Science.gov

Sample records for genetic programming model

  1. Automatic reactor model synthesis with genetic programming.

    PubMed

    Dürrenmatt, David J; Gujer, Willi

    2012-01-01

    Successful modeling of wastewater treatment plant (WWTP) processes requires an accurate description of the plant hydraulics. Common methods such as tracer experiments are difficult and costly and thus have limited applicability in practice; engineers are often forced to rely on their experience only. An implementation of grammar-based genetic programming with an encoding to represent hydraulic reactor models as program trees should fill this gap: The encoding enables the algorithm to construct arbitrary reactor models compatible with common software used for WWTP modeling by linking building blocks, such as continuous stirred-tank reactors. Discharge measurements and influent and effluent concentrations are the only required inputs. As shown in a synthetic example, the technique can be used to identify a set of reactor models that perform equally well. Instead of being guided by experience, the most suitable model can now be chosen by the engineer from the set. In a second example, temperature measurements at the influent and effluent of a primary clarifier are used to generate a reactor model. A virtual tracer experiment performed on the reactor model has good agreement with a tracer experiment performed on-site.

  2. Downscaling GCM Output with Genetic Programming Model

    NASA Astrophysics Data System (ADS)

    Shi, X.; Dibike, Y. B.; Coulibaly, P.

    2004-05-01

    Climate change impact studies on watershed hydrology require reliable data at appropriate spatial and temporal resolution. However, the outputs of the current global climate models (GCMs) cannot be used directly because GCM do not provide hourly or daily precipitation and temperature reliable enough for hydrological modeling. Nevertheless, we can get more reliable data corresponding to future climate scenarios derived from GCM outputs using the so called 'downscaling techniques'. This study applies Genetic Programming (GP) based technique to downscale daily precipitation and temperature values at the Chute-du-Diable basin of the Saguenay watershed in Canada. In applying GP downscaling technique, the objective is to find a relationship between the large-scale predictor variables (NCEP data which provide daily information concerning the observed large-scale state of the atmosphere) and the predictand (meteorological data which describes conditions at the site scale). The selection of the most relevant predictor variables is achieved using the Pearson's coefficient of determination ( R2) (between the large-scale predictor variables and the daily meteorological data). In this case, the period (1961 - 2000) is identified to represent the current climate condition. For the forty years of data, the first 30 years (1961-1990) are considered for calibrating the models while the remaining ten years of data (1991-2000) are used to validate those models. In general, the R2 between the predictor variables and each predictand is very low in case of precipitation compared to that of maximum and minimum temperature. Moreover, the strength of individual predictors varies for every month and for each GP grammar. Therefore, the most appropriate combination of predictors has to be chosen by looking at the output analysis of all the twelve months and the different GP grammars. During the calibration of the GP model for precipitation downscaling, in addition to the mean daily

  3. Developing robotic behavior using a genetic programming model

    SciTech Connect

    Pryor, R.J.

    1998-01-01

    This report describes the methodology for using a genetic programming model to develop tracking behaviors for autonomous, microscale robotic vehicles. The use of such vehicles for surveillance and detection operations has become increasingly important in defense and humanitarian applications. Through an evolutionary process similar to that found in nature, the genetic programming model generates a computer program that when downloaded onto a robotic vehicle`s on-board computer will guide the robot to successfully accomplish its task. Simulations of multiple robots engaged in problem-solving tasks have demonstrated cooperative behaviors. This report also discusses the behavior model produced by genetic programming and presents some results achieved during the study.

  4. Monthly pan evaporation modeling using linear genetic programming

    NASA Astrophysics Data System (ADS)

    Guven, Aytac; Kisi, Ozgur

    2013-10-01

    This study compares the accuracy of linear genetic programming (LGP), fuzzy genetic (FG), adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and Stephens-Stewart (SS) methods in modeling pan evaporations. Monthly climatic data including solar radiation, air temperature, relative humidity, wind speed and pan evaporation from Antalya and Mersin stations, in Turkey are used in the study. The study composed of two parts. First part of the study focuses the comparison of LGP models with those of the FG, ANFIS, ANN and SS models in estimating pan evaporations of Antalya and Mersin stations, separately. From the comparison results, the LGP models are found to be better than the other models. Comparison of LGP models with the other models in estimating pan evaporations of the Mersin Station by using both stations' inputs is focused in the second part of the study. The results indicate that the LGP models better accuracy than the FG, ANFIS, ANN and SS models. It is seen that the pan evaporations can be successfully estimated by the LGP method.

  5. Suspended sediment modeling using genetic programming and soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Dailr, Ali Hosseinzadeh; Cimen, Mesut; Shiri, Jalal

    2012-07-01

    SummaryModeling suspended sediment load is an important factor in water resources engineering as it crucially affects the design and management of water resources structures. In this study the genetic programming (GP) technique was applied for estimating the daily suspended sediment load in two stations in Cumberland River in U.S. Daily flow and sediment data from 1972 to 1989 were used to train and test the applied genetic programming models. The effect of various GP operators on sediment load estimation was investigated. The optimal fitness function, operator functions, linking function and learning algorithm were obtained for modeling daily suspended sediment. The GP estimates were compared with those of the Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANNs) and Support Vector Machine (SVM) results, in term of coefficient of determination, mean absolute error, coefficient of residual mass and variance accounted for. The comparison results indicated that the GP is superior to the ANFIS, ANN and SVM models in estimating daily suspended sediment load.

  6. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    PubMed

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well.

  7. A wavelet-linear genetic programming model for sodium (Na+) concentration forecasting in rivers

    NASA Astrophysics Data System (ADS)

    Ravansalar, Masoud; Rajaee, Taher; Zounemat-Kermani, Mohammad

    2016-06-01

    The prediction of water quality parameters in water resources such as rivers is of importance issue that needs to be considered in better management of irrigation systems and water supplies. In this respect, this study proposes a new hybrid wavelet-linear genetic programming (WLGP) model for prediction of monthly sodium (Na+) concentration. The 23-year monthly data used in this study, were measured from the Asi River at the Demirköprü gauging station located in Antakya, Turkey. At first, the measured discharge (Q) and Na+ datasets are initially decomposed into several sub-series using discrete wavelet transform (DWT). Then, these new sub-series are imposed to the ad hoc linear genetic programming (LGP) model as input patterns to predict monthly Na+ one month ahead. The results of the new proposed WLGP model are compared with LGP, WANN and ANN models. Comparison of the models represents the superiority of the WLGP model over the LGP, WANN and ANN models such that the Nash-Sutcliffe efficiencies (NSE) for WLGP, WANN, LGP and ANN models were 0.984, 0.904, 0.484 and 0.351, respectively. The achieved results even points to the superiority of the single LGP model than the ANN model. Continuously, the capability of the proposed WLGP model in terms of prediction of the Na+ peak values is also presented in this study.

  8. Constraints in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    1996-01-01

    Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.

  9. Probabilistic Model Building Genetic Programming based on Estimation of Bayesian Network

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko; Iba, Hitoshi

    Genetic Programming (GP) is a powerful optimization algorithm, which employs the crossover for genetic operation. Because the crossover operator in GP randomly selects sub-trees, the building blocks may be destroyed by the crossover. Recently, algorithms called PMBGPs (Probabilistic Model Building GP) based on probabilistic techniques have been proposed in order to improve the problem mentioned above. We propose a new PMBGP employing Bayesian network for generating new individuals with a special chromosome called expanded parse tree, which much reduces a number of possible symbols at each node. Although the large number of symbols gives rise to the large conditional probability table and requires a lot of samples to estimate the interactions among nodes, a use of the expanded parse tree overcomes these problems. Computational experiments on two subjects demonstrate that our new PMBGP is much superior to prior probabilistic models.

  10. Modelling the effect of structural QSAR parameters on skin penetration using genetic programming

    NASA Astrophysics Data System (ADS)

    Chung, K. K.; Do, D. Q.

    2010-09-01

    In order to model relationships between chemical structures and biological effects in quantitative structure-activity relationship (QSAR) data, an alternative technique of artificial intelligence computing—genetic programming (GP)—was investigated and compared to the traditional method—statistical. GP, with the primary advantage of generating mathematical equations, was employed to model QSAR data and to define the most important molecular descriptions in QSAR data. The models predicted by GP agreed with the statistical results, and the most predictive models of GP were significantly improved when compared to the statistical models using ANOVA. Recently, artificial intelligence techniques have been applied widely to analyse QSAR data. With the capability of generating mathematical equations, GP can be considered as an effective and efficient method for modelling QSAR data.

  11. Genetic programming for evolving due-date assignment models in job shop environments.

    PubMed

    Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen

    2014-01-01

    Due-date assignment plays an important role in scheduling systems and strongly influences the delivery performance of job shops. Because of the stochastic and dynamic nature of job shops, the development of general due-date assignment models (DDAMs) is complicated. In this study, two genetic programming (GP) methods are proposed to evolve DDAMs for job shop environments. The experimental results show that the evolved DDAMs can make more accurate estimates than other existing dynamic DDAMs with promising reusability. In addition, the evolved operation-based DDAMs show better performance than the evolved DDAMs employing aggregate information of jobs and machines.

  12. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2016-05-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  13. Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches.

    PubMed

    Oksel, Ceyda; Winkler, David A; Ma, Cai Y; Wilkins, Terry; Wang, Xue Z

    2016-09-01

    The number of engineered nanomaterials (ENMs) being exploited commercially is growing rapidly, due to the novel properties they exhibit. Clearly, it is important to understand and minimize any risks to health or the environment posed by the presence of ENMs. Data-driven models that decode the relationships between the biological activities of ENMs and their physicochemical characteristics provide an attractive means of maximizing the value of scarce and expensive experimental data. Although such structure-activity relationship (SAR) methods have become very useful tools for modelling nanotoxicity endpoints (nanoSAR), they have limited robustness and predictivity and, most importantly, interpretation of the models they generate is often very difficult. New computational modelling tools or new ways of using existing tools are required to model the relatively sparse and sometimes lower quality data on the biological effects of ENMs. The most commonly used SAR modelling methods work best with large datasets, are not particularly good at feature selection, can be relatively opaque to interpretation, and may not account for nonlinearity in the structure-property relationships. To overcome these limitations, we describe the application of a novel algorithm, a genetic programming-based decision tree construction tool (GPTree) to nanoSAR modelling. We demonstrate the use of GPTree in the construction of accurate and interpretable nanoSAR models by applying it to four diverse literature datasets. We describe the algorithm and compare model results across the four studies. We show that GPTree generates models with accuracies equivalent to or superior to those of prior modelling studies on the same datasets. GPTree is a robust, automatic method for generation of accurate nanoSAR models with important advantages that it works with small datasets, automatically selects descriptors, and provides significantly improved interpretability of models.

  14. Discovering link communities in complex networks by an integer programming model and a genetic algorithm.

    PubMed

    Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua

    2013-01-01

    Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks.

  15. Establishment of the mathematical model for diagnosing the engine valve faults by genetic programming

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Xian

    2006-05-01

    Available machine fault diagnostic methods show unsatisfactory performances on both on-line and intelligent analyses because their operations involve intensive calculations and are labour intensive. Aiming at improving this situation, this paper describes the development of an intelligent approach by using the Genetic Programming (abbreviated as GP) method. Attributed to the simple calculation of the mathematical model being constructed, different kinds of machine faults may be diagnosed correctly and quickly. Moreover, human input is significantly reduced in the process of fault diagnosis. The effectiveness of the proposed strategy is validated by an illustrative example, in which three kinds of valve states inherent in a six-cylinders/four-stroke cycle diesel engine, i.e. normal condition, valve-tappet clearance and gas leakage faults, are identified. In the example, 22 mathematical functions have been specially designed and 8 easily obtained signal features are used to construct the diagnostic model. Different from existing GPs, the diagnostic tree used in the algorithm is constructed in an intelligent way by applying a power-weight coefficient to each feature. The power-weight coefficients vary adaptively between 0 and 1 during the evolutionary process. Moreover, different evolutionary strategies are employed, respectively for selecting the diagnostic features and functions, so that the mathematical functions are sufficiently utilized and in the meantime, the repeated use of signal features may be fully avoided. The experimental results are illustrated diagrammatically in the following sections.

  16. Neural networks with multiple general neuron models: a hybrid computational intelligence approach using Genetic Programming.

    PubMed

    Barton, Alan J; Valdés, Julio J; Orchard, Robert

    2009-01-01

    Classical neural networks are composed of neurons whose nature is determined by a certain function (the neuron model), usually pre-specified. In this paper, a type of neural network (NN-GP) is presented in which: (i) each neuron may have its own neuron model in the form of a general function, (ii) any layout (i.e network interconnection) is possible, and (iii) no bias nodes or weights are associated to the connections, neurons or layers. The general functions associated to a neuron are learned by searching a function space. They are not provided a priori, but are rather built as part of an Evolutionary Computation process based on Genetic Programming. The resulting network solutions are evaluated based on a fitness measure, which may, for example, be based on classification or regression errors. Two real-world examples are presented to illustrate the promising behaviour on classification problems via construction of a low-dimensional representation of a high-dimensional parameter space associated to the set of all network solutions.

  17. Optimal Modeling of Urban Ambient Air Ozone Concentration Based on Its Precursors' Concentrations and Temperature, Employing Genetic Programming and Genetic Algorithm.

    PubMed

    Mousavi, Seyed Mahmoud; Husseinzadeh, Danial; Alikhani, Sadegh

    2014-04-01

    Efficient models are required to predict the optimum values of ozone concentration in different levels of its precursors' concentrations and temperatures. A novel model based on the application of a genetic programming (GP) optimization is presented in this article. Ozone precursors' concentrations and run time average temperature have been chosen as model's parameters. Generalization performances of two different homemade models based on genetic programming and genetic algorithm (GA), which can be used for calculating theoretical ozone concentration, are compared with conventional semi-empirical model performance. Experimental data of Mashhad city ambient air have been employed to investigate the prediction ability of properly trained GP, GA, and conventional semi-empirical models. It is clearly demonstrated that the in-house algorithm which is used for the model based on GP, provides better generalization performance over the model optimized with GA and the conventional semi-empirical ones. The proposed model is found accurate enough and can be used for urban air ozone concentration prediction.

  18. Modelling biological evolvability: implicit context and variation filtering in enzyme genetic programming.

    PubMed

    Lones, Michael A; Tyrrell, Andy M

    2004-01-01

    This paper describes recent insights into the role of implicit context within the representations of evolving artefacts and specifically within the program representation used by enzyme genetic programming. Implicit context occurs within self-organising systems where a component's connectivity is both determined implicitly by its own definition and is specified in terms of the behavioural context of other components. This paper argues that implicit context is an important source of evolvability and presents experimental evidence that supports this assertion. In particular, it introduces the notion of variation filtering, suggesting that the use of implicit context within representations leads to meaningful variation filtering whereby inappropriate change is ignored and meaningful change is encouraged during evolution.

  19. Atmospheric Downscaling using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Zerenner, Tanja; Venema, Victor; Simmer, Clemens

    2013-04-01

    Coupling models for the different components of the Soil-Vegetation-Atmosphere-System requires up-and downscaling procedures. Subject of our work is the downscaling scheme used to derive high resolution forcing data for land-surface and subsurface models from coarser atmospheric model output. The current downscaling scheme [Schomburg et. al. 2010, 2012] combines a bi-quadratic spline interpolation, deterministic rules and autoregressive noise. For the development of the scheme, training and validation data sets have been created by carrying out high-resolution runs of the atmospheric model. The deterministic rules in this scheme are partly based on known physical relations and partly determined by an automated search for linear relationships between the high resolution fields of the atmospheric model output and high resolution data on surface characteristics. Up to now deterministic rules are available for downscaling surface pressure and partially, depending on the prevailing weather conditions, for near surface temperature and radiation. Aim of our work is to improve those rules and to find deterministic rules for the remaining variables, which require downscaling, e.g. precipitation or near surface specifc humidity. To accomplish that, we broaden the search by allowing for interdependencies between different atmospheric parameters, non-linear relations, non-local and time-lagged relations. To cope with the vast number of possible solutions, we use genetic programming, a method from machine learning, which is based on the principles of natural evolution. We are currently working with GPLAB, a Genetic Programming toolbox for Matlab. At first we have tested the GP system to retrieve the known physical rule for downscaling surface pressure, i.e. the hydrostatic equation, from our training data. We have found this to be a simple task to the GP system. Furthermore we have improved accuracy and efficiency of the GP solution by implementing constant variation and

  20. Texture segmentation by genetic programming.

    PubMed

    Song, Andy; Ciesielski, Vic

    2008-01-01

    This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.

  1. Genetic parts to program bacteria.

    PubMed

    Voigt, Christopher A

    2006-10-01

    Genetic engineering is entering a new era, where microorganisms can be programmed using synthetic constructs of DNA encoding logic and operational commands. A toolbox of modular genetic parts is being developed, comprised of cell-based environmental sensors and genetic circuits. Systems have already been designed to be interconnected with each other and interfaced with the control of cellular processes. Engineering theory will provide a predictive framework to design operational multicomponent systems. On the basis of these developments, increasingly complex cellular machines are being constructed to build specialty chemicals, weave biomaterials, and to deliver therapeutics.

  2. Toward improving the reliability of hydrologic prediction: Model structure uncertainty and its quantification using ensemble-based genetic programming framework

    NASA Astrophysics Data System (ADS)

    Parasuraman, Kamban; Elshorbagy, Amin

    2008-12-01

    Uncertainty analysis is starting to be widely acknowledged as an integral part of hydrological modeling. The conventional treatment of uncertainty analysis in hydrologic modeling is to assume a deterministic model structure, and treat its associated parameters as imperfectly known, thereby neglecting the uncertainty associated with the model structure. In this paper, a modeling framework that can explicitly account for the effect of model structure uncertainty has been proposed. The modeling framework is based on initially generating different realizations of the original data set using a non-parametric bootstrap method, and then exploiting the ability of the self-organizing algorithms, namely genetic programming, to evolve their own model structure for each of the resampled data sets. The resulting ensemble of models is then used to quantify the uncertainty associated with the model structure. The performance of the proposed modeling framework is analyzed with regards to its ability in characterizing the evapotranspiration process at the Southwest Sand Storage facility, located near Ft. McMurray, Alberta. Eddy-covariance-measured actual evapotranspiration is modeled as a function of net radiation, air temperature, ground temperature, relative humidity, and wind speed. Investigating the relation between model complexity, prediction accuracy, and uncertainty, two sets of experiments were carried out by varying the level of mathematical operators that can be used to define the predictand-predictor relationship. While the first set uses just the additive operators, the second set uses both the additive and the multiplicative operators to define the predictand-predictor relationship. The results suggest that increasing the model complexity may lead to better prediction accuracy but at an expense of increasing uncertainty. Compared to the model parameter uncertainty, the relative contribution of model structure uncertainty to the predictive uncertainty of a model is

  3. From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming.

    PubMed

    Mendyk, Aleksander; Güres, Sinan; Jachowicz, Renata; Szlęk, Jakub; Polak, Sebastian; Wiśniowska, Barbara; Kleinebudde, Peter

    2015-01-01

    The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.

  4. Modelling and prediction of complex non-linear processes by using Pareto multi-objective genetic programming

    NASA Astrophysics Data System (ADS)

    Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.

    2016-05-01

    In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.

  5. Programming models

    SciTech Connect

    Daniel, David J; Mc Pherson, Allen; Thorp, John R; Barrett, Richard; Clay, Robert; De Supinski, Bronis; Dube, Evi; Heroux, Mike; Janssen, Curtis; Langer, Steve; Laros, Jim

    2011-01-14

    A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

  6. Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model

    NASA Astrophysics Data System (ADS)

    Muduli, Pradyut; Das, Sarat

    2014-06-01

    This paper discusses the evaluation of liquefaction potential of soil based on standard penetration test (SPT) dataset using evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). The liquefaction classification accuracy (94.19%) of the developed liquefaction index (LI) model is found to be better than that of available artificial neural network (ANN) model (88.37%) and at par with the available support vector machine (SVM) model (94.19%) on the basis of the testing data. Further, an empirical equation is presented using MGGP to approximate the unknown limit state function representing the cyclic resistance ratio (CRR) of soil based on developed LI model. Using an independent database of 227 cases, the overall rates of successful prediction of occurrence of liquefaction and non-liquefaction are found to be 87, 86, and 84% by the developed MGGP based model, available ANN and the statistical models, respectively, on the basis of calculated factor of safety (F s) against the liquefaction occurrence.

  7. Application of Genetic Programing to Develop a Modular Model for the Simulation of Stream Flow Time Series

    NASA Astrophysics Data System (ADS)

    Meshgi, A.; Babovic, V.; Chui, T. F. M.; Schmitter, P.

    2014-12-01

    Developing reliable methods to estimate stream flow has been a subject of interest due to its importance in planning, design and management of water resources within a basin. Machine learning tools such as Artificial Neural Network (ANN) and Genetic Programming (GP) have been widely applied for rainfall-runoff modeling as they require less computational time as compared to physically-based models. As GP is able to generate a function with understandable structure, it may offer advantages over other data driven techniques and therefore has been used in different studies to generate rainfall-runoff functions. However, to date, proposed formulations only contain rainfall and/or streamflow data and consequently are local and cannot be generalized and adopted in other catchments which have different physical characteristics. This study investigated the capability of GP in developing a physically interpretable model with understandable structure to simulate stream flow based on hydrological parameters (e.g. precipitation) and catchment conditions (e.g., initial groundwater table elevation and area of the catchment) by following a modular approach. The modular model resulted in two sub-models where the baseflow was first predicted and the direct runoff was then estimated for a semi-urban catchment in Singapore. The simulated results matched very well with observed data in both the training and the testing of data sets, giving NSEs of 0.97 and 0.96 respectively demonstrated the successful estimation of stream flow using the modular model derived in this study. The results of this study indicate that GP is an effective tool in developing a physically interpretable model with understandable structure to simulate stream flow that can be transferred to other catchments.

  8. Dynamical genetic programming in XCSF.

    PubMed

    Preen, Richard J; Bull, Larry

    2013-01-01

    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.

  9. The Genetic Programming of Industrial Microorganisms.

    ERIC Educational Resources Information Center

    Hopwood, David A.

    1981-01-01

    Traces the development of the field of industrial microbial genetics, describing a range of techniques for genetic programing. Includes a discussion of site-directed mutagenesis, protoplast fusion, and recombinant DNA manipulations. (CS)

  10. On Using Surrogates with Genetic Programming.

    PubMed

    Hildebrandt, Torsten; Branke, Jürgen

    2015-01-01

    One way to accelerate evolutionary algorithms with expensive fitness evaluations is to combine them with surrogate models. Surrogate models are efficiently computable approximations of the fitness function, derived by means of statistical or machine learning techniques from samples of fully evaluated solutions. But these models usually require a numerical representation, and therefore cannot be used with the tree representation of genetic programming (GP). In this paper, we present a new way to use surrogate models with GP. Rather than using the genotype directly as input to the surrogate model, we propose using a phenotypic characterization. This phenotypic characterization can be computed efficiently and allows us to define approximate measures of equivalence and similarity. Using a stochastic, dynamic job shop scenario as an example of simulation-based GP with an expensive fitness evaluation, we show how these ideas can be used to construct surrogate models and improve the convergence speed and solution quality of GP.

  11. On Using Surrogates with Genetic Programming.

    PubMed

    Hildebrandt, Torsten; Branke, Jürgen

    2015-01-01

    One way to accelerate evolutionary algorithms with expensive fitness evaluations is to combine them with surrogate models. Surrogate models are efficiently computable approximations of the fitness function, derived by means of statistical or machine learning techniques from samples of fully evaluated solutions. But these models usually require a numerical representation, and therefore cannot be used with the tree representation of genetic programming (GP). In this paper, we present a new way to use surrogate models with GP. Rather than using the genotype directly as input to the surrogate model, we propose using a phenotypic characterization. This phenotypic characterization can be computed efficiently and allows us to define approximate measures of equivalence and similarity. Using a stochastic, dynamic job shop scenario as an example of simulation-based GP with an expensive fitness evaluation, we show how these ideas can be used to construct surrogate models and improve the convergence speed and solution quality of GP. PMID:24967694

  12. Diversity Maintenance in Genetic Programming

    NASA Astrophysics Data System (ADS)

    Motoki, Tatsuya; Numaguchi, Yasushi

    This paper is motivated by an experimental result that better performing genetic programming runs tend to have higher phenotypic diversity. To maintain phenotypic diversity, we apply implicit fitness sharing and its variant, called unfitness multiplying. To apply these methods to problems in which individuals have infinite kinds of possible behaviours, we classify posible behaviours into 50 achievement levels, and assign a reward or a penalty to each level. In implicit fitness sharing a reward is shared out among individuals with the same achievement level, and in unfitness multiplying a penalty is multiplied by the number of individuals with the same level and is distributed to related individuals. Five benchmark problems (11-multiplexer, sextic polynomial, four-sine, intertwined spiral, and artificial ant problems) are used to illustrate the effect of the methods. The results show that our methods clearly promote diversity and lead population to a smooth frequency distribution of achievement levels, and that our methods usually perform better than the original implicit fitness sharing on success rate and the best (raw) fitness. We also observe that the unfitness multiplying makes a quite different ranking over individuals than the one by the implicit fitness sharing.

  13. Functional Localization of Genetic Network Programming

    NASA Astrophysics Data System (ADS)

    Eto, Shinji; Hirasawa, Kotaro; Hu, Jinglu

    According to the knowledge of brain science, it is suggested that there exists cerebral functional localization, which means that a specific part of the cerebrum is activated depending on various kinds of information human receives. The aim of this paper is to build an artificial model to realize functional localization based on Genetic Network Programming (GNP), a new evolutionary computation method recently developed. GNP has a directed graph structure suitable for realizing functional localization. We studied the basic characteristics of the proposed system by making GNP work in a functionally localized way.

  14. Genetic algorithms as discovery programs

    SciTech Connect

    Hilliard, M.R.; Liepins, G.

    1986-01-01

    Genetic algorithms are mathematical counterparts to natural selection and gene recombination. As such, they have provided one of the few significant breakthroughs in machine learning. Used with appropriate reward functions and apportionment of credit, they have been successfully applied to gas pipeline operation, x-ray registration and mathematical optimization problems. This paper discusses the basics of genetic algorithms, describes a few successes, and reports on current progress at Oak Ridge National Laboratory in applications to set covering and simulated robots.

  15. Genetic Parallel Programming: design and implementation.

    PubMed

    Cheang, Sin Man; Leung, Kwong Sak; Lee, Kin Hong

    2006-01-01

    This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential program if required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.

  16. Successful technical trading agents using genetic programming.

    SciTech Connect

    Othling, Andrew S.; Kelly, John A.; Pryor, Richard J.; Farnsworth, Grant V.

    2004-10-01

    Genetic programming (GP) has proved to be a highly versatile and useful tool for identifying relationships in data for which a more precise theoretical construct is unavailable. In this project, we use a GP search to develop trading strategies for agent based economic models. These strategies use stock prices and technical indicators, such as the moving average convergence/divergence and various exponentially weighted moving averages, to generate buy and sell signals. We analyze the effect of complexity constraints on the strategies as well as the relative performance of various indicators. We also present innovations in the classical genetic programming algorithm that appear to improve convergence for this problem. Technical strategies developed by our GP algorithm can be used to control the behavior of agents in economic simulation packages, such as ASPEN-D, adding variety to the current market fundamentals approach. The exploitation of arbitrage opportunities by technical analysts may help increase the efficiency of the simulated stock market, as it does in the real world. By improving the behavior of simulated stock markets, we can better estimate the effects of shocks to the economy due to terrorism or natural disasters.

  17. Improving Search Properties in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.; DeWeese, Scott

    1997-01-01

    With the advancing computer processing capabilities, practical computer applications are mostly limited by the amount of human programming required to accomplish a specific task. This necessary human participation creates many problems, such as dramatically increased cost. To alleviate the problem, computers must become more autonomous. In other words, computers must be capable to program/reprogram themselves to adapt to changing environments/tasks/demands/domains. Evolutionary computation offers potential means, but it must be advanced beyond its current practical limitations. Evolutionary algorithms model nature. They maintain a population of structures representing potential solutions to the problem at hand. These structures undergo a simulated evolution by means of mutation, crossover, and a Darwinian selective pressure. Genetic programming (GP) is the most promising example of an evolutionary algorithm. In GP, the structures that evolve are trees, which is a dramatic departure from previously used representations such as strings in genetic algorithms. The space of potential trees is defined by means of their elements: functions, which label internal nodes, and terminals, which label leaves. By attaching semantic interpretation to those elements, trees can be interpreted as computer programs (given an interpreter), evolved architectures, etc. JSC has begun exploring GP as a potential tool for its long-term project on evolving dextrous robotic capabilities. Last year we identified representation redundancies as the primary source of inefficiency in GP. Subsequently, we proposed a method to use problem constraints to reduce those redundancies, effectively reducing GP complexity. This method was implemented afterwards at the University of Missouri. This summer, we have evaluated the payoff from using problem constraints to reduce search complexity on two classes of problems: learning boolean functions and solving the forward kinematics problem. We have also

  18. Genetic Programming Transforms in Linear Regression Situations

    NASA Astrophysics Data System (ADS)

    Castillo, Flor; Kordon, Arthur; Villa, Carlos

    The chapter summarizes the use of Genetic Programming (GP) inMultiple Linear Regression (MLR) to address multicollinearity and Lack of Fit (LOF). The basis of the proposed method is applying appropriate input transforms (model respecification) that deal with these issues while preserving the information content of the original variables. The transforms are selected from symbolic regression models with optimal trade-off between accuracy of prediction and expressional complexity, generated by multiobjective Pareto-front GP. The chapter includes a comparative study of the GP-generated transforms with Ridge Regression, a variant of ordinary Multiple Linear Regression, which has been a useful and commonly employed approach for reducing multicollinearity. The advantages of GP-generated model respecification are clearly defined and demonstrated. Some recommendations for transforms selection are given as well. The application benefits of the proposed approach are illustrated with a real industrial application in one of the broadest empirical modeling areas in manufacturing - robust inferential sensors. The chapter contributes to increasing the awareness of the potential of GP in statistical model building by MLR.

  19. Filter Circuit Design by Parallel Genetic Programming

    NASA Astrophysics Data System (ADS)

    Yano, Yuichi; Kato, Toshiji; Inoue, Kaoru; Miki, Mitsunori

    Genetic Programming (GP) is an extension of Genetic Algorithm(GA) to handle more structural problems. In this paper, an approach to filter circuit design by GP is proposed. By designing a gene which includes not only the parameters of consisting elements, but also the structural information of the circuit, it becomes possible to apply the proposed approach to various types of filter circuits. GP depends much on trial and error due to its probabilitic nature. To decrease this uncertainty and ensure the progress of the evolution, Parallel GP with multiple populations with the island model is also proposed. An MPI-based cluster system is used for realization of this parallel computing where each island correspondsd to each node. A lowpass and an asymmetric bandpass filters are designed. One hundred times of trials for multiple populations with and without migrations are tested in the design of lowpass filter to confirm the validity of the proposed method. In the asymmetric bandpass filter design, the results are compared with those of the circuit designed by hand to confirm the effectiveness of the proposed method. The proposed approach is applicable to various types of filter circuits. It can contribute to an automated design procedure, where it would require a expirenced designer if done by hand. It is also possible to obtain a new circuit design which would not be possible if done by hand.

  20. Biotech 101: an educational outreach program in genetics and biotechnology.

    PubMed

    East, Kelly M; Hott, Adam M; Callanan, Nancy P; Lamb, Neil E

    2012-10-01

    Recent advances in research and biotechnology are making genetics and genomics increasingly relevant to the lives and health of the general public. For the public to make informed healthcare and public policy decisions relating to genetic information, there is a need for increased genetic literacy. Biotech 101 is a free, short-course for the local community introducing participants to topics in genetics, genomics, and biotechnology, created at the HudsonAlpha Institute for Biotechnology. This study evaluated the effectiveness of Biotech 101 in increasing the genetic literacy of program participants through pre-and-post surveys. Genetic literacy was measured through increases in self-perceived knowledge for each content area covered through the course and the self-reported impact the course had on various aspects of participants' lives. Three hundred ninety-two individuals attended Biotech 101 during the first three course offerings. Participants reported a significant increase in self-perceived knowledge for each content area (p < 0.01). Participants also reported the program had high levels of impact on their lives and decision-making, a high likelihood for continued self-learning, and overwhelming satisfaction with course content and logistics. Biotech 101 is an effective mechanism for impacting participants' lives and genetic literacy and serves as a model for other similar programs, adding to the currently limited evidence base regarding public educational strategies in genetics and biotechnology.

  1. Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression.

    PubMed

    Melas, P A; Lennartsson, A; Vakifahmetoglu-Norberg, H; Wei, Y; Åberg, E; Werme, M; Rogdaki, M; Mannervik, M; Wegener, G; Brené, S; Mathé, A A; Lavebratt, C

    2013-05-07

    Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcription and DNA-protein interactions. Genotyping studies showed that the C-allele of rs105431668 is present in a genetic rat model of depression (Flinders sensitive line; FSL), while the SNP's T-allele is present in its controls (Flinders resistant line; FRL). In vivo experiments revealed binding of a transcription factor (CREB2) and a histone acetyltransferase (Ep300) only at the SNP locus of the FRL. Accordingly, the FRL had increased hippocampal levels of Npy mRNA and H3K18 acetylation; a gene-activating histone modification maintained by Ep300. Next, based on previous studies showing antidepressant-like effects of physical activity in the FSL, we hypothesized that physical activity may affect Npy's epigenetic status. In line with this assumption, physical activity was associated with increased levels of Npy mRNA and H3K18 acetylation. Physical activity was also associated with reduced mRNA levels of a histone deacetylase (Hdac5). Conclusively, the rat rs105431668 appears to be a functional Npy SNP that may underlie depression-like characteristics. In addition, the achieved epigenetic reprogramming of Npy provides molecular support for the putative effectiveness of physical activity as a non-pharmacological antidepressant.

  2. Genetic Network Programming with Reconstructed Individuals

    NASA Astrophysics Data System (ADS)

    Ye, Fengming; Mabu, Shingo; Wang, Lutao; Eto, Shinji; Hirasawa, Kotaro

    A lot of research on evolutionary computation has been done and some significant classical methods such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strategies (ES) have been studied. Recently, a new approach named Genetic Network Programming (GNP) has been proposed. GNP can evolve itself and find the optimal solution. It is based on the idea of Genetic Algorithm and uses the data structure of directed graphs. Many papers have demonstrated that GNP can deal with complex problems in the dynamic environments very efficiently and effectively. As a result, recently, GNP is getting more and more attentions and is used in many different areas such as data mining, extracting trading rules of stock markets, elevator supervised control systems, etc., and GNP has obtained some outstanding results. Focusing on the GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP-RI). The aim of GNP-RI is to balance the exploitation and exploration of GNP, that is, to strengthen the exploitation ability by using the exploited information extensively during the evolution process of GNP and finally obtain better performances than that of GNP. In the proposed method, the worse individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worse individuals mimics the maturing phenomenon in nature, where bad individuals can become smarter after receiving a good education. In this paper, GNP-RI is applied to the tile-world problem which is an excellent bench mark for evaluating the proposed architecture. The performance of GNP-RI is compared with that of the conventional GNP. The simulation results show some advantages of GNP-RI demonstrating its superiority over the conventional GNPs.

  3. Improved model reduction and tuning of fractional-order PI(λ)D(μ) controllers for analytical rule extraction with genetic programming.

    PubMed

    Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava

    2012-03-01

    Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples.

  4. Modeling EERE deployment programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  5. Mendelian Genetics: Paradigm, Conjecture, or Research Program.

    ERIC Educational Resources Information Center

    Oldham, V.; Brouwer, W.

    1984-01-01

    Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…

  6. Feature extraction from multiple data sources using genetic programming.

    SciTech Connect

    Szymanski, J. J.; Brumby, Steven P.; Pope, P. A.; Eads, D. R.; Galassi, M. C.; Harvey, N. R.; Perkins, S. J.; Porter, R. B.; Theiler, J. P.; Young, A. C.; Bloch, J. J.; David, N. A.; Esch-Mosher, D. M.

    2002-01-01

    Feature extration from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. The tool used is the GENetic Imagery Exploitation (GENIE) software, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land-cover features including towns, grasslands, wild fire burn scars, and several types of forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.

  7. Duplication of coding segments in genetic programming

    SciTech Connect

    Haynes, T.

    1996-12-31

    Research into the utility of non-coding segments, or introns, in genetic-based encodings has shown that they expedite the evolution of solutions in domains by protecting building blocks against destructive crossover. We consider a genetic programming system where non-coding segments can be removed, and the resultant chromosomes returned into the population. This parsimonious repair leads to premature convergence, since as we remove the naturally occurring non-coding segments, we strip away their protective backup feature. We then duplicate the coding segments in the repaired chromosomes, and place the modified chromosomes into the population. The duplication method significantly improves the learning rate in the domain we have considered. We also show that this method can be applied to other domains.

  8. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  9. Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Meshgi, Ali; Schmitter, Petra; Chui, Ting Fong May; Babovic, Vladan

    2015-06-01

    The decrease of pervious areas during urbanization has severely altered the hydrological cycle, diminishing infiltration and therefore sub-surface flows during rainfall events, and further increasing peak discharges in urban drainage infrastructure. Designing appropriate waster sensitive infrastructure that reduces peak discharges requires a better understanding of land use specific contributions towards surface and sub-surface processes. However, to date, such understanding in tropical urban environments is still limited. On the other hand, the rainfall-runoff process in tropical urban systems experiences a high degree of non-linearity and heterogeneity. Therefore, this study used Genetic Programming to establish a physically interpretable modular model consisting of two sub-models: (i) a baseflow module and (ii) a quick flow module to simulate the two hydrograph flow components. The relationship between the input variables in the model (i.e. meteorological data and catchment initial conditions) and its overall structure can be explained in terms of catchment hydrological processes. Therefore, the model is a partial greying of what is often a black-box approach in catchment modelling. The model was further generalized to the sub-catchments of the main catchment, extending the potential for more widespread applications. Subsequently, this study used the modular model to predict both flow components of events as well as time series, and applied optimization techniques to estimate the contributions of various land uses (i.e. impervious, steep grassland, grassland on mild slope, mixed grasses and trees and relatively natural vegetation) towards baseflow and quickflow in tropical urban systems. The sub-catchment containing the highest portion of impervious surfaces (40% of the area) contributed the least towards the baseflow (6.3%) while the sub-catchment covered with 87% of relatively natural vegetation contributed the most (34.9%). The results from the quickflow

  10. Genetic programming as alternative for predicting development effort of individual software projects.

    PubMed

    Chavoya, Arturo; Lopez-Martin, Cuauhtemoc; Andalon-Garcia, Irma R; Meda-Campaña, M E

    2012-01-01

    Statistical and genetic programming techniques have been used to predict the software development effort of large software projects. In this paper, a genetic programming model was used for predicting the effort required in individually developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating them. The models used two kinds of lines of code as well as programming language experience as independent variables. Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software development effort of individual projects when these projects have been developed in a disciplined manner within a development-controlled environment.

  11. Genetic Programming as Alternative for Predicting Development Effort of Individual Software Projects

    PubMed Central

    Chavoya, Arturo; Lopez-Martin, Cuauhtemoc; Andalon-Garcia, Irma R.; Meda-Campaña, M. E.

    2012-01-01

    Statistical and genetic programming techniques have been used to predict the software development effort of large software projects. In this paper, a genetic programming model was used for predicting the effort required in individually developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating them. The models used two kinds of lines of code as well as programming language experience as independent variables. Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software development effort of individual projects when these projects have been developed in a disciplined manner within a development-controlled environment. PMID:23226305

  12. Discovering Knowledge from Noisy Databases Using Genetic Programming.

    ERIC Educational Resources Information Center

    Wong, Man Leung; Leung, Kwong Sak; Cheng, Jack C. Y.

    2000-01-01

    Presents a framework that combines Genetic Programming and Inductive Logic Programming, two approaches in data mining, to induce knowledge from noisy databases. The framework is based on a formalism of logic grammars and is implemented as a data mining system called LOGENPRO (Logic Grammar-based Genetic Programming System). (Contains 34…

  13. Evaluation of a statewide program in genetic diseases.

    PubMed

    Mitchell, J A; Petroski, G

    1998-07-01

    We used the Genetics Office Automation System (GOAS), a database management system designed to facilitate collection and analysis of medical genetic data, to evaluate the Missouri Genetics Disease Program (MGDP). From 1985 through 1995, patient data were collected at four tertiary care genetic centers. The number of genetic visits per 100,000 people more than doubled from 1985 through 1995. The results of subpopulation analyses indicate that the MGDP has facilitated improvements in: (1) services for newborns and infants, (2) rural outreach programs, and (3) evaluation of the incidence and impact of genetic disorders. PMID:9677054

  14. EVOLVING RETRIEVAL ALGORITHMS WITH A GENETIC PROGRAMMING SCHEME

    SciTech Connect

    J. THEILER; ET AL

    1999-06-01

    The retrieval of scene properties (surface temperature, material type, vegetation health, etc.) from remotely sensed data is the ultimate goal of many earth observing satellites. The algorithms that have been developed for these retrievals are informed by physical models of how the raw data were generated. This includes models of radiation as emitted and/or rejected by the scene, propagated through the atmosphere, collected by the optics, detected by the sensor, and digitized by the electronics. To some extent, the retrieval is the inverse of this ''forward'' modeling problem. But in contrast to this forward modeling, the practical task of making inferences about the original scene usually requires some ad hoc assumptions, good physical intuition, and a healthy dose of trial and error. The standard MTI data processing pipeline will employ algorithms developed with this traditional approach. But we will discuss some preliminary research on the use of a genetic programming scheme to ''evolve'' retrieval algorithms. Such a scheme cannot compete with the physical intuition of a remote sensing scientist, but it may be able to automate some of the trial and error. In this scenario, a training set is used, which consists of multispectral image data and the associated ''ground truth;'' that is, a registered map of the desired retrieval quantity. The genetic programming scheme attempts to combine a core set of image processing primitives to produce an IDL (Interactive Data Language) program which estimates this retrieval quantity from the raw data.

  15. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

    2007-11-08

    The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

  16. Stream Flow Prediction by Remote Sensing and Genetic Programming

    NASA Technical Reports Server (NTRS)

    Chang, Ni-Bin

    2009-01-01

    A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.

  17. Controlling Individuals Growth in Semantic Genetic Programming through Elitist Replacement.

    PubMed

    Castelli, Mauro; Vanneschi, Leonardo; Popovič, Aleš

    2016-01-01

    In 2012, Moraglio and coauthors introduced new genetic operators for Genetic Programming, called geometric semantic genetic operators. They have the very interesting advantage of inducing a unimodal error surface for any supervised learning problem. At the same time, they have the important drawback of generating very large data models that are usually very hard to understand and interpret. The objective of this work is to alleviate this drawback, still maintaining the advantage. More in particular, we propose an elitist version of geometric semantic operators, in which offspring are accepted in the new population only if they have better fitness than their parents. We present experimental evidence, on five complex real-life test problems, that this simple idea allows us to obtain results of a comparable quality (in terms of fitness), but with much smaller data models, compared to the standard geometric semantic operators. In the final part of the paper, we also explain the reason why we consider this a significant improvement, showing that the proposed elitist operators generate manageable models, while the models generated by the standard operators are so large in size that they can be considered unmanageable.

  18. Genetic programming techniques for thin-wire antennas

    NASA Astrophysics Data System (ADS)

    O'Donnell, Terry H.

    2007-04-01

    Simple genetic algorithm optimizations often utilize fixed-length chromosomes containing a predefined set of parameters to be optimized. While such algorithms have successfully created electrically small narrow-band and large wide-band military antennas, they require the antenna designer to have a fairly concrete antenna representation prior to exercising the genetic algorithm. In this research we investigate the use of genetic programming (GP) techniques to "program" the design of simple thin-wire antennas. Genetic programming techniques offer the potential to create random, multi-arm, multi-dimension antennas from variable length, tree-like chromosomes. We present a new genetic programming paradigm for creating multi-branched, thin-wire, genetic antennas and describe how GP commands are represented and decoded into physical antenna structures. We present preliminary results obtained from this algorithm showing evolutions along Pareto fronts representing antenna electrical size, VSWR, and antenna quality factor (Q).

  19. Routine Discovery of Complex Genetic Models using Genetic Algorithms

    PubMed Central

    Moore, Jason H.; Hahn, Lance W.; Ritchie, Marylyn D.; Thornton, Tricia A.; White, Bill C.

    2010-01-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes. PMID:20948983

  20. Routine Discovery of Complex Genetic Models using Genetic Algorithms.

    PubMed

    Moore, Jason H; Hahn, Lance W; Ritchie, Marylyn D; Thornton, Tricia A; White, Bill C

    2004-02-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes.

  1. Climate system modeling program

    SciTech Connect

    1995-12-31

    The Climate System Modeling Project is a component activity of NSF's Climate Modeling, Analysis and Prediction Program, supported by the Atmospheric Sciences Program, Geosciences Directorate. Its objective is to accelerate progress toward reliable prediction of global and regional climate changes in the decades ahead. CSMP operates through workshops, support for post-docs and graduate students and other collaborative activities designed to promote interdisciplinary and strategic work in support of the overall objective (above) and specifically in three areas, (1) Causes of interdecadal variability in the climate system, (2) Interactions of regional climate forcing with global processes, and (3) Scientific needs of climate assessment.

  2. Adaptable Constrained Genetic Programming: Extensions and Applications

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    2005-01-01

    An evolutionary algorithm applies evolution-based principles to problem solving. To solve a problem, the user defines the space of potential solutions, the representation space. Sample solutions are encoded in a chromosome-like structure. The algorithm maintains a population of such samples, which undergo simulated evolution by means of mutation, crossover, and survival of the fittest principles. Genetic Programming (GP) uses tree-like chromosomes, providing very rich representation suitable for many problems of interest. GP has been successfully applied to a number of practical problems such as learning Boolean functions and designing hardware circuits. To apply GP to a problem, the user needs to define the actual representation space, by defining the atomic functions and terminals labeling the actual trees. The sufficiency principle requires that the label set be sufficient to build the desired solution trees. The closure principle allows the labels to mix in any arity-consistent manner. To satisfy both principles, the user is often forced to provide a large label set, with ad hoc interpretations or penalties to deal with undesired local contexts. This unfortunately enlarges the actual representation space, and thus usually slows down the search. In the past few years, three different methodologies have been proposed to allow the user to alleviate the closure principle by providing means to define, and to process, constraints on mixing the labels in the trees. Last summer we proposed a new methodology to further alleviate the problem by discovering local heuristics for building quality solution trees. A pilot system was implemented last summer and tested throughout the year. This summer we have implemented a new revision, and produced a User's Manual so that the pilot system can be made available to other practitioners and researchers. We have also designed, and partly implemented, a larger system capable of dealing with much more powerful heuristics.

  3. Evolutionary optimization of interatomic potentials using genetic programming.

    SciTech Connect

    Jayaraman, Saivenkataraman

    2010-06-01

    After more than 50 years of molecular simulations, accurate empirical models are still the bottleneck in the wide adoption of simulation techniques. Addressing this issue with a fresh paradigm is the need of the day. In this study, we outline a new genetic-programming based method to develop empirical models for a system purely from its energy and/or forces. While the approach was initially developed for the development of classical force-fields from ab-initio calculations, we also discuss its application to the molecular coarse-graining of methanol. Two models, one representing methanol by a single site and the other via two sites will be developed using this method. They will be validated against existing coarse-grained potentials for methanol by comparing thermophysical properties.

  4. Genetic Network Programming with Intron-Like Nodes

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Chen, Yan; Eto, Shinji; Shimada, Kaoru; Hirasawa, Kotaro

    Recently, Genetic Network Programming (GNP) has been proposed, which is an extension of Genetic Algorithm(GA) and Genetic Programming(GP). GNP can make compact programs and can memorize the past history in it implicitly, because it expresses the solution by directed graphs and therefore, it can reuse the nodes. In this research, intron-like nodes are introduced for improving the performance of GNP. The aim of introducing intron-like nodes is to use every node as much as possible. It is found from simulations that the intron-like nodes are useful for improving the training speed and generalization ability.

  5. Bloat free genetic programming: application to human oral bioavailability prediction.

    PubMed

    Silva, Sara; Vanneschi, Leonardo

    2012-01-01

    Being able to predict the human oral bioavailability for a potential new drug is extremely important for the drug discovery process. This problem has been addressed by several prediction tools, with Genetic Programming providing some of the best results ever achieved. In this paper we use the newest developments of Genetic Programming, in particular the latest bloat control method, Operator Equalisation, to find out how much improvement we can achieve on this problem. We show examples of some actual solutions and discuss their quality, comparing them with previously published results. We identify some unexpected behaviours related to overfitting, and discuss the way for further improving the practical usage of the Genetic Programming approach.

  6. Developmental hematopoiesis: ontogeny, genetic programming and conservation.

    PubMed

    Ciau-Uitz, Aldo; Monteiro, Rui; Kirmizitas, Arif; Patient, Roger

    2014-08-01

    Hematopoietic stem cells (HSCs) sustain blood production throughout life and are of pivotal importance in regenerative medicine. Although HSC generation from pluripotent stem cells would resolve their shortage for clinical applications, this has not yet been achieved mainly because of the poor mechanistic understanding of their programming. Bone marrow HSCs are first created during embryogenesis in the dorsal aorta (DA) of the midgestation conceptus, from where they migrate to the fetal liver and, eventually, the bone marrow. It is currently accepted that HSCs emerge from specialized endothelium, the hemogenic endothelium, localized in the ventral wall of the DA through an evolutionarily conserved process called the endothelial-to-hematopoietic transition. However, the endothelial-to-hematopoietic transition represents one of the last steps in HSC creation, and an understanding of earlier events in the specification of their progenitors is required if we are to create them from naïve pluripotent cells. Because of their ready availability and external development, zebrafish and Xenopus embryos have enormously facilitated our understanding of the early developmental processes leading to the programming of HSCs from nascent lateral plate mesoderm to hemogenic endothelium in the DA. The amenity of the Xenopus model to lineage tracing experiments has also contributed to the establishment of the distinct origins of embryonic (yolk sac) and adult (HSC) hematopoiesis, whereas the transparency of the zebrafish has allowed in vivo imaging of developing blood cells, particularly during and after the emergence of HSCs in the DA. Here, we discuss the key contributions of these model organisms to our understanding of developmental hematopoiesis.

