing the mainstream GWAS.

  7. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  8. Genetic Algorithm Application in Optimization of Wireless Sensor Networks

    PubMed Central

    Norouzi, Ali; Zaim, A. Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  9. New probabilistic graphical models for genetic regulatory networks studies.

    PubMed

    Wang, Junbai; Cheung, Leo Wang-Kit; Delabie, Jan

    2005-12-01

    This paper introduces two new probabilistic graphical models for reconstruction of genetic regulatory networks using DNA microarray data. One is an independence graph (IG) model with either a forward or a backward search algorithm and the other one is a Gaussian network (GN) model with a novel greedy search method. The performances of both models were evaluated on four MAPK pathways in yeast and three simulated data sets. Generally, an IG model provides a sparse graph but a GN model produces a dense graph where more information about gene-gene interactions may be preserved. The results of our proposed models were compared with several other commonly used models, and our models have shown to give superior performance. Additionally, we found the same common limitations in the prediction of genetic regulatory networks when using only DNA microarray data.

  10. Control of Large-Scale Boolean Networks via Network Aggregation.

    PubMed

    Zhao, Yin; Ghosh, Bijoy K; Cheng, Daizhan

    2016-07-01

    A major challenge to solve problems in control of Boolean networks is that the computational cost increases exponentially when the number of nodes in the network increases. We consider the problem of controllability and stabilizability of Boolean control networks, address the increasing cost problem by partitioning the network graph into several subnetworks, and analyze the subnetworks separately. Easily verifiable necessary conditions for controllability and stabilizability are proposed for a general aggregation structure. For acyclic aggregation, we develop a sufficient condition for stabilizability. It dramatically reduces the computational complexity if the number of nodes in each block of the acyclic aggregation is small enough compared with the number of nodes in the entire Boolean network.

  11. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations.

    PubMed

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Lai, Ben S K; Geraldes, Armando; Muchero, Wellington; Tuskan, Gerald A; Douglas, Carl J; El-Kassaby, Yousry A; Mansfield, Shawn D

    2013-02-01

    The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy-Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use.

  12. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  13. Information theory and the ethylene genetic network

    PubMed Central

    González-García, José S

    2011-01-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of

  14. Information theory and the ethylene genetic network.

    PubMed

    González-García, José S; Díaz, José

    2011-10-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of

  15. Genetic control of leaf curl in maize.

    PubMed

    Entringer, G C; Guedes, F L; Oliveira, A A; Nascimento, J P; Souza, J C

    2014-03-17

    Among the many implications of climatic change on agriculture, drought is expected to continue to have a major impact on agribusinesses. Leaf curling is an anatomical characteristic that might be potentially used to enhance plant tolerance to water deficit. Hence, we aimed to study the genetic control of leaf curl in maize. From 2 contrasting inbred lines for the trait, generations F1, F2, and the backcrosses were obtained. All of these generations were evaluated in a randomized block design with 2 replicates. Leaf curl samples were collected from 3 leaves above the first ear at the tasseling stage, and quantified by dividing the width of the leaf blade with natural curling against its extended width. The mean and variance components were estimated by the weighted least square method. It was found that the trait studied has predominance of the additive effects, with genetic control being attributed to few genes that favor selection and exhibit minimal influence from the environment.

  16. Threshold control of chaotic neural network.

    PubMed

    He, Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2008-01-01

    The chaotic neural network constructed with chaotic neurons exhibits rich dynamic behaviour with a nonperiodic associative memory. In the chaotic neural network, however, it is difficult to distinguish the stored patterns in the output patterns because of the chaotic state of the network. In order to apply the nonperiodic associative memory into information search, pattern recognition etc. it is necessary to control chaos in the chaotic neural network. We have studied the chaotic neural network with threshold activated coupling, which provides a controlled network with associative memory dynamics. The network converges to one of its stored patterns or/and reverse patterns which has the smallest Hamming distance from the initial state of the network. The range of the threshold applied to control the neurons in the network depends on the noise level in the initial pattern and decreases with the increase of noise. The chaos control in the chaotic neural network by threshold activated coupling at varying time interval provides controlled output patterns with different temporal periods which depend upon the control parameters.

  17. Predicting genetic interactions from Boolean models of biological networks.

    PubMed

    Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei

    2015-08-01

    Genetic interaction can be defined as a deviation of the phenotypic quantitative effect of a double gene mutation from the effect predicted from single mutations using a simple (e.g., multiplicative or linear additive) statistical model. Experimentally characterized genetic interaction networks in model organisms provide important insights into relationships between different biological functions. We describe a computational methodology allowing us to systematically and quantitatively characterize a Boolean mathematical model of a biological network in terms of genetic interactions between all loss of function and gain of function mutations with respect to all model phenotypes or outputs. We use the probabilistic framework defined in MaBoSS software, based on continuous time Markov chains and stochastic simulations. In addition, we suggest several computational tools for studying the distribution of double mutants in the space of model phenotype probabilities. We demonstrate this methodology on three published models for each of which we derive the genetic interaction networks and analyze their properties. We classify the obtained interactions according to their class of epistasis, dependence on the chosen initial conditions and the phenotype. The use of this methodology for validating mathematical models from experimental data and designing new experiments is discussed.

  18. Controlling contagion processes in activity driven networks.

    PubMed

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-21

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  19. Neural network architecture for crossbar switch control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry P.; Walters, Stephen M.

    1991-01-01

    A Hopfield neural network architecture for the real-time control of a crossbar switch for switching packets at maximum throughput is proposed. The network performance and processing time are derived from a numerical simulation of the transitions of the neural network. A method is proposed to optimize electronic component parameters and synaptic connections, and it is fully illustrated by the computer simulation of a VLSI implementation of 4 x 4 neural net controller. The extension to larger size crossbars is demonstrated through the simulation of an 8 x 8 crossbar switch controller, where the performance of the neural computation is discussed in relation to electronic noise and inhomogeneities of network components.

  20. Genetic Control of Lateral Root Formation in Cereals.

    PubMed

    Yu, Peng; Gutjahr, Caroline; Li, Chunjian; Hochholdinger, Frank

    2016-11-01

    Cereals form complex root systems composed of different root types. Lateral root formation is a major determinant of root architecture and is instrumental for the efficient uptake of water and nutrients. Positioning and patterning of lateral roots and cell types involved in their formation are unique in monocot cereals. Recent discoveries advanced the molecular understanding of the intrinsic genetic control of initiation and elongation of lateral roots in cereals by distinct, in part root-type-specific genetic programs. Moreover, molecular networks modulating the plasticity of lateral root formation in response to water and nutrient availability and arbuscular mycorrhizal fungal colonization have been identified. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in cereals.

  1. Genetic control of the innate immune response

    PubMed Central

    Wells, Christine A; Ravasi, Timothy; Faulkner, Geoffrey J; Carninci, Piero; Okazaki, Yasushi; Hayashizaki, Yoshihide; Sweet, Matthew; Wainwright, Brandon J; Hume, David A

    2003-01-01

    Background Susceptibility to infectious diseases is directed, in part, by the interaction between the invading pathogen and host macrophages. This study examines the influence of genetic background on host-pathogen interactions, by assessing the transcriptional responses of macrophages from five inbred mouse strains to lipopolysaccharide (LPS), a major determinant of responses to gram-negative microorganisms. Results The mouse strains examined varied greatly in the number, amplitude and rate of induction of genes expressed in response to LPS. The response was attenuated in the C3H/HeJlpsd strain, which has a mutation in the LPS receptor Toll-like receptor 4 (TLR4). Variation between mouse strains allowed clustering into early (C57Bl/6J and DBA/2J) and delayed (BALB/c and C3H/ARC) transcriptional phenotypes. There was no clear correlation between gene induction patterns and variation at the Bcg locus (Slc11A1) or propensity to bias Th1 versus Th2 T cell activation responses. Conclusion Macrophages from each strain responded to LPS with unique gene expression profiles. The variation apparent between genetic backgrounds provides insights into the breadth of possible inflammatory responses, and paradoxically, this divergence was used to identify a common transcriptional program that responds to TLR4 signalling, irrespective of genetic background. Our data indicates that many additional genetic loci control the nature and the extent of transcriptional responses promoted by a single pathogen-associated molecular pattern (PAMP), such as LPS. PMID:12826024

  2. Interdependent networks: the fragility of control

    PubMed Central

    Morris, Richard G.; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  3. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy

    PubMed Central

    Elshahabi, Adham; Klamer, Silke; Sahib, Ashish Kaul; Lerche, Holger; Braun, Christoph; Focke, Niels K.

    2015-01-01

    Idiopathic/genetic generalized epilepsy (IGE/GGE) is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease. PMID:26368933

  4. Adaptive Neural Network Controller for ATM Traffic

    DTIC Science & Technology

    1996-12-01

    IEEE Communications Magazine (October 1995). 2. Baum, Eric B...Adaptive Control in ATM Networks," IEEE Communications Magazine (October 1995). 9. Evanowsky, John B. "Information for the Warrior," IEEE Communications Magazine (October...Network Applications in ATM," IEEE Communications Magazine (October 1995). 78 16. Imrich, et al. "A counter based congestion control for ATM

  5. Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.

    1997-01-01

    The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.

  6. Stress controls the mechanics of collagen networks

    PubMed Central

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M.; Fabry, Ben; Weitz, David A.; MacKintosh, Fred C.

    2015-01-01

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks. PMID:26195769

  7. Stress controls the mechanics of collagen networks.

    PubMed

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M; Fabry, Ben; Weitz, David A; MacKintosh, Fred C

    2015-08-04

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.

  8. Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.

    PubMed

    Ziebarth, Jesse D; Cui, Yan

    2017-01-01

    The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.

  9. Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control

    NASA Astrophysics Data System (ADS)

    Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar

    2016-12-01

    This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.

  10. Human genetic technology: who shall control?

    PubMed

    Blank, R H

    1984-01-01

    The biotechnical "revolution" has fast come upon us. It promises to produce both substantial benefits and difficult dilemmas for individuals and society. Despite the growing attention being paid to biotechnology, a major unanswered question is who shall control the development and use of the powerful array of human genetic and reproductive innovations. Should the decisions be left to individual consumers and private industry or should they be made by the government or other social institutions? After briefly reviewing development in human genetics and reproduction and describing trends toward commercialization of them, this article discusses the dilemmas these trends raise for a democratic society. It argues for the urgent need to delineate societal goals and priorities for the future and for technology assessment as early as possible in the developmental process. The article concludes by presenting some examples of the social policy problems now emerging.

  11. Distributed intelligent control and status networking

    NASA Technical Reports Server (NTRS)

    Fortin, Andre; Patel, Manoj

    1993-01-01

    Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.

  12. Rewiring of genetic networks in response to DNA damage.

    PubMed

    Bandyopadhyay, Sourav; Mehta, Monika; Kuo, Dwight; Sung, Min-Kyung; Chuang, Ryan; Jaehnig, Eric J; Bodenmiller, Bernd; Licon, Katherine; Copeland, Wilbert; Shales, Michael; Fiedler, Dorothea; Dutkowski, Janusz; Guénolé, Aude; van Attikum, Haico; Shokat, Kevan M; Kolodner, Richard D; Huh, Won-Ki; Aebersold, Ruedi; Keogh, Michael-Christopher; Krogan, Nevan J; Ideker, Trey

    2010-12-03

    Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They are very effective at identifying DNA repair pathways, highlighting new damage-dependent roles for the Slt2 kinase, Pph3 phosphatase, and histone variant Htz1. The data also reveal that protein complexes are generally stable in response to perturbation, but the functional relations between these complexes are substantially reorganized. Differential networks chart a new type of genetic landscape that is invaluable for mapping cellular responses to stimuli.

  13. Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis

    PubMed Central

    Goelzer, Anne; Bekkal Brikci, Fadia; Martin-Verstraete, Isabelle; Noirot, Philippe; Bessières, Philippe; Aymerich, Stéphane; Fromion, Vincent

    2008-01-01

    Background Few genome-scale models of organisms focus on the regulatory networks and none of them integrates all known levels of regulation. In particular, the regulations involving metabolite pools are often neglected. However, metabolite pools link the metabolic to the genetic network through genetic regulations, including those involving effectors of transcription factors or riboswitches. Consequently, they play pivotal roles in the global organization of the genetic and metabolic regulatory networks. Results We report the manually curated reconstruction of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis (transcriptional, translational and post-translational regulations and modulation of enzymatic activities). We provide a systematic graphic representation of regulations of each metabolic pathway based on the central role of metabolites in regulation. We show that the complex regulatory network of B. subtilis can be decomposed as sets of locally regulated modules, which are coordinated by global regulators. Conclusion This work reveals the strong involvement of metabolite pools in the general regulation of the metabolic network. Breaking the metabolic network down into modules based on the control of metabolite pools reveals the functional organization of the genetic and metabolic regulatory networks of B. subtilis. PMID:18302748

  14. Towards a predictive theory for genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  15. Effect of correlations on controllability transition in network control

    NASA Astrophysics Data System (ADS)

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-04-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks.

  16. The control network of Mercury: April 1991

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Rogers, Patricia G.

    1991-01-01

    Features identified on Mariner 10 high resolution images of Mercury, acquired during three flybys between 1974 and 1975, form the basis of Mercury's planetwide control network. Although images from all three flybys are used in the net, the large amount of contiguous coverage from the second flyby, a southern bright-side pass, make these images the strongest contributors to the control net. Mercury is in synchronous rotation with a period of 58.6462 days and its spin axis is approximately normal to the equatorial plane. The 20 degree meridian is defined by the crater Hun Kal, located just south of the equator. The control network computations involve the photogrammetric determination of control point coordinates and an analytical triangulation solution. The current control network computations for Mercury are performed in the J2000 coordinate system according to the International Astronomical Union (IAU) convention. In recent years, updates to the control network have included improved trajectory solutions and modification of the standard radii (2439) at several points based on Earth-based radar altimetry data. The current status of the control network calculations is presented. Improvements were made to existing control points and new control points were added to the net to strengthen the overall network and improve the standard error of measurement.

  17. Controllability of Microbial Contamination in Hydrologic Networks

    NASA Astrophysics Data System (ADS)

    Riasi, M. S.; Yeghiazarian, L.

    2015-12-01

    Microbial contamination in surface water networks is highly dynamic and stochastic, and is characterized by high level of spatial and temporal variability. Controlling water contamination is therefore challenging.Ideally, to control contamination in a flow network, one needs to design a management approach whereby the level of contamination can be controlled everywhere at all times, by controlling it at certain locations in the network. This can be viewed as a control problem in which we aim to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to i) finding the best control locations in the network that would impact the whole system; and ii) choosing the time-variant inputs at the control locations to achieve the desired state of the system. In this study, we aim to answer questions like "How controllable is microbial contamination in a watershed flow network?" and "Given the network topology, geometry and environmental drivers, what are the best control locations?".

  18. Molecular network control through boolean canalization.

    PubMed

    Murrugarra, David; Dimitrova, Elena S

    2015-12-01

    Boolean networks are an important class of computational models for molecular interaction networks. Boolean canalization, a type of hierarchical clustering of the inputs of a Boolean function, has been extensively studied in the context of network modeling where each layer of canalization adds a degree of stability in the dynamics of the network. Recently, dynamic network control approaches have been used for the design of new therapeutic interventions and for other applications such as stem cell reprogramming. This work studies the role of canalization in the control of Boolean molecular networks. It provides a method for identifying the potential edges to control in the wiring diagram of a network for avoiding undesirable state transitions. The method is based on identifying appropriate input-output combinations on undesirable transitions that can be modified using the edges in the wiring diagram of the network. Moreover, a method for estimating the number of changed transitions in the state space of the system as a result of an edge deletion in the wiring diagram is presented. The control methods of this paper were applied to a mutated cell-cycle model and to a p53-mdm2 model to identify potential control targets.

  19. Advanced mobile networking, sensing, and controls.

    SciTech Connect

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  20. Applications of Neural Networks to Adaptive Control

    DTIC Science & Technology

    1989-12-01

    DTIC ;- E py 00 NAVAL POSTGRADUATE SCHOOL Monterey, California I.$ RDTIC IELECTE fl THESIS BEG7V°U APPLICATIONS OF NEURAL NETWORKS TO ADAPTIVE CONTROL...Second keader E . Robert Wood, Chairman, Department of Aeronautics and Astronautics Gordoii E . Schacher, Dean of Faculty and Graduate Education ii ABSTRACT...23: Network Dynamic Stability for q(t) . ............................. 55 ix Figure 24: Network Dynamic Stability for e (t

  1. Secure quantum network coding for controlled repeater networks

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Li, Jiao; Liu, Jian-wei

    2016-07-01

    To realize efficient quantum communication based on quantum repeater, we propose a secure quantum network coding scheme for controlled repeater networks, which adds a controller as a trusted party and is able to control the process of EPR-pair distribution. As the key operations of quantum repeater, local operations and quantum communication are designed to adopt quantum one-time pad to enhance the function of identity authentication instead of local operations and classical communication. Scheme analysis shows that the proposed scheme can defend against active attacks for quantum communication and realize long-distance quantum communication with minimal resource consumption.

  2. Predictive Control of Large Complex Networks

    NASA Astrophysics Data System (ADS)

    Haber, Aleksandar; Motter, Adilson E.

    Networks of coupled dynamical subsystems are increasingly used to represent complex natural and engineered systems. While recent technological developments give us improved means to actively control the dynamics of individual subsystems in various domains, network control remains a challenging problem due to difficulties imposed by intrinsic nonlinearities, control constraints, and the large-scale nature of the systems. In this talk, we will present a model predictive control approach that is effective while accounting for these realistic properties of complex networks. Our method can systematically identify control interventions that steer the trajectory to a desired state, even in the presence of strong nonlinearities and constraints. Numerical tests show that the method is applicable to a variety of networks, ranging from power grids to chemical reaction systems.

  3. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks

    PubMed Central

    Fogelmark, Karl; Peterson, Carsten; Troein, Carl

    2016-01-01

    Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540

  4. Congestion control and routing over satellite networks

    NASA Astrophysics Data System (ADS)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE

  5. Issues impacting genetic network reverse engineering algorithm validation using small networks.

    PubMed

    Vinh, Nguyen Xuan; Chetty, Madhu; Coppel, Ross; Wangikar, Pramod P

    2012-12-01

    Genetic network reverse engineering has been an area of intensive research within the systems biology community during the last decade. With many techniques currently available, the task of validating them and choosing the best one for a certain problem is a complex issue. Current practice has been to validate an approach on in-silico synthetic data sets, and, wherever possible, on real data sets with known ground-truth. In this study, we highlight a major issue that the validation of reverse engineering algorithms on small benchmark networks very often results in networks which are not statistically better than a randomly picked network. Another important issue highlighted is that with short time series, a small variation in the pre-processing procedure might yield large differences in the inferred networks. To demonstrate these issues, we have selected as our case study the IRMA in-vivo synthetic yeast network recently published in Cell. Using Fisher's exact test, we show that many results reported in the literature on reverse-engineering this network are not significantly better than random. The discussion is further extended to some other networks commonly used for validation purposes in the literature. The results presented in this study emphasize that studies carried out using small genetic networks are likely to be trivial, making it imperative that larger real networks be used for validating and benchmarking purposes. If smaller networks are considered, then the results should be interpreted carefully to avoid over confidence. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.

  6. Structural control of reaction-diffusion networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Du, Fang; Dong, Hui; Yu, Li; Chen, Guanrong

    2011-09-01

    Recent studies revealed that reaction-diffusion (RD) dynamics can be significantly influenced by the structure of the underlying network. In this paper, a framework is established to study a closely related problem, i.e., to control the proportion of active particles in an RD process by adjusting the structure of the underlying diffusion network. Both distributed and centralized rewiring and reweighting control schemes are proposed for unweighted and weighted networks, respectively. Simulations show that the proportion of active particles can indeed be controlled to a certain extent even when the distributed control mechanism is totally random, while quite high precision can be achieved by centralized control schemes. More interestingly, it is found that the reactants in heterogeneous networks have wider controllable ranges than those in homogeneous networks with similar numbers of nodes and links, if only the weights of links are changed with a fixed bound. Therefore, it is believed that heterogeneous networks fit the changeable environment better, which provides another explanation for some common observations on many heterogeneous real-world networks.

  7. Optimal Parameter for the Training of Multilayer Perceptron Neural Networks by Using Hierarchical Genetic Algorithm

    SciTech Connect

    Orozco-Monteagudo, Maykel; Taboada-Crispi, Alberto; Gutierrez-Hernandez, Liliana

    2008-11-06

    This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.

  8. Control Networks and Neuromodulators of Early Development

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.; Voelker, Pascale

    2012-01-01

    In adults, most cognitive and emotional self-regulation is carried out by a network of brain regions, including the anterior cingulate, insula, and areas of the basal ganglia, related to executive attention. We propose that during infancy, control systems depend primarily upon a brain network involved in orienting to sensory events that includes…

  9. Neural networks applications to control and computations

    NASA Technical Reports Server (NTRS)

    Luxemburg, Leon A.

    1994-01-01

    Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.

  10. Comparison and evaluation of network clustering algorithms applied to genetic interaction networks.

    PubMed

    Hou, Lin; Wang, Lin; Berg, Arthur; Qian, Minping; Zhu, Yunping; Li, Fangting; Deng, Minghua

    2012-01-01

    The goal of network clustering algorithms detect dense clusters in a network, and provide a first step towards the understanding of large scale biological networks. With numerous recent advances in biotechnologies, large-scale genetic interactions are widely available, but there is a limited understanding of which clustering algorithms may be most effective. In order to address this problem, we conducted a systematic study to compare and evaluate six clustering algorithms in analyzing genetic interaction networks, and investigated influencing factors in choosing algorithms. The algorithms considered in this comparison include hierarchical clustering, topological overlap matrix, bi-clustering, Markov clustering, Bayesian discriminant analysis based community detection, and variational Bayes approach to modularity. Both experimentally identified and synthetically constructed networks were used in this comparison. The accuracy of the algorithms is measured by the Jaccard index in comparing predicted gene modules with benchmark gene sets. The results suggest that the choice differs according to the network topology and evaluation criteria. Hierarchical clustering showed to be best at predicting protein complexes; Bayesian discriminant analysis based community detection proved best under epistatic miniarray profile (EMAP) datasets; the variational Bayes approach to modularity was noticeably better than the other algorithms in the genome-scale networks.

  11. Structurally robust control of complex networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.

  12. Engineering microbial phenotypes through rewiring of genetic networks.

    PubMed

    Windram, Oliver P F; Rodrigues, Rui T L; Lee, Sangjin; Haines, Matthew; Bayer, Travis S

    2017-03-21

    The ability to program cellular behaviour is a major goal of synthetic biology, with applications in health, agriculture and chemicals production. Despite efforts to build 'orthogonal' systems, interactions between engineered genetic circuits and the endogenous regulatory network of a host cell can have a significant impact on desired functionality. We have developed a strategy to rewire the endogenous cellular regulatory network of yeast to enhance compatibility with synthetic protein and metabolite production. We found that introducing novel connections in the cellular regulatory network enabled us to increase the production of heterologous proteins and metabolites. This strategy is demonstrated in yeast strains that show significantly enhanced heterologous protein expression and higher titers of terpenoid production. Specifically, we found that the addition of transcriptional regulation between free radical induced signalling and nitrogen regulation provided robust improvement of protein production. Assessment of rewired networks revealed the importance of key topological features such as high betweenness centrality. The generation of rewired transcriptional networks, selection for specific phenotypes, and analysis of resulting library members is a powerful tool for engineering cellular behavior and may enable improved integration of heterologous protein and metabolite pathways.

  13. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  14. A candidate multimodal functional genetic network for thermal adaptation

    PubMed Central

    Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D.

    2014-01-01

    Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other

  15. Portable control device for networked mobile robots

    DOEpatents

    Feddema, John T.; Byrne, Raymond H.; Bryan, Jon R.; Harrington, John J.; Gladwell, T. Scott

    2002-01-01

    A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.

  16. Fast predictive control of networked energy systems

    NASA Astrophysics Data System (ADS)

    Chuang, Frank Fu-Han

    In this thesis we study the optimal control of networked energy systems. Networked energy systems consist of a collection of energy storage nodes and a network of links and inputs which allow energy to be exchanged, injected, or removed from the nodes. The nodes may exchange energy between each other autonomously or via controlled flows between the nodes. Examples of networked systems include building heating, ventilation, and air conditioning (HVAC) systems and networked battery systems. In the building system example, the nodes of the system are rooms which store thermal energy in the air and other elements which have thermal capacity. The rooms transfer energy autonomously through thermal conduction, convection, and radiation. Thermal energy can be injected into or removed from the rooms via conditioned air or slabs. In the case of a networked battery system, the batteries store electrical energy in their chemical cells. The batteries may be electrically linked so that a controller can move electrical charge from one battery to another. Networked energy systems are typically large-scale (contain many states and inputs), affected by uncertain forecasts and disturbances, and require fast computation on cheap embedded platforms. In this thesis, the optimal control technique we study is model predictive control for networked energy systems. Model predictive or receding horizon control is a time-domain optimization-based control technique which uses predictive models of a system to forecast its behavior and minimize a performance cost subject to system constraints. In this thesis we address two primary issues concerning model predictive control for networked energy systems: robustness to uncertainty in forecasts and reducing the complexity of the large-scale optimization problem for use in embedded platforms. The first half of the thesis deals primarily with the efficient computation of robust controllers for dealing with random and adversarial uncertainties in the

  17. Genetic and Transcriptional Control of Bone Formation

    PubMed Central

    Javed, Amjad; Chen, Haiyan; Ghori, Farah Y.

    2010-01-01

    Synopsis An exquisite interplay of developmental cues, transcription factors, coregulatory and signaling proteins support formation of skeletal elements of the jaw during embryogenesis and the dynamic remodeling of alveolar bone in the post-natal life. These molecules promote initial condensation of the mesenchyme, commitment of the mesenchymal progenitor to osteogenic lineage cells, and differentiation of committed osteoblast to mature osteocyte within mineralized bone. Parallel regulatory network promote formation of the functional ostoclast from mononuclear cells to support continuous bone remodeling within the alveolar bone. With an ever expanding list of new regulatory factors, the complexities of the molecular mechanisms that control gene expression in skeletal cells are being further appreciated. This review examines the multifunctional roles of prominent nuclear proteins, cytokines, hormones and paracrine factors that control osteogenesis. PMID:20713262

  18. Fingerprinting Software Defined Networks and Controllers

    DTIC Science & Technology

    2015-03-01

    FINGERPRINTING SOFTWARE DEFINED NETWORKS AND CONTROLLERS THESIS Zachary J. Zeitlin, 2nd Lt, USAF AFIT-ENG-MS-15-M-067 DEPARTMENT OF THE AIR FORCE AIR...copyright protection in the United States. AFIT-ENG-MS-15-M-067 FINGERPRINTING SOFTWARE DEFINED NETWORKS AND CONTROLLERS THESIS Presented to the Faculty...B.S.C.S. 2nd Lt, USAF March 2015 DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENG-MS-15-M-067 FINGERPRINTING SOFTWARE

  19. Networks of genetic loci and the scientific literature

    NASA Astrophysics Data System (ADS)

    Semeiks, J. R.; Grate, L. R.; Mian, I. S.

    This work considers biological information graphs, networks in which nodes corre-spond to genetic loci (or "genes") and an (undirected) edge signifies that two genes are discussed in the same article(s) in the scientific literature ("documents"). Operations that utilize the topology of these graphs can assist researchers in the scientific discovery process. For example, a shortest path between two nodes defines an ordered series of genes and documents that can be used to explore the relationship(s) between genes of interest. This work (i) describes how topologies in which edges are likely to reflect genuine relationship(s) can be constructed from human-curated corpora of genes an-notated with documents (or vice versa), and (ii) illustrates the potential of biological information graphs in synthesizing knowledge in order to formulate new hypotheses and generate novel predictions for subsequent experimental study. In particular, the well-known LocusLink corpus is used to construct a biological information graph consisting of 10,297 nodes and 21,910 edges. The large-scale statistical properties of this gene-document network suggest that it is a new example of a power-law network. The segregation of genes on the basis of species and encoded protein molecular function indicate the presence of assortativity, the preference for nodes with similar attributes to be neighbors in a network. The practical utility of a gene-document network is illustrated by using measures such as shortest paths and centrality to analyze a subset of nodes corresponding to genes implicated in aging. Each release of a curated biomedical corpus defines a particular static graph. The topology of a gene-document network changes over time as curators add and/or remove nodes and/or edges. Such a dynamic, evolving corpus provides both the foundation for analyzing the growth and behavior of large complex networks and a substrate for examining trends in biological research.

  20. Topology control with IPD network creation games

    NASA Astrophysics Data System (ADS)

    Scholz, Jan C.; Greiner, Martin O. W.

