Sample records for genetic programming theory

  1. An analysis of the metabolic theory of the origin of the genetic code

    NASA Technical Reports Server (NTRS)

    Amirnovin, R.; Bada, J. L. (Principal Investigator)

    1997-01-01

    A computer program was used to test Wong's coevolution theory of the genetic code. The codon correlations between the codons of biosynthetically related amino acids in the universal genetic code and in randomly generated genetic codes were compared. It was determined that many codon correlations are also present within random genetic codes and that among the random codes there are always several which have many more correlations than that found in the universal code. Although the number of correlations depends on the choice of biosynthetically related amino acids, the probability of choosing a random genetic code with the same or greater number of codon correlations as the universal genetic code was found to vary from 0.1% to 34% (with respect to a fairly complete listing of related amino acids). Thus, Wong's theory that the genetic code arose by coevolution with the biosynthetic pathways of amino acids, based on codon correlations between biosynthetically related amino acids, is statistical in nature.

  2. Eye growth and myopia development: Unifying theory and Matlab model.

    PubMed

    Hung, George K; Mahadas, Kausalendra; Mohammad, Faisal

    2016-03-01

    The aim of this article is to present an updated unifying theory of the mechanisms underlying eye growth and myopia development. A series of model simulation programs were developed to illustrate the mechanism of eye growth regulation and myopia development. Two fundamental processes are presumed to govern the relationship between physiological optics and eye growth: genetically pre-programmed signaling and blur feedback. Cornea/lens is considered to have only a genetically pre-programmed component, whereas eye growth is considered to have both a genetically pre-programmed and a blur feedback component. Moreover, based on the Incremental Retinal-Defocus Theory (IRDT), the rate of change of blur size provides the direction for blur-driven regulation. The various factors affecting eye growth are shown in 5 simulations: (1 - unregulated eye growth): blur feedback is rendered ineffective, as in the case of form deprivation, so there is only genetically pre-programmed eye growth, generally resulting in myopia; (2 - regulated eye growth): blur feedback regulation demonstrates the emmetropization process, with abnormally excessive or reduced eye growth leading to myopia and hyperopia, respectively; (3 - repeated near-far viewing): simulation of large-to-small change in blur size as seen in the accommodative stimulus/response function, and via IRDT as well as nearwork-induced transient myopia (NITM), leading to the development of myopia; (4 - neurochemical bulk flow and diffusion): release of dopamine from the inner plexiform layer of the retina, and the subsequent diffusion and relay of neurochemical cascade show that a decrease in dopamine results in a reduction of proteoglycan synthesis rate, which leads to myopia; (5 - Simulink model): model of genetically pre-programmed signaling and blur feedback components that allows for different input functions to simulate experimental manipulations that result in hyperopia, emmetropia, and myopia. These model simulation programs (available upon request) can provide a useful tutorial for the general scientist and serve as a quantitative tool for researchers in eye growth and myopia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Systems Engineering Design Via Experimental Operation Research: Complex Organizational Metric for Programmatic Risk Environments (COMPRE)

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    1999-01-01

    Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).

  4. The digital language of amino acids.

    PubMed

    Kurić, L

    2007-11-01

    The subject of this paper is a digital approach to the investigation of the biochemical basis of genetic processes. The digital mechanism of nucleic acid and protein bio-syntheses, the evolution of biomacromolecules and, especially, the biochemical evolution of genetic language have been analyzed by the application of cybernetic methods, information theory and system theory, respectively. This paper reports the discovery of new methods for developing the new technologies in genetics. It is about the most advanced digital technology which is based on program, cybernetics and informational systems and laws. The results in the practical application of the new technology could be useful in bioinformatics, genetics, biochemistry, medicine and other natural sciences.

  5. Training the Millennial learner through experiential evolutionary scaffolding: implications for clinical supervision in graduate education programs.

    PubMed

    Venne, Vickie L; Coleman, Darrell

    2010-12-01

    They are the Millennials--Generation Y. Over the next few decades, they will be entering genetic counseling graduate training programs and the workforce. As a group, they are unlike previous youth generations in many ways, including the way they learn. Therefore, genetic counselors who teach and supervise need to understand the Millennials and explore new ways of teaching to ensure that the next cohort of genetic counselors has both skills and knowledge to represent our profession well. This paper will summarize the distinguishing traits of the Millennial generation as well as authentic learning and evolutionary scaffolding theories of learning that can enhance teaching and supervision. We will then use specific aspects of case preparation during clinical rotations to demonstrate how incorporating authentic learning theory into evolutionary scaffolding results in experiential evolutionary scaffolding, a method that potentially offers a more effective approach when teaching Millennials. We conclude with suggestions for future research.

  6. Game Theory, Adaptation, and Genetic Programming: Some Perspectives on Operations Research for Counter-IED

    DTIC Science & Technology

    2011-06-01

    Books. Dawkins , R. (1989), The Selfish Gene , 2 nd ed., Oxford University Press. Dekker, A.H. (2010), “Agent-Based Simulation for Counter-IED: A...memes” ( Dawkins , 1989; Gabora, 1995; Boal & Schultz, 2007). As Weeks & Galunic (2003) point out: “Memes are the replicators in cultural evolution...expression) create the macro-level patterns of culture. … Memes are the genes of culture.” Because genetic programs express beliefs, decision

  7. Applications of genetic programming in cancer research.

    PubMed

    Worzel, William P; Yu, Jianjun; Almal, Arpit A; Chinnaiyan, Arul M

    2009-02-01

    The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allow scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future.

  8. A Theory of Information Genetics: How Four Subforces Generate Information and the Implications for Total Quality Knowledge Management.

    ERIC Educational Resources Information Center

    Tsai, Bor-sheng

    2002-01-01

    Proposes a model called information genetics to elaborate on the origin of information generating. Explains conceptual and data models; and describes a software program that was developed for citation data mining, infomapping, and information repackaging for total quality knowledge management in Web representation. (Contains 112 references.)…

  9. Genetics/genomics education for nongenetic health professionals: a systematic literature review.

    PubMed

    Talwar, Divya; Tseng, Tung-Sung; Foster, Margaret; Xu, Lei; Chen, Lei-Shih

    2017-07-01

    The completion of the Human Genome Project has enhanced avenues for disease prevention, diagnosis, and management. Owing to the shortage of genetic professionals, genetics/genomics training has been provided to nongenetic health professionals for years to establish their genomic competencies. We conducted a systematic literature review to summarize and evaluate the existing genetics/genomics education programs for nongenetic health professionals. Five electronic databases were searched from January 1990 to June 2016. Forty-four studies met our inclusion criteria. There was a growing publication trend. Program participants were mainly physicians and nurses. The curricula, which were most commonly provided face to face, included basic genetics; applied genetics/genomics; ethical, legal, and social implications of genetics/genomics; and/or genomic competencies/recommendations in particular professional fields. Only one-third of the curricula were theory-based. The majority of studies adopted a pre-/post-test design and lacked follow-up data collection. Nearly all studies reported participants' improvements in one or more of the following areas: knowledge, attitudes, skills, intention, self-efficacy, comfort level, and practice. However, most studies did not report participants' age, ethnicity, years of clinical practice, data validity, and data reliability. Many genetics/genomics education programs for nongenetic health professionals exist. Nevertheless, enhancement in methodological quality is needed to strengthen education initiatives.Genet Med advance online publication 20 October 2016.

  10. Evaluation of inbreeding in laying hens by applying optimum genetic contribution and gene flow theory.

    PubMed

    König, S; Tsehay, F; Sitzenstock, F; von Borstel, U U; Schmutz, M; Preisinger, R; Simianer, H

    2010-04-01

    Due to consistent increases of inbreeding of on average 0.95% per generation in layer populations, selection tools should consider both genetic gain and genetic relationships in the long term. The optimum genetic contribution theory using official estimated breeding values for egg production was applied for 3 different lines of a layer breeding program to find the optimal allocations of hens and sires. Constraints in different scenarios encompassed restrictions related to additive genetic relationships, the increase of inbreeding, the number of selected sires and hens, and the number of selected offspring per mating. All these constraints enabled higher genetic gain up to 10.9% at the same level of additive genetic relationships or in lower relationships at the same gain when compared with conventional selection schemes ignoring relationships. Increases of inbreeding and genetic gain were associated with the number of selected sires. For the lowest level of the allowed average relationship at 10%, the optimal number of sires was 70 and the estimated breeding value for egg production of the selected group was 127.9. At the highest relationship constraint (16%), the optimal number of sires decreased to 15, and the average genetic value increased to 139.7. Contributions from selected sires and hens were used to develop specific mating plans to minimize inbreeding in the following generation by applying a simulated annealing algorithm. The additional reduction of average additive genetic relationships for matings was up to 44.9%. An innovative deterministic approach to estimate kinship coefficients between and within defined selection groups based on gene flow theory was applied to compare increases of inbreeding from random matings with layer populations undergoing selection. Large differences in rates of inbreeding were found, and they underline the necessity to establish selection tools controlling long-term relationships. Furthermore, it was suggested to use optimum genetic contribution theory for conservation schemes or, for example, the experimental line in our study.

  11. Genetic Associations with Intimate Partner Violence in a Sample of Hazardous Drinking Men in Batterer Intervention Programs

    PubMed Central

    Stuart, Gregory L.; McGeary, John; Shorey, Ryan C.; Knopik, Valerie; Beaucage, Kayla; Temple, Jeff R.

    2014-01-01

    The etiology of intimate partner violence (IPV) is multifactorial. However, etiological theories of IPV have rarely included potential genetic factors. The purpose of the present study was to examine whether a cumulative genetic score (CGS) containing the MAOA and 5-HTTLPR polymorphisms was associated with IPV perpetration after accounting for the effects of alcohol problems, drug problems, age, and length of relationship. We obtained DNA from 97 men in batterer intervention programs in the state of Rhode Island. In the full sample, the CGS was significantly associated with physical and psychological aggression and injuries caused to one's partner, even after controlling for the effects of alcohol problems, drug problems, age, and length of relationship. Two of the men in the sample likely had Klinefelter's syndrome and analyses were repeated excluding these two individuals, leading to similar results. The implications of the genetics findings for the etiology and treatment of IPV among men in batter intervention programs are briefly discussed. PMID:24759925

  12. When public health and genetic privacy collide: positive and normative theories explaining how ACA's expansion of corporate wellness programs conflicts with GINA's privacy rules.

    PubMed

    Bard, Jennifer S

    2011-01-01

    The Patient Protection and Affordable Care Act of 2010 (ACA) contains many provisions intended to increase access to and lower the cost of health care by adopting public health measures. One of these promotes the use of at-work wellness programs by both providing employers with grants to develop these programs and also increasing their ability to tie the price employees pay for health insurance for participating in these programs and meeting specific health goals. Yet despite ACA's specific alteration of three different statues which had in the past shielded employees from having to contribute to the cost of their health insurance based on their achieving employer-designated health markers, it chose to leave alone recently enacted rules implementing the Genetic Non-Discrimination Act (GINA), which prohibits employers from asking employees about their family health history in any context, including assessing their risk for setting wellness targets. This article reviews how both the changes made by ACA and the restrictions recently put place by GINA will affect the way employers are likely to structure Wellness Programs. It also considers how these changes reflect the competing social goals of both ACA, which seeks to expand access to the population by lowering costs, and GINA, which seeks to protect individuals from discrimination. It does so by analyzing both positive theories about how these new laws will function and normative theories explaining the likelihood of future friction between the interests of the population of the United States as a whole who are in need of increased and affordable access to health care, and of the individuals living in this country who risk discrimination, as science and medicine continue to make advances in linking genetic make-up to risk of future illness. © 2011 American Society of Law, Medicine & Ethics, Inc.

  13. Experimental game theory and behavior genetics.

    PubMed

    Cesarini, David; Dawes, Christopher T; Johannesson, Magnus; Lichtenstein, Paul; Wallace, Björn

    2009-06-01

    We summarize the findings from a research program studying the heritability of behavior in a number of widely used economic games, including trust, dictator, and ultimatum games. Results from the standard behavior genetic variance decomposition suggest that strategies and fundamental economic preference parameters are moderately heritable, with estimates ranging from 18 to 42%. In addition, we also report new evidence on so-called "hyperfair" preferences in the ultimatum game. We discuss the implications of our findings with special reference to current efforts that seek to understand the molecular genetic architecture of complex social behaviors.