  7. Evolution of a computer program for classifying protein segments as transmembrane domains using genetic programming.

    PubMed

    Koza, J R

    1994-01-01

    The recently-developed genetic programming paradigm is used to evolve a computer program to classify a given protein segment as being a transmembrane domain or non-transmembrane area of the protein. Genetic programming starts with a primordial ooze of randomly generated computer programs composed of available programmatic ingredients and then genetically breeds the population of programs using the Darwinian principle of survival of the fittest and an analog of the naturally occurring genetic operation of crossover (sexual recombination). Automatic function definition enables genetic programming to dynamically create subroutines dynamically during the run. Genetic programming is given a training set of differently-sized protein segments and their correct classification (but no biochemical knowledge, such as hydrophobicity values). Correlation is used as the fitness measure to drive the evolutionary process. The best genetically-evolved program achieves an out-of-sample correlation of 0.968 and an out-of-sample error rate of 1.6%. This error rate is better than that reported for four other algorithms reported at the First International Conference on Intelligent Systems for Molecular Biology. Our genetically evolved program is an instance of an algorithm discovered by an automated learning paradigm that is superior to that written by human investigators.

  8. Programming Cells: Towardsan automated “Genetic Compiler”

    PubMed Central

    Clancy, Kevin; Voigt, Christopher A.

    2010-01-01

    I. Summary The increasing scale and sophistication of genetic engineering will necessitate a new generation of computer-aided design (CAD). For large genetic programs, keeping track of the DNA on the level of nucleotides becomes tedious and error prone. To push the size of projects, it is important to abstract the designer from the process of part selection and optimization. The vision is to specify genetic programs in a higher-level language, which a genetic compiler could automatically convert into a DNA sequence. Steps towards this goal include: defining the semantics of the higher-level language, algorithms to select and assemble parts, and biophysical methods to link DNA sequence to function. These will be coupled to graphic design interfaces and simulation packages to aid in the prediction of program dynamics, optimize genes, and scan projects for errors. PMID:20702081

  9. Genetic coding and gene expression - new Quadruplet genetic coding model

    NASA Astrophysics Data System (ADS)

    Shankar Singh, Rama

    2012-07-01

    Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.

  10. Flow discharge prediction in compound channels using linear genetic programming

    NASA Astrophysics Data System (ADS)

    Azamathulla, H. Md.; Zahiri, A.

    2012-08-01

    SummaryFlow discharge determination in rivers is one of the key elements in mathematical modelling in the design of river engineering projects. Because of the inundation of floodplains and sudden changes in river geometry, flow resistance equations are not applicable for compound channels. Therefore, many approaches have been developed for modification of flow discharge computations. Most of these methods have satisfactory results only in laboratory flumes. Due to the ability to model complex phenomena, the artificial intelligence methods have recently been employed for wide applications in various fields of water engineering. Linear genetic programming (LGP), a branch of artificial intelligence methods, is able to optimise the model structure and its components and to derive an explicit equation based on the variables of the phenomena. In this paper, a precise dimensionless equation has been derived for prediction of flood discharge using LGP. The proposed model was developed using published data compiled for stage-discharge data sets for 394 laboratories, and field of 30 compound channels. The results indicate that the LGP model has a better performance than the existing models.

  11. Genetically Engineered Pig Models for Human Diseases

    PubMed Central

    Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric

    2015-01-01

    Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017

  12. The "Genetic Program": Behind the Genesis of an Influential Metaphor.

    PubMed

    Peluffo, Alexandre E

    2015-07-01

    The metaphor of the "genetic program," indicating the genome as a set of instructions required to build a phenotype, has been very influential in biology despite various criticisms over the years. This metaphor, first published in 1961, is thought to have been invented independently in two different articles, one by Ernst Mayr and the other by François Jacob and Jacques Monod. Here, after a detailed analysis of what both parties meant by "genetic program," I show, using unpublished archives, the strong resemblance between the ideas of Mayr and Monod and suggest that their idea of genetic program probably shares a common origin. I explore the possibility that the two men met before 1961 and also exchanged their ideas through common friends and colleagues in the field of molecular biology. Based on unpublished correspondence of Jacob and Monod, I highlight the important events that influenced the preparation of their influential paper, which introduced the concept of the genetic program. Finally, I suggest that the genetic program metaphor may have preceded both papers and that it was probably used informally before 1961.

  13. Genetic programming and serial processing for time series classification.

    PubMed

    Alfaro-Cid, Eva; Sharman, Ken; Esparcia-Alcázar, Anna I

    2014-01-01

    This work describes an approach devised by the authors for time series classification. In our approach genetic programming is used in combination with a serial processing of data, where the last output is the result of the classification. The use of genetic programming for classification, although still a field where more research in needed, is not new. However, the application of genetic programming to classification tasks is normally done by considering the input data as a feature vector. That is, to the best of our knowledge, there are not examples in the genetic programming literature of approaches where the time series data are processed serially and the last output is considered as the classification result. The serial processing approach presented here fills a gap in the existing literature. This approach was tested in three different problems. Two of them are real world problems whose data were gathered for online or conference competitions. As there are published results of these two problems this gives us the chance to compare the performance of our approach against top performing methods. The serial processing of data in combination with genetic programming obtained competitive results in both competitions, showing its potential for solving time series classification problems. The main advantage of our serial processing approach is that it can easily handle very large datasets. PMID:24032750

  14. Genetic programming and serial processing for time series classification.

    PubMed

    Alfaro-Cid, Eva; Sharman, Ken; Esparcia-Alcázar, Anna I

    2014-01-01

    This work describes an approach devised by the authors for time series classification. In our approach genetic programming is used in combination with a serial processing of data, where the last output is the result of the classification. The use of genetic programming for classification, although still a field where more research in needed, is not new. However, the application of genetic programming to classification tasks is normally done by considering the input data as a feature vector. That is, to the best of our knowledge, there are not examples in the genetic programming literature of approaches where the time series data are processed serially and the last output is considered as the classification result. The serial processing approach presented here fills a gap in the existing literature. This approach was tested in three different problems. Two of them are real world problems whose data were gathered for online or conference competitions. As there are published results of these two problems this gives us the chance to compare the performance of our approach against top performing methods. The serial processing of data in combination with genetic programming obtained competitive results in both competitions, showing its potential for solving time series classification problems. The main advantage of our serial processing approach is that it can easily handle very large datasets.

  15. Solving deterministic non-linear programming problem using Hopfield artificial neural network and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2012-11-01

    A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.

  16. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  17. Primer on molecular genetics. DOE Human Genome Program

    SciTech Connect

    Not Available

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  18. Polyglot Programming in Applications Used for Genetic Data Analysis

    PubMed Central

    Nowak, Robert M.

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633

  19. Polyglot programming in applications used for genetic data analysis.

    PubMed

    Nowak, Robert M

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633

  20. Polyglot programming in applications used for genetic data analysis.

    PubMed

    Nowak, Robert M

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.

  1. A novel genetic programming approach for epileptic seizure detection.

    PubMed

    Bhardwaj, Arpit; Tiwari, Aruna; Krishna, Ramesh; Varma, Vishaal

    2016-02-01

    The human brain is a delicate mix of neurons (brain cells), electrical impulses and chemicals, known as neurotransmitters. Any damage has the potential to disrupt the workings of the brain and cause seizures. These epileptic seizures are the manifestations of epilepsy. The electroencephalograph (EEG) signals register average neuronal activity from the cerebral cortex and label changes in activity over large areas. A detailed analysis of these electroencephalograph (EEG) signals provides valuable insights into the mechanisms instigating epileptic disorders. Moreover, the detection of interictal spikes and epileptic seizures in an EEG signal plays an important role in the diagnosis of epilepsy. Automatic seizure detection methods are required, as these epileptic seizures are volatile and unpredictable. This paper deals with an automated detection of epileptic seizures in EEG signals using empirical mode decomposition (EMD) for feature extraction and proposes a novel genetic programming (GP) approach for classifying the EEG signals. Improvements in the standard GP approach are made using a Constructive Genetic Programming (CGP) in which constructive crossover and constructive subtree mutation operators are introduced. A hill climbing search is integrated in crossover and mutation operators to remove the destructive nature of these operators. A new concept of selecting the Globally Prime offspring is also presented to select the best fitness offspring generated during crossover. To decrease the time complexity of GP, a new dynamic fitness value computation (DFVC) is employed to increase the computational speed. We conducted five different sets of experiments to evaluate the performance of the proposed model in the classification of different mixtures of normal, interictal and ictal signals, and the accuracies achieved are outstandingly high. The experimental results are compared with the existing methods on same datasets, and these results affirm the potential use of

  2. Genetic Evolution of Shape-Altering Programs for Supersonic Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Bencze, Daniel P. (Technical Monitor)

    2002-01-01

    Two constrained shape optimization problems relevant to aerodynamics are solved by genetic programming, in which a population of computer programs evolves automatically under pressure of fitness-driven reproduction and genetic crossover. Known optimal solutions are recovered using a small, naive set of elementary operations. Effectiveness is improved through use of automatically defined functions, especially when one of them is capable of a variable number of iterations, even though the test problems lack obvious exploitable regularities. An attempt at evolving new elementary operations was only partially successful.

  3. Template learning of cellular neural network using genetic programming.

    PubMed

    Radwan, Elsayed; Tazaki, Eiichiro

    2004-08-01

    A new learning algorithm for space invariant Uncoupled Cellular Neural Network is introduced. Learning is formulated as an optimization problem. Genetic Programming has been selected for creating new knowledge because they allow the system to find new rules both near to good ones and far from them, looking for unknown good control actions. According to the lattice Cellular Neural Network architecture, Genetic Programming will be used in deriving the Cloning Template. Exploration of any stable domain is possible by the current approach. Details of the algorithm are discussed and several application results are shown.

  4. Dynamic causal modeling with genetic algorithms.

    PubMed

    Pyka, M; Heider, D; Hauke, S; Kircher, T; Jansen, A

    2011-01-15

    In the last years, dynamic causal modeling has gained increased popularity in the neuroimaging community as an approach for the estimation of effective connectivity from functional magnetic resonance imaging (fMRI) data. The algorithm calls for an a priori defined model, whose parameter estimates are subsequently computed upon the given data. As the number of possible models increases exponentially with additional areas, it rapidly becomes inefficient to compute parameter estimates for all models in order to reveal the family of models with the highest posterior probability. In the present study, we developed a genetic algorithm for dynamic causal models and investigated whether this evolutionary approach can accelerate the model search. In this context, the configuration of the intrinsic, extrinsic and bilinear connection matrices represents the genetic code and Bayesian model selection serves as a fitness function. Using crossover and mutation, populations of models are created and compared with each other. The most probable ones survive the current generation and serve as a source for the next generation of models. Tests with artificially created data sets show that the genetic algorithm approximates the most plausible models faster than a random-driven brute-force search. The fitness landscape revealed by the genetic algorithm indicates that dynamic causal modeling has excellent properties for evolution-driven optimization techniques.

  5. On the path to genetic novelties: insights from programmed DNA elimination and RNA splicing.

    PubMed

    Catania, Francesco; Schmitz, Jürgen

    2015-01-01

    Understanding how genetic novelties arise is a central goal of evolutionary biology. To this end, programmed DNA elimination and RNA splicing deserve special consideration. While programmed DNA elimination reshapes genomes by eliminating chromatin during organismal development, RNA splicing rearranges genetic messages by removing intronic regions during transcription. Small RNAs help to mediate this class of sequence reorganization, which is not error-free. It is this imperfection that makes programmed DNA elimination and RNA splicing excellent candidates for generating evolutionary novelties. Leveraging a number of these two processes' mechanistic and evolutionary properties, which have been uncovered over the past years, we present recently proposed models and empirical evidence for how splicing can shape the structure of protein-coding genes in eukaryotes. We also chronicle a number of intriguing similarities between the processes of programmed DNA elimination and RNA splicing, and highlight the role that the variation in the population-genetic environment may play in shaping their target sequences.

  6. Joint Modeling of Imaging and Genetics

    PubMed Central

    Batmanghelich, Nematollah K.; Dalca, Adrian V.; Sabuncu, Mert R.; Golland, Polina

    2014-01-01

    We propose a unified Bayesian framework for detecting genetic variants associated with a disease while exploiting image-based features as an intermediate phenotype. Traditionally, imaging genetics methods comprise two separate steps. First, image features are selected based on their relevance to the disease phenotype. Second, a set of genetic variants are identified to explain the selected features. In contrast, our method performs these tasks simultaneously to ultimately assign probabilistic measures of relevance to both genetic and imaging markers. We derive an efficient approximate inference algorithm that handles high dimensionality of imaging genetic data. We evaluate the algorithm on synthetic data and show that it outperforms traditional models. We also illustrate the application of the method on ADNI data. PMID:24684016

  7. The Ising model in physics and statistical genetics.

    PubMed

    Majewski, J; Li, H; Ott, J

    2001-10-01

    Interdisciplinary communication is becoming a crucial component of the present scientific environment. Theoretical models developed in diverse disciplines often may be successfully employed in solving seemingly unrelated problems that can be reduced to similar mathematical formulation. The Ising model has been proposed in statistical physics as a simplified model for analysis of magnetic interactions and structures of ferromagnetic substances. Here, we present an application of the one-dimensional, linear Ising model to affected-sib-pair (ASP) analysis in genetics. By analyzing simulated genetics data, we show that the simplified Ising model with only nearest-neighbor interactions between genetic markers has statistical properties comparable to much more complex algorithms from genetics analysis, such as those implemented in the Allegro and Mapmaker-Sibs programs. We also adapt the model to include epistatic interactions and to demonstrate its usefulness in detecting modifier loci with weak individual genetic contributions. A reanalysis of data on type 1 diabetes detects several susceptibility loci not previously found by other methods of analysis.

  8. Genetic and environmental melanoma models in fish

    PubMed Central

    Patton, E Elizabeth; Mitchell, David L; Nairn, Rodney S

    2010-01-01

    Experimental animal models are extremely valuable for the study of human diseases, especially those with underlying genetic components. The exploitation of various animal models, from fruitflies to mice, has led to major advances in our understanding of the etiologies of many diseases, including cancer. Cutaneous malignant melanoma is a form of cancer for which both environmental insult (i.e., UV) and hereditary predisposition are major causative factors. Fish melanoma models have been used in studies of both spontaneous and induced melanoma formation. Genetic hybrids between platyfish and swordtails, different species of the genus Xiphophorus, have been studied since the 1920s to identify genetic determinants of pigmentation and melanoma formation. Recently, transgenesis has been used to develop zebrafish and medaka models for melanoma research. This review will provide a historical perspective on the use of fish models in melanoma research, and an updated summary of current and prospective studies using these unique experimental systems. PMID:20230482

  9. Composition of Music and Financial Strategies via Genetic Programming

    NASA Astrophysics Data System (ADS)

    Iba, Hitoshi; Aranha, Claus

    We present two applications of genetic programming to real world problems: musical composition and financial portfolio optimization. In each of these applications, a specialized genome representation is used in order to break the problem down into smaller instances and put them back together. Results showing the applicability of the approaches are presented.

  10. Considering genetic characteristics in German Holstein breeding programs.

    PubMed

    Segelke, D; Täubert, H; Reinhardt, F; Thaller, G

    2016-01-01

    Recently, several research groups have demonstrated that several haplotypes may cause embryonic loss in the homozygous state. Up to now, carriers of genetic disorders were often excluded from mating, resulting in a decrease of genetic gain and a reduced number of sires available for the breeding program. Ongoing research is very likely to identify additional genetic defects causing embryonic loss and calf mortality by genotyping a large proportion of the female cattle population and sequencing key ancestors. Hence, a clear demand is present to develop a method combining selection against recessive defects (e.g., Holstein haplotypes HH1-HH5) with selection for economically beneficial traits (e.g., polled) for mating decisions. Our proposed method is a genetic index that accounts for the allele frequencies in the population and the economic value of the genetic characteristic without excluding carriers from breeding schemes. Fertility phenotypes from routine genetic evaluations were used to determine the economic value per embryo lost. Previous research has shown that embryo loss caused by HH1 and HH2 occurs later than the loss for HH3, HH4, and HH5. Therefore, an economic value of € 97 was used against HH1 and HH2 and € 70 against HH3, HH4, and HH5. For polled, € 7 per polled calf was considered. Minor allele frequencies of the defects ranged between 0.8 and 3.3%. The polled allele has a frequency of 4.1% in the German Holstein population. A genomic breeding program was simulated to study the effect of changing the selection criteria from assortative mating based on breeding values to selecting the females using the genetic index. Selection for a genetic index on the female path is a useful method to control the allele frequencies by reducing undesirable alleles and simultaneously increasing economical beneficial characteristics maintaining most of the genetic gain in production and functional traits. Additionally, we applied the genetic index to real data and

  11. Obesity-programmed mice are rescued by early genetic intervention

    PubMed Central

    Bumaschny, Viviana F.; Yamashita, Miho; Casas-Cordero, Rodrigo; Otero-Corchón, Verónica; de Souza, Flávio S.J.; Rubinstein, Marcelo; Low, Malcolm J.

    2012-01-01

    Obesity is a chronic metabolic disorder affecting half a billion people worldwide. Major difficulties in managing obesity are the cessation of continued weight loss in patients after an initial period of responsiveness and rebound to pretreatment weight. It is conceivable that chronic weight gain unrelated to physiological needs induces an allostatic regulatory state that defends a supranormal adipose mass despite its maladaptive consequences. To challenge this hypothesis, we generated a reversible genetic mouse model of early-onset hyperphagia and severe obesity by selectively blocking the expression of the proopiomelanocortin gene (Pomc) in hypothalamic neurons. Eutopic reactivation of central POMC transmission at different stages of overweight progression normalized or greatly reduced food intake in these obesity-programmed mice. Hypothalamic Pomc rescue also attenuated comorbidities such as hyperglycemia, hyperinsulinemia, and hepatic steatosis and normalized locomotor activity. However, effectiveness of treatment to normalize body weight and adiposity declined progressively as the level of obesity at the time of Pomc induction increased. Thus, our study using a novel reversible monogenic obesity model reveals the critical importance of early intervention for the prevention of subsequent allostatic overload that auto-perpetuates obesity. PMID:23093774

  12. Obesity-programmed mice are rescued by early genetic intervention.

    PubMed

    Bumaschny, Viviana F; Yamashita, Miho; Casas-Cordero, Rodrigo; Otero-Corchón, Verónica; de Souza, Flávio S J; Rubinstein, Marcelo; Low, Malcolm J

    2012-11-01

    Obesity is a chronic metabolic disorder affecting half a billion people worldwide. Major difficulties in managing obesity are the cessation of continued weight loss in patients after an initial period of responsiveness and rebound to pretreatment weight. It is conceivable that chronic weight gain unrelated to physiological needs induces an allostatic regulatory state that defends a supranormal adipose mass despite its maladaptive consequences. To challenge this hypothesis, we generated a reversible genetic mouse model of early-onset hyperphagia and severe obesity by selectively blocking the expression of the proopiomelanocortin gene (Pomc) in hypothalamic neurons. Eutopic reactivation of central POMC transmission at different stages of overweight progression normalized or greatly reduced food intake in these obesity-programmed mice. Hypothalamic Pomc rescue also attenuated comorbidities such as hyperglycemia, hyperinsulinemia, and hepatic steatosis and normalized locomotor activity. However, effectiveness of treatment to normalize body weight and adiposity declined progressively as the level of obesity at the time of Pomc induction increased. Thus, our study using a novel reversible monogenic obesity model reveals the critical importance of early intervention for the prevention of subsequent allostatic overload that auto-perpetuates obesity.

  13. Genetically modified pig models for neurodegenerative disorders.

    PubMed

    Holm, Ida E; Alstrup, Aage Kristian Olsen; Luo, Yonglun

    2016-01-01

    Increasing incidence of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease has become one of the most challenging health issues in ageing humans. One approach to combat this is to generate genetically modified animal models of neurodegenerative disorders for studying pathogenesis, prognosis, diagnosis, treatment, and prevention. Owing to the genetic, anatomic, physiologic, pathologic, and neurologic similarities between pigs and humans, genetically modified pig models of neurodegenerative disorders have been attractive large animal models to bridge the gap of preclinical investigations between rodents and humans. In this review, we provide a neuroanatomical overview in pigs and summarize and discuss the generation of genetically modified pig models of neurodegenerative disorders including Alzheimer's diseases, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, and ataxia-telangiectasia. We also highlight how non-invasive bioimaging technologies such as positron emission tomography (PET), computer tomography (CT), and magnetic resonance imaging (MRI), and behavioural testing have been applied to characterize neurodegenerative pig models. We further propose a multiplex genome editing and preterm recloning (MAP) approach by using the rapid growth of the ground-breaking precision genome editing technology CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). With this approach, we hope to shorten the temporal requirement in generating multiple transgenic pigs, increase the survival rate of founder pigs, and generate genetically modified pigs that will more closely resemble the disease-causing mutations and recapitulate pathological features of human conditions. PMID:26446984

  14. Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer.

    PubMed

    Castelli, Mauro; Trujillo, Leonardo; Vanneschi, Leonardo

    2015-01-01

    Energy consumption forecasting (ECF) is an important policy issue in today's economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data.

  15. Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer

    PubMed Central

    Vanneschi, Leonardo

    2015-01-01

    Energy consumption forecasting (ECF) is an important policy issue in today's economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data. PMID:26106410

  16. Genetic models of homosexuality: generating testable predictions.

    PubMed

    Gavrilets, Sergey; Rice, William R

    2006-12-22

    Homosexuality is a common occurrence in humans and other species, yet its genetic and evolutionary basis is poorly understood. Here, we formulate and study a series of simple mathematical models for the purpose of predicting empirical patterns that can be used to determine the form of selection that leads to polymorphism of genes influencing homosexuality. Specifically, we develop theory to make contrasting predictions about the genetic characteristics of genes influencing homosexuality including: (i) chromosomal location, (ii) dominance among segregating alleles and (iii) effect sizes that distinguish between the two major models for their polymorphism: the overdominance and sexual antagonism models. We conclude that the measurement of the genetic characteristics of quantitative trait loci (QTLs) found in genomic screens for genes influencing homosexuality can be highly informative in resolving the form of natural selection maintaining their polymorphism.

  17. Genetic evaluation of a Great Lakes lake trout hatchery program

    USGS Publications Warehouse

    Page, K.S.; Scribner, K.T.; Bast, D.; Holey, M.E.; Burnham-Curtis, M. K.

    2005-01-01

    Efforts over several decades to restore lake trout Salvelinus namaycush in U.S. waters of the upper Great Lakes have emphasized the stocking of juveniles from each of six hatchery broodstocks. Retention of genetic diversity across all offspring life history stages throughout the hatchery system has been an important component of the restoration hatchery and stocking program. Different stages of the lake trout hatchery program were examined to determine how effective hatchery practices have been in minimizing the loss of genetic diversity in broodstock adults and in progeny stocked. Microsatellite loci were used to estimate allele frequencies, measures of genetic diversity, and relatedness for wild source populations, hatchery broodstocks, and juveniles. We also estimated the effective number of breeders for each broodstock. Hatchery records were used to track destinations of fertilized eggs from all spawning dates to determine whether adult contributions to stocking programs were proportional to reproductive effort. Overall, management goals of maintaining genetic diversity were met across all stages of the hatchery program; however, we identified key areas where changes in mating regimes and in the distribution of fertilized gametes and juveniles could be improved. Estimates of effective breeding population size (Nb) were 9-41% of the total number of adults spawned. Low estimates of Nb were primarily attributed to spawning practices, including the pooling of gametes from multiple males and females and the reuse of males. Nonrandom selection and distribution of fertilized eggs before stocking accentuated declines in effective breeding population size and increased levels of relatedness of juveniles distributed to different rearing facilities and stocking locales. Adoption of guidelines that decrease adult reproductive variance and promote more equitable reproductive contributions of broodstock adults to juveniles would further enhance management goals of

  18. Social Program Evaluation: Six Models.

    ERIC Educational Resources Information Center

    New Directions for Program Evaluation, 1980

    1980-01-01

    Representative models of program evaluation are described by their approach to values, and categorized by empirical style: positivism versus humanism. The models are: social process audit; experimental/quasi-experimental research design; goal-free evaluation; systems evaluation; cost-benefit analysis; and accountability program evaluation. (CP)

  19. Achieving World-Class Schools: Mastering School Improvement Using a Genetic Model.

    ERIC Educational Resources Information Center

    Kimmelman, Paul L.; Kroeze, David J.

    In providing its program for education reform, this book uses, as an analogy, the genetic model taken from the Human Genome project. In the first part, "Theoretical Underpinnings," the book explains why a genetic model can be used to improve school systems; describes the critical components of a world-class school system; and details the genetic…

  20. Initialization Method for Grammar-Guided Genetic Programming

    NASA Astrophysics Data System (ADS)

    García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.

    This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.

  1. Using Multi-Objective Genetic Programming to Synthesize Stochastic Processes

    NASA Astrophysics Data System (ADS)

    Ross, Brian; Imada, Janine

    Genetic programming is used to automatically construct stochastic processes written in the stochastic π-calculus. Grammar-guided genetic programming constrains search to useful process algebra structures. The time-series behaviour of a target process is denoted with a suitable selection of statistical feature tests. Feature tests can permit complex process behaviours to be effectively evaluated. However, they must be selected with care, in order to accurately characterize the desired process behaviour. Multi-objective evaluation is shown to be appropriate for this application, since it permits heterogeneous statistical feature tests to reside as independent objectives. Multiple undominated solutions can be saved and evaluated after a run, for determination of those that are most appropriate. Since there can be a vast number of candidate solutions, however, strategies for filtering and analyzing this set are required.

  2. Genetic demographic networks: Mathematical model and applications.

    PubMed

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise

  3. Advances on genetic rat models of epilepsy.

    PubMed

    Serikawa, Tadao; Mashimo, Tomoji; Kuramoro, Takashi; Voigt, Birger; Ohno, Yukihiro; Sasa, Masashi

    2015-01-01

    Considering the suitability of laboratory rats in epilepsy research, we and other groups have been developing genetic models of epilepsy in this species. After epileptic rats or seizure-susceptible rats were sporadically found in outbred stocks, the epileptic traits were usually genetically-fixed by selective breeding. So far, the absence seizure models GAERS and WAG/Rij, audiogenic seizure models GEPR-3 and GEPR-9, generalized tonic-clonic seizure models IER, NER and WER, and Canavan-disease related epileptic models TRM and SER have been established. Dissection of the genetic bases including causative genes in these epileptic rat models would be a significant step toward understanding epileptogenesis. N-ethyl-N-nitrosourea (ENU) mutagenesis provides a systematic approach which allowed us to develop two novel epileptic rat models: heat-induced seizure susceptible (Hiss) rats with an Scn1a missense mutation and autosomal dominant lateral temporal epilepsy (ADLTE) model rats with an Lgi1 missense mutation. In addition, we have established episodic ataxia type 1 (EA1) model rats with a Kcna1 missense mutation derived from the ENU-induced rat mutant stock, and identified a Cacna1a missense mutation in a N-Methyl-N-nitrosourea (MNU)-induced mutant rat strain GRY, resulting in the discovery of episodic ataxia type 2 (EA2) model rats. Thus, epileptic rat models have been established on the two paths: 'phenotype to gene' and 'gene to phenotype'. In the near future, development of novel epileptic rat models will be extensively promoted by the use of sophisticated genome editing technologies.

  4. Advances on genetic rat models of epilepsy

    PubMed Central

    Serikawa, Tadao; Mashimo, Tomoji; Kuramoto, Takashi; Voigt, Birger; Ohno, Yukihiro; Sasa, Masashi

    2014-01-01

    Considering the suitability of laboratory rats in epilepsy research, we and other groups have been developing genetic models of epilepsy in this species. After epileptic rats or seizure-susceptible rats were sporadically found in outbred stocks, the epileptic traits were usually genetically-fixed by selective breeding. So far, the absence seizure models GAERS and WAG/Rij, audiogenic seizure models GEPR-3 and GEPR-9, generalized tonic-clonic seizure models IER, NER and WER, and Canavan-disease related epileptic models TRM and SER have been established. Dissection of the genetic bases including causative genes in these epileptic rat models would be a significant step toward understanding epileptogenesis. N-ethyl-N-nitrosourea (ENU) mutagenesis provides a systematic approach which allowed us to develop two novel epileptic rat models: heat-induced seizure susceptible (Hiss) rats with an Scn1a missense mutation and autosomal dominant lateral temporal epilepsy (ADLTE) model rats with an Lgi1 missense mutation. In addition, we have established episodic ataxia type 1 (EA1) model rats with a Kcna1 missense mutation derived from the ENU-induced rat mutant stock, and identified a Cacna1a missense mutation in a N-Methyl-N-nitrosourea (MNU)-induced mutant rat strain GRY, resulting in the discovery of episodic ataxia type 2 (EA2) model rats. Thus, epileptic rat models have been established on the two paths: ‘phenotype to gene’ and ‘gene to phenotype’. In the near future, development of novel epileptic rat models will be extensively promoted by the use of sophisticated genome editing technologies. PMID:25312505

  5. Animal models for genetic neuromuscular diseases.

    PubMed

    Vainzof, Mariz; Ayub-Guerrieri, Danielle; Onofre, Paula C G; Martins, Poliana C M; Lopes, Vanessa F; Zilberztajn, Dinorah; Maia, Lucas S; Sell, Karen; Yamamoto, Lydia U

    2008-03-01

    The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse

  6. Dynamic Programming Algorithm vs. Genetic Algorithm: Which is Faster?

    NASA Astrophysics Data System (ADS)

    Petković, Dušan

    The article compares two different approaches for the optimization problem of large join queries (LJQs). Almost all commercial database systems use a form of the dynamic programming algorithm to solve the ordering of join operations for large join queries, i.e. joins with more than dozen join operations. The property of the dynamic programming algorithm is that the execution time increases significantly in the case, where the number of join operations in a query is large. Genetic algorithms (GAs), as a data mining technique, have been shown as a promising technique in solving the ordering of join operations in LJQs. Using the existing implementation of GA, we compare the dynamic programming algorithm implemented in commercial database systems with the corresponding GA module. Our results show that the use of a genetic algorithm is a better solution for optimization of large join queries, i.e., that such a technique outperforms the implementations of the dynamic programming algorithm in conventional query optimization components for very large join queries.

  7. Genetic Programming Neural Networks: A Powerful Bioinformatics Tool for Human Genetics

    PubMed Central

    Ritchie, Marylyn D; Motsinger, Alison A.; Bush, William S; Coffey, Christopher S; Moore, Jason H

    2010-01-01

    The identification of genes that influence the risk of common, complex disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. This challenge is partly due to the limitations of parametric statistical methods for detecting genetic effects that are dependent solely or partially on interactions. We have previously introduced a genetic programming neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of genetic and gene-environment combinations associated with disease risk. Previous empirical studies suggest GPNN has excellent power for identifying gene-gene and gene-environment interactions. The goal of this study was to compare the power of GPNN to stepwise logistic regression (SLR) and classification and regression trees (CART) for identifying gene-gene and gene-environment interactions. SLR and CART are standard methods of analysis for genetic association studies. Using simulated data, we show that GPNN has higher power to identify gene-gene and gene-environment interactions than SLR and CART. These results indicate that GPNN may be a useful pattern recognition approach for detecting gene-gene and gene-environment interactions in studies of human disease. PMID:20948988

  8. Genetic Programming Neural Networks: A Powerful Bioinformatics Tool for Human Genetics.

    PubMed

    Ritchie, Marylyn D; Motsinger, Alison A; Bush, William S; Coffey, Christopher S; Moore, Jason H

    2007-01-01

    The identification of genes that influence the risk of common, complex disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. This challenge is partly due to the limitations of parametric statistical methods for detecting genetic effects that are dependent solely or partially on interactions. We have previously introduced a genetic programming neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of genetic and gene-environment combinations associated with disease risk. Previous empirical studies suggest GPNN has excellent power for identifying gene-gene and gene-environment interactions. The goal of this study was to compare the power of GPNN to stepwise logistic regression (SLR) and classification and regression trees (CART) for identifying gene-gene and gene-environment interactions. SLR and CART are standard methods of analysis for genetic association studies. Using simulated data, we show that GPNN has higher power to identify gene-gene and gene-environment interactions than SLR and CART. These results indicate that GPNN may be a useful pattern recognition approach for detecting gene-gene and gene-environment interactions in studies of human disease.

  9. The Alpha-1 Association Genetic Counseling Program: an innovative approach to service.

    PubMed

    McGee, Dawn; Strange, Charlie; McClure, Rebecca; Schwarz, Laura; Erven, Marlene

    2011-08-01

    In an era of specialty medicine, genetic counselors are becoming increasingly focused in their service provision. The Alpha-1 Association Genetic Counseling Program, established in September 2007, specializes in confidential toll-free genetic counseling provided by a certified genetic counselor for Alpha-1 Antitrypsin deficiency, a co-dominant condition associated with lung and/or liver disease. The program received more than 600 callers in its first 2 years. Sixty-seven percent of new callers were family members, carriers, or health professionals. The number of callers increased between the first 2 years, with the greatest increases being family members and health professionals. Testing options and explanation of results encompassed 60% of initial reasons for calls. Seventy-two percent of referrals came from family and friends, test result letters, and the Alpha-1 Association. Between year 1 and 2 family member referrals showed the largest increase. This disease-specific genetic counseling program provides a model that may be useful for other rare disease communities.

  10. A genetic programming approach to oral cancer prognosis

    PubMed Central

    Tan, Mei Sze; Tan, Jing Wei; Yap, Hwa Jen; Abdul Kareem, Sameem; Zain, Rosnah Binti

    2016-01-01

    Background The potential of genetic programming (GP) on various fields has been attained in recent years. In bio-medical field, many researches in GP are focused on the recognition of cancerous cells and also on gene expression profiling data. In this research, the aim is to study the performance of GP on the survival prediction of a small sample size of oral cancer prognosis dataset, which is the first study in the field of oral cancer prognosis. Method GP is applied on an oral cancer dataset that contains 31 cases collected from the Malaysia Oral Cancer Database and Tissue Bank System (MOCDTBS). The feature subsets that is automatically selected through GP were noted and the influences of this subset on the results of GP were recorded. In addition, a comparison between the GP performance and that of the Support Vector Machine (SVM) and logistic regression (LR) are also done in order to verify the predictive capabilities of the GP. Result The result shows that GP performed the best (average accuracy of 83.87% and average AUROC of 0.8341) when the features selected are smoking, drinking, chewing, histological differentiation of SCC, and oncogene p63. In addition, based on the comparison results, we found that the GP outperformed the SVM and LR in oral cancer prognosis. Discussion Some of the features in the dataset are found to be statistically co-related. This is because the accuracy of the GP prediction drops when one of the feature in the best feature subset is excluded. Thus, GP provides an automatic feature selection function, which chooses features that are highly correlated to the prognosis of oral cancer. This makes GP an ideal prediction model for cancer clinical and genomic data that can be used to aid physicians in their decision making stage of diagnosis or prognosis.

  11. A genetic programming approach to oral cancer prognosis

    PubMed Central

    Tan, Mei Sze; Tan, Jing Wei; Yap, Hwa Jen; Abdul Kareem, Sameem; Zain, Rosnah Binti

    2016-01-01

    Background The potential of genetic programming (GP) on various fields has been attained in recent years. In bio-medical field, many researches in GP are focused on the recognition of cancerous cells and also on gene expression profiling data. In this research, the aim is to study the performance of GP on the survival prediction of a small sample size of oral cancer prognosis dataset, which is the first study in the field of oral cancer prognosis. Method GP is applied on an oral cancer dataset that contains 31 cases collected from the Malaysia Oral Cancer Database and Tissue Bank System (MOCDTBS). The feature subsets that is automatically selected through GP were noted and the influences of this subset on the results of GP were recorded. In addition, a comparison between the GP performance and that of the Support Vector Machine (SVM) and logistic regression (LR) are also done in order to verify the predictive capabilities of the GP. Result The result shows that GP performed the best (average accuracy of 83.87% and average AUROC of 0.8341) when the features selected are smoking, drinking, chewing, histological differentiation of SCC, and oncogene p63. In addition, based on the comparison results, we found that the GP outperformed the SVM and LR in oral cancer prognosis. Discussion Some of the features in the dataset are found to be statistically co-related. This is because the accuracy of the GP prediction drops when one of the feature in the best feature subset is excluded. Thus, GP provides an automatic feature selection function, which chooses features that are highly correlated to the prognosis of oral cancer. This makes GP an ideal prediction model for cancer clinical and genomic data that can be used to aid physicians in their decision making stage of diagnosis or prognosis. PMID:27688975

  12. Genetically Engineered Mouse Models of Pituitary Tumors

    PubMed Central

    Cano, David A.; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso

    2014-01-01

    Animal models constitute valuable tools for investigating the pathogenesis of cancer as well as for preclinical testing of novel therapeutics approaches. However, the pathogenic mechanisms of pituitary-tumor formation remain poorly understood, particularly in sporadic adenomas, thus, making it a challenge to model pituitary tumors in mice. Nevertheless, genetically engineered mouse models (GEMMs) of pituitary tumors have provided important insight into pituitary tumor biology. In this paper, we review various GEMMs of pituitary tumors, highlighting their contributions and limitations, and discuss opportunities for research in the field. PMID:25136513

  13. Aerothermal modeling program, phase 1

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.

    1983-01-01

    The physical modeling embodied in the computational fluid dynamics codes is discussed. The objectives were to identify shortcomings in the models and to provide a program plan to improve the quantitative accuracy. The physical models studied were for: turbulent mass and momentum transport, heat release, liquid fuel spray, and gaseous radiation. The approach adopted was to test the models against appropriate benchmark-quality test cases from experiments in the literature for the constituent flows that together make up the combustor real flow.

  14. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1988-01-01

    The objective of automatic programming is to improve the overall environment for describing the program. This improved environment is realized by a reduction in the amount of detail that the programmer needs to know and is exposed to. Furthermore, this improved environment is achieved by a specification language that is more natural to the user's problem domain and to the user's way of thinking and looking at the problem. The goal of this research is to apply the concepts of automatic programming (AP) to modeling discrete event simulation system. Specific emphasis is on the design and development of simulation tools to assist the modeler define or construct a model of the system and to then automatically write the corresponding simulation code in the target simulation language, GPSS/PC. A related goal is to evaluate the feasibility of various languages for constructing automatic programming simulation tools.

  15. A Genetic Porcine Model of Cancer

    PubMed Central

    Schook, Lawrence B.; Collares, Tiago V.; Hu, Wenping; Liang, Ying; Rodrigues, Fernanda M.; Rund, Laurie A.; Schachtschneider, Kyle M.; Seixas, Fabiana K.; Singh, Kuldeep; Wells, Kevin D.; Walters, Eric M.; Prather, Randall S.; Counter, Christopher M.

    2015-01-01

    The large size of the pig and its similarity in anatomy, physiology, metabolism, and genetics to humans make it an ideal platform to develop a genetically defined, large animal model of cancer. To this end, we created a transgenic “oncopig” line encoding Cre recombinase inducible porcine transgenes encoding KRASG12D and TP53R167H, which represent a commonly mutated oncogene and tumor suppressor in human cancers, respectively. Treatment of cells derived from these oncopigs with the adenovirus encoding Cre (AdCre) led to KRASG12D and TP53R167H expression, which rendered the cells transformed in culture and tumorigenic when engrafted into immunocompromised mice. Finally, injection of AdCre directly into these oncopigs led to the rapid and reproducible tumor development of mesenchymal origin. Transgenic animals receiving AdGFP (green fluorescent protein) did not have any tumor mass formation or altered histopathology. This oncopig line could thus serve as a genetically malleable model for potentially a wide spectrum of cancers, while controlling for temporal or spatial genesis, which should prove invaluable to studies previously hampered by the lack of a large animal model of cancer. PMID:26132737

  16. Mating System and Genetic Composition of the Macaw Palm (Acrocomia aculeata): Implications for Breeding and Genetic Conservation Programs.

    PubMed

    Lanes, Éder C M; Motoike, Sérgio Y; Kuki, Kacilda N; Resende, Marcos D V; Caixeta, Eveline T

    2016-11-01

    Acrocomia aculeata (Arecaceae), a palm endemic to South and Central America, is a potential oil crop. Knowledge of the mating system of this species is limited to its reproductive biology and to studies using molecular markers. The present study analyzed genetic diversity between its developmental stages and determined its prevailing mating system in order to support genetic conservation and breeding programs. We tested 9 microsatellite markers in 27 mother trees (adult plants) and 157 offspring (juvenile plants) from the southeastern region of Brazil. Heterozygosity levels differed between the 2 studied life stages, as indicated by the fixation index of adult and juvenile trees, suggesting that selection against homozygotes occurs during the plant life cycle. The mating system parameters analyzed indicate that A. aculeata is predominantly outcrossing (allogamous). However, its low levels of selfing suggest that there is individual variation with regard to self-incompatibility, which can be a survival strategy in isolated or fragmented habitats. Deviations in variance effective size were detected because of high mating rates among relatives and correlated matings. These findings indicate that the main source of inbreeding results from biparental inbreeding in the population and that the progenies are predominantly composed of full-sibs. The information provided by this study on the ecology and reproduction dynamics of A. aculeata should be useful to both breeding and genetic conservation programs, allowing the development of more precise mathematical models and the estimation of the appropriate number of mother trees for seed collection. PMID:27288529

  17. Genetic demographic networks: Mathematical model and applications.

    PubMed

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise

  18. Genetic programs constructed from layered logic gates in single cells

    PubMed Central

    Moon, Tae Seok; Lou, Chunbo; Tamsir, Alvin; Stanton, Brynne C.; Voigt, Christopher A.

    2014-01-01

    Genetic programs function to integrate environmental sensors, implement signal processing algorithms and control expression dynamics1. These programs consist of integrated genetic circuits that individually implement operations ranging from digital logic to dynamic circuits2–6, and they have been used in various cellular engineering applications, including the implementation of process control in metabolic networks and the coordination of spatial differentiation in artificial tissues. A key limitation is that the circuits are based on biochemical interactions occurring in the confined volume of the cell, so the size of programs has been limited to a few circuits1,7. Here we apply part mining and directed evolution to build a set of transcriptional AND gates in Escherichia coli. Each AND gate integrates two promoter inputs and controls one promoter output. This allows the gates to be layered by having the output promoter of an upstream circuit serve as the input promoter for a downstream circuit. Each gate consists of a transcription factor that requires a second chaperone protein to activate the output promoter. Multiple activator–chaperone pairs are identified from type III secretion pathways in different strains of bacteria. Directed evolution is applied to increase the dynamic range and orthogonality of the circuits. These gates are connected in different permutations to form programs, the largest of which is a 4-input AND gate that consists of 3 circuits that integrate 4 inducible systems, thus requiring 11 regulatory proteins. Measuring the performance of individual gates is sufficient to capture the behaviour of the complete program. Errors in the output due to delays (faults), a common problem for layered circuits, are not observed. This work demonstrates the successful layering of orthogonal logic gates, a design strategy that could enable the construction of large, integrated circuits in single cells. PMID:23041931

  19. A ``model`` geophysics program

    SciTech Connect

    Nyquist, J.E.

    1994-03-01

    In 1993, I tested a radio-controlled airplane designed by Jim Walker of Brigham Young University for low-elevation aerial photography. Model-air photography retains most of the advantages of standard aerial photography --- the photographs can be used to detect lineaments, to map roads and buildings, and to construct stereo pairs to measure topography --- and it is far less expensive. Proven applications on the Oak Ridge Reservation include: updating older aerial records to document new construction; using repeated overflights of the same area to capture seasonal changes in vegetation and the effects of major storms; and detecting waste trench boundaries from the color and character of the overlying grass. Aerial photography is only one of many possible applications of radio-controlled aircraft. Currently, I am funded by the Department of Energy`s Office of Technology Development to review the state of the art in microavionics, both military and civilian, to determine ways this emerging technology can be used for environmental site characterization. Being particularly interested in geophysical applications, I am also collaborating with electrical engineers at Oak Ridge National Laboratory to design a model plane that will carry a 3-component flux-gate magnetometer and a global positioning system, which I hope to test in the spring of 1994.

  20. Telegenetics: application of a tele-education program in genetic syndromes for Brazilian students.

    PubMed

    Maximino, Luciana Paula; Picolini-Pereira, Mirela Machado; Carvalho, José Luiz Brito

    2014-01-01

    With the high occurrence of genetic anomalies in Brazil and the manifestations of communication disorders associated with these conditions, the development of educative actions that comprise these illnesses can bring unique benefits in the identification and appropriate treatment of these clinical pictures. Objective The aim of this study was to develop and analyze an educational program in genetic syndromes for elementary students applied in two Brazilian states, using an Interactive Tele-education model. Material and Methods The study was carried out in 4 schools: two in the state of São Paulo, Southeast Region, Brazil, and two in the state of Amazonas, North Region, Brazil. Forty-five students, both genders, aged between 13 and 14 years, of the 9th grade of the basic education of both public and private system, were divided into two groups: 21 of São Paulo Group (SPG) and 24 of Amazonas Group (AMG). The educational program lasted about 3 months and was divided into two stages including both classroom and distance activities on genetic syndromes. The classroom activity was carried out separately in each school, with expository lessons, graphs and audiovisual contents. In the activity at a distance the educational content was presented to students by means of the Interactive Tele-education model. In this stage, the students had access a Cybertutor, using the Young Doctor Project methodology. In order to measure the effectiveness of the educational program, the Problem Situation Questionnaire (PSQ) and the Web Site Motivational Analysis Checklist adapted (FPM) were used. Results The program developed was effective for knowledge acquisition in 80% of the groups. FPM showed a high satisfaction index from the participants in relation to the Interactive Tele-education, evaluating the program as "awesome course". No statistically significant differences between the groups regarding type of school or state were observed. Conclusion Thus, the Tele-Education Program can

  1. [Genetic programming used for the measurement of CO concentration based on nondispersive infrared absorption spectroscopy].

    PubMed

    Chen, Jin; Duan, Fa-jie; Tong, Ying; Gao, Qiang

    2011-07-01

    Nondispersive infrared absorption spectroscopy(NDIR) is an important method to measure CO concentration in the air. In the present study, an open-path measurement system and continuous measuring device was developed, and genetic programming was used to establish the calibration model of subjects' light intensity sampling values. Continuous measurements were carried out in 10 different concentration of CO, and 40 sampled data were acquired and analyzed. For validation set, the correlation coefficient was 0.9997. The biggest relative error of validation was 4.00%, and the average relative error was 1.11%. Results show that genetic programming can be a good method for the modeling of gas concentration measurements equipped with NDIR systems.

  2. Programming peptidomimetic syntheses by translating genetic codes designed de novo.

    PubMed

    Forster, Anthony C; Tan, Zhongping; Nalam, Madhavi N L; Lin, Hening; Qu, Hui; Cornish, Virginia W; Blacklow, Stephen C

    2003-05-27

    Although the universal genetic code exhibits only minor variations in nature, Francis Crick proposed in 1955 that "the adaptor hypothesis allows one to construct, in theory, codes of bewildering variety." The existing code has been expanded to enable incorporation of a variety of unnatural amino acids at one or two nonadjacent sites within a protein by using nonsense or frameshift suppressor aminoacyl-tRNAs (aa-tRNAs) as adaptors. However, the suppressor strategy is inherently limited by compatibility with only a small subset of codons, by the ways such codons can be combined, and by variation in the efficiency of incorporation. Here, by preventing competing reactions with aa-tRNA synthetases, aa-tRNAs, and release factors during translation and by using nonsuppressor aa-tRNA substrates, we realize a potentially generalizable approach for template-encoded polymer synthesis that unmasks the substantially broader versatility of the core translation apparatus as a catalyst. We show that several adjacent, arbitrarily chosen sense codons can be completely reassigned to various unnatural amino acids according to de novo genetic codes by translating mRNAs into specific peptide analog polymers (peptidomimetics). Unnatural aa-tRNA substrates do not uniformly function as well as natural substrates, revealing important recognition elements for the translation apparatus. Genetic programming of peptidomimetic synthesis should facilitate mechanistic studies of translation and may ultimately enable the directed evolution of small molecules with desirable catalytic or pharmacological properties.

  3. Combining classifiers generated by multi-gene genetic programming for protein fold recognition using genetic algorithm.

    PubMed

    Bardsiri, Mahshid Khatibi; Eftekhari, Mahdi; Mousavi, Reza

    2015-01-01

    In this study the problem of protein fold recognition, that is a classification task, is solved via a hybrid of evolutionary algorithms namely multi-gene Genetic Programming (GP) and Genetic Algorithm (GA). Our proposed method consists of two main stages and is performed on three datasets taken from the literature. Each dataset contains different feature groups and classes. In the first step, multi-gene GP is used for producing binary classifiers based on various feature groups for each class. Then, different classifiers obtained for each class are combined via weighted voting so that the weights are determined through GA. At the end of the first step, there is a separate binary classifier for each class. In the second stage, the obtained binary classifiers are combined via GA weighting in order to generate the overall classifier. The final obtained classifier is superior to the previous works found in the literature in terms of classification accuracy.

  4. Defining Our Clinical Practice: The Identification of Genetic Counseling Outcomes Utilizing the Reciprocal Engagement Model.