    2007-06-01

    Network creation games couple a two-players game with the evolution of network structure. A vertex player may increase its own payoff with a change of strategy or with a modification of its edge-defined neighbourhood. By referring to the iterated prisoners dilemma (IPD) game we show that this evolutionary dynamics converges to network-Nash equilibria, where no vertex is able to improve its payoff. The resulting network structure exhibits a strong dependence on the parameter of the payoff matrix. Degree distributions and cluster coefficients are also strongly affected by the specific interactions chosen for the neighbourhood exploration. This allows network creation games to be seen as a promising artificial-social-systems approach for a distributive topology control of complex networked systems.

  1. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design.

    PubMed

    Juang, Chia-Feng

    2004-04-01

    An evolutionary recurrent network which automates the design of recurrent neural/fuzzy networks using a new evolutionary learning algorithm is proposed in this paper. This new evolutionary learning algorithm is based on a hybrid of genetic algorithm (GA) and particle swarm optimization (PSO), and is thus called HGAPSO. In HGAPSO, individuals in a new generation are created, not only by crossover and mutation operation as in GA, but also by PSO. The concept of elite strategy is adopted in HGAPSO, where the upper-half of the best-performing individuals in a population are regarded as elites. However, instead of being reproduced directly to the next generation, these elites are first enhanced. The group constituted by the elites is regarded as a swarm, and each elite corresponds to a particle within it. In this regard, the elites are enhanced by PSO, an operation which mimics the maturing phenomenon in nature. These enhanced elites constitute half of the population in the new generation, whereas the other half is generated by performing crossover and mutation operation on these enhanced elites. HGAPSO is applied to recurrent neural/fuzzy network design as follows. For recurrent neural network, a fully connected recurrent neural network is designed and applied to a temporal sequence production problem. For recurrent fuzzy network design, a Takagi-Sugeno-Kang-type recurrent fuzzy network is designed and applied to dynamic plant control. The performance of HGAPSO is compared to both GA and PSO in these recurrent networks design problems, demonstrating its superiority.

  2. Controlling extreme events on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  3. The control networks of Mimas and Enceladus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    A bundle-type analytical triangulation program is employed to compute control networks for Mimas, whose network encircles the satellite with 110 points measured on 32 Voyager 1 pictures, and Enceladus, whose network does not completely encircle the satellite and contains 71 points measured on 22 Voyager 2 pictures. Many of the control points are identified on illustrations and by name, and their coordinates are presented in tabular form. The analytical triangulation program was used to solve for the mean radii and three principal axes of best-fit ellipsoids. The mean radius of Mimas is 197 + or - 3 km, while that of Enceladus is 251 + or - 5 km.

  4. Superiority of artificial neural networks for a genetic classification procedure.

    PubMed

    Sant'Anna, I C; Tomaz, R S; Silva, G N; Nascimento, M; Bhering, L L; Cruz, C D

    2015-08-19

    The correct classification of individuals is extremely important for the preservation of genetic variability and for maximization of yield in breeding programs using phenotypic traits and genetic markers. The Fisher and Anderson discriminant functions are commonly used multivariate statistical techniques for these situations, which allow for the allocation of an initially unknown individual to predefined groups. However, for higher levels of similarity, such as those found in backcrossed populations, these methods have proven to be inefficient. Recently, much research has been devoted to developing a new paradigm of computing known as artificial neural networks (ANNs), which can be used to solve many statistical problems, including classification problems. The aim of this study was to evaluate the feasibility of ANNs as an evaluation technique of genetic diversity by comparing their performance with that of traditional methods. The discriminant functions were equally ineffective in discriminating the populations, with error rates of 23-82%, thereby preventing the correct discrimination of individuals between populations. The ANN was effective in classifying populations with low and high differentiation, such as those derived from a genetic design established from backcrosses, even in cases of low differentiation of the data sets. The ANN appears to be a promising technique to solve classification problems, since the number of individuals classified incorrectly by the ANN was always lower than that of the discriminant functions. We envisage the potential relevant application of this improved procedure in the genomic classification of markers to distinguish between breeds and accessions.

  5. The role of social networking sites in medical genetics research.

    PubMed

    Reaves, Allison Cook; Bianchi, Diana W

    2013-05-01

    Social networking sites (SNS) have potential value in the field of medical genetics as a means of research subject recruitment and source of data. This article examines the current role of SNS in medical genetics research and potential applications for these sites in future studies. Facebook is the primary SNS considered, given the prevalence of its use in the United States and role in a small but growing number of studies. To date, utilization of SNS in medical genetics research has been primarily limited to three studies that recruited subjects from populations of Facebook users [McGuire et al. (2009); Am J Bioeth 9: 3-10; Janvier et al. (2012); Pediatrics 130: 293-298; Leighton et al. (2012); Public Health Genomics 15: 11-21]. These studies and a number of other medical and public health studies that have used Facebook as a context for recruiting research subjects are discussed. Approaches for Facebook-based subject recruitment are identified, including paid Facebook advertising, snowball sampling, targeted searching and posting. The use of these methods in medical genetics research has the potential to facilitate cost-effective research on both large, heterogeneous populations and small, hard-to-access sub-populations.

  6. Differential Network Analysis Reveals Genetic Effects on Catalepsy Modules

    PubMed Central

    Iancu, Ovidiu D.; Oberbeck, Denesa; Darakjian, Priscila; Kawane, Sunita; Erk, Jason; McWeeney, Shannon; Hitzemann, Robert

    2013-01-01

    We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS) formed by crossing four inbred strains (HS4) and a heterogeneous stock (HS-CC) formed from the inbred strain founders of the Collaborative Cross (CC). All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections. PMID:23555609

  7. The network of global corporate control.

    PubMed

    Vitali, Stefania; Glattfelder, James B; Battiston, Stefano

    2011-01-01

    The structure of the control network of transnational corporations affects global market competition and financial stability. So far, only small national samples were studied and there was no appropriate methodology to assess control globally. We present the first investigation of the architecture of the international ownership network, along with the computation of the control held by each global player. We find that transnational corporations form a giant bow-tie structure and that a large portion of control flows to a small tightly-knit core of financial institutions. This core can be seen as an economic "super-entity" that raises new important issues both for researchers and policy makers.

  8. Control of Stochastic and Induced Switching in Biophysical Networks

    NASA Astrophysics Data System (ADS)

    Wells, Daniel K.; Kath, William L.; Motter, Adilson E.

    2015-07-01

    Noise caused by fluctuations at the molecular level is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here we present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. We apply this methodology to models of cell differentiation and show how predicted manipulations of tunable factors can induce lineage changes, and further utilize it to identify new candidate strategies for cancer therapy in a cell death pathway model. This framework offers a systems approach to identifying the key factors for rationally manipulating biophysical dynamics, and should also find use in controlling other classes of noisy complex networks.

  9. An optimal control approach to probabilistic Boolean networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiuli

    2012-12-01

    External control of some genes in a genetic regulatory network is useful for avoiding undesirable states associated with some diseases. For this purpose, a number of stochastic optimal control approaches have been proposed. Probabilistic Boolean networks (PBNs) as powerful tools for modeling gene regulatory systems have attracted considerable attention in systems biology. In this paper, we deal with a problem of optimal intervention in a PBN with the help of the theory of discrete time Markov decision process. Specifically, we first formulate a control model for a PBN as a first passage model for discrete time Markov decision processes and then find, using a value iteration algorithm, optimal effective treatments with the minimal expected first passage time over the space of all possible treatments. In order to demonstrate the feasibility of our approach, an example is also displayed.

  10. Inferring Network Connectivity by Delayed Feedback Control

    PubMed Central

    Yu, Dongchuan; Parlitz, Ulrich

    2011-01-01

    We suggest a control based approach to topology estimation of networks with elements. This method first drives the network to steady states by a delayed feedback control; then performs structural perturbations for shifting the steady states times; and finally infers the connection topology from the steady states' shifts by matrix inverse algorithm () or -norm convex optimization strategy applicable to estimate the topology of sparse networks from perturbations. We discuss as well some aspects important for applications, such as the topology reconstruction quality and error sources, advantages and disadvantages of the suggested method, and the influence of (control) perturbations, inhomegenity, sparsity, coupling functions, and measurement noise. Some examples of networks with Chua's oscillators are presented to illustrate the reliability of the suggested technique. PMID:21969856

  11. Genetic control of Drosophila nerve cord development

    NASA Technical Reports Server (NTRS)

    Skeath, James B.; Thor, Stefan

    2003-01-01

    The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.

  12. Supervisory Control of Networked Control Systems

    DTIC Science & Technology

    2006-01-15

    consisting of 3 Koala robots [Lem06b]. The robots are controlled by MICA2 wireless processor modules. The robots communicate over the MICA2’s...preliminary documentation of a wireless autonomous robotic testbed. The system consists of 3 Koala (K-team Inc.) robots that are controlled by the MICA2...by this project. MICA-KoalaBot Hardware: The Koala robot is an autonomous wheeled vehicle that has 16 infrared (IR) proximity sensors around its

  13. Seed maturation: Simplification of control networks in plants.

    PubMed

    Devic, Martine; Roscoe, Thomas

    2016-11-01

    Networks controlling developmental or metabolic processes in plants are often complex as a consequence of the duplication and specialisation of the regulatory genes as well as the numerous levels of transcriptional and post-transcriptional controls added during evolution. Networks serve to accommodate multicellular complexity and increase robustness to environmental changes. Mathematical simplification by regrouping genes or pathways in a limited number of hubs has facilitated the construction of models for complex traits. In a complementary approach, a biological simplification can be achieved by using genetic modification to understand the core and singular ancestral function of the network, which is likely to be more prevalent within the plant kingdom rather than specific to a species. With this viewpoint, we review examples of simplification successfully undertaken in yeast and other organisms. A strategy of progressive complementation of single, double and triple mutants of seed maturation confirmed the fundamental role of the AFL sub-family of B3 transcription factors as master regulators of seed maturation, illustrating that biological simplification of complex networks could be more widely applied in plants. Defining minimal control networks will facilitate evolutionary comparisons of regulatory processes and the identification of an essential gene set for synthetic biology.

  14. Multiobjective Genetic Algorithm applied to dengue control.

    PubMed

    Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F

    2014-12-01

    Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique.

  15. Genetic effect on blood pressure is modulated by age: the Hypertension Genetic Epidemiology Network Study.

    PubMed

    Shi, Gang; Gu, Chi C; Kraja, Aldi T; Arnett, Donna K; Myers, Richard H; Pankow, James S; Hunt, Steven C; Rao, Dabeeru C

    2009-01-01

    Genome-wide linkage analysis was performed for systolic and diastolic blood pressures in the Hypertension Genetic Epidemiology Network. We investigated the role of gene-age interactions using a recently developed variance components method that incorporates age variation in genetic effects. Substantially improved linkage evidence, in terms of both the number of linkage peaks and their significance levels, was observed. Twenty-six linkage peaks were identified with maximum logarithm of odds scores ranging between 3.0 and 4.6, 15 of which were cross-validated by the literature. The chromosomal region 1p36 that showed the highest logarithm of odds score in our study was found to be supported by evidence from 3 studies. The new method also led to vastly improved validation across ethnic groups. Ten of the 15 supported linkage peaks were cross-validated between 2 different ethnic groups, and 2 peaks on chromosomal region 1q31 and 16p11 were validated in 3 ethnic groups. In conclusion, this investigation demonstrates that genetic effects on blood pressure vary by age. The improved genetic linkage results presented here should help to identify the specific genetic variants that explain the observed results.

  16. Stochastic gene expression in single cells: exploring the importance of noise in genetic networks

    NASA Astrophysics Data System (ADS)

    van Oudenaarden, Alexander

    2003-03-01

    Cells are intrinsically noisy biochemical reactors. This leads to random cell to cell variation (noise) in gene expression levels. First, I will address the source of this noise at the level of transcription and translation of a single gene. Our experimental results demonstrate that the intrinsic noise of a single gene is predominantly controlled at the translational level, and that increased translational efficiency leads to increased noise strength. This observation is consistent with a theoretical model in which proteins are randomly produced in sharp bursts followed by periods of slow decay. Second, I will explore the importance of genetic noise for a naturally occuring network: the lac operon. The classic lactose utilization network of E. coli has been under investigation for several decades and, in its simplest form the network may be modeled as a single positive feedback module. However, this simplicity is deceptive, as even this basic network is capable of complex metabolic behavior, including adaptation, amplification, and graded-to-binary response conversion. I will present single cell measurements on the expression of key genes in lactose uptake network and explore the importance of genetic noise on the regulation of these genes.

  17. Model Predictive Control of Sewer Networks

    NASA Astrophysics Data System (ADS)

    Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik; Poulsen, Niels K.; Falk, Anne K. V.

    2017-01-01

    The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and controlled have thus become essential factors for effcient performance of waste water treatment plants. This paper examines methods for simplified modelling and controlling a sewer network. A practical approach to the problem is used by analysing simplified design model, which is based on the Barcelona benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control.

  18. Control of fluxes in metabolic networks

    PubMed Central

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-01-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218

  19. Control of fluxes in metabolic networks.

    PubMed

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-07-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism.

  20. Controlling neural network responsiveness: tradeoffs and constraints

    PubMed Central

    Keren, Hanna; Marom, Shimon

    2014-01-01

    In recent years much effort is invested in means to control neural population responses at the whole brain level, within the context of developing advanced medical applications. The tradeoffs and constraints involved, however, remain elusive due to obvious complications entailed by studying whole brain dynamics. Here, we present effective control of response features (probability and latency) of cortical networks in vitro over many hours, and offer this approach as an experimental toy for studying controllability of neural networks in the wider context. Exercising this approach we show that enforcement of stable high activity rates by means of closed loop control may enhance alteration of underlying global input–output relations and activity dependent dispersion of neuronal pair-wise correlations across the network. PMID:24808860

  1. Scheduled Controller Design of Congestion Control Considering Network Resource Constraints

    NASA Astrophysics Data System (ADS)

    Naito, Hiroyuki; Azuma, Takehito; Fujita, Masayuki

    In this paper, we consider a dynamical model of computer networks and derive a synthesis method for congestion control. First, we show a model of TCP/AQM (Transmission Control Protocol/Active Queue Management) as a dynamical model of computer networks. The dynamical model of TCP/AQM networks consists of models of TCP window size, queue length and AQM mechanisms. Second, we propose to describe the dynamical model of TCP/AQM networks as linear systems with self-scheduling parameters, which also depend on information delay. Here we focus on the constraints on the maximum queue length and TCP window-size, which are the network resources in TCP/AQM networks. We derive TCP/AQM networks as the LPV system (linear parameter varying system) with information delay and self-scheduling parameter. We design a memoryless state feedback controller of the LPV system based on a gain-scheduling method. Finally, the effectiveness of the proposed method is evaluated by using MATLAB and the well-known ns-2 (Network Simulator Ver.2) simulator.

  2. Scaling up: human genetics as a Cold War network.

    PubMed

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology.

  3. The unified lunar control network: 1994 version

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Colvin, Tim R.; Meyer, Donald L.; Nelson, Sandra

    1994-01-01

    The objective of the unified lunar control network is to combine a series of control networks into one compatible network with its origin at the center of mass of the Moon and its coordinates referred to the mean Earth/polar axis system. The initial unified system contained 130 nearside points from Apollo data and 1026 from telescopic data. It also contained ten Mariner 10 points. The total number of points was 1166. The current network includes modifications to the past network and extends the coverage. Coordinates of points north of the Apollo region have been recomputed based on Galileo images from the second Earth-Moon flyby. Coordinates of points in the Apollo region were held fixed; however, coordinates of points north of the Apollo region in the telescopic region and many Mariner 10 points were recomputed. All of the Mariner 10 points were remeasured and integrated into the network. Additional points in the Apollo region including the farside have been added. The unified network now contains 1478 points. Apollo, Mariner 10, and Galileo pictures all contained some farside points. The coordinates of the 1478 points are available only in the microfiche supplement to this paper.

  4. The Unified Lunar Control Network 2005

    USGS Publications Warehouse

    Archinal, Brent A.; Rosiek, Mark R.; Kirk, Randolph L.; Redding, Bonnie L.

    2006-01-01

    This report documents a new general unified lunar control network and lunar topographic model based on a combination of Clementine images and a previous network derived from Earth-based & Apollo photographs, and Mariner 10, & Galileo images. This photogrammetric network solution is the largest planetary control network ever completed. It includes the determination of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 20 ?m (= 0.9 pixels) in the image plane, with the largest residual of 6.4 pixels. The explanation given here, along with the accompanying files, comprises the release of the network information and of global lunar digital elevation models (DEMs) derived from the network. A paper that will describe the solution and network in further detail will be submitted to a refereed journal, and will include additional background information, solution details, discussion of accuracy and precision, and explanatory figures.

  5. Social Network Privacy via Evolving Access Control

    NASA Astrophysics Data System (ADS)

    di Crescenzo, Giovanni; Lipton, Richard J.

    We study the problem of limiting privacy loss due to data shared in a social network, where the basic underlying assumptions are that users are interested in sharing data and cannot be assumed to constantly follow appropriate privacy policies. Note that if these two assumptions do not hold, social network privacy is theoretically very easy to achieve; for instance, via some form of access control and confidentiality transformation on the data.

  6. Genetic specificity of a plant–insect food web: Implications for linking genetic variation to network complexity

    PubMed Central

    Barbour, Matthew A.; Fortuna, Miguel A.; Bascompte, Jordi; Nicholson, Joshua R.; Julkunen-Tiitto, Riitta; Jules, Erik S.; Crutsinger, Gregory M.

    2016-01-01

    Theory predicts that intraspecific genetic variation can increase the complexity of an ecological network. To date, however, we are lacking empirical knowledge of the extent to which genetic variation determines the assembly of ecological networks, as well as how the gain or loss of genetic variation will affect network structure. To address this knowledge gap, we used a common garden experiment to quantify the extent to which heritable trait variation in a host plant determines the assembly of its associated insect food web (network of trophic interactions). We then used a resampling procedure to simulate the additive effects of genetic variation on overall food-web complexity. We found that trait variation among host-plant genotypes was associated with resistance to insect herbivores, which indirectly affected interactions between herbivores and their insect parasitoids. Direct and indirect genetic effects resulted in distinct compositions of trophic interactions associated with each host-plant genotype. Moreover, our simulations suggest that food-web complexity would increase by 20% over the range of genetic variation in the experimental population of host plants. Taken together, our results indicate that intraspecific genetic variation can play a key role in structuring ecological networks, which may in turn affect network persistence. PMID:26858398

  7. Linear control theory for gene network modeling.

    PubMed

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  8. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    SciTech Connect

    Bornholdt, S.; Graudenz, D.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  9. Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks.

    PubMed

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2014-08-01

    Synthetic biology aims to control and reprogram signal processing pathways within living cells so as to realize repurposed, beneficial applications. Here we report the design and construction of a set of modular and gain-tunable genetic amplifiers in Escherichia coli capable of amplifying a transcriptional signal with wide tunable-gain control in cascaded gene networks. The devices are engineered using orthogonal genetic components (hrpRS, hrpV and PhrpL) from the hrp (hypersensitive response and pathogenicity) gene regulatory network in Pseudomonas syringae. The amplifiers can linearly scale up to 21-fold the transcriptional input with a large output dynamic range, yet not introducing significant time delay or significant noise during signal amplification. The set of genetic amplifiers achieves different gains and input dynamic ranges by varying the expression levels of the underlying ligand-free activator proteins in the device. As their electronic counterparts, these engineered transcriptional amplifiers can act as fundamental building blocks in the design of biological systems by predictably and dynamically modulating transcriptional signal flows to implement advanced intra- and extra-cellular control functions.

  10. Weight-Control Information Network

    MedlinePlus

    ... from our online catalog . ​ Tips for Healthy Eating & Physical Activity For Adults For Pregnancy For Parents For Older ... topics.​​​​​ ​Discover up-to-date information on nutrition, physical activity, and weight control WIN Health Topics A-Z ...

  11. Cybersecurity of Critical Control Networks

    DTIC Science & Technology

    2015-07-14

    information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other...yielded a large number of publications and conference presentations in the area of Supervisory Control And Data Acquisition (SCADA). Details of each

  12. Genetic control of biennial bearing in apple

    PubMed Central

    Guitton, Baptiste; Kelner, Jean-Jacques; Velasco, Riccardo; Gardiner, Susan E.; Chagné, David; Costes, Evelyne

    2012-01-01

    Although flowering in mature fruit trees is recurrent, floral induction can be strongly inhibited by concurrent fruiting, leading to a pattern of irregular fruiting across consecutive years referred to as biennial bearing. The genetic determinants of biennial bearing in apple were investigated using the 114 flowering individuals from an F1 population of 122 genotypes, from a ‘Starkrimson’ (strong biennial bearer)בGranny Smith’ (regular bearer) cross. The number of inflorescences, and the number and the mass of harvested fruit were recorded over 6 years and used to calculate 26 variables and indices quantifying yield, precocity of production, and biennial bearing. Inflorescence traits exhibited the highest genotypic effect, and three quantitative trait loci (QTLs) on linkage group (LG) 4, LG8, and LG10 explained 50% of the phenotypic variability for biennial bearing. Apple orthologues of flowering and hormone-related genes were retrieved from the whole-genome assembly of ‘Golden Delicious’ and their position was compared with QTLs. Four main genomic regions that contain floral integrator genes, meristem identity genes, and gibberellin oxidase genes co-located with QTLs. The results indicated that flowering genes are less likely to be responsible for biennial bearing than hormone-related genes. New hypotheses for the control of biennial bearing emerged from QTL and candidate gene co-locations and suggest the involvement of different physiological processes such as the regulation of flowering genes by hormones. The correlation between tree architecture and biennial bearing is also discussed. PMID:21963613

  13. Genetic control of seed proteins in wheat.

    PubMed

    Dhaliwal, H S

    1977-09-01

    Electrophoretic profiles of crude protein extracts from seed of F1 hybrids and reciprocal crosses among diploid, tetraploid and hexaploid wheats were compared with those of their respective parental species. The electrophoretic patterns within each of three pairs of reciprocal crosses, T.boeoticum X T.urartu, T.monococcun X T. urartu and T.dicoccum X T. araraticum, were different from one another but were identical with those of their respective maternal parents. Protein bands characteristic of the paternal parents were missing in F1 hybrid seed suggesting that the major seed proteins in wheat were presumably regulated by genotype of the maternal parent rather than by the seed genotype. However, in another three pairs of reciprocal crosses, T.boeoticum X T. durum, T.dicoccum X T.aestivum and T. zhukovskyi x T. aestivum, protein bands attributable to the paternal parents were present in the F1 hybrid seeds indicating that the seed proteins were not always exclusively regulated by the maternal genotype. The expression of paternal genomes is presumably determined by dosage and genetic affinity of the maternal and paternal genomes in the hybrid endosperm. The maternal regulation of seed protein content is probably accomplished through the maternal control over seed size. The seed protein quality may, however, depend upon the extent of expression of the paternal genome.

  14. Transcriptional master regulator analysis in breast cancer genetic networks.

    PubMed

    Tovar, Hugo; García-Herrera, Rodrigo; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2015-12-01

    Gene regulatory networks account for the delicate mechanisms that control gene expression. Under certain circumstances, gene regulatory programs may give rise to amplification cascades. Such transcriptional cascades are events in which activation of key-responsive transcription factors called master regulators trigger a series of gene expression events. The action of transcriptional master regulators is then important for the establishment of certain programs like cell development and differentiation. However, such cascades have also been related with the onset and maintenance of cancer phenotypes. Here we present a systematic implementation of a series of algorithms aimed at the inference of a gene regulatory network and analysis of transcriptional master regulators in the context of primary breast cancer cells. Such studies were performed in a highly curated database of 880 microarray gene expression experiments on biopsy-captured tissue corresponding to primary breast cancer and healthy controls. Biological function and biochemical pathway enrichment analyses were also performed to study the role that the processes controlled - at the transcriptional level - by such master regulators may have in relation to primary breast cancer. We found that transcription factors such as AGTR2, ZNF132, TFDP3 and others are master regulators in this gene regulatory network. Sets of genes controlled by these regulators are involved in processes that are well-known hallmarks of cancer. This kind of analyses may help to understand the most upstream events in the development of phenotypes, in particular, those regarding cancer biology.

  15. Feedback Controller Design for the Synchronization of Boolean Control Networks.

    PubMed

    Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling

    2016-09-01

    This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.

  16. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  17. A Parallel Attractor Finding Algorithm Based on Boolean Satisfiability for Genetic Regulatory Networks

    PubMed Central

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures. PMID:24718686

  18. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    PubMed

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  19. Controlling extreme events on complex networks

    PubMed Central

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-01-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed. PMID:25131344

  20. Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Liming

    The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.

  1. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  2. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder.

    PubMed

    Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B

    2015-11-01

    The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder.

  3. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).

    PubMed

    VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda

    2014-03-01

    Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in

  4. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  5. A unified lunar control network: April 1991

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.

    1991-01-01

    This program was designed to combine and transform various control networks of the Moon into a common center-of-mass coordinate system. The first phase, dealing with the near side, was completed and published. This report contains coordinates of 1166 points on the near side of the Moon.

  6. Controllable Buoys and Networked Buoy Systems

    NASA Technical Reports Server (NTRS)

    Davoodi, Faranak (Inventor); Davoudi, Farhooman (Inventor)

    2017-01-01

    Buoyant sensor networks are described, comprising floating buoys with sensors and energy harvesting capabilities. The buoys can control their buoyancy and motion, and can organize communication in a distributed fashion. Some buoys may have tethered underwater vehicles with a smart spooling system that allows the vehicles to dive deep underwater while remaining in communication and connection with the buoys.

  7. Distributed control network for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Juszczyk, B.; Mankiewicz, L.

    2014-11-01

    Nowadays optogenetic experiments are constructed to examine social behavioural relations in groups of animals. A novel concept of implantable device with distributed control network and advanced positioning capabilities is proposed. It is based on wireless energy transfer technology, micro-power radio interface and advanced signal processing.

  8. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  9. Disturbance Decoupling of Singular Boolean Control Networks.

    PubMed

    Liu, Yang; Li, Bowen; Lou, Jungang

    2016-01-01

    This paper investigates the controller designing for disturbance decoupling problem (DDP) of singular Boolean control networks (SBCNs). Using semi-tensor product (STP) of matrices and the Implicit Function Theorem, a SBCN is converted into the standard BCN. Based on the redundant variable separation technique, both state feedback and output feedback controllers are designed to solve the DDP of the SBCN. Sufficient conditions are also given to analyze the invariance of controllers concerning the DDP of the SBCN with function perturbation. Two illustrative examples are presented to support the effectiveness of these obtained results.

  10. Network-centric Analysis of Genetic Predisposition in Diabetic Nephropathy

    PubMed Central

    Ntemka, A; Iliadis, F; Papanikolaou, NA; Grekas, D

    2011-01-01

    Diabetic nephropathy is a serious, long-term complication of diabetes and the leading cause of end-stage renal disease throughout the world. Although this disease is progressively imposing a heavier burden on the health care system, in many aspects it remains poorly understood. In addition to environmental influences, there is abundant evidence in support of genetic susceptibility to microvascular complications of nephropathy in diabetic patients. Familial clustering of phenotypes such as end-stage renal disease, albuminuria and kidney disease have been reported in large scale population studies throughout the world demonstrating strong contribution of inherited factors. Recent genome-wide linkage scans identified several chromosomal regions that are likely to contain diabetic nephropathy susceptibility genes, and association analyses have evaluated positional candidate genes under linkage peaks. In this review we have extracted from the literature the most promising candidate genes thought to confer susceptibility to diabetic nephropathy and mapped them to affected pathways by using network-centric analysis. Several of the top susceptibility genes have been identified as network hubs and bottlenecks suggesting that they might be important agents in the onset of diabetic nephropathy. PMID:22435020

  11. Flexible body control using neural networks

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  12. Quality control in bio-monitoring networks, Spanish Aerobiology Network.

    PubMed

    Oteros, Jose; Galán, Carmen; Alcázar, Purificación; Domínguez-Vilches, Eugenio

    2013-01-15

    Several of the airborne biological particles, such as pollen grains and fungal spores, are known to generate human health problems including allergies and infections. A number of aerobiologists have focused their research on these airborne particles. The Spanish Aerobiology Network (REA) was set up in 1992, and since then dozens of research groups have worked on a range of related topics, including the standardization of study methods and the quality control of data generated by this network. In 2010, the REA started work on an inter-laboratory survey for proficiency testing purposes. The main goal of the study reported in the present paper was to determine the performance of technicians in the REA network using an analytical method that could be implemented by other bio-monitoring networks worldwide. The results recorded by each technician were compared with the scores obtained for a bounded mean of all results. The performance of each technician was expressed in terms of the relative error made in counting each of several pollen types. The method developed and implemented here proved appropriate for proficiency testing in interlaboratory studies involving bio-monitoring networks, and enabled the source of data quality problems to be pinpointed. The test revealed a variation coefficient of 10%. The relative error was significant for 3.5% of observations. In overall terms, the REA staff performed well, in accordance with the REA Management and Quality Manual. These findings serve to guarantee the quality of the data obtained, which can reliably be used for research purposes and published in the media in order to help prevent pollen-related health problems.