  14. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  15. Imperishable Networks: Complexity Theory and Communication Networking-Bridging the Gap Between Algorithmic Information Theory and Communication Networking

    DTIC Science & Technology

    2003-04-01

    gener- ally considered to be passive data . Instead the genetic material should be capable of being algorith - mic information, that is, program code or...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other

  16. Data Sufficiency Assessment and Pumping Test Design for Groundwater Prediction Using Decision Theory and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    McPhee, J.; William, Y. W.

    2005-12-01

    This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system

  17. A Road Map for 21st Century Genetic Restoration: Gene Pool Enrichment of the Black-Footed Ferret.

    PubMed

    Wisely, Samantha M; Ryder, Oliver A; Santymire, Rachel M; Engelhardt, John F; Novak, Ben J

    2015-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) could benefit recovery programs of critically endangered species but must be weighed with the risks of failure. To weigh the risks and benefits, a decision-making process that evaluates progress is needed. Experiments that evaluate the efficiency and efficacy of blastocyst, fetal, and post-parturition development are necessary to determine the success or failure or species-specific iSCNT programs. Here, we use the black-footed ferret (Mustela nigripes) as a case study for evaluating this emerging biomedical technology as a tool for genetic restoration. The black-footed ferret has depleted genetic variation yet genome resource banks contain genetic material of individuals not currently represented in the extant lineage. Thus, genetic restoration of the species is in theory possible and could help reduce the persistent erosion of genetic diversity from drift. Extensive genetic, genomic, and reproductive science tools have previously been developed in black-footed ferrets and would aid in the process of developing an iSCNT protocol for this species. Nonetheless, developing reproductive cloning will require years of experiments and a coordinated effort among recovery partners. The information gained from a well-planned research effort with the goal of genetic restoration via reproductive cloning could establish a 21st century model for evaluating and implementing conservation breeding that would be applicable to other genetically impoverished species. © The American Genetic Association. 2015.

  18. A Road Map for 21st Century Genetic Restoration: Gene Pool Enrichment of the Black-Footed Ferret

    PubMed Central

    Ryder, Oliver A.; Santymire, Rachel M.; Engelhardt, John F.; Novak, Ben J.

    2015-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) could benefit recovery programs of critically endangered species but must be weighed with the risks of failure. To weigh the risks and benefits, a decision-making process that evaluates progress is needed. Experiments that evaluate the efficiency and efficacy of blastocyst, fetal, and post-parturition development are necessary to determine the success or failure or species-specific iSCNT programs. Here, we use the black-footed ferret (Mustela nigripes) as a case study for evaluating this emerging biomedical technology as a tool for genetic restoration. The black-footed ferret has depleted genetic variation yet genome resource banks contain genetic material of individuals not currently represented in the extant lineage. Thus, genetic restoration of the species is in theory possible and could help reduce the persistent erosion of genetic diversity from drift. Extensive genetic, genomic, and reproductive science tools have previously been developed in black-footed ferrets and would aid in the process of developing an iSCNT protocol for this species. Nonetheless, developing reproductive cloning will require years of experiments and a coordinated effort among recovery partners. The information gained from a well-planned research effort with the goal of genetic restoration via reproductive cloning could establish a 21st century model for evaluating and implementing conservation breeding that would be applicable to other genetically impoverished species. PMID:26304983

  19. Unleashing the power of human genetic variation knowledge: New Zealand stakeholder perspectives.

    PubMed

    Gu, Yulong; Warren, James Roy; Day, Karen Jean

    2011-01-01

    This study aimed to characterize the challenges in using genetic information in health care and to identify opportunities for improvement. Taking a grounded theory approach, semistructured interviews were conducted with 48 participants to collect multiple stakeholder perspectives on genetic services in New Zealand. Three themes emerged from the data: (1) four service delivery models were identified in operation, including both those expected models involving genetic counselors and variations that do not route through the formal genetic service program; (2) multiple barriers to sharing and using genetic information were perceived, including technological, organizational, institutional, legal, ethical, and social issues; and (3) impediments to wider use of genetic testing technology, including variable understanding of genetic test utilities among clinicians and the limited capacity of clinical genetic services. Targeting these problems, information technologies and knowledge management tools have the potential to support key tasks in genetic services delivery, improve knowledge processes, and enhance knowledge networks. Because of the effect of issues in genetic information and knowledge management, the potential of human genetic variation knowledge to enhance health care delivery has been put on a "leash."

  20. A discriminative test among the different theories proposed to explain the origin of the genetic code: the coevolution theory finds additional support.

    PubMed

    Giulio, Massimo Di

    2018-05-19

    A discriminative statistical test among the different theories proposed to explain the origin of the genetic code is presented. Gathering the amino acids into polarity and biosynthetic classes that are the first expression of the physicochemical theory of the origin of the genetic code and the second expression of the coevolution theory, these classes are utilized in the Fisher's exact test to establish their significance within the genetic code table. Linking to the rows and columns of the genetic code of probabilities that express the statistical significance of these classes, I have finally been in the condition to be able to calculate a χ value to link to both the physicochemical theory and to the coevolution theory that would express the corroboration level referred to these theories. The comparison between these two χ values showed that the coevolution theory is able to explain - in this strictly empirical analysis - the origin of the genetic code better than that of the physicochemical theory. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. From Theory to Air Force Practice: Applications and Non-Binary Extensions of Probabilistic Model-Building Genetic Algorithms

    DTIC Science & Technology

    2006-05-31

    dynamics (MD) and kinetic Monte Carlo ( KMC ) procedures. In 2D surface modeling our calculations project speedups of 9 orders of magnitude at 300 degrees...programming is used to perform customized statistical mechanics by bridging the different time scales of MD and KMC quickly and well. Speedups in

  2. Breeding trees resistant to insects and diseases: putting theory into application

    Treesearch

    Richard A. Sniezko; Jennifer Koch

    2017-01-01

    Tree species world-wide are under increasing threat from diseases and insects, many of which are non-native. The integrity of our natural, urban and plantation forest ecosystems, and the services they provide are seriously imperiled. Breeding programs that harness the natural genetic resistance within tree species can provide a durable solution to these threats. In...

  3. A serious gaming/immersion environment to teach clinical cancer genetics.

    PubMed

    Nosek, Thomas M; Cohen, Mark; Matthews, Anne; Papp, Klara; Wolf, Nancy; Wrenn, Gregg; Sher, Andrew; Coulter, Kenneth; Martin, Jessica; Wiesner, Georgia L

    2007-01-01

    We are creating an interactive, simulated "Cancer Genetics Tower" for the self-paced learning of Clinical Cancer Genetics by medical students (go to: http://casemed.case.edu/cancergenetics). The environment uses gaming theory to engage the students into achieving specific learning objectives. The first few levels contain virtual laboratories where students achieve the basic underpinnings of Cancer Genetics. The next levels apply these principles to clinical practice. A virtual attending physician and four virtual patients, available for questioning through virtual video conferencing, enrich each floor. The pinnacle clinical simulation challenges the learner to integrate all information and demonstrate mastery, thus "winning" the game. A pilot test of the program by 17 medical students yielded very favorable feedback; the students found the Tower a "great way to teach", it held their attention, and it made learning fun. A majority of the students preferred the Tower over other resources to learn Cancer Genetics.

  4. Pangenesis as a source of new genetic information. The history of a now disproven theory.

    PubMed

    Bergman, Gerald

    2006-01-01

    Evolution is based on natural selection of existing biological phenotypic traits. Natural selection can only eliminate traits. It cannot create new ones, requiring a theory to explain the origin of new genetic information. The theory of pangenesis was a major attempt to explain the source of new genetic information required to produce phenotypic variety. This theory, advocated by Darwin as the main source of genetic variety, has now been empirically disproved. It is currently a theory mainly of interest to science historians.

  5. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  6. Effectiveness of a Computer-Mediated Simulations Program in School Biology on Pupils' Learning Outcomes in Cell Theory

    ERIC Educational Resources Information Center

    Kiboss, Joel K.; Ndirangu, Mwangi; Wekesa, Eric W.

    2004-01-01

    Biology knowledge and understanding is important not only for the conversion of the loftiest dreams into reality for a better life of individuals but also for preparing secondary pupils for such fields as agriculture, medicine, biotechnology, and genetic engineering. But a recent study has revealed that many aspects of school science (biology…

  7. "What is this genetics, anyway?" Understandings of genetics, illness causality and inheritance among British Pakistani users of genetic services.

    PubMed

    Shaw, Alison; Hurst, Jane A

    2008-08-01

    Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.

  8. Neutral Theory is the Foundation of Conservation Genetics.

    PubMed

    Yoder, Anne D; Poelstra, Jelmer; Tiley, George P; Williams, Rachel

    2018-04-16

    Kimura's neutral theory of molecular evolution has been essential to virtually every advance in evolutionary genetics, and by extension, is foundational to the field of conservation genetics. Conservation genetics utilizes the key concepts of neutral theory to identify species and populations at risk of losing evolutionary potential by detecting patterns of inbreeding depression and low effective population size. In turn, this information can inform the management of organisms and their habitat providing hope for the long-term preservation of both. We expand upon Avise's "inventorial" and "functional" categories of conservation genetics by proposing a third category that is linked to the coalescent and that we refer to as "process-driven." It is here that connections between Kimura's theory and conservation genetics are strongest. Process-driven conservation genetics can be especially applied to large genomic datasets to identify patterns of historical risk, such as population bottlenecks, and accordingly, yield informed intuitions for future outcomes. By examining inventorial, functional, and process-driven conservation genetics in sequence, we assess the progression from theory, to data collection and analysis, and ultimately, to the production of hypotheses that can inform conservation policies.

  9. Why the Rediscoverer Ended up on the Sidelines: Hugo De Vries's Theory of Inheritance and the Mendelian Laws

    NASA Astrophysics Data System (ADS)

    Stamhuis, Ida H.

    2015-01-01

    Eleven years before the `rediscovery' in 1900 of Mendel's work, Hugo De Vries published his theory of heredity. He expected his theory to become a big success, but it was not well-received. To find supporting evidence for this theory De Vries started an extensive research program. Because of the parallels of his ideas with the Mendelian laws and because of his use of statistics, he became one of the rediscoverers. However, the Mendelian laws, which soon became the foundation of a new discipline of genetics, presented a problem. De Vries was the only one of the early Mendelians who had developed his own theory of heredity. His theory could not be brought in line with the Mendelian laws. But because his original theory was still very dear to him, something important was at stake and he was unwilling to adapt his ideas to the new situation. He belittled the importance of the Mendelian laws and ended up on the sidelines.

  10. The paradox of forest fragmentation genetics

    Treesearch

    Andrea T. Kramer; Jennifer L. Ison; Mary V. Ashley; Henry F. Howe

    2008-01-01

    Theory predicts widespread loss of genetic diversity from drift and inbreeding in trees subjected to habitat fragmentation, yet empirical support of this theory is scarce. We argue that population genetics theory may be misapplied in light of ecological realities that, when recognized, require scrutiny of underlying evolutionary assumptions. One ecological reality is...

  11. A nursing theory-guided framework for genetic and epigenetic research.

    PubMed

    Maki, Katherine A; DeVon, Holli A

    2018-04-01

    The notion that genetics, through natural selection, determines innate traits has led to much debate and divergence of thought on the impact of innate traits on the human phenotype. The purpose of this synthesis was to examine how innate theory informs genetic research and how understanding innate theory through the lens of Martha Rogers' theory of unitary human beings can offer a contemporary view of how innate traits can inform epigenetic and genetic research. We also propose a new conceptual model for genetic and epigenetic research. The philosophical, theoretical, and research literatures were examined for this synthesis. We have merged philosophical and conceptual phenomena from innate theory with the theory of unitary beings into the University of Illinois at Chicago model for genetic and epigenetic research. Innate traits are the cornerstone of the framework but may be modified epigenetically by biological, physiological, psychological, and social determinants as they are transcribed. These modifiers serve as important links between the concept of innate traits and epigenetic modifications, and, like the theory of unitary human beings, the process is understood in the context of individual and environmental interaction that has the potential to evolve as the determinants change. © 2018 John Wiley & Sons Ltd.