    PubMed

    Redlinger-Grosse, Krista; Veach, Patricia McCarthy; Cohen, Stephanie; LeRoy, Bonnie S; MacFarlane, Ian M; Zierhut, Heather

    2016-04-01

    The need for evidence-based medicine, including comparative effectiveness studies and patient-centered outcomes research, has become a major healthcare focus. To date, a comprehensive list of genetic counseling outcomes, as espoused by genetic counselors, has not been established and thus, identification of outcomes unique to genetic counseling services has become a priority for the National Society of Genetic Counselors (NSGC). The purpose of this study was to take a critical first step at identifying a more comprehensive list of genetic counseling outcomes. This paper describes the results of a focus group study using the Reciprocal-Engagement Model (REM) as a framework to characterize patient-centered outcomes of genetic counseling clinical practice. Five focus groups were conducted with 27 peer nominated participants who were clinical genetic counselors, genetic counseling program directors, and/or outcomes researchers in genetic counseling. Members of each focus group were asked to identify genetic counseling outcomes for four to five of the 17 goals of the REM. A theory-driven, thematic analysis of focus group data yielded 194 genetic counseling outcomes across the 17 goals. Participants noted some concerns about how genetic counseling outcomes will be measured and evaluated given varying stakeholders and the long-term nature of genetic concerns. The present results provide a list of outcomes for use in future genetic counseling outcomes research and for empirically-supported clinical interventions.

  5. 76 FR 72424 - Submission for OMB Review; Comment Request Information Program on the Genetic Testing Registry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... Program on the Genetic Testing Registry AGENCY: National Institutes of Health (NIH), PHS, DHHS. ACTION... control number. Proposed Collection: Title: The Genetic Testing Registry; Type of Information Collection... developing a voluntary registry of genetic tests. The Genetic Testing Registry (GTR) will provide...

  6. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.

    PubMed

    Shumbusho, F; Raoul, J; Astruc, J M; Palhiere, I; Elsen, J M

    2013-08-01

    In conventional small ruminant breeding programs, only pedigree and phenotype records are used to make selection decisions but prospects of including genomic information are now under consideration. The objective of this study was to assess the potential benefits of genomic selection on the genetic gain in French sheep and goat breeding designs of today. Traditional and genomic scenarios were modeled with deterministic methods for 3 breeding programs. The models included decisional variables related to male selection candidates, progeny testing capacity, and economic weights that were optimized to maximize annual genetic gain (AGG) of i) a meat sheep breeding program that improved a meat trait of heritability (h(2)) = 0.30 and a maternal trait of h(2) = 0.09 and ii) dairy sheep and goat breeding programs that improved a milk trait of h(2) = 0.30. Values of ±0.20 of genetic correlation between meat and maternal traits were considered to study their effects on AGG. The Bulmer effect was accounted for and the results presented here are the averages of AGG after 10 generations of selection. Results showed that current traditional breeding programs provide an AGG of 0.095 genetic standard deviation (σa) for meat and 0.061 σa for maternal trait in meat breed and 0.147 σa and 0.120 σa in sheep and goat dairy breeds, respectively. By optimizing decisional variables, the AGG with traditional selection methods increased to 0.139 σa for meat and 0.096 σa for maternal traits in meat breeding programs and to 0.174 σa and 0.183 σa in dairy sheep and goat breeding programs, respectively. With a medium-sized reference population (nref) of 2,000 individuals, the best genomic scenarios gave an AGG that was 17.9% greater than with traditional selection methods with optimized values of decisional variables for combined meat and maternal traits in meat sheep, 51.7% in dairy sheep, and 26.2% in dairy goats. The superiority of genomic schemes increased with the size of the

  7. Model Checker for Java Programs

    NASA Technical Reports Server (NTRS)

    Visser, Willem

    2007-01-01

    Java Pathfinder (JPF) is a verification and testing environment for Java that integrates model checking, program analysis, and testing. JPF consists of a custom-made Java Virtual Machine (JVM) that interprets bytecode, combined with a search interface to allow the complete behavior of a Java program to be analyzed, including interleavings of concurrent programs. JPF is implemented in Java, and its architecture is highly modular to support rapid prototyping of new features. JPF is an explicit-state model checker, because it enumerates all visited states and, therefore, suffers from the state-explosion problem inherent in analyzing large programs. It is suited to analyzing programs less than 10kLOC, but has been successfully applied to finding errors in concurrent programs up to 100kLOC. When an error is found, a trace from the initial state to the error is produced to guide the debugging. JPF works at the bytecode level, meaning that all of Java can be model-checked. By default, the software checks for all runtime errors (uncaught exceptions), assertions violations (supports Java s assert), and deadlocks. JPF uses garbage collection and symmetry reductions of the heap during model checking to reduce state-explosion, as well as dynamic partial order reductions to lower the number of interleavings analyzed. JPF is capable of symbolic execution of Java programs, including symbolic execution of complex data such as linked lists and trees. JPF is extensible as it allows for the creation of listeners that can subscribe to events during searches. The creation of dedicated code to be executed in place of regular classes is supported and allows users to easily handle native calls and to improve the efficiency of the analysis.

  8. Large genetic animal models of Huntington's Disease.

    PubMed

    Morton, A Jennifer; Howland, David S

    2013-01-01

    The dominant nature of the Huntington's disease gene mutation has allowed genetic models to be developed in multiple species, with the mutation causing an abnormal neurological phenotype in all animals in which it is expressed. Many different rodent models have been generated. The most widely used of these, the transgenic R6/2 mouse, carries the mutation in a fragment of the human huntingtin gene and has a rapidly progressive and fatal neurological phenotype with many relevant pathological changes. Nevertheless, their rapid decline has been frequently questioned in the context of a disease that takes years to manifest in humans, and strenuous efforts have been made to make rodent models that are genetically more 'relevant' to the human condition, including full length huntingtin gene transgenic and knock-in mice. While there is no doubt that we have learned, and continue to learn much from rodent models, their usefulness is limited by two species constraints. First, the brains of rodents differ significantly from humans in both their small size and their neuroanatomical organization. Second, rodents have much shorter lifespans than humans. Here, we review new approaches taken to these challenges in the development of models of Huntington's disease in large brained, long-lived animals. We discuss the need for such models, and how they might be used to fill specific niches in preclinical Huntington's disease research, particularly in testing gene-based therapeutics. We discuss the advantages and disadvantages of animals in which the prodromal period of disease extends over a long time span. We suggest that there is considerable 'value added' for large animal models in preclinical Huntington's disease research.

  9. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  10. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  11. Interactive computer program for learning genetic principles of segregation and independent assortment through meiosis.

    PubMed

    Yang, Xiaoli; Ge, Rong; Yang, Yufei; Shen, Hao; Li, Yingjie; Tseng, Charles C

    2009-01-01

    Teaching fundamental principles of genetics such as segregation and independent assortment of genes could be challenging for high school and college biology instructors. Students without thorough knowledge in meiosis often end up of frustration and failure in genetics courses. Although all textbooks and laboratory manuals have excellent graphic demonstrations and photographs of meiotic process, students may not always master the concept due to the lack of hands-on exercise. In response to the need for an effective lab exercise to understand the segregation of allelic genes and the independent assortment of the unlinked genes, we developed an interactive program for students to manually manipulate chromosome models and visualize each major step of meiosis so that these two genetic principles can be thoroughly understood.

  12. The genetic diversity of triticale genotypes involved in Polish breeding programs.

    PubMed

    Niedziela, Agnieszka; Orłowska, Renata; Machczyńska, Joanna; Bednarek, Piotr T

    2016-01-01

    Genetic diversity analysis of triticale populations is useful for breeding programs, as it helps to select appropriate genetic material for classifying the parental lines, heterotic groups and predicting hybrid performance. In our study 232 breeding forms were analyzed using diversity arrays technology markers. Principal coordinate analysis followed by model-based Bayesian analysis of population structure revealed the presence of weak data structuring with three groups of data. In the first group, 17 spring and 17 winter forms were clustered. The second and the third groups were represented by 101 and 26 winter forms, respectively. Polymorphic information content values, as well as Shannon's Information Index, were higher for the first (0.319) and second (0.309) than for third (0.234) group. AMOVA analysis demonstrated a higher level of within variation (86 %) than among populations (14 %). This study provides the basic information on the presence of structure within a genetic pool of triticale breeding forms. PMID:27066368

  13. Genetically engineered livestock for biomedical models.

    PubMed

    Rogers, Christopher S

    2016-06-01

    To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome.

  14. Genetically engineered livestock for biomedical models.

    PubMed

    Rogers, Christopher S

    2016-06-01

    To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome. PMID:26820410

  15. Genetic counseling services and development of training programs in Malaysia.

    PubMed

    Lee, Juliana Mei-Har; Thong, Meow-Keong

    2013-12-01

    Genetic counseling service is urgently required in developing countries. In Malaysia, the first medical genetic service was introduced in 1994 at one of the main teaching hospitals in Kuala Lumpur. Two decades later, the medical genetic services have improved with the availability of genetic counseling, genetic testing and diagnosis, for both paediatric conditions and adult-onset inherited conditions, at four main centers of medical genetic services in Malaysia. Prenatal diagnosis services and assisted reproductive technologies are available at tertiary centres and private medical facilities. Positive developments include governmental recognition of Clinical Genetics as a subspecialty, increased funding for genetics services, development of medical ethics guidelines, and establishment of support groups. However, the country lacked qualified genetic counselors. Proposals were presented to policy-makers to develop genetic counseling courses. Challenges encountered included limited resources and public awareness, ethical dilemmas such as religious and social issues and inadequate genetic health professionals especially genetic counselors.

  16. Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    The key in stock trading model is to take the right actions for trading at the right time, primarily based on the accurate forecast of future stock trends. Since an effective trading with given information of stock prices needs an intelligent strategy for the decision making, we applied Genetic Network Programming (GNP) to creating a stock trading model. In this paper, we propose a new method called Real Time Updating Genetic Network Programming (RTU-GNP) for adapting to the change of stock prices. There are three important points in this paper: First, the RTU-GNP method makes a stock trading decision considering both the recommendable information of technical indices and the candlestick charts according to the real time stock prices. Second, we combine RTU-GNP with a Sarsa learning algorithm to create the programs efficiently. Also, sub-nodes are introduced in each judgment and processing node to determine appropriate actions (buying/selling) and to select appropriate stock price information depending on the situation. Third, a Real Time Updating system has been firstly introduced in our paper considering the change of the trend of stock prices. The experimental results on the Japanese stock market show that the trading model with the proposed RTU-GNP method outperforms other models without real time updating. We also compared the experimental results using the proposed method with Buy&Hold method to confirm its effectiveness, and it is clarified that the proposed trading model can obtain much higher profits than Buy&Hold method.

  17. A new crossover operator in genetic programming for object classification.

    PubMed

    Zhang, Mengjie; Gao, Xiaoying; Lou, Weijun

    2007-10-01

    The crossover operator has been considered "the centre of the storm" in genetic programming (GP). However, many existing GP approaches to object recognition suggest that the standard GP crossover is not sufficiently powerful in producing good child programs due to the totally random choice of the crossover points. To deal with this problem, this paper introduces an approach with a new crossover operator in GP for object recognition, particularly object classification. In this approach, a local hill-climbing search is used in constructing good building blocks, a weight called looseness is introduced to identify the good building blocks in individual programs, and the looseness values are used as heuristics in choosing appropriate crossover points to preserve good building blocks. This approach is examined and compared with the standard crossover operator and the headless chicken crossover (HCC) method on a sequence of object classification problems. The results suggest that this approach outperforms the HCC, the standard crossover, and the standard crossover operator with hill climbing on all of these problems in terms of the classification accuracy. Although this approach spends a bit longer time than the standard crossover operator, it significantly improves the system efficiency over the HCC method. PMID:17926713

  18. Application of Program Logic Model to Agricultural Technology Transfer Programs.

    ERIC Educational Resources Information Center

    Framst, Gordon

    1995-01-01

    Program logic models provide a method of presenting program objectives schematically. This article presents a model that explicitly recognizes the ultimate societal-level benefits and accommodates identification of outputs, performance indicators, and targets. The model is illustrated with a hypothetical agricultural technology transfer program.…

  19. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    PubMed

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-09-02

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.

  20. Explanatory Models of Genetics and Genetic Risk among a Selected Group of Students.

    PubMed

    Goltz, Heather Honoré; Bergman, Margo; Goodson, Patricia

    2016-01-01

    This exploratory qualitative study focuses on how college students conceptualize genetics and genetic risk, concepts essential for genetic literacy (GL) and genetic numeracy (GN), components of overall health literacy (HL). HL is dependent on both the background knowledge and culture of a patient, and lower HL is linked to increased morbidity and mortality for a number of chronic health conditions (e.g., diabetes and cancer). A purposive sample of 86 students from three Southwestern universities participated in eight focus groups. The sample ranged in age from 18 to 54 years, and comprised primarily of female (67.4%), single (74.4%), and non-White (57%) participants, none of whom were genetics/biology majors. A holistic-content approach revealed broad categories concerning participants' explanatory models (EMs) of genetics and genetic risk. Participants' EMs were grounded in highly contextualized narratives that only partially overlapped with biomedical models. While higher education levels should be associated with predominately knowledge-based EM of genetic risk, this study shows that even in well-educated populations cultural factors can dominate. Study findings reveal gaps in how this sample of young adults obtains, processes, and understands genetic/genomic concepts. Future studies should assess how individuals with low GL and GN obtain and process genetics and genetic risk information and incorporate this information into health decision making. Future work should also address the interaction of communication between health educators, providers, and genetic counselors, to increase patient understanding of genetic risk. PMID:27376052

  1. Explanatory Models of Genetics and Genetic Risk among a Selected Group of Students

    PubMed Central

    Goltz, Heather Honoré; Bergman, Margo; Goodson, Patricia

    2016-01-01

    This exploratory qualitative study focuses on how college students conceptualize genetics and genetic risk, concepts essential for genetic literacy (GL) and genetic numeracy (GN), components of overall health literacy (HL). HL is dependent on both the background knowledge and culture of a patient, and lower HL is linked to increased morbidity and mortality for a number of chronic health conditions (e.g., diabetes and cancer). A purposive sample of 86 students from three Southwestern universities participated in eight focus groups. The sample ranged in age from 18 to 54 years, and comprised primarily of female (67.4%), single (74.4%), and non-White (57%) participants, none of whom were genetics/biology majors. A holistic-content approach revealed broad categories concerning participants’ explanatory models (EMs) of genetics and genetic risk. Participants’ EMs were grounded in highly contextualized narratives that only partially overlapped with biomedical models. While higher education levels should be associated with predominately knowledge-based EM of genetic risk, this study shows that even in well-educated populations cultural factors can dominate. Study findings reveal gaps in how this sample of young adults obtains, processes, and understands genetic/genomic concepts. Future studies should assess how individuals with low GL and GN obtain and process genetics and genetic risk information and incorporate this information into health decision making. Future work should also address the interaction of communication between health educators, providers, and genetic counselors, to increase patient understanding of genetic risk. PMID:27376052

  2. Comprehensive bidding strategies with genetic programming/finite state automata

    SciTech Connect

    Richter, C.W. Jr.; Sheble, G.B.; Ashlock, D.

    1999-11-01

    This research is an extension of the authors' previous work in double auctions aimed at developing bidding strategies for electric utilities which trade electricity competitively. The improvements detailed in this paper come from using data structures which combine genetic programming and finite state automata termed GP-Automata. The strategies developed by the method described here are adaptive--reacting to inputs--whereas the previously developed strategies were only suitable in the particular scenario for which they had been designed. The strategies encoded in the GP-Automata are tested in an auction simulator. The simulator pits them against other distribution companies (distcos) and generation companies (gencos), buying and selling power via double auctions implemented in regional commodity exchanges. The GP-Automata are evolved with a genetic algorithm so that they possess certain characteristics. In addition to designing successful bidding strategies (whose usage would result in higher profits) the resulting strategies can also be designed to imitate certain types of trading behaviors. The resulting strategies can be implemented directly in on-line trading, or can be used as realistic competitors in an off-line trading simulator.

  3. Accurate construction of consensus genetic maps via integer linear programming.

    PubMed

    Wu, Yonghui; Close, Timothy J; Lonardi, Stefano

    2011-01-01

    We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html. PMID:20479505

  4. Accurate construction of consensus genetic maps via integer linear programming.

    PubMed

    Wu, Yonghui; Close, Timothy J; Lonardi, Stefano

    2011-01-01

    We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html.

  5. Genetic programming approach to extracting features from remotely sensed imagery

    SciTech Connect

    Theiler, J. P.; Perkins, S. J.; Harvey, N. R.; Szymanski, J. J.; Brumby, Steven P.

    2001-01-01

    Multi-instrument data sets present an interesting challenge to feature extraction algorithm developers. Beyond the immediate problems of spatial co-registration, the remote sensing scientist must explore a complex algorithm space in which both spatial and spectral signatures may be required to identify a feature of interest. We describe a genetic programming/supervised classifier software system, called Genie, which evolves and combines spatio-spectral image processing tools for remotely sensed imagery. We describe our representation of candidate image processing pipelines, and discuss our set of primitive image operators. Our primary application has been in the field of geospatial feature extraction, including wildfire scars and general land-cover classes, using publicly available multi-spectral imagery (MSI) and hyper-spectral imagery (HSI). Here, we demonstrate our system on Landsat 7 Enhanced Thematic Mapper (ETM+) MSI. We exhibit an evolved pipeline, and discuss its operation and performance.

  6. A Comparison of Genetic Programming Variants for Hyper-Heuristics

    SciTech Connect

    Harris, Sean

    2015-03-01

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved, such as routing vehicles over highways with constantly changing traffic flows, because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. Hyper-heuristics typically employ Genetic Programming (GP) and this project has investigated the relationship between the choice of GP and performance in Hyper-heuristics. Results are presented demonstrating the existence of problems for which there is a statistically significant performance differential between the use of different types of GP.

  7. Genetically evolved receptor models: a computational approach to construction of receptor models.

    PubMed

    Walters, D E; Hinds, R M

    1994-08-01

    Given the three-dimensional structure of a receptor site, there are several methods available for designing ligands to occupy the site; frequently, the three-dimensional structure of interesting receptors is not known, however. The GERM program uses a genetic algorithm to produce atomic-level models of receptor sites, based on a small set of known structure-activity relationships. The evolved models show a high correlation between calculated intermolecular energies and bioactivities; they also give reasonable predictions of bioactivity for compounds which were not included in model generation. Such models may serve as starting points for computational or human ligand design efforts. PMID:8057298

  8. Genetically evolved receptor models: a computational approach to construction of receptor models.

    PubMed

    Walters, D E; Hinds, R M

    1994-08-01

    Given the three-dimensional structure of a receptor site, there are several methods available for designing ligands to occupy the site; frequently, the three-dimensional structure of interesting receptors is not known, however. The GERM program uses a genetic algorithm to produce atomic-level models of receptor sites, based on a small set of known structure-activity relationships. The evolved models show a high correlation between calculated intermolecular energies and bioactivities; they also give reasonable predictions of bioactivity for compounds which were not included in model generation. Such models may serve as starting points for computational or human ligand design efforts.

  9. Perceptions of Latinas on the Traditional Prenatal Genetic Counseling Model.

    PubMed

    Thompson, Stephanie; Noblin, Sarah Jane; Lemons, Jennifer; Peterson, Susan K; Carreno, Carlos; Harbison, Andrea

    2015-08-01

    The traditional genetic counseling model encompasses an individualized counseling session that includes the presentation of information about genes, chromosomes, personalized risk assessment, and genetic testing and screening options. Counselors are challenged to balance the provision of enough basic genetic information to ensure clients' understanding of the genetic condition in question with a personalized discussion of what this information means to them. This study explored the perceptions Latinas have about prenatal genetic counseling sessions and aimed to determine if they had preferences about the delivery of care. Data were collected through focus groups and one-on-one, semi-structured interviews of 25 Spanish speaking Latinas who received genetic counseling during their current pregnancy. We implemented grounded theory to evaluate participant responses, and were able to identify common emergent themes. Several themes were identified including an overall satisfaction with their prenatal genetic counseling appointment, desire for a healthy baby, peace of mind following their appointment, lack of desire for invasive testing, and faith in God. Several participants stated a preference for group genetic counseling over the traditional individual genetic counseling model. Our data indicate that Latinas value the information presented at prenatal genetic counseling appointments despite disinterest in pursuing genetic testing or screening and suggest that group prenatal genetic counseling may be an effective alternative to the traditional genetic counseling model in the Latina population. PMID:25475921

  10. Perceptions of Latinas on the Traditional Prenatal Genetic Counseling Model.

    PubMed

    Thompson, Stephanie; Noblin, Sarah Jane; Lemons, Jennifer; Peterson, Susan K; Carreno, Carlos; Harbison, Andrea

    2015-08-01

    The traditional genetic counseling model encompasses an individualized counseling session that includes the presentation of information about genes, chromosomes, personalized risk assessment, and genetic testing and screening options. Counselors are challenged to balance the provision of enough basic genetic information to ensure clients' understanding of the genetic condition in question with a personalized discussion of what this information means to them. This study explored the perceptions Latinas have about prenatal genetic counseling sessions and aimed to determine if they had preferences about the delivery of care. Data were collected through focus groups and one-on-one, semi-structured interviews of 25 Spanish speaking Latinas who received genetic counseling during their current pregnancy. We implemented grounded theory to evaluate participant responses, and were able to identify common emergent themes. Several themes were identified including an overall satisfaction with their prenatal genetic counseling appointment, desire for a healthy baby, peace of mind following their appointment, lack of desire for invasive testing, and faith in God. Several participants stated a preference for group genetic counseling over the traditional individual genetic counseling model. Our data indicate that Latinas value the information presented at prenatal genetic counseling appointments despite disinterest in pursuing genetic testing or screening and suggest that group prenatal genetic counseling may be an effective alternative to the traditional genetic counseling model in the Latina population.

  11. Perinatal vs Genetic Programming of Serotonin States Associated with Anxiety

    PubMed Central

    Altieri, Stefanie C; Yang, Hongyan; O'Brien, Hannah J; Redwine, Hannah M; Senturk, Damla; Hensler, Julie G; Andrews, Anne M

    2015-01-01

    Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior. PMID:25523893

  12. Perinatal vs genetic programming of serotonin states associated with anxiety.

    PubMed

    Altieri, Stefanie C; Yang, Hongyan; O'Brien, Hannah J; Redwine, Hannah M; Senturk, Damla; Hensler, Julie G; Andrews, Anne M

    2015-05-01

    Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior.

  13. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1990-01-01

    The concepts of software engineering were used to improve the simulation modeling environment. Emphasis was placed on the application of an element of rapid prototyping, or automatic programming, to assist the modeler define the problem specification. Then, once the problem specification has been defined, an automatic code generator is used to write the simulation code. The following two domains were selected for evaluating the concepts of software engineering for discrete event simulation: manufacturing domain and a spacecraft countdown network sequence. The specific tasks were to: (1) define the software requirements for a graphical user interface to the Automatic Manufacturing Programming System (AMPS) system; (2) develop a graphical user interface for AMPS; and (3) compare the AMPS graphical interface with the AMPS interactive user interface.

  14. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  15. Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Colombano, Silvano

    1997-01-01

    We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.

  16. Competitive speciation in quantitative genetic models.

    PubMed

    Drossel, B; Mckane, A

    2000-06-01

    We study sympatric speciation due to competition in an environment with a broad distribution of resources. We assume that the trait under selection is a quantitative trait, and that mating is assortative with respect to this trait. Our model alternates selection according to Lotka-Volterra-type competition equations, with reproduction using the ideas of quantitative genetics. The recurrence relations defined by these equations are studied numerically and analytically. We find that when a population enters a new environment, with a broad distribution of unexploited food sources, the population distribution broadens under a variety of conditions, with peaks at the edge of the distribution indicating the formation of subpopulations. After a long enough time period, the population can split into several subpopulations with little gene flow between them. PMID:10816369

  17. Genetic models of poljes in Sicily

    NASA Astrophysics Data System (ADS)

    Di Maggio, Cipriano; Madonia, Giuliana; Vattano, Marco; De Waele, Jo

    2016-04-01

    Geomorphological and geological studies have been carried out to contribute to the recognition of controlling causes and to the definition of genetic models for poljes of Sicily. A polje is a kilometric closed depression developed mainly on karst rocks, with a conspicuously flat and alluviated bottom affected by intermittent flooding. A polje is usually characterised by relatively steep slopes enclosing an almost perfectly horizontal floor, caused by lateral solution planation related to flooding events. The origin of a polje is due to dissolution of the land surface, although geological structure generally influences its genesis. These large depressions are often elongated according to the direction of main faults, in consequence of a control due to tectonics or to differential erosion. The performed researches have shown the existence of at least seven poljes located along the north-western (chain zone) and the southern (deformed foredeep zone) areas of Sicily. These large karst depressions are developed on Mesozoic limestone/dolomitic rocks within the chain zone and on Messinian gypsum rocks within the deformed foredeep zone. They are up to 4 km in length, can reach surfaces of 3-8 km2 and are around hundred metres deep, with steep slopes and a flat bottom. Generally, they are open, occasionally active depressions and their genesis seems to be strongly controlled by structure. In particular, the studied poljes occur in two different geological/geomorphological settings: a) in graben-like tectonic depressions, where important fault slopes/scarps border the flat bottom; b) in complex depressions controlled by structure, where wide fault line slopes/scarps or large inclined degraded structural surfaces mark the poljes. Finally, landscape analysis leads to the proposition of two main genetic models in which the development of poljes is primarily due to tectonics or differential erosion followed by dissolution.

  18. SMP: A solid modeling program

    NASA Technical Reports Server (NTRS)

    Randall, D. P.; Jones, K. H.; Vonofenheim, W. H.; Gates, R. L.

    1984-01-01

    A prototype solid modeling program, SMP, developed by CSC for Langley Research Center (LaRC) is documented in this paper. The SMP software is employed by the System and Experiments Branch (SEB) of the Space Systems Division (SSD) for preliminary space station design, but is intended as a general purpose tool. The SMP document provides details concerning: the basic geometric modeling primitives and associated operators, the data representation scheme utilized to structure the geometric model, the available commands for both editing and displaying the solid model, the interactive user interface and the input/output interfaces to external software, and the utility of the package in the LaRC computing environment. The document is sufficiently detailed to serve both as a user's guide and reference manual.

  19. Adolescent Perpetrator Treatment Programs: Program Models.

    ERIC Educational Resources Information Center

    Abbey, Joan M.

    It has become increasingly evident that juveniles are the perpetrators of a substantial nunber of sexual assaults. Programs designed to treat these adolescent perpetrators usually have similar goals. They attempt to reduce the youth's risk of recidivism by helping him to recognize his problem, take responsibility for his actions, learn how to…

  20. Towards programming languages for genetic engineering of living cells.

    PubMed

    Pedersen, Michael; Phillips, Andrew

    2009-08-01

    Synthetic biology aims at producing novel biological systems to carry out some desired and well-defined functions. An ultimate dream is to design these systems at a high level of abstraction using engineering-based tools and programming languages, press a button, and have the design translated to DNA sequences that can be synthesized and put to work in living cells. We introduce such a programming language, which allows logical interactions between potentially undetermined proteins and genes to be expressed in a modular manner. Programs can be translated by a compiler into sequences of standard biological parts, a process that relies on logic programming and prototype databases that contain known biological parts and protein interactions. Programs can also be translated to reactions, allowing simulations to be carried out. While current limitations on available data prevent full use of the language in practical applications, the language can be used to develop formal models of synthetic systems, which are otherwise often presented by informal notations. The language can also serve as a concrete proposal on which future language designs can be discussed, and can help to guide the emerging standard of biological parts which so far has focused on biological, rather than logical, properties of parts.

  1. A Tri-part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning About Authentic Genetics Dilemmas

    NASA Astrophysics Data System (ADS)

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-08-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational features of a reasoning task may influence how students apply content knowledge as they generate and support arguments. Understanding how students apply content knowledge to reason about authentic and complex issues is important for considering instructional practices that best support student thinking and reasoning. In this conceptual report, we present a tri-part model for genetics literacy that embodies the relationships between content knowledge use, argumentation quality, and the role of situational features in reasoning to support genetics literacy. Using illustrative examples from an interview study with early career undergraduate students majoring in the biological sciences and late career undergraduate students majoring in genetics, we provide insights into undergraduate student reasoning about complex genetics issues and discuss implications for teaching and learning. We further discuss the need for research about how the tri-part model of genetics literacy can be used to explore students' thinking and reasoning abilities in genetics.

  2. EPA'S GENETIC DIVERSITY RESEARCH PROGRAM: ECOLOGICAL INDICATOR DEVELOPMENT

    EPA Science Inventory

    Genetic diversity is a fundamental component of biodiversity that is affected by environmental stressors in predictable ways and limits potential responses of a population to future stressors. Understanding patterns of genetic diversity enhances the value and interpretation of o...

  3. Genetically modified mouse models addressing gonadotropin function.

    PubMed

    Ratner, Laura D; Rulli, Susana B; Huhtaniemi, Ilpo T

    2014-03-01

    The development of genetically modified animals has been useful to understand the mechanisms involved in the regulation of the gonadotropin function. It is well known that alterations in the secretion of a single hormone is capable of producing profound reproductive abnormalities. Human chorionic gonadotropin (hCG) is a glycoprotein hormone normally secreted by the human placenta, and structurally and functionally it is related to pituitary LH. LH and hCG bind to the same LH/hCG receptor, and hCG is often used as an analog of LH to boost gonadotropin action. There are many physiological and pathological conditions where LH/hCG levels and actions are elevated. In order to understand how elevated LH/hCG levels may impact on the hypothalamic-pituitary-gonadal axis we have developed a transgenic mouse model with chronic hCG hypersecretion. Female mice develop many gonadal and extragonadal phenotypes including obesity, infertility, hyperprolactinemia, and pituitary and mammary gland tumors. This article summarizes recent findings on the mechanisms involved in pituitary gland tumorigenesis and hyperprolactinemia in the female mice hypersecreting hCG, in particular the relationship of progesterone with the hyperprolactinemic condition of the model. In addition, we describe the role of hyperprolactinemia as the main cause of infertility and the phenotypic abnormalities in these mice, and the use of dopamine agonists bromocriptine and cabergoline to normalize these conditions.

  4. Telegenetics: application of a tele-education program in genetic syndromes for Brazilian students

    PubMed Central

    MAXIMINO, Luciana Paula; PICOLINI-PEREIRA, Mirela Machado; CARVALHO, José Luiz Brito

    2014-01-01

    With the high occurrence of genetic anomalies in Brazil and the manifestations of communication disorders associated with these conditions, the development of educative actions that comprise these illnesses can bring unique benefits in the identification and appropriate treatment of these clinical pictures. Objective The aim of this study was to develop and analyze an educational program in genetic syndromes for elementary students applied in two Brazilian states, using an Interactive Tele-education model. Material and Methods The study was carried out in 4 schools: two in the state of São Paulo, Southeast Region, Brazil, and two in the state of Amazonas, North Region, Brazil. Forty-five students, both genders, aged between 13 and 14 years, of the 9th grade of the basic education of both public and private system, were divided into two groups: 21 of São Paulo Group (SPG) and 24 of Amazonas Group (AMG). The educational program lasted about 3 months and was divided into two stages including both classroom and distance activities on genetic syndromes. The classroom activity was carried out separately in each school, with expository lessons, graphs and audiovisual contents. In the activity at a distance the educational content was presented to students by means of the Interactive Tele-education model. In this stage, the students had access a Cybertutor, using the Young Doctor Project methodology. In order to measure the effectiveness of the educational program, the Problem Situation Questionnaire (PSQ) and the Web Site Motivational Analysis Checklist adapted (FPM) were used. Results The program developed was effective for knowledge acquisition in 80% of the groups. FPM showed a high satisfaction index from the participants in relation to the Interactive Tele-education, evaluating the program as "awesome course". No statistically significant differences between the groups regarding type of school or state were observed. Conclusion Thus, the Tele-Education Program can

  5. Telegenetics: application of a tele-education program in genetic syndromes for Brazilian students.

    PubMed

    Maximino, Luciana Paula; Picolini-Pereira, Mirela Machado; Carvalho, José Luiz Brito

    2014-01-01

    With the high occurrence of genetic anomalies in Brazil and the manifestations of communication disorders associated with these conditions, the development of educative actions that comprise these illnesses can bring unique benefits in the identification and appropriate treatment of these clinical pictures. Objective The aim of this study was to develop and analyze an educational program in genetic syndromes for elementary students applied in two Brazilian states, using an Interactive Tele-education model. Material and Methods The study was carried out in 4 schools: two in the state of São Paulo, Southeast Region, Brazil, and two in the state of Amazonas, North Region, Brazil. Forty-five students, both genders, aged between 13 and 14 years, of the 9th grade of the basic education of both public and private system, were divided into two groups: 21 of São Paulo Group (SPG) and 24 of Amazonas Group (AMG). The educational program lasted about 3 months and was divided into two stages including both classroom and distance activities on genetic syndromes. The classroom activity was carried out separately in each school, with expository lessons, graphs and audiovisual contents. In the activity at a distance the educational content was presented to students by means of the Interactive Tele-education model. In this stage, the students had access a Cybertutor, using the Young Doctor Project methodology. In order to measure the effectiveness of the educational program, the Problem Situation Questionnaire (PSQ) and the Web Site Motivational Analysis Checklist adapted (FPM) were used. Results The program developed was effective for knowledge acquisition in 80% of the groups. FPM showed a high satisfaction index from the participants in relation to the Interactive Tele-education, evaluating the program as "awesome course". No statistically significant differences between the groups regarding type of school or state were observed. Conclusion Thus, the Tele-Education Program can

  6. Comprehensive Neurocognitive Endophenotyping Strategies for Mouse Models of Genetic Disorders

    PubMed Central

    Hunsaker, Michael R.

    2012-01-01

    There is a need for refinement of the current behavioral phenotyping methods for mouse models of genetic disorders. The current approach is to perform a behavioral screen using standardized tasks to define a broad phenotype of the model. This phenotype is then compared to what is known concerning the disorder being modeled. The weakness inherent in this approach is twofold: First, the tasks that make up these standard behavioral screens do not model specific behaviors associated with a given genetic mutation but rather phenotypes affected in various genetic disorders; secondly, these behavioral tasks are insufficiently sensitive to identify subtle phenotypes. An alternate phenotyping strategy is to determine the core behavioral phenotypes of the genetic disorder being studied and develop behavioral tasks to evaluate specific hypotheses concerning the behavioral consequences of the genetic mutation. This approach emphasizes direct comparisons between the mouse and human that facilitate the development of neurobehavioral biomarkers or quantitative outcome measures for studies of genetic disorders across species. PMID:22266125

  7. Information Business: Applying Infometry (Informational Geometry) in Cognitive Coordination and Genetic Programming for Electronic Information Packaging and Marketing.

    ERIC Educational Resources Information Center

    Tsai, Bor-sheng

    1994-01-01

    Describes the use of infometry, or informational geometry, to meet the challenges of information service businesses. Highlights include theoretical models for cognitive coordination and genetic programming; electronic information packaging; marketing electronic information products, including cost-benefit analyses; and recapitalization, including…

  8. Genetic programming based ensemble system for microarray data classification.

    PubMed

    Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To

    2015-01-01

    Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved.

  9. Genetic Models of Sensorimotor Gating: Relevance to Neuropsychiatric Disorders

    PubMed Central

    Weber, Martin; Geyer, Mark A.

    2012-01-01

    Sensorimotor gating, or the ability of a sensory event to suppress a motor response, can be measured operationally via prepulse inhibition (PPI) of the startle response. PPI is deficient in schizophrenia patients as well as other neuropsychiatric disorders, can be measured across species, and has been used widely as a translational tool in preclinical neuropharmacological and genetic research. First developed to assess drug effects in pharmacological and developmental models, PPI has become one of the standard behavioral measures in genetic models of schizophrenia and other neuropsychiatric disorders that exhibit PPI deficits. In this chapter we review the literature on genetic models of sensorimotor gating and discuss the utility of PPI as a tool in phenotyping mutant mouse models. We highlight the approaches to genetic mouse models of neuropsychiatric disease, discuss some of the important caveats to these approaches, and provide a comprehensive table covering the more recent genetic models that have evaluated PPI. PMID:22367921

  10. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009

    SciTech Connect

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  11. Genetic programming as an analytical tool for non-linear dielectric spectroscopy.

    PubMed

    Woodward, A M; Gilbert, R J; Kell, D B

    1999-05-01

    By modelling the non-linear effects of membranous enzymes on an applied oscillating electromagnetic field using supervised multivariate analysis methods, Non-Linear Dielectric Spectroscopy (NLDS) has previously been shown to produce quantitative information that is indicative of the metabolic state of various organisms. The use of Genetic Programming (GP) for the multivariate analysis of NLDS data recorded from yeast fermentations is discussed, and GPs are compared with previous results using Partial Least Squares (PLS) and Artificial Neural Nets (NN). GP considerably outperforms these methods, both in terms of the precision of the predictions and their interpretability.

  12. The ASC Sequoia Programming Model

    SciTech Connect

    Seager, M

    2008-08-06

    In the late 1980's and early 1990's, Lawrence Livermore National Laboratory was deeply engrossed in determining the next generation programming model for the Integrated Design Codes (IDC) beyond vectorization for the Cray 1s series of computers. The vector model, developed in mid 1970's first for the CDC 7600 and later extended from stack based vector operation to memory to memory operations for the Cray 1s, lasted approximately 20 years (See Slide 5). The Cray vector era was deemed an extremely long lived era as it allowed vector codes to be developed over time (the Cray 1s were faster in scalar mode than the CDC 7600) with vector unit utilization increasing incrementally over time. The other attributes of the Cray vector era at LLNL were that we developed, supported and maintained the Operating System (LTSS and later NLTSS), communications protocols (LINCS), Compilers (Civic Fortran77 and Model), operating system tools (e.g., batch system, job control scripting, loaders, debuggers, editors, graphics utilities, you name it) and math and highly machine optimized libraries (e.g., SLATEC, and STACKLIB). Although LTSS was adopted by Cray for early system generations, they later developed COS and UNICOS operating systems and environment on their own. In the late 1970s and early 1980s two trends appeared that made the Cray vector programming model (described above including both the hardware and system software aspects) seem potentially dated and slated for major revision. These trends were the appearance of low cost CMOS microprocessors and their attendant, departmental and mini-computers and later workstations and personal computers. With the wide spread adoption of Unix in the early 1980s, it appeared that LLNL (and the other DOE Labs) would be left out of the mainstream of computing without a rapid transition to these 'Killer Micros' and modern OS and tools environments. The other interesting advance in the period is that systems were being developed with multiple

  13. Genetic and Environmental Bases of Reading and Spelling: A Unified Genetic Dual Route Model

    ERIC Educational Resources Information Center

    Bates, Timothy C.; Castles, Anne; Luciano, Michelle; Wright, Margaret J.; Coltheart, Max; Martin, Nicholas G.

    2007-01-01

    We develop and test a dual-route model of genetic effects on reading aloud and spelling, based on irregular and non-word reading and spelling performance assessed in 1382 monozygotic and dizygotic twins. As in earlier research, most of the variance in reading was due to genetic effects. However, there were three more specific conclusions: the…

  14. A Developmental-Genetic Model of Alcoholism: Implications for Genetic Research.

    ERIC Educational Resources Information Center

    Devor, Eric J.

    1994-01-01

    Research for biological-genetic markers of alcoholism is discussed in context of a multifactorial, heterogeneous, developmental model. Suggested that strategies used in linkage and association studies will require modification. Also suggested several extant associations of genetic markers represent true secondary interactive phenomena that alter…

  15. Functional-mixed effects models for candidate genetic mapping in imaging genetic studies.

    PubMed

    Lin, Ja-An; Zhu, Hongtu; Mihye, Ahn; Sun, Wei; Ibrahim, Joseph G

    2014-12-01

    The aim of this paper is to develop a functional-mixed effects modeling (FMEM) framework for the joint analysis of high-dimensional imaging data in a large number of locations (called voxels) of a three-dimensional volume with a set of genetic markers and clinical covariates. Our FMEM is extremely useful for efficiently carrying out the candidate gene approaches in imaging genetic studies. FMEM consists of two novel components including a mixed effects model for modeling nonlinear genetic effects on imaging phenotypes by introducing the genetic random effects at each voxel and a jumping surface model for modeling the variance components of the genetic random effects and fixed effects as piecewise smooth functions of the voxels. Moreover, FMEM naturally accommodates the correlation structure of the genetic markers at each voxel, while the jumping surface model explicitly incorporates the intrinsically spatial smoothness of the imaging data. We propose a novel two-stage adaptive smoothing procedure to spatially estimate the piecewise smooth functions, particularly the irregular functional genetic variance components, while preserving their edges among different piecewise-smooth regions. We develop weighted likelihood ratio tests and derive their exact approximations to test the effect of the genetic markers across voxels. Simulation studies show that FMEM significantly outperforms voxel-wise approaches in terms of higher sensitivity and specificity to identify regions of interest for carrying out candidate genetic mapping in imaging genetic studies. Finally, FMEM is used to identify brain regions affected by three candidate genes including CR1, CD2AP, and PICALM, thereby hoping to shed light on the pathological interactions between these candidate genes and brain structure and function.

  16. A Genetic Model for Neurodevelopmental Disease

    PubMed Central

    Coe, Bradley P.; Girirajan, Santhosh; Eichler, Evan E.

    2012-01-01

    The genetic basis of neurodevelopmental and neuropsychiatric diseases has been advanced by the discovery of large and recurrent copy number variants significantly enriched in cases when compared to controls. The pattern of this variation strongly implies that rare variants contribute significantly to neurological disease; that different genes will be responsible for similar diseases in different families; and that the same “primary” genetic lesions can result in a different disease outcome depending potentially on the genetic background. Next-generation sequencing technologies are beginning to broaden the spectrum of disease-causing variation and provide specificity by pinpointing both genes and pathways for future diagnostics and therapeutics. PMID:22560351

  17. Practical implications for genetic modeling in the genomics era.

    PubMed

    VanRaden, P M

    2016-03-01

    Genetic models convert data into estimated breeding values and other information useful to breeders. The goal is to provide accurate and timely predictions of the future performance for each animal (or embryo). Modeling involves defining traits, editing raw data, removing environmental effects, including genetic by environmental interactions and correlations among traits, and accounting for nonadditive inheritance or nonnormal distributions. Data include phenotypes and pedigrees during the last century and genotypes within the last decade. The genomic data can include single nucleotide polymorphisms, quantitative trait loci, insertions, deletions, and haplotypes. Subsets must be selected to reduce computation because total numbers of variants that can be imputed have increased rapidly from thousands to millions. Current computation using 60,671 markers takes just a few days. Nonlinear models can account for the nonnormal distribution of genomic effects, but reliability is usually better than that of linear models only for traits influenced by major genes. Numbers of genotyped animals have also increased rapidly in the joint North American database from a few thousand in 2009 to over 1 million in 2015. Most are young females and will contribute to estimating allele effects in the future, but only about 150,000 have phenotypes so far. Genomic preselection can bias traditional animal models because Mendelian sampling of phenotyped progeny and mates is no longer expected to average zero; however, estimates of bias are small in current US data. Single-step models that combine pedigree and genomic relationships can account for preselection, but approximations are required for affordable computation. Traditional animal models may include all breeds and crossbreds, but most genomic evaluations are still computed within breed. Models that include inbreeding, heterosis, dominance, and interactions can improve predictions for individual matings. Multitrait genomic models may

  18. Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery.

    PubMed

    Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A

    2013-08-01

    As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p < .001). Artificial neural nets were less accurate with AU ROC = 0.597 ± .001 in the Construction group. Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.

  19. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML).

    PubMed

    Meyer, Karin

    2007-11-01

    WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model; estimates of covariance components and the resulting genetic parameters are obtained by restricted maximum likelihood. A wide range of models, comprising numerous traits, multiple fixed and random effects, selected genetic covariance structures, random regression models and reduced rank estimation are accommodated. WOMBAT employs up-to-date numerical and computational methods. Together with the use of efficient compilers, this generates fast executable programs, suitable for large scale analyses. Use of WOMBAT is illustrated for a bivariate analysis. The package consists of the executable program, available for LINUX and WINDOWS environments, manual and a set of worked example, and can be downloaded free of charge from (http://agbu. une.edu.au/~kmeyer/wombat.html). PMID:17973343

  20. Wave equation modelling using Julia programming language

    NASA Astrophysics Data System (ADS)

    Kim, Ahreum; Ryu, Donghyun; Ha, Wansoo

    2016-04-01

    Julia is a young high-performance dynamic programming language for scientific computations. It provides an extensive mathematical function library, a clean syntax and its own parallel execution model. We developed 2d wave equation modeling programs using Julia and C programming languages and compared their performance. We used the same modeling algorithm for the two modeling programs. We used Julia version 0.3.9 in this comparison. We declared data type of function arguments and used inbounds macro in the Julia program. Numerical results showed that the C programs compiled with Intel and GNU compilers were faster than Julia program, about 18% and 7%, respectively. Taking the simplicity of dynamic programming language into consideration, Julia can be a novel alternative of existing statically typed programming languages.

  1. Genetic patchiness in European eel adults evidenced by molecular genetics and population dynamics modelling.

    PubMed

    Pujolar, José Martin; Bevacqua, Daniele; Andrello, Marco; Capoccioni, Fabrizio; Ciccotti, Eleonora; De Leo, Giulio A; Zane, Lorenzo

    2011-02-01

    Disentangling the demographic processes that determine the genetic structure of a given species is a fundamental question in conservation and management. In the present study, the population structure of the European eel was examined with a multidisciplinary approach combining the fields of molecular genetics and population dynamics modelling. First, we analyzed a total of 346 adult specimens of known age collected in three separate sample sites using a large panel of 22 EST-linked microsatellite loci. Second, we developed a European eel-specific model to unravel the demographic mechanisms that can produce the level of genetic differentiation estimated by molecular markers. This is the first study that reveals a pattern of genetic patchiness in maturing adults of the European eel. A highly significant genetic differentiation was observed among samples that did not follow an Isolation-by-Distance or Isolation-by-Time pattern. The observation of genetic patchiness in adults is likely to result from a limited parental contribution to each spawning event as suggested by our modelling approach. The value of genetic differentiation found is predicted by the model when reproduction occurs in a limited number of spawning events isolated from each other in time or space, with an average of 130-375 breeders in each spawning event. Unpredictability in spawning success may have important consequences for the life-history evolution of the European eel, including a bet-hedging strategy (distributing reproductive efforts over time) which could in turn guarantee successful reproduction of some adults.

  2. The Spiral-Interactive Program Evaluation Model.

    ERIC Educational Resources Information Center

    Khaleel, Ibrahim Adamu

    1988-01-01

    Describes the spiral interactive program evaluation model, which is designed to evaluate vocational-technical education programs in secondary schools in Nigeria. Program evaluation is defined; utility oriented and process oriented models for evaluation are described; and internal and external evaluative factors and variables that define each…

  3. SAM: The "Search and Match" Computer Program of the Escherichia coli Genetic Stock Center

    ERIC Educational Resources Information Center

    Bachmann, B. J.; And Others

    1973-01-01

    Describes a computer program used at a genetic stock center to locate particular strains of bacteria. The program can match up to 30 strain descriptions requested by a researcher with the records on file. Uses of this particular program can be made in many fields. (PS)

  4. Genetically engineered humanized mouse models for preclinical antibody studies.

    PubMed

    Proetzel, Gabriele; Wiles, Michael V; Roopenian, Derry C

    2014-04-01

    The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies.

  5. Cognitive Modelling and the Behaviour Genetics of Reading

    ERIC Educational Resources Information Center

    Castles, Anne; Bates, Timothy; Coltheart, Max; Luciano, Michelle; Martin, Nicholas G.

    2006-01-01

    While it is well known that reading is highly heritable, less has been understood about the bases of these genetic influences. In this paper, we review the research that we have been conducting in recent years to examine genetic and environmental influences on the particular reading processes specified in the "dual-route" cognitive model of…

  6. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  7. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  8. Statistical Inference of Biometrical Genetic Model With Cultural Transmission.

    PubMed

    Guo, Xiaobo; Ji, Tian; Wang, Xueqin; Zhang, Heping; Zhong, Shouqiang

    2013-01-01

    Twin and family studies establish the foundation for studying the genetic, environmental and cultural transmission effects for phenotypes. In this work, we make use of the well established statistical methods and theory for mixed models to assess cultural transmission in twin and family studies. Specifically, we address two critical yet poorly understood issues: the model identifiability in assessing cultural transmission for twin and family data and the biases in the estimates when sub-models are used. We apply our models and theory to two real data sets. A simulation is conducted to verify the bias in the estimates of genetic effects when the working model is a sub-model. PMID:24660046

  9. Developing close combat behaviors for simulated soldiers using genetic programming techniques.

    SciTech Connect

    Pryor, Richard J.; Schaller, Mark J.

    2003-10-01

    Genetic programming is a powerful methodology for automatically producing solutions to problems in a variety of domains. It has been used successfully to develop behaviors for RoboCup soccer players and simple combat agents. We will attempt to use genetic programming to solve a problem in the domain of strategic combat, keeping in mind the end goal of developing sophisticated behaviors for compound defense and infiltration. The simplified problem at hand is that of two armed agents in a small room, containing obstacles, fighting against each other for survival. The base case and three changes are considered: a memory of positions using stacks, context-dependent genetic programming, and strongly typed genetic programming. Our work demonstrates slight improvements from the first two techniques, and no significant improvement from the last.

  10. Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming

    NASA Astrophysics Data System (ADS)

    Taylan, Fatih

    2011-04-01

    In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.

  11. A simple approach to lifetime learning in genetic programming-based symbolic regression.

    PubMed

    Azad, Raja Muhammad Atif; Ryan, Conor

    2014-01-01

    Genetic programming (GP) coarsely models natural evolution to evolve computer programs. Unlike in nature, where individuals can often improve their fitness through lifetime experience, the fitness of GP individuals generally does not change during their lifetime, and there is usually no opportunity to pass on acquired knowledge. This paper introduces the Chameleon system to address this discrepancy and augment GP with lifetime learning by adding a simple local search that operates by tuning the internal nodes of individuals. Although not the first attempt to combine local search with GP, its simplicity means that it is easy to understand and cheap to implement. A simple cache is added which leverages the local search to reduce the tuning cost to a small fraction of the expected cost, and we provide a theoretical upper limit on the maximum tuning expense given the average tree size of the population and show that this limit grows very conservatively as the average tree size of the population increases. We show that Chameleon uses available genetic material more efficiently by exploring more actively than with standard GP, and demonstrate that not only does Chameleon outperform standard GP (on both training and test data) over a number of symbolic regression type problems, it does so by producing smaller individuals and it works harmoniously with two other well-known extensions to GP, namely, linear scaling and a diversity-promoting tournament selection method.