  13. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  14. Mathematical inference and control of molecular networks from perturbation experiments

    NASA Astrophysics Data System (ADS)

    Mohammed-Rasheed, Mohammed

    in order to affect the time evolution of molecular activity in a desirable manner. In this proposal, we address both the inference and control problems of GRNs. In the first part of the thesis, we consider the control problem. We assume that we are given a general topology network structure, whose dynamics follow a discrete-time Markov chain model. We subsequently develop a comprehensive framework for optimal perturbation control of the network. The aim of the perturbation is to drive the network away from undesirable steady-states and to force it to converge to a unique desirable steady-state. The proposed framework does not make any assumptions about the topology of the initial network (e.g., ergodicity, weak and strong connectivity), and is thus applicable to general topology networks. We define the optimal perturbation as the minimum-energy perturbation measured in terms of the Frobenius norm between the initial and perturbed networks. We subsequently demonstrate that there exists at most one optimal perturbation that forces the network into the desirable steady-state. In the event where the optimal perturbation does not exist, we construct a family of sub-optimal perturbations that approximate the optimal solution arbitrarily closely. In the second part of the thesis, we address the inference problem of GRNs from time series data. We model the dynamics of the molecules using a system of ordinary differential equations corrupted by additive white noise. For large-scale networks, we formulate the inference problem as a constrained maximum likelihood estimation problem. We derive the molecular interactions that maximize the likelihood function while constraining the network to be sparse. We further propose a procedure to recover weak interactions based on the Bayesian information criterion. For small-size networks, we investigated the inference of a globally stable 7-gene melanoma genetic regulatory network from genetic perturbation experiments. We considered five

  15. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  16. Evolution of Controllability in Interbank Networks

    PubMed Central

    Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido

    2013-01-01

    The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected “hub” institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies. PMID:23568033

  17. Neural Networks for Signal Processing and Control

    NASA Astrophysics Data System (ADS)

    Hesselroth, Ted Daniel

    Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual

  18. Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network

    NASA Astrophysics Data System (ADS)

    Chong, Shen; Rui, Song; Jie, Li; Xiaoming, Zhang; Jun, Tang; Yunbo, Shi; Jun, Liu; Huiliang, Cao

    2016-05-01

    In order to improve the temperature drift modeling precision of a tuning fork micro-electromechanical system (MEMS) gyroscope, a novel multiple inputs/single output model based on genetic algorithm (GA) and Elman neural network (Elman NN) is proposed. First, the temperature experiment of MEMS gyroscope is carried out and the outputs of MEMS gyroscope and temperature sensors are collected; then the temperature drift model based on temperature, temperature variation rate and the coupling term is proposed, and the Elman NN is employed to guarantee the generalization ability of the model; at last the genetic algorithm is used to tune the parameters of Elman NN in order to improve the modeling precision. The Allan analysis results validate that, compared to traditional single input/single output model, the novel multiple inputs/single output model can guarantee high accurate fitting ability because the proposed model can provide more plentiful controllable information. By the way, the generalization ability of the Elman neural network can be improved significantly due to the parameters are optimized by genetic algorithm.

  19. Genomic and network patterns of schizophrenia genetic variation in human evolutionary accelerated regions.

    PubMed

    Xu, Ke; Schadt, Eric E; Pollard, Katherine S; Roussos, Panos; Dudley, Joel T

    2015-05-01

    The population persistence of schizophrenia despite associated reductions in fitness and fecundity suggests that the genetic basis of schizophrenia has a complex evolutionary history. A recent meta-analysis of schizophrenia genome-wide association studies offers novel opportunities for assessment of the evolutionary trajectories of schizophrenia-associated loci. In this study, we hypothesize that components of the genetic architecture of schizophrenia are attributable to human lineage-specific evolution. Our results suggest that schizophrenia-associated loci enrich in genes near previously identified human accelerated regions (HARs). Specifically, we find that genes near HARs conserved in nonhuman primates (pHARs) are enriched for schizophrenia-associated loci, and that pHAR-associated schizophrenia genes are under stronger selective pressure than other schizophrenia genes and other pHAR-associated genes. We further evaluate pHAR-associated schizophrenia genes in regulatory network contexts to investigate associated molecular functions and mechanisms. We find that pHAR-associated schizophrenia genes significantly enrich in a GABA-related coexpression module that was previously found to be differentially regulated in schizophrenia affected individuals versus healthy controls. In another two independent networks constructed from gene expression profiles from prefrontal cortex samples, we find that pHAR-associated schizophrenia genes are located in more central positions and their average path lengths to the other nodes are significantly shorter than those of other schizophrenia genes. Together, our results suggest that HARs are associated with potentially important functional roles in the genetic architecture of schizophrenia.

  20. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    PubMed

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers.

  1. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  2. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  3. Adaptive neural networks for mobile robotic control

    NASA Astrophysics Data System (ADS)

    Burnett, Jeff R.; Dagli, Cihan H.

    2001-03-01

    Movement of a differential drive robot has non-linear dependence on the current position and orientation. A controller must be able to deal with the non-linearity of the plant. The controller must either linearize the plant and deal with special cases, or be non-linear itself. Once the controller is designed, implementation on a real robotic platform presents challenges due to the varying parameters of the plant. Robots of the same model may have different motor frictions. The surface the robot maneuvers on may change e.g. carpet to tile. Batteries will drain, providing less power over time. A feed-forward neural network controller could overcome these challenges. The network could learn the non- linearities of the plant and monitor the error for parameter changes and adapt to them. In this manner, a single controller can be designed for an ideal robot, and then used to populate a multi-robot colony without manually fine tuning the controller for each robot. This paper shall demonstrate such a controller, outlining design in simulation and implementation on Khepera robotic platforms.

  4. On the underlying assumptions of threshold Boolean networks as a model for genetic regulatory network behavior

    PubMed Central

    Tran, Van; McCall, Matthew N.; McMurray, Helene R.; Almudevar, Anthony

    2013-01-01

    Boolean networks (BoN) are relatively simple and interpretable models of gene regulatory networks. Specifying these models with fewer parameters while retaining their ability to describe complex regulatory relationships is an ongoing methodological challenge. Additionally, extending these models to incorporate variable gene decay rates, asynchronous gene response, and synergistic regulation while maintaining their Markovian nature increases the applicability of these models to genetic regulatory networks (GRN). We explore a previously-proposed class of BoNs characterized by linear threshold functions, which we refer to as threshold Boolean networks (TBN). Compared to traditional BoNs with unconstrained transition functions, these models require far fewer parameters and offer a more direct interpretation. However, the functional form of a TBN does result in a reduction in the regulatory relationships which can be modeled. We show that TBNs can be readily extended to permit self-degradation, with explicitly modeled degradation rates. We note that the introduction of variable degradation compromises the Markovian property fundamental to BoN models but show that a simple state augmentation procedure restores their Markovian nature. Next, we study the effect of assumptions regarding self-degradation on the set of possible steady states. Our findings are captured in two theorems relating self-degradation and regulatory feedback to the steady state behavior of a TBN. Finally, we explore assumptions of synchronous gene response and asynergistic regulation and show that TBNs can be easily extended to relax these assumptions. Applying our methods to the budding yeast cell-cycle network revealed that although the network is complex, its steady state is simplified by the presence of self-degradation and lack of purely positive regulatory cycles. PMID:24376454

  5. Steady-State Analysis of Genetic Regulatory Networks Modelled by Probabilistic Boolean Networks

    PubMed Central

    Gluhovsky, Ilya; Hashimoto, Ronaldo F.; Dougherty, Edward R.; Zhang, Wei

    2003-01-01

    Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run) behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes. PMID:18629023

  6. Dynamic congestion control mechanisms for MPLS networks

    NASA Astrophysics Data System (ADS)

    Holness, Felicia; Phillips, Chris I.

    2001-02-01

    Considerable interest has arisen in congestion control through traffic engineering from the knowledge that although sensible provisioning of the network infrastructure is needed, together with sufficient underlying capacity, these are not sufficient to deliver the Quality of Service required for new applications. This is due to dynamic variations in load. In operational Internet Protocol (IP) networks, it has been difficult to incorporate effective traffic engineering due to the limited capabilities of the IP technology. In principle, Multiprotocol Label Switching (MPLS), which is a connection-oriented label swapping technology, offers new possibilities in addressing the limitations by allowing the operator to use sophisticated traffic control mechanisms. This paper presents a novel scheme to dynamically manage traffic flows through the network by re-balancing streams during periods of congestion. It proposes management-based algorithms that will allow label switched routers within the network to utilize mechanisms within MPLS to indicate when flows are starting to experience frame/packet loss and then to react accordingly. Based upon knowledge of the customer's Service Level Agreement, together with instantaneous flow information, the label edge routers can then instigate changes to the LSP route and circumvent congestion that would hitherto violate the customer contacts.

  7. Structural and Functional Characterization of a Caenorhabditis elegans Genetic Interaction Network within Pathways

    PubMed Central

    Boucher, Benjamin; Lee, Anna Y.; Hallett, Michael; Jenna, Sarah

    2016-01-01

    A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic expression associated with the mutation of a second gene. Genome-wide efforts to map GIs in yeast revealed structural and functional properties of a GI network. This provided insights into the mechanisms underlying the robustness of yeast to genetic and environmental insults, and also into the link existing between genotype and phenotype. While a significant conservation of GIs and GI network structure has been reported between distant yeast species, such a conservation is not clear between unicellular and multicellular organisms. Structural and functional characterization of a GI network in these latter organisms is consequently of high interest. In this study, we present an in-depth characterization of ~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six distinct classes of GIs by examining a wide-range of structural and functional properties of genes and network, including co-expression, phenotypical manifestations, relationship with protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biological functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes within pathways and display distinctive properties, specifically towards PDS. It suggests a model in which pathways are composed of PDS-centric and PDS-independent GIs coordinating molecular machines through two specific classes of GIs involving pleiotropic and non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI network within pathways of a multicellular organism. It also suggests a model to understand better how GIs control system robustness and evolution. PMID:26871911

  8. Evaluation of the efficiency of artificial neural networks for genetic value prediction.

    PubMed

    Silva, G N; Tomaz, R S; Sant'Anna, I C; Carneiro, V Q; Cruz, C D; Nascimento, M

    2016-03-28

    Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency.

  9. Etiologic Ischemic Stroke Phenotypes in the NINDS Stroke Genetics Network

    PubMed Central

    Ay, Hakan; Arsava, Ethem Murat; Andsberg, Gunnar; Benner, Thomas; Brown, Robert D.; Chapman, Sherita N.; Cole, John W.; Delavaran, Hossein; Dichgans, Martin; Engström, Gunnar; Giralt-Steinhauer, Eva; Grewal, Raji P.; Gwinn, Katrina; Jern, Christina; Jimenez-Conde, Jordi; Jood, Katarina; Katsnelson, Michael; Kissela, Brett; Kittner, Steven J.; Kleindorfer, Dawn O.; Labovitz, Daniel L.; Lanfranconi, Silvia; Lee, Jin-Moo; Lehm, Manuel; Lemmens, Robin; Levi, Chris; Li, Linxin; Lindgren, Arne; Markus, Hugh S.; McArdle, Patrick F.; Melander, Olle; Norrving, Bo; Peddareddygari, Leema Reddy; Pedersén, Annie; Pera, Joanna; Rannikmäe, Kristiina; Rexrode, Kathryn M.; Rhodes, David; Rich, Stephen S.; Roquer, Jaume; Rosand, Jonathan; Rothwell, Peter M.; Rundek, Tatjana; Sacco, Ralph L.; Schmidt, Reinhold; Schürks, Markus; Seiler, Stephan; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie; Thijs, Vincent; Woodfield, Rebecca; Worrall, Bradford B.; Meschia, James F.

    2014-01-01

    Background and Purpose NINDS Stroke Genetics Network (SiGN) is an international consortium of ischemic stroke studies that aims to generate high quality phenotype data to identify the genetic basis of etiologic stroke subtypes. This analysis characterizes the etiopathogenetic basis of ischemic stroke and reliability of stroke classification in the consortium. Methods Fifty-two trained and certified adjudicators determined both phenotypic (abnormal test findings categorized in major etiologic groups without weighting towards the most likely cause) and causative ischemic stroke subtypes in 16,954 subjects with imaging-confirmed ischemic stroke from 12 US studies and 11 studies from 8 European countries using the web-based Causative Classification of Stroke System. Classification reliability was assessed with blinded re-adjudication of 1509 randomly selected cases. Results The distribution of etiologic categories varied by study, age, sex, and race (p<0.001 for each). Overall, only 40% to 54% of cases with a given major ischemic stroke etiology (phenotypic subtype) were classified into the same final causative category with high confidence. There was good agreement for both causative (kappa 0.72, 95%CI:0.69-0.75) and phenotypic classifications (kappa 0.73, 95%CI:0.70-0.75). Conclusions This study demonstrates that etiologic subtypes can be determined with good reliability in studies that include investigators with different expertise and background, institutions with different stroke evaluation protocols and geographic location, and patient populations with different epidemiological characteristics. The discordance between phenotypic and causative stroke subtypes highlights the fact that the presence of an abnormality in a stroke patient does not necessarily mean that it is the cause of stroke. PMID:25378430

  10. Stabilization of model-based networked control systems

    NASA Astrophysics Data System (ADS)

    Miranda, Francisco; Abreu, Carlos; Mendes, Paulo M.

    2016-06-01

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  11. Multifractal nature of network induced time delay in networked control systems

    NASA Astrophysics Data System (ADS)

    Tian, Yu-Chu; Yu, Zu-Guo; Fidge, Colin

    2007-01-01

    When modelling and simulating networked control systems (NCSs) over TCP/IP network protocols, we obtained network traffic data sets with irregular behaviour. Analysing the data sets revealed multifractal network traffic. Typical data sets are given in this Letter together with our preliminary analysis. The network architecture and traffic specifications that generated the multifractal traffic are also described in detail.

  12. Payload Invariant Control via Neural Networks: Development and Experimental Evaluation

    DTIC Science & Technology

    1989-12-01

    control is proposed and experimentally evaluated. An Adaptive Model-Based Neural Network Controller (AMBNNC) uses multilayer perceptron artificial neural ... networks to estimate the payload during high speed manipulator motion. The payload estimate adapts the feedforward compensator to unmodeled system

  13. Reverse Genetics Approaches to Control Arenavirus

    PubMed Central

    Martínez-Sobrido, Luis; Cheng, Benson Yee Hin; de la Torre, Juan Carlos

    2016-01-01

    Several arenavirus cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. To date, no licensed vaccines are available to combat human arenavirus infections, and anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetics approaches provides investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify anti-arenaviral drugs and development of novel live-attenuated arenavirus vaccines. Recently, reverse genetics have also allowed the generation of tri-segmented arenaviruses expressing foreign genes, facilitating virus detection and opening the possibility of implementing live-attenuated arenavirus-based vaccine vector approaches. Likewise, the development of single-cycle infectious, reporter-expressing, arenaviruses has provided a new experimental method to study some aspects of the biology of highly pathogenic arenaviruses without the requirement of high-security biocontainment required to study HF-causing arenaviruses. In this chapter we summarize the current knowledge on arenavirus reverse genetics and the implementation of plasmid-based reverse genetics techniques for the development of arenavirus vaccines and vaccine vectors. PMID:27076139

  14. Reverse Genetics Approaches to Control Arenavirus.

    PubMed

    Martínez-Sobrido, Luis; Cheng, Benson Yee Hin; de la Torre, Juan Carlos

    2016-01-01

    Several arenavirus cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. To date, no licensed vaccines are available to combat human arenavirus infections, and anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetics approaches provides investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify anti-arenaviral drugs and development of novel live-attenuated arenavirus vaccines. Recently, reverse genetics have also allowed the generation of tri-segmented arenaviruses expressing foreign genes, facilitating virus detection and opening the possibility of implementing live-attenuated arenavirus-based vaccine vector approaches. Likewise, the development of single-cycle infectious, reporter-expressing, arenaviruses has provided a new experimental method to study some aspects of the biology of highly pathogenic arenaviruses without the requirement of high-security biocontainment required to study HF-causing arenaviruses. In this chapter we summarize the current knowledge on arenavirus reverse genetics and the implementation of plasmid-based reverse genetics techniques for the development of arenavirus vaccines and vaccine vectors.

  15. Neural networks as a control methodology

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1990-01-01

    While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.

  16. Genetic Control of Weight Loss During Pneumonic Burkholderia pseudomallei Infection

    PubMed Central

    Emery, Felicia D.; Parvathareddy, Jyothi; Pandey, Ashutosh K.; Cui, Yan; Williams, Robert W.; Miller, Mark A.

    2014-01-01

    Burkholderia pseudomallei (Bp) is the causal agent of a high morbidity/mortality disease syndrome known as melioidosis. This syndrome can range from acute fulminate disease to chronic, local, and disseminated infections that are often difficult to treat because Bp exhibits resistance to many antibiotics. Bp is a prime candidate for use in biological warfare/terrorism and is classified as a Tier-1 Select Agent by HHS and APHIS. It is known that inbred mouse strains display a range of susceptibility to Bp and that the murine infection model is ideal for studying acute melioidosis. Here we exploit a powerful mouse genetics resource that consists of a large family of BXD type recombinant inbred strains, to perform genome-wide linkage analysis of the weight loss phenotype following pneumonic infection with Bp. We infected parental mice and 32 BXD strains with 50-100 CFU of Bp (strain 1026b) and monitored weight retention each day over an eleven-day time course. Using the computational tools in GeneNetwork, we performed genome-wide linkage analysis to identify an interval on chromosome 12 that appears to control the weight retention trait. We then analysed and ranked positional candidate genes in this interval, several of which have intriguing connections with innate immunity, calcium homeostasis, lipid transport, host cell growth and development, and autophagy. PMID:24687986

  17. Genetic Control of the German Cockroach.

    DTIC Science & Technology

    1977-04-17

    The authors investigated the possibility of controlling the German cockroach, Blattella germanica , by using chromosome translocations. The first...translocations for control in B. germanica . Such mechanisms are potentially capable of reducing field populations.

  18. Controller area network for monitor and control in ALMA

    NASA Astrophysics Data System (ADS)

    Brooks, Michael J.

    2000-06-01

    The Controller Area Network (CAN), initially developed for the automotive industry, is becoming increasingly popular in industrial process control applications. The need for distributed low data rate monitor and control networking in industry is similar to the needs of the various instrumentation and support equipment in a modern radio telescope. In particular, immunity to noise and low radio frequency emission characteristics are common to both domains. The Atacama Large Millimeter Array project has adopted CAN technology for use in local monitor and control applications at each of its 64 antennas. A standard interface slave node providing flexible I/O options is under development and a simple application-level protocol making use of CAN to access these nodes in a master/slave fashion has been implemented. This paper will present the work which has been completed to date including experiences in the use of CAN in an astronomical environment. In addition, analysis and simulation of CAN networks is compared with the performance of our implementation in the lab.

  19. Comprehensive Control of Networked Control Systems with Multistep Delay

    PubMed Central

    Jiang, Jie

    2014-01-01

    In networked control systems with multi-step delay, long time-delay causes vacant sampling and controller design difficulty. In order to solve the above problems, comprehensive control methods are proposed in this paper. Time-delay compensation control and linear-quadratic-Guassian (LQG) optimal control are adopted and the systems switch different controllers between two different states. LQG optimal controller is used with probability 1 − α in normal state, which is shown to render the systems mean square exponentially stable. Time-delay compensation controller is used with probability α in abnormal state to compensate vacant sampling and long time-delay. In addition, a buffer window is established at the actuator of the systems to store some history control inputs which are used to estimate the control state of present sampling period under the vacant sampling cases. The comprehensive control methods simplify control design which is easier to be implemented in engineering. The performance of the systems is also improved. Simulation results verify the validity of the proposed theory. PMID:25101322

  20. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  1. Minimum energy control and optimal-satisfactory control of Boolean control network

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Lu, Xiwen

    2013-12-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  2. The 1982 control network of Mars

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    Attention is given to a planet-wide control network of Mars that was computed in September 1982 using a large single-block analytical triangulation with 47,524 measurements of 6853 control points on 1054 Mariner 9 and 757 Viking pictures. In all, 19,139 normal equations were solved, with a resulting standard error of measurement of 18.06 microns. The control points identified by name and letter designation are given, as are the aerographic coordinates of the control points. In addition, the coordinates of the Viking I lander site are given: latitude, 22.480 deg; longitude, 47.962 deg (radius, 3389.32 km). This study expands and updates the previously published network (1978). It is noted that the computation differs in many respects from standard aerial mapping photogrammetric practice. In comparison with aerial mapping photography, the television formats are small and the focal lengths are long; stereo coverage is rare, the scale of the pictures varies greatly, and the residual camera distortions are large.

  3. Efficient Access Control in Multimedia Social Networks

    NASA Astrophysics Data System (ADS)

    Sachan, Amit; Emmanuel, Sabu

    Multimedia social networks (MMSNs) have provided a convenient way to share multimedia contents such as images, videos, blogs, etc. Contents shared by a person can be easily accessed by anybody else over the Internet. However, due to various privacy, security, and legal concerns people often want to selectively share the contents only with their friends, family, colleagues, etc. Access control mechanisms play an important role in this situation. With access control mechanisms one can decide the persons who can access a shared content and who cannot. But continuously growing content uploads and accesses, fine grained access control requirements (e.g. different access control parameters for different parts in a picture), and specific access control requirements for multimedia contents can make the time complexity of access control to be very large. So, it is important to study an efficient access control mechanism suitable for MMSNs. In this chapter we present an efficient bit-vector transform based access control mechanism for MMSNs. The proposed approach is also compatible with other requirements of MMSNs, such as access rights modification, content deletion, etc. Mathematical analysis and experimental results show the effectiveness and efficiency of our proposed approach.

  4. A comprehensive Network Security Risk Model for process control networks.

    PubMed

    Henry, Matthew H; Haimes, Yacov Y

    2009-02-01

    The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.

  5. The control network of Mars: October 1986

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.

    1987-01-01

    The control network of Mars is composed of Mariner 9 frames which essentially give full coverage of the planet at low resolution. Superimposed on and tied to this network are strips of Viking mapping frames (resolution 100 to 250 m per pixel) which encircle the equator and 60 deg north latitude and multiple longitude ties between these latitude strips. There are multiple ties between these strips and the Viking 1 lander site. In the future another strip will be established at 60 deg south latitude. Because the Viking 1 lander site has been accurately located, the coordinates of points in its vicinity can be determined with an error of less than 100 m relative to an inertial coordinate system.

  6. Control of vector populations using genetically modified mosquitoes.

    PubMed

    Wilke, André Barreto Bruno; Gomes, Almério de Castro; Natal, Delsio; Marrelli, Mauro Toledo

    2009-10-01

    The ineffectiveness of current strategies for chemical control of mosquito vectors raises the need for developing novel approaches. Thus, we carried out a literature review of strategies for genetic control of mosquito populations based on the sterile insect technique. One of these strategies consists of releasing radiation-sterilized males into the population; another, of integrating a dominant lethal gene under the control of a specific promoter into immature females. Advantages of these approaches over other biological and chemical control strategies include: highly species-specific, environmentally safety, low production cost, and high efficacy. The use of this genetic modification technique will constitute an important tool for integrated vector management.

  7. Optimization of a fermentation medium using neural networks and genetic algorithms.

    PubMed

    Nagata, Yuko; Chu, Khim Hoong

    2003-11-01

    Artificial neural networks and genetic algorithms are used to model and optimize a fermentation medium for the production of the enzyme hydantoinase by Agrobacterium radiobacter. Experimental data reported in the literature were used to build two neural network models. The concentrations of four medium components served as inputs to the neural network models, and hydantoinase or cell concentration served as a single output of each model. Genetic algorithms were used to optimize the input space of the neural network models to find the optimum settings for maximum enzyme and cell production. Using this procedure, two artificial intelligence techniques have been effectively integrated to create a powerful tool for process modeling and optimization.

  8. Digit and command interpretation for electronic book using neural network and genetic algorithm.

    PubMed

    Lam, H K; Leung, Frank H F

    2004-12-01

    This paper presents the interpretation of digits and commands using a modified neural network and the genetic algorithm. The modified neural network exhibits a node-to-node relationship which enhances its learning and generalization abilities. A digit-and-command interpreter constructed by the modified neural networks is proposed to recognize handwritten digits and commands. A genetic algorithm is employed to train the parameters of the modified neural networks of the digit-and-command interpreter. The proposed digit-and-command interpreter is successfully realized in an electronic book. Simulation and experimental results will be presented to show the applicability and merits of the proposed approach.

  9. Genetic and epigenetic control of RKIP transcription.

    PubMed

    Datar, Ila; Tegegne, Hanna; Qin, Kevin; Al-Mulla, Fahd; Bitar, Milad S; Trumbly, Robert J; Yeung, Kam C

    2014-01-01

    Raf kinase inhibitory protein (RKIP) is known to modulate key signaling cascades and regulate normal physiological processes such as cellular proliferation, differentiation, and apoptosis. The expression of RKIP is found to be downregulated in several cancer metastases and the repressed RKIP expression can be reactivated on treatment with chemotherapeutic agents. RKIP is a proven tumor metastasis suppressor gene and investigating the mechanisms of transcriptional regulation of RKIP is therefore of immense clinical importance. In this review, we discuss the basal expression of RKIP in various tissues and the genetic aspects of the RKIP chromosomal locus including the structure of the RKIP promoter as well as gene regulatory elements such as enhancers. We also review the genetic and epigenetic modulation of RKIP transcription through EZH2, a component of the polycomb repressive complex 2 (PRC2) and sequence specific transcription factors (TFs) BACH1 and Snail. Emerging experimental evidence supports a unifying model in which both these TFs repress RKIP transcription in cancers by recruiting the EZH2 containing repressive complex to the proximal RKIP promoter. Finally, we review the known mechanisms employed by different types of chemotherapeutic agents to activate RKIP expression in cancer cells.

  10. Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling

    PubMed Central

    Ferrara, Christine T.; Wang, Ping; Neto, Elias Chaibub; Stevens, Robert D.; Bain, James R.; Wenner, Brett R.; Ilkayeva, Olga R.; Keller, Mark P.; Blasiole, Daniel A.; Kendziorski, Christina; Yandell, Brian S.; Newgard, Christopher B.; Attie, Alan D.

    2008-01-01

    Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes. PMID:18369453

  11. The control network of Mars: April 1991

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Rogers, Patricia G.

    1991-01-01

    The modern geodetic control network of Mars was first established based on Mariner 9 images with 1-2 km/pixel resolutions and covered almost the entire Martian surface. The introduction of higher resolution (10-200 meter/pixel) Viking Orbiter images greatly improved the accuracy and density of points in the control network. Analysis of the Viking Lander radio tracking data led to more accurate measurements of Mars' rotation period, spin axis direction, and the lander coordinates relative to the inertial reference frame. The prime meridian on Mars was defined by the Geodesy/Cartography Group of the Mariner 9 Television Team as the crater Airy-0, located about 5 degrees south of the equator. The Viking 1 Lander site was identified on a high resolution Viking frame. The control point measurements form the basis of a least squares solution determined by analytical triangulation after the pixel measurements are corrected for geometric distortions and converted to millimeter coordinates in the camera focal plane. Photogrammetric strips encircling Mars at the equator and at 60 degree north south were used to strengthen the overall net and improve the accuracy of the coordinates of points. In addition, photogrammetric strips along 0, 90, 180, and 270 degrees longitude to the Viking 1 Lander site have all significantly strengthened the control network. Most recently, photogrammetric strips were added to the net along 30 degrees north latitude between 0 and 180 degrees, and along 30 degrees between 180 and 360 degrees. The Viking 1 Lander site and Airy-0 are linked through photogrammetric strips occurring along the 0 degree meridian from Airy-0 to 65 degrees north, from that point through the Viking 1 Lander site to the equator, and along the equator to 180 degrees longitude. The Viking 1 lander site is thus a well calibrated area with coordinates of points accurate to approximately 200 meters relative to the J2000 inertial coordinate system. This will be a useful

  12. Learning genetic epistasis using Bayesian network scoring criteria

    PubMed Central

    2011-01-01

    Background Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully applied for detecting epistasis is Multifactor Dimensionality Reduction (MDR). Jiang et al. created a combinatorial epistasis learning method called BNMBL to learn Bayesian network (BN) epistatic models. They compared BNMBL to MDR using simulated data sets. Each of these data sets was generated from a model that associates two SNPs with a disease and includes 18 unrelated SNPs. For each data set, BNMBL and MDR were used to score all 2-SNP models, and BNMBL learned significantly more correct models. In real data sets, we ordinarily do not know the number of SNPs that influence phenotype. BNMBL may not perform as well if we also scored models containing more than two SNPs. Furthermore, a number of other BN scoring criteria have been developed. They may detect epistatic interactions even better than BNMBL. Although BNs are a promising tool for learning epistatic relationships from data, we cannot confidently use them in this domain until we determine which scoring criteria work best or even well when we try learning the correct model without knowledge of the number of SNPs in that model. Results We evaluated the performance of 22 BN scoring criteria using 28,000 simulated data sets and a real Alzheimer's GWAS data set. Our results were surprising in that the Bayesian scoring criterion with large values of a hyperparameter called α performed best. This score performed better than other BN scoring criteria and MDR at recall using simulated data sets, at detecting the hardest-to-detect models using simulated data sets, and at substantiating previous results using the real Alzheimer's data set. Conclusions We conclude that representing epistatic interactions using BN models

  13. Practical synchronization on complex dynamical networks via optimal pinning control

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  14. Practical synchronization on complex dynamical networks via optimal pinning control.