  12. Phenotype-Environment Interactions in Genetic Syndromes Associated with Severe or Profound Intellectual Disability

    ERIC Educational Resources Information Center

    Tunnicliffe, Penny; Oliver, Chris

    2011-01-01

    The research literature notes both biological and operant theories of behavior disorder in individuals with intellectual disabilities. These two theories of genetic predisposition and operant reinforcement remain quite distinct; neither theory on its own is sufficient to explain challenging behavior in genetic syndromes and an integrated approach…

  13. Suicide and the selfish gene.

    PubMed

    Satora, Leszek

    2005-01-01

    The application of an evolutionary perspective to human behaviour generates philosophical, political and scientific controversy. Modern human symbolic consciousness is not the cumulation of the long trend that natural selection would predict. The new archaeological data suggested the anatomical and behavioural innovation has been episodic and rare separated by long periods of stagnate. New behavioural mode and the new skeletal structure of modem human arose as an incidental exaptation. Additionally the genetic basis dysfunction connected with suicide behaviour and growing statistic suicide among teenager is contradictory to the theory that our behaviour are programmed in any detail by selfish genes. In this cases genetically determined suicidal behaviour should be rapidly eliminated by natural selection.

  14. Some pungent arguments against the physico-chemical theories of the origin of the genetic code and corroborating the coevolution theory.

    PubMed

    Di Giulio, Massimo

    2017-02-07

    Whereas it is extremely easy to prove that "if the biosynthetic relationships between amino acids were fundamental in the structuring of the genetic code, then their physico-chemical properties might also be revealed in the genetic code table"; it is, on the contrary, impossible to prove that "if the physico-chemical properties of amino acids were fundamental in the structuring of the genetic code, then the presence of the biosynthetic relationships between amino acids should not be revealed in the genetic code". And, given that in the genetic code table are mirrored both the biosynthetic relationships between amino acids and their physico-chemical properties, all this would be a test that would falsify the physico-chemical theories of the origin of the genetic code. That is to say, if the physico-chemical properties of amino acids had a fundamental role in organizing the genetic code, then we would not have duly revealed the presence - in the genetic code - of the biosynthetic relationships between amino acids, and on the contrary this has been observed. Therefore, this falsifies the physico-chemical theories of genetic code origin. Whereas, the coevolution theory of the origin of the genetic code would be corroborated by this analysis, because it would be able to give a description of evolution of the genetic code more coherent with the indisputable empirical observations that link both the biosynthetic relationships of amino acids and their physico-chemical properties to the evolutionary organization of the genetic code. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Interest in and reactions to genetic risk information: The role of implicit theories and self-affirmation.

    PubMed

    Taber, Jennifer M; Klein, William M P; Persky, Susan; Ferrer, Rebecca A; Kaufman, Annette R; Thai, Chan L; Harris, Peter R

    2017-10-01

    Implicit theories reflect core assumptions about whether human attributes are malleable or fixed: Incremental theorists believe a characteristic is malleable whereas entity theorists believe it is fixed. People with entity theories about health may be less likely to engage in risk-mitigating behavior. Spontaneous self-affirmation (e.g., reflecting on one's values when threatened) may lessen defensiveness and unhealthy behaviors associated with fixed beliefs, and reduce the likelihood of responding to health risk information with fixed beliefs. Across two studies conducted in the US from 2012 to 2015, we investigated how self-affirmation and implicit theories about health and body weight were linked to engagement with genetic risk information. In Study 1, participants in a genome sequencing trial (n = 511) completed cross-sectional assessments of implicit theories, self-affirmation, and intentions to learn, share, and use genetic information. In Study 2, overweight women (n = 197) were randomized to receive genetic or behavioral explanations for weight; participants completed surveys assessing implicit theories, self-affirmation, self-efficacy, motivation, and intentions. Fixed beliefs about weight were infrequently endorsed across studies (10.8-15.2%). In Study 1, participants with stronger fixed theories were less interested in learning and using genetic risk information about medically actionable disease; these associations were weaker among participants higher in self-affirmation. In Study 2, among participants given behavioral explanations for weight, stronger fixed theories about weight were associated with lower motivation and intentions to eat a healthy diet. Among participants given genetic explanations, being higher in self-affirmation was associated with less fixed beliefs. Stronger health-related fixed theories may decrease the likelihood of benefiting from genetic information, but less so for people who self-affirm. Published by Elsevier Ltd.

  16. Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.

    PubMed

    Jia, Han; Lu, Lijun; Cao, Yiqing

    2018-01-10

    A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.

  17. RNAmutants: a web server to explore the mutational landscape of RNA secondary structures

    PubMed Central

    Waldispühl, Jerome; Devadas, Srinivas; Berger, Bonnie; Clote, Peter

    2009-01-01

    The history and mechanism of molecular evolution in DNA have been greatly elucidated by contributions from genetics, probability theory and bioinformatics—indeed, mathematical developments such as Kimura's neutral theory, Kingman's coalescent theory and efficient software such as BLAST, ClustalW, Phylip, etc., provide the foundation for modern population genetics. In contrast to DNA, the function of most noncoding RNA depends on tertiary structure, experimentally known to be largely determined by secondary structure, for which dynamic programming can efficiently compute the minimum free energy secondary structure. For this reason, understanding the effect of pointwise mutations in RNA secondary structure could reveal fundamental properties of structural RNA molecules and improve our understanding of molecular evolution of RNA. The web server RNAmutants provides several efficient tools to compute the ensemble of low-energy secondary structures for all k-mutants of a given RNA sequence, where k is bounded by a user-specified upper bound. As we have previously shown, these tools can be used to predict putative deleterious mutations and to analyze regulatory sequences from the hepatitis C and human immunodeficiency genomes. Web server is available at http://bioinformatics.bc.edu/clotelab/RNAmutants/, and downloadable binaries at http://rnamutants.csail.mit.edu/. PMID:19531740

  18. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    NASA Astrophysics Data System (ADS)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  19. Individual-based modeling of ecological and evolutionary processes

    USGS Publications Warehouse

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  20. Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation

    NASA Astrophysics Data System (ADS)

    Du, Jiaoman; Yu, Lean; Li, Xiang

    2016-04-01

    Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.

  1. Genetics and Justice: Must One Theory Fit All Contexts?

    PubMed

    Gunson, Darryl

    2018-04-01

    Appeals to social justice that argue medicine and healthcare should have certain priorities and not others are common. It is an obvious question to ask: What does social justice demand of the new genetic technologies? However, it is important to note that there are many theories and sub-theories of justice. There are utilitarian theories, libertarian theories, and egalitarian theories. There are so-called luck egalitarians, equality-as-fairness thinkers, and capability theorists, with each having his or her own distinctive approach to the distribution of medical goods and technologies, and to healthcare priorities. This article argues that the discussion surrounding this question is potentially hampered by an implicit assumption that if one theory of justice is applicable in one context, then it must also be applicable in others. Instead, it is proposed that one adopt the stance, influenced by Michael Waltzer, that different theories with their opposing principles may be applicable to different questions regarding justice and genetics. The specific view advanced is that to answer questions about what justice requires regarding the therapeutic and enhancement use of genetic techniques, a method of reflective equilibrium can show how intuitions, in context, may support different theories of justice. When particular pre-theoretic ethical judgments are balanced against the theories that might explain or justify them, and are in accord with what seems emotionally acceptable, then it can be seen how different general theories may be applicable in the different contexts in which questions of justice and genetics arise.

  2. [Prospect and application of microsatellite population genetics in study of geoherbs].

    PubMed

    Zhang, Wen-Jing; Zhang, Yong-Qing; Yuan, Qing-Jun; Huang, Lu-Qi; Jiang, Dan; Jing, Li

    2013-12-01

    The author introduces the basic concepts of microsatellite and population genetics and its characteristics, expounds the application of these theories for population genetic structure and genetic diversity, gene flow and evolutionary significant unit ESU division research. This paper discuss its applicationin study of genetic causes, origin of cultivation, different regional origins of geoherbs, aiming at providing a new theory and method for geoherbs.

  3. [Knowledge and destiny or longevity and old age: the heritage of Homo sapiens].

    PubMed

    Goddio, A S

    1994-12-01

    Several theories have been proposed to explain ageing: limitation of the number of cell divisions or Hayflick's limit, the genetic theory, the action of free radicals, immune deficiency, etc. All of these theories share several points in common: their genetic determinism or repercussions which appear to be part of the heritage of complex organisms. Progress in genetics with chromosome decoding to localise genes and genetic manipulations or control of gene expression will probably allow an increased life expectancy, perhaps in the near future.

  4. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    PubMed

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  5. Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis

    PubMed Central

    Steele, Joe; Bastola, Dhundy

    2014-01-01

    Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective for this work owing to their inherent computational expense when processing large amounts of sequence data. These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and other inherent biological events. New approaches from information theory, frequency analysis and data compression are available and provide powerful alternatives to dynamic programming. These new methods are often preferred, as their algorithms are simpler and are not affected by synteny-related problems. In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods based on statistical analysis from word frequencies. We provide several clear examples to demonstrate applications and the interpretations over several different areas of alignment-free analysis such as base–base correlations, feature frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric. Additionally, we provide detailed discussion and an example of analysis by Lempel–Ziv techniques from data compression. PMID:23904502

  6. Question 6: coevolution theory of the genetic code: a proven theory.

    PubMed

    Wong, Jeffrey Tze-Fei

    2007-10-01

    The coevolution theory proposes that primordial proteins consisted only of those amino acids readily obtainable from the prebiotic environment, representing about half the twenty encoded amino acids of today, and the missing amino acids entered the system as the code expanded along with pathways of amino acid biosynthesis. The isolation of genetic code mutants, and the antiquity of pretran synthesis revealed by the comparative genomics of tRNAs and aminoacyl-tRNA synthetases, have combined to provide a rigorous proof of the four fundamental tenets of the theory, thus solving the riddle of the structure of the universal genetic code.

  7. Reframing developmental biology and building evolutionary theory's new synthesis.

    PubMed

    Tauber, Alfred I

    2010-01-01

    Gilbert and Epel present a new approach to developmental biology: embryogenesis must be understood within the full context of the organism's environment. Instead of an insular embryo following a genetic blueprint, this revised program maintains that embryogenesis is subject to inputs from the environment that generate novel genetic variation with dynamic consequences for development. Beyond allelic variation of structural genes and of regulatory loci, plasticity-derived epigenetic variation completes the triad of the major types of variation required for evolution. Developmental biology and ecology, disciplines that have previously been regarded as distinct, are presented here as fully integrated under the rubric of "eco-devo," and from this perspective, which highlights how the environment not only selects variation, it helps construct it, another synthesis with evolutionary biology must also be made, "eco-evo-devo." This second integration has enormous implications for expanding evolution theory, inasmuch as the Modern Synthesis (Provine 1971), which combined classical genetics and Darwinism in the mid-20th century, did not account for the role of development in evolution. The eco-evo-devo synthesis thus portends a major theoretical inflection in evolutionary biology. Following a description of these scientific developments, comment is offered as to how this new integrated approach might be understood within the larger shifts in contemporary biology.

  8. The synthesis paradigm in genetics.

    PubMed

    Rice, William R

    2014-02-01

    Experimental genetics with model organisms and mathematically explicit genetic theory are generally considered to be the major paradigms by which progress in genetics is achieved. Here I argue that this view is incomplete and that pivotal advances in genetics--and other fields of biology--are also made by synthesizing disparate threads of extant information rather than generating new information from experiments or formal theory. Because of the explosive expansion of information in numerous "-omics" data banks, and the fragmentation of genetics into numerous subdisciplines, the importance of the synthesis paradigm will likely expand with time.

  9. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture

    PubMed Central

    Martínez, Paulino; Viñas, Ana M.; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of the European aquaculture, and salmonids and tilapia, representing the fish for which there are well established breeding programs. PMID:25324858

  10. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory?