  12. Is Structural Equation Modeling Advantageous for the Genetic Improvement of Multiple Traits?

    PubMed Central

    Valente, Bruno D.; Rosa, Guilherme J. M.; Gianola, Daniel; Wu, Xiao-Lin; Weigel, Kent

    2013-01-01

    Structural equation models (SEMs) are multivariate specifications capable of conveying causal relationships among traits. Although these models offer insights into how phenotypic traits relate to each other, it is unclear whether and how they can improve multiple-trait selection. Here, we explored concepts involved in SEMs, seeking for benefits that could be brought to breeding programs, relative to the standard multitrait model (MTM) commonly used. Genetic effects pertaining to SEMs and MTMs have distinct meanings. In SEMs, they represent genetic effects acting directly on each trait, without mediation by other traits in the model; in MTMs they express overall genetic effects on each trait, equivalent to lumping together direct and indirect genetic effects discriminated by SEMs. However, in breeding programs the goal is selecting candidates that produce offspring with best phenotypes, regardless of how traits are causally associated, so overall additive genetic effects are the matter. Thus, no information is lost in standard settings by using MTM-based predictions, even if traits are indeed causally associated. Nonetheless, causal information allows predicting effects of external interventions. One may be interested in predictions for scenarios where interventions are performed, e.g., artificially defining the value of a trait, blocking causal associations, or modifying their magnitudes. We demonstrate that with information provided by SEMs, predictions for these scenarios are possible from data recorded under no interventions. Contrariwise, MTMs do not provide information for such predictions. As livestock and crop production involves interventions such as management practices, SEMs may be advantageous in many settings. PMID:23608193

  13. Binary Image Classification: A Genetic Programming Approach to the Problem of Limited Training Instances.

    PubMed

    Al-Sahaf, Harith; Zhang, Mengjie; Johnston, Mark

    2016-01-01

    In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases.

  14. Mathematical Programming Models in Educational Planning.

    ERIC Educational Resources Information Center

    McNamara, James F.

    This document begins by defining and discussing educational planning. A brief overview of mathematical programing with an explanation of the general linear programing model is then provided. Some recent applications of mathematical programing techniques to educational planning problems are reviewed, and their implications for educational research…

  15. How Pupils Use a Model for Abstract Concepts in Genetics

    ERIC Educational Resources Information Center

    Venville, Grady; Donovan, Jenny

    2008-01-01

    The purpose of this research was to explore the way pupils of different age groups use a model to understand abstract concepts in genetics. Pupils from early childhood to late adolescence were taught about genes and DNA using an analogical model (the wool model) during their regular biology classes. Changing conceptual understandings of the…

  16. Genetic testing and mental health: the model of Huntington disease.

    PubMed

    Williams, J K; Schutte, D L

    2000-01-01

    Genetic aspects of mental health disorders are being identified through human genome and family research. Gene discovery makes diagnostic and presymptomatic testing possible. The discovery of a gene mutation for Huntington Disease (HD) enables at-risk persons to request presymptomatic genetic testing. When HD genetic testing is offered through HD testing centers, a multi-visit protocol is followed in which education and counseling are provided for persons considering the option to have HD gene testing. A case study illustrates the clinical and ethical issues regarding privacy and disclosure as well as the personal and family consequences of gene mutation knowledge. Analysis of the impact of genetic knowledge on persons being tested for HD provides a model for the integration of emerging genetic information into mental health nursing practice for other mental health disorders.

  17. Petrogenetic Modeling with a Spreadsheet Program.

    ERIC Educational Resources Information Center

    Holm, Paul Eric

    1988-01-01

    Describes how interactive programs for scientific modeling may be created by using spreadsheet software such as LOTUS 1-2-3. Lists the advantages of using this method. Discusses fractional distillation, batch partial melting, and combination models as examples. (CW)

  18. Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools.

    PubMed

    Ruehle, Marisa D; Orias, Eduardo; Pearson, Chad G

    2016-06-01

    Tetrahymena thermophila is a ciliate model organism whose study has led to important discoveries and insights into both conserved and divergent biological processes. In this review, we describe the tools for the use of Tetrahymena as a model eukaryote, including an overview of its life cycle, orientation to its evolutionary roots, and methodological approaches to forward and reverse genetics. Recent genomic tools have expanded Tetrahymena's utility as a genetic model system. With the unique advantages that Tetrahymena provide, we argue that it will continue to be a model organism of choice.

  19. Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools.

    PubMed

    Ruehle, Marisa D; Orias, Eduardo; Pearson, Chad G

    2016-06-01

    Tetrahymena thermophila is a ciliate model organism whose study has led to important discoveries and insights into both conserved and divergent biological processes. In this review, we describe the tools for the use of Tetrahymena as a model eukaryote, including an overview of its life cycle, orientation to its evolutionary roots, and methodological approaches to forward and reverse genetics. Recent genomic tools have expanded Tetrahymena's utility as a genetic model system. With the unique advantages that Tetrahymena provide, we argue that it will continue to be a model organism of choice. PMID:27270699

  20. [A comprehensive program for prevention of genetic diseases among Arabs in Israel].

    PubMed

    Shalev, Stavit A; Carmi, Rivka; Leventhal, Alex; Zlotogora, Joël

    2003-11-01

    Genetic diseases are relatively prevalent among the Arab population, and are a significant cause of morbidity and mortality in this population. The relative high rate of genetic diseases among the Arabs in Israel is a direct result of very high rates of consanguinity. In order to reduce the frequency of congenital malformations/inherited diseases, it is important to choose combined strategies, including efforts focused on health education and health promotion, with an emphasis on the medical consequences of marriages within the family. Primary prevention is conducted by genetic counseling prior to marriage or prior to the first pregnancy and secondary prevention focuses on early genetic screening during the pregnancy. In order to provide the necessary tools for such a program, genetic research must first characterize the common genetic diseases in the small communities, and identify their responsible mutations.

  1. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science

  2. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science.

  3. Genetic algorithms for modelling and optimisation

    NASA Astrophysics Data System (ADS)

    McCall, John

    2005-12-01

    Genetic algorithms (GAs) are a heuristic search and optimisation technique inspired by natural evolution. They have been successfully applied to a wide range of real-world problems of significant complexity. This paper is intended as an introduction to GAs aimed at immunologists and mathematicians interested in immunology. We describe how to construct a GA and the main strands of GA theory before speculatively identifying possible applications of GAs to the study of immunology. An illustrative example of using a GA for a medical optimal control problem is provided. The paper also includes a brief account of the related area of artificial immune systems.

  4. Compare and Contrast Program Planning Models

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2011-01-01

    This paper will examine the differences and similarities between two program planning models, Tyler and Caffarella, to reveal their strengths and weaknesses. When adults are involved in training sessions, there are various program planning models that can be used, depending on the goal of the training session. Researchers developed these models…

  5. Human-competitive evolution of quantum computing artefacts by Genetic Programming.

    PubMed

    Massey, Paul; Clark, John A; Stepney, Susan

    2006-01-01

    We show how Genetic Programming (GP) can be used to evolve useful quantum computing artefacts of increasing sophistication and usefulness: firstly specific quantum circuits, then quantum programs, and finally system-independent quantum algorithms. We conclude the paper by presenting a human-competitive Quantum Fourier Transform (QFT) algorithm evolved by GP.

  6. Population programs for the detection of couples at risk for severe monogenic genetic diseases.

    PubMed

    Zlotogora, Joël

    2009-08-01

    Population genetic screening programs for carrier detection of severe genetic disorders exist worldwide, mainly for beta-thalassemia. These screening programs are either mandatory or voluntary. In several Arab countries and Iran, the state has made thalassemia carrier detection mandatory, while tests for detecting carriers are required by the religious authorities in Cyprus. In all the existing mandatory genetic screening programs, the couples have to get the information about the tests before marriage, but the decision whether or not to marry is left to them. Voluntary programs exist for instance in several Mediterranean countries for the prevention of thalassemia and for several genetic diseases among Jews. While voluntary programs leave the decision to be screened or not to the individual, a major problem is that in many cases awareness about the existence of screening tests is very sparse. Some programs, for instance in Canada or Australia, therefore provide education about genetic tests and screening at school in order to allow the individuals to be able to make an informed decision about their reproductive choices. PMID:19390864

  7. Population programs for the detection of couples at risk for severe monogenic genetic diseases.

    PubMed

    Zlotogora, Joël

    2009-08-01

    Population genetic screening programs for carrier detection of severe genetic disorders exist worldwide, mainly for beta-thalassemia. These screening programs are either mandatory or voluntary. In several Arab countries and Iran, the state has made thalassemia carrier detection mandatory, while tests for detecting carriers are required by the religious authorities in Cyprus. In all the existing mandatory genetic screening programs, the couples have to get the information about the tests before marriage, but the decision whether or not to marry is left to them. Voluntary programs exist for instance in several Mediterranean countries for the prevention of thalassemia and for several genetic diseases among Jews. While voluntary programs leave the decision to be screened or not to the individual, a major problem is that in many cases awareness about the existence of screening tests is very sparse. Some programs, for instance in Canada or Australia, therefore provide education about genetic tests and screening at school in order to allow the individuals to be able to make an informed decision about their reproductive choices.

  8. Generalized population models and the nature of genetic drift.

    PubMed

    Der, Ricky; Epstein, Charles L; Plotkin, Joshua B

    2011-09-01

    The Wright-Fisher model of allele dynamics forms the basis for most theoretical and applied research in population genetics. Our understanding of genetic drift, and its role in suppressing the deterministic forces of Darwinian selection has relied on the specific form of sampling inherent to the Wright-Fisher model and its diffusion limit. Here we introduce and analyze a broad class of forward-time population models that share the same mean and variance as the Wright-Fisher model, but may otherwise differ. The proposed class unifies and further generalizes a number of population-genetic processes of recent interest, including the Λ and Cannings processes. Even though these models all have the same variance effective population size, they encode a rich diversity of alternative forms of genetic drift, with significant consequences for allele dynamics. We characterize in detail the behavior of standard population-genetic quantities across this family of generalized models. Some quantities, such as heterozygosity, remain unchanged; but others, such as neutral absorption times and fixation probabilities under selection, deviate by orders of magnitude from the Wright-Fisher model. We show that generalized population models can produce startling phenomena that differ qualitatively from classical behavior - such as assured fixation of a new mutant despite the presence of genetic drift. We derive the forward-time continuum limits of the generalized processes, analogous to Kimura's diffusion limit of the Wright-Fisher process, and we discuss their relationships to the Kingman and non-Kingman coalescents. Finally, we demonstrate that some non-diffusive, generalized models are more likely, in certain respects, than the Wright-Fisher model itself, given empirical data from Drosophila populations.

  9. Model Checking Abstract PLEXIL Programs with SMART

    NASA Technical Reports Server (NTRS)

    Siminiceanu, Radu I.

    2007-01-01

    We describe a method to automatically generate discrete-state models of abstract Plan Execution Interchange Language (PLEXIL) programs that can be analyzed using model checking tools. Starting from a high-level description of a PLEXIL program or a family of programs with common characteristics, the generator lays the framework that models the principles of program execution. The concrete parts of the program are not automatically generated, but require the modeler to introduce them by hand. As a case study, we generate models to verify properties of the PLEXIL macro constructs that are introduced as shorthand notation. After an exhaustive analysis, we conclude that the macro definitions obey the intended semantics and behave as expected, but contingently on a few specific requirements on the timing semantics of micro-steps in the concrete executive implementation.

  10. Genetic and non-genetic animal models for autism spectrum disorders (ASD).

    PubMed

    Ergaz, Zivanit; Weinstein-Fudim, Liza; Ornoy, Asher

    2016-09-01

    Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models.

  11. Towards improving the knowledge of underlying mechanisms of Rainfall-Runoff process using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Chadalawada, Jayashree; Babovic, Vladan

    2016-04-01

    Genetic Programming (GP) is a valuable tool for modelling nonlinear dynamic systems. GP implements the trial and error process to successfully discover the governing model structure that best fits the data, via, testing many random permutations of model components and structures, retaining the best parts of the structures and recombining them to form complete mathematical models. The potential of GP has not been exploited to the fullest extent in the field of hydrology to understand the complex dynamics involved. The state of the art applications of GP in hydrological modelling involve the use of GP as a short-term prediction and forecast tool rather than as a framework for the development of a better model. In today's scenario with the increasing monitoring programmes and computational power, the techniques like GP can be employed for the development and evaluation of hydrological models, balancing prior information, model complexity, parameter and output uncertainty. In this contribution, as a preliminary step to the overall motive stated above, the GP is trained to capture the dynamics of the rainfall- runoff process using tank system, where each tank is a storage unit in a watershed that corresponds to varying depths below the surface. The tank model considers rainfall minus losses as the input and generates flows at different levels as the output thereby capturing the phenomenon of storage, infiltration and percolation. The meteorological data employed in this study belongs to the Kent Ridge catchment of National University Singapore, a small urban catchment (8.5 hectares) that receives a mean annual rainfall of 2500mm and consists of all the major landuses of Singapore. The algorithm so designed can capture the response of the model employed for simulation, returning the exact number of tanks and appropriate parameters present in the model structure, thereby providing useful physical insight of the catchment.

  12. Employing multi-objective Genetic Programming to the downscaling of near-surface atmospheric fields

    NASA Astrophysics Data System (ADS)

    Zerenner, Tanja; Venema, Victor; Friederichs, Petra; Simmer, Clemens

    2015-04-01

    The coupling of models for the different components of the Soil-Vegetation-Atmosphere-System is required to investigate component interactions and feedback processes. However, the component models for atmosphere, land-surface and subsurface are usually operated at different resolutions in space and time owing to the dominant processes. The computationally expensive atmospheric models are typically employed at a coarser resolution than land-surface and subsurface models. Thus up- and downscaling procedures are required at the interface between the atmospheric model and the land-surface/subsurface models. We apply multi-objective Genetic Programming (GP) to a training data set of high-resolution atmospheric model runs to learn downscaling rules, i. e., equations or short programs that reconstruct the fine-scale fields of the near-surface atmospheric state variables from the coarse atmospheric model output. Like artificial neural networks, GP can flexibly incorporate multivariate and nonlinear relations, but offers the advantage that the solutions are human readable and thus can be checked for physical consistency. Further, the Strength Pareto Approach for multi-objective fitness assignment allows to consider multiple characteristics of the fine-scale fields during the learning procedure. We have applied the described machine learning methodology to a training data set of 400 m resolution COSMO model runs to learn downscaling rules which recover realistic fine-scale structures from the coarsened fields at 2.8 km resolution. Hence we are currently downscaling by a factor of 7. The COSMO model is the weather forecast model developed and maintained by the German Weather Service and is contained in the Terrestrial Systems Modeling Platform (TerrSysMP), which couples the atmospheric COSMO model to land-surface model CLM and subsurface hydrological model ParFlow. Finally we aim at implementing the learned downscaling rules in the TerrSysMP to achieve scale

  13. Learning genetic inquiry through the use, revision, and justification of explanatory models

    NASA Astrophysics Data System (ADS)

    Cartier, Jennifer Lorraine

    Central to the process of inquiry in science is the construction and assessment of models that can be used to explain (and in some cases, predict) natural phenomena. This dissertation is a qualitative study of student learning in a high school biology course that was designed to give students opportunities to learn about genetic inquiry in part by providing them with authentic experiences doing inquiry in the discipline. With the aid of a computer program that generates populations of "fruit flies", the students in this class worked in groups structured like scientific communities to build, revise, and defend explanatory models for various inheritance phenomena. Analysis of the ways in which the first cohort of students assessed their inheritance models revealed that all students assessed models based upon empirical fit (data/model match). However, in contrast to the practice of scientists and despite explicit instruction, students did not consistently apply conceptual assessment criteria to their models. That is, they didn't seek consistency between underlying concepts or processes in their models and those of other important genetic models, such as meiosis. This is perhaps in part because they lacked an understanding of models as conceptual rather than physical entities. Subsequently, the genetics curriculum was altered in order to create more opportunities for students to address epistemological issues associated with model assessment throughout the course. The second cohort of students' understanding of models changed over the nine-week period: initially the majority of students equated scientific models with "proof" (generally physical) of "theories"; at the end of the course, most students demonstrated understanding of the conceptual nature of scientific models and the need to justify such knowledge according to both its empirical utility and conceptual consistency. Through model construction and assessment (i.e. scientific inquiry), students were able to

  14. Cucumber as a Model for Organellar Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondria are found in the cells of all eukaryotes, are imperative for energy production, and play important roles in programmed cell death, ageing, and disease development. Mitochondria possess their own DNA and encode for approximately 20 proteins, as well as their own ribosomal and transfer R...

  15. Model Checking JAVA Programs Using Java Pathfinder

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Pressburger, Thomas

    2000-01-01

    This paper describes a translator called JAVA PATHFINDER from JAVA to PROMELA, the "programming language" of the SPIN model checker. The purpose is to establish a framework for verification and debugging of JAVA programs based on model checking. This work should be seen in a broader attempt to make formal methods applicable "in the loop" of programming within NASA's areas such as space, aviation, and robotics. Our main goal is to create automated formal methods such that programmers themselves can apply these in their daily work (in the loop) without the need for specialists to manually reformulate a program into a different notation in order to analyze the program. This work is a continuation of an effort to formally verify, using SPIN, a multi-threaded operating system programmed in Lisp for the Deep-Space 1 spacecraft, and of previous work in applying existing model checkers and theorem provers to real applications.

  16. A novel holistic framework for genetic-based captive-breeding and reintroduction programs.

    PubMed

    Attard, C R M; Möller, L M; Sasaki, M; Hammer, M P; Bice, C M; Brauer, C J; Carvalho, D C; Harris, J O; Beheregaray, L B

    2016-10-01

    Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic-based captive-breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive-breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray-Darling Basin in Australia. These two populations were rescued during Australia's recent decade-long Millennium Drought, when their persistence became entirely dependent on captive-breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity-despite skewed brooder contribution to offspring-was achieved through carefully managed genetic-based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive-bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic-based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction

  17. A novel holistic framework for genetic-based captive-breeding and reintroduction programs.

    PubMed

    Attard, C R M; Möller, L M; Sasaki, M; Hammer, M P; Bice, C M; Brauer, C J; Carvalho, D C; Harris, J O; Beheregaray, L B

    2016-10-01

    Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic-based captive-breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive-breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray-Darling Basin in Australia. These two populations were rescued during Australia's recent decade-long Millennium Drought, when their persistence became entirely dependent on captive-breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity-despite skewed brooder contribution to offspring-was achieved through carefully managed genetic-based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive-bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic-based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction

  18. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster.

    PubMed

    Brookheart, Rita T; Duncan, Jennifer G

    2016-09-01

    The influence of nutrition on offspring metabolism has become a hot topic in recent years owing to the growing prevalence of maternal and childhood obesity. Studies in mammals have identified several factors correlating with parental and early offspring dietary influences on progeny health; however, the molecular mechanisms that underlie these factors remain undiscovered. Mammalian metabolic tissues and pathways are heavily conserved in Drosophila melanogaster, making the fly an invaluable genetic model organism for studying metabolism. In this review, we discuss the metabolic similarities between mammals and Drosophila and present evidence supporting its use as an emerging model of metabolic programming.

  19. Application of genetic programming and Landsat multi-date imagery for urban growth monitoring

    NASA Astrophysics Data System (ADS)

    Djerriri, Khelifa; Malki, Mimoun

    2013-10-01

    Monitoring of earth surface changes from space by using multi-date satellite imagery was always a main concern to researchers in the field of remotely sensed image processing. Thus, several techniques have been proposed to saving technicians from interpreting and digitizing hundreds of areas by hand. The exploiting of simple, easy to memorize and often comprehensible mathematical models such band-ratios and indices are one of the widely used techniques in remote sensing for the extraction of particular land-cover/land-use like urban and vegetation areas. The results of these models generally only need the definition of adequate threshold or using simple unsupervised classification algorithms to discriminate between the class of interest and the background. In our work a genetic programming based approach has been adopted to evolve simple mathematical expression to extract urban areas from image series. The model is built from a single image by using a basic set of operators between spectral bands and maximizing a fitness function, which is based on the using of the M-statistic criterion. The model was constructed from the Landsat 5 TM image acquired in 2006 by using training samples extracted with the help of a Quick-bird high spatial resolution satellite image acquired the same day as the Landsat image over the city of Oran, Algeria. The model has been tested to extract urban areas from multi-date series of Landsat TM imagery

  20. Supportive Services: CETA Program Models.

    ERIC Educational Resources Information Center

    Turner, Susan; Conradus, Carolyn

    This monograph is intended to help the operators and planners of employment and training programs, particularly those sponsored under the Comprehensive Employment and Training Act (CETA), in developing and providing supportive services to improve client employability. The first section, presenting the purpose of this publication, is followed by a…

  1. The OIG's model compliance program.

    PubMed

    Dombi, W A

    1998-10-01

    Home care agencies face never-ending and hard-to-track list of rules. The Office of the Inspector General has provided guidelines for agencies on implementing a voluntary compliance program to prevent fraud, abuse, and waste. Through the development of internal controls, which promote adherence to federal and state laws, agencies safeguard themselves from problems.

  2. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  3. LISREL Modeling: Genetic and Environmental Influences on IQ Revisited.

    ERIC Educational Resources Information Center

    Chipuer, Heather M.; And Others

    1990-01-01

    A model-fitting analysis of the covariance structure of an intelligence quotient (IQ) data set is reported using a model that considers additive and nonadditive genetic parameters and shared and nonshared environment parameters that permit different estimates for different types of relatives. The use of LISREL for such purposes is reviewed. (SLD)

  4. Practical implications for genetic modeling in the genomics era

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic models convert data into estimated breeding values and other information useful to breeders. The goal is to provide accurate and timely predictions of the future performance for each animal (or embryo). Modeling involves defining traits, editing raw data, removing environmental effects, incl...

  5. Sexual dimorphic evolution of metabolic programming in non-genetic non-alimentary mild metabolic syndrome model in mice depends on feed-back mechanisms integrity for pro-opiomelanocortin-derived endogenous substances.

    PubMed

    Loizzo, Stefano; Vella, Stefano; Loizzo, Alberto; Fortuna, Andrea; Di Biase, Antonella; Salvati, Serafina; Frajese, Giovanni V; Agrapart, Vincent; Ramirez Morales, Rafael; Spampinato, Santi; Campana, Gabriele; Capasso, Anna; Galietta, Gabriella; Guarino, Irene; Carta, Stefania; Carru, Ciriaco; Zinellu, Angelo; Ghirlanda, Giovanni; Seghieri, Giuseppe; Renzi, Paolo; Franconi, Flavia

    2010-08-01

    Previously, we showed that our post-natal handling model induces pro-opiomelanocortin-derived (POMC) endogenous systems alterations in male mice at weaning. These alterations last up to adult age, and are at the basis of adult hormonal and metabolic conditions similar to mild metabolic syndrome/type-2 diabetes. Here, we evaluate how sex influences post-natal programming in these metabolic conditions. Subjects are adult control (non-handled) female (NHF) and male (NHM) CD-1 mice; adult post-natal handled female (HF) and male (HM) mice. Handling consists of daily maternal separation (10 min) plus sham injection, from birth to weaning (21 days). In adult handled males (90-days old) we find not only POMC-derived hormones alterations (enhanced basal plasma corticosterone (+91%) and ACTH (+109%)) but also overweight (+5.4%), fasting hyperglycemia (+40%), hypertriglyceridemia (+21%), enhanced brain mRNA expression of hydroxysteroid(11-beta)dehydrogenase type-1 (HSD11B1) (+49%), and decreased mRNA-HSD11B2 (-39%). Conversely, uric acid, creatinine, HDL(C), total cholesterol, glucose and insulin incremental area under-the-curve are not affected. In females, post-natal handling does not produce both hormonal and dysmetabolic diabetes-like changes; but handling enhances n3- and n6-poly-unsaturated, and decreases saturated fatty acids content in erythrocyte membrane composition in HF versus NHF. In conclusion, for the first time we show that female sex in mice exerts effective protection against the hypothalamus-pituitary-adrenal homeostasis disruption induced by our post-natal handling model on POMC cleavage products; endocrine disruption is in turn responsible for altered metabolic programming in male mice. The role of sex hormones is still to be elucidated.

  6. [Improvement of genetics teaching using literature-based learning model].

    PubMed

    Liang, Liang; Shiqian, Liang; Hongyan, Qin; Yong, Ji; Hua, Han

    2015-06-01

    Genetics is one of the most important courses for undergraduate students majoring in life science. In recent years, new knowledge and technologies are continually updated with deeper understanding of life science. However, the teaching model of genetics is still based on theoretical instruction, which makes the abstract principles hard to understand by students and directly affects the teaching effect. Thus, exploring a new teaching model is necessary. We have carried out a new teaching model, literature-based learning, in the course on Microbial Genetics for undergraduate students majoring in biotechnology since 2010. Here we comprehensively analyzed the implementation and application value of this model including pre-course knowledge, how to choose professional literature, how to organize teaching process and the significance of developing this new teaching model for students and teachers. Our literature-based learning model reflects the combination of "cutting-edge" and "classic" and makes book knowledge easy to understand, which improves students' learning effect, stimulates their interests, expands their perspectives and develops their ability. This practice provides novel insight into exploring new teaching model of genetics and cultivating medical talents capable of doing both basic and clinical research in the "precision medicine" era.

  7. Genetic variance of tolerance and the toxicant threshold model.

    PubMed

    Tanaka, Yoshinari; Mano, Hiroyuki; Tatsuta, Haruki

    2012-04-01

    A statistical genetics method is presented for estimating the genetic variance (heritability) of tolerance to pollutants on the basis of a standard acute toxicity test conducted on several isofemale lines of cladoceran species. To analyze the genetic variance of tolerance in the case when the response is measured as a few discrete states (quantal endpoints), the authors attempted to apply the threshold character model in quantitative genetics to the threshold model separately developed in ecotoxicology. The integrated threshold model (toxicant threshold model) assumes that the response of a particular individual occurs at a threshold toxicant concentration and that the individual tolerance characterized by the individual's threshold value is determined by genetic and environmental factors. As a case study, the heritability of tolerance to p-nonylphenol in the cladoceran species Daphnia galeata was estimated by using the maximum likelihood method and nested analysis of variance (ANOVA). Broad-sense heritability was estimated to be 0.199 ± 0.112 by the maximum likelihood method and 0.184 ± 0.089 by ANOVA; both results implied that the species examined had the potential to acquire tolerance to this substance by evolutionary change.

  8. Program Model Checking: A Practitioner's Guide

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas T.; Mansouri-Samani, Masoud; Mehlitz, Peter C.; Pasareanu, Corina S.; Markosian, Lawrence Z.; Penix, John J.; Brat, Guillaume P.; Visser, Willem C.

    2008-01-01

    Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools.

  9. Genetics on the Fly: A Primer on the Drosophila Model System.

    PubMed

    Hales, Karen G; Korey, Christopher A; Larracuente, Amanda M; Roberts, David M

    2015-11-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly's tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism's natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones.

  10. Genetics on the Fly: A Primer on the Drosophila Model System

    PubMed Central

    Hales, Karen G.; Korey, Christopher A.; Larracuente, Amanda M.; Roberts, David M.

    2015-01-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. PMID:26564900

  11. A model for monitoring of Hsp90-buffered genetic variations

    NASA Astrophysics Data System (ADS)

    Kozeko, Liudmyla

    Genetic material of terrestrial organisms can be considerably injured by cosmic rays and UV-radiation in the space environment. Organisms onboard are also exposed to the entire complex of negative physical factors which can generate genetic variations and affect morphogenesis. However, species phenotypes must be robust to genetic variation, requiring "buffering" systems to ensure normal development. The molecular chaperone Hsp90 can serve as such "a buffer". It is important in the maturation and conformational regulation of a diverse set of signal transducers. The requirement of many principal regulatory proteins for Hsp90 renders entire metabolic pathways sensitive to impairment of its function. So inhibition of Hsp90 function can open cryptic genetic variations and produce morphological changes. In this paper, we present a model for monitoring of cryptic Hsp90-buffered genetic variations arising during exposure to space and spaceflight factors. This model has been developed with Arabidopsis thaliana seeds gathered in natural habitats with high anthropogenic pressure and wild type (Col-0) seeds subjected to negative influences (UV, heavy metals) experimentally. The phenotypic traits of early seedlings grown under reduction of Hsp90 activity were characterized to estimate Hsp90-buffered genetic variations. Geldanamycin was used as an inhibitor of Hsp90 function.

  12. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  13. Aerothermal modeling program, phase 1

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Reynolds, R.; Ball, I.; Berry, R.; Johnson, K.; Mongia, H.

    1983-01-01

    Aerothermal submodels used in analytical combustor models are analyzed. The models described include turbulence and scalar transport, gaseous full combustion, spray evaporation/combustion, soot formation and oxidation, and radiation. The computational scheme is discussed in relation to boundary conditions and convergence criteria. Also presented is the data base for benchmark quality test cases and an analysis of simple flows.

  14. Model-free Estimation of Recent Genetic Relatedness

    PubMed Central

    Conomos, Matthew P.; Reiner, Alexander P.; Weir, Bruce S.; Thornton, Timothy A.

    2016-01-01

    Genealogical inference from genetic data is essential for a variety of applications in human genetics. In genome-wide and sequencing association studies, for example, accurate inference on both recent genetic relatedness, such as family structure, and more distant genetic relatedness, such as population structure, is necessary for protection against spurious associations. Distinguishing familial relatedness from population structure with genotype data, however, is difficult because both manifest as genetic similarity through the sharing of alleles. Existing approaches for inference on recent genetic relatedness have limitations in the presence of population structure, where they either (1) make strong and simplifying assumptions about population structure, which are often untenable, or (2) require correct specification of and appropriate reference population panels for the ancestries in the sample, which might be unknown or not well defined. Here, we propose PC-Relate, a model-free approach for estimating commonly used measures of recent genetic relatedness, such as kinship coefficients and IBD sharing probabilities, in the presence of unspecified structure. PC-Relate uses principal components calculated from genome-screen data to partition genetic correlations among sampled individuals due to the sharing of recent ancestors and more distant common ancestry into two separate components, without requiring specification of the ancestral populations or reference population panels. In simulation studies with population structure, including admixture, we demonstrate that PC-Relate provides accurate estimates of genetic relatedness and improved relationship classification over widely used approaches. We further demonstrate the utility of PC-Relate in applications to three ancestrally diverse samples that vary in both size and genealogical complexity. PMID:26748516

  15. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  16. Disentangling the relationship between tumor genetic programs and immune responsiveness.

    PubMed

    Bedognetti, Davide; Hendrickx, Wouter; Ceccarelli, Michele; Miller, Lance D; Seliger, Barbara

    2016-04-01

    Correlative studies in humans have demonstrated that an active immune microenvironment characterized by the presence of a T-helper 1 immune response typifies a tumor phenotype associated with better outcome and increased responsiveness to immune manipulation. This phenotype also signifies the counter activation of immune-regulatory mechanisms. Variables modulating the development of an effective anti-tumor immune response are increasingly scrutinized as potential therapeutic targets. Genetic alterations of cancer cells that functionally influence intratumoral immune response include mutational load, specific mutations of genes involved in oncogenic pathways and copy number aberrations involving chemokine and cytokine genes. Inhibiting oncogenic pathways that prevent the development of the immune-favorable cancer phenotype may complement modern immunotherapeutic approaches.

  17. Disentangling the relationship between tumor genetic programs and immune responsiveness.

    PubMed

    Bedognetti, Davide; Hendrickx, Wouter; Ceccarelli, Michele; Miller, Lance D; Seliger, Barbara

    2016-04-01

    Correlative studies in humans have demonstrated that an active immune microenvironment characterized by the presence of a T-helper 1 immune response typifies a tumor phenotype associated with better outcome and increased responsiveness to immune manipulation. This phenotype also signifies the counter activation of immune-regulatory mechanisms. Variables modulating the development of an effective anti-tumor immune response are increasingly scrutinized as potential therapeutic targets. Genetic alterations of cancer cells that functionally influence intratumoral immune response include mutational load, specific mutations of genes involved in oncogenic pathways and copy number aberrations involving chemokine and cytokine genes. Inhibiting oncogenic pathways that prevent the development of the immune-favorable cancer phenotype may complement modern immunotherapeutic approaches. PMID:26967649

  18. ENU mutagenesis to generate genetically modified rat models.

    PubMed

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  19. Bridge Program: An Alternative Curricular Model

    ERIC Educational Resources Information Center

    George, Deborah A.

    2012-01-01

    With the motivation for career advancement, many adult learners have chosen to return to graduate education or professional programs. The bridge program is one relatively new alternative curricular model available for adult learners who wish to build on their education within their chosen profession. Evidence on the effectiveness of such programs…

  20. The Interdependent Learning Model. Program Summary.

    ERIC Educational Resources Information Center

    Far West Lab. for Educational Research and Development, Berkeley, CA.

    This document is the sixth in a series of 12 early childhood program descriptions compiled by the Far West Laboratory for Educational Research and Development. The program described here is the Interdependent Learning Model located at the Institute for Developmental Studies at New York University in New York City. The Interdependent Learning Model…

  1. Modeling the Volcanic Source at Long Valley, CA, Using a Genetic Algorithm Technique

    NASA Technical Reports Server (NTRS)

    Tiampo, Kristy F.

    1999-01-01

    In this project, we attempted to model the deformation pattern due to the magmatic source at Long Valley caldera using a real-value coded genetic algorithm (GA) inversion similar to that found in Michalewicz, 1992. The project has been both successful and rewarding. The genetic algorithm, coded in the C programming language, performs stable inversions over repeated trials, with varying initial and boundary conditions. The original model used a GA in which the geophysical information was coded into the fitness function through the computation of surface displacements for a Mogi point source in an elastic half-space. The program was designed to invert for a spherical magmatic source - its depth, horizontal location and volume - using the known surface deformations. It also included the capability of inverting for multiple sources.

  2. A survey of application: genomics and genetic programming, a new frontier.

    PubMed

    Khan, Mohammad Wahab; Alam, Mansaf

    2012-08-01

    The aim of this paper is to provide an introduction to the rapidly developing field of genetic programming (GP). Particular emphasis is placed on the application of GP to genomics. First, the basic methodology of GP is introduced. This is followed by a review of applications in the areas of gene network inference, gene expression data analysis, SNP analysis, epistasis analysis and gene annotation. Finally this paper concluded by suggesting potential avenues of possible future research on genetic programming, opportunities to extend the technique, and areas for possible practical applications.

  3. Rapid SAR target modeling through genetic inheritance mechanism

    NASA Astrophysics Data System (ADS)

    Bala, Jerzy; Pachowicz, Peter W.; Vafaie, Halleh

    1997-07-01

    The paper presents a methodology and GETP experimental system for rapid SAR target signature generation from limited initial sensory data. The methodology exploits and integrates the following four processes: (1) analysis of initial SAR image signatures and their transformation into higher-level blob representation, (2) blob modeling, (3) genetic inheritance modeling to generate new instances of a target model in blob representation, and (4) synthesis of new SAR signatures from genetically evolved blob data. The GETP system takes several SAR signatures of the target and transforms each signature into more general scattered blob graphs, where each blob represents local energy cluster. A single graph node is describe by blob relative position, confidence, and iconic data. Graph data is forwarded to the genetic modeling process while blob image is stored in a catalog. Genetic inheritance is applied to the initial population of graph data. New graph models of the target are generated and evaluated. Selected graph variations are forwarded to the synthesis process. The synthesis process restores target signature from a given graph and a catalog of blobs. The background is synthesized to complement the signature. Initial experimental results are illustrated with 64 X 32 image sections of a tank.

  4. Dissecting genetic and environmental mutation signatures with model organisms.

    PubMed

    Segovia, Romulo; Tam, Annie S; Stirling, Peter C

    2015-08-01

    Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon.

  5. Dissecting genetic and environmental mutation signatures with model organisms.

    PubMed

    Segovia, Romulo; Tam, Annie S; Stirling, Peter C

    2015-08-01

    Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon. PMID:25940384

  6. Evolutionary conservation and modulation of a juvenile growth-regulating genetic program.

    PubMed

    Delaney, Angela; Padmanabhan, Vasantha; Rezvani, Geoffrey; Chen, Weiping; Forcinito, Patricia; Cheung, Crystal S F; Baron, Jeffrey; Lui, Julian C K

    2014-06-01

    Body size varies enormously among mammalian species. In small mammals, body growth is typically suppressed rapidly, within weeks, whereas in large mammals, growth is suppressed slowly, over years, allowing for a greater adult size. We recently reported evidence that body growth suppression in rodents is caused in part by a juvenile genetic program that occurs in multiple tissues simultaneously and involves the downregulation of a large set of growth-promoting genes. We hypothesized that this genetic program is conserved in large mammals but that its time course is evolutionarily modulated such that it plays out more slowly, allowing for more prolonged growth. Consistent with this hypothesis, using expression microarray analysis, we identified a set of genes that are downregulated with age in both juvenile sheep kidney and lung. This overlapping gene set was enriched for genes involved in cell proliferation and growth and showed striking similarity to a set of genes downregulated with age in multiple organs of the juvenile mouse and rat, indicating that the multiorgan juvenile genetic program previously described in rodents has been conserved in the 80 million years since sheep and rodents diverged in evolution. Using microarray and real-time PCR, we found that the pace of this program was most rapid in mice, more gradual in rats, and most gradual in sheep. These findings support the hypothesis that a growth-regulating genetic program is conserved among mammalian species but that its pace is modulated to allow more prolonged growth and therefore greater adult body size in larger mammals.

  7. Linear genetic programming application for successive-station monthly streamflow prediction

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit

    2014-09-01

    In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.

  8. Corn Storage Protein - A Molecular Genetic Model

    SciTech Connect

    Messing, Joachim

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  9. Resolving Conflicts: Modeling Genetic Control of Plant Morphogenesis.

    PubMed

    Coen, Enrico; Rebocho, Alexandra B

    2016-09-26

    Computational modeling of tissue morphogenesis reveals how spatiotemporal patterns of gene activity control tissue shape by introducing several types of tissue conflict. These conflicts reflect genetic modulation of processes that influence the cellular mechanical properties and may underlie the enormous diversity of forms that have evolved in plants and animals. PMID:27676429

  10. Population genetics of Setaria viridis, a new model system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new mod...

  11. A CAL Program to Teach the Basic Principles of Genetic Engineering--A Change from the Traditional Approach.

    ERIC Educational Resources Information Center

    Dewhurst, D. G.; And Others

    1989-01-01

    An interactive computer-assisted learning program written for the BBC microcomputer to teach the basic principles of genetic engineering is described. Discussed are the hardware requirements software, use of the program, and assessment. (Author/CW)

  12. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages.

    PubMed

    Bikard, David; Marraffini, Luciano A

    2012-02-01

    Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.

  13. Predicting Student Grades in Learning Management Systems with Multiple Instance Genetic Programming

    ERIC Educational Resources Information Center

    Zafra, Amelia; Ventura, Sebastian

    2009-01-01

    The ability to predict a student's performance could be useful in a great number of different ways associated with university-level learning. In this paper, a grammar guided genetic programming algorithm, G3P-MI, has been applied to predict if the student will fail or pass a certain course and identifies activities to promote learning in a…

  14. New directions and changing faces for the USDA sunflower genetics programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This document is a summary of a slideshow presented at the National Sunflower Association’s annual Research Forum in Fargo, ND, in January 2008. Background information was provided about new staff in the Sunflower Genetics programs as well as progress during this, the transitional year. Studies to b...

  15. Authorized Course of Instruction for the Quinmester Program. Science: Genetics; Continuity of Life; and Perpetuating the Species.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Each of the three secondary school science units, prepared for the Dade County Florida Quinmester Program, concerns some aspects of genetics. "Genetics" requires previous study of biology and concentrates on in-depth study of the nature, transmission, and function of the genetic material. There are no formal prerequisites for the units…

  16. Genetic education and sickle cell disease: feasibility and efficacy of a program tailored to adolescents.

    PubMed

    Porter, Jerlym S; Matthews, Christy S; Carroll, Yvonne M; Anderson, Sheila M; Smeltzer, Matthew P; Hankins, Jane S

    2014-10-01

    Sickle cell disease (SCD) genetic knowledge is important when individuals make reproductive decisions. This study assessed feasibility and efficacy of delivering basic genetic information to 101 adolescents with SCD. Participants completed a questionnaire to test SCD genetic knowledge at 3 timepoints: before genetic education session (pretest), after the session (posttest), and 6 months later (follow-up). Scores at 3 timepoints were compared by Wilcoxon signed-rank tests, and group differences were compared by Wilcoxon-Mann-Whitney and Kruskal-Wallis tests. Participants' median scores significantly increased from pretest to posttest and from pretest to follow-up. Males had a greater change in scores than females. Scores decreased slightly from posttest to follow-up. Participants with HbSS/HbSβ⁰-thal genotype and participants with more prior pain episodes exhibited a smaller increase in median scores than those with HbSC/HbSβ⁺-thal genotype and no prior pain history; however, all groups had substantial gains from pretest to posttest and follow-up tests demonstrating that adolescents with SCD can learn basic genetics. This study established that genetic education can successfully be incorporated in transition to adult care programs for adolescents with SCD. Genetic education should be included in the standard plan of care for adolescents with SCD to assist them in making informed reproductive choices.

  17. Genetic animal models of dystonia: common features and diversities.

    PubMed

    Richter, Franziska; Richter, Angelika

    2014-10-01

    Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder.

  18. Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming

    NASA Astrophysics Data System (ADS)

    Yeh, K.; Wei, H.; Chen, L.; Liu, G.

    2010-12-01

    Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming Keh-Chia Yeha, Hsiao-Ping Weia,d, Li Chenb, and Gin-Rong Liuc a Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, R.O.C. b Department of Civil Engineering and Engineering Informatics, Chung Hua University, Hsinchu, Taiwan, 300, R.O.C. c Center for Space and Remote Sensing Research, National Central University, Tao-Yuan, Taiwan, 320, R.O.C. d National Science and Technology Center for Disaster Reduction, Taipei County, Taiwan, 231, R.O.C. Abstract This paper proposes an improved multi-run genetic programming (GP) and applies it to predict the rainfall using meteorological satellite data. GP is a well-known evolutionary programming and data mining method, used to automatically discover the complex relationships among nonlinear systems. The main advantage of GP is to optimize appropriate types of function and their associated coefficients simultaneously. This study makes an improvement to enhance escape ability from local optimums during the optimization procedure. The GP continuously runs several times by replacing the terminal nodes at the next run with the best solution at the current run. The current novel model improves GP, obtaining a highly nonlinear mathematical equation to estimate the rainfall. In the case study, this improved GP described above combining with SSM/I satellite data is employed to establish a suitable method for estimating rainfall at sea surface during typhoon periods. These estimated rainfalls are then verified with the data from four rainfall stations located at Peng-Jia-Yu, Don-Gji-Dao, Lan-Yu, and Green Island, which are four small islands around Taiwan. From the results, the improved GP can generate sophisticated and accurate nonlinear mathematical equation through two-run learning procedures which outperforms the traditional multiple linear regression, empirical equations and back-propagated network

  19. Genetic programming-based approach to elucidate biochemical interaction networks from data.

    PubMed

    Kandpal, Manoj; Kalyan, Chakravarthy Mynampati; Samavedham, Lakshminarayanan

    2013-02-01

    Biochemical systems are characterised by cyclic/reversible reciprocal actions, non-linear interactions and a mixed relationship structures (linear and non-linear; static and dynamic). Deciphering the architecture of such systems using measured data to provide quantitative information regarding the nature of relationships that exist between the measured variables is a challenging proposition. Causality detection is one of the methodologies that are applied to elucidate biochemical networks from such data. Autoregressive-based modelling approach such as granger causality, partial directed coherence, directed transfer function and canonical variate analysis have been applied on different systems for deciphering such interactions, but with limited success. In this study, the authors propose a genetic programming-based causality detection (GPCD) methodology which blends evolutionary computation-based procedures along with parameter estimation methods to derive a mathematical model of the system. Application of the GPCD methodology on five data sets that contained the different challenges mentioned above indicated that GPCD performs better than the other methods in uncovering the exact structure with less false positives. On a glycolysis data set, GPCD was able to fill the 'interaction gaps' which were missed by other methods.

  20. Genetic demixing and evolution in linear stepping stone models

    NASA Astrophysics Data System (ADS)

    Korolev, K. S.; Avlund, Mikkel; Hallatschek, Oskar; Nelson, David R.

    2010-04-01

    Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium statistical mechanics. The stepping stone model can also be regarded as an approximation to the dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic domains. This segregation slows down genetic drift and selection because these two evolutionary forces can only act at the boundaries between the domains; the effects of mutation, however, are not significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-dimensional model. An unusual sublinear increase is also found in the variance of the spatially averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast in both well-mixed and one-dimensional populations, but the time constants are different. The relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for statistical inference and the differences are highlighted between the well-mixed and one-dimensional models. Although the focus is on two alleles or variants, q -allele Potts-like models of gene segregation are considered as well. Most of the analytical results are checked with simulations and could be tested against recent spatial

  1. A genetic animal model of differential sensitivity to methamphetamine reinforcement

    PubMed Central

    Shabani, Shkelzen; Dobbs, Lauren K; Ford, Matthew M; Mark, Gregory P; Finn, Deborah A; Phillips, Tamara J

    2012-01-01

    Sensitivity to reinforcement from methamphetamine (MA) likely influences risk for MA addiction, and genetic differences are one source of individual variation. Generation of two sets of selectively bred mouse lines for high and low MA drinking has shown that genetic factors influence MA intake, and pronounced differences in sensitivity to rewarding and aversive effects of MA play a significant role. Further validation of these lines as a unique genetic model relevant to MA addiction was obtained using operant methods to study MA reinforcement. High and low MA drinking line mice were used to test the hypotheses that: 1) oral and intracerebroventricular (ICV) MA serve as behavioral reinforcers, and 2) MA exhibits greater reinforcing efficacy in high than low MA drinking mice. Operant responses resulted in access to an MA or non-MA drinking tube or intracranial delivery of MA. Behavioral activation consequent to orally consumed MA was determined. MA available for consumption maintained higher levels of reinforced instrumental responding in high than low MA drinking line mice, and MA intake in the oral operant procedure was greater in high than low MA drinking line mice. Behavioral activation was associated with amount of MA consumed during operant sessions. High line mice delivered more MA via ICV infusion than did low line mice across a range of doses. Thus, genetic risk factors play a critical role in the reinforcing efficacy of MA and the oral self-administration procedure is suitable for delineating genetic contributions to MA reinforcement. PMID:22280875

  2. Identifying genetically driven clinical phenotypes using linear mixed models

    PubMed Central

    Mosley, Jonathan D.; Witte, John S.; Larkin, Emma K.; Bastarache, Lisa; Shaffer, Christian M.; Karnes, Jason H.; Stein, C. Michael; Phillips, Elizabeth; Hebbring, Scott J.; Brilliant, Murray H.; Mayer, John; Ye, Zhan; Roden, Dan M.; Denny, Joshua C.

    2016-01-01

    We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism (SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates are primarily driven by SNPs identified by prior genome-wide association studies and SNPs within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate q<0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is genetically correlated with Type I diabetes (rG=0.31, s.e. 0.12, P=0.003). We also report novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021 (combined odds ratio (OR)=1.2 (95% confidence interval (CI): 1.1–1.2), P=9.8 × 10−11) and for polymyalgia rheumatica near C6orf10 at rs6910071 (OR=1.5 (95% CI: 1.3–1.6), P=1.3 × 10−10). Phenome-wide application of GLMMs identifies phenotypes with important genetic drivers, and focusing on these phenotypes can identify novel genetic associations. PMID:27109359

  3. Genetic Models of PGC-1 and Glucose Metabolism and Homeostasis

    PubMed Central

    Rowe, Glenn C.; Arany, Zolt

    2013-01-01

    Type II diabetes and its complications are a tremendous health burden throughout the world. Our understanding of the changes that lead to glucose imbalance and insulin resistance and ultimately diabetes remain incompletely understood. Many signaling and transcriptional pathways have been identified as being important to maintain normal glucose balance, including that of the peroxisome proliferator activated receptor gamma coactivator (PGC-1) family. This family of transcriptional coactivators strongly regulates mitochondrial and metabolic biology in numerous organs. The use of genetic models of PGC-1s, including both tissue-specific overexpression and knock-out models, has helped to reveal the specific roles that these coactivators play in each tissue. This review will thus focus on the PGC-1s and recently developed genetic rodent models that have highlighted the importance of these molecules in maintaining normal glucose homeostasis. PMID:24057597

  4. Genetic implanted fuzzy model for water saturation determination

    NASA Astrophysics Data System (ADS)

    Bagheripour, Parisa; Asoodeh, Mojtaba

    2014-04-01

    The portion of rock pore volume occupied with non-hydrocarbon fluids is called water saturation, which plays a significant role in reservoir description and management. Accurate water saturation, directly measured from special core analysis is highly expensive and time consuming. Furthermore, indirect measurements of water saturation from well log interpretation such as empirical correlations or statistical methods do not provide satisfying results. Recent works showed that fuzzy logic is a robust tool for handling geosciences problems which provide more reliable results compared with empirical correlations or statistical methods. This study goes further to improve fuzzy logic for enhancing accuracy of final prediction. It employs hybrid genetic algorithm-pattern search technique instead of widely held subtractive clustering approach for setting up fuzzy rules and for extracting optimal parameters involved in computational structure of fuzzy model. The proposed strategy, called genetic implanted fuzzy model, was used to formulate conventional well log data, including sonic transit time, neutron porosity, formation bulk density, true resistivity, and gamma ray into water saturation, obtained from subtractive clustering approach. Results indicated genetic implanted fuzzy model performed more satisfyingly compared with traditional fuzzy logic model. The propounded model was successfully applied to one of Iranian carbonate reservoir rocks.