    PubMed

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  15. A global genetic interaction network maps a wiring diagram of cellular function.

    PubMed

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D; Pelechano, Vicent; Styles, Erin B; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F; Li, Sheena C; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; San Luis, Bryan-Joseph; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M; Moore, Claire L; Rosebrock, Adam P; Caudy, Amy A; Myers, Chad L; Andrews, Brenda; Boone, Charles

    2016-09-23

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.

  16. Consensus and Stability Analysis of Networked Multiagent Predictive Control Systems.

    PubMed

    Liu, Guo-Ping

    2016-03-17

    This paper is concerned with the consensus and stability problem of multiagent control systems via networks with communication delays and data loss. A networked multiagent predictive control scheme is proposed to achieve output consensus and also compensate for the communication delays and data loss actively. The necessary and sufficient conditions of achieving both consensus and stability of the closed-loop networked multiagent control systems are derived. An important result that is obtained is that the consensus and stability of closed-loop networked multiagent predictive control systems are not related to the communication delays and data loss. An example illustrates the performance of the networked multiagent predictive control scheme.

  17. Geochemical, Genetic, and Community Controls on Mercury

    SciTech Connect

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  18. Deep Space Network Antenna Logic Controller

    NASA Technical Reports Server (NTRS)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  19. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    PubMed

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  20. Telethon Network of Genetic Biobanks: a key service for diagnosis and research on rare diseases.

    PubMed

    Filocamo, Mirella; Baldo, Chiara; Goldwurm, Stefano; Renieri, Alessandra; Angelini, Corrado; Moggio, Maurizio; Mora, Marina; Merla, Giuseppe; Politano, Luisa; Garavaglia, Barbara; Casareto, Lorena; Bricarelli, Francesca Dagna

    2013-08-30

    Several examples have always illustrated how access to large numbers of biospecimens and associated data plays a pivotal role in the identification of disease genes and the development of pharmaceuticals. Hence, allowing researchers to access to significant numbers of quality samples and data, genetic biobanks are a powerful tool in basic, translational and clinical research into rare diseases. Recently demand for well-annotated and properly-preserved specimens is growing at a high rate, and is expected to grow for years to come. The best effective solution to this issue is to enhance the potentialities of well-managed biobanks by building a network.Here we report a 5-year experience of the Telethon Network of Genetic Biobanks (TNGB), a non-profit association of Italian repositories created in 2008 to form a virtually unique catalogue of biospecimens and associated data, which presently lists more than 750 rare genetic defects. The process of TNGB harmonisation has been mainly achieved through the adoption of a unique, centrally coordinated, IT infrastructure, which has enabled (i) standardisation of all the TNGB procedures and activities; (ii) creation of an updated TNGB online catalogue, based on minimal data set and controlled terminologies; (iii) sample access policy managed via a shared request control panel at web portal. TNGB has been engaged in disseminating information on its services into both scientific/biomedical - national and international - contexts, as well as associations of patients and families. Indeed, during the last 5-years national and international scientists extensively used the TNGB with different purposes resulting in more than 250 scientific publications. In addition, since its inception the TNGB is an associated member of the Biobanking and Biomolecular Resources Research Infrastructure and recently joined the EuroBioBank network. Moreover, the involvement of patients and families, leading to the formalization of various agreements

  1. GENNET-Toolbox: An Evolving Genetic Algorithm for Neural Network Training

    NASA Astrophysics Data System (ADS)

    Gómez-Garay, Vicente; Irigoyen, Eloy; Artaza, Fernando

    Genetic Algorithms have been used from 1989 for both Neural Network training and design. Nevertheless, the use of a Genetic Algorithm for adjusting the Neural Network parameters can still be engaging. This work presents the study and validation of a different approach to this matter by introducing a Genetic Algorithm designed for Neural Network training. This algorithm features a mutation operator capable of working on three levels (network, neuron and layer) and with the mutation parameters encoded and evolving within each individual. We also explore the use of three types of hybridization: post-training, Lamarckian and Baldwinian. These proposes in combination with the algorithm, show for a fast and powerful tool for Neural Network training.

  2. Criteria for stochastic pinning control of networks of chaotic maps

    SciTech Connect

    Mwaffo, Violet; Porfiri, Maurizio; DeLellis, Pietro

    2014-03-15

    This paper investigates the controllability of discrete-time networks of coupled chaotic maps through stochastic pinning. In this control scheme, the network dynamics are steered towards a desired trajectory through a feedback control input that is applied stochastically to the network nodes. The network controllability is studied by analyzing the local mean square stability of the error dynamics with respect to the desired trajectory. Through the analysis of the spectral properties of salient matrices, a toolbox of conditions for controllability are obtained, in terms of the dynamics of the individual maps, algebraic properties of the network, and the probability distribution of the pinning control. We demonstrate the use of these conditions in the design of a stochastic pinning control strategy for networks of Chirikov standard maps. To elucidate the applicability of the approach, we consider different network topologies and compare five different stochastic pinning strategies through extensive numerical simulations.

  3. On control of singleton attractors in multiple Boolean networks: integer programming-based method

    PubMed Central

    2014-01-01

    Background Boolean network (BN) is a mathematical model for genetic network and control of genetic networks has become an important issue owing to their potential application in the field of drug discovery and treatment of intractable diseases. Early researches have focused primarily on the analysis of attractor control for a randomly generated BN. However, one may also consider how anti-cancer drugs act in both normal and cancer cells. Thus, the development of controls for multiple BNs is an important and interesting challenge. Results In this article, we formulate three novel problems about attractor control for two BNs (i.e., normal cell and cancer cell). The first is about finding a control that can significantly damage cancer cells but has a limited damage to normal cells. The second is about finding a control for normal cells with a guaranteed damaging effect on cancer cells. Finally, we formulate a definition for finding a control for cancer cells with limited damaging effect on normal cells. We propose integer programming-based methods for solving these problems in a unified manner, and we conduct computational experiments to illustrate the efficiency and the effectiveness of our method for our multiple-BN control problems. Conclusions We present three novel control problems for multiple BNs that are realistic control models for gene regulation networks and adopt an integer programming approach to address these problems. Experimental results indicate that our proposed method is useful and effective for moderate size BNs. PMID:24565276

  4. Genetic Control of Contagious Asexuality in the Pea Aphid

    PubMed Central

    Jaquiéry, Julie; Stoeckel, Solenn; Larose, Chloé; Nouhaud, Pierre; Rispe, Claude; Mieuzet, Lucie; Bonhomme, Joël; Mahéo, Frédérique; Legeai, Fabrice; Gauthier, Jean-Pierre; Prunier-Leterme, Nathalie; Tagu, Denis; Simon, Jean-Christophe

    2014-01-01

    Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages. PMID:25473828

  5. Power graph compression reveals dominant relationships in genetic transcription networks.

    PubMed

    Ahnert, Sebastian E

    2013-11-01

    We introduce a framework for the discovery of dominant relationship patterns in transcription networks, by compressing the network into a power graph with overlapping power nodes. Our application of this approach to the transcription networks of S. cerevisiae and E. coli, paired with GO term enrichment analysis, provides a highly informative overview of the most prominent relationships in the gene regulatory networks of these two organisms.

  6. Does Childhood Anxiety Evoke Maternal Control? A Genetically Informed Study

    ERIC Educational Resources Information Center

    Eley, Thalia C.; Napolitano, Maria; Lau, Jennifer Y. F.; Gregory, Alice M.

    2010-01-01

    Background: Despite theoretical and empirical support for an association between maternal control and child anxiety, few studies have examined the origins of this association. Furthermore, none use observer-ratings of maternal control within a genetically informative design. This study addressed three questions: 1) do children who experience…

  7. Network-based production quality control

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  8. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce.

    PubMed

    Lamara, Mebarek; Raherison, Elie; Lenz, Patrick; Beaulieu, Jean; Bousquet, Jean; MacKay, John

    2016-04-01

    Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P < 0.05 to maximize discovery. Over-representation of genes associated for nearly all traits was found in a xylem preferential co-expression group developed in independent experiments. A xylem co-expression network was reconstructed with 180 wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits.

  9. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture

    PubMed Central

    Martínez, Paulino; Viñas, Ana M.; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of

  10. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture.

    PubMed

    Martínez, Paulino; Viñas, Ana M; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of

  11. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  12. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  13. Experimental results of a predictive neural network HVAC controller

    SciTech Connect

    Jeannette, E.; Assawamartbunlue, K.; Kreider, J.F.; Curtiss, P.S.

    1998-12-31

    Proportional, integral, and derivative (PID) control is widely used in many HVAC control processes and requires constant attention for optimal control. Artificial neural networks offer the potential for improved control of processes through predictive techniques. This paper introduces and shows experimental results of a predictive neural network (PNN) controller applied to an unstable hot water system in an air-handling unit. Actual laboratory testing of the PNN and PID controllers show favorable results for the PNN controller.

  14. Genetic dissection of cardiac growth control pathways

    NASA Technical Reports Server (NTRS)

    MacLellan, W. R.; Schneider, M. D.

    2000-01-01

    Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.

  15. Untangling genetic networks of panic, phobia, fear and anxiety

    PubMed Central

    Villafuerte, Sandra; Burmeister, Margit

    2003-01-01

    As is the case for normal individual variation in anxiety levels, the conditions panic disorder, agoraphobia and other phobias have a significant genetic basis. Recent reports have started to untangle the genetic relationships between predispositions to anxiety and anxiety disorders. PMID:12914652

  16. Finding friends and enemies in an enemies-only network: A graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions

    PubMed Central

    Qi, Yan; Suhail, Yasir; Lin, Yu-yi; Boeke, Jef D.; Bader, Joel S.

    2008-01-01

    The yeast synthetic lethal genetic interaction network contains rich information about underlying pathways and protein complexes as well as new genetic interactions yet to be discovered. We have developed a graph diffusion kernel as a unified framework for inferring complex/pathway membership analogous to “friends” and genetic interactions analogous to “enemies” from the genetic interaction network. When applied to the Saccharomyces cerevisiae synthetic lethal genetic interaction network, we can achieve a precision around 50% with 20% to 50% recall in the genome-wide prediction of new genetic interactions, supported by experimental validation. The kernels show significant improvement over previous best methods for predicting genetic interactions and protein co-complex membership from genetic interaction data. PMID:18832443

  17. Speech recognition method based on genetic vector quantization and BP neural network

    NASA Astrophysics Data System (ADS)

    Gao, Li'ai; Li, Lihua; Zhou, Jian; Zhao, Qiuxia

    2009-07-01

    Vector Quantization is one of popular codebook design methods for speech recognition at present. In the process of codebook design, traditional LBG algorithm owns the advantage of fast convergence, but it is easy to get the local optimal result and be influenced by initial codebook. According to the understanding that Genetic Algorithm has the capability of getting the global optimal result, this paper proposes a hybrid clustering method GA-L based on Genetic Algorithm and LBG algorithm to improve the codebook.. Then using genetic neural networks for speech recognition. consequently search a global optimization codebook of the training vector space. The experiments show that neural network identification method based on genetic algorithm can extricate from its local maximum value and the initial restrictions, it can show superior to the standard genetic algorithm and BP neural network algorithm from various sources, and the genetic BP neural networks has a higher recognition rate and the unique application advantages than the general BP neural network in the same GA-VQ codebook, it can achieve a win-win situation in the time and efficiency.

  18. Structural permeability of complex networks to control signals

    PubMed Central

    Lo Iudice, Francesco; Garofalo, Franco; Sorrentino, Francesco

    2015-01-01

    Many biological, social and technological systems can be described as complex networks. The goal of affecting their behaviour has motivated recent work focusing on the relationship between the network structure and its propensity to be controlled. While this work has provided insight into several relevant problems, a comprehensive approach to address partial and complete controllability of networks is still lacking. Here, we bridge this gap by developing a framework to maximize the diffusion of the control signals through a network, while taking into account physical and economic constraints that inevitably arise in applications. This approach allows us to introduce the network permeability, a unified metric of the propensity of a network to be controllable. The analysis of the permeability of several synthetic and real networks enables us to extract some structural features that deepen our quantitative understanding of the ease with which specific controllability requirements can be met. PMID:26391186

  19. Control of tree water networks: A geometric programming approach

    NASA Astrophysics Data System (ADS)

    Sela Perelman, L.; Amin, S.

    2015-10-01

    This paper presents a modeling and operation approach for tree water supply systems. The network control problem is approximated as a geometric programming (GP) problem. The original nonlinear nonconvex network control problem is transformed into a convex optimization problem. The optimization model can be efficiently solved to optimality using state-of-the-art solvers. Two control schemes are presented: (1) operation of network actuators (pumps and valves) and (2) controlled demand shedding allocation between network consumers with limited resources. The dual of the network control problem is formulated and is used to perform sensitivity analysis with respect to hydraulic constraints. The approach is demonstrated on a small branched-topology network and later extended to a medium-size irrigation network. The results demonstrate an intrinsic trade-off between energy costs and demand shedding policy, providing an efficient decision support tool for active management of water systems.

  20. Using attribute grammars for the genetic selection of back-propagation networks for character recognition

    NASA Astrophysics Data System (ADS)

    Browse, Roger A.; Hussain, Talib S.; Smillie, Matthew B.

    1999-03-01

    Determining exactly which neural network architecture, with which parameters, will provide the best solution to a classification task is often based upon the intuitions and experience of the implementers of neural network solutions. The research presented in this paper is centered on the development of automated methods for the selection of appropriate networks, as applied to character recognition. The Network Generating Attribute Grammar Encoding system is a compact and general method for the specification of commonly accepted network architectures that can be easily expanded to include novel architectures, or that can be easily restricted to a small subset of some known architecture. Within this system, the context-free component of the attribute grammar specifies a class of basic architectures by using the non-terminals to represent network, layers and component structures. The inherited and synthesized attributes indicate the connections necessary to develop a functioning network from any parse tree that is generated from the grammar. The attribute grammar encoding is particularly conducive to the use of genetic algorithms as a strategy for searching the space of possible networks. The resultant parse trees are used as the genetic code, permitting a variety of different genetic manipulations. We apply this approach in the generation of backpropagation networks for recognition of characters from a set consisting of 20,000 examples of 26 letters.

  1. Observability and Controllability of Nonlinear Networks: The Role of Symmetry

    NASA Astrophysics Data System (ADS)

    Whalen, Andrew J.; Brennan, Sean N.; Sauer, Timothy D.; Schiff, Steven J.

    2015-01-01

    Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. For example, noncontrollable mathematical models of real systems have subspaces that influence model behavior, but cannot be controlled by an input. Such subspaces can be difficult to determine in complex nonlinear networks. Since almost all of the present theory was developed for linear networks without symmetries, here we present a numerical and group representational framework, to quantify the observability and controllability of nonlinear networks with explicit symmetries that shows the connection between symmetries and nonlinear measures of observability and controllability. We numerically observe and theoretically predict that not all symmetries have the same effect on network observation and control. Our analysis shows that the presence of symmetry in a network may decrease observability and controllability, although networks containing only rotational symmetries remain controllable and observable. These results alter our view of the nature of observability and controllability in complex networks, change our understanding of structural controllability, and affect the design of mathematical models to observe and control such networks.

  2. Genetic control of anastomosis in Podospora anserina.

    PubMed

    Tong, Laetitia Chan Ho; Silar, Philippe; Lalucque, Hervé

    2014-09-01

    We developed a new microscopy procedure to study anastomoses in the model ascomycete Podospora anserina and compared it with the previous method involving the formation of balanced heterokaryons. Both methods showed a good correlation. Heterokaryon formation was less quantifiable, but enabled to observe very rare events. Microscopic analysis evidenced that anastomoses were greatly influence by growth conditions and were severely impaired in the IDC mutants of the PaMpk1, PaMpk2, IDC1 and PaNox1 pathways. Yet some mutants readily formed heterokaryons, albeit with a delay when compared to the wild type. We also identified IDC(821), a new mutant presenting a phenotype similar to the other IDC mutants, including lack of anastomosis. Complete genome sequencing revealed that IDC(821) was affected in the orthologue of the Neurospora crassa So gene known to control anastomosis in several other ascomycetes.

  3. Environmental Control Of A Genetic Process

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    E. coli bacteria altered to contain DNA sequence encoding production of hemoglobin made to produce hemoglobin at rates decreasing with increases in concentration of oxygen in culture media. Represents amplification of part of method described in "Cloned Hemoglobin Genes Enhance Growth Of Cells" (NPO-17517). Manipulation of promoter/regulator DNA sequences opens promising new subfield of recombinant-DNA technology for environmental control of expression of selected DNA sequences. New recombinant-DNA fusion gene products, expression vectors, and nucleotide-base sequences will emerge. Likely applications include such aerobic processes as manufacture of cloned proteins and synthesis of metabolites, production of chemicals by fermentation, enzymatic degradation, treatment of wastes, brewing, and variety of oxidative chemical reactions.

  4. Human genetic variation: new challenges and opportunities for doping control.

    PubMed

    Schneider, Angela J; Fedoruk, Matthew N; Rupert, Jim L

    2012-01-01

    Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices.

  5. Prospects for vector control through genetic manipulation of populations*

    PubMed Central

    Craig, George B.

    1963-01-01

    Since the development of insecticide-resistance and the consequent partial failure of the chemical approach to the control of disease vectors, interest in the biological approach has re-awakened. An aspect of the latter approach that is of great current interest is “autocidal control”—that is, the use of insects for their own destruction. This paper discusses the various ways in which genetic mechanisms can be used to bring about the destruction of harmful insects, with special reference to those of medical importance. The author considers that the prospects for the genetic control of vector species are good, but stresses that before genetic methods can be applied on a field scale certain requirements must be met. For example, genetic technology must be expanded, a firm background of genetic knowledge of vector species must be built up, a great deal more information about vector ecology, particularly population dynamics, must be acquired, and techniques for the mass production of vector insects under controlled conditions must be developed. PMID:20604180

  6. Enterprise network control and management: traffic flow models

    NASA Astrophysics Data System (ADS)

    Maruyama, William; George, Mark S.; Hernandez, Eileen; LoPresto, Keith; Uang, Yea

    1999-11-01

    The exponential growth and dramatic increase in demand for network bandwidth is expanding the market for broadband satellite networks. It is critical to rapidly deliver ubiquitous satellite communication networks that are differentiated by lower cost and increased Quality of Service (QoS). There is a need to develop new network architectures, control and management systems to meet the future commercial and military traffic requirements, services and applications. The next generation communication networks must support legacy and emerging network traffic while providing user negotiated levels of QoS. Network resources control algorithms must be designed to provide the guaranteed performance levels for voice, video and data having different service requirements. To evaluate network architectures and performance, it is essential to understand the network traffic characteristics.

  7. Genetic algorithms for the design of looped irrigation water distribution networks

    NASA Astrophysics Data System (ADS)

    Reca, Juan; MartíNez, Juan

    2006-05-01

    A new computer model called Genetic Algorithm Pipe Network Optimization Model (GENOME) has been developed with the aim of optimizing the design of new looped irrigation water distribution networks. The model is based on a genetic algorithm method, although relevant modifications and improvements have been implemented to adapt the model to this specific problem. It makes use of the robust network solver EPANET. The model has been tested and validated by applying it to the least cost optimization of several benchmark networks reported in the literature. The results obtained with GENOME have been compared with those found in previous works, obtaining the same results as the best published in the literature to date. Once the model was validated, the optimization of a real complex irrigation network has been carried out to evaluate the potential of the genetic algorithm for the optimal design of large-scale networks. Although satisfactory results have been obtained, some adjustments would be desirable to improve the performance of genetic algorithms when the complexity of the network requires it.

  8. Social and Genetic Networks of HIV-1 Transmission in New York City

    PubMed Central

    Wertheim, Joel O.; Kosakovsky Pond, Sergei L.; Forgione, Lisa A.; Mehta, Sanjay R.; Murrell, Ben; Shah, Sharmila; Smith, Davey M.; Scheffler, Konrad; Torian, Lucia V.

    2017-01-01

    Background Sexually transmitted infections spread across contact networks. Partner elicitation and notification are commonly used public health tools to identify, notify, and offer testing to persons linked in these contact networks. For HIV-1, a rapidly evolving pathogen with low per-contact transmission rates, viral genetic sequences are an additional source of data that can be used to infer or refine transmission networks. Methods and Findings The New York City Department of Health and Mental Hygiene interviews individuals newly diagnosed with HIV and elicits names of sexual and injection drug using partners. By law, the Department of Health also receives HIV sequences when these individuals enter healthcare and their physicians order resistance testing. Our study used both HIV sequence and partner naming data from 1342 HIV-infected persons in New York City between 2006 and 2012 to infer and compare sexual/drug-use named partner and genetic transmission networks. Using these networks, we determined a range of genetic distance thresholds suitable for identifying potential transmission partners. In 48% of cases, named partners were infected with genetically closely related viruses, compatible with but not necessarily representing or implying, direct transmission. Partner pairs linked through the genetic similarity of their HIV sequences were also linked by naming in 53% of cases. Persons who reported high-risk heterosexual contact were more likely to name at least one partner with a genetically similar virus than those reporting their risk as injection drug use or men who have sex with men. Conclusions We analyzed an unprecedentedly large and detailed partner tracing and HIV sequence dataset and determined an empirically justified range of genetic distance thresholds for identifying potential transmission partners. We conclude that genetic linkage provides more reliable evidence for identifying potential transmission partners than partner naming, highlighting the

  9. The control networks of Tethys and Dione

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    Control networks of the Saturnian satellites Tethys and Dione have been established photogrammetrically from pictures taken by the two Voyager spacecraft during their flybys. Coordinates of 110 points on Tethys and 126 points on Dione are listed; selected points are identified on U.S. Geological Survey maps of the satellites, and many are identified by name. Measurements of these points were made on six pictures from Voyager 1 and 21 from Voyager 2 for Tethys, and on 27 pictures from Voyager 1 and one from Voyager 2 for Dione. The longitude systems on the satellites have been defined by craters on their surfaces. The mean radii have been determined as 524 + or - 5 km for Tethys and 559 + or - 5 km for Dione.

  10. Genetic and epigenetic controls of plant regeneration.

    PubMed

    Xu, Lin; Huang, Hai

    2014-01-01

    Plants have evolved powerful regeneration abilities to recover from damage. Studies on plant regeneration are of high significance as the underlying mechanisms of plant regeneration are not only linking to the fundamental researches in many fields but also to the development of widely used plant biotechnology. Higher plants show three main types of regeneration: tissue regeneration, de novo organogenesis, and somatic embryogenesis. In this review, we summarize recent research on plant regeneration, mainly focusing on Arabidopsis thaliana and moss. New data suggest that plant hormones trigger regeneration and that several key transcription factors respond to hormone signals to determine cell-fate transition. Cell-fate transition requires genome-wide changes in gene expression, which are regulated via epigenetic pathways. Certain epigenetic factors may be recruited by transcription factors to relocate to new loci and regulate gene expression. Cross talk among hormone signaling, transcription factors, and epigenetic factors is involved in different types of plant regeneration, suggesting that elegant and complex regulatory mechanisms control which type of regeneration is triggered in plants under different circumstances. Since regeneration is initiated by wounding, identification of the wound signal is an important objective for future research.

  11. A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock

    PubMed Central

    Boyd, Joseph S.; Cheng, Ryan R.; Paddock, Mark L.; Sancar, Cigdem

    2016-01-01

    ABSTRACT Two-component systems (TCS) that employ histidine kinases (HK) and response regulators (RR) are critical mediators of cellular signaling in bacteria. In the model cyanobacterium Synechococcus elongatus PCC 7942, TCSs control global rhythms of transcription that reflect an integration of time information from the circadian clock with a variety of cellular and environmental inputs. The HK CikA and the SasA/RpaA TCS transduce time information from the circadian oscillator to modulate downstream cellular processes. Despite immense progress in understanding of the circadian clock itself, many of the connections between the clock and other cellular signaling systems have remained enigmatic. To narrow the search for additional TCS components that connect to the clock, we utilized direct-coupling analysis (DCA), a statistical analysis of covariant residues among related amino acid sequences, to infer coevolution of new and known clock TCS components. DCA revealed a high degree of interaction specificity between SasA and CikA with RpaA, as expected, but also with the phosphate-responsive response regulator SphR. Coevolutionary analysis also predicted strong specificity between RpaA and a previously undescribed kinase, HK0480 (herein CikB). A knockout of the gene for CikB (cikB) in a sasA cikA null background eliminated the RpaA phosphorylation and RpaA-controlled transcription that is otherwise present in that background and suppressed cell elongation, supporting the notion that CikB is an interactor with RpaA and the clock network. This study demonstrates the power of DCA to identify subnetworks and key interactions in signaling pathways and of combinatorial mutagenesis to explore the phenotypic consequences. Such a combined strategy is broadly applicable to other prokaryotic systems. IMPORTANCE Signaling networks are complex and extensive, comprising multiple integrated pathways that respond to cellular and environmental cues. A TCS interaction model, based on

  12. Nano-Resonators for RF-Enabled Networked-Control

    DTIC Science & Technology

    2006-01-01

    Networked Control System As a further embodiment of the NCS environment we consider the application to a velocity estimation problem often... Networked Control System Co-simulation for Co-design,” Proc. American Control Conf. Denver, CO, USA, June, 2003. [12] R.H. Brown and S.C. Schneider

  13. Compilation and use of genetic toxicity historical control data.

    PubMed

    Hayashi, Makoto; Dearfield, Kerry; Kasper, Peter; Lovell, David; Martus, Hans-Joerg; Thybaud, Veronique

    2011-08-16

    The optimal use of historical control data for the interpretation of genotoxicity results was discussed at the 2009 International Workshop on Genotoxicity Testing (IWGT) in Basel, Switzerland. The historical control working group focused mainly on negative control data although positive control data were also considered to be important. Historical control data are typically used for comparison with the concurrent control data as part of the assay acceptance criteria. Historical control data are also important for providing evidence of the technical competence and familiarization of the assay at any given laboratory. Moreover, historical control data are increasingly being used to aid in the interpretation of genetic toxicity assay results. The objective of the working group was to provide generic advice for historical control data that could be applied to all assays rather than to give assay-specific recommendations. In brief, the recommendations include:

  14. GENETIC CONTROL OF THE IMMUNE RESPONSE

    PubMed Central

    McDevitt, Hugh O.; Deak, Beverly D.; Shreffler, Donald C.; Klein, Jan; Stimpfling, Jack H.; Snell, George D.

    1972-01-01

    Eleven strains of mice bearing recombinant H-2 chromosomes derived from known crossover events between known H-2 types were immunized with a series of branched, multichain, synthetic polypeptide antigens [(T,G)-A--L, (H,G)-A--L, and (Phe,G)-A--L]. Results with nine of the eleven H-2 recombinants indicated that the gene(s) controlling immune response to these synthetic polypeptides (Ir-1) is on the centromeric or H-2K part of the recombinant H-2 chromosome. Results with two of the eleven recombinant H-2 chromosomes indicated that Ir-1 was on the telomeric or H-2D part of the recombinant H-2 chromosome. Both of these recombinants were derived from crossovers between the H-2K locus and the Ss-Slp locus near the center of the H-2 region. One of these recombinants, H-2y, was derived from a known single crossover event. These results indicate that Ir-1 lies near the center of the H-2 region between the H-2K locus and the Ss-Slp locus. The results of a four-point linkage test were consistent with these results. In 484 offspring of a cross designed to detect recombinants between H-2 and Ir-1, only two putative recombinants were detected. Both of these recombinants were confirmed by progeny testing. Extensive analysis of one of them has shown that the crossover event occurred within the H-2 region. (Testing of the second recombinant is currently under way.) Thus, in the linkage test, recombinants between H-2 and Ir-1 are in fact intra-H-2 crossovers. These results permit assignment of Ir-1 to a position between the H-2K locus and the Ss-Slp locus. PMID:4554451

  15. Optimizing controllability of edge dynamics in complex networks by perturbing network structure

    NASA Astrophysics Data System (ADS)

    Pang, Shaopeng; Hao, Fei

    2017-03-01

    Using the minimum input signals to drive the dynamics in complex networks toward some desired state is a fundamental issue in the field of network controllability. For a complex network with the dynamical process defined on its edges, the controllability of this network is optimal if it can be fully controlled by applying one input signal to an arbitrary non-isolated vertex of it. In this paper, the adding-edge strategy and turning-edge strategy are proposed to optimize the controllability by minimum structural perturbations. Simulations and analyses indicate that the minimum number of adding-edges required for the optimal controllability is equal to the minimum number of turning-edges, and networks with positively correlated in- and out-degrees are easier to achieve optimal controllability. Furthermore, both the strategies have the capacity to reveal the relationship between certain structural properties of a complex network and its controllability of edge dynamics.