    PubMed

    Horne, Justine; Madill, Janet; O'Connor, Colleen; Shelley, Jacob; Gilliland, Jason

    2018-04-10

    Studying the impact of genetic testing interventions on lifestyle behaviour change has been a priority area of research in recent years. Substantial heterogeneity exists in the results and conclusions of this literature, which has yet to be explained using validated behaviour change theory and an assessment of the quality of genetic interventions. The theory of planned behaviour (TPB) helps to explain key contributors to behaviour change. It has been hypothesized that personalization could be added to this theory to help predict changes in health behaviours. This systematic review provides a detailed, comprehensive identification, assessment, and summary of primary research articles pertaining to lifestyle behaviour change (nutrition, physical activity, sleep, and smoking) resulting from genetic testing interventions. The present review further aims to provide in-depth analyses of studies conducted to date within the context of the TPB and the quality of genetic interventions provided to participants while aiming to determine whether or not genetic testing facilitates changes in lifestyle habits. This review is timely in light of a recently published "call-to-action" paper, highlighting the need to incorporate the TPB into personalized healthcare behaviour change research. Three bibliographic databases, one key website, and article reference lists were searched for relevant primary research articles. The PRISMA Flow Diagram and PRISMA Checklist were used to guide the search strategy and manuscript preparation. Out of 32,783 titles retrieved, 26 studies met the inclusion criteria. Three quality assessments were conducted and included: (1) risk of bias, (2) quality of genetic interventions, and (3) consideration of theoretical underpinnings - primarily the TPB. Risk of bias in studies was overall rated to be "fair." Consideration of the TPB was "poor," with no study making reference to this validated theory. While some studies (n = 11; 42%) made reference to other behaviour change theories, these theories were generally mentioned briefly, and were not thoroughly incorporated into the study design or analyses. The genetic interventions provided to participants were overall of "poor" quality. However, a separate analysis of studies using controlled intervention research methods demonstrated the use of higher-quality genetic interventions (overall rated to be "fair"). The provision of actionable recommendations informed by genetic testing was more likely to facilitate behaviour change than the provision of genetic information without actionable lifestyle recommendations. Several studies of good quality demonstrated changes in lifestyle habits arising from the provision of genetic interventions. The most promising lifestyle changes were changes in nutrition. It is possible to facilitate behaviour change using genetic testing as the catalyst. Future research should ensure that high-quality genetic interventions are provided to participants, and should consider validated theories such as the TPB in their study design and analyses. Further recommendations for future research are provided. © 2018 S. Karger AG, Basel.

  11. The aminoacyl-tRNA synthetases had only a marginal role in the origin of the organization of the genetic code: Evidence in favor of the coevolution theory.

    PubMed

    Di Giulio, Massimo

    2017-11-07

    The coevolution theory of the origin of the genetic code suggests that the organization of the genetic code coevolved with the biosynthetic relationships between amino acids. The mechanism that allowed this coevolution was based on tRNA-like molecules on which-this theory-would postulate the biosynthetic transformations between amino acids to have occurred. This mechanism makes a prediction on how the role conducted by the aminoacyl-tRNA synthetases (ARSs), in the origin of the genetic code, should have been. Indeed, if the biosynthetic transformations between amino acids occurred on tRNA-like molecules, then there was no need to link amino acids to these molecules because amino acids were already charged on tRNA-like molecules, as the coevolution theory suggests. In spite of the fact that ARSs make the genetic code responsible for the first interaction between a component of nucleic acids and that of proteins, for the coevolution theory the role of ARSs should have been entirely marginal in the genetic code origin. Therefore, I have conducted a further analysis of the distribution of the two classes of ARSs and of their subclasses-in the genetic code table-in order to perform a falsification test of the coevolution theory. Indeed, in the case in which the distribution of ARSs within the genetic code would have been highly significant, then the coevolution theory would be falsified since the mechanism on which it is based would not predict a fundamental role of ARSs in the origin of the genetic code. I found that the statistical significance of the distribution of the two classes of ARSs in the table of the genetic code is low or marginal, whereas that of the subclasses of ARSs statistically significant. However, this is in perfect agreement with the postulates of the coevolution theory. Indeed, the only case of statistical significance-regarding the classes of ARSs-is appreciable for the CAG code, whereas for its complement-the UNN/NUN code-only a marginal significance is measurable. These two codes codify roughly for the two ARS classes, in particular, the CAG code for the class II while the UNN/NUN code for the class I. Furthermore, the subclasses of ARSs show a statistical significance of their distribution in the genetic code table. Nevertheless, the more sensible explanation for these observations would be the following. The observation that would link the two classes of ARSs to the CAG and UNN/NUN codes, and the statistical significance of the distribution of the subclasses of ARSs in the genetic code table, would be only a secondary effect due to the highly significant distribution of the polarity of amino acids and their biosynthetic relationships in the genetic code. That is to say, the polarity of amino acids and their biosynthetic relationships would have conditioned the evolution of ARSs so that their presence in the genetic code would have been detectable. Even if the ARSs would not have-on their own-influenced directly the evolutionary organization of the genetic code. In other words, the role that ARSs had in the origin of the genetic code would have been entirely marginal. This conclusion would be in perfect accord with the predictions of the coevolution theory. Conversely, this conclusion would be in contrast-at least partially-with the physicochemical theories of the origin of the genetic code because they would foresee an absolutely more active role of ARSs in the origin of the organization of the genetic code. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Genetic variation in social mammals: the marmot model.

    PubMed

    Schwartz, O A; Armitage, K B

    1980-02-08

    The social substructure and the distribution of genetic variation among colonies of yellow-bellied marmots, when analyzed as an evolutionary system, suggests that this substructure enhances the intercolony variance and retards the fixation of genetic variation. This result supports a traditional theory of gradual evolution rather than recent theories suggesting accelerated evolution in social mammals.

  13. An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.

    2015-01-01

    The main theme of this paper concerns the persistent critique of Gilbert Gottlieb on developmental behavior genetics and my reactions to this critique, the latter changing from rejection to complete acceptation. Concise characterizations of developmental behavior genetics, developmental systems theory (to which Gottlieb made essential…

  14. Linear programming model to develop geodiversity map using utility theory

    NASA Astrophysics Data System (ADS)

    Sepehr, Adel

    2015-04-01

    In this article, the classification and mapping of geodiversity based on a quantitative methodology was accomplished using linear programming, the central idea of which being that geosites and geomorphosites as main indicators of geodiversity can be evaluated by utility theory. A linear programming method was applied for geodiversity mapping over Khorasan-razavi province located in eastern north of Iran. In this route, the main criteria for distinguishing geodiversity potential in the studied area were considered regarding rocks type (lithology), faults position (tectonic process), karst area (dynamic process), Aeolian landforms frequency and surface river forms. These parameters were investigated by thematic maps including geology, topography and geomorphology at scales 1:100'000, 1:50'000 and 1:250'000 separately, imagery data involving SPOT, ETM+ (Landsat 7) and field operations directly. The geological thematic layer was simplified from the original map using a practical lithologic criterion based on a primary genetic rocks classification representing metamorphic, igneous and sedimentary rocks. The geomorphology map was provided using DEM at scale 30m extracted by ASTER data, geology and google earth images. The geology map shows tectonic status and geomorphology indicated dynamic processes and landform (karst, Aeolian and river). Then, according to the utility theory algorithms, we proposed a linear programming to classify geodiversity degree in the studied area based on geology/morphology parameters. The algorithm used in the methodology was consisted a linear function to be maximized geodiversity to certain constraints in the form of linear equations. The results of this research indicated three classes of geodiversity potential including low, medium and high status. The geodiversity potential shows satisfied conditions in the Karstic areas and Aeolian landscape. Also the utility theory used in the research has been decreased uncertainty of the evaluations.

  15. Five species, many genotypes, broad phenotypic diversity: When agronomy meets functional ecology.

    PubMed

    Prieto, Ivan; Litrico, Isabelle; Violle, Cyrille; Barre, Philippe

    2017-01-01

    Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation. We quantified the extent of genetic diversity among different sets of functional traits and determined how much genetic diversity has been generated within populations of natural ecotypes and selected cultivars. In general, the cultivars were larger (e.g., greater height, faster growth rates) and had larger and thinner leaves (greater SLA). We found large (average 63%) and trait-dependent (ranging from 14% for LNC to 95.8% for growth rate) genetic variability. The relative extent of genetic variability was greater for whole-plant than for organ-level traits. This pattern was consistent within ecotypes and within cultivars. However, ecotypes presented greater ITV variability. The results indicated that genetic diversity is large in domesticated species with contrasting levels of heritability among functional traits and that selection for high yield has led to indirect selection of some associated leaf traits. These findings open the way to define which target traits should be the focus in selection programs, especially in the context of community-level selection. © 2017 Botanical Society of America.

  16. Genetic Epidemiology and Public Health: The Evolution From Theory to Technology.

    PubMed

    Fallin, M Daniele; Duggal, Priya; Beaty, Terri H

    2016-03-01

    Genetic epidemiology represents a hybrid of epidemiologic designs and statistical models that explicitly consider both genetic and environmental risk factors for disease. It is a relatively new field in public health; the term was first coined only 35 years ago. In this short time, the field has been through a major evolution, changing from a field driven by theory, without the technology for genetic measurement or computational capacity to apply much of the designs and methods developed, to a field driven by rapidly expanding technology in genomic measurement and computational analyses while epidemiologic theory struggles to keep up. In this commentary, we describe 4 different eras of genetic epidemiology, spanning this evolution from theory to technology, what we have learned, what we have added to the broader field of public health, and what remains to be done. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Under the Influence of Genetics: How Transdisciplinarity Leads Us to Rethink Social Pathways to Illness

    PubMed Central

    Pescosolido, Bernice A.; Perry, Brea L.; Long, J. Scott; Martin, Jack K.; Nurnberger, John I.; Hesselbrock, Victor

    2015-01-01

    To extend our understanding of how social structures and social processes impact behavior, sociologists have been challenged to incorporate the potential explanatory role of genetics in their models. Here, we draw propositions from three major understandings of illness causation offered by social theory – fundamental causes, social stress processes, and social safety net theories. We tailor hypotheses to the case of alcohol dependence, long considered a multifaceted problem, defying simple explanation and having both biological and social roots. After briefly reviewing current appeals for transdisciplinary research, we describe both sociological and genetic theories, and derive propositions expected under each and under a transdisciplinary theoretical frame. Analyses of a later wave of the preeminent medical science study, the Collaborative Study on the Genetics of Alcoholism (COGA), reveals a complex interplay of how the GABRA2 gene works with and against social structural factors to produce cases meeting DSM/ICD diagnoses. When both genetic and social factors are controlled, virtually equivalent effects of each remain; and, only modest evidence suggests that genetic influence works through social structural conditions and experiences. Further exploratory analyses using multiplicative terms reveal enhanced gene-environment interactions: 1) women are largely unaffected in their risk for alcohol dependence by allele status at this candidate gene; 2) family support attenuates genetic influence; 3) childhood deprivation exacerbates genetic predispositions. We discuss how these findings lead us to consider the essential intradisciplinary tension in sociological theories (i.e., the role of proximal and distal influences in social processes). Overall, our findings point to the promise of theories blending social and genetic influences by focusing directly on dynamic, networked sequences that produce different pathways to health and illness. PMID:19569404

  18. Ageing mechanisms and associated lipid changes.

    PubMed

    Kolovou, Genovefa; Katsiki, Niki; Pavlidis, Antonis; Bilianou, Helen; Goumas, George; Mikhailidis, Dimitri P

    2014-01-01

    Ageing is related to slowdown/breakdown of the somatotropic axis (i.e. the somatopause) leading to many physiological changes. The somatopause is accompanied by DNA and other macromolecule damage, and is characterized by a progressive decline in vitality and tissue function. We still do not have a definitive understanding of the mechanism( s) of ageing. Several overlapping theories have been proposed such as: 1) The free radical theory, 2) Mitochondrial Ageing, 3) The Glycation Theory, 4) Protein Damage and Maintenance in Ageing, and, 5) DNA Damage and Repair. Furthermore, several models of ageing were introduced such as genetically programmed senescence, telomere shortening, genomic instability, heterochromatin loss, altered epigenetic patterns and long lived cells. There are certain lipid modifications associated with the somatopause, characterized mainly by an increase in total cholesterol and triglyceride levels in both genders. In this review we consider the mechanisms of ageing and the associated changes in lipid metabolism according to gender.