  5. The stewardship model: current viability for genetic biobank practice development.

    PubMed

    Williams, Pamela Holtzclaw; Schepp, Karen; McGrath, Barbara; Mitchell, Pamela

    2010-01-01

    The "stewardship model" of ethics relationships is a conceptual framework initially proposed by Jeffers in Advances in Nursing Science, 24(2), 2001. It conceptualized ethical responsibilities in the practice of systematic collection and storage of biospecimens in biobanks for future healthcare genetic research. Since the article's publication 8 years ago, genetic biobanks have grown in number around the world and discernible biobank relational conceptualizations were published. Nursing leadership adopted competency standards for all genetic nursing practices. The involvement of nurses has increased and is projected for further significant increase as biobank practices emerge from research into clinical care settings. This assessment of current viability of this previously established stewardship model offers fresh insights to existing and future nursing research and practice. The purpose of this article was to analyze the original stewardship model's components, the relational parties, and characteristics; by contrasting those with proposed conceptualizations and existing biobank practices developed subsequent to its publication. The model's current viability and theoretical development status are assessed for its ability to support a future nursing evidence base for best practices. Proposals for the model's expansion are suggested.

  6. [The emphases and basic procedures of genetic counseling in psychotherapeutic model].

    PubMed

    Zhang, Yuan-Zhi; Zhong, Nanbert

    2006-11-01

    The emphases and basic procedures of genetic counseling are all different with those in old models. In the psychotherapeutic model, genetic counseling will not only focus on counselees' genetic disorders and birth defects, but also their psychological problems. "Client-centered therapy" termed by Carl Rogers plays an important role in genetic counseling process. The basic procedures of psychotherapeutic model of genetic counseling include 7 steps: initial contact, introduction, agendas, inquiry of family history, presenting information, closing the session and follow-up.

  7. An animal model of differential genetic risk for methamphetamine intake.

    PubMed

    Phillips, Tamara J; Shabani, Shkelzen

    2015-01-01

    The question of whether genetic factors contribute to risk for methamphetamine (MA) use and dependence has not been intensively investigated. Compared to human populations, genetic animal models offer the advantages of control over genetic family history and drug exposure. Using selective breeding, we created lines of mice that differ in genetic risk for voluntary MA intake and identified the chromosomal addresses of contributory genes. A quantitative trait locus was identified on chromosome 10 that accounts for more than 50% of the genetic variance in MA intake in the selected mouse lines. In addition, behavioral and physiological screening identified differences corresponding with risk for MA intake that have generated hypotheses that are testable in humans. Heightened sensitivity to aversive and certain physiological effects of MA, such as MA-induced reduction in body temperature, are hallmarks of mice bred for low MA intake. Furthermore, unlike MA-avoiding mice, MA-preferring mice are sensitive to rewarding and reinforcing MA effects, and to MA-induced increases in brain extracellular dopamine levels. Gene expression analyses implicate the importance of a network enriched in transcription factor genes, some of which regulate the mu opioid receptor gene, Oprm1, in risk for MA use. Neuroimmune factors appear to play a role in differential response to MA between the mice bred for high and low intake. In addition, chromosome 10 candidate gene studies provide strong support for a trace amine-associated receptor 1 gene, Taar1, polymorphism in risk for MA intake. MA is a trace amine-associated receptor 1 (TAAR1) agonist, and a non-functional Taar1 allele segregates with high MA consumption. Thus, reduced TAAR1 function has the potential to increase risk for MA use. Overall, existing findings support the MA drinking lines as a powerful model for identifying genetic factors involved in determining risk for harmful MA use. Future directions include the development of a

  8. An animal model of differential genetic risk for methamphetamine intake

    PubMed Central

    Phillips, Tamara J.; Shabani, Shkelzen

    2015-01-01

    The question of whether genetic factors contribute to risk for methamphetamine (MA) use and dependence has not been intensively investigated. Compared to human populations, genetic animal models offer the advantages of control over genetic family history and drug exposure. Using selective breeding, we created lines of mice that differ in genetic risk for voluntary MA intake and identified the chromosomal addresses of contributory genes. A quantitative trait locus was identified on chromosome 10 that accounts for more than 50% of the genetic variance in MA intake in the selected mouse lines. In addition, behavioral and physiological screening identified differences corresponding with risk for MA intake that have generated hypotheses that are testable in humans. Heightened sensitivity to aversive and certain physiological effects of MA, such as MA-induced reduction in body temperature, are hallmarks of mice bred for low MA intake. Furthermore, unlike MA-avoiding mice, MA-preferring mice are sensitive to rewarding and reinforcing MA effects, and to MA-induced increases in brain extracellular dopamine levels. Gene expression analyses implicate the importance of a network enriched in transcription factor genes, some of which regulate the mu opioid receptor gene, Oprm1, in risk for MA use. Neuroimmune factors appear to play a role in differential response to MA between the mice bred for high and low intake. In addition, chromosome 10 candidate gene studies provide strong support for a trace amine-associated receptor 1 gene, Taar1, polymorphism in risk for MA intake. MA is a trace amine-associated receptor 1 (TAAR1) agonist, and a non-functional Taar1 allele segregates with high MA consumption. Thus, reduced TAAR1 function has the potential to increase risk for MA use. Overall, existing findings support the MA drinking lines as a powerful model for identifying genetic factors involved in determining risk for harmful MA use. Future directions include the development of a

  9. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  10. Evaluation of two-year Jewish genetic disease screening program in Atlanta: insight into community genetic screening approaches.

    PubMed

    Shao, Yunru; Liu, Shuling; Grinzaid, Karen

    2015-04-01

    Improvements in genetic testing technologies have led to the development of expanded carrier screening panels for the Ashkenazi Jewish population; however, there are major inconsistencies in current screening practices. A 2-year pilot program was launched in Atlanta in 2010 to promote and facilitate screening for 19 Jewish genetic diseases. We analyzed data from this program, including participant demographics and outreach efforts. This retrospective analysis is based on a de-identified dataset of 724 screenees. Data were obtained through medical chart review and questionnaires and included demographic information, screening results, response to outreach efforts, and follow-up behavior and preferences. We applied descriptive analysis, chi-square tests, and logistic regression to analyze the data and compare findings with published literature. The majority of participants indicated that they were not pregnant or did not have a partner who was pregnant were affiliated with Jewish organizations and reported 100 % AJ ancestry. Overall, carrier frequency was 1 in 3.9. Friends, rabbis, and family members were the most common influencers of the decision to receive screening. People who were older, had a history of pregnancy, and had been previously screened were more likely to educate others (all p < 0.05). Analysis of this 2-year program indicated that people who are ready to have children or expand their families are more likely to get screened and encourage others to be screened. The most effective outreach efforts targeted influencers who then encouraged screening in the target population. Educating influencers and increasing overall awareness were the most effective outreach strategies.

  11. A Tri-Part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning about Authentic Genetics Dilemmas

    ERIC Educational Resources Information Center

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-01-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational…

  12. Genetic Counseling Graduate Student Debt: Impact on Program, Career and Life Choices

    PubMed Central

    Kuhl, Ashley; Reiser, Catherine; Eickhoff, Jens; Petty, Elizabeth M

    2015-01-01

    The cost of education is rising, increasing student financial aid and debt for students pursuing higher education. A few studies have assessed the impact of student debt in medicine, physical therapy and social work, but little is known about the impact of student debt on genetic counseling students and graduates. To address this gap in knowledge, a web-based study of 408 recent alumni of genetic counseling programs in North America was conducted to assess the impact of student debt on program, career and life choices. Over half (63%; n=256/408) of the participants reported that loans were extremely important in their ability to attend their training program, with most using subsidized loans no longer available to current graduate students. While participants were generally satisfied with their genetic counseling education, 83% (n=282/342) of participants with student debt reported feeling burdened by their debt, which had a median of $40,000-$50,000. This debt is relatively close to the median starting salary reported by survey participants ($45,000-$50,000), breaching the “20-10 rule” that states student debt should not exceed 20% of annual net income. In response to this critical issue, we propose recommendations for the genetic counseling field that may help alleviate student debt impact and burden. PMID:24578121

  13. Genetic counseling graduate student debt: impact on program, career and life choices.

    PubMed

    Kuhl, Ashley; Reiser, Catherine; Eickhoff, Jens; Petty, Elizabeth M

    2014-10-01

    The cost of education is rising, increasing student financial aid and debt for students pursuing higher education. A few studies have assessed the impact of student debt in medicine, physical therapy and social work, but little is known about the impact of student debt on genetic counseling students and graduates. To address this gap in knowledge, a web-based study of 408 recent alumni of genetic counseling programs in North America was conducted to assess the impact of student debt on program, career and life choices. Over half (63 %; n = 256/408) of the participants reported that loans were extremely important in their ability to attend their training program, with most using subsidized loans no longer available to current graduate students. While participants were generally satisfied with their genetic counseling education, 83 % (n = 282/342) of participants with student debt reported feeling burdened by their debt, which had a median of $40,000-$50,000. This debt is relatively close to the median starting salary reported by survey participants ($45,000-$50,000), breaching the "20-10 rule" that states student debt should not exceed 20 % of annual net income. In response to this critical issue, we propose recommendations for the genetic counseling field that may help alleviate student debt impact and burden.

  14. Cooperative global security programs modeling & simulation.

    SciTech Connect

    Briand, Daniel

    2010-05-01

    The national laboratories global security programs implement sustainable technical solutions for cooperative nonproliferation, arms control, and physical security systems worldwide. To help in the development and execution of these programs, a wide range of analytical tools are used to model, for example, synthetic tactical environments for assessing infrastructure protection initiatives and tactics, systematic approaches for prioritizing nuclear and biological threat reduction opportunities worldwide, and nuclear fuel cycle enrichment and spent fuel management for nuclear power countries. This presentation will describe how these models are used in analyses to support the Obama Administration's agenda and bilateral/multinational treaties, and ultimately, to reduce weapons of mass destruction and terrorism threats through international technical cooperation.

  15. Academic program models for undergraduate biomedical engineering.

    PubMed

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  16. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    PubMed

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-01-01

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans. PMID:26919851

  17. Nonlinear Modeling of the Aids Virus Genetic Sequence Evolution

    NASA Astrophysics Data System (ADS)

    Cocho, G.; Gelover-Santiago, A.; Martinez-Mekler, G.; Rodin, A.

    A network of coupled maps is introduced to model the evolution of the genetic sequence of the HIV1 AIDS virus. Within a space of RNA chemical composition, short range interactions correspond to mutations. Ecological constraints generate long range couplings. The resulting equations are of a reaction-diffusion type. Quasi-species with an error threshold emerge from the model dynamics. Predictions relating chemical composition regularity properties with the variability of the HIV RNA sequence agree with a statistical analysis from gene data banks. The model suggests a clue for an alternative therapeutical treatment.

  18. Implementation of genetic conservation practices in a muskellunge propagation and stocking program

    USGS Publications Warehouse

    Jennings, Martin J.; Sloss, Brian L.; Hatzenbeler, Gene R.; Kampa, Jeffrey M.; Simonson, Timothy D.; Avelallemant, Steven P.; Lindenberger, Gary A.; Underwood, Bruce D.

    2010-01-01

    Conservation of genetic resources is a challenging issue for agencies managing popular sport fishes. To address the ongoing potential for genetic risks, we developed a comprehensive set of recommendations to conserve genetic diversity of muskellunge (Esox masquinongy) in Wisconsin, and evaluated the extent to which the recommendations can be implemented. Although some details are specific to Wisconsin's muskellunge propagation program, many of the practical issues affecting implementation are applicable to other species and production systems. We developed guidelines to restrict future brood stock collection operations to lakes with natural reproduction and to develop a set of brood lakes to use on a rotational basis within regional stock boundaries, but implementation will require considering lakes with variable stocking histories. Maintaining an effective population size sufficient to minimize the risk of losing alleles requires limiting brood stock collection to large lakes. Recommendations to better approximate the temporal distribution of spawning in hatchery operations and randomize selection of brood fish are feasible. Guidelines to modify rearing and distribution procedures face some logistic constraints. An evaluation of genetic diversity of hatchery-produced fish during 2008 demonstrated variable success representing genetic variation of the source population. Continued evaluation of hatchery operations will optimize operational efficiency while moving toward genetic conservation goals.

  19. Implementation of genetic conservation practices in a muskellunge propagation and stocking program

    USGS Publications Warehouse

    Jennings, Martin J.; Sloss, Brian L.; Hatzenbeler, Gene R.; Kampa, Jeffrey M.; Simonson, Timothy D.; Avelallemant, Steven P.; Lindenberger, Gary A.; Underwood, Bruce D.

    2010-01-01

    Conservation of genetic resources is a challenging issue for agencies managing popular sport fishes. To address the ongoing potential for genetic risks, we developed a comprehensive set of recommendations to conserve genetic diversity of muskellunge (Esox masquinongy) in Wisconsin, and evaluated the extent to which the recommendations can be implemented. Although some details are specific to Wisconsin's muskellunge propagation program, many of the practical issues affecting implementation are applicable to other species and production systems. We developed guidelines to restrict future broodstock collection operations to lakes with natural reproduction and to develop a set of brood lakes to use on a rotational basis within regional stock boundaries, but implementation will require considering lakes with variable stocking histories. Maintaining an effective population size sufficient to minimize the risk of losing alleles requires limiting broodstock collection to large lakes. Recommendations to better approximate the temporal distribution of spawning in hatchery operations and randomize selection of brood fish are feasible. Guidelines to modify rearing and distribution procedures face some logistic constraints. An evaluation of genetic diversity of hatchery-produced fish during 2008 demonstrated variable success representing genetic variation of the source population. Continued evaluation of hatchery operations will optimize operational efficiency while moving toward genetic conservation goals.

  20. Genetic "code": representations and dynamical models of genetic components and networks.

    PubMed

    Gilman, Alex; Arkin, Adam P

    2002-01-01

    Dynamical modeling of biological systems is becoming increasingly widespread as people attempt to grasp biological phenomena in their full complexity and make sense of an accelerating stream of experimental data. We review a number of recent modeling studies that focus on systems specifically involving gene expression and regulation. These systems include bacterial metabolic operons and phase-variable piliation, bacteriophages T7 and lambda, and interacting networks of eukaryotic developmental genes. A wide range of conceptual and mathematical representations of genetic components and phenomena appears in these works. We discuss these representations in depth and give an overview of the tools currently available for creating and exploring dynamical models. We argue that for modeling to realize its full potential as a mainstream biological research technique the tools must become more general and flexible, and formal, standardized representations of biological knowledge and data must be developed.

  1. Sleep and Development in Genetically Tractable Model Organisms.

    PubMed

    Kayser, Matthew S; Biron, David

    2016-05-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. PMID:27183564

  2. Program Model Checking as a New Trend

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper introduces a special section of STTT (International Journal on Software Tools for Technology Transfer) containing a selection of papers that were presented at the 7th International SPIN workshop, Stanford, August 30 - September 1, 2000. The workshop was named SPIN Model Checking and Software Verification, with an emphasis on model checking of programs. The paper outlines the motivation for stressing software verification, rather than only design and model verification, by presenting the work done in the Automated Software Engineering group at NASA Ames Research Center within the last 5 years. This includes work in software model checking, testing like technologies and static analysis.

  3. Genetic analysis of carcass traits in beef cattle using random regression models.

    PubMed

    Englishby, T M; Banos, G; Moore, K L; Coffey, M P; Evans, R D; Berry, D P

    2016-04-01

    Livestock mature at different rates depending, in part, on their genetic merit; therefore, the optimal age at slaughter for progeny of certain sires may differ. The objective of the present study was to examine sire-level genetic profiles for carcass weight, carcass conformation, and carcass fat in cattle of multiple beef and dairy breeds, including crossbreeds. Slaughter records from 126,214 heifers and 124,641 steers aged between 360 and 1,200 d and from 86,089 young bulls aged between 360 and 720 d were used in the analysis; animals were from 15,127 sires. Variance components for each trait across age at slaughter were generated using sire random regression models that included quadratic polynomials for fixed and random effects; heterogeneous residual variances were assumed across ages. Heritability estimates across genders ranged from 0.08 (±0.02) to 0.34 (±0.02) for carcass weight, from 0.24 (±0.02) to 0.42 (±0.01) for conformation, and from 0.16 (±0.03) to 0.40 (±0.02) for fat score. Genetic correlations within each trait across ages weakened as the interval between ages compared lengthened but were all >0.64, suggesting a similar genetic background for each trait across different ages. Eigenvalues and eigenfunctions of the additive genetic covariance matrix revealed genetic variability among animals in their growth profiles for carcass traits, although most of the genetic variability was associated with the height of the growth profile. At the same age, a positive genetic correlation (0.60 to 0.78; SE ranged from 0.01 to 0.04) existed between carcass weight and conformation, whereas negative genetic correlations existed between fatness and both conformation (-0.46 to 0.08; SE ranged from 0.02 to 0.09) and carcass weight (-0.48 to -0.16; SE ranged from 0.02 to 0.14) at the same age. The estimated genetic parameters in the present study indicate genetic variability in the growth trajectory in cattle, which can be exploited through breeding programs and

  4. A Family-Centered Model for Sharing Genetic Risk.

    PubMed

    Daly, Mary B

    2015-01-01

    The successes of the Human Genome Project have ushered in a new era of genomic science. To effectively translate these discoveries, it will be critical to improve the communication of genetic risk within families. This will require a systematic approach that accounts for the nature of family relationships and sociocultural beliefs. This paper proposes the application of the Family Systems Illness Model, used in the setting of cancer care, to the evolving field of genomics. PMID:26479564

  5. Types of disease and models for their genetic analysis.

    PubMed

    Elston, R C; Namboodiri, K K

    1980-01-01

    The authors compare schizophrenia with several other diseases and discuss how a few simple models that have already been successfully applied in other cases could be used in the genetic analysis of schizophrenia and MAO activity. Among the diseases discussed are Huntington's disease, xanthomatosis, and diabetes. The authors recommend undertaking multivariate studies of monoamine oxidase, dopamine beta-hydroxylase, and other traits associated with schizophrenia in single, large pedigrees ascertained through schizophrenic probands.

  6. Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Ali Ghorbani, Mohammad; Khatibi, Rahman; Aytek, Ali; Makarynskyy, Oleg; Shiri, Jalal

    2010-05-01

    Water level forecasting at various time intervals using records of past time series is of importance in water resources engineering and management. In the last 20 years, emerging approaches over the conventional harmonic analysis techniques are based on using Genetic Programming (GP) and Artificial Neural Networks (ANNs). In the present study, the GP is used to forecast sea level variations, three time steps ahead, for a set of time intervals comprising 12 h, 24 h, 5 day and 10 day time intervals using observed sea levels. The measurements from a single tide gauge at Hillarys Boat Harbor, Western Australia, were used to train and validate the employed GP for the period from December 1991 to December 2002. Statistical parameters, namely, the root mean square error, correlation coefficient and scatter index, are used to measure their performances. These were compared with a corresponding set of published results using an Artificial Neural Network model. The results show that both these artificial intelligence methodologies perform satisfactorily and may be considered as alternatives to the harmonic analysis.

  7. A Fuzzy Goal Programming Procedure for Solving Multiobjective Load Flow Problems via Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Biswas, Papun; Chakraborti, Debjani

    2010-10-01

    This paper describes how the genetic algorithms (GAs) can be efficiently used to fuzzy goal programming (FGP) formulation of optimal power flow problems having multiple objectives. In the proposed approach, the different constraints, various relationships of optimal power flow calculations are fuzzily described. In the model formulation of the problem, the membership functions of the defined fuzzy goals are characterized first for measuring the degree of achievement of the aspiration levels of the goals specified in the decision making context. Then, the achievement function for minimizing the regret for under-deviations from the highest membership value (unity) of the defined membership goals to the extent possible on the basis of priorities is constructed for optimal power flow problems. In the solution process, the GA method is employed to the FGP formulation of the problem for achievement of the highest membership value (unity) of the defined membership functions to the extent possible in the decision making environment. In the GA based solution search process, the conventional Roulette wheel selection scheme, arithmetic crossover and random mutation are taken into consideration to reach a satisfactory decision. The developed method has been tested on IEEE 6-generator 30-bus System. Numerical results show that this method is promising for handling uncertain constraints in practical power systems.

  8. Closed-loop separation control over a sharp edge ramp using genetic programming

    NASA Astrophysics Data System (ADS)

    Debien, Antoine; von Krbek, Kai A. F. F.; Mazellier, Nicolas; Duriez, Thomas; Cordier, Laurent; Noack, Bernd R.; Abel, Markus W.; Kourta, Azeddine

    2016-03-01

    We experimentally perform open and closed-loop control of a separating turbulent boundary layer downstream from a sharp edge ramp. The turbulent boundary layer just above the separation point has a Reynolds number Re_{θ }≈ 3500 based on momentum thickness. The goal of the control is to mitigate separation and early re-attachment. The forcing employs a spanwise array of active vortex generators. The flow state is monitored with skin-friction sensors downstream of the actuators. The feedback control law is obtained using model-free genetic programming control (GPC) (Gautier et al. in J Fluid Mech 770:442-457, 2015). The resulting flow is assessed using the momentum coefficient, pressure distribution and skin friction over the ramp and stereo PIV. The PIV yields vector field statistics, e.g. shear layer growth, the back-flow area and vortex region. GPC is benchmarked against the best periodic forcing. While open-loop control achieves separation reduction by locking-on the shedding mode, GPC gives rise to similar benefits by accelerating the shear layer growth. Moreover, GPC uses less actuation energy.

  9. Comparison between Decision Tree and Genetic Programming to distinguish healthy from stroke postural sway patterns.

    PubMed

    Marrega, Luiz H G; Silva, Simone M; Manffra, Elisangela F; Nievola, Julio C

    2015-01-01

    Maintaining balance is a motor task of crucial importance for humans to perform their daily activities safely and independently. Studies in the field of Artificial Intelligence have considered different classification methods in order to distinguish healthy subjects from patients with certain motor disorders based on their postural strategies during the balance control. The main purpose of this paper is to compare the performance between Decision Tree (DT) and Genetic Programming (GP) - both classification methods of easy interpretation by health professionals - to distinguish postural sway patterns produced by healthy and stroke individuals based on 16 widely used posturographic variables. For this purpose, we used a posturographic dataset of time-series of center-of-pressure displacements derived from 19 stroke patients and 19 healthy matched subjects in three quiet standing tasks of balance control. Then, DT and GP models were trained and tested under two different experiments where accuracy, sensitivity and specificity were adopted as performance metrics. The DT method has performed statistically significant (P < 0.05) better in both cases, showing for example an accuracy of 72.8% against 69.2% from GP in the second experiment of this paper.

  10. Using Workflow Modeling to Identify Areas to Improve Genetic Test Processes in the University of Maryland Translational Pharmacogenomics Project

    PubMed Central

    Cutting, Elizabeth M.; Overby, Casey L.; Banchero, Meghan; Pollin, Toni; Kelemen, Mark; Shuldiner, Alan R.; Beitelshees, Amber L.

    2015-01-01

    Delivering genetic test results to clinicians is a complex process. It involves many actors and multiple steps, requiring all of these to work together in order to create an optimal course of treatment for the patient. We used information gained from focus groups in order to illustrate the current process of delivering genetic test results to clinicians. We propose a business process model and notation (BPMN) representation of this process for a Translational Pharmacogenomics Project being implemented at the University of Maryland Medical Center, so that personalized medicine program implementers can identify areas to improve genetic testing processes. We found that the current process could be improved to reduce input errors, better inform and notify clinicians about the implications of certain genetic tests, and make results more easily understood. We demonstrate our use of BPMN to improve this important clinical process for CYP2C19 genetic testing in patients undergoing invasive treatment of coronary heart disease. PMID:26958179

  11. Logic integer programming models for signaling networks.

    PubMed

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  12. Physiological and genetic analysis of multiple sodium channel variants in a model of genetic absence epilepsy

    PubMed Central

    Oliva, M K; McGarr, T C; Beyer, B J; Gazina, E; Kaplan, D I; Cordeiro, L; Thomas, E; Dib-Hajj, S D; Waxman, S G; Frankel, W N; Petrou, S

    2015-01-01

    In excitatory neurons, SCN2A (NaV1.2) and SCN8A (NaV1.6) sodium channels are enriched at the axon initial segment. NaV1.6 is implicated in several mouse models of absence epilepsy, including a missense mutation identified in a chemical mutagenesis screen (Scn8aV929F). Here, we confirmed the prior suggestion that Scn8aV929F exhibits a striking genetic background-dependent difference in phenotypic severity, observing that spike-wave discharge (SWD) incidence and severity are significantly diminished when Scn8aV929F is fully placed onto the C57BL/6J strain compared with C3H. Examination of sequence differences in NaV subunits between these two inbred strains suggested NaV1.2V752F as a potential source of this modifier effect. Recognising that the spatial co-localisation of the NaV channels at the axon initial segment (AIS) provides a plausible mechanism for functional interaction, we tested this idea by undertaking biophysical characterisation of the variant NaV channels and by computer modelling. NaV1.2V752F functional analysis revealed an overall gain-of-function and for NaV1.6V929F revealed an overall loss-of-function. A biophysically realistic computer model was used to test the idea that interaction between these variant channels at the AIS contributes to the strain background effect. Surprisingly this modelling showed that neuronal excitability is dominated by the properties of NaV1.2V752F due to “functional silencing” of NaV1.6V929F suggesting that these variants do not directly interact. Consequent genetic mapping of the major strain modifier to Chr 7, and not Chr 2 where Scn2a maps, supported this biophysical prediction. While a NaV1.6V929F loss of function clearly underlies absence seizures in this mouse model, the strain background effect is apparently not due to an otherwise tempting Scn2a variant, highlighting the value of combining physiology and genetics to inform and direct each other when interrogating genetic complex traits such as absence

  13. The system-resonance approach in modeling genetic structures.

    PubMed

    Petoukhov, Sergey V

    2016-01-01

    The founder of the theory of resonance in structural chemistry Linus Pauling established the importance of resonance patterns in organization of living systems. Any living organism is a great chorus of coordinated oscillatory processes. From the formal point of view, biological organism is an oscillatory system with a great number of degrees of freedom. Such systems are studied in the theory of oscillations using matrix mathematics of their resonance characteristics. This study is devoted to a new approach for modeling genetically inherited structures and processes in living organisms using mathematical tools of the theory of resonances. This approach reveals hidden relationships in a number of genetic phenomena and gives rise to a new class of bio-mathematical models, which contribute to a convergence of biology with physics and informatics. In addition some relationships of molecular-genetic ensembles with mathematics of noise-immunity coding of information in modern communications technology are shown. Perspectives of applications of the phenomena of vibrational mechanics for modeling in biology are discussed. PMID:26545937

  14. Non-Categorical Preschool Model Program.

    ERIC Educational Resources Information Center

    Bolen, Jacqueline M.; And Others

    Special education teachers at the graduate level developed a model noncategorical preschool program for five normal or severely handicapped children which incorporated parent training and behavioral research. The staff assumed such tasks as designing classroom/clinic/observation areas, arranging for materials, training parents, and attending…

  15. A Brush Seals Program Modeling and Developments

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Flower, Ralph; Howe, Harold

    1996-01-01

    Some events of a U.S. Army/NASA Lewis Research Center brush seals program are reviewed, and the development of ceramic brush seals is described. Some preliminary room-temperature flow data are modeled and compare favorably to the results of Ergun.

  16. Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits.

    PubMed

    Watanabe, Leandro H; Myers, Chris J

    2014-01-01

    This paper describes a hierarchical stochastic simulation algorithm, which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method.

  17. Integrated Modeling Program, Applied Chemical Theory (IMPACT)

    PubMed Central

    BANKS, JAY L.; BEARD, HEGE S.; CAO, YIXIANG; CHO, ART E.; DAMM, WOLFGANG; FARID, RAMY; FELTS, ANTHONY K.; HALGREN, THOMAS A.; MAINZ, DANIEL T.; MAPLE, JON R.; MURPHY, ROBERT; PHILIPP, DEAN M.; REPASKY, MATTHEW P.; ZHANG, LINDA Y.; BERNE, BRUCE J.; FRIESNER, RICHARD A.; GALLICCHIO, EMILIO; LEVY, RONALD M.

    2009-01-01

    We provide an overview of the IMPACT molecular mechanics program with an emphasis on recent developments and a description of its current functionality. With respect to core molecular mechanics technologies we include a status report for the fixed charge and polarizable force fields that can be used with the program and illustrate how the force fields, when used together with new atom typing and parameter assignment modules, have greatly expanded the coverage of organic compounds and medicinally relevant ligands. As we discuss in this review, explicit solvent simulations have been used to guide our design of implicit solvent models based on the generalized Born framework and a novel nonpolar estimator that have recently been incorporated into the program. With IMPACT it is possible to use several different advanced conformational sampling algorithms based on combining features of molecular dynamics and Monte Carlo simulations. The program includes two specialized molecular mechanics modules: Glide, a high-throughput docking program, and QSite, a mixed quantum mechanics/molecular mechanics module. These modules employ the IMPACT infrastructure as a starting point for the construction of the protein model and assignment of molecular mechanics parameters, but have then been developed to meet specialized objectives with respect to sampling and the energy function. PMID:16211539

  18. Integrated Modeling Program, Applied Chemical Theory (IMPACT).

    PubMed

    Banks, Jay L; Beard, Hege S; Cao, Yixiang; Cho, Art E; Damm, Wolfgang; Farid, Ramy; Felts, Anthony K; Halgren, Thomas A; Mainz, Daniel T; Maple, Jon R; Murphy, Robert; Philipp, Dean M; Repasky, Matthew P; Zhang, Linda Y; Berne, Bruce J; Friesner, Richard A; Gallicchio, Emilio; Levy, Ronald M

    2005-12-01

    We provide an overview of the IMPACT molecular mechanics program with an emphasis on recent developments and a description of its current functionality. With respect to core molecular mechanics technologies we include a status report for the fixed charge and polarizable force fields that can be used with the program and illustrate how the force fields, when used together with new atom typing and parameter assignment modules, have greatly expanded the coverage of organic compounds and medicinally relevant ligands. As we discuss in this review, explicit solvent simulations have been used to guide our design of implicit solvent models based on the generalized Born framework and a novel nonpolar estimator that have recently been incorporated into the program. With IMPACT it is possible to use several different advanced conformational sampling algorithms based on combining features of molecular dynamics and Monte Carlo simulations. The program includes two specialized molecular mechanics modules: Glide, a high-throughput docking program, and QSite, a mixed quantum mechanics/molecular mechanics module. These modules employ the IMPACT infrastructure as a starting point for the construction of the protein model and assignment of molecular mechanics parameters, but have then been developed to meet specialized objectives with respect to sampling and the energy function.

  19. Vascular Anomalies: From Genetics toward Models for Therapeutic Trials

    PubMed Central

    Uebelhoer, Melanie; Boon, Laurence M.; Vikkula, Miikka

    2012-01-01

    Vascular anomalies are localized abnormalities that occur during vascular development. Several causative genes have been identified not only for inherited but also for some sporadic forms, and the molecular pathways involved are becoming understood. This gives us the opportunity to generate animals carrying the causative genetic defects, which we hope model the phenotype seen in human patients. These models would enable us not only to test known antiangiogenic drugs, but also to develop novel approaches for treatment, directly targeting the mutated protein or molecules implicated in the pathophysiological signaling pathways. PMID:22908197

  20. In Vitro Cultivation of the Hymenoptera Genetic Model, Nasonia

    PubMed Central

    Brucker, Robert M.; Bordenstein, Seth R.

    2012-01-01

    The wasp genus Nasonia is a genetic model with unique advantages for the study of interspecific differences, including haplodiploidy and interfertile species. However, as a parasitoid, Nasonia is confined within a fly host, thus restricting direct observations and manipulation of development over time. Here, we present the first in vitro cultivation method for this system that decouples Nasonia from its host, allowing continuous observations from embryo to adulthood. Using transwell plates and a simple Nasonia rearing medium, we demonstrate a technique that will significantly expand the utility of the Nasonia model. PMID:23227258

  1. An integrated biochemistry and genetics outreach program designed for elementary school students.

    PubMed

    Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A

    2012-02-01

    Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.

  2. An integrated biochemistry and genetics outreach program designed for elementary school students.

    PubMed

    Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A

    2012-02-01

    Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career. PMID:22135354

  3. A FORTRAN program to simulate the evolution of genetic variability in a small population.

    PubMed

    Fournet, F; Hospital, F; Elsen, J M

    1995-10-01

    This paper presents a FORTRAN-77 program that performs Monte Carlo simulation of the evolution of genetic structure in a small population under selection. The aim is to study the possibility of foreseeing a response plateau in a theoretical population, depending on population size and management, and to apply this to small populations actually selected, to predict a possible exhaustion of genetic variability. A set of subroutines describing the different steps in a selection cycle (birth, expression of phenotypic value, genetic evaluation, selection, reproduction, death) is available and the user can choose the sequence of subroutines, the characteristics of individuals submitted to each step, and also build more personal subroutines if necessary. The program is based on the generation of exact genotypes and their transmission from parents to offspring, through simulation of meiosis and pairing of gametes. Parameters concerning the genome, the initial structure of the population and its management are required. The genetic mean and variance of the population for each new cycle of selection are given as outputs. Examples of applications are given and discussed.

  4. Genetic aspects of autism spectrum disorders: insights from animal models.

    PubMed

    Banerjee, Swati; Riordan, Maeveen; Bhat, Manzoor A

    2014-01-01

    Autism spectrum disorders (ASDs) are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development, and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy, and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute toward the formation, stabilization, and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD. PMID:24605088

  5. The evolution of menstruation: A new model for genetic assimilation

    PubMed Central

    Emera, D.; Romero, R.; Wagner, G.

    2012-01-01

    Why do humans menstruate while most mammals do not? Here, we present our answer to this long-debated question, arguing that (i) menstruation occurs as a mechanistic consequence of hormone-induced differentiation of the endometrium (referred to as spontaneous decidualization, or SD); (ii) SD evolved because of maternal-fetal conflict; and (iii) SD evolved by genetic assimilation of the decidualization reaction, which is induced by the fetus in non-menstruating species. The idea that menstruation occurs as a consequence of SD has been proposed in the past, but here we present a novel hypothesis on how SD evolved. We argue that decidualization became genetically stabilized in menstruating lineages, allowing females to prepare for pregnancy without any signal from the fetus. We present three models for the evolution of SD by genetic assimilation, based on recent advances in our understanding of the mechanisms of endometrial differentiation and implantation. Testing these models will ultimately shed light on the evolutionary significance of menstruation, as well as on the etiology of human reproductive disorders like endometriosis and recurrent pregnancy loss. PMID:22057551

  6. Modelling and genetic algorithm based optimisation of inverse supply chain

    NASA Astrophysics Data System (ADS)

    Bányai, T.

    2009-04-01

    (Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a

  7. The Use of Genetic Programming for Learning 3D Craniofacial Shape Quantifications.

    PubMed

    Atmosukarto, Indriyati; Shapiro, Linda G; Heike, Carrie

    2010-01-01

    Craniofacial disorders commonly result in various head shape dysmorphologies. The goal of this work is to quantify the various 3D shape variations that manifest in the different facial abnormalities in individuals with a craniofacial disorder called 22q11.2 Deletion Syndrome. Genetic programming (GP) is used to learn the different 3D shape quantifications. Experimental results show that the GP method achieves a higher classification rate than those of human experts and existing computer algorithms [1], [2].

  8. Computational Methods for Decentralized Two-Level 0-1 Programming Problems through Distributed Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Niwa, Keiichi; Hayashida, Tomohiro; Sakawa, Masatoshi; Yang, Yishen

    2010-10-01

    We consider two-level programming problems in which there are one decision maker (the leader) at the upper level and two or more decision makers (the followers) at the lower level and decision variables of the leader and the followers are 0-1 variables. We assume that there is coordination among the followers while between the leader and the group of all the followers, there is no motivation to cooperate each other, and fuzzy goals for objective functions of the leader and the followers are introduced so as to take fuzziness of their judgments into consideration. The leader maximizes the degree of satisfaction (the value of the membership function) and the followers choose in concert in order to maximize a minimum among their degrees of satisfaction. We propose a modified computational method that solves problems related to the computational method based on the genetic algorithm (the existing method) for obtaining the Stackelberg solution. Specifically, the distributed genetic algorithm is introduced with respect to the upper level genetic algorithm, which handles decision variables for the leader in order to shorten the computational time of the existing method. Parallelization of the lower level genetic algorithm is also performed along with parallelization of the upper level genetic algorithm. In order to demonstrate the effectiveness of the proposed computational method, numerical experiments are carried out.

  9. Modeling Leukemogenesis in the Zebrafish Using Genetic and Xenograft Models.

    PubMed

    Rajan, Vinothkumar; Dellaire, Graham; Berman, Jason N

    2016-01-01

    The zebrafish is a widely accepted model to study leukemia. The major advantage of studying leukemogenesis in zebrafish is attributed to its short life cycle and superior imaging capacity. This chapter highlights using transgenic- and xenograft-based models in zebrafish to study a specific leukemogenic mutation and analyze therapeutic responses in vivo. PMID:27464808

  10. Genetically engineered livestock: ethical use for food and medical models.

    PubMed

    Garas, Lydia C; Murray, James D; Maga, Elizabeth A

    2015-01-01

    Recent advances in the production of genetically engineered (GE) livestock have resulted in a variety of new transgenic animals with desirable production and composition changes. GE animals have been generated to improve growth efficiency, food composition, and disease resistance in domesticated livestock species. GE animals are also used to produce pharmaceuticals and as medical models for human diseases. The potential use of these food animals for human consumption has prompted an intense debate about food safety and animal welfare concerns with the GE approach. Additionally, public perception and ethical concerns about their use have caused delays in establishing a clear and efficient regulatory approval process. Ethically, there are far-reaching implications of not using genetically engineered livestock, at a detriment to both producers and consumers, as use of this technology can improve both human and animal health and welfare.

  11. The NIAID Radiation Countermeasures Program Business Model

    PubMed Central

    Hafer, Nathaniel; Maidment, Bert W.

    2010-01-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a “virtual pharmaceutical firm,” coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies. PMID:21142762

  12. Transnational nursing programs: models, advantages and challenges.

    PubMed

    Wilson, Michael

    2002-07-01

    Conducting transnational programs can be a very rewarding activity for a School, Faculty or University. Apart from increasing the profile of the university, the conduct of transnational programs can also provide the university with openings for business opportunities, consultative activities, and collaborative research. It can also be a costly exercise placing an enormous strain on limited resources with little reward for the provider. Transnational ventures can become nonviable entities in a very short period of time due to unanticipated global economic trends. Transnational courses offered by Faculties of Business and Computing are commonplace, however, there is a growing number of health science programs, particularly nursing that are being offered transnational. This paper plans an overview of several models employed for the delivery of transnational nursing courses and discusses several key issues pertaining to conducting courses outside the host university's country. PMID:12383742

  13. The NIAID Radiation Countermeasures Program business model.

    PubMed

    Hafer, Nathaniel; Maidment, Bert W; Hatchett, Richard J

    2010-12-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a "virtual pharmaceutical firm," coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies.

  14. Modeling monthly pan evaporations using fuzzy genetic approach

    NASA Astrophysics Data System (ADS)

    Kişi, Özgür; Tombul, Mustafa

    2013-01-01

    SummaryThis study investigates the ability of fuzzy genetic (FG) approach in estimation of monthly pan evaporations. Various monthly climatic data, that are, solar radiation, air temperature, relative humidity and wind speed from two stations, Antalya and Mersin, in Mediterranean Region of Turkey, were used as inputs to the FG technique so as to estimate monthly pan evaporations. In the first part of the study, FG models were compared with neuro-fuzzy (ANFIS), artificial neural networks (ANNs) and Stephens-Stewart (SS) methods in estimating pan evaporations of Antalya and Mersin stations, separately. Comparison of the models revealed that the FG models generally performed better than the ANFIS, ANN and SS models. In the second part of the study, models were compared to each other in two different applications. In the first application the input data of Antalya Station were used as inputs to the models to estimate pan evaporation data of Mersin Station. The pan evaporation data of Mersin Station were estimated using the input data of Antalya and Mersin stations in the second application. Comparison results indicated that the FG models performed better than the ANFIS and ANN models. Comparison of the accuracy of the applied models in estimating total pan evaporations showed that the FG model provided the closest estimate. It was concluded that monthly pan evaporations could be successfully estimated by the FG approach.

  15. Tree-based genetic programming approach to infer microphysical parameters of the DSDs from the polarization diversity measurements

    NASA Astrophysics Data System (ADS)

    Islam, Tanvir; Rico-Ramirez, Miguel A.; Han, Dawei

    2012-11-01

    The use of polarization diversity measurements to infer the microphysical parametrization has remained an active goal in the radar remote sensing community. In view of this, the tree-based genetic programming (GP) as a novel approach has been presented for retrieving the governing microphysical parameters of a normalized gamma drop size distribution model D0 (median drop diameter), Nw (concentration parameter), and μ (shape parameter) from the polarization diversity measurements. A large number of raindrop spectra acquired from a Joss-Waldvogel disdrometer has been utilized to develop the GP models, relating the microphysical parameters to the T-matrix scattering simulated polarization measurements. Several functional formulations retrieving the microphysical parameters-D0 [f(ZDR), f(ZH, ZDR)], log10Nw [f(ZH, D0), f(ZH, ZDR, D0), and μ[f(ZDR, D0), f(ZH, ZDR, D0)], where ZH represents reflectivity and ZDR represents differential reflectivity, have been investigated, and applied to a S-band polarimetric radar (CAMRA) for evaluation. It has been shown that the GP model retrieved microphysical parameters from the polarization measurements are in a reasonable agreement with disdrometer observations. The calculated root mean squared errors (RMSE) are noted as 0.23-0.25 mm for D0, 0.74-0.85 for log10Nw (Nw in mm-1 mm-3), and 3.30-3.36 for μ. The GP model based microphysical retrieval procedure is further compared with a physically based constrained gamma model for D0 and log10Nw estimates. The close agreement of the retrieval results between the GP and the constrained gamma models supports the suitability of the proposed genetic programming approach to infer microphysical parameterization.

  16. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program

    PubMed Central

    Monteiro, Fernando A.; Shama, Renata; Martins, Ademir J.; Gloria-Soria, Andrea; Brown, Julia E.; Powell, Jeffrey R.

    2014-01-01

    Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti. PMID:25233218

  17. 45 CFR 2532.30 - Other innovative and model programs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Other innovative and model programs. 2532.30... AND COMMUNITY SERVICE INNOVATIVE AND SPECIAL DEMONSTRATION PROGRAMS § 2532.30 Other innovative and model programs. (a) The Corporation may support other innovative and model programs such as...

  18. 45 CFR 2532.30 - Other innovative and model programs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Other innovative and model programs. 2532.30... AND COMMUNITY SERVICE INNOVATIVE AND SPECIAL DEMONSTRATION PROGRAMS § 2532.30 Other innovative and model programs. (a) The Corporation may support other innovative and model programs such as...

  19. 45 CFR 2532.30 - Other innovative and model programs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Other innovative and model programs. 2532.30... AND COMMUNITY SERVICE INNOVATIVE AND SPECIAL DEMONSTRATION PROGRAMS § 2532.30 Other innovative and model programs. (a) The Corporation may support other innovative and model programs such as...

  20. 45 CFR 2532.30 - Other innovative and model programs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Other innovative and model programs. 2532.30... AND COMMUNITY SERVICE INNOVATIVE AND SPECIAL DEMONSTRATION PROGRAMS § 2532.30 Other innovative and model programs. (a) The Corporation may support other innovative and model programs such as...

  1. Genetically Engineered Mouse Models for Drug Development and Preclinical Trials

    PubMed Central

    Lee, Ho

    2014-01-01

    Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980’s, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials. PMID:25143803

  2. Estimating genetic parameters in natural populations using the "animal model".

    PubMed Central

    Kruuk, Loeske E B

    2004-01-01

    Estimating the genetic basis of quantitative traits can be tricky for wild populations in natural environments, as environmental variation frequently obscures the underlying evolutionary patterns. I review the recent application of restricted maximum-likelihood "animal models" to multigenerational data from natural populations, and show how the estimation of variance components and prediction of breeding values using these methods offer a powerful means of tackling the potentially confounding effects of environmental variation, as well as generating a wealth of new areas of investigation. PMID:15306404

  3. Genetic transformation of the model green alga Chlamydomonas reinhardtii.

    PubMed

    Neupert, Juliane; Shao, Ning; Lu, Yinghong; Bock, Ralph

    2012-01-01

    Over the past three decades, the single-celled green alga Chlamydomonas reinhardtii has become an invaluable model organism in plant biology and an attractive production host in biotechnology. The genetic transformation of Chlamydomonas is relatively simple and efficient, but achieving high expression levels of foreign genes has remained challenging. Here, we provide working protocols for algal cultivation and transformation as well as for selection and analysis of transgenic algal clones. We focus on two commonly used transformation methods for Chlamydomonas: glass bead-assisted transformation and particle gun-mediated (biolistic) transformation. In addition, we describe available tools for promoting efficient transgene expression and highlight important considerations for designing transformation vectors.

  4. Genetically modified mouse models in studies of luteinising hormone action.

    PubMed

    Huhtaniemi, Ilpo; Ahtiainen, Petteri; Pakarainen, Tomi; Rulli, Susana B; Zhang, Fu-Ping; Poutanen, Matti

    2006-06-27

    Numerous genetically modified mouse models have recently been developed for the study of the pituitary-gonadal interactions. They include spontaneous or engineered knockouts (KO) of the gonadotrophin-releasing hormone (GnRH) and its receptor, the gonadotrophin common-alpha(Calpha), luteinising hormone (LH) beta and follicle-stimulating hormone (FSH) beta subunits, and the two gonadotrophin receptors (R), LHR and FSHR. In addition, there are also transgenic (TG) mice overexpressing gonadotrophin subunits and producing supraphysiological levels of these hormones. These models have offered relevant phenocopies for similar mutations in humans and to a great extent expanded our knowledge on normal and pathological functions of the hypothalamic-pituitary-gonadal (HPG) axis. The purpose of this article is to review some of our recent findings on two such mouse models, the LHR KO mouse (LuRKO), and the hCG overexpressing TG mouse (hCG+).

  5. A Review of Modeling Techniques for Genetic Regulatory Networks

    PubMed Central

    Yaghoobi, Hanif; Haghipour, Siyamak; Hamzeiy, Hossein; Asadi-Khiavi, Masoud

    2012-01-01

    Understanding the genetic regulatory networks, the discovery of interactions between genes and understanding regulatory processes in a cell at the gene level are the major goals of system biology and computational biology. Modeling gene regulatory networks and describing the actions of the cells at the molecular level are used in medicine and molecular biology applications such as metabolic pathways and drug discovery. Modeling these networks is also one of the important issues in genomic signal processing. After the advent of microarray technology, it is possible to model these networks using time–series data. In this paper, we provide an extensive review of methods that have been used on time–series data and represent the features, advantages and disadvantages of each. Also, we classify these methods according to their nature. A parallel study of these methods can lead to the discovery of new synthetic methods or improve previous methods. PMID:23493097

  6. Landscape models for nuclear genetic diversity and genetic structure in white-footed mice (Peromyscus leucopus).

    PubMed

    Taylor, Z S; Hoffman, S M G

    2014-06-01

    Dramatic changes in the North American landscape over the last 12 000 years have shaped the genomes of the small mammals, such as the white-footed mouse (Peromyscus leucopus), which currently inhabit the region. However, very recent interactions of populations with each other and the environment are expected to leave the most pronounced signature on rapidly evolving nuclear microsatellite loci. We analyzed landscape characteristics and microsatellite markers of P. leucopus populations along a transect from southern Ohio to northern Michigan, in order to evaluate hypotheses about the spatial distribution of genetic heterogeneity. Genetic diversity increased to the north and was best approximated by a single-variable model based on habitat availability within a 0.5-km radius of trapping sites. Interpopulation differentiation measured by clustering analysis was highly variable and not significantly related to latitude or habitat availability. Interpopulation differentiation measured as FST values and chord distance was correlated with the proportion of habitat intervening, but was best explained by agricultural distance and by latitude. The observed gradients in diversity and interpopulation differentiation were consistent with recent habitat availability being the major constraint on effective population size in this system, and contradicted the predictions of both the postglacial expansion and core-periphery hypotheses. PMID:24448564

  7. Landscape models for nuclear genetic diversity and genetic structure in white-footed mice (Peromyscus leucopus).

    PubMed

    Taylor, Z S; Hoffman, S M G

    2014-06-01

    Dramatic changes in the North American landscape over the last 12 000 years have shaped the genomes of the small mammals, such as the white-footed mouse (Peromyscus leucopus), which currently inhabit the region. However, very recent interactions of populations with each other and the environment are expected to leave the most pronounced signature on rapidly evolving nuclear microsatellite loci. We analyzed landscape characteristics and microsatellite markers of P. leucopus populations along a transect from southern Ohio to northern Michigan, in order to evaluate hypotheses about the spatial distribution of genetic heterogeneity. Genetic diversity increased to the north and was best approximated by a single-variable model based on habitat availability within a 0.5-km radius of trapping sites. Interpopulation differentiation measured by clustering analysis was highly variable and not significantly related to latitude or habitat availability. Interpopulation differentiation measured as FST values and chord distance was correlated with the proportion of habitat intervening, but was best explained by agricultural distance and by latitude. The observed gradients in diversity and interpopulation differentiation were consistent with recent habitat availability being the major constraint on effective population size in this system, and contradicted the predictions of both the postglacial expansion and core-periphery hypotheses.