  16. Adaptive Control of Visually Guided Grasping in Neural Networks

    DTIC Science & Technology

    1990-03-12

    U01ITU S.WM NONnumsen Adaptive Control of Visually Guided Grasping in Neural Networks AFOSR-89-&CO030 88-NL-209 L AUTHOrSF 2313/A8 00 61102F (V) Dr...FINAL REPORT ADAPTIVE CONTROL OF VISUALLY GUIDED GRASPING IN NEURAL NETWORKS Neurogen Laboratories Inc. Project Summary Research performed for AFOSR...arm’s length in position and 6 degrees in orientation. Keywords: Neural Networks , Adaptive Motor Control, Sensory-Motor sensation Introduction The human

  17. Physiology and genetics of metabolic flux control in Zymomonas mobilis

    SciTech Connect

    Conway, T.

    1992-01-01

    This work seeks to understand the role of gene expression in regulating glycolytic enzyme synthesis in a balance that allows proper glycoltic flux control. The seven genes targeted for study in this laboratory have been cloned and sequenced, and molecular details of regulation have been investigated. Clear that glycolytic enzyme synthesis is coordinated to prevent the build up of toxic metabolic intermediates. The genetic mechanisms responsible for regulating balanced expression of the EntnerDoudoroff and glycolytic genes in Z. mobilis are beginning to be understood. Several layers of genetic control, perhaps in a hierarchal arrangement act in concert to determine the relative abundance of the glycolytic enzymes. These genetic controls involve differential translational efficiency, highly conserved promoter sequences, transcription factors, differential mRNA stabilities, and nucleolytic mRNA processing. The serendipitous cloning of the glucose facilitator, glf, as a result of linkage to several other genes of interest will have a significant impact on the study of Z. mobilis metabolism. The glucose facilitator is being characterized in a genetically reconstituted system in E. coli. Molecular genetic studies indicate that the ratio of glf expression to that of glk, zmf, and edd is carefully regulated, and suggests a critical role in metabolic control. Regulation of glycolytic gene expression is now sufficiently well understood to allow use of the glycolytic genes as tools to manipulate specified enzyme levels for the purpose of analyzing metabolic flux control. The critical genes have been subcloned for stable expression in Z. mobilis and placed under control of a regulated promoter system involving the tac promoter, the lacI repressor, and gene induction in by IPTG. HPLC methods have been developed that allow quantitation of virtually all of the metabolic intermediates in the cell pool.

  18. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses

    PubMed Central

    Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.

    2014-01-01

    Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie

  19. A geometrical approach to control and controllability of nonlinear dynamical networks

    PubMed Central

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-01-01

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control. PMID:27076273

  20. Disclosing genetic risk for coronary heart disease: effects on perceived personal control and genetic counseling satisfaction.

    PubMed

    Robinson, C L; Jouni, H; Kruisselbrink, T M; Austin, E E; Christensen, K D; Green, R C; Kullo, I J

    2016-02-01

    We investigated whether disclosure of coronary heart disease (CHD) genetic risk influences perceived personal control (PPC) and genetic counseling satisfaction (GCS). Participants (n = 207, age: 45-65 years) were randomized to receive estimated 10-year risk of CHD based on a conventional risk score (CRS) with or without a genetic risk score (GRS). Risk estimates were disclosed by a genetic counselor who also reviewed how GRS altered risk in those randomized to CRS+GRS. Each participant subsequently met with a physician and then completed surveys to assess PPC and GCS. Participants who received CRS+GRS had higher PPC than those who received CRS alone although the absolute difference was small (25.2 ± 2.7 vs 24.1 ± 3.8, p = 0.04). A greater proportion of CRS+GRS participants had higher GCS scores (17.3 ± 5.3 vs 15.9 ± 6.3, p = 0.06). In the CRS+GRS group, PPC and GCS scores were not correlated with GRS. Within both groups, PPC and GCS scores were similar in patients with or without family history (p = NS). In conclusion, patients who received their genetic risk of CHD had higher PPC and tended to have higher GCS. Our findings suggest that disclosure of genetic risk of CHD together with conventional risk estimates is appreciated by patients. Whether this results in improved outcomes needs additional investigation.

  1. An extended signal control strategy for urban network traffic flow

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  2. Local control network and internetwork ISO-OSI reference model

    SciTech Connect

    Damsker, D.

    1983-05-01

    The paper describes a new local control network architecture. The new control network is totally distributed and redundantly hardware and software structured, based on a bus configuration and on CSMA/CD media access control. The architecture of the control structure and of the data communications structure for both Local Network and Internetwork is discussed in comparison with ISO-OSI and Local Area Network IEEE Standard 802 (Draft) Reference Models. A previous paper dealt with the physical implementation of this concept. The present paper is more software structure oriented.

  3. Modulations among the alerting, orienting and executive control networks.

    PubMed

    Callejas, Alicia; Lupiàñez, Juan; Funes, María Jesús; Tudela, Pío

    2005-11-01

    This paper reports a series of experiments that were carried out in order to study the attentional system. Three networks make up this system, and each of them specializes in particular processes. The executive control network specializes in control processes, such as conflict resolution or detection of errors; the orienting network directs the processing system to the source of input and enhances its processing; the alerting network prepares the system for a fast response by maintaining an adequate level of activation in the cognitive system. Recently, Fan and collaborators [J Cogn Neurosci 14(3):340-347, 2002] designed a task to measure the efficiency of each network. We modified Fan's task to test the influences among the networks. We found that the executive control network is inhibited by the alerting network, whereas the orienting network raises the efficiency of the executive control network (Experiment 1). We also found that the alerting network influences the orienting network by speeding up its time course function (Experiment 2). Results were replicated in a third experiment, proving the effects to be stable over time, participants and experimental context, and to be potentially important as a tool for neuropsychological assessment.

  4. Gate-controlled rectifying behavior in C70@SWNT networks.

    PubMed

    Guo, Ao; Fu, Yunyi; Liu, Jia; Guan, Lunhui; Shi, Zujin; Gu, Zhennan; Huang, Ru; Zhang, Xing

    2006-05-25

    We report the gate-controlled rectification behavior in C(70)@SWNT networks at room temperature in air. The electrical transport characteristics can be fitted well with the conventional Schottky diode model. The origin of the rectifying behavior in fullerene peapod networks device is qualitatively discussed. This paper demonstrates a strategy for diode fabrication based on peapod networks.

  5. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks.

    PubMed

    Cheng, Long; Hou, Zeng-Guang; Lin, Yingzi; Tan, Min; Zhang, Wenjun Chris; Wu, Fang-Xiang

    2011-05-01

    A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.

  6. Cell Fate Reprogramming by Control of Intracellular Network Dynamics

    PubMed Central

    Zañudo, Jorge G. T.; Albert, Réka

    2015-01-01

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method’s potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. PMID:25849586

  7. Kin in space: social viscosity in a spatially and genetically substructured network

    PubMed Central

    Wolf, Jochen B.W; Trillmich, Fritz

    2008-01-01

    Population substructuring is a fundamental aspect of animal societies. A growing number of theoretical studies recognize that who-meets-whom is not random, but rather determined by spatial relationships or illustrated by social networks. Structural properties of large highly dynamic social systems are notoriously difficult to unravel. Network approaches provide powerful ways to analyse the intricate relationships between social behaviour, dispersal strategies and genetic structure. Applying network analytical tools to a colony of the highly gregarious Galápagos sea lion (Zalophus wollebaeki), we find several genetic clusters that correspond to spatially determined ‘network communities’. Overall relatedness was low, and genetic structure in the network can be interpreted as an emergent property of philopatry and seems not to be primarily driven by targeted interactions among highly related individuals in family groups. Nevertheless, social relationships between directly adjacent individuals in the network were stronger among genetically more similar individuals. Taken together, these results suggest that even small differences in the degree of relatedness can influence behavioural decisions. This raises the fascinating prospect that kin selection may also apply to low levels of relatedness within densely packed animal groups where less obvious co-operative interactions such as increased tolerance and stress reduction are important. PMID:18522913

  8. Kin in space: social viscosity in a spatially and genetically substructured network.

    PubMed

    Wolf, Jochen B W; Trillmich, Fritz

    2008-09-22

    Population substructuring is a fundamental aspect of animal societies. A growing number of theoretical studies recognize that who-meets-whom is not random, but rather determined by spatial relationships or illustrated by social networks. Structural properties of large highly dynamic social systems are notoriously difficult to unravel. Network approaches provide powerful ways to analyse the intricate relationships between social behaviour, dispersal strategies and genetic structure. Applying network analytical tools to a colony of the highly gregarious Galápagos sea lion (Zalophus wollebaeki), we find several genetic clusters that correspond to spatially determined 'network communities'. Overall relatedness was low, and genetic structure in the network can be interpreted as an emergent property of philopatry and seems not to be primarily driven by targeted interactions among highly related individuals in family groups. Nevertheless, social relationships between directly adjacent individuals in the network were stronger among genetically more similar individuals. Taken together, these results suggest that even small differences in the degree of relatedness can influence behavioural decisions. This raises the fascinating prospect that kin selection may also apply to low levels of relatedness within densely packed animal groups where less obvious co-operative interactions such as increased tolerance and stress reduction are important.

  9. Unified Lunar Control Network 2005 and Topographic Model

    NASA Technical Reports Server (NTRS)

    Archinal, B. A.; Rosiek, M. R.; Redding, B. L.

    2005-01-01

    There are currently two generally accepted lunar control networks. These are the Unified Lunar Control Network (ULCN) and the Clementine Lunar Control Network (CLCN), both derived by M. Davies and T. Colvin at RAND. We address here our efforts to merge and improve these networks into a new ULCN. The ULCN was described in the last major publication about a lunar control network. The statistics on this and the other networks discussed here. Images for this network are from the Apollo, Mariner 10, and Galileo missions, and Earth-based photographs. The importance of this network is that its accuracy is relatively well quantified and published information on the network is available. The CLCN includes measurements on 43,871 Clementine 750-nm images - the largest planetary control network ever computed. This purpose of this network was to determine the geometry for the Clementine Basemap Mosiac (CBM). The geometry of that mosaic was used to produce the Clementine UVVIS digital image model and the Near-Infrared Global Multispectral Map of the Moon from Clementine. Through the extensive use of these products, they and the underlying CLCN in effect define the generally accepted current coordinate system for reporting and describing the location of lunar coordinates. However, no publication describes the CLCN itself.

  10. Nonlinear adaptive PID control for greenhouse environment based on RBF network.

    PubMed

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.

  11. Implementing controlled-unitary operations over the butterfly network

    SciTech Connect

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  12. Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.

    PubMed

    Tasaki, Shinya; Sauerwine, Ben; Hoff, Bruce; Toyoshiba, Hiroyoshi; Gaiteri, Chris; Chaibub Neto, Elias

    2015-04-01

    Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis-Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data.

  13. Neural-genetic synthesis for state-space controllers based on linear quadratic regulator design for eigenstructure assignment.

    PubMed

    da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira

    2010-04-01

    Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.

  14. Minimizing communication cost among distributed controllers in software defined networks

    NASA Astrophysics Data System (ADS)

    Arlimatti, Shivaleela; Elbreiki, Walid; Hassan, Suhaidi; Habbal, Adib; Elshaikh, Mohamed

    2016-08-01

    Software Defined Networking (SDN) is a new paradigm to increase the flexibility of today's network by promising for a programmable network. The fundamental idea behind this new architecture is to simplify network complexity by decoupling control plane and data plane of the network devices, and by making the control plane centralized. Recently controllers have distributed to solve the problem of single point of failure, and to increase scalability and flexibility during workload distribution. Even though, controllers are flexible and scalable to accommodate more number of network switches, yet the problem of intercommunication cost between distributed controllers is still challenging issue in the Software Defined Network environment. This paper, aims to fill the gap by proposing a new mechanism, which minimizes intercommunication cost with graph partitioning algorithm, an NP hard problem. The methodology proposed in this paper is, swapping of network elements between controller domains to minimize communication cost by calculating communication gain. The swapping of elements minimizes inter and intra communication cost among network domains. We validate our work with the OMNeT++ simulation environment tool. Simulation results show that the proposed mechanism minimizes the inter domain communication cost among controllers compared to traditional distributed controllers.

  15. An improved method for network congestion control

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaolin

    2013-03-01

    The rapid progress of the wireless network technology has great convenience on the people's life and work. However, because of its openness, the mobility of the terminal and the changing topology, the wireless network is more susceptible to security attacks. Authentication and key agreement is the base of the network security. The authentication and key agreement mechanism can prevent the unauthorized user from accessing the network, resist malicious network to deceive the lawful user, encrypt the session data by using the exchange key and provide the identification of the data origination. Based on characteristics of the wireless network, this paper proposed a key agreement protocol for wireless network. The authentication of protocol is based on Elliptic Curve Cryptosystems and Diffie-Hellman.

  16. Solving deterministic non-linear programming problem using Hopfield artificial neural network and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2012-11-01

    A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.

  17. Genetic variants in Alzheimer disease – molecular and brain network approaches

    PubMed Central

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher; De Jager, Philip L.; Bennett, David A.

    2016-01-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care for AD. However, due to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extracting actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effect of LOAD-associated genetic variants. We then discuss emerging combinations of omic data types in multiscale models, which provide a more comprehensive representation of the effect of LOAD-associated genetic variants at multiple biophysical scales. Further, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  18. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2005-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  19. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2004-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  20. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia

    PubMed Central

    Meda, Shashwath A.; Ruaño, Gualberto; Windemuth, Andreas; O’Neil, Kasey; Berwise, Clifton; Dunn, Sabra M.; Boccaccio, Leah E.; Narayanan, Balaji; Kocherla, Mohan; Sprooten, Emma; Keshavan, Matcheri S.; Tamminga, Carol A.; Sweeney, John A.; Clementz, Brett A.; Calhoun, Vince D.; Pearlson, Godfrey D.

    2014-01-01

    The brain’s default mode network (DMN) is highly heritable and is compromised in a variety of psychiatric disorders. However, genetic control over the DMN in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is largely unknown. Study subjects (n = 1,305) underwent a resting-state functional MRI scan and were analyzed by a two-stage approach. The initial analysis used independent component analysis (ICA) in 324 healthy controls, 296 SZ probands, 300 PBP probands, 179 unaffected first-degree relatives of SZ probands (SZREL), and 206 unaffected first-degree relatives of PBP probands to identify DMNs and to test their biomarker and/or endophenotype status. A subset of controls and probands (n = 549) then was subjected to a parallel ICA (para-ICA) to identify imaging–genetic relationships. ICA identified three DMNs. Hypo-connectivity was observed in both patient groups in all DMNs. Similar patterns observed in SZREL were restricted to only one network. DMN connectivity also correlated with several symptom measures. Para-ICA identified five sub-DMNs that were significantly associated with five different genetic networks. Several top-ranking SNPs across these networks belonged to previously identified, well-known psychosis/mood disorder genes. Global enrichment analyses revealed processes including NMDA-related long-term potentiation, PKA, immune response signaling, axon guidance, and synaptogenesis that significantly influenced DMN modulation in psychoses. In summary, we observed both unique and shared impairments in functional connectivity across the SZ and PBP cohorts; these impairments were selectively familial only for SZREL. Genes regulating specific neurodevelopment/transmission processes primarily mediated DMN disconnectivity. The study thus identifies biological pathways related to a widely researched quantitative trait that might suggest novel, targeted drug treatments for these diseases. PMID:24778245

  1. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia.

    PubMed

    Meda, Shashwath A; Ruaño, Gualberto; Windemuth, Andreas; O'Neil, Kasey; Berwise, Clifton; Dunn, Sabra M; Boccaccio, Leah E; Narayanan, Balaji; Kocherla, Mohan; Sprooten, Emma; Keshavan, Matcheri S; Tamminga, Carol A; Sweeney, John A; Clementz, Brett A; Calhoun, Vince D; Pearlson, Godfrey D

    2014-05-13

    The brain's default mode network (DMN) is highly heritable and is compromised in a variety of psychiatric disorders. However, genetic control over the DMN in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is largely unknown. Study subjects (n = 1,305) underwent a resting-state functional MRI scan and were analyzed by a two-stage approach. The initial analysis used independent component analysis (ICA) in 324 healthy controls, 296 SZ probands, 300 PBP probands, 179 unaffected first-degree relatives of SZ probands (SZREL), and 206 unaffected first-degree relatives of PBP probands to identify DMNs and to test their biomarker and/or endophenotype status. A subset of controls and probands (n = 549) then was subjected to a parallel ICA (para-ICA) to identify imaging-genetic relationships. ICA identified three DMNs. Hypo-connectivity was observed in both patient groups in all DMNs. Similar patterns observed in SZREL were restricted to only one network. DMN connectivity also correlated with several symptom measures. Para-ICA identified five sub-DMNs that were significantly associated with five different genetic networks. Several top-ranking SNPs across these networks belonged to previously identified, well-known psychosis/mood disorder genes. Global enrichment analyses revealed processes including NMDA-related long-term potentiation, PKA, immune response signaling, axon guidance, and synaptogenesis that significantly influenced DMN modulation in psychoses. In summary, we observed both unique and shared impairments in functional connectivity across the SZ and PBP cohorts; these impairments were selectively familial only for SZREL. Genes regulating specific neurodevelopment/transmission processes primarily mediated DMN disconnectivity. The study thus identifies biological pathways related to a widely researched quantitative trait that might suggest novel, targeted drug treatments for these diseases.

  2. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  3. Thermal Control System Design for 50kg-Class Micro-Satellite by Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Tsuda, Kenta; Okamoto, Atsushi; Chiba, Masakatsu; Okubo, Hiroshi; Azuma, Hisao; Sugiyama, Yoshihiko; Akita, Tsuyoshi; Nakamura, Yousuke; Imamura, Hiroaki

    A method is presented for designing the thermal control system for 50kg-class micro-satellite using a genetic algorithm. Replacing the thermal control system into a heat transfer model, i.e. a thermal network model, the problem is treated as an optimization problem to find suitable combinations of adapted thermal control elements under admissible function keeping the controlled temperature within a selected band width. Admissible function used herein consists of two parameters; the one is a slope of temperature variation and the second is an amplitude of temperature variation during on orbital motion of satellite. To demonstrate the validity of the proposed method, the method is applied to two examples for the thermal control system design of a 50kg-class micro-satellite, tentatively called “SOHLA-1”, under development.

  4. PGA: power calculator for case-control genetic association analyses

    PubMed Central

    Menashe, Idan; Rosenberg, Philip S; Chen, Bingshu E

    2008-01-01

    Background Statistical power calculations inform the design and interpretation of genetic association studies, but few programs are tailored to case-control studies of single nucleotide polymorphisms (SNPs) in unrelated subjects. Results We have developed the "Power for Genetic Association analyses" (PGA) package which comprises algorithms and graphical user interfaces for sample size and minimum detectable risk calculations using SNP or haplotype effects under different genetic models and study constrains. The software accounts for linkage disequilibrium and statistical multiple comparisons. The results are presented in graphs or tables and can be printed or exported in standard file formats. Conclusion PGA is user friendly software that can facilitate decision making for association studies of candidate genes, fine-mapping studies, and whole-genome scans. Stand-alone executable files and a Matlab toolbox are available for download at: PMID:18477402

  5. Grass architecture: genetic and environmental control of branching.

    PubMed

    Doust, Andrew N

    2007-02-01

    Variation in grass architecture profoundly affects light capture, competition, and reproductive success, and is responsive to environmental factors such as crowding and nutrient limitation. Recent work in both model and crop systems has uncovered many aspects of the genetic control of branching, including conservation of the MONOCULM1 and MORE AXILLARY BRANCHING/DECREASED APICAL DOMINANCE/RAMOSUS (MAX/DAD/RMS) genetic pathways among the grasses and the model dicot systems of tomato, Arabidopsis, Petunia and pea. Parallel studies on the effect of environment on branching have also begun to uncover links between environmental sensing through phytochrome pathways, and resultant changes in TEOSINTE BRANCHED1 expression, and meristem inhibition. Future work promises to integrate knowledge of phenotypic responses to environment with our understanding of the genetic and hormonal changes that underlie phenotypic change.

  6. Scalable Approaches to Control Network Dynamics: Prospects for City Networks

    NASA Astrophysics Data System (ADS)

    Motter, Adilson E.; Gray, Kimberly A.

    2014-07-01

    A city is a complex, emergent system and as such can be conveniently represented as a network of interacting components. A fundamental aspect of networks is that the systemic properties can depend as much on the interactions as they depend on the properties of the individual components themselves. Another fundamental aspect is that changes to one component can affect other components, in a process that may cause the entire or a substantial part of the system to change behavior. Over the past 2 decades, much research has been done on the modeling of large and complex networks involved in communication and transportation, disease propagation, and supply chains, as well as emergent phenomena, robustness and optimization in such systems...

  7. A Clementine Derived Control Network and Topographic Model - The Unified Lunar Control Network 2005

    NASA Astrophysics Data System (ADS)

    Archinal, B. A.; Rosiek, M. R.; Kirk, R. L.; Redding, B. L.

    2006-08-01

    U. S. Geological Survey, Astrogeology Team, Flagstaff, AZ, United States Introduction: We have completed a new general unified lunar control network and lunar topographic model based on Clementine images. It includes the determination, in the lunar mean Earth/polar axis system, of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 0.9 pixels in the image plane, with the largest residual of 6.4 pixels. We are now documenting our solution and plan to release the solution results soon, initially as a USGS Open File report. ULCN 2005 Features: The new network is a combination of the Unified Lunar Control Network (ULCN), derived from the Apollo, Mariner 10, and Galileo missions, and Earth-based photographs, [1] and the Clementine Lunar Control Network (CLCN) [2], both derived from (mostly 750-nm) Clementine images, by M. Davies and T. Colvin at RAND. The primary difference between our new network and the previous ones is that we solve for the radii of the control points. This avoids (~7 km) distortion of horizontal positions present in the CLCN. The expected precision of such information is on the order of several hundred m, and compatible with Clementine LIDAR [3]. Thus, a by-product of this network is a global lunar topographic model that is denser than that provided by LIDAR and of similar accuracy, and denser than any other lunar topography information except that provided in limited areas ([4-7]). This is the only lunar topographic model positioning where both heights and horizontal positions are estimated in a globally-consistent system. Other features of the ULCN 2005 are that the camera angles to their values as measured during the mission, supposedly with an accuracy of 0.03º [8], and we have identified a majority of the original ULCN points on Clementine images. Future Work: The Lunar Orbiter (LO) digital mosaics now being

  8. The fatigue life prediction of aluminium alloy using genetic algorithm and neural network

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike

    2013-09-01

    The behavior of the fatigue life of the industrial materials is very important. In many cases, the material with experiencing fatigue life cannot be avoided, however, there are many ways to control their behavior. Many investigations of the fatigue life phenomena of alloys have been done, but it is high cost and times consuming computation. This paper report the modeling and simulation approaches to predict the fatigue life behavior of Aluminum Alloys and resolves some problems of computation. First, the simulation using genetic algorithm was utilized to optimize the load to obtain the stress values. These results can be used to provide N-cycle fatigue life of the material. Furthermore, the experimental data was applied as input data in the neural network learning, while the samples data were applied for testing of the training data. Finally, the multilayer perceptron algorithm is applied to predict whether the given data sets in accordance with the fatigue life of the alloy. To achieve rapid convergence, the Levenberg-Marquardt algorithm was also employed. The simulations results shows that the fatigue behaviors of aluminum under pressure can be predicted. In addition, implementation of neural networks successfully identified a model for material fatigue life.

  9. Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta

    PubMed Central

    Rast-Somssich, Madlen I.; Broholm, Suvi; Jenkins, Huw; Canales, Claudia; Vlad, Daniela; Kwantes, Michiel; Bilsborough, Gemma; Dello Ioio, Raffaele; Ewing, Rob M.; Laufs, Patrick; Huijser, Peter; Ohno, Carolyn; Heisler, Marcus G.; Hay, Angela; Tsiantis, Miltos

    2015-01-01

    Two interrelated problems in biology are understanding the regulatory logic and predictability of morphological evolution. Here, we studied these problems by comparing Arabidopsis thaliana, which has simple leaves, and its relative, Cardamine hirsuta, which has dissected leaves comprising leaflets. By transferring genes between the two species, we provide evidence for an inverse relationship between the pleiotropy of SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes and their ability to modify leaf form. We further show that cis-regulatory divergence of BP results in two alternative configurations of the genetic networks controlling leaf development. In C. hirsuta, ChBP is repressed by the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1), thus creating cross-talk between MIR164A/CUC and AS1 that does not occur in A. thaliana. These different genetic architectures lead to divergent interactions of network components and growth regulation in each species. We suggest that certain regulatory genes with low pleiotropy are predisposed to readily integrate into or disengage from conserved genetic networks influencing organ geometry, thus rapidly altering their properties and contributing to morphological divergence. PMID:26588991

  10. Network device interface for digitally interfacing data channels to a controller a via network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. In one embodiment, the bus controller transmits messages to the network device interface containing a plurality of bits having a value defined by a transition between first and second states in the bits. The network device interface determines timing of the data sequence of the message and uses the determined timing to communicate with the bus controller.

  11. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface is a state machine, such as an ASIC, that operates independent of a processor in communicating with the bus controller and data channels.

  12. Diversification in the genetic architecture of gene expression and transcriptional networks in organ differentiation of Populus.

    PubMed

    Drost, Derek R; Benedict, Catherine I; Berg, Arthur; Novaes, Evandro; Novaes, Carolina R D B; Yu, Qibin; Dervinis, Christopher; Maia, Jessica M; Yap, John; Miles, Brianna; Kirst, Matias

    2010-05-04

    A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leaves, and roots. Pleiotropic eQTL hotspots were detected and used to construct coexpression networks a posteriori, for which regulators were predicted based on cis-acting expression regulation. Networks were shown to be enriched for groups of genes that function in biologically coherent processes and for cis-acting promoter motifs with known roles in regulating common groups of genes. When contrasted among xylem, leaves, and roots, transcriptional networks were frequently conserved in composition, but almost invariably regulated by different loci. Similarly, the genetic architecture of gene expression regulation is highly diversified among plant organs, with less than one-third of genes with eQTL detected in two organs being regulated by the same locus. However, colocalization in eQTL position increases to 50% when they are detected in all three organs, suggesting conservation in the genetic regulation is a function of ubiquitous expression. Genes conserved in their genetic regulation among all organs are primarily cis regulated (approximately 92%), whereas genes with eQTL in only one organ are largely trans regulated. Trans-acting regulation may therefore be the primary driver of differentiation in function between plant organs.

  13. System Identification for Nonlinear Control Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  14. An Artificial Neural Network Control System for Spacecraft Attitude Stabilization

    DTIC Science & Technology

    1990-06-01

    training is based on the concept of enforced performance. A neural network will learn to meet a specific performance goal if the performance standard...is the only solution to a problem. Performance index training is devised to teach the neural network the time-optimal control law for the system. Real...time adaptation of a neural network in closed loop control of the Crew/Equipment Retriever was demonstrated in computer simulations.

  15. Implementation of Network Redundancy in Environment of Road Tunnel Control

    NASA Astrophysics Data System (ADS)

    Cerovská, Anna; Spalek, Juraj

    Availability of individual segments of a road tunnel control system is directly dependent on network infrastructure. A safe tunnel requires a 100 % availability of control. One of the alternatives how to approach the fulfillment of this requirement is the implementation of hardware and link redundancy to the network topology of the road tunnel by means of mechanisms that enable to improve the failure tolerance in Ethernet networks.

  16. Deterministic chaos control in neural networks on various topologies

    NASA Astrophysics Data System (ADS)

    Neto, A. J. F.; Lima, F. W. S.

    2017-01-01

    Using numerical simulations, we study the control of deterministic chaos in neural networks on various topologies like Voronoi-Delaunay, Barabási-Albert, Small-World networks and Erdös-Rényi random graphs by "pinning" the state of a "special" neuron. We show that the chaotic activity of the networks or graphs, when control is on, can become constant or periodic.