  19. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  20. PhD programs in nursing in the United States: visibility of American Association of Colleges of Nursing core curricular elements and emerging areas of science.

    PubMed

    Wyman, Jean F; Henly, Susan J

    2015-01-01

    Preparing nursing doctoral students with knowledge and skills for developing science, stewarding the discipline, and educating future researchers is critical. This study examined the content of 120 U.S. PhD programs in nursing as communicated on program websites in 2012. Most programs included theory, research design, and statistics courses. Nursing inquiry courses were evidenced on only half the websites. Course work or research experiences in informatics were mentioned on 22.5% of the websites; biophysical measurement and genetics/genomics were mentioned on fewer than 8% of program websites. Required research experiences and instruction in scientific integrity/research ethics were more common when programs had Institutional Training Award funding (National Institutes of Health T32 mechanism) or were located at a university with a Clinical and Translational Science Award. Changes in education for the next generation of PhD students are critically needed to support advancement of nursing science. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis.

    PubMed

    Bonham-Carter, Oliver; Steele, Joe; Bastola, Dhundy

    2014-11-01

    Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective for this work owing to their inherent computational expense when processing large amounts of sequence data. These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and other inherent biological events. New approaches from information theory, frequency analysis and data compression are available and provide powerful alternatives to dynamic programming. These new methods are often preferred, as their algorithms are simpler and are not affected by synteny-related problems. In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods based on statistical analysis from word frequencies. We provide several clear examples to demonstrate applications and the interpretations over several different areas of alignment-free analysis such as base-base correlations, feature frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric. Additionally, we provide detailed discussion and an example of analysis by Lempel-Ziv techniques from data compression. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    NASA Astrophysics Data System (ADS)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  3. Evolutionary Technologies: Fundamentals and Applications to Information/Communication Systems and Manufacturing/Logistics Systems

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma

    As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.

  4. Endosymbiosis and its implications for evolutionary theory.

    PubMed

    O'Malley, Maureen A

    2015-08-18

    Historically, conceptualizations of symbiosis and endosymbiosis have been pitted against Darwinian or neo-Darwinian evolutionary theory. In more recent times, Lynn Margulis has argued vigorously along these lines. However, there are only shallow grounds for finding Darwinian concepts or population genetic theory incompatible with endosymbiosis. But is population genetics sufficiently explanatory of endosymbiosis and its role in evolution? Population genetics "follows" genes, is replication-centric, and is concerned with vertically consistent genetic lineages. It may also have explanatory limitations with regard to macroevolution. Even so, asking whether population genetics explains endosymbiosis may have the question the wrong way around. We should instead be asking how explanatory of evolution endosymbiosis is, and exactly which features of evolution it might be explaining. This paper will discuss how metabolic innovations associated with endosymbioses can drive evolution and thus provide an explanatory account of important episodes in the history of life. Metabolic explanations are both proximate and ultimate, in the same way genetic explanations are. Endosymbioses, therefore, point evolutionary biology toward an important dimension of evolutionary explanation.

  5. An extension of the coevolution theory of the origin of the genetic code

    PubMed Central

    Di Giulio, Massimo

    2008-01-01

    Background The coevolution theory of the origin of the genetic code suggests that the genetic code is an imprint of the biosynthetic relationships between amino acids. However, this theory does not seem to attribute a role to the biosynthetic relationships between the earliest amino acids that evolved along the pathways of energetic metabolism. As a result, the coevolution theory is unable to clearly define the very earliest phases of genetic code origin. In order to remove this difficulty, I here suggest an extension of the coevolution theory that attributes a crucial role to the first amino acids that evolved along these biosynthetic pathways and to their biosynthetic relationships, even when defined by the non-amino acid molecules that are their precursors. Results It is re-observed that the first amino acids to evolve along these biosynthetic pathways are predominantly those codified by codons of the type GNN, and this observation is found to be statistically significant. Furthermore, the close biosynthetic relationships between the sibling amino acids Ala-Ser, Ser-Gly, Asp-Glu, and Ala-Val are not random in the genetic code table and reinforce the hypothesis that the biosynthetic relationships between these six amino acids played a crucial role in defining the very earliest phases of genetic code origin. Conclusion All this leads to the hypothesis that there existed a code, GNS, reflecting the biosynthetic relationships between these six amino acids which, as it defines the very earliest phases of genetic code origin, removes the main difficulty of the coevolution theory. Furthermore, it is here discussed how this code might have naturally led to the code codifying only for the domains of the codons of precursor amino acids, as predicted by the coevolution theory. Finally, the hypothesis here suggested also removes other problems of the coevolution theory, such as the existence for certain pairs of amino acids with an unclear biosynthetic relationship between the precursor and product amino acids and the collocation of Ala between the amino acids Val and Leu belonging to the pyruvate biosynthetic family, which the coevolution theory considered as belonging to different biosyntheses. Reviewers This article was reviewed by Rob Knight, Paul Higgs (nominated by Laura Landweber), and Eugene Koonin. PMID:18775066

  6. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory.

    PubMed

    Di Giulio, Massimo

    2016-06-21

    I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the genetic code would be a theory highly corroborated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  8. High Points of Human Genetics

    ERIC Educational Resources Information Center

    Stern, Curt

    1975-01-01

    Discusses such high points of human genetics as the study of chromosomes, somatic cell hybrids, the population formula: the Hardy-Weinberg Law, biochemical genetics, the single-active X Theory, behavioral genetics and finally how genetics can serve humanity. (BR)

  9. The Growth of Developmental Thought: Implications for a New Evolutionary Psychology

    PubMed Central

    Lickliter, Robert

    2009-01-01

    Evolution has come to be increasingly discussed in terms of changes in developmental processes rather than simply in terms of changes in gene frequencies. This shift is based in large part on the recognition that since all phenotypic traits arise during ontogeny as products of individual development, a primary basis for evolutionary change must be variations in the patterns and processes of development. Further, the products of development are epigenetic, not just genetic, and this is the case even when considering the evolutionary process. These insights have led investigators to reconsider the established notion of genes as the primary cause of development, opening the door to research programs focused on identifying how genetic and non-genetic factors coact to guide and constrain the process of development and its outcomes. I explore this growth of developmental thought and its implications for the achievement of a unified theory of heredity, development, and evolution and consider its implications for the realization of a new, developmentally-based evolutionary psychology. PMID:19956346

  10. Developmental Systems Theory and the Person-Oriented Approach. Commentary on: "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics"

    ERIC Educational Resources Information Center

    Bergman, Lars R.

    2015-01-01

    Molenaar's (2015) article concerns Developmental Systems Theory (DST) in relation to behavior genetics and he presents implications of DST for empirical research, especially the need for subject-specific studies. In this commentary, the article is discussed from a broader developmental science perspective, particularly regarded through the lens of…

  11. Using IBMs to Investigate Spatially-dependent Processes in Landscape Genetics Theory

    EPA Science Inventory

    Much of landscape and conservation genetics theory has been derived using non-spatialmathematical models. Here, we use a mechanistic, spatially-explicit, eco-evolutionary IBM to examine the utility of this theoretical framework in landscapes with spatial structure. Our analysis...

  12. The prospects of selection for social genetic effects to improve welfare and productivity in livestock

    PubMed Central

    Ellen, Esther D.; Rodenburg, T. Bas; Albers, Gerard A. A.; Bolhuis, J. Elizabeth; Camerlink, Irene; Duijvesteijn, Naomi; Knol, Egbert F.; Muir, William M.; Peeters, Katrijn; Reimert, Inonge; Sell-Kubiak, Ewa; van Arendonk, Johan A. M.; Visscher, Jeroen; Bijma, Piter

    2014-01-01

    Social interactions between individuals living in a group can have both positive and negative effects on welfare, productivity, and health of these individuals. Negative effects of social interactions in livestock are easier to observe than positive effects. For example, laying hens may develop feather pecking, which can cause mortality due to cannibalism, and pigs may develop tail biting or excessive aggression. Several studies have shown that social interactions affect the genetic variation in a trait. Genetic improvement of socially-affected traits, however, has proven to be difficult until relatively recently. The use of classical selection methods, like individual selection, may result in selection responses opposite to expected, because these methods neglect the effect of an individual on its group mates (social genetic effects). It has become clear that improvement of socially-affected traits requires selection methods that take into account not only the direct effect of an individual on its own phenotype but also the social genetic effects, also known as indirect genetic effects, of an individual on the phenotypes of its group mates. Here, we review the theoretical and empirical work on social genetic effects, with a focus on livestock. First, we present the theory of social genetic effects. Subsequently, we evaluate the evidence for social genetic effects in livestock and other species, by reviewing estimates of genetic parameters for direct and social genetic effects. Then we describe the results of different selection experiments. Finally, we discuss issues concerning the implementation of social genetic effects in livestock breeding programs. This review demonstrates that selection for socially-affected traits, using methods that target both the direct and social genetic effects, is a promising, but sometimes difficult to use in practice, tool to simultaneously improve production and welfare in livestock. PMID:25426136

  13. The prospects of selection for social genetic effects to improve welfare and productivity in livestock.

    PubMed

    Ellen, Esther D; Rodenburg, T Bas; Albers, Gerard A A; Bolhuis, J Elizabeth; Camerlink, Irene; Duijvesteijn, Naomi; Knol, Egbert F; Muir, William M; Peeters, Katrijn; Reimert, Inonge; Sell-Kubiak, Ewa; van Arendonk, Johan A M; Visscher, Jeroen; Bijma, Piter

    2014-01-01

    Social interactions between individuals living in a group can have both positive and negative effects on welfare, productivity, and health of these individuals. Negative effects of social interactions in livestock are easier to observe than positive effects. For example, laying hens may develop feather pecking, which can cause mortality due to cannibalism, and pigs may develop tail biting or excessive aggression. Several studies have shown that social interactions affect the genetic variation in a trait. Genetic improvement of socially-affected traits, however, has proven to be difficult until relatively recently. The use of classical selection methods, like individual selection, may result in selection responses opposite to expected, because these methods neglect the effect of an individual on its group mates (social genetic effects). It has become clear that improvement of socially-affected traits requires selection methods that take into account not only the direct effect of an individual on its own phenotype but also the social genetic effects, also known as indirect genetic effects, of an individual on the phenotypes of its group mates. Here, we review the theoretical and empirical work on social genetic effects, with a focus on livestock. First, we present the theory of social genetic effects. Subsequently, we evaluate the evidence for social genetic effects in livestock and other species, by reviewing estimates of genetic parameters for direct and social genetic effects. Then we describe the results of different selection experiments. Finally, we discuss issues concerning the implementation of social genetic effects in livestock breeding programs. This review demonstrates that selection for socially-affected traits, using methods that target both the direct and social genetic effects, is a promising, but sometimes difficult to use in practice, tool to simultaneously improve production and welfare in livestock.

  14. Genetics and epigenetics of aging and longevity

    PubMed Central

    Moskalev, Alexey A; Aliper, Alexander M; Smit-McBride, Zeljka; Buzdin, Anton; Zhavoronkov, Alex

    2014-01-01

    Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect on longevity. The gerontogenes are classified as lifespan regulators, mediators, effectors, housekeeping genes, genes involved in mitochondrial function, and genes regulating cellular senescence and apoptosis. In this review we demonstrate that the majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response. PMID:24603410

  15. Perceived knowledge and clinical comfort with genetics among Taiwanese nurses enrolled in a RN-to-BSN program.

    PubMed

    Hsiao, Chiu-Yueh; Lee, Shu-Hsin; Chen, Suh-Jen; Lin, Shu-Chin

    2013-08-01

    Advances in genetics have had a profound impact on health care. Yet, many nurses, as well as other health care providers, have limited genetic knowledge and feel uncomfortable integrating genetics into their practice. Very little is known about perceived genetic knowledge and clinical comfort among Taiwanese nurses enrolled in a Registered Nurse to Bachelor of Science in Nursing program. To examine perceived knowledge and clinical comfort with genetics among Taiwanese nurses enrolled in a Registered Nurse to Bachelor of Science in Nursing program and to assess how genetics has been integrated into their past and current nursing programs. The study also sought to examine correlations among perceived knowledge, integration of genetics into the nursing curriculum, and clinical comfort with genetics. A descriptive, cross-sectional study. Taiwanese nurses enrolled in a Registered Nurse to Bachelor of Science in Nursing program were recruited. A total of 190 of 220 nurses returned the completed survey (86.36% response rate). Descriptive statistics and the Pearson product-moment correlation were used for data analysis. Most nurses indicated limited perceived knowledge and clinical comfort with genetics. Curricular hours focused on genetics in a current nursing program were greater than those in past nursing programs. The use of genetic materials, attendance at genetic workshops and conferences, and clinically relevant genetics in nursing practice significantly related with perceived knowledge and clinical comfort with genetics. However, there were no correlations between prior genetic-based health care, perceived knowledge, and clinical comfort with genetics. This study demonstrated the need for emphasizing genetic education and practice to ensure health-related professionals become knowledgeable about genetic information. Given the rapidly developing genetic revolution, nurses and other health care providers need to utilize genetic discoveries to optimize health outcomes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Intelligence: Genetic and Environmental Influences.