  8. The economic and environmental value of genetic improvements in fattening pigs: An integrated dynamic model approach.

    PubMed

    Niemi, J K; Sevón-Aimonen, M-L; Stygar, A H; Partanen, K

    2015-08-01

    The selection of animals for improved performance affects the profitability of pig fattening and has environmental consequences. The goal of this paper was to examine how changes in genetic and market parameters impact the biophysical (feeding patterns, timing of slaughter, nitrogen excretion) and economic (return per pig space unit) results describing pig fattening in a Finnish farm. The analysis can be viewed as focusing on terminal line breeding goals. An integrated model using recursive stochastic dynamic programming and a biological pig growth model was used to estimate biophysical results and economic values. Combining these models allowed us to provide more accurate estimates for the value of genetic improvement and, thus, provide better feedback to animal breeding programs than the traditional approach, which is based on fixed management patterns. Besides the benchmark scenario, the results were simulated for 5 other scenarios. In each scenario, genotype was improved regarding daily growth potential, carcass lean meat content, or the parameters of the Gompertz growth curve (maturing rate [], adult weight of protein [α], and adult weight of lipid mass []). The change in each parameter was equal to approximately 1 SD genetic improvement (ceteris paribus). Increasing , , daily growth potential, or carcass lean meat content increased the return on pig space unit by €12.60, €7.60, €4.10, or €2.90 per year, respectively, whereas an increase in decreased the return by €3.10. The genetic improvement in and resulted in the highest decrease in nitrogen excretion calculated in total or per kilogram of carcass gain but only under the optimal feeding pattern. Simulated changes in the Gompertz growth function parameters imply greater changes in ADG and lean meat content than changes in scenarios focusing on improving ADG and lean meat content directly. The economic value of genetic improvements as well as the quantity of nitrogen excreted during the fattening

  9. The economic and environmental value of genetic improvements in fattening pigs: An integrated dynamic model approach.

    PubMed

    Niemi, J K; Sevón-Aimonen, M-L; Stygar, A H; Partanen, K

    2015-08-01

    The selection of animals for improved performance affects the profitability of pig fattening and has environmental consequences. The goal of this paper was to examine how changes in genetic and market parameters impact the biophysical (feeding patterns, timing of slaughter, nitrogen excretion) and economic (return per pig space unit) results describing pig fattening in a Finnish farm. The analysis can be viewed as focusing on terminal line breeding goals. An integrated model using recursive stochastic dynamic programming and a biological pig growth model was used to estimate biophysical results and economic values. Combining these models allowed us to provide more accurate estimates for the value of genetic improvement and, thus, provide better feedback to animal breeding programs than the traditional approach, which is based on fixed management patterns. Besides the benchmark scenario, the results were simulated for 5 other scenarios. In each scenario, genotype was improved regarding daily growth potential, carcass lean meat content, or the parameters of the Gompertz growth curve (maturing rate [], adult weight of protein [α], and adult weight of lipid mass []). The change in each parameter was equal to approximately 1 SD genetic improvement (ceteris paribus). Increasing , , daily growth potential, or carcass lean meat content increased the return on pig space unit by €12.60, €7.60, €4.10, or €2.90 per year, respectively, whereas an increase in decreased the return by €3.10. The genetic improvement in and resulted in the highest decrease in nitrogen excretion calculated in total or per kilogram of carcass gain but only under the optimal feeding pattern. Simulated changes in the Gompertz growth function parameters imply greater changes in ADG and lean meat content than changes in scenarios focusing on improving ADG and lean meat content directly. The economic value of genetic improvements as well as the quantity of nitrogen excreted during the fattening

  10. Random amplified polymorphic markers as indicator for genetic conservation program in Iranian pheasant (Phasianus colchicus).

    PubMed

    Elyasi Zarringhabaie, Ghorban; Javanmard, Arash; Pirahary, Ommolbanin

    2012-01-01

    The objective of present study was identification of genetic similarity between wild Iran and captive Azerbaijan Pheasant using PCR-RAPD markers. For this purpose, in overall, 28 birds were taken for DNA extraction and subsequently 15 arbitrary primers were applied for PCR-RAPD technique. After electrophoresis, five primers exhibited sufficient variability which yielded overall 65 distinct bands, 59 polymorphic bands, for detalis, range of number of bands per primer was 10 to 14, and produced size varied between 200 to 1500 bp. Highest and lowest polymorphic primers were OPC5, OPC16 (100%) and OPC15 (81%), respectively. Result of genetic variation between two groups was accounted as nonsignificant (8.12%) of the overall variation. According to our expectation the wild Iranian birds showed higher genetic diversity value than the Azerbaijan captive birds. As general conclusion, two pheasant populations have almost same genetic origin and probably are subpopulations of one population. The data reported herein could open the opportunity to search for suitable conservation strategy to improve richness of Iran biodiversity and present study here was the first report that might have significant impact on the breeding and conservation program of Iranian pheasant gene pool. Analyses using more regions, more birds, and more DNA markers will be useful to confirm or to reject these findings.

  11. Using genetic algorithm to solve a new multi-period stochastic optimization model

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Li; Zhang, Ke-Cun

    2009-09-01

    This paper presents a new asset allocation model based on the CVaR risk measure and transaction costs. Institutional investors manage their strategic asset mix over time to achieve favorable returns subject to various uncertainties, policy and legal constraints, and other requirements. One may use a multi-period portfolio optimization model in order to determine an optimal asset mix. Recently, an alternative stochastic programming model with simulated paths was proposed by Hibiki [N. Hibiki, A hybrid simulation/tree multi-period stochastic programming model for optimal asset allocation, in: H. Takahashi, (Ed.) The Japanese Association of Financial Econometrics and Engineering, JAFFE Journal (2001) 89-119 (in Japanese); N. Hibiki A hybrid simulation/tree stochastic optimization model for dynamic asset allocation, in: B. Scherer (Ed.), Asset and Liability Management Tools: A Handbook for Best Practice, Risk Books, 2003, pp. 269-294], which was called a hybrid model. However, the transaction costs weren't considered in that paper. In this paper, we improve Hibiki's model in the following aspects: (1) The risk measure CVaR is introduced to control the wealth loss risk while maximizing the expected utility; (2) Typical market imperfections such as short sale constraints, proportional transaction costs are considered simultaneously. (3) Applying a genetic algorithm to solve the resulting model is discussed in detail. Numerical results show the suitability and feasibility of our methodology.

  12. Model Programs: Childhood Education. Perceptual Development Center Program.

    ERIC Educational Resources Information Center

    American Institutes for Research in the Behavioral Sciences, Silver Spring, MD.

    The Perceptual Development Center was established in 1967 through ESEA Title III funds to provide diagnostic and remedial services for reading disabled elementary-school students. Concentrating on dyslexic students, the program includes a demonstration center, a diagnostic program, inservice training programs, and community education.…

  13. Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks

    ERIC Educational Resources Information Center

    Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre

    2008-01-01

    The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…

  14. The Genetic Counseling Video Project (GCVP): models of practice.

    PubMed

    Roter, D; Ellington, L; Erby, L Hamby; Larson, S; Dudley, W

    2006-11-15

    Genetic counseling is conceptualized as having both "teaching" and "counseling" functions; however, little is known about how these functions are articulated in routine practice. This study addresses the question by documenting, on videotape, the practices of a national sample of prenatal and cancer genetic counselors (GCs) providing routine pre-test counseling to simulated clients (SCs). One hundred and seventy-seven GCs recruited at two annual conferences of the National Society of Genetic Counselors (NSGC) were randomly assigned to counsel one of six female SCs of varying ethnicity, with or without a spouse, in their specialty. One hundred and fifty-two videotapes were coded with the Roter Interaction Analysis System (RIAS) and both GCs and SCs completed evaluative questionnaires. Two teaching and two counseling patterns of practice emerged from cluster analysis. The teaching patterns included: (1) clinical teaching (31%) characterized by low psychosocial, emotional and facilitative talk, high levels of clinical exchange, and high verbal dominance; and (2) psycho-educational teaching (27%) characterized by high levels of both clinical and psychosocial exchange, low levels of emotional and facilitative talk, and higher verbal dominance. The counseling patterns included: (1) supportive counseling (33%) characterized by low psychosocial and clinical exchange, high levels of emotional and facilitative talk, and low verbal dominance; and (2) psychosocial counseling (9%) with high emotional and facilitative talk, low clinical and high psychosocial exchange, and the lowest verbal dominance. SCs ratings of satisfaction with communication, the counselor's affective demeanor, and the counselor's use of non-verbal skills were highest for the counseling model sessions. Both the teaching and counseling models seem to be represented in routine practice and predict variation in client satisfaction, affective demeanor, and nonverbal effectiveness.

  15. The Genetic Counseling Video Project (GCVP): Models of Practice

    PubMed Central

    Roter, D.; Ellington, L.; Erby, L. Hamby; Larson, S.; W, Dudley

    2009-01-01

    Genetic counseling is conceptualized as having both “teaching” and “counseling” functions; however, little is known about how these functions are articulated in routine practice. This study addresses the question by documenting, on videotape, the practices of a national sample of prenatal and cancer genetic counselors (GCs) providing routine pretest counseling to simulated clients (SCs). 177 GCs recruited at two annual conferences of the National Society of Genetic Counselors (NSGC) were randomly assigned to counsel one of six female SCs of varying ethnicity, with or without a spouse, in their specialty. 152 videotapes were coded with the Roter Interaction Analysis System (RIAS) and both GCs and SCs completed evaluative questionnaires. Two teaching and two counseling patterns of practice emerged from cluster analysis. The teaching patterns included: (1) Clinical teaching (31%) characterized by low psychosocial, emotional and facilitative talk, high levels of clinical exchange, and high verbal dominance; and (2) Psycho-educational teaching (27%) characterized by high levels of both clinical and psychosocial exchange, low levels of emotional and facilitative talk, and higher verbal dominance. The counseling patterns included: (1) Supportive counseling (33%) characterized by low psychosocial and clinical exchange, high levels of emotional and facilitative talk, and low verbal dominance; and (2) Psychosocial counseling (9%) with high emotional and facilitative talk, low clinical and high psychosocial exchange, and the lowest verbal dominance. SCs ratings of satisfaction with communication, the counselor’s affective demeanor, and the counselor’s use of nonverbal skills were highest for the counseling model sessions. Both the teaching and counseling models seem to be represented in routine practice and predict variation in client satisfaction. PMID:16941666

  16. DNAStat, version 2.1--a computer program for processing genetic profile databases and biostatistical calculations.

    PubMed

    Berent, Jarosław

    2010-01-01

    This paper presents the new DNAStat version 2.1 for processing genetic profile databases and biostatistical calculations. The popularization of DNA studies employed in the judicial system has led to the necessity of developing appropriate computer programs. Such programs must, above all, address two critical problems, i.e. the broadly understood data processing and data storage, and biostatistical calculations. Moreover, in case of terrorist attacks and mass natural disasters, the ability to identify victims by searching related individuals is very important. DNAStat version 2.1 is an adequate program for such purposes. The DNAStat version 1.0 was launched in 2005. In 2006, the program was updated to 1.1 and 1.2 versions. There were, however, slight differences between those versions and the original one. The DNAStat version 2.0 was launched in 2007 and the major program improvement was an introduction of the group calculation options with the potential application to personal identification of mass disasters and terrorism victims. The last 2.1 version has the option of language selection--Polish or English, which will enhance the usage and application of the program also in other countries.

  17. Calibration of Uncertainty Analysis of the SWAT Model Using Genetic Algorithms and Bayesian Model Averaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, the Genetic Algorithms (GA) and Bayesian model averaging (BMA) were combined to simultaneously conduct calibration and uncertainty analysis for the Soil and Water Assessment Tool (SWAT). In this hybrid method, several SWAT models with different structures are first selected; next GA i...

  18. Integrating programming features with an algebraic modeling language for optimization

    SciTech Connect

    Fourer, R.; Gay, D.

    1994-12-31

    In describing optimization models to a computer, programming is best avoided. In using models as part of a larger scheme, however, programs must be written to specify how information is passed between models. We describe a programming environment for this purpose that has been integrated with the AMPL modeling language.

  19. PhyloGeoViz: a web-based program that visualizes genetic data on maps.

    PubMed

    Tsai, Yi-Hsin E

    2011-05-01

    The first step of many population genetic studies is the simple visualization of allele frequencies on a landscape. This basic data exploration can be challenging without proprietary software, and the manual plotting of data is cumbersome and unfeasible at large sample sizes. I present an open source, web-based program that plots any kind of frequency or count data as pie charts in Google Maps (Google Inc., Mountain View, CA). Pie polygons are then exportable to Google Earth (Google Inc.), a free Geographic Information Systems platform. Import of genetic data into Google Earth allows phylogeographers access to a wealth of spatial information layers integral to forming hypotheses and understanding patterns in the data.

  20. Schema theory for genetic programming with one-point crossover and point mutation.

    PubMed

    Poli, R; Langdon, W B

    1998-01-01

    We review the main results obtained in the theory of schemata in genetic programming (GP), emphasizing their strengths and weaknesses. Then we propose a new, simpler definition of the concept of schema for GP, which is closer to the original concept of schema in genetic algorithms (GAs). Along with a new form of crossover, one-point crossover, and point mutation, this concept of schema has been used to derive an improved schema theorem for GP that describes the propagation of schemata from one generation to the next. We discuss this result and show that our schema theorem is the natural counterpart for GP of the schema theorem for GAs, to which it asymptotically converges.

  1. An Intelligent Model for Pairs Trading Using Genetic Algorithms

    PubMed Central

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236

  2. An Intelligent Model for Pairs Trading Using Genetic Algorithms.

    PubMed

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236

  3. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    NASA Astrophysics Data System (ADS)

    Bresler Freidenreich, Hava; Golan Duncan, Ravit; Shea, Nicole

    2011-11-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc. Genetic literacy entails understanding three interrelated models: a genetic model that describes patterns of genetic inheritance, a meiotic model that describes the process by which genes are segregated into sex cells, and a molecular model that describes the mechanisms that link genotypes to phenotypes within an individual. Currently, much of genetics instruction, especially in terms of the molecular model, occurs at the high school level, and we know little about the ways in which middle school students can reason about these models. Furthermore, we do not know the extent to which carefully designed instruction can help younger students develop coherent and interrelated understandings in genetics. In this paper, we discuss a research study aimed at elucidating middle school students' abilities to reason about the three genetic models. As part of our research, we designed an eight-week inquiry unit that was implemented in a combined sixth- to eighth-grade science classroom. We describe our instructional design and report results based on an analysis of written assessments, clinical interviews, and artifacts of the unit. Our findings suggest that middle school students are able to successfully reason about all three genetic models.

  4. Genetic Variability and Population Structure of Salvia lachnostachys: Implications for Breeding and Conservation Programs

    PubMed Central

    Erbano, Marianna; Schühli, Guilherme Schnell e; dos Santos, Élide Pereira

    2015-01-01

    The genetic diversity and population structure of Salvia lachnostachys Benth were assessed. Inter Simple Sequence Repeat (ISSR) molecular markers were used to investigate the restricted distribution of S. lachnostachys in Parana State, Brazil. Leaves of 73 individuals representing three populations were collected. DNA was extracted and submitted to PCR-ISSR amplification with nine tested primers. Genetic diversity parameters were evaluated. Our analysis indicated 95.6% polymorphic loci (stress value 0.02) with a 0.79 average Simpson’s index. The Nei-Li distance dendrogram and principal component analysis largely recovered the geographical origin of each sample. Four major clusters were recognized representing each collected population. Nei’s gene diversity and Shannon’s information index were 0.25 and 0.40 respectively. As is typical for outcrossing herbs, the majority of genetic variation occurred at the population level (81.76%). A high gene flow (Nm = 2.48) was observed with a correspondingly low fixation index. These values were generally similar to previous studies on congeneric species. The results of principal coordinate analysis (PCA) and of arithmetic average (UPGMA) were consistent and all three populations appear distinct as in STRUCTURE analysis. In addition, this analysis indicated a majority intrapopulation genetic variation. Despite the human pressure on natural populations our study found high levels of genetic diversity for S. lachnostachys. This was the first molecular assessment for this endemic species with medicinal proprieties and the results can guide for subsequent bioprospection, breeding programs or conservation actions. PMID:25856679

  5. Python Program to Select HII Region Models

    NASA Astrophysics Data System (ADS)

    Miller, Clare; Lamarche, Cody; Vishwas, Amit; Stacey, Gordon J.

    2016-01-01

    HII regions are areas of singly ionized Hydrogen formed by the ionizing radiaiton of upper main sequence stars. The infrared fine-structure line emissions, particularly Oxygen, Nitrogen, and Neon, can give important information about HII regions including gas temperature and density, elemental abundances, and the effective temperature of the stars that form them. The processes involved in calculating this information from observational data are complex. Models, such as those provided in Rubin 1984 and those produced by Cloudy (Ferland et al, 2013) enable one to extract physical parameters from observational data. However, the multitude of search parameters can make sifting through models tedious. I digitized Rubin's models and wrote a Python program that is able to take observed line ratios and their uncertainties and find the Rubin or Cloudy model that best matches the observational data. By creating a Python script that is user friendly and able to quickly sort through models with a high level of accuracy, this work increases efficiency and reduces human error in matching HII region models to observational data.

  6. Center for Programming Models for Scalable Parallel Computing: Future Programming Models

    SciTech Connect

    Gao, Guang, R.

    2008-07-24

    The mission of the pmodel center project is to develop software technology to support scalable parallel programming models for terascale systems. The goal of the specific UD subproject is in the context developing an efficient and robust methodology and tools for HPC programming. More specifically, the focus is on developing new programming models which facilitate programmers in porting their application onto parallel high performance computing systems. During the course of the research in the past 5 years, the landscape of microprocessor chip architecture has witnessed a fundamental change – the emergence of multi-core/many-core chip architecture appear to become the mainstream technology and will have a major impact to for future generation parallel machines. The programming model for shared-address space machines is becoming critical to such multi-core architectures. Our research highlight is the in-depth study of proposed fine-grain parallelism/multithreading support on such future generation multi-core architectures. Our research has demonstrated the significant impact such fine-grain multithreading model can have on the productivity of parallel programming models and their efficient implementation.

  7. A genetic-algorithm-aided stochastic optimization model for regional air quality management under uncertainty.

    PubMed

    Qin, Xiaosheng; Huang, Guohe; Liu, Lei

    2010-01-01

    A genetic-algorithm-aided stochastic optimization (GASO) model was developed in this study for supporting regional air quality management under uncertainty. The model incorporated genetic algorithm (GA) and Monte Carlo simulation techniques into a general stochastic chance-constrained programming (CCP) framework and allowed uncertainties in simulation and optimization model parameters to be considered explicitly in the design of least-cost strategies. GA was used to seek the optimal solution of the management model by progressively evaluating the performances of individual solutions. Monte Carlo simulation was used to check the feasibility of each solution. A management problem in terms of regional air pollution control was studied to demonstrate the applicability of the proposed method. Results of the case study indicated the proposed model could effectively communicate uncertainties into the optimization process and generate solutions that contained a spectrum of potential air pollutant treatment options with risk and cost information. Decision alternatives could be obtained by analyzing tradeoffs between the overall pollutant treatment cost and the system-failure risk due to inherent uncertainties.

  8. Lifestyle and Metformin Ameliorate Insulin Sensitivity Independently of the Genetic Burden of Established Insulin Resistance Variants in Diabetes Prevention Program Participants.

    PubMed

    Hivert, Marie-France; Christophi, Costas A; Franks, Paul W; Jablonski, Kathleen A; Ehrmann, David A; Kahn, Steven E; Horton, Edward S; Pollin, Toni I; Mather, Kieren J; Perreault, Leigh; Barrett-Connor, Elizabeth; Knowler, William C; Florez, Jose C

    2016-02-01

    Large genome-wide association studies of glycemic traits have identified genetics variants that are associated with insulin resistance (IR) in the general population. It is unknown whether people with genetic enrichment for these IR variants respond differently to interventions that aim to improve insulin sensitivity. We built a genetic risk score (GRS) based on 17 established IR variants and effect sizes (weighted IR-GRS) in 2,713 participants of the Diabetes Prevention Program (DPP) with genetic consent. We tested associations between the weighted IR-GRS and insulin sensitivity index (ISI) at baseline in all participants, and with change in ISI over 1 year of follow-up in the DPP intervention (metformin and lifestyle) and control (placebo) arms. All models were adjusted for age, sex, ethnicity, and waist circumference at baseline (plus baseline ISI for 1-year ISI change models). A higher IR-GRS was associated with lower baseline ISI (β = -0.754 [SE = 0.229] log-ISI per unit, P = 0.001 in fully adjusted models). There was no differential effect of treatment for the association between the IR-GRS on the change in ISI; higher IR-GRS was associated with an attenuation in ISI improvement over 1 year (β = -0.520 [SE = 0.233], P = 0.03 in fully adjusted models; all treatment arms). Lifestyle intervention and metformin treatment improved the ISI, regardless of the genetic burden of IR variants. PMID:26525880

  9. Testing of a Program Evaluation Model: Final Report.

    ERIC Educational Resources Information Center

    Nagler, Phyllis J.; Marson, Arthur A.

    A program evaluation model developed by Moraine Park Technical Institute (MPTI) is described in this report. Following background material, the four main evaluation criteria employed in the model are identified as program quality, program relevance to community needs, program impact on MPTI, and the transition and growth of MPTI graduates in the…

  10. A Program Budgeting Cost Model for School District Planning.

    ERIC Educational Resources Information Center

    Dougharty, Laurence A.; And Others

    This report provides a detailed description of an education program cost model designed to accept descriptions of the size and composition of resources used in a particular program and translate them into an estimate of program cost, for convenient comparison of alternatives. The model also translates ("crosswalks") the program budget into…

  11. [The emphases and basic procedures of genetic counseling in psychotherapeutic model].

    PubMed

    Zhang, Yuan-Zhi; Zhong, Nanbert

    2006-11-01

    The emphases and basic procedures of genetic counseling are all different with those in old models. In the psychotherapeutic model, genetic counseling will not only focus on counselees' genetic disorders and birth defects, but also their psychological problems. "Client-centered therapy" termed by Carl Rogers plays an important role in genetic counseling process. The basic procedures of psychotherapeutic model of genetic counseling include 7 steps: initial contact, introduction, agendas, inquiry of family history, presenting information, closing the session and follow-up. PMID:17098715

  12. Diagnostics of combustion process based on flame images analysis and genetic programming

    NASA Astrophysics Data System (ADS)

    Tanaś, J.; Kotyra, A.; Shegebaeva, Jibek

    2015-09-01

    One of the means of assessing the state of combustion process is analyzing data obtained from flame images. Flame images can be used as a source of information of combustion process input parameters such as air flow, fuel expense or fumes temperature. These parameters are crucial for stable and effective combustion. Considering complexity of combustion process and large number of fluctuating variables, genetic programming is an approach that seems most appropriate. Several video streams of co-combusting biomass and coal were recorded at the rate of 150 frames per second with 800x800 resolution. Different image and combustion parameters were processed to determine dependencies between them.

  13. Wellness: A Developmental Programming Model for Residence Halls.

    ERIC Educational Resources Information Center

    Warner, Mark J.

    1985-01-01

    Demonstrates how a Wellness model can be an effective vehicle for promoting developmental programs in residence halls. The Wellness model is examined in terms of marketing, student development theory, and balanced programming. (BL)

  14. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  15. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

  16. A new perspective on dark energy modeling via genetic algorithms

    NASA Astrophysics Data System (ADS)

    Nesseris, Savvas; García-Bellido, Juan

    2012-11-01

    We use Genetic Algorithms to extract information from several cosmological probes, such as the type Ia supernovae (SnIa), the Baryon Acoustic Oscillations (BAO) and the growth rate of matter perturbations. This is done by implementing a model independent and bias-free reconstruction of the various scales and distances that characterize the data, like the luminosity dL(z) and the angular diameter distance dA(z) in the SnIa and BAO data, respectively, or the dependence with redshift of the matter density Ωm(a) in the growth rate data, fσ8(z). These quantities can then be used to reconstruct the expansion history of the Universe, and the resulting Dark Energy (DE) equation of state w(z) in the context of FRW models, or the mass radial function ΩM(r) in LTB models. In this way, the reconstruction is completely independent of our prior bias. Furthermore, we use this method to test the Etherington relation, ie the well-known relation between the luminosity and the angular diameter distance, η≡dL(z)/(1+z)2dA(z), which is equal to 1 in metric theories of gravity. We find that the present data seem to suggest a 3-σ deviation from one at redshifts z ~ 0.5. Finally, we present a novel way, within the Genetic Algorithm paradigm, to analytically estimate the errors on the reconstructed quantities by calculating a Path Integral over all possible functions that may contribute to the likelihood. We show that this can be done regardless of the data being correlated or uncorrelated with each other and we also explicitly demonstrate that our approach is in good agreement with other error estimation techniques like the Fisher Matrix approach and the Bootstrap Monte Carlo.

  17. A new perspective on dark energy modeling via genetic algorithms

    SciTech Connect

    Nesseris, Savvas; García-Bellido, Juan E-mail: juan.garciabellido@uam.es

    2012-11-01

    We use Genetic Algorithms to extract information from several cosmological probes, such as the type Ia supernovae (SnIa), the Baryon Acoustic Oscillations (BAO) and the growth rate of matter perturbations. This is done by implementing a model independent and bias-free reconstruction of the various scales and distances that characterize the data, like the luminosity d{sub L}(z) and the angular diameter distance d{sub A}(z) in the SnIa and BAO data, respectively, or the dependence with redshift of the matter density Ω{sub m}(a) in the growth rate data, fσ{sub 8}(z). These quantities can then be used to reconstruct the expansion history of the Universe, and the resulting Dark Energy (DE) equation of state w(z) in the context of FRW models, or the mass radial function Ω{sub M}(r) in LTB models. In this way, the reconstruction is completely independent of our prior bias. Furthermore, we use this method to test the Etherington relation, ie the well-known relation between the luminosity and the angular diameter distance, η≡d{sub L}(z)/(1+z){sup 2}d{sub A}(z), which is equal to 1 in metric theories of gravity. We find that the present data seem to suggest a 3-σ deviation from one at redshifts z ∼ 0.5. Finally, we present a novel way, within the Genetic Algorithm paradigm, to analytically estimate the errors on the reconstructed quantities by calculating a Path Integral over all possible functions that may contribute to the likelihood. We show that this can be done regardless of the data being correlated or uncorrelated with each other and we also explicitly demonstrate that our approach is in good agreement with other error estimation techniques like the Fisher Matrix approach and the Bootstrap Monte Carlo.

  18. Models, algorithms and programs for phylogeny reconciliation.

    PubMed

    Doyon, Jean-Philippe; Ranwez, Vincent; Daubin, Vincent; Berry, Vincent

    2011-09-01

    Gene sequences contain a gold mine of phylogenetic information. But unfortunately for taxonomists this information does not only tell the story of the species from which it was collected. Genes have their own complex histories which record speciation events, of course, but also many other events. Among them, gene duplications, transfers and losses are especially important to identify. These events are crucial to account for when reconstructing the history of species, and they play a fundamental role in the evolution of genomes, the diversification of organisms and the emergence of new cellular functions. We review reconciliations between gene and species trees, which are rigorous approaches for identifying duplications, transfers and losses that mark the evolution of a gene family. Existing reconciliation models and algorithms are reviewed and difficulties in modeling gene transfers are discussed. We also compare different reconciliation programs along with their advantages and disadvantages.

  19. Models, algorithms and programs for phylogeny reconciliation.

    PubMed

    Doyon, Jean-Philippe; Ranwez, Vincent; Daubin, Vincent; Berry, Vincent

    2011-09-01

    Gene sequences contain a gold mine of phylogenetic information. But unfortunately for taxonomists this information does not only tell the story of the species from which it was collected. Genes have their own complex histories which record speciation events, of course, but also many other events. Among them, gene duplications, transfers and losses are especially important to identify. These events are crucial to account for when reconstructing the history of species, and they play a fundamental role in the evolution of genomes, the diversification of organisms and the emergence of new cellular functions. We review reconciliations between gene and species trees, which are rigorous approaches for identifying duplications, transfers and losses that mark the evolution of a gene family. Existing reconciliation models and algorithms are reviewed and difficulties in modeling gene transfers are discussed. We also compare different reconciliation programs along with their advantages and disadvantages. PMID:21949266

  20. A genetic predictive model for canine hip dysplasia: integration of Genome Wide Association Study (GWAS) and candidate gene approaches.

    PubMed

    Bartolomé, Nerea; Segarra, Sergi; Artieda, Marta; Francino, Olga; Sánchez, Elisenda; Szczypiorska, Magdalena; Casellas, Joaquim; Tejedor, Diego; Cerdeira, Joaquín; Martínez, Antonio; Velasco, Alfonso; Sánchez, Armand

    2015-01-01

    Canine hip dysplasia is one of the most prevalent developmental orthopedic diseases in dogs worldwide. Unfortunately, the success of eradication programs against this disease based on radiographic diagnosis is low. Adding the use of diagnostic genetic tools to the current phenotype-based approach might be beneficial. The aim of this study was to develop a genetic prognostic test for early diagnosis of hip dysplasia in Labrador Retrievers. To develop our DNA test, 775 Labrador Retrievers were recruited. For each dog, a blood sample and a ventrodorsal hip radiograph were taken. Dogs were divided into two groups according to their FCI hip score: control (A/B) and case (D/E). C dogs were not included in the sample. Genetic characterization combining a GWAS and a candidate gene strategy using SNPs allowed a case-control population association study. A mathematical model which included 7 SNPs was developed using logistic regression. The model showed a good accuracy (Area under the ROC curve = 0.85) and was validated in an independent population of 114 dogs. This prognostic genetic test represents a useful tool for choosing the most appropriate therapeutic approach once genetic predisposition to hip dysplasia is known. Therefore, it allows a more individualized management of the disease. It is also applicable during genetic selection processes, since breeders can benefit from the information given by this test as soon as a blood sample can be collected, and act accordingly. In the authors' opinion, a shift towards genomic screening might importantly contribute to reducing canine hip dysplasia in the future. In conclusion, based on genetic and radiographic information from Labrador Retrievers with hip dysplasia, we developed an accurate predictive genetic test for early diagnosis of hip dysplasia in Labrador Retrievers. However, further research is warranted in order to evaluate the validity of this genetic test in other dog breeds. PMID:25874693

  1. Program listing for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program

    NASA Technical Reports Server (NTRS)

    Bjorklund, J. R.; Dumbauld, R. K.; Cheney, C. S.; Geary, H. V.

    1982-01-01

    The program listing for the REEDM Computer Program is provided. A mathematical description of the atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model; vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud and meteorological layering techniques; user's instructions for the REEDM computer program; and worked example problems are contained in NASA CR-3646.

  2. Improved sea level anomaly prediction through combination of data relationship analysis and genetic programming in Singapore Regional Waters

    NASA Astrophysics Data System (ADS)

    Kurniawan, Alamsyah; Ooi, Seng Keat; Babovic, Vladan

    2014-11-01

    With recent advances in measurement and information technology, there is an abundance of data available for analysis and modelling of hydrodynamic systems. Spatial and temporal data coverage, better quality and reliability of data modelling and data driven techniques have resulted in more favourable acceptance by the hydrodynamic community. The data mining tools and techniques are being applied in variety of hydro-informatics applications ranging from data mining for pattern discovery to data driven models and numerical model error correction. The present study explores the feasibility of applying mutual information theory by evaluating the amount of information contained in observed and prediction errors of non-tidal barotropic numerical modelling (i.e. assuming that the hydrodynamic model, available at this point, is best representation of the physics in the domain of interest) by relating them to variables that reflect the state at which the predictions are made such as input data, state variables and model output. In addition, the present study explores the possibility of employing ‘genetic programming' (GP) as an offline data driven modelling tool to capture the sea level anomaly (SLA) dynamics and then using them for updating the numerical model prediction in real time applications. These results suggest that combination of data relationship analysis and GP models helps to improve the forecasting ability by providing information of significant predicative parameters. It is found that GP based SLA prediction error forecast model can provide significant improvement when applied as data assimilation schemes for updating the SLA prediction obtained from primary hydrodynamic models.

  3. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.

  4. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect

    Not Available

    2007-05-01

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  5. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  6. Learning to solve planning problems efficiently by means of genetic programming.

    PubMed

    Aler, R; Borrajo, D; Isasi, P

    2001-01-01

    Declarative problem solving, such as planning, poses interesting challenges for Genetic Programming (GP). There have been recent attempts to apply GP to planning that fit two approaches: (a) using GP to search in plan space or (b) to evolve a planner. In this article, we propose to evolve only the heuristics to make a particular planner more efficient. This approach is more feasible than (b) because it does not have to build a planner from scratch but can take advantage of already existing planning systems. It is also more efficient than (a) because once the heuristics have been evolved, they can be used to solve a whole class of different planning problems in a planning domain, instead of running GP for every new planning problem. Empirical results show that our approach (EvoCK) is able to evolve heuristics in two planning domains (the blocks world and the logistics domain) that improve PRODIGY4.0 performance. Additionally, we experiment with a new genetic operator --Instance-Based Crossover--that is able to use traces of the base planner as raw genetic material to be injected into the evolving population.

  7. Modelling and genetic algorithm based optimisation of inverse supply chain

    NASA Astrophysics Data System (ADS)

    Bányai, T.

    2009-04-01

    (Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a

  8. Genetically manipulated mouse models of lung disease: potential and pitfalls

    PubMed Central

    Choi, Alexander J. S.; Owen, Caroline A.; Choi, Augustine M. K.

    2012-01-01

    Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators. PMID:22198907

  9. Model suicide vector for containment of genetically engineered microorganisms.

    PubMed

    Bej, A K; Perlin, M H; Atlas, R M

    1988-10-01

    A model suicide vector (pBAP19h), designed for the potential containment of genetically engineered microorganisms, was made by constructing a plasmid with the hok gene, which codes for a lethal polypeptide, under the control of the lac promoter. The vector plasmid also codes for carbenicillin resistance. In the absence of carbenicillin, induction of the hok gene in vitro caused elimination of all detectable cells containing the suicide vector; pBAP19h-free cells of the culture survived and grew exponentially. In the presence of carbenicillin, however, the number of cells containing pBAP19h initially declined after induction of hok but then multiplied exponentially. The surviving cells still had a fully functional hok gene and had apparently developed resistance to the action of the Hok polypeptide. Thus, high selective pressure against the loss of the suicide vector led to a failure of the system. Soil microcosm experiments confirmed the ability of a suicide vector to restrict the growth of a genetically engineered microorganism in the absence of selective pressure against the loss of the plasmid, with 90 to 99% elimination of hok-bearing cells within 24 h of hok induction. However, some pBAP19h-bearing cells survived in the soil microcosms after hok induction. The surviving cells contained an active hok gene but were not capable of normal growth even after elimination of the hok gene; it appears that a mutation that made them Hok resistant also reduced their capacity for membrane functions needed for energy generation and exponential cell growth. Thus, the model suicide vector was shown to be functional in soil as well as in vitro.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3060017

  10. Stress, glucocorticoids and absences in a genetic epilepsy model.

    PubMed

    Tolmacheva, Elena A; Oitzl, Melly S; van Luijtelaar, Gilles

    2012-05-01

    Although stress can alter the susceptibility of patients and animal models to convulsive epilepsy, little is known about the role of stress and glucocorticoid hormones in absence epilepsy. We measured the basal and acute stress-induced (foot-shocks: FS) concentrations of corticosterone in WAG/Rij rats, non-epileptic inbred ACI rats and outbred Wistar rats. The WAG/Rij strain is a genetic model for absence epilepsy and comorbidity for depression, which originates from the population of Wistar rats and, therefore, shares their genetic background. In a separate experiment, WAG/Rij rats were exposed to FS on three consecutive days. Electroencephalograms (EEGs) were recorded before and after FS, and the number of absence seizures (spike-wave-discharges, SWDs) was quantified. Both WAG/Rij rats and ACI rats exhibited elevated basal levels of corticosterone and a rapid corticosterone increase in response to acute stress. The WAG/Rij rats also displayed the most rapid normalization of corticosterone during the recovery phase compared to that of ACI and Wistar rats. FS had a biphasic effect on SWDs; an initial suppression was followed by an aggravation of the SWDs. By the third day, this aggravation of seizures was present in the hour preceding FS. This increase in SWDs may arise from anticipatory stress about the upcoming FS. Together, these results suggest that the distinct secretion profile of corticosterone found in WAG/Rij rats may contribute to the severity of the epileptic phenotype. Although the acute stressor results in an initial suppression of SWDs followed by an increase in SWDs, stress prior to a predictable negative event aggravates absences.

  11. Coregulation of genetic programs by the transcription factors NFIB and STAT5.

    PubMed

    Robinson, Gertraud W; Kang, Keunsoo; Yoo, Kyung Hyun; Tang, Yong; Zhu, Bing-Mei; Yamaji, Daisuke; Colditz, Vera; Jang, Seung Jian; Gronostajski, Richard M; Hennighausen, Lothar

    2014-05-01

    Mammary-specific genetic programs are activated during pregnancy by the common transcription factor signal transducer and activator of transcription (STAT) 5. More than one third of these genes carry nuclear factor I/B (NFIB) binding motifs that coincide with STAT5 in vivo binding, suggesting functional synergy between these two transcription factors. The role of NFIB in this governance was investigated in mice from which Nfib had been inactivated in mammary stem cells or in differentiating alveolar epithelium. Although NFIB was not required for alveolar expansion, the combined absence of NFIB and STAT5 prevented the formation of functional alveoli. NFIB controlled the expression of mammary-specific and STAT5-regulated genes and chromatin immunoprecipitation-sequencing established STAT5 and NFIB binding at composite regulatory elements containing histone H3 lysine dimethylation enhancer marks and progesterone receptor binding. By integrating previously published chromatin immunoprecipitation-sequencing data sets, the presence of NFIB-STAT5 modules in other cell types was investigated. Notably, genomic sites bound by NFIB in hair follicle stem cells were also occupied by STAT5 in mammary epithelium and coincided with enhancer marks. Many of these genes were under NFIB control in both hair follicle stem cells and mammary alveolar epithelium. We propose that NFIB-STAT5 modules, possibly in conjunction with other transcription factors, control cell-specific genetic programs.

  12. Genetic programs of epithelial cell plasticity directed by transforming growth factor-β

    PubMed Central

    Zavadil, Jiri; Bitzer, Markus; Liang, Dan; Yang, Yaw-Ching; Massimi, Aldo; Kneitz, Susanne; Piek, Ester; Böttinger, Erwin P.

    2001-01-01

    Epithelial–mesenchymal transitions (EMTs) are an essential manifestation of epithelial cell plasticity during morphogenesis, wound healing, and tumor progression. Transforming growth factor-β (TGF-β) modulates epithelial plasticity in these physiological contexts by inducing EMT. Here we report a transcriptome screen of genetic programs of TGF-β-induced EMT in human keratinocytes and propose functional roles for extracellular response kinase (ERK) mitogen-activated protein kinase signaling in cell motility and disruption of adherens junctions. We used DNA arrays of 16,580 human cDNAs to identify 728 known genes regulated by TGF-β within 4 hours after treatment. TGF-β-stimulated ERK signaling mediated regulation of 80 target genes not previously associated with this pathway. This subset is enriched for genes with defined roles in cell–matrix interactions, cell motility, and endocytosis. ERK-independent genetic programs underlying the onset of EMT involve key pathways and regulators of epithelial dedifferentiation, undifferentiated transitional and mesenchymal progenitor phenotypes, and mediators of cytoskeletal reorganization. The gene expression profiling approach delineates complex context-dependent signaling pathways and transcriptional events that determine epithelial cell plasticity controlled by TGF-β. Investigation of the identified pathways and genes will advance the understanding of molecular mechanisms that underlie tumor invasiveness and metastasis. PMID:11390996

  13. Accessible Genetics Research Ethics Education (AGREE): A Web-Based Program for IRBs and Investigators

    SciTech Connect

    Sugarman, Jeremy; Lee, Linda

    2006-03-31

    The primary objective of this project was to design and evaluate a series of web-based educational modules on genetics research ethics for members of Institutional Review Boards and investigators to facilitate the development and oversight of important research that is sensitive to the relevant ethical, legal and social issues. After a needs assessment was completed in March of 2003, five online educational modules on the ethics of research in genetics were developed, tested, and made available through a host website for AGREE: http://agree.mc.duke.edu/index.html. The 5 modules are: (1) Ethics and Genetics Research in Populations; (2) Ethics in Behavioral Genetics Research; (3) Ethical Issues in Research on Gene-Environment Interactions; (4) Ethical Issues in Reproductive Genetics Research; and (5) Ethical Issues in Diagnostic and Therapeutic Research. The development process adopted a tested approach used at Duke University School of Medicine in providing education for researchers and IRB members, supplementing it with expert input and a rigorous evaluation. The host website also included a description of the AGREE; short bios on the AGREE Investigators and Expert Advisory Panel; streaming media of selected presentations from a conference, Working at the Frontiers of Law and Science: Applications of the Human Genome held October 2-3, 2003, at the University of North Carolina at Chapel Hill; and links to online resources in genomics, research ethics, ethics in genomics research, and related organizations. The web site was active beginning with the posting of the first module and was maintained throughout the project period. We have also secured agreement to keep the site active an additional year beyond the project period. AGREE met its primary objective of creating web-based educational modules related to the ethical issues in genetics research. The modules have been disseminated widely. While it is clearly easier to judge the quality of the educational experience

  14. The Features of Genetic Prion Diseases Based on Chinese Surveillance Program

    PubMed Central

    Shi, Qi; Zhou, Wei; Chen, Cao; Zhang, Bao-Yun; Xiao, Kang; Zhang, Xiu-Chun; Shen, Xiao-Jing; Li, Qing; Deng, Li-Quan; Dong, Jian-Hua; Lin, Wen-Qing; Huang, Pu; Jiang, Wei-Jia; Lv, Jie; Han, Jun; Dong, Xiao-Ping

    2015-01-01

    Objective To identify the features of Chinese genetic prion diseases. Methods Suspected Creutzfeldt-Jakob disease (CJD) cases that were reported under CJD surveillance were diagnosed and subtyped using the diagnostic criteria issued by the WHO. The general information concerning the patient, their clinical, MRI and EEG data, and the results of CSF 14-3-3 and PRNP sequencing were carefully collected from the database of the national CJD surveillance program and analyzed using the SPSS 11.5 statistical software program. Results Since 2006, 69 patients were diagnosed with genetic prion diseases and as having 15 different mutations. The median age of the 69 patients at disease onset was 53.5 years, varying from 19 to 80 years. The majority of patients displaying clinical symptoms were in the 50–59 years of age. FFI, T188K gCJD and E200K were the three most common subtypes. The disease appeared in the family histories of 43.48% of the patients. The clinical manifestations varied considerably among the various diseases. Patients who carried mutations in the N-terminus displayed a younger age of onset, were CSF 14-3-3 negative, had a family history of the condition, and experienced a longer duration of the condition. The clinical courses of T188K were significantly shorter than those of FFI and E200K gCJD, while the symptoms in the FFI group appeared at a younger age and for a longer duration. Moreover, the time intervals between the initial neurologist visit to the final diagnosis were similar among patients with FFI, T188K gCJD, E200K gCJD and other diseases. Conclusion The features of Chinese genetic prion diseases are different from those seen in Europe and other Asian countries. PMID:26488179

  15. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    ERIC Educational Resources Information Center

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  16. Trading Rules on Stock Markets Using Genetic Network Programming with Reinforcement Learning and Importance Index

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Hirasawa, Kotaro; Furuzuki, Takayuki

    Genetic Network Programming (GNP) is an evolutionary computation which represents its solutions using graph structures. Since GNP can create quite compact programs and has an implicit memory function, it has been clarified that GNP works well especially in dynamic environments. In addition, a study on creating trading rules on stock markets using GNP with Importance Index (GNP-IMX) has been done. IMX is a new element which is a criterion for decision making. In this paper, we combined GNP-IMX with Actor-Critic (GNP-IMX&AC) and create trading rules on stock markets. Evolution-based methods evolve their programs after enough period of time because they must calculate fitness values, however reinforcement learning can change programs during the period, therefore the trading rules can be created efficiently. In the simulation, the proposed method is trained using the stock prices of 10 brands in 2002 and 2003. Then the generalization ability is tested using the stock prices in 2004. The simulation results show that the proposed method can obtain larger profits than GNP-IMX without AC and Buy&Hold.

  17. Genetic counselor perceptions of genetic counseling session goals: a validation study of the reciprocal-engagement model.

    PubMed

    Hartmann, Julianne E; Veach, Patricia McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S

    2015-04-01

    Although some researchers have attempted to define genetic counseling practice goals, no study has obtained consensus about the goals from a large sample of genetic counselors. The Reciprocal-Engagement Model (REM; McCarthy Veach, Bartels & LeRoy, 2007) articulates 17 goals of genetic counseling practice. The present study investigated whether these goals could be generalized as a model of practice, as determined by a larger group of clinical genetic counselors. Accordingly, 194 genetic counselors were surveyed regarding their opinions about the importance of each goal and their perceptions of how frequently they achieve each goal. Mean importance ratings suggest they viewed every goal as important. Factor analysis of the 17 goals yielded four factors: Understanding and Appreciation, Support and Guidance, Facilitative Decision-Making, and Patient-Centered Education. Patient-Centered Education and Facilitative Decision-Making goals received the highest mean importance ratings. Mean frequency ratings were consistently lower than importance ratings, suggesting genetic counseling goals may be difficult to achieve and/or not applicable in all situations. A number of respondents provided comments about the REM goals that offer insight into factors related to implementing the goals in clinical practice. This study presents preliminary evidence concerning the validity of the goals component of the REM.

  18. A genetic model for gallbladder carcinogenesis and its dissemination

    PubMed Central

    Barreto, S. G.; Dutt, A.; Chaudhary, A.

    2014-01-01

    Gallbladder cancer, although regarded as the most common malignancy of the biliary tract, continues to be associated with a dismal overall survival even in the present day. While complete surgical removal of the tumour offers a good chance of cure, only a fraction of the patients are amenable to curative surgery owing to their delayed presentation. Moreover, the current contribution of adjuvant therapies towards prolonging survival is marginal, at best. Thus, understanding the biology of the disease will not only enable a better appreciation of the pathways of progression but also facilitate the development of an accurate genetic model for gallbladder carcinogenesis and dissemination. This review provides an updated, evidence-based model of the pathways of carcinogenesis in gallbladder cancer and its dissemination. The model proposed could serve as the scaffolding for elucidation of the molecular mechanisms involved in gallbladder carcinogenesis. A better understanding of the pathways involved in gallbladder tumorigenesis will serve to identify patients at risk for the cancer (and who thus could be offered prophylactic cholecystectomy) as well as aid oncologists in planning the most suitable treatment for a particular patient, thereby setting us on the vanguard of transforming the current treatment paradigm for gallbladder cancer. PMID:24705974

  19. Genetic Models for the Study of Luteinizing Hormone Receptor Function

    PubMed Central

    Narayan, Prema

    2015-01-01

    The luteinizing hormone/chorionic gonadotropin receptor (LHCGR) is essential for fertility in men and women. LHCGR binds luteinizing hormone (LH) as well as the highly homologous chorionic gonadotropin. Signaling from LHCGR is required for steroidogenesis and gametogenesis in males and females and for sexual differentiation in the male. The importance of LHCGR in reproductive physiology is underscored by the large number of naturally occurring inactivating and activating mutations in the receptor that result in reproductive disorders. Consequently, several genetically modified mouse models have been developed for the study of LHCGR function. They include targeted deletion of LH and LHCGR that mimic inactivating mutations in hormone and receptor, expression of a constitutively active mutant in LHCGR that mimics activating mutations associated with familial male-limited precocious puberty and transgenic models of LH and hCG overexpression. This review summarizes the salient findings from these models and their utility in understanding the physiological and pathological consequences of loss and gain of function in LHCGR signaling. PMID:26483755

  20. Exploring the possibility of modeling a genetic counseling guideline using agile methodology.

    PubMed

    Choi, Jeeyae

    2013-01-01

    Increased demand of genetic counseling services heightened the necessity of a computerized genetic counseling decision support system. In order to develop an effective and efficient computerized system, modeling of genetic counseling guideline is an essential step. Throughout this pilot study, Agile methodology with United Modeling Language (UML) was utilized to model a guideline. 13 tasks and 14 associated elements were extracted. Successfully constructed conceptual class and activity diagrams revealed that Agile methodology with UML was a suitable tool to modeling a genetic counseling guideline.

  1. Teaching Human Genetics with Mustard: Rapid Cycling "Brassica rapa" (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    ERIC Educational Resources Information Center

    Wendell, Douglas L.; Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling "Brassica rapa", also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, "B. rapa" can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented…

  2. Comparison between genetic programming and an ensemble Kalman filter as data assimilation techniques for probabilistic flood forecasting

    NASA Astrophysics Data System (ADS)

    Mediero, L.; Garrote, L.; Requena, A.; Chávez, A.

    2012-04-01

    Flood events are among the natural disasters that cause most economic and social damages in Europe. Information and Communication Technology (ICT) developments in last years have enabled hydrometeorological observations available in real-time. High performance computing promises the improvement of real-time flood forecasting systems and makes the use of post processing techniques easier. This is the case of data assimilation techniques, which are used to develop an adaptive forecast model. In this paper, a real-time framework for probabilistic flood forecasting is presented and two data assimilation techniques are compared. The first data assimilation technique uses genetic programming to adapt the model to the observations as new information is available, updating the estimation of the probability distribution of the model parameters. The second data assimilation technique uses an ensemble Kalman filter to quantify errors in both hydrologic model and observations, updating estimates of system states. Both forecast models take the result of the hydrologic model calibration as a starting point and adapts the individuals of this first population to the new observations in each operation time step. Data assimilation techniques have great potential when are used in hydrological distributed models. The distributed RIBS (Real-time Interactive Basin Simulator) rainfall-runoff model was selected to simulate the hydrological process in the basin. The RIBS model is deterministic, but it is run in a probabilistic way through Monte Carlo simulations over the probability distribution functions that best characterise the most relevant model parameters, which were identified by a probabilistic multi-objective calibration developed in a previous work. The Manzanares River basin was selected as a case study. Data assimilation processes are computationally intensive. Therefore, they are well suited to test the applicability of the potential of the Grid technology to

  3. GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS

    SciTech Connect

    Rogers, Adam; Fiege, Jason D.