  17. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  18. Functional and genetic analysis of the colon cancer network.

    PubMed

    Emmert-Streib, Frank; de Matos Simoes, Ricardo; Glazko, Galina; McDade, Simon; Haibe-Kains, Benjamin; Holzinger, Andreas; Dehmer, Matthias; Campbell, Frederick

    2014-01-01

    Cancer is a complex disease that has proven to be difficult to understand on the single-gene level. For this reason a functional elucidation needs to take interactions among genes on a systems-level into account. In this study, we infer a colon cancer network from a large-scale gene expression data set by using the method BC3Net. We provide a structural and a functional analysis of this network and also connect its molecular interaction structure with the chromosomal locations of the genes enabling the definition of cis- and trans-interactions. Furthermore, we investigate the interaction of genes that can be found in close neighborhoods on the chromosomes to gain insight into regulatory mechanisms. To our knowledge this is the first study analyzing the genome-scale colon cancer network.

  19. Predictive control of SOFC based on a GA-RBF neural network model

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Juan; Zhu, Xin-Jian; Cao, Guang-Yi; Tu, Heng-Yong

    Transients in a load have a significant impact on the performance and durability of a solid oxide fuel cell (SOFC) system. One of the main reasons is that the fuel utilization changes drastically due to the load change. Therefore, in order to guarantee the fuel utilization to operate within a safe range, a nonlinear model predictive control (MPC) method is proposed to control the stack terminal voltage as a proper constant in this paper. The nonlinear predictive controller is based on an improved radial basis function (RBF) neural network identification model. During the process of modeling, the genetic algorithm (GA) is used to optimize the parameters of RBF neural networks. And then a nonlinear predictive control algorithm is applied to track the voltage of the SOFC. Compared with the constant fuel utilization control method, the simulation results show that the nonlinear predictive control algorithm based on the GA-RBF model performs much better.

  20. Multistability and bifurcation Analysis of Inhibitory Coupled Cyclic Genetic Regulatory Networks with Delays.

    PubMed

    Ling, Guang; Guan, Zhi-Hong; Hu, Bin; Lai, Qiang; Wu, Yonghong

    2017-02-14

    Many biological systems have the conspicuous property to present more than one stable state and diverse rhythmic behaviors. A closed relationship between these complex dynamic behaviors and cyclic genetic structures has been witnessed by pioneering works. In this paper, a typical structure of inhibitory coupled cyclic genetic networks is introduced to further enlighten this mechanism of stability and biological rhythms of living cells. The coupled networks consist two identical cyclic genetic subnetworks, which inhibit each other directly. Each subnetwork can be regarded as a genetic unit at the cellular level. Multiple time delays, including both internal delays and coupling delays, are considered. The existence of positive equilibriums for this kind of coupled systems is proved, and the stability for each equilibrium are analyzed without or with delays. It is shown that the coupled networks with positive cyclic genetic units have a ability to show multistability, while the coupled networks with negative units may present a series of Hopf bifurcations with the variation of time delays. Several numerical simulations are made to prove our results.

  1. [Role of university hospitals in regional infection control network].

    PubMed

    Kayaba, Hiroyuki; Saito, Norihiro; Yamamoto, Ayako; Tsutaya, Shoji; Akimoto, Hiroyuki; Kimura, Masahiko; Inoue, Fumio; Kondo, Jun; Akahira, Emi; Tachibana, Naoki; Okamura, Yuji; Takahashi, Shiori; Kojima, Keiya; Tamazawa, Naoki; Hayakari, Makoto

    2013-08-01

    Activities and the understanding of infection control in healthcare facilities have improved in the past decade since a certification system for medical personnel, such as infection control nurse and infection control doctor, were introduced in Japan. These specialists are distributed among tertiary general hospitals, while many small and mid-scale hospitals have no infection control specialists. In 2012, the Japanese Ministry of Health, Labour and Welfare launched a new strategy for further improvement of infection control by supporting a regional network of infection control activities. Through the infection control network, small or mid-scaled hospitals can utilize infection control specialists in tertiary general hospitals, enter educational programs on infection control and consult in cases of nosocomial infection outbreaks. As part of the regional infection control network, we established an information network system, named ReNICS, to share the bacteriological test results of the hospitals in Akita prefecture. ReNICS offers epidemiological data on bacteria identified in the region. We can identify the spread of multi-drug resistant bacteria and can roughly estimate the quality of infection control activities in each facility. As a similar information network is being prepared in Hirosaki University Hospital Infection Control Center in Aomori, a prefecture neighboring Akita, we discussed the roles of university hospitals for a regional infection control network.

  2. Design of control network based on OMRON PLC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaocheng; Song, Xiangli; Liu, Yuan; Tang, Yuling

    2003-09-01

    This paper briefly introduces the design of control network based on OMRON PLC; and describes in detail step and setting of design based on three kinds of network: Ethernet, controller link and CompoBus/D. The design has been applied to lab construction. The practice shows that it is valuable for teaching and scientific research.

  3. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  4. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  5. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  6. Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network

    PubMed Central

    Wang, Bingbo; Gao, Lin; Zhang, Qingfang; Li, Aimin; Deng, Yue; Guo, Xingli

    2015-01-01

    Background The complexity of biological systems motivates us to use the underlying networks to provide deep understanding of disease etiology and the human diseases are viewed as perturbations of dynamic properties of networks. Control theory that deals with dynamic systems has been successfully used to capture systems-level knowledge in large amount of quantitative biological interactions. But from the perspective of system control, the ways by which multiple genetic factors jointly perturb a disease phenotype still remain. Results In this work, we combine tools from control theory and network science to address the diversified control paths in complex networks. Then the ways by which the disease genes perturb biological systems are identified and quantified by the control paths in a human regulatory network. Furthermore, as an application, prioritization of candidate genes is presented by use of control path analysis and gene ontology annotation for definition of similarities. We use leave-one-out cross-validation to evaluate the ability of finding the gene-disease relationship. Results have shown compatible performance with previous sophisticated works, especially in directed systems. Conclusions Our results inspire a deeper understanding of molecular mechanisms that drive pathological processes. Diversified control paths offer a basis for integrated intervention techniques which will ultimately lead to the development of novel therapeutic strategies. PMID:26284649

  7. A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies.

    PubMed

    Bodea, Corneliu A; Neale, Benjamin M; Ripke, Stephan; Daly, Mark J; Devlin, Bernie; Roeder, Kathryn

    2016-05-05

    One goal of human genetics is to understand the genetic basis of disease, a challenge for diseases of complex inheritance because risk alleles are few relative to the vast set of benign variants. Risk variants are often sought by association studies in which allele frequencies in case subjects are contrasted with those from population-based samples used as control subjects. In an ideal world we would know population-level allele frequencies, releasing researchers to focus on case subjects. We argue this ideal is possible, at least theoretically, and we outline a path to achieving it in reality. If such a resource were to exist, it would yield ample savings and would facilitate the effective use of data repositories by removing administrative and technical barriers. We call this concept the Universal Control Repository Network (UNICORN), a means to perform association analyses without necessitating direct access to individual-level control data. Our approach to UNICORN uses existing genetic resources and various statistical tools to analyze these data, including hierarchical clustering with spectral analysis of ancestry; and empirical Bayesian analysis along with Gaussian spatial processes to estimate ancestry-specific allele frequencies. We demonstrate our approach using tens of thousands of control subjects from studies of Crohn disease, showing how it controls false positives, provides power similar to that achieved when all control data are directly accessible, and enhances power when control data are limiting or even imperfectly matched ancestrally. These results highlight how UNICORN can enable reliable, powerful, and convenient genetic association analyses without access to the individual-level data.

  8. A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies

    PubMed Central

    Bodea, Corneliu A.; Neale, Benjamin M.; Ripke, Stephan; Barclay, Murray; Peyrin-Biroulet, Laurent; Chamaillard, Mathias; Colombel, Jean-Frederick; Cottone, Mario; Croft, Anthony; D’Incà, Renata; Halfvarson, Jonas; Hanigan, Katherine; Henderson, Paul; Hugot, Jean-Pierre; Karban, Amir; Kennedy, Nicholas A.; Khan, Mohammed Azam; Lémann, Marc; Levine, Arie; Massey, Dunecan; Milla, Monica; Montgomery, Grant W.; Ng, Sok Meng Evelyn; Oikonomou, Ioannis; Peeters, Harald; Proctor, Deborah D.; Rahier, Jean-Francois; Roberts, Rebecca; Rutgeerts, Paul; Seibold, Frank; Stronati, Laura; Taylor, Kirstin M.; Törkvist, Leif; Ublick, Kullak; Van Limbergen, Johan; Van Gossum, Andre; Vatn, Morten H.; Zhang, Hu; Zhang, Wei; Andrews, Jane M.; Bampton, Peter A.; Barclay, Murray; Florin, Timothy H.; Gearry, Richard; Krishnaprasad, Krupa; Lawrance, Ian C.; Mahy, Gillian; Montgomery, Grant W.; Radford-Smith, Graham; Roberts, Rebecca L.; Simms, Lisa A.; Amininijad, Leila; Cleynen, Isabelle; Dewit, Olivier; Franchimont, Denis; Georges, Michel; Laukens, Debby; Peeters, Harald; Rahier, Jean-Francois; Rutgeerts, Paul; Theatre, Emilie; Van Gossum, André; Vermeire, Severine; Aumais, Guy; Baidoo, Leonard; Barrie, Arthur M.; Beck, Karen; Bernard, Edmond-Jean; Binion, David G.; Bitton, Alain; Brant, Steve R.; Cho, Judy H.; Cohen, Albert; Croitoru, Kenneth; Daly, Mark J.; Datta, Lisa W.; Deslandres, Colette; Duerr, Richard H.; Dutridge, Debra; Ferguson, John; Fultz, Joann; Goyette, Philippe; Greenberg, Gordon R.; Haritunians, Talin; Jobin, Gilles; Katz, Seymour; Lahaie, Raymond G.; McGovern, Dermot P.; Nelson, Linda; Ng, Sok Meng; Ning, Kaida; Oikonomou, Ioannis; Paré, Pierre; Proctor, Deborah D.; Regueiro, Miguel D.; Rioux, John D.; Ruggiero, Elizabeth; Schumm, L. Philip; Schwartz, Marc; Scott, Regan; Sharma, Yashoda; Silverberg, Mark S.; Spears, Denise; Steinhart, A. Hillary; Stempak, Joanne M.; Swoger, Jason M.; Tsagarelis, Constantina; Zhang, Wei; Zhang, Clarence; Zhao, Hongyu; Aerts, Jan; Ahmad, Tariq; Arbury, Hazel; Attwood, Anthony; Auton, Adam; Ball, Stephen G.; Balmforth, Anthony J.; Barnes, Chris; Barrett, Jeffrey C.; Barroso, Inês; Barton, Anne; Bennett, Amanda J.; Bhaskar, Sanjeev; Blaszczyk, Katarzyna; Bowes, John; Brand, Oliver J.; Braund, Peter S.; Bredin, Francesca; Breen, Gerome; Brown, Morris J.; Bruce, Ian N.; Bull, Jaswinder; Burren, Oliver S.; Burton, John; Byrnes, Jake; Caesar, Sian; Cardin, Niall; Clee, Chris M.; Coffey, Alison J.; Connell, John M.C.; Conrad, Donald F.; Cooper, Jason D.; Dominiczak, Anna F.; Downes, Kate; Drummond, Hazel E.; Dudakia, Darshna; Dunham, Andrew; Ebbs, Bernadette; Eccles, Diana; Edkins, Sarah; Edwards, Cathryn; Elliot, Anna; Emery, Paul; Evans, David M.; Evans, Gareth; Eyre, Steve; Farmer, Anne; Ferrier, Nicol; Flynn, Edward; Forbes, Alistair; Forty, Liz; Franklyn, Jayne A.; Frayling, Timothy M.; Freathy, Rachel M.; Giannoulatou, Eleni; Gibbs, Polly; Gilbert, Paul; Gordon-Smith, Katherine; Gray, Emma; Green, Elaine; Groves, Chris J.; Grozeva, Detelina; Gwilliam, Rhian; Hall, Anita; Hammond, Naomi; Hardy, Matt; Harrison, Pile; Hassanali, Neelam; Hebaishi, Husam; Hines, Sarah; Hinks, Anne; Hitman, Graham A.; Hocking, Lynne; Holmes, Chris; Howard, Eleanor; Howard, Philip; Howson, Joanna M.M.; Hughes, Debbie; Hunt, Sarah; Isaacs, John D.; Jain, Mahim; Jewell, Derek P.; Johnson, Toby; Jolley, Jennifer D.; Jones, Ian R.; Jones, Lisa A.; Kirov, George; Langford, Cordelia F.; Lango-Allen, Hana; Lathrop, G. Mark; Lee, James; Lee, Kate L.; Lees, Charlie; Lewis, Kevin; Lindgren, Cecilia M.; Maisuria-Armer, Meeta; Maller, Julian; Mansfield, John; Marchini, Jonathan L.; Martin, Paul; Massey, Dunecan C.O.; McArdle, Wendy L.; McGuffin, Peter; McLay, Kirsten E.; McVean, Gil; Mentzer, Alex; Mimmack, Michael L.; Morgan, Ann E.; Morris, Andrew P.; Mowat, Craig; Munroe, Patricia B.; Myers, Simon; Newman, William; Nimmo, Elaine R.; O’Donovan, Michael C.; Onipinla, Abiodun; Ovington, Nigel R.; Owen, Michael J.; Palin, Kimmo; Palotie, Aarno; Parnell, Kirstie; Pearson, Richard; Pernet, David; Perry, John R.B.; Phillips, Anne; Plagnol, Vincent; Prescott, Natalie J.; Prokopenko, Inga; Quail, Michael A.; Rafelt, Suzanne; Rayner, Nigel W.; Reid, David M.; Renwick, Anthony; Ring, Susan M.; Robertson, Neil; Robson, Samuel; Russell, Ellie; St Clair, David; Sambrook, Jennifer G.; Sanderson, Jeremy D.; Sawcer, Stephen J.; Schuilenburg, Helen; Scott, Carol E.; Scott, Richard; Seal, Sheila; Shaw-Hawkins, Sue; Shields, Beverley M.; Simmonds, Matthew J.; Smyth, Debbie J.; Somaskantharajah, Elilan; Spanova, Katarina; Steer, Sophia; Stephens, Jonathan; Stevens, Helen E.; Stirrups, Kathy; Stone, Millicent A.; Strachan, David P.; Su, Zhan; Symmons, Deborah P.M.; Thompson, John R.; Thomson, Wendy; Tobin, Martin D.; Travers, Mary E.; Turnbull, Clare; Vukcevic, Damjan; Wain, Louise V.; Walker, Mark; Walker, Neil M.; Wallace, Chris; Warren-Perry, Margaret; Watkins, Nicholas A.; Webster, John; Weedon, Michael N.; Wilson, Anthony G.; Woodburn, Matthew; Wordsworth, B. Paul; Yau, Chris; Young, Allan H.; Zeggini, Eleftheria; Brown, Matthew A.; Burton, Paul R.; Caulfield, Mark J.; Compston, Alastair; Farrall, Martin; Gough, Stephen C.L.; Hall, Alistair S.; Hattersley, Andrew T.; Hill, Adrian V.S.; Mathew, Christopher G.; Pembrey, Marcus; Satsangi, Jack; Stratton, Michael R.; Worthington, Jane; Hurles, Matthew E.; Duncanson, Audrey; Ouwehand, Willem H.; Parkes, Miles; Rahman, Nazneen; Todd, John A.; Samani, Nilesh J.; Kwiatkowski, Dominic P.; McCarthy, Mark I.; Craddock, Nick; Deloukas, Panos; Donnelly, Peter; Blackwell, Jenefer M.; Bramon, Elvira; Casas, Juan P.; Corvin, Aiden; Jankowski, Janusz; Markus, Hugh S.; Palmer, Colin N.A.; Plomin, Robert; Rautanen, Anna; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C.A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Daly, Mark J.; Devlin, Bernie; Roeder, Kathryn

    2016-01-01

    One goal of human genetics is to understand the genetic basis of disease, a challenge for diseases of complex inheritance because risk alleles are few relative to the vast set of benign variants. Risk variants are often sought by association studies in which allele frequencies in case subjects are contrasted with those from population-based samples used as control subjects. In an ideal world we would know population-level allele frequencies, releasing researchers to focus on case subjects. We argue this ideal is possible, at least theoretically, and we outline a path to achieving it in reality. If such a resource were to exist, it would yield ample savings and would facilitate the effective use of data repositories by removing administrative and technical barriers. We call this concept the Universal Control Repository Network (UNICORN), a means to perform association analyses without necessitating direct access to individual-level control data. Our approach to UNICORN uses existing genetic resources and various statistical tools to analyze these data, including hierarchical clustering with spectral analysis of ancestry; and empirical Bayesian analysis along with Gaussian spatial processes to estimate ancestry-specific allele frequencies. We demonstrate our approach using tens of thousands of control subjects from studies of Crohn disease, showing how it controls false positives, provides power similar to that achieved when all control data are directly accessible, and enhances power when control data are limiting or even imperfectly matched ancestrally. These results highlight how UNICORN can enable reliable, powerful, and convenient genetic association analyses without access to the individual-level data. PMID:27087321

  9. Stochasticity, Bistability and the Wisdom of Crowds: A Model for Associative Learning in Genetic Regulatory Networks

    PubMed Central

    Sorek, Matan; Balaban, Nathalie Q.; Loewenstein, Yonatan

    2013-01-01

    It is generally believed that associative memory in the brain depends on multistable synaptic dynamics, which enable the synapses to maintain their value for extended periods of time. However, multistable dynamics are not restricted to synapses. In particular, the dynamics of some genetic regulatory networks are multistable, raising the possibility that even single cells, in the absence of a nervous system, are capable of learning associations. Here we study a standard genetic regulatory network model with bistable elements and stochastic dynamics. We demonstrate that such a genetic regulatory network model is capable of learning multiple, general, overlapping associations. The capacity of the network, defined as the number of associations that can be simultaneously stored and retrieved, is proportional to the square root of the number of bistable elements in the genetic regulatory network. Moreover, we compute the capacity of a clonal population of cells, such as in a colony of bacteria or a tissue, to store associations. We show that even if the cells do not interact, the capacity of the population to store associations substantially exceeds that of a single cell and is proportional to the number of bistable elements. Thus, we show that even single cells are endowed with the computational power to learn associations, a power that is substantially enhanced when these cells form a population. PMID:23990765

  10. Genetic Algorithm Optimizes Q-LAW Control Parameters

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  11. Design and Implementation of the International Genetics and Translational Research in Transplantation Network

    PubMed Central

    2015-01-01

    Background Genetic association studies of transplantation outcomes have been hampered by small samples and highly complex multifactorial phenotypes, hindering investigations of the genetic architecture of a range of comorbidities which significantly impact graft and recipient life expectancy. We describe here the rationale and design of the International Genetics & Translational Research in Transplantation Network. The network comprises 22 studies to date, including 16494 transplant recipients and 11669 donors, of whom more than 5000 are of non-European ancestry, all of whom have existing genomewide genotype data sets. Methods We describe the rich genetic and phenotypic information available in this consortium comprising heart, kidney, liver, and lung transplant cohorts. Results We demonstrate significant power in International Genetics & Translational Research in Transplantation Network to detect main effect association signals across regions such as the MHC region as well as genomewide for transplant outcomes that span all solid organs, such as graft survival, acute rejection, new onset of diabetes after transplantation, and for delayed graft function in kidney only. Conclusions This consortium is designed and statistically powered to deliver pioneering insights into the genetic architecture of transplant-related outcomes across a range of different solid-organ transplant studies. The study design allows a spectrum of analyses to be performed including recipient-only analyses, donor-recipient HLA mismatches with focus on loss-of-function variants and nonsynonymous single nucleotide polymorphisms. PMID:26479416

  12. Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability

    PubMed Central

    Torres-Sosa, Christian; Huang, Sui; Aldana, Maximino

    2012-01-01

    Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while allowing for switching between multiple phenotypes (network states) as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape. PMID:22969419

  13. Simulating Visual Learning and Optical Illusions via a Network-Based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Siu, Theodore; Vivar, Miguel; Shinbrot, Troy

    We present a neural network model that uses a genetic algorithm to identify spatial patterns. We show that the model both learns and reproduces common visual patterns and optical illusions. Surprisingly, we find that the illusions generated are a direct consequence of the network architecture used. We discuss the implications of our results and the insights that we gain on how humans fall for optical illusions

  14. Optimal robust motion controller design using multiobjective genetic algorithm.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution.

  15. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  16. Projection learning algorithm for threshold - controlled neural networks

    SciTech Connect

    Reznik, A.M.

    1995-03-01

    The projection learning algorithm proposed in [1, 2] and further developed in [3] substantially improves the efficiency of memorizing information and accelerates the learning process in neural networks. This algorithm is compatible with the completely connected neural network architecture (the Hopfield network [4]), but its application to other networks involves a number of difficulties. The main difficulties include constraints on interconnection structure and the need to eliminate the state uncertainty of latent neurons if such are present in the network. Despite the encouraging preliminary results of [3], further extension of the applications of the projection algorithm therefore remains problematic. In this paper, which is a continuation of the work begun in [3], we consider threshold-controlled neural networks. Networks of this type are quite common. They represent the receptor neuron layers in some neurocomputer designs. A similar structure is observed in the lower divisions of biological sensory systems [5]. In multilayer projection neural networks with lateral interconnections, the neuron layers or parts of these layers may also have the structure of a threshold-controlled completely connected network. Here the thresholds are the potentials delivered through the projection connections from other parts of the network. The extension of the projection algorithm to the class of threshold-controlled networks may accordingly prove to be useful both for extending its technical applications and for better understanding of the operation of the nervous system in living organisms.

  17. Characterizing and prototyping genetic networks with cell-free transcription-translation reactions.

    PubMed

    Takahashi, Melissa K; Hayes, Clarmyra A; Chappell, James; Sun, Zachary Z; Murray, Richard M; Noireaux, Vincent; Lucks, Julius B

    2015-09-15

    A central goal of synthetic biology is to engineer cellular behavior by engineering synthetic gene networks for a variety of biotechnology and medical applications. The process of engineering gene networks often involves an iterative 'design-build-test' cycle, whereby the parts and connections that make up the network are built, characterized and varied until the desired network function is reached. Many advances have been made in the design and build portions of this cycle. However, the slow process of in vivo characterization of network function often limits the timescale of the testing step. Cell-free transcription-translation (TX-TL) systems offer a simple and fast alternative to performing these characterizations in cells. Here we provide an overview of a cell-free TX-TL system that utilizes the native Escherichia coli TX-TL machinery, thereby allowing a large repertoire of parts and networks to be characterized. As a way to demonstrate the utility of cell-free TX-TL, we illustrate the characterization of two genetic networks: an RNA transcriptional cascade and a protein regulated incoherent feed-forward loop. We also provide guidelines for designing TX-TL experiments to characterize new genetic networks. We end with a discussion of current and emerging applications of cell free systems.

  18. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.

  19. Yeast Augmented Network Analysis (YANA): a new systems approach to identify therapeutic targets for human genetic diseases

    PubMed Central

    Wiley, David J.; Juan, Ilona; Le, Hao; Cai, Xiaodong; Baumbach, Lisa; Beattie, Christine; D'Urso, Gennaro

    2014-01-01

    Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA) approach and test it with the X-linked spinal muscular atrophy (SMA) disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish) SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases. PMID:25075304

  20. Epigenetics and Why Biological Networks are More Controllable than Expected

    NASA Astrophysics Data System (ADS)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  1. Cell fate reprogramming by control of intracellular network dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  2. Optimum Actuator Selection with a Genetic Algorithm for Aircraft Control

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    2004-01-01

    The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. For example, the desired actuators produce a pure roll moment without at the same time causing much pitch or yaw. For a typical wing, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements and mission constraints. A genetic algorithm has been developed for finding the best placement for four actuators to produce an uncoupled pitch moment. The genetic algorithm has been extended to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control. A simplified, untapered, unswept wing is the model for each application.

  3. Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network.

    PubMed

    Jangjoo, Maryam; Matter, Stephen F; Roland, Jens; Keyghobadi, Nusha

    2016-09-27

    Demographic bottlenecks that occur when populations fluctuate in size erode genetic diversity, but that diversity can be recovered through immigration. Connectivity among populations and habitat patches in the landscape enhances immigration and should in turn facilitate recovery of genetic diversity after a sudden reduction in population size. For the conservation of genetic diversity, it may therefore be particularly important to maintain connectivity in the face of factors that increase demographic instability, such as climate change. However, a direct link between connectivity and recovery of genetic diversity after a demographic bottleneck has not been clearly demonstrated in an empirical system. Here, we show that connectivity of habitat patches in the landscape contributes to the maintenance of genetic diversity after a demographic bottleneck. We were able to monitor genetic diversity in a network of populations of the alpine butterfly, Parnassius smintheus, before, during, and after a severe reduction in population size that lasted two generations. We found that allelic diversity in the network declined after the demographic bottleneck but that less allelic diversity was lost from populations occupying habitat patches with higher connectivity. Furthermore, the effect of connectivity on allelic diversity was important during the demographic recovery phase. Our results demonstrate directly the ability of connectivity to mediate the rescue of genetic diversity in a natural system.

  4. Landscape attributes and life history variability shape genetic structure of trout populations in a stream network

    USGS Publications Warehouse

    Neville, H.M.; Dunham, J.B.; Peacock, M.M.

    2006-01-01

    Spatial and temporal landscape patterns have long been recognized to influence biological processes, but these processes often operate at scales that are difficult to study by conventional means. Inferences from genetic markers can overcome some of these limitations. We used a landscape genetics approach to test hypotheses concerning landscape processes influencing the demography of Lahontan cutthroat trout in a complex stream network in the Great Basin desert of the western US. Predictions were tested with population- and individual-based analyses of microsatellite DNA variation, reflecting patterns of dispersal, population stability, and local effective population sizes. Complementary genetic inferences suggested samples from migratory corridors housed a mixture of fish from tributaries, as predicted based on assumed migratory life histories in those habitats. Also as predicted, populations presumed to have greater proportions of migratory fish or from physically connected, large, or high quality habitats had higher genetic variability and reduced genetic differentiation from other populations. Populations thought to contain largely non-migratory individuals generally showed the opposite pattern, suggesting behavioral isolation. Estimated effective sizes were small, and we identified significant and severe genetic bottlenecks in several populations that were isolated, recently founded, or that inhabit streams that desiccate frequently. Overall, this work suggested that Lahontan cutthroat trout populations in stream networks are affected by a combination of landscape and metapopulation processes. Results also demonstrated that genetic patterns can reveal unexpected processes, even within a system that is well studied from a conventional ecological perspective. ?? Springer 2006.

  5. Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network

    PubMed Central

    Jangjoo, Maryam; Matter, Stephen F.; Roland, Jens; Keyghobadi, Nusha

    2016-01-01

    Demographic bottlenecks that occur when populations fluctuate in size erode genetic diversity, but that diversity can be recovered through immigration. Connectivity among populations and habitat patches in the landscape enhances immigration and should in turn facilitate recovery of genetic diversity after a sudden reduction in population size. For the conservation of genetic diversity, it may therefore be particularly important to maintain connectivity in the face of factors that increase demographic instability, such as climate change. However, a direct link between connectivity and recovery of genetic diversity after a demographic bottleneck has not been clearly demonstrated in an empirical system. Here, we show that connectivity of habitat patches in the landscape contributes to the maintenance of genetic diversity after a demographic bottleneck. We were able to monitor genetic diversity in a network of populations of the alpine butterfly, Parnassius smintheus, before, during, and after a severe reduction in population size that lasted two generations. We found that allelic diversity in the network declined after the demographic bottleneck but that less allelic diversity was lost from populations occupying habitat patches with higher connectivity. Furthermore, the effect of connectivity on allelic diversity was important during the demographic recovery phase. Our results demonstrate directly the ability of connectivity to mediate the rescue of genetic diversity in a natural system. PMID:27621433

  6. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of

  7. Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7

    PubMed Central

    Logan, Michael R; Nguyen, Thao; Szapiel, Nicolas; Knockleby, James; Por, Hanting; Zadworny, Megan; Neszt, Michael; Harrison, Paul; Bussey, Howard; Mandato, Craig A; Vogel, Jackie; Lesage, Guillaume

    2008-01-01

    Background Protein kinases and phosphatases regulate protein phosphorylation, a critical means of modulating protein function, stability and localization. The identification of functional networks for protein phosphatases has been slow due to their redundant nature and the lack of large-scale analyses. We hypothesized that a genome-scale analysis of genetic interactions using the Synthetic Genetic Array could reveal protein phosphatase functional networks. We apply this approach to the conserved type 1 protein phosphatase Glc7, which regulates numerous cellular processes in budding yeast. Results We created a novel glc7 catalytic mutant (glc7-E101Q). Phenotypic analysis indicates that this novel allele exhibits slow growth and defects in glucose metabolism but normal cell cycle progression and chromosome segregation. This suggests that glc7-E101Q is a hypomorphic glc7 mutant. Synthetic Genetic Array analysis of glc7-E101Q revealed a broad network of 245 synthetic sick/lethal interactions reflecting that many processes are required when Glc7 function is compromised such as histone modification, chromosome segregation and cytokinesis, nutrient sensing and DNA damage. In addition, mitochondrial activity and inheritance and lipid metabolism were identified as new processes involved in buffering Glc7 function. An interaction network among 95 genes genetically interacting with GLC7 was constructed by integration of genetic and physical interaction data. The obtained network has a modular architecture, and the interconnection among the modules reflects the cooperation of the processes buffering Glc7 function. Conclusion We found 245 genes required for the normal growth of the glc7-E101Q mutant. Functional grouping of these genes and analysis of their physical and genetic interaction patterns bring new information on Glc7-regulated processes. PMID:18627629

  8. Nonlinear system identification and control based on modular neural networks.

    PubMed

    Puscasu, Gheorghe; Codres, Bogdan

    2011-08-01

    A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.