    ERIC Educational Resources Information Center

    Cancro, Robert, Ed.

    This book on the genetic and environmental influences on intelligence is comprised of the following papers: "The Structure of Intelligence in Relation to the Nature-Nurture Controversy," R. B. Cattell; "Theory of Intelligence," L. G. Humphreys; "Using Measured Intelligence Intelligently," P. R. Merrifield; "Intelligence: Definition, Theory, and…

  17. [Neurosis and genetic theory of etiology and pathogenesis of ulcer disease].

    PubMed

    Kolotilova, M L; Ivanov, L N

    2014-01-01

    Based on the analysis of literature data and our own research, we have developed the original concept of etiology and pathogenesis of peptic ulcer disease. An analysis of the literature shows that none of the theories of pathogenesis of peptic ulcer disease does not cover the full diversity of the involved functions and their shifts, which lead to the development of ulcers in the stomach and the duodenum. Our neurogenic-genetic theory of etiology and pathogenesis of gastric ulcer and duodenal ulcer very best explains the cause-and-effect relationships in the patient peptic ulcer, allowing options for predominance in one or the other case factors of neurosis or genetic factors. However, it is clear that the only other: combination of neurogenic factor with genetically modified reactivity of gastroduodenal system (the presence of the target organ) cause the chronicity of the sores. The theory of peptic ulcer disease related to psychosomatic pathologies allows us to develop effective schema therapy, including drugs with psychocorrective action. On the basis of our theory of the role of Helicobacter pylori infection is treated as a pathogenetic factor in the development of peptic ulcer disease.

  18. Provider biases and choices: the role of gender.

    PubMed

    Wertz, D C

    1993-09-01

    Genetic counseling provides a unique opportunity to test the influence of gender on moral reasoning. The theories of Carol Gilligan on women's "relationship based" framework for ethical decision making were contrasted with Kohlberg's research on men's resolution of conflicts based on abstract, universal principles in an impersonal and fair manner. Discussion also focussed on the theories of sociologists, such as Kanter's that a profession prestige and income as well as the proportion of women in profession determine the approach to ethical problems. This study reports on survey data in 1985 and 1986 collected from medical geneticists in 19 countries that had at least 10 medical geneticists, with at least one available to distribute questionnaires, and the appropriate geographic distribution. The survey did not include genetic counselors and allied professionals. The questionnaire asked for responses to 14 case studies, 4 questions on genetic screening and access to test results, and 12 questions on the goals and conduct of genetic counseling. 62% responded. Sociodemographic data were also collected and analyzed in stepwise logistic regressions. THe results showed that gender was the single most important determinant of ethical decision making and ethical reasoning. There were gender differences in responses to 6 of the 14 cases and, in the US, for a 7th case: sex selection. In the US, women were 4.4 times more likely to counsel indirectly about XYY fetuses and 3.6 more likely to bring up issues like false paternity or genetic carriers in other family members. Patient autonomy was an issued in a case involving a 25-year-old woman who demanded prenatal diagnosis with no genetic or medical indications and another case involving a couple desiring a son after having 4 daughters. Rights based responses were provided by 49% and relationship based responses by 44%. Gilligan's hypothesis was not supported. Similar results were found in a survey of genetic counselors, who were 94% women. A summary of other studies involving actual practices was given. Further research is needed to determine the processes of professionals' self definition, ethical views, and extent to which views and practices are gender or profession related; training programs may affect provider attitudes.

  19. Quantitative genetic versions of Hamilton's rule with empirical applications

    PubMed Central

    McGlothlin, Joel W.; Wolf, Jason B.; Brodie, Edmund D.; Moore, Allen J.

    2014-01-01

    Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. PMID:24686930

  20. Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Vazifeh-Noshafagh, Samira; Taleizadeh, Ata Allah; Hajipour, Vahid; Mahmoudi, Amin

    2017-01-01

    This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.

  1. Can Research on the Genetics of Intelligence Be "Socially Neutral"?

    PubMed

    Roberts, Dorothy

    2015-01-01

    The history of research on the genetics of intelligence is fraught with social bias. During the eugenics era, the hereditary theory of intelligence justified policies that encouraged the proliferation of favored races and coercively stemmed procreation by disfavored ones. In the 1970s, Berkeley psychologist Arthur Jensen argued that black students' innate cognitive inferiority limited the efficacy of federal education programs. The 1994 controversial bestseller The Bell Curve, by Richard J. Herrnstein and Charles Murray, rehashed the claim that race and class disparities stem from immutable differences in inherited intelligence, which could not be eliminated through social interventions. Today most scientists studying the genetics of intelligence distance themselves from this history of social bias by arguing that their research need not investigate intellectual differences between social groups. Rather, they argue, examining the heritability of intelligence can be socially neutral and may even help to reduce social inequities. I argue, however, that research on the genetics of intelligence cannot be socially neutral. Even if we divorce the heritability of intelligence from a eugenicist mission, measuring intelligence remains useful only as a gage of individuals' appropriate positions in society. Research into the genetics of intelligence ultimately helps to determine individuals' inherited capacity for particular social positions, even when researchers aim to modify the effects of inheritance. © 2015 The Hastings Center.

  2. Evolutionary pattern search algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimentalmore » analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.« less

  3. A 100-Year Review: Methods and impact of genetic selection in dairy cattle-From daughter-dam comparisons to deep learning algorithms.

    PubMed

    Weigel, K A; VanRaden, P M; Norman, H D; Grosu, H

    2017-12-01

    In the early 1900s, breed society herdbooks had been established and milk-recording programs were in their infancy. Farmers wanted to improve the productivity of their cattle, but the foundations of population genetics, quantitative genetics, and animal breeding had not been laid. Early animal breeders struggled to identify genetically superior families using performance records that were influenced by local environmental conditions and herd-specific management practices. Daughter-dam comparisons were used for more than 30 yr and, although genetic progress was minimal, the attention given to performance recording, genetic theory, and statistical methods paid off in future years. Contemporary (herdmate) comparison methods allowed more accurate accounting for environmental factors and genetic progress began to accelerate when these methods were coupled with artificial insemination and progeny testing. Advances in computing facilitated the implementation of mixed linear models that used pedigree and performance data optimally and enabled accurate selection decisions. Sequencing of the bovine genome led to a revolution in dairy cattle breeding, and the pace of scientific discovery and genetic progress accelerated rapidly. Pedigree-based models have given way to whole-genome prediction, and Bayesian regression models and machine learning algorithms have joined mixed linear models in the toolbox of modern animal breeders. Future developments will likely include elucidation of the mechanisms of genetic inheritance and epigenetic modification in key biological pathways, and genomic data will be used with data from on-farm sensors to facilitate precision management on modern dairy farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. The genetics of music accomplishment: evidence for gene-environment correlation and interaction.

    PubMed

    Hambrick, David Z; Tucker-Drob, Elliot M

    2015-02-01

    Theories of skilled performance that emphasize training history, such as K. Anders Ericsson and colleagues' deliberate-practice theory, have received a great deal of recent attention in both the scientific literature and the popular press. Twin studies, however, have demonstrated evidence for moderate-to-strong genetic influences on skilled performance. Focusing on musical accomplishment in a sample of over 800 pairs of twins, we found evidence for gene-environment correlation, in the form of a genetic effect on music practice. However, only about one quarter of the genetic effect on music accomplishment was explained by this genetic effect on music practice, suggesting that genetically influenced factors other than practice contribute to individual differences in music accomplishment. We also found evidence for gene-environment interaction, such that genetic effects on music accomplishment were most pronounced among those engaging in music practice, suggesting that genetic potentials for skilled performance are most fully expressed and fostered by practice.

  5. The Development of Genetics in the Light of Thomas Kuhn's Theory of Scientific Revolutions.

    PubMed

    Portin, Petter

    2015-01-01

    The concept of a paradigm is in the key position in Thomas Kuhn's theory of scientific revolutions. A paradigm is the framework within which the results, concepts, hypotheses and theories of scientific research work are understood. According to Kuhn, a paradigm guides the working and efforts of scientists during the time period which he calls the period of normal science. Before long, however, normal science leads to unexplained matters, a situation that then leads the development of the scientific discipline in question to a paradigm shift--a scientific revolution. When a new theory is born, it has either gradually emerged as an extension of the past theory, or the old theory has become a borderline case in the new theory. In the former case, one can speak of a paradigm extension. According to the present author, the development of modern genetics has, until very recent years, been guided by a single paradigm, the Mendelian paradigm which Gregor Mendel launched 150 years ago, and under the guidance of this paradigm the development of genetics has proceeded in a normal fashion in the spirit of logical positivism. Modern discoveries in genetics have, however, created a situation which seems to be leading toward a paradigm shift. The most significant of these discoveries are the findings of adaptive mutations, the phenomenon of transgenerational epigenetic inheritance, and, above all, the present deeply critical state of the concept of the gene.

  6. [The mechanism of phenoptosis: I. Age-dependent decrease of the overall rate of protein synthesis is caused by the programmed attenuation of bio-energetics].

    PubMed

    Trubitsyn, A G

    2009-01-01

    The age-dependent degradation of all vital processes of an organism can be result of influences of destructive factors (the stochastic mechanism of aging), or effect of realizations of the genetic program (phenoptosis). The stochastic free-radical theory of aging dominating now contradicts the set of empirical data, and the semicentenial attempts to create the means to slow down aging did not give any practical results. It makes obvious that the stochastic mechanism of aging is incorrect. At the same time, the alternative mechanism of the programmed aging is not developed yet but preconditions for it development have already been created. It is shown that the genes controlling process of aging exist (contrary to the customary opinion) and the increase in the level of damaged macromolecules (basic postulate of the free-radical theory) can be explained by programmed attenuation of bio-energetics. As the bio-energetics is a driving force of all vital processes, decrease of its level is capable to cause degradation of all functions of an organism. However to transform this postulate into a basis of the theory of phenoptosis it is necessary to show, that attenuation of bio-energetics predetermines such fundamental processes accompanying aging as decrease of the overall rate of protein biosynthesis, restriction of cellular proliferations (Hayflick limit), loss of telomeres etc. This article is the first step in this direction: the natural mechanism of interaction of overall rate of protein synthesis with a level of cellular bio-energetics is shown. This is built-in into the translation machine and based on dependence of recirculation rate of eukaryotic initiation factor 2 (elF2) from ATP/ADP value that is created by mitochondrial bio-energetic machine.

  7. Quantitative genetics of disease traits.

    PubMed

    Wray, N R; Visscher, P M

    2015-04-01

    John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics. © 2015 Blackwell Verlag GmbH.

  8. Genetic contribution to 'theory of mind' in adolescence.

    PubMed

    Warrier, Varun; Baron-Cohen, Simon

    2018-02-22

    Difficulties in 'theory of mind' (the ability to attribute mental states to oneself or others, and to make predictions about another's behaviour based on these attributions) have been observed in several psychiatric conditions. We investigate the genetic architecture of theory of mind in 4,577 13-year-olds who completed the Emotional Triangles Task (Triangles Task), a first-order test of theory of mind. We observe a small but significant female-advantage on the Triangles Task (Cohen's d = 0.19, P < 0.01), in keeping with previous work using other tests of theory of mind. Genome-wide association analyses did not identify any significant loci, and SNP heritability was non-significant. Polygenic scores for six psychiatric conditions (ADHD, anorexia, autism, bipolar disorder, depression, and schizophrenia), and empathy were not associated with scores on the Triangles Task. However, polygenic scores of cognitive aptitude, and cognitive empathy, a term synonymous with theory of mind and measured using the "Reading the Mind in the Eyes" Test, were significantly associated with scores on the Triangles Task at multiple P-value thresholds, suggesting shared genetics between different measures of theory of mind and cognition.