    2011-02-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image {chi}{sup 2} and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest {chi}{sup 2} is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  4. Human factors engineering program review model

    SciTech Connect

    Not Available

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element.

  5. The Arizona Telemedicine Program business model.

    PubMed

    Barker, Gail P; Krupinski, Elizabeth A; McNeely, Richard A; Holcomb, Michael J; Lopez, Ana Maria; Weinstein, Ronald S

    2005-01-01

    The Arizona Telemedicine Program (ATP) was established in 1996 when state funding was provided to implement eight telemedicine sites. Since then the ATP has expanded to connect 55 health-care organizations through a membership programme formalized through legal contracts. The ATP's membership model is based on an application service provider (ASP) concept, whereby organizations can share services at lower cost; that is, the ATP acts as a broker for services. The membership fee schedule is flexible, allowing clients to purchase only those services desired. An annual membership fee is paid by every user, based on the services requested. The membership programme income has provided a steady revenue stream for the ATP. The membership-derived revenue represented 30% of the ATP's 2.6 million dollars total income during fiscal year 2003/04. PMID:16356313

  6. Modeling Weather Impact on Ground Delay Programs

    NASA Technical Reports Server (NTRS)

    Wang, Yao; Kulkarni, Deepak

    2011-01-01

    Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.

  7. Hybrid Mice as Genetic Models of High Alcohol Consumption

    PubMed Central

    Ozburn, A. R.; Walker, D.; Ahmed, S.; Belknap, J. K.; Harris, R. A.

    2011-01-01

    We showed that F1 hybrid genotypes may provide a broader variety of ethanol drinking phenotypes than the inbred progenitor strains used to create the hybrids (Blednov et al. in Alcohol Clin Exp Res 29:1949–1958–2005). To extend this work, we characterized alcohol consumption as well as intake of other tastants (saccharin, quinine and sodium chloride) in five inbred strains of mice (FVB, SJL, B6, BUB, NZB) and in their reciprocal F1 hybrids with B6 (FVBxB6; B6xFVB; NZBxB6; B6xNZB; BUBxB6; B6xBUB; SJLxB6; B6xSJL). We also compared ethanol intake in these mice for several concentrations before and after two periods of abstinence. F1 hybrid mice derived from the crosses of B6 and FVB and also B6 and SJL drank higher levels of ethanol than their progenitor strains, demonstrating overdominance for two-bottle choice drinking test. The B6 and NZB hybrid showed additivity in two-bottle choice drinking, whereas the hybrid of B6 and BUB demonstrated full or complete dominance. Genealogical origin, as well as non-alcohol taste preferences (sodium chloride), predicted ethanol consumption. Mice derived from the crosses of B6 and FVB showed high sustained alcohol preference and the B6 and NZB hybrids showed reduced alcohol preference after periods of abstinence. These new genetic models offer some advantages over inbred strains because they provide high, sustained, alcohol intake, and should allow mapping of loci important for the genetic architecture of these traits. PMID:19798565

  8. Smooth-Threshold Multivariate Genetic Prediction with Unbiased Model Selection.

    PubMed

    Ueki, Masao; Tamiya, Gen

    2016-04-01

    We develop a new genetic prediction method, smooth-threshold multivariate genetic prediction, using single nucleotide polymorphisms (SNPs) data in genome-wide association studies (GWASs). Our method consists of two stages. At the first stage, unlike the usual discontinuous SNP screening as used in the gene score method, our method continuously screens SNPs based on the output from standard univariate analysis for marginal association of each SNP. At the second stage, the predictive model is built by a generalized ridge regression simultaneously using the screened SNPs with SNP weight determined by the strength of marginal association. Continuous SNP screening by the smooth thresholding not only makes prediction stable but also leads to a closed form expression of generalized degrees of freedom (GDF). The GDF leads to the Stein's unbiased risk estimation (SURE), which enables data-dependent choice of optimal SNP screening cutoff without using cross-validation. Our method is very rapid because computationally expensive genome-wide scan is required only once in contrast to the penalized regression methods including lasso and elastic net. Simulation studies that mimic real GWAS data with quantitative and binary traits demonstrate that the proposed method outperforms the gene score method and genomic best linear unbiased prediction (GBLUP), and also shows comparable or sometimes improved performance with the lasso and elastic net being known to have good predictive ability but with heavy computational cost. Application to whole-genome sequencing (WGS) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) exhibits that the proposed method shows higher predictive power than the gene score and GBLUP methods.

  9. Toward a genetically-informed model of borderline personality disorder.

    PubMed

    Livesley, John

    2008-02-01

    This article describes a conceptual framework for describing borderline personality disorder (BPD) based on empirical studies of the phenotypic structure and genetic architecture of personality. The proposed phenotype has 2 components: (1) a description of core self and interpersonal pathology-the defining features of personality disorder-as these features are expressed in the disorder; and (2) a set of traits based on the anxious-dependent or emotional dysregulation factor of the four-factor model of PD. Four kinds of traits are described: emotional (anxiousness, emotional reactivity, emotional intensity, and pessimistic-anhedonia), interpersonal (submissiveness, insecure attachment, social apprehensiveness, and need for approval), cognitive (cognitive dysregulation), and self-harm (behaviors and ideas). Formulation of the phenotype was guided by the conceptualization of personality as a system of interrelated sub-systems. The psychopathology associated with BPD involves most components of the system. The trait structure of the disorder is assumed to reflect the genetic architecture of personality and individual traits are assumed to be based on adaptive mechanisms. It is suggested that borderline traits are organized around the trait of anxiousness and that an important feature of BPD is dysregulation of the threat management system leading to pervasive fearfulness and unstable emotions. The interpersonal traits are assumed to be heritable characteristics that evolved to deal with interpersonal threats that arose as a result of social living. The potential for unstable and conflicted interpersonal relationships that is inherent to the disorder is assumed to result from the interplay between the adaptive structure of personality and psychosocial adversity. The etiology of the disorder is discussed in terms of biological and environmental factors associated with each component of the phenotype.

  10. The Use of Molecular Modeling Programs in Medicinal Chemistry Instruction.

    ERIC Educational Resources Information Center

    Harrold, Marc W.

    1992-01-01

    This paper describes and evaluates the use of a molecular modeling computer program (Alchemy II) in a pharmaceutical education program. Provided are the hardware requirements and basic program features as well as several examples of how this program and its features have been applied in the classroom. (GLR)

  11. Molecular genetics and animal models in autistic disorder.

    PubMed

    Andres, Christian

    2002-01-01

    Autistic disorder is a behavioural syndrome beginning before the age of 3 years and lasting over the whole lifetime. It is characterised by impaired communication, impaired social interactions, and repetitive interests and behaviour. The prevalence is about 7/10,000 taking a restrictive definition and more than 1/500 with a broader definition, including all the pervasive developmental disorders. The importance of genetic factors has been highlighted by epidemiological studies showing that autistic disorder is one of the most genetic neuropsychiatric diseases. The relative risk of first relatives is about 100-fold higher than the risk in the normal population and the concordance in monozygotic twin is about 60%. Different strategies have been applied on the track of susceptibility genes. The systematic search of linked loci led to contradictory results, in part due to the heterogeneity of the clinical definitions, to the differences in the DNA markers, and to the different methods of analysis used. An oversimplification of the inferred model is probably also cause of our disappointment. More work is necessary to give a clearer picture. One region emerges more frequently: the long arm of chromosome 7. Several candidate genes have been studied and some gave indications of association: the Reelin gene and the Wnt2 gene. Cytogenetical abnormalities are frequent at 15q11-13, the region of the Angelman and Prader-Willi syndrome. Imprinting plays an important role in this region, no candidate gene has been identified in autism. Biochemical abnormalities have been found in the serotonin system. Association and linkage studies gave no consistent results with some serotonin receptors and in the transporter, although it seems interesting to go further in the biochemical characterisation of the serotonin transporter activity, particularly in platelets, easily accessible. Two monogenic diseases have been associated with autistic disorder: tuberous sclerosis and fragile X. A

  12. Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation

    NASA Astrophysics Data System (ADS)

    Du, Jiaoman; Yu, Lean; Li, Xiang

    2016-04-01

    Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.

  13. Form Follows Function: A Model for Clinical Supervision of Genetic Counseling Students.

    PubMed

    Wherley, Colleen; Veach, Patricia McCarthy; Martyr, Meredith A; LeRoy, Bonnie S

    2015-10-01

    Supervision plays a vital role in genetic counselor training, yet models describing genetic counseling supervision processes and outcomes are lacking. This paper describes a proposed supervision model intended to provide a framework to promote comprehensive and consistent clinical supervision training for genetic counseling students. Based on the principle "form follows function," the model reflects and reinforces McCarthy Veach et al.'s empirically derived model of genetic counseling practice - the "Reciprocal Engagement Model" (REM). The REM consists of mutually interactive educational, relational, and psychosocial components. The Reciprocal Engagement Model of Supervision (REM-S) has similar components and corresponding tenets, goals, and outcomes. The 5 REM-S tenets are: Learning and applying genetic information are key; Relationship is integral to genetic counseling supervision; Student autonomy must be supported; Students are capable; and Student emotions matter. The REM-S outcomes are: Student understands and applies information to independently provide effective services, develop professionally, and engage in self-reflective practice. The 16 REM-S goals are informed by the REM of genetic counseling practice and supported by prior literature. A review of models in medicine and psychology confirms the REM-S contains supervision elements common in healthcare fields, while remaining unique to genetic counseling. The REM-S shows promise for enhancing genetic counselor supervision training and practice and for promoting research on clinical supervision. The REM-S is presented in detail along with specific examples and training and research suggestions.

  14. Model Entrepreneurship Programs. Special Publication Series No. 53.

    ERIC Educational Resources Information Center

    Ross, Novella; Kurth, Paula

    This collection contains descriptions of model entrepreneurship education programs submitted by 10 states. The first section deals with the Colorado Network of Small Business Programs and the Colorado Entrepreneurship Education Infusion Project. Described next is a model teacher education program in entrepreneurship education that was implemented…

  15. 45 CFR 2532.30 - Other innovative and model programs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Other innovative and model programs. 2532.30 Section 2532.30 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE INNOVATIVE AND SPECIAL DEMONSTRATION PROGRAMS § 2532.30 Other innovative and model programs. (a) The Corporation may...

  16. Final Report: Programming Models for Shared Memory Clusters

    SciTech Connect

    May, J.; de Supinski, B.; Pudliner, B.; Taylor, S.; Baden, S.

    2000-01-04

    Most large parallel computers now built use a hybrid architecture called a shared memory cluster. In this design, a computer consists of several nodes connected by an interconnection network. Each node contains a pool of memory and multiple processors that share direct access to it. Because shared memory clusters combine architectural features of shared memory computers and distributed memory computers, they support several different styles of parallel programming or programming models. (Further information on the design of these systems and their programming models appears in Section 2.) The purpose of this project was to investigate the programming models available on these systems and to answer three questions: (1) How easy to use are the different programming models in real applications? (2) How do the hardware and system software on different computers affect the performance of these programming models? (3) What are the performance characteristics of different programming models for typical LLNL applications on various shared memory clusters?

  17. Are mouse models of human mycobacterial diseases relevant? Genetics says: ‘yes!’

    PubMed Central

    Apt, Alexander S

    2011-01-01

    Relevance and accuracy of experimental mouse models of tuberculosis (TB) are the subject of constant debate. This article briefly reviews genetic aspects of this problem and provides a few examples of mycobacterial diseases with similar or identical genetic control in mice and humans. The two species display more similarities than differences regarding both genetics of susceptibility/severity of mycobacterial diseases and the networks of protective and pathological immune reactions. In the opinion of the author, refined mouse models of mycobacterial diseases are extremely useful for modelling the corresponding human conditions, if genetic diversity is taken into account. PMID:21896006

  18. Lake eutrophication management modeling using dynamic programming.

    PubMed

    Kuo, Jan-Tai; Hsieh, Pin-Hui; Jou, Wei-Shin

    2008-09-01

    Lake eutrophication problems have received considerable attention in Taiwan, especially because they relate to the quality of drinking water. In this study, steady-state river water quality and lake eutrophication models are solved using dynamic programming algorithms to find the nutrient removal rates for eutrophication control during dry season. The kinetic cycle of chlorophyll-a, phosphorus and nitrogen for a complete-mixed lake is considered in the optimization framework. The Newton-iterative technique is adopted to solve the nonlinear equations for the steady-state lake eutrophication model. The optimization framework is applied to Cheng-Ching Lake in southern Taiwan. Several nutrient loading scenarios for eutrophication control are studied. Optimization results for nutrient removal rates and corresponding wastewater treatment capacities of each reach of the Kao-Ping River define the least cost approach to lake eutrophication control. A natural purification method, structural free water surface wetland, is also suggested to save more investment and improve river water quality at the same time.

  19. A new explained-variance based genetic risk score for predictive modeling of disease risk.

    PubMed

    Che, Ronglin; Motsinger-Reif, Alison A

    2012-09-25

    The goal of association mapping is to identify genetic variants that predict disease, and as the field of human genetics matures, the number of successful association studies is increasing. Many such studies have shown that for many diseases, risk is explained by a reasonably large number of variants that each explains a very small amount of disease risk. This is prompting the use of genetic risk scores in building predictive models, where information across several variants is combined for predictive modeling. In the current study, we compare the performance of four previously proposed genetic risk score methods and present a new method for constructing genetic risk score that incorporates explained variance information. The methods compared include: a simple count Genetic Risk Score, an odds ratio weighted Genetic Risk Score, a direct logistic regression Genetic Risk Score, a polygenic Genetic Risk Score, and the new explained variance weighted Genetic Risk Score. We compare the methods using a wide range of simulations in two steps, with a range of the number of deleterious single nucleotide polymorphisms (SNPs) explaining disease risk, genetic modes, baseline penetrances, sample sizes, relative risks (RR) and minor allele frequencies (MAF). Several measures of model performance were compared including overall power, C-statistic and Akaike's Information Criterion. Our results show the relative performance of methods differs significantly, with the new explained variance weighted GRS (EV-GRS) generally performing favorably to the other methods.

  20. Human operator identification model and related computer programs

    NASA Technical Reports Server (NTRS)

    Kessler, K. M.; Mohr, J. N.

    1978-01-01

    Four computer programs which provide computational assistance in the analysis of man/machine systems are reported. The programs are: (1) Modified Transfer Function Program (TF); (2) Time Varying Response Program (TVSR); (3) Optimal Simulation Program (TVOPT); and (4) Linear Identification Program (SCIDNT). The TV program converts the time domain state variable system representative to frequency domain transfer function system representation. The TVSR program computes time histories of the input/output responses of the human operator model. The TVOPT program is an optimal simulation program and is similar to TVSR in that it produces time histories of system states associated with an operator in the loop system. The differences between the two programs are presented. The SCIDNT program is an open loop identification code which operates on the simulated data from TVOPT (or TVSR) or real operator data from motion simulators.

  1. Predoctoral Program Models in Dentistry for the Handicapped: The University of Tennessee Program.

    ERIC Educational Resources Information Center

    Wessels, Kenneth E.

    1980-01-01

    A model program in dentistry for the handicapped offered at the University of Tennessee and supported by a Robert Wood Johnson Foundation grant is described. The program includes didactic instruction, observation and seminar, and clinical practice. (JMF)

  2. Evaluation of aerothermal modeling computer programs

    NASA Technical Reports Server (NTRS)

    Hsieh, K. C.; Yu, S. T.

    1987-01-01

    Various computer programs based upon the SIMPLE or SIMPLER algorithm were studied and compared for numerical accuracy, efficiency, and grid dependency. Four two-dimensional and one three-dimensional code originally developed by a number of research groups were considered. In general, the accuracy and computational efficieny of these TEACH type programs were improved by modifying the differencing schemes and their solvers. A brief description of each program is given. Error reduction, spline flux and second upwind differencing programs are covered.

  3. Program Budgeting Model for Small Research Units.

    ERIC Educational Resources Information Center

    Brown, Edward K.

    Where research activities operate under "fixed" budgetary and resource conditions, allocations of funds must be carefully planned for effective program implementation. Although relatively little information is available on how small research units could use the principles of programed budgeting, a technique for ascertaining program operating costs…

  4. A Model Proposal for Educational Television Programs

    ERIC Educational Resources Information Center

    Akyurek, Feridun

    2005-01-01

    Almost all educational television programs are produced in similar ways and they are usually thought to be produced that way. These programs intend to reach the students of any organisation or any education establishment, but their ratings do not match with the expected level. In order to increase the quality of these programs and to make them…

  5. A Linear Programming Model for Assigning Students to Attendance Centers.

    ERIC Educational Resources Information Center

    Ontjes, Robert L.

    A linear programing model and procedures for optimal assignment of students to attendance centers are presented. An example of the use of linear programing for the assignment of students to attendance centers in a particular school district is given. (CK)

  6. Automated synthesis of both the topology and numerical parameters for seven patented optical lens systems using genetic programming

    NASA Astrophysics Data System (ADS)

    Jones, Lee W.; Al-Sakran, Sameer H.; Koza, John R.

    2005-08-01

    This paper describes how genetic programming was used as an automated invention machine to synthesize both the topology and numerical parameters for seven previously patented optical lens systems, including one aspherical system and one issued in the 21st-century. Two of the evolved optical lens systems infringe the claims of the patents and the others are novel solutions that satisfy the design goals stated in the patent. The automatic synthesis was done "from scratch"--that is, without starting from a pre-existing good design and without pre-specifying the number of lenses, the topological layout of the lenses, or the numerical parameters of the lenses. Genetic programming is a form of evolutionary computation used to automatically solve problems. It starts from a high-level statement of what needs to be done and progressively breeds a population of candidate individuals over many generations using the principle of Darwinian natural selection and genetic recombination. The paper describes how genetic programming created eyepieces that duplicated the functionality of seven previously patented lens systems. The seven designs were created in a substantially similar and routine way, suggesting that the use of genetic programming in the automated design of both the topology and numerical parameters for optical lens systems may have widespread utility.

  7. A Component-based Programming Model for Composite, Distributed Applications

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.

  8. Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming

    NASA Astrophysics Data System (ADS)

    Ahmed, Soha; Zhang, Mengjie; Peng, Lifeng

    2014-07-01

    Feature selection on mass spectrometry (MS) data is essential for improving classification performance and biomarker discovery. The number of MS samples is typically very small compared with the high dimensionality of the samples, which makes the problem of biomarker discovery very hard. In this paper, we propose the use of genetic programming for biomarker detection and classification of MS data. The proposed approach is composed of two phases: in the first phase, feature selection and ranking are performed. In the second phase, classification is performed. The results show that the proposed method can achieve better classification performance and biomarker detection rate than the information gain- (IG) based and the RELIEF feature selection methods. Meanwhile, four classifiers, Naive Bayes, J48 decision tree, random forest and support vector machines, are also used to further test the performance of the top ranked features. The results show that the four classifiers using the top ranked features from the proposed method achieve better performance than the IG and the RELIEF methods. Furthermore, GP also outperforms a genetic algorithm approach on most of the used data sets.

  9. Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes.

    PubMed

    Benedetti, Ilaria; de Lorenzo, Víctor; Nikel, Pablo I

    2016-01-01

    Bacterial biofilms outperform planktonic counterparts in whole-cell biocatalysis. The transition between planktonic and biofilm lifestyles of the platform strain Pseudomonas putida KT2440 is ruled by a regulatory network controlling the levels of the trigger signal cyclic di-GMP (c-di-GMP). This circumstance was exploited for designing a genetic device that over-runs the synthesis or degradation of c-di-GMP--thus making P. putida to form biofilms at user's will. For this purpose, the transcription of either yedQ (diguanylate cyclase) or yhjH (c-di-GMP phoshodiesterase) from Escherichia coli was artificially placed under the tight control of a cyclohexanone-responsive expression system. The resulting strain was subsequently endowed with a synthetic operon and tested for 1-chlorobutane biodegradation. Upon addition of cyclohexanone to the culture medium, the thereby designed P. putida cells formed biofilms displaying high dehalogenase activity. These results show that the morphologies and physical forms of whole-cell biocatalysts can be genetically programmed while purposely designing their biochemical activity.

  10. Reverse engineering of biochemical equations from time-course data by means of genetic programming.

    PubMed

    Sugimoto, Masahiro; Kikuchi, Shinichi; Tomita, Masaru

    2005-05-01

    Increased research aimed at simulating biological systems requires sophisticated parameter estimation methods. All current approaches, including genetic algorithms, need pre-existing equations to be functional. A generalized approach to predict not only parameters but also biochemical equations from only observable time-course information must be developed and a computational method to generate arbitrary equations without knowledge of biochemical reaction mechanisms must be developed. We present a technique to predict an equation using genetic programming. Our technique can search topology and numerical parameters of mathematical expression simultaneously. To improve the search ability of numeric constants, we added numeric mutation to the conventional procedure. As case studies, we predicted two equations of enzyme-catalyzed reactions regarding adenylate kinase and phosphofructokinase. Our numerical experimental results showed that our approach could obtain correct topology and parameters that were close to the originals. The mean errors between given and simulation-predicted time-courses were 1.6 x 10(-5)% and 2.0 x 10(-3)%, respectively. Our equation prediction approach can be applied to identify metabolic reactions from observable time-courses.

  11. Genetic Network Programming with Automatically Generated Macro Nodes of Variable Size

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Hatakeyama, Hiroyuki; Nakagoe, Hiroshi; Hirasawa, Kotaro; Furuzuki, Takayuki

    Recently, Genetic Network Programming (GNP) has been proposed as one of the evolutionary algorithms. It represents its solutions as directed graph structures and the distinguished abilities have been shown. However, when we apply GNP to complex problems like the real world one, GNP must have robustness against the changes of environments and evolve quickly. Therefore, we introduced Automatically Generated Macro Nodes (AGMs) to GNP (GNP with AGMs). Actually GNP with AGMs has shown higher performances than the conventional GNP in terms of the fitness and the speed of evolution. In this paper, a new mechanism, AGMs with variable size, is introduced to GNP. Conventional AGMs have the fixed number of nodes and they evolve using only genetic operations, while a new method allows AGM to add nodes by necessity and delete nodes which do not contribute to the evolution of the AGM. The proposed GNP with AGMs of variable size is expected to evolve effectively and efficiently when it is applied to agent systems and also expected to make better behavior sequences of agents more easily than the conventional GNP algorithm. In the simulations, the proposed and conventional methods are applied to a tileworld problem and they are compared with each other. From the results, GNP with AGMs of variable size shows better fitness than GNP with AGMs of fixed size and the conventional GNP when adapting ten different environments.

  12. An approach to self-assembling swarm robots using multitree genetic programming.

    PubMed

    Lee, Jong-Hyun; Ahn, Chang Wook; An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach. PMID:23861655

  13. When Darwin meets Lorenz: Evolving new chaotic attractors through genetic programming

    NASA Astrophysics Data System (ADS)

    Pan, Indranil; Das, Saptarshi

    2015-07-01

    In this paper, we propose a novel methodology for automatically finding new chaotic attractors through a computational intelligence technique known as multi-gene genetic programming (MGGP). We apply this technique to the case of the Lorenz attractor and evolve several new chaotic attractors based on the basic Lorenz template. The MGGP algorithm automatically finds new nonlinear expressions for the different state variables starting from the original Lorenz system. The Lyapunov exponents of each of the attractors are calculated numerically based on the time series of the state variables using time delay embedding techniques. The MGGP algorithm tries to search the functional space of the attractors by aiming to maximise the largest Lyapunov exponent (LLE) of the evolved attractors. To demonstrate the potential of the proposed methodology, we report over one hundred new chaotic attractor structures along with their parameters, which are evolved from just the Lorenz system alone.

  14. On the use of genetic programming for mining comprehensible rules in subgroup discovery.

    PubMed

    Luna, José María; Romero, José Raúl; Romero, Cristóbal; Ventura, Sebastián

    2014-12-01

    This paper proposes a novel grammar-guided genetic programming algorithm for subgroup discovery. This algorithm, called comprehensible grammar-based algorithm for subgroup discovery (CGBA-SD), combines the requirements of discovering comprehensible rules with the ability to mine expressive and flexible solutions owing to the use of a context-free grammar. Each rule is represented as a derivation tree that shows a solution described using the language denoted by the grammar. The algorithm includes mechanisms to adapt the diversity of the population by self-adapting the probabilities of recombination and mutation. We compare the approach with existing evolutionary and classic subgroup discovery algorithms. CGBA-SD appears to be a very promising algorithm that discovers comprehensible subgroups and behaves better than other algorithms as measures by complexity, interest, and precision indicate. The results obtained were validated by means of a series of nonparametric tests.

  15. On the Performance of Different Genetic Programming Approaches for the SORTING Problem.

    PubMed

    Wagner, Markus; Neumann, Frank; Urli, Tommaso

    2015-01-01

    In genetic programming, the size of a solution is typically not specified in advance, and solutions of larger size may have a larger benefit. The flexibility often comes at the cost of the so-called bloat problem: individuals grow without providing additional benefit to the quality of solutions, and the additional elements can block the optimization process. Consequently, problems that are relatively easy to optimize cannot be handled by variable-length evolutionary algorithms. In this article, we analyze different single- and multiobjective algorithms on the sorting problem, a problem that typically lacks independent and additive fitness structures. We complement the theoretical results with comprehensive experiments to indicate the tightness of existing bounds, and to indicate bounds where theoretical results are missing.

  16. An approach to self-assembling swarm robots using multitree genetic programming.

    PubMed

    Lee, Jong-Hyun; Ahn, Chang Wook; An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach.

  17. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    NASA Astrophysics Data System (ADS)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  18. Marine biomass program: plant breeding and genetics. Annual report, September 1984-December 1985

    SciTech Connect

    Neushul, M.; Harger, B.W.W.; Lewis, R.J.

    1986-03-01

    By building on past efforts and adding to the data base that has been assembled, and through collaborative research with others, progress has been made toward the long-term goal of growing macroalgae in the sea as a future source of substitute natural gas. It is encouraging that the authors program is being emulated in Japan and Sweden, and that there is growing interest in using the unique GRI kelp seedstock collection by workers in Germany, Japan, Alaska, Oregon, California, and elsewhere. This annual report discusses progress made in propagating kelps, and the floating gulf-weed, Sargassum. Work on kelp genetics has revealed high levels of compatability between species and genera, based on 166 hybridization tests.

  19. Specific Genetic Disorders

    MedlinePlus

    ... of Genetic Terms Definitions for genetic terms Specific Genetic Disorders Many human diseases have a genetic component. ... Condition in an Adult The Undiagnosed Diseases Program Genetic Disorders Achondroplasia Alpha-1 Antitrypsin Deficiency Antiphospholipid Syndrome ...

  20. Genetic Model Fitting in IQ, Assortative Mating & Components of IQ Variance.

    ERIC Educational Resources Information Center

    Capron, Christiane; Vetta, Adrian R.; Vetta, Atam

    1998-01-01

    The biometrical school of scientists who fit models to IQ data traces their intellectual ancestry to R. Fisher (1918), but their genetic models have no predictive value. Fisher himself was critical of the concept of heritability, because assortative mating, such as for IQ, introduces complexities into the study of a genetic trait. (SLD)

  1. A Multiobjective Genetic Programming-Based Ensemble for Simultaneous Feature Selection and Classification.

    PubMed

    Nag, Kaustuv; Pal, Nikhil R

    2016-02-01

    We present an integrated algorithm for simultaneous feature selection (FS) and designing of diverse classifiers using a steady state multiobjective genetic programming (GP), which minimizes three objectives: 1) false positives (FPs); 2) false negatives (FNs); and 3) the number of leaf nodes in the tree. Our method divides a c -class problem into c binary classification problems. It evolves c sets of genetic programs to create c ensembles. During mutation operation, our method exploits the fitness as well as unfitness of features, which dynamically change with generations with a view to using a set of highly relevant features with low redundancy. The classifiers of i th class determine the net belongingness of an unknown data point to the i th class using a weighted voting scheme, which makes use of the FP and FN mistakes made on the training data. We test our method on eight microarray and 11 text data sets with diverse number of classes (from 2 to 44), large number of features (from 2000 to 49 151), and high feature-to-sample ratio (from 1.03 to 273.1). We compare our method with a bi-objective GP scheme that does not use any FS and rule size reduction strategy. It depicts the effectiveness of the proposed FS and rule size reduction schemes. Furthermore, we compare our method with four classification methods in conjunction with six features selection algorithms and full feature set. Our scheme performs the best for 380 out of 474 combinations of data sets, algorithm and FS method.

  2. Genetic simplex modeling of Eysenck's dimensions of personality in a sample of young Australian twins.

    PubMed

    Gillespie, Nathan A; Evans, David E; Wright, Margie M; Martin, Nicholas G

    2004-12-01

    The relative stability and magnitude of genetic and environmental effects underlying major dimensions of adolescent personality across time were investigated. The Junior Eysenck Personality Questionnaire was administered to over 540 twin pairs at ages 12, 14 and 16 years. Their personality scores were analyzed using genetic simplex modeling which explicitly took into account the longitudinal nature of the data. With the exception of the dimension lie, multivariate model fitting results revealed that familial aggregation was entirely explained by additive genetic effects. Results from simplex model fitting suggest that large proportions of the additive genetic variance observed at ages 14 and 16 years could be explained by genetic effects present at the age of 12 years. There was also evidence for smaller but significant genetic innovations at 14 and 16 years of age for male and female neuroticism, at 14 years for male extraversion, at 14 and 16 years for female psychoticism, and at 14 years for male psychoticism.

  3. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  4. Genetic Modulation of Lipid Profiles following Lifestyle Modification or Metformin Treatment: The Diabetes Prevention Program

    PubMed Central

    Jablonski, Kathleen A.; de Bakker, Paul I. W.; Taylor, Andrew; McAteer, Jarred; Pan, Qing; Horton, Edward S.; Delahanty, Linda M.; Altshuler, David; Shuldiner, Alan R.; Goldberg, Ronald B.; Florez, Jose C.; Bray, George A.; Culbert, Iris W.; Champagne, Catherine M.; Eberhardt, Barbara; Greenway, Frank; Guillory, Fonda G.; Herbert, April A.; Jeffirs, Michael L.; Kennedy, Betty M.; Lovejoy, Jennifer C.; Morris, Laura H.; Melancon, Lee E.; Ryan, Donna; Sanford, Deborah A.; Smith, Kenneth G.; Smith, Lisa L.; Amant, Julia A. St.; Tulley, Richard T.; Vicknair, Paula C.; Williamson, Donald; Zachwieja, Jeffery J.; Polonsky, Kenneth S.; Tobian, Janet; Ehrmann, David; Matulik, Margaret J.; Clark, Bart; Czech, Kirsten; DeSandre, Catherine; Hilbrich, Ruthanne; McNabb, Wylie; Semenske, Ann R.; Caro, Jose F.; Watson, Pamela G.; Goldstein, Barry J.; Smith, Kellie A.; Mendoza, Jewel; Liberoni, Renee; Pepe, Constance; Spandorfer, John; Donahue, Richard P.; Goldberg, Ronald B.; Prineas, Ronald; Rowe, Patricia; Calles, Jeanette; Cassanova-Romero, Paul; Florez, Hermes J.; Giannella, Anna; Kirby, Lascelles; Larreal, Carmen; McLymont, Valerie; Mendez, Jadell; Ojito, Juliet; Perry, Arlette; Saab, Patrice; Haffner, Steven M.; Montez, Maria G.; Lorenzo, Carlos; Martinez, Arlene; Hamman, Richard F.; Nash, Patricia V.; Testaverde, Lisa; Anderson, Denise R.; Ballonoff, Larry B.; Bouffard, Alexis; Calonge, B. Ned; Delve, Lynne; Farago, Martha; Hill, James O.; Hoyer, Shelley R.; Jortberg, Bonnie T.; Lenz, Dione; Miller, Marsha; Price, David W.; Regensteiner, Judith G.; Seagle, Helen; Smith, Carissa M.; Steinke, Sheila C.; VanDorsten, Brent; Horton, Edward S.; Lawton, Kathleen E.; Arky, Ronald A.; Bryant, Marybeth; Burke, Jacqueline P.; Caballero, Enrique; Callaphan, Karen M.; Ganda, Om P.; Franklin, Therese; Jackson, Sharon D.; Jacobsen, Alan M.; Jacobsen, Alan M.; Kula, Lyn M.; Kocal, Margaret; Malloy, Maureen A.; Nicosia, Maryanne; Oldmixon, Cathryn F.; Pan, Jocelyn; Quitingon, Marizel; Rubtchinsky, Stacy; Seely, Ellen W.; Schweizer, Dana; Simonson, Donald; Smith, Fannie; Solomon, Caren G.; Warram, James; Kahn, Steven E.; Montgomery, Brenda K.; Fujimoto, Wilfred; Knopp, Robert H.; Lipkin, Edward W.; Marr, Michelle; Trence, Dace; Kitabchi, Abbas E.; Murphy, Mary E.; Applegate, William B.; Bryer-Ash, Michael; Frieson, Sandra L.; Imseis, Raed; Lambeth, Helen; Lichtermann, Lynne C.; Oktaei, Hooman; Rutledge, Lily M.K.; Sherman, Amy R.; Smith, Clara M.; Soberman, Judith E.; Williams-Cleaves, Beverly; Metzger, Boyd E.; Johnson, Mariana K.; Behrends, Catherine; Cook, Michelle; Fitzgibbon, Marian; Giles, Mimi M.; Heard, Deloris; Johnson, Cheryl K.H.; Larsen, Diane; Lowe, Anne; Lyman, Megan; McPherson, David; Molitch, Mark E.; Pitts, Thomas; Reinhart, Renee; Roston, Susan; Schinleber, Pamela A.; Nathan, David M.; McKitrick, Charles; Turgeon, Heather; Abbott, Kathy; Anderson, Ellen; Bissett, Laurie; Cagliero, Enrico; Florez, Jose C.; Delahanty, Linda; Goldman, Valerie; Poulos, Alexandra; Olefsky, Jerrold M.; Carrion-Petersen, Mary Lou; Barrett-Connor, Elizabeth; Edelman, Steven V.; Henry, Robert R.; Horne, Javiva; Janesch, Simona Szerdi; Leos, Diana; Mudaliar, Sundar; Polonsky, William; Smith, Jean; Vejvoda, Karen; Pi-Sunyer, F. Xavier; Lee, Jane E.; Allison, David B.; Aronoff, Nancy J.; Crandall, Jill P.; Foo, Sandra T.; Pal, Carmen; Parkes, Kathy; Pena, Mary Beth; Rooney, Ellen S.; Wye, Gretchen E.H. Van; Viscovich, Kristine A.; Marrero, David G.; Prince, Melvin J.; Kelly, Susie M.; Dotson, Yolanda F.; Fineberg, Edwin S.; Guare, John C; Hadden, Angela M.; Ignaut, James M.; Jackson, Marcia L.; Kirkman, Marion S.; Mather, Kieren J.; Porter, Beverly D.; Roach, Paris J.; Rowland, Nancy D.; Wheeler, Madelyn L.; Ratner, Robert E.; Youssef, Gretchen; Shapiro, Sue; Bavido-Arrage, Catherine; Boggs, Geraldine; Bronsord, Marjorie; Brown, Ernestine; Cheatham, Wayman W.; Cola, Susan; Evans, Cindy; Gibbs, Peggy; Kellum, Tracy; Levatan, Claresa; Nair, Asha K.; Passaro, Maureen; Uwaifo, Gabriel; Saad, Mohammed F.; Budget, Maria; Jinagouda, Sujata; Akbar, Khan; Conzues, Claudia; Magpuri, Perpetua; Ngo, Kathy; Rassam, Amer; Waters, Debra; Xapthalamous, Kathy; Santiago, Julio V.; Dagogo-Jack, Samuel; White, Neil H.; Das, Samia; Santiago, Ana; Brown, Angela; Fisher, Edwin; Hurt, Emma; Jones, Tracy; Kerr, Michelle; Ryder, Lucy; Wernimont, Cormarie; Saudek, Christopher D.; Bradley, Vanessa; Sullivan, Emily; Whittington, Tracy; Abbas, Caroline; Brancati, Frederick L.; Clark, Jeanne M.; Charleston, Jeanne B.; Freel, Janice; Horak, Katherine; Jiggetts, Dawn; Johnson, Deloris; Joseph, Hope; Loman, Kimberly; Mosley, Henry; Rubin, Richard R.; Samuels, Alafia; Stewart, Kerry J.; Williamson, Paula; Schade, David S.; Adams, Karwyn S.; Johannes, Carolyn; Atler, Leslie F.; Boyle, Patrick J.; Burge, Mark R.; Canady, Janene L.; Chai, Lisa; Gonzales, Ysela; Hernandez-McGinnis, Doris A.; Katz, Patricia; King, Carolyn; Rassam, Amer; Rubinchik, Sofya; Senter, Willette; Waters, Debra; Shamoon, Harry; Brown, Janet O.; Adorno, Elsie; Cox, Liane; Crandall, Jill; Duffy, Helena; Engel, Samuel; Friedler, Allison; Howard-Century, Crystal J.; Kloiber, Stacey; Longchamp, Nadege; Martinez, Helen; Pompi, Dorothy; Scheindlin, Jonathan; Violino, Elissa; Walker, Elizabeth; Wylie-Rosett, Judith; Zimmerman, Elise; Zonszein, Joel; Orchard, Trevor; Wing, Rena R.; Koenning, Gaye; Kramer, M. Kaye; Barr, Susan; Boraz, Miriam; Clifford, Lisa; Culyba, Rebecca; Frazier, Marlene; Gilligan, Ryan; Harrier, Susan; Harris, Louann; Jeffries, Susan; Kriska, Andrea; Manjoo, Qurashia; Mullen, Monica; Noel, Alicia; Otto, Amy; Semler, Linda; Smith, Cheryl F.; Smith, Marie; Venditti, Elizabeth; Weinzierl, Valarie; Williams, Katherine V.; Wilson, Tara; Arakaki, Richard F.; Latimer, Renee W.; Baker-Ladao, Narleen K.; Beddow, Ralph; Dias, Lorna; Inouye, Jillian; Mau, Marjorie K.; Mikami, Kathy; Mohideen, Pharis; Odom, Sharon K.; Perry, Raynette U.; Knowler, William C.; Cooeyate, Norman; Hoskin, Mary A.; Percy, Carol A.; Acton, Kelly J.; Andre, Vickie L.; Barber, Rosalyn; Begay, Shandiin; Bennett, Peter H.; Benson, Mary Beth; Bird, Evelyn C.; Broussard, Brenda A.; Chavez, Marcella; Dacawyma, Tara; Doughty, Matthew S.; Duncan, Roberta; Edgerton, Cyndy; Ghahate, Jacqueline M.; Glass, Justin; Glass, Martia; Gohdes, Dorothy; Grant, Wendy; Hanson, Robert L.; Horse, Ellie; Ingraham, Louise E.; Jackson, Merry; Jay, Priscilla; Kaskalla, Roylen S.; Kessler, David; Kobus, Kathleen M.; Krakoff, Jonathan; Manus, Catherine; Michaels, Sara; Morgan, Tina; Nashboo, Yolanda; Nelson, Julie A.; Poirier, Steven; Polczynski, Evette; Reidy, Mike; Roumain, Jeanine; Rowse, Debra; Sangster, Sandra; Sewenemewa, Janet; Tonemah, Darryl; Wilson, Charlton; Yazzie, Michelle; Bain, Raymond; Fowler, Sarah; Brenneman, Tina; Abebe, Solome; Bamdad, Julie; Callaghan, Jackie; Edelstein, Sharon L.; Gao, Yuping; Grimes, Kristina L.; Grover, Nisha; Haffner, Lori; Jones, Steve; Jones, Tara L.; Katz, Richard; Lachin, John M.; Mucik, Pamela; Orlosky, Robert; Rochon, James; Sapozhnikova, Alla; Sherif, Hanna; Stimpson, Charlotte; Temprosa, Marinella; Walker-Murray, Fredricka; Marcovina, Santica; Strylewicz, Greg; Aldrich, F. Alan; O'Leary, Dan; Stamm, Elizabeth; Rautaharju, Pentti; Prineas, Ronald J.; Alexander, Teresa; Campbell, Charles; Hall, Sharon; Li, Yabing; Mills, Margaret; Pemberton, Nancy; Rautaharju, Farida; Zhang, Zhuming; Mayer-Davis, Elizabeth; Moran, Robert R.; Ganiats, Ted; David, Kristin; Sarkin, Andrew J.; Eastman, R.; Fradkin, Judith; Garfield, Sanford; Gregg, Edward; Zhang, Ping; Herman, William; Florez, Jose C.; Altshuler, David; de Bakker, Paul I.W.; Franks, Paul W.; Hanson, Robert L.; Jablonski, Kathleen; Knowler, William C.; McAteer, Jarred B.; Pollin, Toni I.; Shuldiner, Alan R.

    2012-01-01

    Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04–1×10−17). Except for total HDL particles (r = −0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07–0.17, P = 5×10−5–1×10−19). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE±0.22 mg/dl/allele, P = 8×10−5, Pinteraction = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE±0.22 mg/dl/allele, P = 0.35) or metformin (β = −0.03, SEE±0.22 mg/dl/allele, P = 0.90; Pinteraction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE±0.012 ln nmol/L/allele, P = 0.01, Pinteraction = 0.01) but not in the placebo (β = −0.002, SEE±0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE±0.008 nmol/L/allele, P = 0.12; Pinteraction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss. PMID:22951888

  5. Genetic modulation of lipid profiles following lifestyle modification or metformin treatment: the Diabetes Prevention Program.

    PubMed

    Pollin, Toni I; Isakova, Tamara; Jablonski, Kathleen A; de Bakker, Paul I W; Taylor, Andrew; McAteer, Jarred; Pan, Qing; Horton, Edward S; Delahanty, Linda M; Altshuler, David; Shuldiner, Alan R; Goldberg, Ronald B; Florez, Jose C; Franks, Paul W

    2012-01-01

    Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04-1 × 10(-17)). Except for total HDL particles (r = -0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07-0.17, P = 5 × 10(-5)-1 10(-19)). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE ± 0.22 mg/dl/allele, P = 8 × 10(-5), P(interaction) = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE ± 0.22 mg/dl/allele, P = 0.35) or metformin (β = -0.03, SEE ± 0.22 mg/dl/allele, P = 0.90; P(interaction) = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE ± 0.012 ln nmol/L/allele, P = 0.01, P(interaction) = 0.01) but not in the placebo (β = -0.002, SEE ± 0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE ± 0.008 nmol/L/allele, P = 0.12; P(interaction) = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.

  6. The Health Consultation Program: a model school nurse education program.

    PubMed

    Larter, N; Chernick, L; Maire, J A; DuBois, E

    1999-08-01

    The Health Consultation Program (HCP) provides educational resources to school nurses throughout the state of Washington. It has several components, including consultation with clinical nurse specialists, a video lending library, health education materials, continuing education seminars, and preceptorships. School nurses access desired services to assist them in a variety of activities, such as developing individualized health care plans or teaching other school personnel about a child's special needs. Quotations from school nurses gathered during HCP evaluations indicate greater self-care abilities by students, improved skills of teachers and other professionals, increased planning for safe and appropriate care, and improved quality of care. PMID:10745798

  7. Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model

    NASA Astrophysics Data System (ADS)

    Ushijima, Timothy T.; Yeh, William W.-G.

    2013-10-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.

  8. Rodent models of genetic contributions to motivation to abuse alcohol.

    PubMed

    Crabbe, John C

    2014-01-01

    In summary, there are remarkably few studies focused on the genetic contributions to alcohol's reinforcing values. Almost all such studies examine the two-bottle preference test. Despite the deficiencies I have raised in its interpretation, a rodent genotype's willingness to drink ethanol when water is freely available offers a reasonable aggregate estimate of alcohol's reinforcing value relative to other genotypes (Green and Grahame 2008). As indicated above, however, preference drinking studies will likely never avoid the confounding role of taste preferences and most often yield intake levels not sufficient to yield a pharmacologically significant BAL. Thus, the quest for improved measures of reinforcing value continues. Of the potential motivational factors considered by McClearn in his seminal review in this series, we can safely conclude that rodent alcohol drinking is not primarily directed at obtaining calories. The role of taste (and odor) remains a challenge. McClearn appears to have been correct that especially those genotypes that avoid alcohol are probably doing so based on preingestive sensory cues; however, postingestive consequences are also important. Cunningham's intragastric model shows the role of both preingestional and postingestional modulating factors for the best known examples, the usually nearly absolutely alcohol-avoiding DBA/2J and HAP-2 mice. Much subsequent data reinforce McClearn's earlier conclusion that C57BL/6J mice, at least, do not regulate their intake around a given self-administered dose of alcohol by adjusting their intake. This leaves us with the puzzle of why nearly all genotypes, even those directionally selectively bred for high voluntary intake for many generations, fail to self-administer intoxicating amounts of alcohol. Since McClearn's review, many ingenious assays to index alcohol's motivational effects have been used extensively, and new methods for inducing dependence have supplanted the older ones prevalent in

  9. Genetic variation, climate models and the ecological genetics of Larix occidentalis

    SciTech Connect

    Rehfeldt, G.E.

    1995-12-31

    Provenance tests of 138 populations of Larix occidentalis revealed genetic differentiation for eight variables describing growth, phenology, tolerance to spring frosts, effects of Meria laricis needle cast, and survival. Geographic variables accounted for as much as 34% of the variance among Rocky Mountain populations. Patterns of genetic variation were dominated by the effects of latitude and elevation, with populations from the north and from high elevations having the lowest growth potential, the least tolerance to the needle cast, and the lowest survival. However, the slope of the geographic clines was relatively flat. Populations in the same geographic area, for instance, need to be separated by about 500 m in elevation before genetic differentiation can be expected.

  10. A Context-Restrictive Model for Program Evaluation?

    ERIC Educational Resources Information Center

    Swales,John M.

    1990-01-01

    Discusses a proposed "context adaptive" model for English-as-a-Second-Language program evaluation and suggests that the boundaries are set too narrowly within this model between phenomena and contexts and that the model of the Reading English for Science and Technology program in Guadalajara (Mexico) suffers from this constriction. (eight…

  11. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models

    PubMed Central

    Lehermeier, Christina; Schön, Chris-Carolin; de los Campos, Gustavo

    2015-01-01

    Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to “correct” for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. PMID:26122758

  12. Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction.

    PubMed

    Cardoso, F F; Tempelman, R J

    2012-07-01

    The objectives of this work were to assess alternative linear reaction norm (RN) models for genetic evaluation of Angus cattle in Brazil. That is, we investigated the interaction between genotypes and continuous descriptors of the environmental variation to examine evidence of genotype by environment interaction (G×E) in post-weaning BW gain (PWG) and to compare the environmental sensitivity of national and imported Angus sires. Data were collected by the Brazilian Angus Improvement Program from 1974 to 2005 and consisted of 63,098 records and a pedigree file with 95,896 animals. Six models were implemented using Bayesian inference and compared using the Deviance Information Criterion (DIC). The simplest model was M(1), a traditional animal model, which showed the largest DIC and hence the poorest fit when compared with the 4 alternative RN specifications accounting for G×E. In M(2), a 2-step procedure was implemented using the contemporary group posterior means of M(1) as the environmental gradient, ranging from -92.6 to +265.5 kg. Moreover, the benefits of jointly estimating all parameters in a 1-step approach were demonstrated by M(3). Additionally, we extended M(3) to allow for residual heteroskedasticity using an exponential function (M(4)) and the best fitting (smallest DIC) environmental classification model (M(5)) specification. Finally, M(6) added just heteroskedastic residual variance to M(1). Heritabilities were less at harsh environments and increased with the improvement of production conditions for all RN models. Rank correlations among genetic merit predictions obtained by M(1) and by the best fitting RN models M(3) (homoskedastic) and M(5) (heteroskedastic) at different environmental levels ranged from 0.79 and 0.81, suggesting biological importance of G×E in Brazilian Angus PWG. These results suggest that selection progress could be optimized by adopting environment-specific genetic merit predictions. The PWG environmental sensitivity of

  13. Mouse models as a tool to unravel the genetic basis for human otitis media

    PubMed Central

    Zheng, Qing Yin; Hardisty-Hughes, Rachel; Brown, Steve D.M.

    2010-01-01

    The pathogenesis of otitis media (OM) is multifactorial and includes infection, anatomical factors, immunologic status, genetic predisposition, and environmental factors. OM remains the most common cause of hearing impairment in childhood. Genetic predisposition is increasingly recognized as an important factor. The completion of the mouse genome sequence has offered a powerful basket of tools for investigating gene function and can expect to generate a rich resource of mouse mutants for the elucidation of genetic factors underlying OM. We review the literature and discuss recent progresses in developing mouse models and using mouse models to uncover the genetic basis for human OM. PMID:16917982

  14. Programming models for energy-aware systems

    NASA Astrophysics Data System (ADS)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  15. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    PubMed

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  16. Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm.

    PubMed

    Andrikou, Carmen; Pai, Chih-Yu; Su, Yi-Hsien; Arnone, Maria Ina

    2015-07-28

    Evolutionary origin of muscle is a central question when discussing mesoderm evolution. Developmental mechanisms underlying somatic muscle development have mostly been studied in vertebrates and fly where multiple signals and hierarchic genetic regulatory cascades selectively specify myoblasts from a pool of naive mesodermal progenitors. However, due to the increased organismic complexity and distant phylogenetic position of the two systems, a general mechanistic understanding of myogenesis is still lacking. In this study, we propose a gene regulatory network (GRN) model that promotes myogenesis in the sea urchin embryo, an early branching deuterostome. A fibroblast growth factor signaling and four Forkhead transcription factors consist the central part of our model and appear to orchestrate the myogenic process. The topological properties of the network reveal dense gene interwiring and a multilevel transcriptional regulation of conserved and novel myogenic genes. Finally, the comparison of the myogenic network architecture among different animal groups highlights the evolutionary plasticity of developmental GRNs.