  9. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  10. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  11. A neural-network approach to robotic control

    NASA Technical Reports Server (NTRS)

    Graham, D. P. W.; Deleuterio, G. M. T.

    1993-01-01

    An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.

  12. Control of coupled oscillator networks with application to microgrid technologies

    PubMed Central

    Skardal, Per Sebastian; Arenas, Alex

    2015-01-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions—a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself. PMID:26601231

  13. Control of coupled oscillator networks with application to microgrid technologies.

    PubMed

    Skardal, Per Sebastian; Arenas, Alex

    2015-08-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  14. Connecting Core Percolation and Controllability of Complex Networks

    PubMed Central

    Jia, Tao; Pósfai, Márton

    2014-01-01

    Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797

  15. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  16. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  17. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    Congestion control is an important feature that directly affects network performance. Network congestion may cause loss of data or long delays. Although this problem has been studied extensively in the Internet, the solutions for Internet congestion control do not apply readily to challenged network environments such as Delay Tolerant Networks (DTN) where end-to-end connectivity may not exist continuously and latency can be high. In DTN, end-to-end rate control is not feasible. This calls for congestion control mechanisms where the decisions can be made autonomously with local information only. We use an economic pricing model and propose a rule-based congestion control mechanism where each router can autonomously decide on whether to accept a bundle (data) based on local information such as available storage and the value and risk of accepting the bundle (derived from historical statistics). Preliminary experimental results show that this congestion control mechanism can protect routers from resource depletion without loss of data.

  18. Analysis and application of neuronal network controllability and observability

    NASA Astrophysics Data System (ADS)

    Su, Fei; Wang, Jiang; Li, Huiyan; Deng, Bin; Yu, Haitao; Liu, Chen

    2017-02-01

    Controllability and observability analyses are important prerequisite for designing suitable neural control strategy, which can help lower the efforts required to control and observe the system dynamics. First, 3-neuron motifs including the excitatory motif, the inhibitory motif, and the mixed motif are constructed to investigate the effects of single neuron and synaptic dynamics on network controllability (observability). Simulation results demonstrate that for networks with the same topological structure, the controllability (observability) of the node always changes if the properties of neurons and synaptic coupling strengths vary. Besides, the inhibitory networks are more controllable (observable) than the excitatory networks when the coupling strengths are the same. Then, the numerically determined controllability results of 3-neuron excitatory motifs are generalized to the desynchronization control of the modular motif network. The control energy and neuronal synchrony measure indexes are used to quantify the controllability of each node in the modular network. The best driver node obtained in this way is the same as the deduced one from motif analysis.

  19. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2007-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. In some embodiments, network device interfaces associated with different data channels coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  20. Genetic control of astrocyte function in neural circuits

    PubMed Central

    Jahn, Hannah M.; Scheller, Anja; Kirchhoff, Frank

    2015-01-01

    During the last two decades numerous genetic approaches affecting cell function in vivo have been developed. Current state-of-the-art technology permits the selective switching of gene function in distinct cell populations within the complex organization of a given tissue parenchyma. The tamoxifen-inducible Cre/loxP gene recombination and the doxycycline-dependent modulation of gene expression are probably the most popular genetic paradigms. Here, we will review applications of these two strategies while focusing on the interactions of astrocytes and neurons in the central nervous system (CNS) and their impact for the whole organism. Abolishing glial sensing of neuronal activity by selective deletion of glial transmitter receptors demonstrated the impact of astrocytes for higher cognitive functions such as learning and memory, or the more basic body control of muscle coordination. Interestingly, also interfering with glial output, i.e., the release of gliotransmitters can drastically change animal’s physiology like sleeping behavior. Furthermore, such genetic approaches have also been used to restore astrocyte function. In these studies two alternatives were employed to achieve proper genetic targeting of astrocytes: transgenes using the promoter of the human glial fibrillary acidic protein (GFAP) or homologous recombination into the glutamate-aspartate transporter (GLAST) locus. We will highlight their specific properties that could be relevant for their use. PMID:26347607

  1. Inhibition Controls Asynchronous States of Neuronal Networks

    PubMed Central

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  2. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  3. Resistance to genetic insect control: Modelling the effects of space.

    PubMed

    Watkinson-Powell, Benjamin; Alphey, Nina

    2017-01-21

    Genetic insect control, such as self-limiting RIDL(2) (Release of Insects Carrying a Dominant Lethal) technology, is a development of the sterile insect technique which is proposed to suppress wild populations of a number of major agricultural and public health insect pests. This is achieved by mass rearing and releasing male insects that are homozygous for a repressible dominant lethal genetic construct, which causes death in progeny when inherited. The released genetically engineered ('GE') insects compete for mates with wild individuals, resulting in population suppression. A previous study modelled the evolution of a hypothetical resistance to the lethal construct using a frequency-dependent population genetic and population dynamic approach. This found that proliferation of resistance is possible but can be diluted by the introgression of susceptible alleles from the released homozygous-susceptible GE males. We develop this approach within a spatial context by modelling the spread of a lethal construct and resistance trait, and the effect on population control, in a two deme metapopulation, with GE release in one deme. Results show that spatial effects can drive an increased or decreased evolution of resistance in both the target and non-target demes, depending on the effectiveness and associated costs of the resistant trait, and on the rate of dispersal. A recurrent theme is the potential for the non-target deme to act as a source of resistant or susceptible alleles for the target deme through dispersal. This can in turn have a major impact on the effectiveness of insect population control.

  4. Expanding the NATO Movement Control Network

    DTIC Science & Technology

    2016-05-17

    stationed in Es- tonia, Latvia, Lithuania, and Poland, an opportunity to expand the Strong Europe movement network by as- signing its Soldiers to embed...Lithuania. Therefore, Poland drives the diplo- matic clearance process with its 30- day requirement because everything must cross its borders. The...millimeter rail gauge for its railroad network. Estonia, Latvia, and Lithuania all have the Russian rail gauge of 1,520 millimeters. In order to use

  5. Flux Control in Networks of Diffusion Paths

    SciTech Connect

    A. I. Zhmoginov and N. J. Fisch

    2009-07-08

    A class of optimization problems in networks of intersecting diffusion domains of a special form of thin paths has been considered. The system of equations describing stationary solutions is equivalent to an electrical circuit built of intersecting conductors. The solution of an optimization problem has been obtained and extended to the analogous electrical circuit. The interest in this network arises from, among other applications, an application to wave-particle diffusion through resonant interactions in plasma.

  6. Functional Genomic Annotation of Genetic Risk Loci Highlights Inflammation and Epithelial Biology Networks in CKD

    PubMed Central

    Ledo, Nora; Ko, Yi-An; Park, Ae-Seo Deok; Kang, Hyun-Mi; Han, Sang-Youb; Choi, Peter

    2015-01-01

    Genome-wide association studies (GWASs) have identified multiple loci associated with the risk of CKD. Almost all risk variants are localized to the noncoding region of the genome; therefore, the role of these variants in CKD development is largely unknown. We hypothesized that polymorphisms alter transcription factor binding, thereby influencing the expression of nearby genes. Here, we examined the regulation of transcripts in the vicinity of CKD-associated polymorphisms in control and diseased human kidney samples and used systems biology approaches to identify potentially causal genes for prioritization. We interrogated the expression and regulation of 226 transcripts in the vicinity of 44 single nucleotide polymorphisms using RNA sequencing and gene expression arrays from 95 microdissected control and diseased tubule samples and 51 glomerular samples. Gene expression analysis from 41 tubule samples served for external validation. 92 transcripts in the tubule compartment and 34 transcripts in glomeruli showed statistically significant correlation with eGFR. Many novel genes, including ACSM2A/2B, FAM47E, and PLXDC1, were identified. We observed that the expression of multiple genes in the vicinity of any single CKD risk allele correlated with renal function, potentially indicating that genetic variants influence multiple transcripts. Network analysis of GFR-correlating transcripts highlighted two major clusters; a positive correlation with epithelial and vascular functions and an inverse correlation with inflammatory gene cluster. In summary, our functional genomics analysis highlighted novel genes and critical pathways associated with kidney function for future analysis. PMID:25231882

  7. A genetic algorithm for the arrival probability in the stochastic networks.

    PubMed

    Shirdel, Gholam H; Abdolhosseinzadeh, Mohsen

    2016-01-01

    A genetic algorithm is presented to find the arrival probability in a directed acyclic network with stochastic parameters, that gives more reliability of transmission flow in delay sensitive networks. Some sub-networks are extracted from the original network, and a connection is established between the original source node and the original destination node by randomly selecting some local source and the local destination nodes. The connections are sorted according to their arrival probabilities and the best established connection is determined with the maximum arrival probability. There is an established discrete time Markov chain in the network. The arrival probability to a given destination node from a given source node in the network is defined as the multi-step transition probability of the absorbtion in the final state of the established Markov chain. The proposed method is applicable on large stochastic networks, where the previous methods were not. The effectiveness of the proposed method is illustrated by some numerical results with perfect fitness values of the proposed genetic algorithm.

  8. Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms.

    ERIC Educational Resources Information Center

    Chen, Hsinchun

    1995-01-01

    Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…

  9. Discovery of novel genetic networks associated with 19 economically important traits in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative or complex traits are determined by the combined effects of many loci, and are affected by gene-gene interactions, genetic networks or molecular pathways. In the present study, we genotyped a total of 138 mutations, mainly single nucleotide polymorphisms derived from 71 functional gene...

  10. Neural-Network Control Of Prosthetic And Robotic Hands

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M.

    1991-01-01

    Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.

  11. Network Frontier Workshop 2013

    DTIC Science & Technology

    2014-11-11

    on Genetic Recombination among Malaria Parasites by Mapping Genetic Sequences to Complex Networks 10:15 – 10:30 Tin Yau Pang (Stony Brook University...Harvard School of Public Health, USA Revealing Constraints on Genetic Recombination among Malaria Parasites by Mapping Genetic Sequences to Complex...theory to predict and control rare noise induced switching between different states in genetic networks. Our analysis can be used to generate a

  12. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  13. Complexity of the transcriptional network controlling secondary wall biosynthesis.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2014-12-01

    Secondary walls in the form of wood and fibers are the most abundant biomass produced by vascular plants, and are important raw materials for many industrial uses. Understanding how secondary walls are constructed is of significance in basic plant biology and also has far-reaching implications in genetic engineering of plant biomass better suited for various end uses, such as biofuel production. Secondary walls are composed of three major biopolymers, i.e., cellulose, hemicelluloses and lignin, the biosynthesis of which requires the coordinated transcriptional regulation of all their biosynthesis genes. Genomic and molecular studies have identified a number of transcription factors, whose expression is associated with secondary wall biosynthesis. We comprehensively review how these secondary wall-associated transcription factors function together to turn on the secondary wall biosynthetic program, which leads to secondary wall deposition in vascular plants. The transcriptional network regulating secondary wall biosynthesis employs a multi-leveled feed-forward loop regulatory structure, in which the top-level secondary wall NAC (NAM, ATAF1/2 and CUC2) master switches activate the second-level MYB master switches and they together induce the expression of downstream transcription factors and secondary wall biosynthesis genes. Secondary wall NAC master switches and secondary wall MYB master switches bind to and activate the SNBE (secondary wall NAC binding element) and SMRE (secondary wall MYB-responsive element) sites, respectively, in their target gene promoters. Further investigation of what and how developmental signals trigger the transcriptional network to regulate secondary wall biosynthesis and how different secondary wall-associated transcription factors function cooperatively in activating secondary wall biosynthetic pathways will lead to a better understanding of the molecular mechanisms underlying the transcriptional control of secondary wall biosynthesis.

  14. Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations

    PubMed Central

    Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  15. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.

  16. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  17. Optimal control strategy of malaria vector using genetically modified mosquitoes.

    PubMed

    Rafikov, M; Bevilacqua, L; Wyse, A P P

    2009-06-07

    The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.

  18. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven

    2010-05-01

    Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

  19. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila.

    PubMed

    Mellert, David J; Williamson, W Ryan; Shirangi, Troy R; Card, Gwyneth M; Truman, James W

    2016-01-01

    Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

  20. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila

    PubMed Central

    Mellert, David J.; Williamson, W. Ryan; Shirangi, Troy R.; Card, Gwyneth M.; Truman, James W.

    2016-01-01

    Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability “hotspot” depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change. PMID:27223118

  1. Genetics and evolution of triatomines: from phylogeny to vector control

    PubMed Central

    Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E

    2012-01-01

    Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436

  2. Implementations of learning control systems using neural networks

    NASA Technical Reports Server (NTRS)

    Sartori, Michael A.; Antsaklis, Panos J.

    1992-01-01

    The systematic storage in neural networks of prior information to be used in the design of various control subsystems is investigated. Assuming that the prior information is available in a certain form (namely, input/output data points and specifications between the data points), a particular neural network and a corresponding parameter design method are introduced. The proposed neural network addresses the issue of effectively using prior information in the areas of dynamical system (plant and controller) modeling, fault detection and identification, information extraction, and control law scheduling.

  3. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  4. The deep space network, volume 18. [Deep Space Instrumentation Facility, Ground Communication Facility, and Network Control System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  5. Correlations in the degeneracy of structurally controllable topologies for networks.

    PubMed

    Campbell, Colin; Aucott, Steven; Ruths, Justin; Ruths, Derek; Shea, Katriona; Albert, Réka

    2017-04-12

    Many dynamic systems display complex emergent phenomena. By directly controlling a subset of system components (nodes) via external intervention it is possible to indirectly control every other component in the system. When the system is linear or can be approximated sufficiently well by a linear model, methods exist to identify the number and connectivity of a minimum set of external inputs (constituting a so-called minimal control topology, or MCT). In general, many MCTs exist for a given network; here we characterize a broad ensemble of empirical networks in terms of the fraction of nodes and edges that are always, sometimes, or never a part of an MCT. We study the relationships between the measures, and apply the methodology to the T-LGL leukemia signaling network as a case study. We show that the properties introduced in this report can be used to predict key components of biological networks, with potentially broad applications to network medicine.

  6. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  7. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  8. Controllability and observability of Boolean networks arising from biology.

    PubMed

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  9. Post-translational control of genetic circuits using Potyvirus proteases

    PubMed Central

    Fernandez-Rodriguez, Jesus; Voigt, Christopher A.

    2016-01-01

    Genetic engineering projects often require control over when a protein is degraded. To this end, we use a fusion between a degron and an inactivating peptide that can be added to the N-terminus of a protein. When the corresponding protease is expressed, it cleaves the peptide and the protein is degraded. Three protease:cleavage site pairs from Potyvirus are shown to be orthogonal and active in exposing degrons, releasing inhibitory domains and cleaving polyproteins. This toolbox is applied to the design of genetic circuits as a means to control regulator activity and degradation. First, we demonstrate that a gate can be constructed by constitutively expressing an inactivated repressor and having an input promoter drive the expression of the protease. It is also shown that the proteolytic release of an inhibitory domain can improve the dynamic range of a transcriptional gate (200-fold repression). Next, we design polyproteins containing multiple repressors and show that their cleavage can be used to control multiple outputs. Finally, we demonstrate that the dynamic range of an output can be improved (8-fold to 190-fold) with the addition of a protease-cleaved degron. Thus, controllable proteolysis offers a powerful tool for modulating and expanding the function of synthetic gene circuits. PMID:27298256

  10. Intrinsic dynamics induce global symmetry in network controllability

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Wang, Wen-Xu; Liu, Yang-Yu; Slotine, Jean-Jacques

    2015-02-01

    Controlling complex networked systems to desired states is a key research goal in contemporary science. Despite recent advances in studying the impact of network topology on controllability, a comprehensive understanding of the synergistic effect of network topology and individual dynamics on controllability is still lacking. Here we offer a theoretical study with particular interest in the diversity of dynamic units characterized by different types of individual dynamics. Interestingly, we find a global symmetry accounting for the invariance of controllability with respect to exchanging the densities of any two different types of dynamic units, irrespective of the network topology. The highest controllability arises at the global symmetry point, at which different types of dynamic units are of the same density. The lowest controllability occurs when all self-loops are either completely absent or present with identical weights. These findings further improve our understanding of network controllability and have implications for devising the optimal control of complex networked systems in a wide range of fields.

  11. Input graph: the hidden geometry in controlling complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xizhe; Lv, Tianyang; Pu, Yuanyuan

    2016-11-01

    The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is the underlying relationship of all possible input nodes? Here we introduce input graph, a simple geometry that reveals the complex relationship between all control schemes and input nodes. We prove that the node adjacent to an input node in the input graph will appear in another control scheme, and the connected nodes in input graph have the same type in control, which they are either all possible input nodes or not. Furthermore, we find that the giant components emerge in the input graphs of many real networks, which provides a clear topological explanation of bifurcation phenomenon emerging in dense networks and promotes us to design an efficient method to alter the node type in control. The findings provide an insight into control principles of complex networks and offer a general mechanism to design a suitable control scheme for different purposes.

  12. Input graph: the hidden geometry in controlling complex networks

    PubMed Central

    Zhang, Xizhe; Lv, Tianyang; Pu, Yuanyuan

    2016-01-01

    The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is the underlying relationship of all possible input nodes? Here we introduce input graph, a simple geometry that reveals the complex relationship between all control schemes and input nodes. We prove that the node adjacent to an input node in the input graph will appear in another control scheme, and the connected nodes in input graph have the same type in control, which they are either all possible input nodes or not. Furthermore, we find that the giant components emerge in the input graphs of many real networks, which provides a clear topological explanation of bifurcation phenomenon emerging in dense networks and promotes us to design an efficient method to alter the node type in control. The findings provide an insight into control principles of complex networks and offer a general mechanism to design a suitable control scheme for different purposes. PMID:27901102

  13. Mining functional modules in genetic networks with decomposable graphical models.

    PubMed

    Dejori, Mathäus; Schwaighofer, Anton; Tresp, Volker; Stetter, Martin

    2004-01-01

    In recent years, graphical models have become an increasingly important tool for the structural analysis of genome-wide expression profiles at the systems level. Here we present a new graphical modelling technique, which is based on decomposable graphical models, and apply it to a set of gene expression profiles from acute lymphoblastic leukemia (ALL). The new method explains probabilistic dependencies of expression levels in terms of the concerted action of underlying genetic functional modules, which are represented as so-called "cliques" in the graph. In addition, the method uses continuous-valued (instead of discretized) expression levels, and makes no particular assumption about their probability distribution. We show that the method successfully groups members of known functional modules to cliques. Our method allows the evaluation of the importance of genes for global cellular functions based on both link count and the clique membership count.

  14. An approach for in vitro genetic networks assembly

    NASA Astrophysics Data System (ADS)

    Noireaux, Vincent; Bar-Ziv, Roy; Libchaber, Albert

    2004-03-01

    A cell-free expression extract has been used to assemble genetic circuits in vitro. The extract, which does not contained endogenous DNA and RNA, is used as a battery to carry out transcription and translation of genes inserted into plasmids. We engineered transcriptional activation and repression cascades, in which the protein product of each stage is the input required to drive or block the following stage. Although we can find regions of linear response for single stages, cascading to subsequent stages requires working in non-linear regimes. Substantial time delays and dramatic decreases in output production are incurred with each additional stage, due to a bottleneck at the translation machinery. Faster turnover of RNA message can relieve competition between genes and stabilize output against variations in input and parameters.

  15. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.

    PubMed

    Del Vecchio, Domitilla; Abdallah, Hussein; Qian, Yili; Collins, James J

    2017-01-25

    To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells.

  16. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  17. Neural Networks for Modeling and Control of Particle Accelerators

    SciTech Connect

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  18. Energy scaling and reduction in controlling complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-04-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks.

  19. Energy scaling and reduction in controlling complex networks

    PubMed Central

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  20. Public authority control strategy for opinion evolution in social networks

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.

  1. The Life-Changing Magic of Nonlinearity in Network Control

    NASA Astrophysics Data System (ADS)

    Cornelius, Sean

    The proper functioning and reliability of many man-made and natural systems is fundamentally tied to our ability to control them. Indeed, applications as diverse as ecosystem management, emergency response and cell reprogramming all, at their heart, require us to drive a system to--or keep it in--a desired state. This process is complicated by the nonlinear dynamics inherent to most real systems, which has traditionally been viewed as the principle obstacle to their control. In this talk, I will discuss two ways in which nonlinearity turns this view on its head, in fact representing an asset to the control of complex systems. First, I will show how nonlinearity in the form of multistability allows one to systematically design control interventions that can deliberately induce ``reverse cascading failures'', in which a network spontaneously evolves to a desirable (rather than a failed) state. Second, I will show that nonlinearity in the form of time-varying dynamics unexpectedly makes temporal networks easier to control than their static counterparts, with the former enjoying dramatic and simultaneous reductions in all costs of control. This is true despite the fact that temporality tends to fragment a network's structure, disrupting the paths that allow the directly-controlled or ``driver'' nodes to communicate with the rest of the network. Taken together, these studies shed new light on the crucial role of nonlinearity in network control, and provide support to the idea we can control nonlinearity, rather than letting nonlinearity control us.

  2. On Path Attractors, Stochastic Bifurcation and Dephasing In Genetic Networks

    NASA Astrophysics Data System (ADS)

    Potoyan, Davit

    2015-03-01

    Gene regulatory networks are driven stochastic systems with the noise having two distinct components due to the to birth and death of metabolite molecules and dichotomous nature of gene state switching. Presence of dichotomous gene noise alone has the capacity to significantly perturb the optimal transition paths and steady state probability distributions compared to the macroscopic models and their weak noise approximations. Most importantly dichotomous gene noise can also lead to multimodal distributions due to stochastic bifurcation of the underlying nonlinear dynamical system, which underlies the mechanism of formation of population heterogeneity. In this note we derive approximate path based expression of the time dependent probability of gene circuits which enables deeper exploration of the role of gene noise in formation of epigenetic states and dephasing-like phenomena.

  3. Gene network inference via structural equation modeling in genetical genomics experiments.

    PubMed

    Liu, Bing; de la Fuente, Alberto; Hoeschele, Ina

    2008-03-01

    Our goal is gene network inference in genetical genomics or systems genetics experiments. For species where sequence information is available, we first perform expression quantitative trait locus (eQTL) mapping by jointly utilizing cis-, cis-trans-, and trans-regulation. After using local structural models to identify regulator-target pairs for each eQTL, we construct an encompassing directed network (EDN) by assembling all retained regulator-target relationships. The EDN has nodes corresponding to expressed genes and eQTL and directed edges from eQTL to cis-regulated target genes, from cis-regulated genes to cis-trans-regulated target genes, from trans-regulator genes to target genes, and from trans-eQTL to target genes. For network inference within the strongly constrained search space defined by the EDN, we propose structural equation modeling (SEM), because it can model cyclic networks and the EDN indeed contains feedback relationships. On the basis of a factorization of the likelihood and the constrained search space, our SEM algorithm infers networks involving several hundred genes and eQTL. Structure inference is based on a penalized likelihood ratio and an adaptation of Occam's window model selection. The SEM algorithm was evaluated using data simulated with nonlinear ordinary differential equations and known cyclic network topologies and was applied to a real yeast data set.

  4. Networked Robust Predictive Control Systems Design with Packet Loss

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang T.; Veselý, Vojtech; Kozáková, Alena; Pakshin, Pavel

    2014-01-01

    The paper addresses problem of designing a robust output feedback model predictive control for uncertain linear systems over networks with packet-loss. The packet-loss process is arbitrary and bounded by the control horizon of model predictive control. Networked predictive control systems with packet loss are modeled as switched linear systems. This enables us to apply the theory of switched systems to establish the stability condition. The stabilizing controller design is based on sufficient robust stability conditions formulated as a solution of bilinear matrix inequality. Finally, a benchmark numerical example-double integrator is given to illustrate the effectiveness of the proposed method.

  5. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm.

    PubMed

    Tsai, Jinn-Tsong; Chou, Jyh-Horng; Liu, Tung-Kuan

    2006-01-01

    In this paper, a hybrid Taguchi-genetic algorithm (HTGA) is applied to solve the problem of tuning both network structure and parameters of a feedforward neural network. The HTGA approach is a method of combining the traditional genetic algorithm (TGA), which has a powerful global exploration capability, with the Taguchi method, which can exploit the optimum offspring. The Taguchi method is inserted between crossover and mutation operations of a TGA. Then, the systematic reasoning ability of the Taguchi method is incorporated in the crossover operations to select the better genes to achieve crossover, and consequently enhance the genetic algorithms. Therefore, the HTGA approach can be more robust, statistically sound, and quickly convergent. First, the authors evaluate the performance of the presented HTGA approach by studying some global numerical optimization problems. Then, the presented HTGA approach is effectively applied to solve three examples on forecasting the sunspot numbers, tuning the associative memory, and solving the XOR problem. The numbers of hidden nodes and the links of the feedforward neural network are chosen by increasing them from small numbers until the learning performance is good enough. As a result, a partially connected feedforward neural network can be obtained after tuning. This implies that the cost of implementation of the neural network can be reduced. In these studied problems of tuning both network structure and parameters of a feedforward neural network, there are many parameters and numerous local optima so that these studied problems are challenging enough for evaluating the performances of any proposed GA-based approaches. The computational experiments show that the presented HTGA approach can obtain better results than the existing method reported recently in the literature.

  6. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  7. Neural Networks for Dynamic Flight Control

    DTIC Science & Technology

    1993-12-01

    uses the Adaline (22) model for development of the neural networks. Neural Graphics and other AFIT applications use a slightly different model. The...primary difference in the Nguyen application is that the Adaline uses the nonlinear function .f(a) = tanh(a) where standard backprop uses the sigmoid

  8. Filament-length-controlled elasticity in 3D fiber networks.

    PubMed

    Broedersz, C P; Sheinman, M; Mackintosh, F C

    2012-02-17

    We present a model for disordered 3D fiber networks to study their linear and nonlinear elasticity. In contrast to previous 2D models, these 3D networks with binary crosslinks are underconstrained with respect to fiber stretching elasticity, suggesting that bending may dominate their response. We find that such networks exhibit a bending-dominated elastic regime controlled by fiber length, as well as a crossover to a stretch-dominated regime for long fibers. Finally, by extending the model to the nonlinear regime, we show that these networks become intrinsically nonlinear with a vanishing linear response regime in the limit of flexible or long filaments.

  9. Lightweight simulation of air traffic control using simple temporal networks

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    We provide a formulation of the air traffic control problem and a solver for this problem that makes use of temporal constraint networks and simple geometric reasoning. We provide results showing that this approach is practical for realistic simulated problems.

  10. Adaptive artificial neural network for autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  11. Autonomous Congestion Control in Delay-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    This presentation highlights communication congestion control in delay-tolerant networks (DTNs). Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. However, current internet techniques for congestion control are not well suited for operation of a network over interplanetary distances. An alternative, delay-tolerant technique for congestion control in a delay-tolerant network is presented. A simple DTN was constructed and an experimental congestion control mechanism was applied. The mechanism appeared to be effective and each router was able to make its bundle acceptance decisions autonomously. Future research will examine more complex topologies and alternative bundle acceptance rules that might enhance performance.

  12. On neural networks in identification and control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Hyland, David C.

    1993-01-01

    This paper presents a discussion of the applicability of neural networks in the identification and control of dynamic systems. Emphasis is placed on the understanding of how the neural networks handle linear systems and how the new approach is related to conventional system identification and control methods. Extensions of the approach to nonlinear systems are then made. The paper explains the fundamental concepts of neural networks in their simplest terms. Among the topics discussed are feed forward and recurrent networks in relation to the standard state-space and observer models, linear and nonlinear auto-regressive models, linear, predictors, one-step ahead control, and model reference adaptive control for linear and nonlinear systems. Numerical examples are presented to illustrate the application of these important concepts.