  9. Brief Report: On the Concordance Percentages for Autistic Spectrum Disorder of Twins

    ERIC Educational Resources Information Center

    Bohm, Henry V.; Stewart, Melbourne G.

    2009-01-01

    In the development of genetic theories of Autistic Spectrum Disorder (ASD) various characteristics of monozygotic (MZ) and dizygotic (DZ) twins are often considered. This paper sets forth a possible refinement in the interpretation of the MZ twin concordance percentages for ASD underlying such genetic theories, and, drawing the consequences from…

  10. Promoting meaning-making to help our patients grieve: an exemplar for genetic counselors and other health care professionals.

    PubMed

    Douglas, Heather A

    2014-10-01

    Genetic counselors and other health professionals frequently meet with patients who are grieving a loss. It is thus helpful for medical professionals to be familiar with approaches to bereavement counseling. Grief theory has evolved over the last few decades, from primarily stage theories of grief such as Kübler-Ross's "five stages of grief" to frameworks that promote more complex and long-term ways to cope with a loss. Herein I present one recent grief theory - meaning-making - and describe how it can be applied to help parents of children with disabilities grieve the loss of the child that they expected. In particular, I describe a scenario that many genetic counselors face - meeting with the parents of a child with Down syndrome. I outline the research done on the reactions, grief and coping experienced by parents in this circumstance, and I present suggestions for encouraging healthy coping and adjustment for parents, based on the meaning-making perspective. The meaning-making theory can also be applied to many of the other losses faced by genetic counseling patients.

  11. Cognitive Development, Genetics Problem Solving, and Genetics Instruction: A Critical Review.

    ERIC Educational Resources Information Center

    Smith, Mike U.; Sims, O. Suthern, Jr.

    1992-01-01

    Review of literature concerning problem solving in genetics and Piagetian stage theory. Authors conclude the research suggests that formal-operational thought is not strictly required for the solution of the majority of classical genetics problems; however, some genetic concepts are difficult for concrete operational students to understand.…

  12. Testing the structure of a hydrological model using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  13. An economic evaluation of a genetic screening program for Tay-Sachs disease.

    PubMed Central

    Nelson, W B; Swint, J M; Caskey, C T

    1978-01-01

    The resolution of policy questions relating to medical genetic screening programs will not be without considerable difficulty. Examples include such issues as the optimal degree of screening program expansion, the relative values of screening for different genetic diseases, the appropriate sources of program funding (public vs. private), and the relative value of funding expanded genetic screening programs vs. research directed toward elimination of genetic traits themselves. Information on the net impact of the relevant alternatives is greatly needed, and this need will increase if the National Genetics Act receives funding approval. We have provided what is hopefully a contribution toward this end. While our analysis pertains to a specific disease and a specific screening program for that disease, the methodology is readily generalizable to other genetic diseases, as well as programs of any size or structure. Hopefully, this will serve to stimulate further research efforts that we believe are needed for the objective consideration of resource allocation alternatives. PMID:418675

  14. An economic evaluation of a genetic screening program for Tay-Sachs disease.

    PubMed

    Nelson, W B; Swint, J M; Caskey, C T

    1978-03-01

    The resolution of policy questions relating to medical genetic screening programs will not be without considerable difficulty. Examples include such issues as the optimal degree of screening program expansion, the relative values of screening for different genetic diseases, the appropriate sources of program funding (public vs. private), and the relative value of funding expanded genetic screening programs vs. research directed toward elimination of genetic traits themselves. Information on the net impact of the relevant alternatives is greatly needed, and this need will increase if the National Genetics Act receives funding approval. We have provided what is hopefully a contribution toward this end. While our analysis pertains to a specific disease and a specific screening program for that disease, the methodology is readily generalizable to other genetic diseases, as well as programs of any size or structure. Hopefully, this will serve to stimulate further research efforts that we believe are needed for the objective consideration of resource allocation alternatives.

  15. Behavioural Susceptibility Theory: Professor Jane Wardle and the Role of Appetite in Genetic Risk of Obesity.

    PubMed

    Llewellyn, Clare H; Fildes, Alison

    2017-03-01

    There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment.

  16. Can sexual selection theory inform genetic management of captive populations? A review

    PubMed Central

    Chargé, Rémi; Teplitsky, Céline; Sorci, Gabriele; Low, Matthew

    2014-01-01

    Captive breeding for conservation purposes presents a serious practical challenge because several conflicting genetic processes (i.e., inbreeding depression, random genetic drift and genetic adaptation to captivity) need to be managed in concert to maximize captive population persistence and reintroduction success probability. Because current genetic management is often only partly successful in achieving these goals, it has been suggested that management insights may be found in sexual selection theory (in particular, female mate choice). We review the theoretical and empirical literature and consider how female mate choice might influence captive breeding in the context of current genetic guidelines for different sexual selection theories (i.e., direct benefits, good genes, compatible genes, sexy sons). We show that while mate choice shows promise as a tool in captive breeding under certain conditions, for most species, there is currently too little theoretical and empirical evidence to provide any clear guidelines that would guarantee positive fitness outcomes and avoid conflicts with other genetic goals. The application of female mate choice to captive breeding is in its infancy and requires a goal-oriented framework based on the needs of captive species management, so researchers can make honest assessments of the costs and benefits of such an approach, using simulations, model species and captive animal data. PMID:25553072

  17. The Red Queen lives: Epistasis between linked resistance loci.

    PubMed

    Metzger, César M J A; Luijckx, Pepijn; Bento, Gilberto; Mariadassou, Mahendra; Ebert, Dieter

    2016-02-01

    A popular theory explaining the maintenance of genetic recombination (sex) is the Red Queen Theory. This theory revolves around the idea that time-lagged negative frequency-dependent selection by parasites favors rare host genotypes generated through recombination. Although the Red Queen has been studied for decades, one of its key assumptions has remained unsupported. The signature host-parasite specificity underlying the Red Queen, where infection depends on a match between host and parasite genotypes, relies on epistasis between linked resistance loci for which no empirical evidence exists. We performed 13 genetic crosses and tested over 7000 Daphnia magna genotypes for resistance to two strains of the bacterial pathogen Pasteuria ramosa. Results reveal the presence of strong epistasis between three closely linked resistance loci. One locus masks the expression of the other two, while these two interact to produce a single resistance phenotype. Changing a single allele on one of these interacting loci can reverse resistance against the tested parasites. Such a genetic mechanism is consistent with host and parasite specificity assumed by the Red Queen Theory. These results thus provide evidence for a fundamental assumption of this theory and provide a genetic basis for understanding the Red Queen dynamics in the Daphnia-Pasteuria system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  18. Ethical issues in predictive genetic testing: a public health perspective.

    PubMed

    Fulda, K G; Lykens, K

    2006-03-01

    As a result of the increase in genetic testing and the fear of discrimination by insurance companies, employers, and society as a result of genetic testing, the disciplines of ethics, public health, and genetics have converged. Whether relatives of someone with a positive predictive genetic test should be notified of the results and risks is a matter urgently in need of debate. Such a debate must encompass the moral and ethical obligations of the diagnosing physician and the patient. The decision to inform or not will vary depending on what moral theory is used. Utilising the utilitarian and libertarian theories produces different outcomes. The principles of justice and non-maleficence will also play an important role in the decision.

  19. Ethical issues in predictive genetic testing: a public health perspective

    PubMed Central

    Fulda, K G; Lykens, K

    2006-01-01

    As a result of the increase in genetic testing and the fear of discrimination by insurance companies, employers, and society as a result of genetic testing, the disciplines of ethics, public health, and genetics have converged. Whether relatives of someone with a positive predictive genetic test should be notified of the results and risks is a matter urgently in need of debate. Such a debate must encompass the moral and ethical obligations of the diagnosing physician and the patient. The decision to inform or not will vary depending on what moral theory is used. Utilising the utilitarian and libertarian theories produces different outcomes. The principles of justice and non‐maleficence will also play an important role in the decision. PMID:16507657

  20. Microsatellite data analysis for population genetics

    USDA-ARS?s Scientific Manuscript database

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of ...

  1. The Future of Piaget's Theory in Education.

    ERIC Educational Resources Information Center

    Murray, Frank B.

    This paper assesses the utility of Piagetian theory for educational practice. Educational practice cannot be formally deduced from psychological theory, but may be theory-compatible if the theory does not specifically forbid the practice. Piaget's genetic epistemology has provided a theoretical justification for longstanding educational…

  2. Author's Response to Commentaries on: "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics"

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.

    2015-01-01

    In this article, Peter Molenaar responds to three commentaries (this issue) on his article, "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics." He addresses aspects of relational developmental systems (RDS) mentioned and questions raised in each of the…

  3. Solving deterministic non-linear programming problem using Hopfield artificial neural network and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2012-11-01

    A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.

  4. Constructing and Verifying Program Theory Using Source Documentation

    ERIC Educational Resources Information Center

    Renger, Ralph

    2010-01-01

    Making the program theory explicit is an essential first step in Theory Driven Evaluation (TDE). Once explicit, the program logic can be established making necessary links between the program theory, activities, and outcomes. Despite its importance evaluators often encounter situations where the program theory is not explicitly stated. Under such…

  5. The genetic theory of infectious diseases: a brief history and selected illustrations.

    PubMed

    Casanova, Jean-Laurent; Abel, Laurent

    2013-01-01

    Until the mid-nineteenth century, life expectancy at birth averaged 20 years worldwide, owing mostly to childhood fevers. The germ theory of diseases then gradually overcame the belief that diseases were intrinsic. However, around the turn of the twentieth century, asymptomatic infection was discovered to be much more common than clinical disease. Paradoxically, this observation barely challenged the newly developed notion that infectious diseases were fundamentally extrinsic. Moreover, interindividual variability in the course of infection was typically explained by the emerging immunological (or somatic) theory of infectious diseases, best illustrated by the impact of vaccination. This powerful explanation is, however, best applicable to reactivation and secondary infections, particularly in adults; it can less easily account for interindividual variability in the course of primary infection during childhood. Population and clinical geneticists soon proposed a complementary hypothesis, a germline genetic theory of infectious diseases. Over the past century, this idea has gained some support, particularly among clinicians and geneticists, but has also encountered resistance, particularly among microbiologists and immunologists. We present here the genetic theory of infectious diseases and briefly discuss its history and the challenges encountered during its emergence in the context of the apparently competing but actually complementary microbiological and immunological theories. We also illustrate its recent achievements by highlighting inborn errors of immunity underlying eight life-threatening infectious diseases of children and young adults. Finally, we consider the far-reaching biological and clinical implications of the ongoing human genetic dissection of severe infectious diseases.

  6. The Genetic Theory of Infectious Diseases: A Brief History and Selected Illustrations

    PubMed Central

    Casanova, Jean-Laurent; Abel, Laurent

    2016-01-01

    Until the mid-nineteenth century, life expectancy at birth averaged 20 years worldwide, owing mostly to childhood fevers. The germ theory of diseases then gradually overcame the belief that diseases were intrinsic. However, around the turn of the twentieth century, asymptomatic infection was discovered to be much more common than clinical disease. Paradoxically, this observation barely challenged the newly developed notion that infectious diseases were fundamentally extrinsic. Moreover, interindividual variability in the course of infection was typically explained by the emerging immunological (or somatic) theory of infectious diseases, best illustrated by the impact of vaccination. This powerful explanation is, however, best applicable to reactivation and secondary infections, particularly in adults; it can less easily account for interindividual variability in the course of primary infection during childhood. Population and clinical geneticists soon proposed a complementary hypothesis, a germline genetic theory of infectious diseases. Over the past century, this idea has gained some support, particularly among clinicians and geneticists, but has also encountered resistance, particularly among microbiologists and immunologists. We present here the genetic theory of infectious diseases and briefly discuss its history and the challenges encountered during its emergence in the context of the apparently competing but actually complementary microbiological and immunological theories. We also illustrate its recent achievements by highlighting inborn errors of immunity underlying eight life-threatening infectious diseases of children and young adults. Finally, we consider the far-reaching biological and clinical implications of the ongoing human genetic dissection of severe infectious diseases. PMID:23724903

  7. Discovering Knowledge from Noisy Databases Using Genetic Programming.

    ERIC Educational Resources Information Center

    Wong, Man Leung; Leung, Kwong Sak; Cheng, Jack C. Y.