  17. Programs.

    ERIC Educational Resources Information Center

    Community College Journal, 1996

    1996-01-01

    Includes a collection of eight short articles describing model community college programs. Discusses a literacy program, a mobile computer classroom, a support program for at-risk students, a timber-harvesting program, a multimedia presentation on successful women graduates, a career center, a collaboration with NASA, and an Israeli engineering…

  18. A new genetic fuzzy system approach for parameter estimation of ARIMA model

    NASA Astrophysics Data System (ADS)

    Hassan, Saima; Jaafar, Jafreezal; Belhaouari, Brahim S.; Khosravi, Abbas

    2012-09-01

    The Autoregressive Integrated moving Average model is the most powerful and practical time series model for forecasting. Parameter estimation is the most crucial part in ARIMA modeling. Inaccurate and wrong estimated parameters lead to bias and unacceptable forecasting results. Parameter optimization can be adopted in order to increase the demand forecasting accuracy. A paradigm of the fuzzy system and a genetic algorithm is proposed in this paper as a parameter estimation approach for ARIMA. The new approach will optimize the parameters by tuning the fuzzy membership functions with a genetic algorithm. The proposed Hybrid model of ARIMA and the genetic fuzzy system will yield acceptable forecasting results.

  19. Plasmodium falciparum genetic crosses in a humanized mouse model

    PubMed Central

    Vaughan, Ashley M.; Pinapati, Richard S.; Cheeseman, Ian H.; Camargo, Nelly; Fishbaugher, Matthew; Checkley, Lisa A.; Nair, Shalini; Hutyra, Carolyn A.; Nosten, François H.; Anderson, Timothy J. C.; Ferdig, Michael T.; Kappe, Stefan H. I.

    2015-01-01

    Genetic crosses of phenotypically distinct strains of the human malaria parasite Plasmodium falciparum are a powerful tool for identifying genes controlling drug resistance and other key phenotypes. Previous studies relied on the isolation of recombinant parasites from splenectomized chimpanzees, a research avenue that is no longer available. Here, we demonstrate that human-liver chimeric mice support recovery of recombinant progeny for the identification of genetic determinants of parasite traits and adaptations. PMID:26030447

  20. Evaluating Vocational Programs: A Three Dimensional Model.

    ERIC Educational Resources Information Center

    Rehman, Sharaf N.; Nejad, Mahmoud

    The traditional methods of assessing the academic programs in the liberal arts are inappropriate for evaluating vocational and technical programs. In traditional academic disciplines, assessment of instruction is conducted in two fashions: student evaluation at the end of a course and institutional assessment of its goals and mission. Because of…

  1. Model Program: West Springfield High School, Virginia

    ERIC Educational Resources Information Center

    Alukonis, J. T.; Settar, Scott

    2008-01-01

    West Springfield High School sits on the outskirts of Washington, D.C., in Fairfax County, Virginia. WSHS is home to a thriving and growing technology education program. In recent years, the program has exploded from less than 175 students to well over 425. These numbers are expected to continue to grow in the foreseeable future. In 2002, the…

  2. Successful Secondary Programs and Training Models.

    ERIC Educational Resources Information Center

    BOCES Geneseo Migrant Center, Geneseo, NY.

    This report profiles 16 successful programs currently serving migrant secondary students and out-of-school youth. Background information describes instructional and support-service strategies that have been effective in migrant programs. Strategies include advocacy, assisted studies, career development, counseling, credit accrual, distance…

  3. Evaluating Individualized Reading Programs: A Bayesian Model.

    ERIC Educational Resources Information Center

    Maxwell, Martha

    Simple Bayesian approaches can be applied to answer specific questions in evaluating an individualized reading program. A small reading and study skills program located in the counseling center of a major research university collected and compiled data on student characteristics such as class, number of sessions attended, grade point average, and…

  4. Model Teacher - School Dental Hygiene Program.

    ERIC Educational Resources Information Center

    Smith, Lowell W.

    The purpose of this study, which was carried out during the 1972-73 school year at three parochial schools in the Houston area, was to determine the effectiveness of the Toothkeeper Program, a multimedia program of oral hygiene training carefully developed and packaged to establish effective long-term dental hygiene practice. The study population…

  5. Models of Effective Migrant Education Programs.

    ERIC Educational Resources Information Center

    Mattera, Gloria

    Intended to encourage both migrant and non-migrant educators to explore the possibilities of adopting and/or adapting the cited programs or appropriate components into their own units, this volume updates the 1974 description of some of the many programs that have proven effective in serving migrant students. Chapter I summarizes seven programs…

  6. Visual Teaching Model for Introducing Programming Languages

    ERIC Educational Resources Information Center

    Shehane, Ronald; Sherman, Steven

    2014-01-01

    This study examines detailed usage of online training videos that were designed to address specific course problems that were encountered in an online computer programming course. The study presents the specifics of a programming course where training videos were used to provide students with a quick start path to learning a new programming…

  7. Effects of genetic variants previously associated with fasting glucose and insulin in the Diabetes Prevention Program.

    PubMed

    Florez, Jose C; Jablonski, Kathleen A; McAteer, Jarred B; Franks, Paul W; Mason, Clinton C; Mather, Kieren; Horton, Edward; Goldberg, Ronald; Dabelea, Dana; Kahn, Steven E; Arakaki, Richard F; Shuldiner, Alan R; Knowler, William C

    2012-01-01

    Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention. We genotyped previously reported polymorphisms (or their proxies) in/near G6PC2, MTNR1B, GCK, DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P<0.001), G6PC2 (P = 0.002) and GCKR (P = 0.001). We noted impaired β-cell function in carriers of glucose-raising alleles at MTNR1B (P<0.001), and an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P<0.001). The association of MTNR1B with fasting glucose and impaired β-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P<0.001). We detected no significant impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program.

  8. Effects of genetic variants previously associated with fasting glucose and insulin in the Diabetes Prevention Program.

    PubMed

    Florez, Jose C; Jablonski, Kathleen A; McAteer, Jarred B; Franks, Paul W; Mason, Clinton C; Mather, Kieren; Horton, Edward; Goldberg, Ronald; Dabelea, Dana; Kahn, Steven E; Arakaki, Richard F; Shuldiner, Alan R; Knowler, William C

    2012-01-01

    Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention. We genotyped previously reported polymorphisms (or their proxies) in/near G6PC2, MTNR1B, GCK, DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P<0.001), G6PC2 (P = 0.002) and GCKR (P = 0.001). We noted impaired β-cell function in carriers of glucose-raising alleles at MTNR1B (P<0.001), and an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P<0.001). The association of MTNR1B with fasting glucose and impaired β-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P<0.001). We detected no significant impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program. PMID:22984506

  9. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs

    PubMed Central

    Clark, Matt Q.; McCumsey, Stephanie J.; Lopez-Darwin, Sereno; Heckscher, Ellie S.; Doe, Chris Q.

    2016-01-01

    Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons) are used in all these behaviors, but the identity (or even existence) of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines—chosen for sparse neuronal expression—to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°). A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program. PMID:27172197

  10. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    SciTech Connect

    Not Available

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  11. Outdoor Program Models: Placing Cooperative Adventure and Adventure Education Models on the Continuum.

    ERIC Educational Resources Information Center

    Guthrie, Steven P.

    In two articles on outdoor programming models, Watters distinguished four models on a continuum ranging from the common adventure model, with minimal organizational structure and leadership control, to the guide service model, in which leaders are autocratic and trips are highly structured. Club programs and instructional programs were in between,…

  12. Genetic and genomic analysis of RNases in model cyanobacteria.

    PubMed

    Cameron, Jeffrey C; Gordon, Gina C; Pfleger, Brian F

    2015-10-01

    Cyanobacteria are diverse photosynthetic microbes with the ability to convert CO2 into useful products. However, metabolic engineering of cyanobacteria remains challenging because of the limited resources for modifying the expression of endogenous and exogenous biochemical pathways. Fine-tuned control of protein production will be critical to optimize the biological conversion of CO2 into desirable molecules. Messenger RNAs (mRNAs) are labile intermediates that play critical roles in determining the translation rate and steady-state protein concentrations in the cell. The majority of studies on mRNA turnover have focused on the model heterotrophic bacteria Escherichia coli and Bacillus subtilis. These studies have elucidated many RNA modifying and processing enzymes and have highlighted the differences between these Gram-negative and Gram-positive bacteria, respectively. In contrast, much less is known about mRNA turnover in cyanobacteria. We generated a compendium of the major ribonucleases (RNases) and provide an in-depth analysis of RNase III-like enzymes in commonly studied and diverse cyanobacteria. Furthermore, using targeted gene deletion, we genetically dissected the RNases in Synechococcus sp. PCC 7002, one of the fastest growing and industrially attractive cyanobacterial strains. We found that all three cyanobacterial homologs of RNase III and a member of the RNase II/R family are not essential under standard laboratory conditions, while homologs of RNase E/G, RNase J1/J2, PNPase, and a different member of the RNase II/R family appear to be essential for growth. This work will enhance our understanding of native control of gene expression and will facilitate the development of an RNA-based toolkit for metabolic engineering in cyanobacteria.

  13. Ballooning dispersal using silk: world fauna, phylogenies, genetics and models.

    PubMed

    Bell, J R; Bohan, D A; Shaw, E M; Weyman, G S

    2005-04-01

    Aerial dispersal using silk ('ballooning') has evolved in spiders (Araneae), spider mites (Acari) and in the larvae of moths (Lepidoptera). Since the 17th century, over 500 observations of ballooning behaviours have been published, yet there is an absence of any evolutionary synthesis of these data. In this paper the literature is reviewed, extensively documenting the known world fauna that balloon and the principal behaviours involved. This knowledge is then incorporated into the current evolutionary phylogenies to examine how ballooning might have arisen. Whilst it is possible that ballooning co-evolved with silk and emerged as early as the Devonian (410-355 mya), it is arguably more likely that ballooning evolved in parallel with deciduous trees, herbaceous annuals and grasses in the Cretaceous (135-65 mya). During this period, temporal (e.g. bud burst, chlorophyll thresholds) and spatial (e.g. herbivory, trampling) heterogeneities in habitat structuring predominated and intensified into the Cenozoic (65 mya to the present). It is hypothesized that from the ancestral launch mechanism known as 'suspended ballooning', widely used by individuals in plant canopies, 'tip-toe' and 'rearing' take-off behaviours were strongly selected for as habitats changed. It is contended that ballooning behaviour in all three orders can be described as a mixed Evolutionary Stable Strategy. This comprises individual bet-hedging due to habitat unpredictability, giving an underlying randomness to individual ballooning, with adjustments to the individual ballooning probability being conferred by more predictable habitat changes or colonization strategies. Finally, current methods used to study ballooning, including modelling and genetic research, are illustrated and an indication of future prospects given.

  14. Support for Career Development in Youth: Program Models and Evaluations

    ERIC Educational Resources Information Center

    Mekinda, Megan A.

    2012-01-01

    This article examines four influential programs--Citizen Schools, After School Matters, career academies, and Job Corps--to demonstrate the diversity of approaches to career programming for youth. It compares the specific program models and draws from the evaluation literature to discuss strengths and weaknesses of each. The article highlights…

  15. A Model Program for Dental Assisting Education in California.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Industrial Education.

    Intended to provide assistance for developing new programs and improving existing ones, the guide was constructed by dental assisting instructors and other professional participants in a 196 5 workshop conference. Elements of the model program were derived from a statistical analysis of California junior colleg e programs in dental assisting and…

  16. Energy efficiency in nonprofit agencies: Creating effective program models

    SciTech Connect

    Brown, M.A.; Prindle, B.; Scherr, M.I.; White, D.L.

    1990-08-01

    Nonprofit agencies are a critical component of the health and human services system in the US. It has been clearly demonstrated by programs that offer energy efficiency services to nonprofits that, with minimal investment, they can educe their energy consumption by ten to thirty percent. This energy conservation potential motivated the Department of Energy and Oak Ridge National Laboratory to conceive a project to help states develop energy efficiency programs for nonprofits. The purpose of the project was two-fold: (1) to analyze existing programs to determine which design and delivery mechanisms are particularly effective, and (2) to create model programs for states to follow in tailoring their own plans for helping nonprofits with energy efficiency programs. Twelve existing programs were reviewed, and three model programs were devised and put into operation. The model programs provide various forms of financial assistance to nonprofits and serve as a source of information on energy efficiency as well. After examining the results from the model programs (which are still on-going) and from the existing programs, several replicability factors'' were developed for use in the implementation of programs by other states. These factors -- some concrete and practical, others more generalized -- serve as guidelines for states devising program based on their own particular needs and resources.

  17. Subscale Beryllium Mirrors Demonstrator (SBMD) Program Summary and Ball Modeling

    NASA Technical Reports Server (NTRS)

    Kendrick, Stephen; Brown, Robert; Stahl, Philip (Technical Monitor)

    2001-01-01

    The SBMD Program was to design, fabricate, and test a 0.5-m beryllium lightweighted mirror applicable to space deployable systems with demanding optical and areal density requirements. This presentation summarizes the program's objectives and the mirror's tested technical performance along with lessons learned. In addition, test results are compared to modeling predictions. The SBMD Program was funded by NASA MSFC.

  18. Evaluating an English Language Teacher Education Program through Peacock's Model

    ERIC Educational Resources Information Center

    Coskun, Abdullah; Daloglu, Aysegul

    2010-01-01

    The main aim of this study is to draw attention to the importance of program evaluation for teacher education programs and to reveal the pre-service English teacher education program components that are in need of improvement or maintenance both from teachers' and students' perspectives by using Peacock's (2009) recent evaluation model in a…

  19. A verification of the genetic programming method in the inverse analysis of moisture transport in building materials

    NASA Astrophysics Data System (ADS)

    Kočí, Jan; Maděra, Jiří; Černý, Robert

    2013-10-01

    Verification of genetic programming (GP) as a new approach for solving inverse problems of moisture transport in building materials is presented. The GP is applied on experimental data in order to optimize the moisture diffusivity as a function of moisture content. The results show that GP is very powerful tool for the inverse analysis of transport equations.

  20. Using microsatellite DNA markers to determine the genetic identity of parental clones used in the Louisiana sugarcane breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane propagates asexually through vegetative cuttings. To validate the genetic identity of sugarcane clones during shipping and handling, we produced molecular fingerprints based on 21 microsatellite (SSR) DNA markers for 116 Louisiana parental clones that were included in the crossing program...

  1. Assessing a landscape barrier using genetic simulation modelling: implications for raccoon rabies management.

    PubMed

    Rees, Erin E; Pond, Bruce A; Cullingham, Catherine I; Tinline, Rowland; Ball, David; Kyle, Christopher J; White, Bradley N

    2008-08-15

    Landscape barriers influence movement patterns of animals, which in turn, affect spatio-temporal spread of infectious wildlife disease. We compare genetic data from computer simulations to those acquired from field samples to measure the effect of a landscape barrier on raccoon (Procyon lotor) movement, enabling risk assessment of raccoon rabies disease spread across the Niagara River from New York State into Ontario, an area currently uninfected by rabies. An individual-based spatially explicit model is used to simulate the expansion of a raccoon population to cross the Niagara River, for different permeabilities of the river to raccoon crossings. Since the model records individual raccoon genetics, the genetic population structure of neutral mitochondrial DNA haplotypes are characterised in the expanding population, every 25 years, using a genetic distance measure, phi ST, Mantel tests and a gene diversity measure. The river barrier effect is assessed by comparing genetic measures computed from model outputs to those calculated from 166 raccoons recently sampled from the same landscape. The "best fit" between modelled scenarios and field data indicate the river prevents 50% of attempts to cross the river. Founder effects dominated the colonizing genetic population structure, and, as the river barrier effect increased, its genetic diversity decreased. Using gene flow to calibrate the effect of the river as a barrier to movement provides an estimate of the effect of a river in reducing the likelihood of cross-river infection. Including individual genetic markers in simulation modelling benefits investigations of disease spread and control.

  2. Genetic disruption of KSHV major latent nuclear antigen LANA enhances viral lytic transcriptional program

    SciTech Connect

    Li Qiuhua; Zhou Fuchun; Ye Fengchun; Gao Shoujiang

    2008-09-30

    Following primary infection, KSHV establishes a lifelong persistent latent infection in the host. The mechanism of KSHV latency is not fully understood. The latent nuclear antigen (LANA or LNA) encoded by ORF73 is one of a few viral genes expressed during KSHV latency, and is consistently detected in all KSHV-related malignancies. LANA is essential for KSHV episome persistence, and regulates the expression of viral lytic genes through epigenetic silencing, and inhibition of the expression and transactivation function of the key KSHV lytic replication initiator RTA (ORF50). In this study, we used a genetic approach to examine the role of LANA in regulating KSHV lytic replication program. Deletion of LANA did not affect the expression of its adjacent genes vCyclin (ORF72) and vFLIP (ORF71). In contrast, the expression levels of viral lytic genes including immediate-early gene RTA, early genes MTA (ORF57), vIL-6 (ORF-K2) and ORF59, and late gene ORF-K8.1 were increased before and after viral lytic induction with 12-O-tetradecanoyl-phorbol-13-acetate and sodium butyrate. This enhanced expression of viral lytic genes was also observed following overexpression of RTA with or without simultaneous chemical induction. Consistent with these results, the LANA mutant cells produced more infectious virions than the wild-type virus cells did. Furthermore, genetic repair of the mutant virus reverted the phenotypes to those of wild-type virus. Together, these results have demonstrated that, in the context of viral genome, LANA contributes to KSHV latency by regulating the expression of RTA and its downstream genes.

  3. Genetic Disruption of KSHV Major Latent Nuclear Antigen LANA Enhances Viral Lytic 2 Transcriptional Program

    PubMed Central

    Li, Qiuhua; Zhou, Fuchun; Ye, Fengchun; Gao, Shou-Jiang

    2008-01-01

    Following primary infection, KSHV establishes a lifelong persistent latent infection in the host. The mechanism of KSHV latency is not fully understood. The latent nuclear antigen (LANA or LNA) encoded by ORF73 is one of a few viral genes expressed during KSHV latency, and is consistently detected in all KSHV-related malignancies. LANA is essential for KSHV episome persistence, and regulates the expression of viral lytic genes through epigenetic silencing, and inhibition of the expression and transactivation function of the key KSHV lytic replication initiator RTA (ORF50). In this study, we used a genetic approach to examine the role of LANA in regulating KSHV lytic replication program. Deletion of LANA did not affect the expression of its adjacent genes vCyclin (ORF72) and vFLIP (ORF71). In contrast, the expression levels of viral lytic genes including immediate-early gene RTA, early genes MTA (ORF57), vIL-6 (ORF-K2) and ORF59, and late gene ORF-K8.1 were increased before and after viral lytic induction with 12-O-tetradecanoyl-phorbol-13-acetate and sodium butyrate. This enhanced expression of viral lytic genes was also observed following overexpression of RTA with or without simultaneous chemical induction. Consistent with these results, the LANA mutant cells produced more infectious virions than the wild-type virus cells did. Furthermore, genetic repair of the mutant virus reverted the phenotypes to those of wild-type virus. Together, these results have demonstrated that, in the context of viral genome, LANA contributes to KSHV latency by regulating the expression of RTA and its downstream genes. PMID:18684478

  4. Automatic Generation of English-Japanese Translation Pattern Utilizing Genetic Programming Technique

    NASA Astrophysics Data System (ADS)

    Matsumura, Koki; Tamekuni, Yuji; Kimura, Shuhei

    There are a lot of constructional differences in an English-Japanese phrase template, and that often makes the act of translation difficult. Moreover, there exist various and tremendous phrase templates and sentence to be refered to. It is not easy to prepare the corpus that covers the all. Therefore, it is very significant to generate the translation pattern of the sentence pattern automatically from a viewpoint of the translation success rate and the capacity of the pattern dictionary. Then, for the purpose of realizing the automatic generation of the translation pattern, this paper proposed the new method for the generation of the translation pattern by using the genetic programming technique (GP). The technique tries to generate the translation pattern of various sentences which are not registered in the phrase template dictionary automatically by giving the genetic operation to the parsing tree of a basic pattern. The tree consists of the pair of the English-Japanese sentence generated as the first stage population. The analysis tree data base with 50,100,150,200 pairs was prepared as the first stage population. And this system was applied and executed for an English input of 1,555 sentences. As a result, the analysis tree increases from 200 to 517, and the accuracy rate of the translation pattern has improved from 42.57% to 70.10%. And, 86.71% of the generated translations was successfully done, whose meanings are enough acceptable and understandable. It seemed that this proposal technique became a clue to raise the translation success rate, and to find the possibility of the reduction of the analysis tree data base.

  5. Symbolic regression via genetic programming for data driven derivation of confinement scaling laws without any assumption on their mathematical form

    NASA Astrophysics Data System (ADS)

    Murari, A.; Peluso, E.; Gelfusa, M.; Lupelli, I.; Lungaroni, M.; Gaudio, P.

    2015-01-01

    Many measurements are required to control thermonuclear plasmas and to fully exploit them scientifically. In the last years JET has shown the potential to generate about 50 GB of data per shot. These amounts of data require more sophisticated data analysis methodologies to perform correct inference and various techniques have been recently developed in this respect. The present paper covers a new methodology to extract mathematical models directly from the data without any a priori assumption about their expression. The approach, based on symbolic regression via genetic programming, is exemplified using the data of the International Tokamak Physics Activity database for the energy confinement time. The best obtained scaling laws are not in power law form and suggest a revisiting of the extrapolation to ITER. Indeed the best non-power law scalings predict confinement times in ITER approximately between 2 and 3 s. On the other hand, more comprehensive and better databases are required to fully profit from the power of these new methods and to discriminate between the hundreds of thousands of models that they can generate.

  6. Estimation of soil cation exchange capacity using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS)

    NASA Astrophysics Data System (ADS)

    Emamgolizadeh, S.; Bateni, S. M.; Shahsavani, D.; Ashrafi, T.; Ghorbani, H.

    2015-10-01

    The soil cation exchange capacity (CEC) is one of the main soil chemical properties, which is required in various fields such as environmental and agricultural engineering as well as soil science. In situ measurement of CEC is time consuming and costly. Hence, numerous studies have used traditional regression-based techniques to estimate CEC from more easily measurable soil parameters (e.g., soil texture, organic matter (OM), and pH). However, these models may not be able to adequately capture the complex and highly nonlinear relationship between CEC and its influential soil variables. In this study, Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) were employed to estimate CEC from more readily measurable soil physical and chemical variables (e.g., OM, clay, and pH) by developing functional relations. The GEP- and MARS-based functional relations were tested at two field sites in Iran. Results showed that GEP and MARS can provide reliable estimates of CEC. Also, it was found that the MARS model (with root-mean-square-error (RMSE) of 0.318 Cmol+ kg-1 and correlation coefficient (R2) of 0.864) generated slightly better results than the GEP model (with RMSE of 0.270 Cmol+ kg-1 and R2 of 0.807). The performance of GEP and MARS models was compared with two existing approaches, namely artificial neural network (ANN) and multiple linear regression (MLR). The comparison indicated that MARS and GEP outperformed the MLP model, but they did not perform as good as ANN. Finally, a sensitivity analysis was conducted to determine the most and the least influential variables affecting CEC. It was found that OM and pH have the most and least significant effect on CEC, respectively.

  7. Program evaluation models and related theories: AMEE guide no. 67.

    PubMed

    Frye, Ann W; Hemmer, Paul A

    2012-01-01

    This Guide reviews theories of science that have influenced the development of common educational evaluation models. Educators can be more confident when choosing an appropriate evaluation model if they first consider the model's theoretical basis against their program's complexity and their own evaluation needs. Reductionism, system theory, and (most recently) complexity theory have inspired the development of models commonly applied in evaluation studies today. This Guide describes experimental and quasi-experimental models, Kirkpatrick's four-level model, the Logic Model, and the CIPP (Context/Input/Process/Product) model in the context of the theories that influenced their development and that limit or support their ability to do what educators need. The goal of this Guide is for educators to become more competent and confident in being able to design educational program evaluations that support intentional program improvement while adequately documenting or describing the changes and outcomes-intended and unintended-associated with their programs.

  8. Program evaluation models and related theories: AMEE guide no. 67.

    PubMed

    Frye, Ann W; Hemmer, Paul A

    2012-01-01

    This Guide reviews theories of science that have influenced the development of common educational evaluation models. Educators can be more confident when choosing an appropriate evaluation model if they first consider the model's theoretical basis against their program's complexity and their own evaluation needs. Reductionism, system theory, and (most recently) complexity theory have inspired the development of models commonly applied in evaluation studies today. This Guide describes experimental and quasi-experimental models, Kirkpatrick's four-level model, the Logic Model, and the CIPP (Context/Input/Process/Product) model in the context of the theories that influenced their development and that limit or support their ability to do what educators need. The goal of this Guide is for educators to become more competent and confident in being able to design educational program evaluations that support intentional program improvement while adequately documenting or describing the changes and outcomes-intended and unintended-associated with their programs. PMID:22515309

  9. SMP: A solid modeling program version 2.0

    NASA Technical Reports Server (NTRS)

    Randall, D. P.; Jones, K. H.; Vonofenheim, W. H.; Gates, R. L.; Matthews, C. G.

    1986-01-01

    The Solid Modeling Program (SMP) provides the capability to model complex solid objects through the composition of primitive geometric entities. In addition to the construction of solid models, SMP has extensive facilities for model editing, display, and analysis. The geometric model produced by the software system can be output in a format compatible with existing analysis programs such as PATRAN-G. The present version of the SMP software supports six primitives: boxes, cones, spheres, paraboloids, tori, and trusses. The details for creating each of the major primitive types is presented. The analysis capabilities of SMP, including interfaces to existing analysis programs, are discussed.

  10. Heterozygosities and genetic relationship of tea cultivars revealed by simple sequence repeat markers and implications for breeding and genetic mapping programs.

    PubMed

    Tan, L Q; Zhang, C C; Qi, G N; Wang, L Y; Wei, K; Chen, S X; Zou, Y; Wu, L Y; Cheng, H

    2015-01-01

    Genetic maps are essential tools for quantitative trait locus analysis and marker-assisted selection breeding. In order to select parents that are highly heterozygous for genetic mapping, the heterozygosity (HS) of 24 tea cultivars (Camellia sinensis) was analyzed with 72 simple sequence repeat markers. In total, 359 alleles were obtained with an average of 4.99 per marker. The HS varied greatly from 37.5 to 71.0% with an average of 51.3%. On average, tea cultivars from Fujian Province showed a higher level of heterozygosity (59.8%) than those from Zhejiang (48.5%) and Yunnan (44.5%), and the 12 national tea cultivars were generally more heterozygous than the 12 provincial cultivars. Unweighted pair-group analysis using the arithmetic average grouping divided the 24 cultivars into 2 groups that are consistent with the morphological classification. All dual combinations of the 24 cultivars were studied to calculate the percentage of mappable markers when using pseudo-testcross mapping strategy, and results showed that this value also varied greatly from 51.4 to 90.3%. The genetic relationships and HS differences among different cultivars were discussed, and tea cultivars with high HS were recommended as cross parents for genetic mapping programs.

  11. A Comparison of Three Programming Models for Adaptive Applications

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswa, Rupak; Kwak, Dochan (Technical Monitor)

    2000-01-01

    We study the performance and programming effort for two major classes of adaptive applications under three leading parallel programming models. We find that all three models can achieve scalable performance on the state-of-the-art multiprocessor machines. The basic parallel algorithms needed for different programming models to deliver their best performance are similar, but the implementations differ greatly, far beyond the fact of using explicit messages versus implicit loads/stores. Compared with MPI and SHMEM, CC-SAS (cache-coherent shared address space) provides substantial ease of programming at the conceptual and program orchestration level, which often leads to the performance gain. However it may also suffer from the poor spatial locality of physically distributed shared data on large number of processors. Our CC-SAS implementation of the PARMETIS partitioner itself runs faster than in the other two programming models, and generates more balanced result for our application.

  12. Extramural fellowship program--the Oregon model.

    PubMed

    Retzlaff, A E

    1995-01-01

    Surveys of recent dental graduates indicated they were not ready for solo private practice immediately after completing their formal dental education. After assessment of the regional external and internal environment, the School of Dentistry, Oregon Health Sciences University established a voluntary one-year extramural fellowship program in a non-traditional setting. The program requires the fellow to spend 80% of his or her time in a general dentistry office and 20% in a public service setting. The preceptor dentists pay a stipend competitive with other residency programs. The advantages of this transition year are: 1) the fellow further develops technical and diagnostic skills and confidence in a general dentistry setting; 2) the fellow receives first-hand experience about the many business decisions made when running a successful dental office; and 3) the preceptor dentist has the opportunity to teach a fellow eager to learn, who could become an associate in the practice after completion of the program.

  13. New Genetics

    MedlinePlus

    ... human genome, behavioral genetics, pharmacogenetics, drug resistance, biofilms, computer modeling. » more Chapter 5: 21st-Century Genetics Covers systems biology, GFP, genetic testing, privacy concerns, DNA forensics, ...

  14. The genetic basis of emotional behavior: has the time come for a Drosophila model?

    PubMed

    Iliadi, Konstantin G

    2009-01-01

    The aim of this review was to summarize the studies potentially relevant to whether Drosophila can be used as a genetically tractable model to study the genetic and molecular basis of emotional behavior. Can these studies contribute to a better understanding of neural substrates of abnormal emotional states and specific neuropsychiatric illnesses, such as depression and anxiety? PMID:19107631

  15. "Narrowcasting" on Cable Television: A Program Choice Model.

    ERIC Educational Resources Information Center

    Waterman, David

    Previous economic models suggested that, due to the high channel capacity of cable technology and its capability of pricing television programs directly to the viewers, its diffusion would promote specialized "narrow appeal" programming designed to serve relatively small audience segments. While this has clearly occurred, these models do not…

  16. A Leadership Model for University Geology Department Teacher Inservice Programs.

    ERIC Educational Resources Information Center

    Sheldon, Daniel S.; And Others

    1983-01-01

    Provides geology departments and science educators with a leadership model for developing earth science inservice programs. Model emphasizes cooperation/coordination among departments, science educators, and curriculum specialists at local/intermediate/state levels. Includes rationale for inservice programs and geology department involvement in…

  17. Pupil Personnel Services: A Model. Programs, Trends, Problems.

    ERIC Educational Resources Information Center

    Shumake, Franklin

    As an attempt is made to develop pupil personnel programs throughout the United States, one faces many diverse problems: (1) diversity of background for pupil personnel specialists, (2) professional acceptance of other educators, (3) crystallization of purposes, and (4) need for a model program. The Rockdale County model is discussed in terms of…

  18. A Model for Integrating Program Development and Evaluation.

    ERIC Educational Resources Information Center

    Brown, J. Lynne; Kiernan, Nancy Ellen

    1998-01-01

    A communication model consisting of input from target audience, program delivery, and outcomes (receivers' perception of message) was applied to an osteoporosis-prevention program for working mothers ages 21 to 45. Due to poor completion rate on evaluation instruments and failure of participants to learn key concepts, the model was used to improve…

  19. Model Preservation Program for a Small University Library.

    ERIC Educational Resources Information Center

    Robbins, Louise S.

    This report proposes a preservation program assuming a model of a university library serving 5,000 or fewer students and 350 or fewer faculty members. The model program is not for a comprehensive university or research institution, and the library's collection is one developed and used as a curriculum-support collection. The goal of the…

  20. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models.

    PubMed

    José, Marco V; Morgado, Eberto R; Govezensky, Tzipe

    2011-07-01

    Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

  1. An implementation of continuous genetic algorithm in parameter estimation of predator-prey model

    NASA Astrophysics Data System (ADS)

    Windarto

    2016-03-01

    Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The main components of this algorithm are chromosomes population (individuals population), parent selection, crossover to produce new offspring, and random mutation. In this paper, continuous genetic algorithm was implemented to estimate parameters in a predator-prey model of Lotka-Volterra type. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, the algorithms can estimate these parameters well.

  2. A genetic developmental model of iron deficiency: biological aspects.

    PubMed

    Morse, A C; Beard, J L; Jones, B C

    1999-03-01

    Numerous studies have demonstrated the negative impact of iron deficiency on growth and development. The present study expands on the published literature by exploring the role of genetics and developmental timing on the impact of iron deficiency on development in two strains of mice. Growth rates, organ weights, and hematological responses to an iron-deficient diet differed by strain and sex. The results from this study provided novel insight into iron metabolism and the impact of iron deficiency in C57 and DBA strains of mice. Future studies should continue to examine the contributions of both genetics and sex to the development of iron deficiency.

  3. A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations

    PubMed Central

    Gompert, Zachariah

    2016-01-01

    Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20) SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure), particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur) and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among chromosomes in the Uyghur

  4. A Novel Statistical Model to Estimate Host Genetic Effects Affecting Disease Transmission

    PubMed Central

    Anacleto, Osvaldo; Garcia-Cortés, Luis Alberto; Lipschutz-Powell, Debby; Woolliams, John A.; Doeschl-Wilson, Andrea B.

    2015-01-01

    There is increasing recognition that genetic diversity can affect the spread of diseases, potentially affecting plant and livestock disease control as well as the emergence of human disease outbreaks. Nevertheless, even though computational tools can guide the control of infectious diseases, few epidemiological models can simultaneously accommodate the inherent individual heterogeneity in multiple infectious disease traits influencing disease transmission, such as the frequently modeled propensity to become infected and infectivity, which describes the host ability to transmit the infection to susceptible individuals. Furthermore, current quantitative genetic models fail to fully capture the heritable variation in host infectivity, mainly because they cannot accommodate the nonlinear infection dynamics underlying epidemiological data. We present in this article a novel statistical model and an inference method to estimate genetic parameters associated with both host susceptibility and infectivity. Our methodology combines quantitative genetic models of social interactions with stochastic processes to model the random, nonlinear, and dynamic nature of infections and uses adaptive Bayesian computational techniques to estimate the model parameters. Results using simulated epidemic data show that our model can accurately estimate heritabilities and genetic risks not only of susceptibility but also of infectivity, therefore exploring a trait whose heritable variation is currently ignored in disease genetics and can greatly influence the spread of infectious diseases. Our proposed methodology offers potential impacts in areas such as livestock disease control through selective breeding and also in predicting and controlling the emergence of disease outbreaks in human populations. PMID:26405030

  5. Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities.

    PubMed

    Fernandes, Kimberly A; Harder, Jeffrey M; Williams, Pete A; Rausch, Rebecca L; Kiernan, Amy E; Nair, K Saidas; Anderson, Michael G; John, Simon W M; Howell, Gareth R; Libby, Richard T

    2015-12-01

    While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.

  6. Definition of Historical Models of Gene Function and Their Relation to Students' Understanding of Genetics

    ERIC Educational Resources Information Center

    Gericke, Niklas Markus; Hagberg, Mariana

    2007-01-01

    Models are often used when teaching science. In this paper historical models and students' ideas about genetics are compared. The historical development of the scientific idea of the gene and its function is described and categorized into five historical models of gene function. Differences and similarities between these historical models are made…

  7. Genetic versus phenotypic models of selection: can genetics be neglected in a long-term perspective?

    PubMed

    Weissing, F J

    1996-01-01

    Game theoretical concepts in evolutionary biology have been criticized by populations geneticists, because they neglect such crucial aspects as the mating system or the mode of inheritance. In fact, the dynamics of natural selection does not necessarily lead to a fitness maximum or an ESS if genetic constraints are taken into account. Yet, it may be premature to conclude that game theoretical concepts do not have a dynamical justification. The new paradigm of long-term evolution postulates that genetic constraints, which may be dominant in a short-term perspective, will in the long run disappear in the face of the ongoing influx of mutations. Two basic results (see Hammerstein; this issue) seem to reconcile the dynamical approach of long-term population genetics with the static approach of evolutionary game theory: (1) only populations at local fitness optima (Nash strategies) can be long-term stable; and (2) in monomorphic populations, evolutionary stability is necessary and sufficient to ensure long-term dynamic stability. The present paper has a double purpose. On the one hand, it is demonstrated by fairly general arguments that the scope of the results mentioned above extends to non-linear frequency dependent selection, to multiple loci, and to quite general mating systems. On the other hand, some limitations of the theory of long-term evolution will also be stressed: (1) there is little hope for a game theoretical characterization of stability in polymorphic populations; (2) many interesting systems do not admit long-term stable equilibria; and (3) even if a long-term stable equilibrium exists, it is not at all clear whether and how it is attainable by a series of gene substitution events.

  8. Elevator Group Supervisory Control System Using Genetic Network Programming with Macro Nodes and Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Yu, Lu; Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Markon, Sandor

    Elevator Group Supervisory Control System (EGSCS) is a very large scale stochastic dynamic optimization problem. Due to its vast state space, significant uncertainty and numerous resource constraints such as finite car capacities and registered hall/car calls, it is hard to manage EGSCS using conventional control methods. Recently, many solutions for EGSCS using Artificial Intelligence (AI) technologies have been reported. Genetic Network Programming (GNP), which is proposed as a new evolutionary computation method several years ago, is also proved to be efficient when applied to EGSCS problem. In this paper, we propose an extended algorithm for EGSCS by introducing Reinforcement Learning (RL) into GNP framework, and an improvement of the EGSCS' performances is expected since the efficiency of GNP with RL has been clarified in some other studies like tile-world problem. Simulation tests using traffic flows in a typical office building have been made, and the results show an actual improvement of the EGSCS' performances comparing to the algorithms using original GNP and conventional control methods. Furthermore, as a further study, an importance weight optimization algorithm is employed based on GNP with RL and its efficiency is also verified with the better performances.

  9. Classification of breast masses in mammograms using genetic programming and feature selection.

    PubMed

    Nandi, R J; Nandi, A K; Rangayyan, R M; Scutt, D

    2006-08-01

    Mammography is a widely used screening tool and is the gold standard for the early detection of breast cancer. The classification of breast masses into the benign and malignant categories is an important problem in the area of computer-aided diagnosis of breast cancer. A small dataset of 57 breast mass images, each with 22 features computed, was used in this investigation; the same dataset has been previously used in other studies. The extracted features relate to edge-sharpness, shape, and texture. The novelty of this paper is the adaptation and application of the classification technique called genetic programming (GP), which possesses feature selection implicitly. To refine the pool of features available to the GP classifier, we used feature-selection methods, including the introduction of three statistical measures--Student's t test, Kolmogorov-Smirnov test, and Kullback-Leibler divergence. Both the training and test accuracies obtained were high: above 99.5% for training and typically above 98% for test experiments. A leave-one-out experiment showed 97.3% success in the classification of benign masses and 95.0% success in the classification of malignant tumors. A shape feature known as fractional concavity was found to be the most important among those tested, since it was automatically selected by the GP classifier in almost every experiment.

  10. Semantic Search-Based Genetic Programming and the Effect of Intron Deletion.

    PubMed

    Castelli, Mauro; Vanneschi, Leonardo; Silva, Sara

    2014-01-01

    The concept of semantics (in the sense of input-output behavior of solutions on training data) has been the subject of a noteworthy interest in the genetic programming (GP) research community over the past few years. In this paper, we present a new GP system that uses the concept of semantics to improve search effectiveness. It maintains a distribution of different semantic behaviors and biases the search toward solutions that have similar semantics to the best solutions that have been found so far. We present experimental evidence of the fact that the new semantics-based GP system outperforms the standard GP and the well-known bacterial GP on a set of test functions, showing particularly interesting results for noncontinuous (i.e., generally harder to optimize) test functions. We also observe that the solutions generated by the proposed GP system often have a larger size than the ones returned by standard GP and bacterial GP and contain an elevated number of introns, i.e., parts of code that do not have any effect on the semantics. Nevertheless, we show that the deletion of introns during the evolution does not affect the performance of the proposed method.

  11. Using Genetic Programming with Prior Formula Knowledge to Solve Symbolic Regression Problem.

    PubMed

    Lu, Qiang; Ren, Jun; Wang, Zhiguang

    2016-01-01

    A researcher can infer mathematical expressions of functions quickly by using his professional knowledge (called Prior Knowledge). But the results he finds may be biased and restricted to his research field due to limitation of his knowledge. In contrast, Genetic Programming method can discover fitted mathematical expressions from the huge search space through running evolutionary algorithms. And its results can be generalized to accommodate different fields of knowledge. However, since GP has to search a huge space, its speed of finding the results is rather slow. Therefore, in this paper, a framework of connection between Prior Formula Knowledge and GP (PFK-GP) is proposed to reduce the space of GP searching. The PFK is built based on the Deep Belief Network (DBN) which can identify candidate formulas that are consistent with the features of experimental data. By using these candidate formulas as the seed of a randomly generated population, PFK-GP finds the right formulas quickly by exploring the search space of data features. We have compared PFK-GP with Pareto GP on regression of eight benchmark problems. The experimental results confirm that the PFK-GP can reduce the search space and obtain the significant improvement in the quality of SR.

  12. Learning Spatio-Temporal Representations for Action Recognition: A Genetic Programming Approach.

    PubMed

    Liu, Li; Shao, Ling; Li, Xuelong; Lu, Ke

    2016-01-01

    Extracting discriminative and robust features from video sequences is the first and most critical step in human action recognition. In this paper, instead of using handcrafted features, we automatically learn spatio-temporal motion features for action recognition. This is achieved via an evolutionary method, i.e., genetic programming (GP), which evolves the motion feature descriptor on a population of primitive 3D operators (e.g., 3D-Gabor and wavelet). In this way, the scale and shift invariant features can be effectively extracted from both color and optical flow sequences. We intend to learn data adaptive descriptors for different datasets with multiple layers, which makes fully use of the knowledge to mimic the physical structure of the human visual cortex for action recognition and simultaneously reduce the GP searching space to effectively accelerate the convergence of optimal solutions. In our evolutionary architecture, the average cross-validation classification error, which is calculated by an support-vector-machine classifier on the training set, is adopted as the evaluation criterion for the GP fitness function. After the entire evolution procedure finishes, the best-so-far solution selected by GP is regarded as the (near-)optimal action descriptor obtained. The GP-evolving feature extraction method is evaluated on four popular action datasets, namely KTH, HMDB51, UCF YouTube, and Hollywood2. Experimental results show that our method significantly outperforms other types of features, either hand-designed or machine-learned.

  13. Low-level feature extraction for edge detection using genetic programming.

    PubMed

    Fu, Wenlong; Johnston, Mark; Zhang, Mengjie

    2014-08-01

    Edge detection is a subjective task. Traditionally, a moving window approach is used, but the window size in edge detection is a tradeoff between localization accuracy and noise rejection. An automatic technique for searching a discriminated pixel's neighbors to construct new edge detectors is appealing to satisfy different tasks. In this paper, we propose a genetic programming (GP) system to automatically search pixels (a discriminated pixel and its neighbors) to construct new low-level subjective edge detectors for detecting edges in natural images, and analyze the pixels selected by the GP edge detectors. Automatically searching pixels avoids the problem of blurring edges from a large window and noise influence from a small window. Linear and second-order filters are constructed from the pixels with high occurrences in these GP edge detectors. The experiment results show that the proposed GP system has good performance. A comparison between the filters with the pixels selected by GP and all pixels in a fixed window indicates that the set of pixels selected by GP is compact but sufficiently rich to construct good edge detectors.

  14. Genetic and epigenetic catalysts in early-life programming of adult cardiometabolic disorders.

    PubMed

    Estampador, Angela C; Franks, Paul W

    2014-01-01

    Evidence has emerged across the past few decades that the lifetime risk of developing morbidities like type 2 diabetes, obesity, and cardiovascular disease may be influenced by exposures that occur in utero and in childhood. Developmental abnormalities are known to occur at various stages in fetal growth. Epidemiological and mechanistic studies have sought to delineate developmental processes and plausible risk factors influencing pregnancy outcomes and later health. Whether these observations reflect causal processes or are confounded by genetic and social factors remains unclear, although animal (and some human) studies suggest that epigenetic programming events may be involved. Regardless of the causal basis to observations of early-life risk factors and later disease risk, the fact that such associations exist and that they are of a fairly large magnitude justifies further research around this topic. Furthermore, additional information is needed to substantiate public health guidelines on lifestyle behaviors during pregnancy to improve infant health outcomes. Indeed, lifestyle intervention clinical trials in pregnancy are now coming online, where materials and data are being collected that should facilitate understanding of the causal nature of intrauterine exposures related with gestational weight gain, such as elevated maternal blood glucose concentrations. In this review, we provide an overview of these concepts.

  15. The genetic program for cartilage development has deep homology within Bilateria.

    PubMed

    Tarazona, Oscar A; Slota, Leslie A; Lopez, Davys H; Zhang, GuangJun; Cohn, Martin J

    2016-05-01

    The evolution of novel cell types led to the emergence of new tissues and organs during the diversification of animals. The origin of the chondrocyte, the cell type that synthesizes cartilage matrix, was central to the evolution of the vertebrate endoskeleton. Cartilage-like tissues also exist outside the vertebrates, although their relationship to vertebrate cartilage is enigmatic. Here we show that protostome and deuterostome cartilage share structural and chemical properties, and that the mechanisms of cartilage development are extensively conserved--from induction of chondroprogenitor cells by Hedgehog and β-catenin signalling, to chondrocyte differentiation and matrix synthesis by SoxE and SoxD regulation of clade A fibrillar collagen (ColA) genes--suggesting that the chondrogenic gene regulatory network evolved in the common ancestor of Bilateria. These results reveal deep homology of the genetic program for cartilage development in Bilateria and suggest that activation of this ancient core chondrogenic network underlies the parallel evolution of cartilage tissues in Ecdysozoa, Lophotrochozoa and Deuterostomia. PMID:27111511

  16. Using Genetic Programming with Prior Formula Knowledge to Solve Symbolic Regression Problem

    PubMed Central

    Lu, Qiang; Ren, Jun; Wang, Zhiguang

    2016-01-01

    A researcher can infer mathematical expressions of functions quickly by using his professional knowledge (called Prior Knowledge). But the results he finds may be biased and restricted to his research field due to limitation of his knowledge. In contrast, Genetic Programming method can discover fitted mathematical expressions from the huge search space through running evolutionary algorithms. And its results can be generalized to accommodate different fields of knowledge. However, since GP has to search a huge space, its speed of finding the results is rather slow. Therefore, in this paper, a framework of connection between Prior Formula Knowledge and GP (PFK-GP) is proposed to reduce the space of GP searching. The PFK is built based on the Deep Belief Network (DBN) which can identify candidate formulas that are consistent with the features of experimental data. By using these candidate formulas as the seed of a randomly generated population, PFK-GP finds the right formulas quickly by exploring the search space of data features. We have compared PFK-GP with Pareto GP on regression of eight benchmark problems. The experimental results confirm that the PFK-GP can reduce the search space and obtain the significant improvement in the quality of SR. PMID:26819577

  17. Genetic and epigenetic catalysts in early-life programming of adult cardiometabolic disorders

    PubMed Central

    Estampador, Angela C; Franks, Paul W

    2014-01-01

    Evidence has emerged across the past few decades that the lifetime risk of developing morbidities like type 2 diabetes, obesity, and cardiovascular disease may be influenced by exposures that occur in utero and in childhood. Developmental abnormalities are known to occur at various stages in fetal growth. Epidemiological and mechanistic studies have sought to delineate developmental processes and plausible risk factors influencing pregnancy outcomes and later health. Whether these observations reflect causal processes or are confounded by genetic and social factors remains unclear, although animal (and some human) studies suggest that epigenetic programming events may be involved. Regardless of the causal basis to observations of early-life risk factors and later disease risk, the fact that such associations exist and that they are of a fairly large magnitude justifies further research around this topic. Furthermore, additional information is needed to substantiate public health guidelines on lifestyle behaviors during pregnancy to improve infant health outcomes. Indeed, lifestyle intervention clinical trials in pregnancy are now coming online, where materials and data are being collected that should facilitate understanding of the causal nature of intrauterine exposures related with gestational weight gain, such as elevated maternal blood glucose concentrations. In this review, we provide an overview of these concepts. PMID:25489250

  18. A simulation model for wind energy storage systems. Volume 3: Program descriptions

    NASA Technical Reports Server (NTRS)

    Warren, A. W.; Edsinger, R. W.; Burroughs, J. D.

    1977-01-01

    Program descriptions, flow charts, and program listings for the SIMWEST model generation program, the simulation program, the file maintenance program, and the printer plotter program are given. For Vol 2, see .

  19. Linguini Models of Molecular Genetic Mapping and Fingerprinting.

    ERIC Educational Resources Information Center

    Thompson, James N., Jr.; Gray, Stanton B.; Hellack, Jenna J.

    1997-01-01

    Presents an exercise using linguini noodles to demonstrate an aspect of DNA fingerprinting. DNA maps that show genetic differences can be produced by digesting a certain piece of DNA with two or more restriction enzymes both individually and in combination. By rearranging and matching linguini fragments, students can recreate the original pattern…

  20. A realistic model under which the genetic code is optimal.

    PubMed

    Buhrman, Harry; van der Gulik, Peter T S; Klau, Gunnar W; Schaffner, Christian; Speijer, Dave; Stougie, Leen

    2013-10-01

    The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By comparing this value with a distribution of values belonging to codes generated by random permutations of amino acid assignments, the level of error robustness of a genetic code can be quantified. We present a calculation in which the standard genetic code is shown to be optimal. We obtain this result by (1) using recently updated values of polar requirement as input; (2) fixing seven assignments (Ile, Trp, His, Phe, Tyr, Arg, and Leu) based on aptamer considerations; and (3) using known biosynthetic relations of the 20 amino acids. This last point is reflected in an approach of subdivision (restricting the random reallocation of assignments to amino acid subgroups, the set of 20 being divided in four such subgroups). The three approaches to explain robustness of the code (specific selection for robustness, amino acid-RNA interactions leading to assignments, or a slow growth process of assignment patterns) are reexamined in light of our findings. We offer a comprehensive hypothesis, stressing the importance of biosynthetic relations, with the code evolving from an early stage with just glycine and alanine, via intermediate stages, towards 64 codons carrying todays meaning.