  13. Integrative microRNA-gene expression network analysis in genetic hypercalciuric stone-forming rat kidney

    PubMed Central

    Lu, Yuchao; Qin, Baolong; Hu, Henglong; Zhang, Jiaqiao; Wang, Yufeng; Wang, Qing

    2016-01-01

    Background. MicroRNAs (miRNAs) influence a variety of biological functions by regulating gene expression post-transcriptionally. Aberrant miRNA expression has been associated with many human diseases. Urolithiasis is a common disease, and idiopathic hypercalciuria (IH) is an important risk factor for calcium urolithiasis. However, miRNA expression patterns and their biological functions in urolithiasis remain unknown. Methods and Results. A multi-step approach combining microarray miRNA and mRNA expression profile and bioinformatics analysis was adopted to analyze dysregulated miRNAs and genes in genetic hypercalciuric stone-forming (GHS) rat kidneys, using normal Sprague-Dawley (SD) rats as controls. We identified 2418 mRNAs and 19 miRNAs as significantly differentially expressed, over 700 gene ontology (GO) terms and 83 KEGG pathways that were significantly enriched in GHS rats. In addition, we constructed an miRNA-gene network that suggested that rno-miR-674-5p, rno-miR-672-5p, rno-miR-138-5p and rno-miR-21-3p may play important roles in the regulatory network. Furthermore, signal-net analysis suggested that NF-kappa B likely plays a crucial role in hypercalciuria urolithiasis. Conclusions. This study presents a global view of mRNA and miRNA expression in GHS rat kidneys, and suggests that miRNAs may be important in the regulation of hypercalciuria. The data provide valuable insights for future research, which should aim at validating the role of the genes featured here in the pathophysiology of hypercalciuria. PMID:27069814

  14. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  15. Inverse Optimal Pinning Control for Complex Networks of Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sanchez, Edgar N.; Rodriguez, David I.

    In this paper, a control strategy based on the inverse optimal control approach is applied for pinning weighted complex networks with chaotic systems at their nodes; additionally, a cost functional is minimized. This control strategy does not require to have the same coupling strength for all node connections.

  16. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach

    NASA Astrophysics Data System (ADS)

    Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru

    2014-12-01

    Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.

  17. Prediction of Genetic Interactions Using Machine Learning and Network Properties

    PubMed Central

    Madhukar, Neel S.; Elemento, Olivier; Pandey, Gaurav

    2015-01-01

    A genetic interaction (GI) is a type of interaction where the effect of one gene is modified by the effect of one or several other genes. These interactions are important for delineating functional relationships among genes and their corresponding proteins, as well as elucidating complex biological processes and diseases. An important type of GI – synthetic sickness or synthetic lethality – involves two or more genes, where the loss of either gene alone has little impact on cell viability, but the combined loss of all genes leads to a severe decrease in fitness (sickness) or cell death (lethality). The identification of GIs is an important problem for it can help delineate pathways, protein complexes, and regulatory dependencies. Synthetic lethal interactions have important clinical and biological significance, such as providing therapeutically exploitable weaknesses in tumors. While near systematic high-content screening for GIs is possible in single cell organisms such as yeast, the systematic discovery of GIs is extremely difficult in mammalian cells. Therefore, there is a great need for computational approaches to reliably predict GIs, including synthetic lethal interactions, in these organisms. Here, we review the state-of-the-art approaches, strategies, and rigorous evaluation methods for learning and predicting GIs, both under general (healthy/standard laboratory) conditions and under specific contexts, such as diseases. PMID:26579514

  18. Network-Informed Gene Ranking Tackles Genetic Heterogeneity in Exome-Sequencing Studies of Monogenic Disease.

    PubMed

    Dand, Nick; Schulz, Reiner; Weale, Michael E; Southgate, Laura; Oakey, Rebecca J; Simpson, Michael A; Schlitt, Thomas

    2015-12-01

    Genetic heterogeneity presents a significant challenge for the identification of monogenic disease genes. Whole-exome sequencing generates a large number of candidate disease-causing variants and typical analyses rely on deleterious variants being observed in the same gene across several unrelated affected individuals. This is less likely to occur for genetically heterogeneous diseases, making more advanced analysis methods necessary. To address this need, we present HetRank, a flexible gene-ranking method that incorporates interaction network data. We first show that different genes underlying the same monogenic disease are frequently connected in protein interaction networks. This motivates the central premise of HetRank: those genes carrying potentially pathogenic variants and whose network neighbors do so in other affected individuals are strong candidates for follow-up study. By simulating 1,000 exome sequencing studies (20,000 exomes in total), we model varying degrees of genetic heterogeneity and show that HetRank consistently prioritizes more disease-causing genes than existing analysis methods. We also demonstrate a proof-of-principle application of the method to prioritize genes causing Adams-Oliver syndrome, a genetically heterogeneous rare disease. An implementation of HetRank in R is available via the Website http://sourceforge.net/p/hetrank/.

  19. An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.

    PubMed

    Yoon, Yourim; Kim, Yong-Hyuk

    2013-10-01

    Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.

  20. Genetic control of asexual development in aspergillus fumigatus.

    PubMed

    Alkhayyat, Fahad; Chang Kim, Sun; Yu, Jae-Hyuk

    2015-01-01

    Aspergillus fumigatus is one of the most common fungi found in the environment. It is an opportunistic human pathogen causing invasive pulmonary aspergillosis with a high mortality rate in immunocompromised patients. Conidia, the asexual spores, serve as the main dispersal and infection agent allowing entrance of the fungus into the host through the respiratory tract. Therefore, understanding the asexual developmental process that gives rise to the conidia is of great interest to the scientific community and is currently the focus of an immense load of research being conducted. We have been studying the genetic basis that controls asexual development and gliotoxin biosynthesis in A. fumigatus. In this review, we discuss the genetic regulatory system that dictates conidiation in this important fungus by covering the roles of crucial genetic factors from the upstream heterotrimeric G-protein signaling components to the more specific downstream central activators of the conidiation pathway. In addition, other key asexual regulators including the velvet regulators, the Flb proteins and their associated regulatory factors are discussed.

  1. A targeted controlled force injection of genetic material in vivo

    PubMed Central

    Ahlén, Gustaf; Frelin, Lars; Holmström, Fredrik; Smetham, Grant; Augustyn, Steve; Sällberg, Matti

    2016-01-01

    A general limitation in gene delivery is the cellular uptake in lager animals including humans. Several approaches have been tested including liposomes, micro-needles, in vivo electro-transfer, ballistic delivery, and needle-free delivery. All these techniques have individual limitations. One approach reproducibly delivering genetic material in muscle tissue in nonhuman primates is hydrodynamic injection, a forced injection of a volume equaling the volume of the tissue to be transfected thereby causing an increased local pressure resulting in an improved uptake of genetic material. We transferred the principle of hydrodynamic injection to a device, where a small injection volume can be delivered to a targeted tissue volume, termed in vivo intracellular injection (IVIN). The device is based on needle(s) with apertures along the needle shafts, where multiple needles can fix the tissue volume to be transfected. The apertures direct the injection from a central needle outward or inward to the centroid of a geometric arrangement thereby targeting the tissue to be transfected. With a controlled force, this results in a targeted injection with increased transfection efficiency. We here show that the IVIN technology reproducibly improved plasmid uptake and expression and the immunogenicity. The IVIN technology can be generally applied to a targeted delivery of genetic materials. PMID:27069951

  2. Genetic and epigenetic control of plant heat responses

    PubMed Central

    Liu, Junzhong; Feng, Lili; Li, Jianming; He, Zuhua

    2015-01-01

    Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22–27°C), high temperature (27–30°C) and extremely high temperature (37–42°C, also known as heat stress) for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of circadian clock and plant immunity by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damages. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed. PMID:25964789

  3. Control range: a controllability-based index for node significance in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong

    2012-04-01

    While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks.

  4. Experimental results from a network-assisted PID controller

    SciTech Connect

    Curtiss, P.S.

    1996-11-01

    The results presented here are a continuation of studies on a neural-network-based controller. Part 1 is a summary of the previous studies, and Part 2 presents new results and offers some novel techniques used for training the network and making the entire package easier to use. The two major additions are (1) efficient use of training data for dramatically reducing memory requirements and (2) incorporation of a PID algorithm for performing control during training periods.

  5. Controlling biological networks by time-delayed signals.

    PubMed

    Orosz, Gábor; Moehlis, Jeff; Murray, Richard M

    2010-01-28

    This paper describes the use of time-delayed feedback to regulate the behaviour of biological networks. The general ideas on specific transcriptional regulatory and neural networks are demonstrated. It is shown that robust yet tunable controllers can be constructed that provide the biological systems with model-engineered inputs. The results indicate that time delay modulation may serve as an efficient biocompatible control tool.

  6. Controllability and Synchronization Analysis of Identical-Hierarchy Mixed-Valued Logical Control Networks.

    PubMed

    Zhong, Jie; Lu, Jianquan; Huang, Tingwen; Ho, Daniel W C

    2016-06-14

    This paper investigates the controllability and synchronization problems for identical-hierarchy mixed-valued logical control networks. The logical network considered is hierarchical, and Boolean network is a special case of logical network. Here, identical-hierarchy means that there are identical number of nodes in each layer of logical network and corresponding nodes have the same dimension for any two layers of logical networks. Meanwhile, in each layer of logical networks, the dimensions of nodes are distinct, and it is called a mixed-valued logical network. First, the controllability problem is investigated and two notions of controllability are presented, i.e., group-controllability and simultaneously-controllability. By resorting to Perron-Frobenius theorem, some necessary and sufficient criteria are obtained to guarantee group-controllability and simultaneously-controllability, respectively. Second, based on the algebraic representation of the studied model, synchronization problems are analytically discussed for two types of controls, i.e., free control sequences and state-output feedback control. Finally, two numerical examples are presented to show the validness of our main results.

  7. Adaptive Quality of Transmission Control in Elastic Optical Network

    NASA Astrophysics Data System (ADS)

    Cai, Xinran

    Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.

  8. Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control

    PubMed Central

    Seeley, William W.; Menon, Vinod; Schatzberg, Alan F.; Keller, Jennifer; Glover, Gary H.; Kenna, Heather; Reiss, Allan L.; Greicius, Michael D.

    2008-01-01

    Variations in neural circuitry, inherited or acquired, may underlie important individual differences in thought, feeling, and action patterns. Here, we used task-free connectivity analyses to isolate and characterize two distinct networks typically coactivated during functional MRI tasks. We identified a “salience network,” anchored by dorsal anterior cingulate (dACC) and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an “executive-control network” that links dorsolateral frontal and parietal neocortices. These intrinsic connectivity networks showed dissociable correlations with functions measured outside the scanner. Prescan anxiety ratings correlated with intrinsic functional connectivity of the dACC node of the salience network, but with no region in the executive-control network, whereas executive task performance correlated with lateral parietal nodes of the executive-control network, but with no region in the salience network. Our findings suggest that task-free analysis of intrinsic connectivity networks may help elucidate the neural architectures that support fundamental aspects of human behavior. PMID:17329432

  9. Optimization of cocoa butter analog synthesis variables using neural networks and genetic algorithm.

    PubMed

    Shekarchizadeh, Hajar; Tikani, Reza; Kadivar, Mahdi

    2014-09-01

    Cocoa butter analog was prepared from camel hump fat and tristearin by enzymatic interesterification in supercritical carbon dioxide (SC-CO2) using immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM) as a biocatalyst. Optimal process conditions were determined using neural networks and genetic algorithm optimization. Response surfaces methodology was used to design the experiments to collect data for the neural network modelling. A general regression neural network model was developed to predict the response of triacylglycerol (TAG) distribution of cocoa butter analog from the process pressure, temperature, tristearin/camel hump fat ratio, water content, and incubation time. A genetic algorithm was used to search for a combination of the process variables for production of most similar cocoa butter analog to the corresponding cocoa butter. The combinations of the process variables during genetic algorithm optimization were evaluated using the neural network model. The pressure of 10 MPa; temperature of 40 °C; SSS/CHF ratio of 0.6:1; water content of 13 % (w/w); and incubation time of 4.5 h were found to be the optimum conditions to achieve the most similar cocoa butter analog to the corresponding cocoa butter.

  10. A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks.

    PubMed

    Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza

    2015-01-01

    Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower's problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach.

  11. A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks

    PubMed Central

    Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza

    2015-01-01

    Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502

  12. Centralized and distributed control architectures under Foundation Fieldbus network.

    PubMed

    Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves

    2013-01-01

    This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations.

  13. Fracture energy of polymer gels with controlled network structures

    NASA Astrophysics Data System (ADS)

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-01

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  14. Fracture energy of polymer gels with controlled network structures.

    PubMed

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-14

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  15. Brain and cognitive reserve: Translation via network control theory.

    PubMed

    Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H; Thompson-Schill, Sharon L; Bassett, Danielle S

    2017-04-01

    Traditional approaches to understanding the brain's resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive "reserve," associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention.

  16. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  17. Quality of service policy control in virtual private networks

    NASA Astrophysics Data System (ADS)

    Yu, Yiqing; Wang, Hongbin; Zhou, Zhi; Zhou, Dongru

    2004-04-01

    This paper studies the QoS of VPN in an environment where the public network prices connection-oriented services based on source, destination and grade of service, and advertises these prices to its VPN customers (users). As different QoS technologies can produce different QoS, there are according different traffic classification rules and priority rules. The internet service provider (ISP) may need to build complex mechanisms separately for each node. In order to reduce the burden of network configuration, we need to design policy control technologies. We considers mainly directory server, policy server, policy manager and policy enforcers. Policy decision point (PDP) decide its control according to policy rules. In network, policy enforce point (PEP) decide its network controlled unit. For InterServ and DiffServ, we will adopt different policy control methods as following: (1) In InterServ, traffic uses resource reservation protocol (RSVP) to guarantee the network resource. (2) In DiffServ, policy server controls the DiffServ code points and per hop behavior (PHB), its PDP distributes information to each network node. Policy server will function as following: information searching; decision mechanism; decision delivering; auto-configuration. In order to prove the effectiveness of QoS policy control, we make the corrective simulation.

  18. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  19. Geodetic Network For Crustal Deformation Control of Northernvictoria Land (antarctica)

    NASA Astrophysics Data System (ADS)

    Capra, A.; Bitelli, G.; Gandolfi, S.; Mancini, F.; Sarti, P.; Vittuari, L.

    VLNDEF (Victoria Land Network for DEFormation control) project started in 1999 with the aim to measure a network for the study of regional geodynamics of northern Victoria Land. In 1999-2000 and 2000-01 italian expeditions, a network of 25 stations with an average distance of 70 km covering the area from Terra Nova Bay, italian sta- tion in Antarctica, to the northern Oates Coast on Pacific ocean, about 700 km long and about 300 km large, was established and surveyed. The network design and stations location were based on principal faults of the area pointed out by most recent tecton- ics studies. The research activity is made within GIANT (Geodetic Infrastructure of ANTarctica) program and ANTEC (ANtarctic neoTECtonics) Group of Specialists of SCAR (Scientific Committee on Antarctic Research).The network coordinates are de- fined in most recent ITRF 2000 system through the emanation from GPS permanent station TNB1. TNB1 was included in SCAR GPS Epoch measurements campaigns and, consequently, connected to IGS network in 2000. VLNDEF includes the first italian reference network about 5000 square km around Terra Nova Bay, and a small network for Mt.Melbourne volcano monitoring. The reference network was surveyed three time, while the detail network was surveyed five time. The data were processed with different software, more recently with Bernese and Gipsy. The processing results and a preliminary approach for deformation analysis are presented.

  20. Exploitation of genetic interaction network topology for the prediction of epistatic behavior.

    PubMed

    Alanis-Lobato, Gregorio; Cannistraci, Carlo Vittorio; Ravasi, Timothy

    2013-10-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks. We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks. Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab.

  1. A methodology for pseudo-genetic stochastic modeling of discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Bonneau, François; Henrion, Vincent; Caumon, Guillaume; Renard, Philippe; Sausse, Judith

    2013-07-01

    Stochastic simulation of fracture systems is an interesting approach to build a set of dense and complex networks. However, discrete fracture models made of planar fractures generally fail to reproduce the complexity of natural networks, both in terms of geometry and connectivity. In this study a pseudo-genetic method is developed to generate stochastic fracture models that are consistent with patterns observed on outcrops and fracture growth principles. The main idea is to simulate evolving fracture networks through geometric proxies by iteratively growing 3D fractures. The algorithm defines heuristic rules in order to mimic the mechanics of fracture initiation, propagation, interaction and termination. The growth process enhances the production of linking structure and impacts the connectivity of fracture networks. A sensitivity study is performed on synthetic examples. The method produces unbiased fracture dip and strike statistics and qualitatively reproduces the fracture density map. The fracture length distribution law is underestimated because of the early stop in fracture growth after intersection.

  2. STIMULUS: End-System Network Interface Controller for 100 Gb/s Wide Area Networks

    SciTech Connect

    Zarkesh-Ha, Payman

    2014-09-12

    The main goal of this research grant is to develop a system-level solution leveraging novel technologies that enable network communications at 100 Gb/s or beyond. University of New Mexico in collaboration with Acadia Optronics LLC has been working on this project to develop the 100 Gb/s Network Interface Controller (NIC) under this Department of Energy (DOE) grant.

  3. Improved Stabilization Method for Lurie Networked Control Systems

    PubMed Central

    Zeng, Hong-Bing; Xiao, Shen-Ping; Yu, Fei

    2014-01-01

    The problem of stabilization of Lurie networked control systems (NCSs) is investigated in this paper. The network-induced delays in NCSs are assumed to be time-varying and bounded. By utilizing a reciprocally convex technique to consider the relationship between the network-induced delay and its varying interval, a new absolute stability condition is derived in terms of linear matrix inequalities (LMIs). Based on the obtained condition, an improved cone complementary linearisation (CCL) iteration algorithm is presented to design a state feedback controller. The effectiveness of the proposed method is verified by a numerical example. PMID:24892090

  4. Prediction and control of chaotic processes using nonlinear adaptive networks

    SciTech Connect

    Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  5. Self-organized call admission control for optical communication networks

    NASA Astrophysics Data System (ADS)

    Zuo, Bing; Liu, Lei; Wu, Jian; Lin, Jintong

    2008-11-01

    Call Admission Control (CAC) is widely used in optical communication networks to reduce network congestion. However, the conventional CAC scheme recommended by International Telecommunication Union -Telecommunication Standardization Sector (ITU-T) has a serious deficiency under high traffic load. In this paper, the disadvantage of conventional CAC scheme is analyzed in detail, and a Self-organized Call Admission Control (SCAC) scheme is proposed to solve this disadvantage. This scheme is accord with the principle of self-organization system, so it can be easily implemented in practice. Numerical results show that the proposed scheme can improve the network performance to a great extent.

  6. Reducing the Impact of Uncertainties in Networked Control Systems Using Type-2 Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Michal, Blaho; J´n, Murgaš; Eugen, Viszus; Peter, Fodrek

    2015-01-01

    The networked control systems (NCS) have grown in popularity in recent years. Despite their advantages over the traditional control schemes, some of their drawbacks emerged as well (time delays, packet losses). There are several ways of dealing with the time delays and packet losses in NCS, but only a few authors have ever used type-2 fuzzy controllers for this purpose to our knowledge. This paper is aimed at dealing with the negative effects that occur in NCS, by using type-2 fuzzy control systems. It is presented that this approach can be successfully used to decrease the effects of time delays and packet losses. A type-2 fuzzy controller has been designed and compared to a type-1 fuzzy controller. The intervals of type-2 fuzzy controller were optimized via genetic algorithm.

  7. Vibro-acoustic control with a distributed sensor network.

    PubMed

    Frampton, Kenneth D

    2006-04-01

    The purpose of this work is to demonstrate the ability of a distributed control system, based on a smart sensor network, to reduce acoustic radiation from a vibrating structure. The platform from which control is effected consists of a network of smart sensors, each referred to as a node. Each node possesses its own computational capability, sensor, actuator and the ability to communicate with other nodes via a wired or wireless network. The primary focus of this work is to employ existing group management middleware concepts to enable vibro-acoustic control with such a distributed network. Group management middleware is distributed software that provides for the establishment and maintenance of groups of distributed nodes and that provides for the network communication among such groups. The control objective is met by designing distributed feedback compensators that take advantage of node groups in order to effect their control. The node groups are formed based on physical proximity. The global control objective is to minimize the radiated sound power from a rectangular plate. Results of this investigation demonstrate that such a distributed control system can achieve attenuations comparable to those achieved by a centralized controller.

  8. Feedback control and output feedback control for the stabilisation of switched Boolean networks

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Yu, Zhaoxu

    2016-02-01

    This paper presents the feedback control and output feedback control for the stabilisation of switched Boolean network. A necessary condition for the existence of a state feedback controller for the stabilisation of switched Boolean networks under arbitrary switching signal is derived first, and constructive procedures for feedback control and output feedback control design are provided. An example is introduced to show the effectiveness of this paper.

  9. Dysfunction and Dysconnection in Cortical–Striatal Networks during Sustained Attention: Genetic Risk for Schizophrenia or Bipolar Disorder and its Impact on Brain Network Function

    PubMed Central

    Diwadkar, Vaibhav A.; Bakshi, Neil; Gupta, Gita; Pruitt, Patrick; White, Richard; Eickhoff, Simon B.

    2014-01-01

    Abnormalities in the brain’s attention network may represent early identifiable neurobiological impairments in individuals at increased risk for schizophrenia or bipolar disorder. Here, we provide evidence of dysfunctional regional and network function in adolescents at higher genetic risk for schizophrenia or bipolar disorder [henceforth higher risk (HGR)]. During fMRI, participants engaged in a sustained attention task with variable demands. The task alternated between attention (120 s), visual control (passive viewing; 120 s), and rest (20 s) epochs. Low and high demand attention conditions were created using the rapid presentation of two- or three-digit numbers. Subjects were required to detect repeated presentation of numbers. We demonstrate that the recruitment of cortical and striatal regions are disordered in HGR: relative to typical controls (TC), HGR showed lower recruitment of the dorsal prefrontal cortex, but higher recruitment of the superior parietal cortex. This imbalance was more dramatic in the basal ganglia. There, a group by task demand interaction was observed, such that increased attention demand led to increased engagement in TC, but disengagement in HGR. These activation studies were complemented by network analyses using dynamic causal modeling. Competing model architectures were assessed across a network of cortical–striatal regions, distinguished at a second level using random-effects Bayesian model selection. In the winning architecture, HGR were characterized by significant reductions in coupling across both frontal–striatal and frontal–parietal pathways. The effective connectivity analyses indicate emergent network dysconnection, consistent with findings in patients with schizophrenia. Emergent patterns of regional dysfunction and dysconnection in cortical–striatal pathways may provide functional biological signatures in the adolescent risk-state for psychiatric illness. PMID:24847286

  10. Galileo EM-2 contributions to the lunar control network

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Colvin, T. R.; Belton, M. J. S.; Greeley, R.

    1993-01-01

    A local control network is being developed using Galileo images that cover the region north of the Apollo area and lie between 10 and 100 degrees east longitude. This network is tied to the Apollo control network and will have a positional accuracy of approximately 500-1500 m. This region has been photographed by Earth-based telescopes and the Mariner 10 and Lunar Orbiter spacecraft, but the Gallileo images are preferred for control because of their superior viewing angles, resolution, and Galileo's geometrically stable sensor. Based on Davies et al., 1987, the potential accuracy of the near-side Apollo network is estimated to be between 50 and 300 m. The laser ranging retroreflector locations at the Apollo 11, 14, and 15 sites and the Lunikhod 2 site have been determined with an accuracy of about 10 m. The locations of the ALSEP transmitters relative to the retroreflectors have also been measured. These known coordinates are used to estimate errors in the Apollo network. The telescopic control is approximately bounded by 75 degrees north and south latitude and 75 degrees east and west longitudes. The accuracy of the telescopic network is thought to be about one to two km. Thus, the Galileo network might improve coordinates in the telescopic area as well as north and east of it.

  11. Interaction Control to Synchronize Non-synchronizable Networks.

    PubMed

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-11-17

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.

  12. Networked event-triggered control: an introduction and research trends

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Sabih, Muhammad

    2014-11-01

    A physical system can be studied as either continuous time or discrete-time system depending upon the control objectives. Discrete-time control systems can be further classified into two categories based on the sampling: (1) time-triggered control systems and (2) event-triggered control systems. Time-triggered systems sample states and calculate controls at every sampling instant in a periodic fashion, even in cases when states and calculated control do not change much. This indicates unnecessary and useless data transmission and computation efforts of a time-triggered system, thus inefficiency. For networked systems, the transmission of measurement and control signals, thus, cause unnecessary network traffic. Event-triggered systems, on the other hand, have potential to reduce the communication burden in addition to reducing the computation of control signals. This paper provides an up-to-date survey on the event-triggered methods for control systems and highlights the potential research directions.

  13. Neural network based dynamic controllers for industrial robots.

    PubMed

    Oh, S Y; Shin, W C; Kim, H G

    1995-09-01

    The industrial robot's dynamic performance is frequently measured by positioning accuracy at high speeds and a good dynamic controller is essential that can accurately compute robot dynamics at a servo rate high enough to ensure system stability. A real-time dynamic controller for an industrial robot is developed here using neural networks. First, an efficient time-selectable hidden layer architecture has been developed based on system dynamics localized in time, which lends itself to real-time learning and control along with enhanced mapping accuracy. Second, the neural network architecture has also been specially tuned to accommodate servo dynamics. This not only facilitates the system design through reduced sensing requirements for the controller but also enhances the control performance over the control architecture neglecting servo dynamics. Experimental results demonstrate the controller's excellent learning and control performances compared with a conventional controller and thus has good potential for practical use in industrial robots.

  14. Topology Control within the Airborne Network Backbone

    DTIC Science & Technology

    2009-10-01

    redundancy in routing and interference minimization. To avoid co-site interference and ease of SINR maximization MAToC assigns spectro - temporal...within each other’s interference range. The number of spectro - temporal slots that can be assigned is dependent on the availability of communication...circumstances the local link repair module can opt to use a new channel provided it does not disturb the equilibrium at other nodes in the network. The

  15. A Calculator Controlled Microwave Network Analyzer System.

    DTIC Science & Technology

    1977-03-01

    A Hewlett Packard 8410S (Option 310) Microwave Network Analyzer System and the input/output interface to a Wang 600-14 Programmable Calculator are described. The original design of a digital to analog interface between the Wang 600-14 Calculator and a HP 8690B Sweep Oscillator is presented. Two system software programs which implement automatic S-parameter data collection and either external data storage or data reduction and display are described and documented. (Author)

  16. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  17. Dynamics of Boolean networks controlled by biologically meaningful functions.

    PubMed

    Raeymaekers, L

    2002-10-07

    The remarkably stable dynamics displayed by randomly constructed Boolean networks is one of the most striking examples of the spontaneous emergence of self-organization in model systems composed of many interacting elements (Kauffman, S., J. theor. Biol.22, 437-467, 1969; The Origins of Order, Oxford University Press, Oxford, 1993). The dynamics of such networks is most stable for a connectivity of two inputs per element, and decreases dramatically with increasing number of connections. Whereas the simplicity of this model system allows the tracing of the dynamical trajectories, it leaves out many features of real biological connections. For instance, the dynamics has been studied in detail only for networks constructed by allowing all theoretically possible Boolean rules, whereas only a subset of them make sense in the material world. This paper analyses the effect on the dynamics of using only Boolean functions which are meaningful in a biological sense. This analysis is particularly relevant for nets with more than two inputs per element because biological networks generally appear to be more extensively interconnected. Sets of the meaningful functions were assembled for up to four inputs per element. The use of these rules results in a smaller number of distinct attractors which have a shorter length, with relatively little sensitivity to the size of the network and to the number of inputs per element. Forcing away the activator/inhibitor ratio from the expected value of 50% further enhances the stability. This effect is more pronounced for networks consisting of a majority of activators than for networks with a corresponding majority of inhibitors, indicating that the former allow the evolution of larger genetic networks. The data further support the idea of the usefulness of logical networks as a conceptual framework for the understanding of real-world phenomena.

  18. Controllability of Boolean networks via input controls under Harvey's update scheme.

    PubMed

    Luo, Chao; Zhang, Xiaolin; Shao, Rui; Zheng, YuanJie

    2016-02-01

    In this article, the controllability of Boolean networks via input controls under Harvey's update scheme is investigated. First, the model of Boolean control networks under Harvey's stochastic update is proposed, by means of semi-tensor product approach, which is converted into discrete-time linear representation. And, a general formula of control-depending network transition matrix is provided. Second