    2000-01-01

    Presents a framework that combines Genetic Programming and Inductive Logic Programming, two approaches in data mining, to induce knowledge from noisy databases. The framework is based on a formalism of logic grammars and is implemented as a data mining system called LOGENPRO (Logic Grammar-based Genetic Programming System). (Contains 34…

  8. Testing the Structure of Hydrological Models using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  9. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    PubMed

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Influence of Self-Efficacy Beliefs and Metacognitive Prompting on Genetics Problem Solving Ability among High School Students in Kenya

    NASA Astrophysics Data System (ADS)

    Aurah, Catherine Muhonja

    Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.

  11. Genetics and plant development.

    PubMed

    Prunet, Nathanaël; Meyerowitz, Elliot M

    2016-01-01

    There are only three grand theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Two of these, the cell and gene theories, originated in the study of plants, with the third resulting in part from botanical considerations as well. Mendel's elucidation of the rules of inheritance was a result of his experiments on peas. The rediscovery of Mendel's work in 1900 was by the botanists de Vries, Correns, and Tschermak. It was only in subsequent years that animals were also shown to have segregation of genetic elements in the exact same manner as had been shown in plants. The story of developmental biology is different - while the development of plants has long been studied, the experimental and genetic approaches to developmental mechanism were developed via experiments on animals, and the importance of genes in development (e.g., Waddington, 1940) and their use for understanding developmental mechanisms came to botanical science much later - as late as the 1980s. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  12. Linking extinction-colonization dynamics to genetic structure in a salamander metapopulation.

    PubMed

    Cosentino, Bradley J; Phillips, Christopher A; Schooley, Robert L; Lowe, Winsor H; Douglas, Marlis R

    2012-04-22

    Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.

  13. Multivariate Cholesky models of human female fertility patterns in the NLSY.

    PubMed

    Rodgers, Joseph Lee; Bard, David E; Miller, Warren B

    2007-03-01

    Substantial evidence now exists that variables measuring or correlated with human fertility outcomes have a heritable component. In this study, we define a series of age-sequenced fertility variables, and fit multivariate models to account for underlying shared genetic and environmental sources of variance. We make predictions based on a theory developed by Udry [(1996) Biosocial models of low-fertility societies. In: Casterline, JB, Lee RD, Foote KA (eds) Fertility in the United States: new patterns, new theories. The Population Council, New York] suggesting that biological/genetic motivations can be more easily realized and measured in settings in which fertility choices are available. Udry's theory, along with principles from molecular genetics and certain tenets of life history theory, allow us to make specific predictions about biometrical patterns across age. Consistent with predictions, our results suggest that there are different sources of genetic influence on fertility variance at early compared to later ages, but that there is only one source of shared environmental influence that occurs at early ages. These patterns are suggestive of the types of gene-gene and gene-environment interactions for which we must account to better understand individual differences in fertility outcomes.

  14. The Life Course Perspective: a Guide for Genetic Counselors.

    PubMed

    Hamilton, Rebekah J; Innella, Nancy A; Bounds, Dawn T

    2016-02-01

    This is the first article in a two part series about utilizing the life course perspective (LCP) in genetic counseling. LCP can be a useful tool for genetic counselors when counseling people with a known genetic mutation. Previous theories such as Protection Motivation Theory (PMT) and Common Sense Model of Self-Regulation (CSMSR) examine current reactions to a positive genetic test result. LCP extends beyond the current time to explore temporal and contextual elements of the experience. A review of research revealed, LCP has been used to study the perspective of caregivers of people with Alzheimer's disease, referral for a family history of breast cancer, Mexican American caregivers of older adult, social class and cancer incidence and cancer and the sense of mastery. Incorporating LCP into a study explaining the experiences of people living with a positive test result for a genetic mutation such as the BRCA mutation provides a comprehensive exploration of this experience.

  15. Investigating the genetic basis of theory of mind (ToM): the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    PubMed

    Xia, Haiwei; Wu, Nan; Su, Yanjie

    2012-01-01

    The ability to deduce other persons' mental states and emotions which has been termed 'theory of mind (ToM)' is highly heritable. First molecular genetic studies focused on some dopamine-related genes, while the genetic basis underlying different components of ToM (affective ToM and cognitive ToM) remain unknown. The current study tested 7 candidate polymorphisms (rs4680, rs4633, rs2020917, rs2239393, rs737865, rs174699 and rs59938883) on the catechol-O-methyltransferase (COMT) gene. We investigated how these polymorphisms relate to different components of ToM. 101 adults participated in our study; all were genetically unrelated, non-clinical and healthy Chinese subjects. Different ToM tasks were applied to detect their theory of mind ability. The results showed that the COMT gene rs2020917 and rs737865 SNPs were associated with cognitive ToM performance, while the COMT gene rs5993883 SNP was related to affective ToM, in which a significant gender-genotype interaction was found (p = 0.039). Our results highlighted the contribution of DA-related COMT gene on ToM performance. Moreover, we found out that the different SNP at the same gene relates to the discriminative aspect of ToM. Our research provides some preliminary evidence to the genetic basis of theory of mind which still awaits further studies.

  16. Utility of computer simulations in landscape genetics

    Treesearch

    Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale

    2010-01-01

    Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...

  17. Genetic Counseling as an Educational Process.

    ERIC Educational Resources Information Center

    Eddy, James M.; St. Pierre, Richard

    Historically genetic counseling programs have not included strong educational components or sound educational foundations. This paper deals with some of the drawbacks of current genetic counseling programs and the implications for education in the genetic counseling process. The author adopts a broad definition of genetic counseling which…

  18. The system-resonance approach in modeling genetic structures.

    PubMed

    Petoukhov, Sergey V

    2016-01-01

    The founder of the theory of resonance in structural chemistry Linus Pauling established the importance of resonance patterns in organization of living systems. Any living organism is a great chorus of coordinated oscillatory processes. From the formal point of view, biological organism is an oscillatory system with a great number of degrees of freedom. Such systems are studied in the theory of oscillations using matrix mathematics of their resonance characteristics. This study is devoted to a new approach for modeling genetically inherited structures and processes in living organisms using mathematical tools of the theory of resonances. This approach reveals hidden relationships in a number of genetic phenomena and gives rise to a new class of bio-mathematical models, which contribute to a convergence of biology with physics and informatics. In addition some relationships of molecular-genetic ensembles with mathematics of noise-immunity coding of information in modern communications technology are shown. Perspectives of applications of the phenomena of vibrational mechanics for modeling in biology are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. The faster-X effect: integrating theory and data.

    PubMed

    Meisel, Richard P; Connallon, Tim

    2013-09-01

    Population genetics theory predicts that X (or Z) chromosomes could play disproportionate roles in speciation and evolutionary divergence, and recent genome-wide analyses have identified situations in which X or Z-linked divergence exceeds that on the autosomes (the so-called 'faster-X effect'). Here, we summarize the current state of both the theory and data surrounding the study of faster-X evolution. Our survey indicates that the faster-X effect is pervasive across a taxonomically diverse array of evolutionary lineages. These patterns could be informative of the dominance or recessivity of beneficial mutations and the nature of genetic variation acted upon by natural selection. We also identify several aspects of disagreement between these empirical results and the population genetic models used to interpret them. However, there are clearly delineated aspects of the problem for which additional modeling and collection of genomic data will address these discrepancies and provide novel insights into the population genetics of adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The mGA1.0: A common LISP implementation of a messy genetic algorithm

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Kerzic, Travis

    1990-01-01

    Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.

  1. Education and certification of genetic counselors.

    PubMed

    Katsichti, L; Hadzipetros-Bardanis, M; Bartsocas, C S

    1999-01-01

    Genetic counseling is defined by the American Society of Human Genetics as a communication process which deals with the human problems associated with the occurrence, or risk of occurrence, of a genetic disorder in a family. The first graduate program (Master's degree) in genetic counseling started in 1969 at Sarah Lawrence College, NY, USA, while in 1979 the National Society of Genetic Counseling (NSGC) was established. Today, there are 29 programs in U.S.A. offering a Master's degree in Genetic Counseling, five programs in Canada, one in Mexico, one in England and one in S. Africa. Most of these graduate programs offer two year training, consisting of graduate courses, seminars, research and practical training. Emphasis is given in human physiology, biochemistry, clinical genetics, cytogenetics, molecular and biochemical genetics, population genetics and statistics, prenatal diagnosis, teratology and genetic counseling in relation to psychosocial and ethical issues. Certification for eligible candidates is available through the American Board of Medical Genetics (ABMG). Requirements for certification include a master's degree in human genetics, training at sites accredited by the ABMG, documentation of genetic counseling experience, evidence of continuing education and successful completion of a comprehensive ABMG certification examination. As professionals, genetic counselors should maintain expertise, should insure mechanisms for professional advancement and should always maintain the ability to approach their patients.

  2. Neutral theory, microbial practice: challenges in bacterial population genetics.

    PubMed

    Rocha, Eduardo P C

    2018-04-19

    Kimura's outstanding contributions to population genetics included many elegant theoretical results on the vagaries of alleles in populations. Once polymorphism data showed extensive variation in natural populations, these results led naturally to the Neutral Theory. In this article, I'll depart from some of these results to focus on four major open problems in microbial population genetics with direct implications to the study of molecular evolution: the lack of neutral polymorphism, the modeling of genetic exchanges, the population genetics of ill-defined populations, and the difficulty of untangling selection and demography in the light of the previous issues. Whilst studies in population genetics usually focus on single nucleotide polymorphism and allelic recombination, ignoring even small indels, a large fraction of genetic diversification in Bacteria results from horizontal gene transfer. Ignoring this fact defeats the purpose of population genetics: to characterize the genetic variation in populations and their adaptive effects. I'll argue that, following on Kimura's life work, one may need to develop new approaches to study microbes that reproduce asexually but are able to engage in gene exchanges with very distantly related organisms in a context where random sampling is often unachievable, populations are ill-defined, genetic linkage is strong, and random drift is rare.

  3. Indicators of Theory of Mind in Narrative Production: A Comparison between Individuals with Genetic Syndromes and Typically Developing Children

    ERIC Educational Resources Information Center

    Lorusso, M. L.; Galli, R.; Libera, L.; Gagliardi, C.; Borgatti, R.; Hollebrandse, B.

    2007-01-01

    It is a matter of debate whether the development of theory of mind (ToM) depends on linguistic development or is, rather, an expression of cognitive development. The study of genetic syndromes, which are characterized by intellectual impairment as well as by different linguistic profiles, may provide useful information with respect to this issue.…

  4. Social Communication and Theory of Mind in Boys with Autism and Fragile X Syndrome

    PubMed Central

    Losh, Molly; Martin, Gary E.; Klusek, Jessica; Hogan-Brown, Abigail L.; Sideris, John

    2012-01-01

    Impairments in the social use of language, or pragmatics, constitute a core characteristic of autism. Problems with pragmatic language have also been documented in fragile X syndrome (FXS), a monogenic condition that is the most common known genetic cause of autism. Evidence suggests that social cognitive ability, or theory of mind, may also be impaired in both conditions, and in autism, may importantly relate to pragmatic language ability. Given the substantial overlap observed in autism and FXS, this study aimed to better define those social-communicative phenotypes that overlap in these two conditions by comparing pragmatic language ability and theory of mind in children with idiopathic autism and children with FXS, with and without autism, as well as children with Down syndrome and typically developing controls. We further examined correlations between these cognitive-behavioral phenotypes and molecular genetic variation related to the Fragile X Mental Retardation-1 gene (FMR1) in the FXS group. Results indicated that children with idiopathic autism and those with FXS and autism performed comparably on direct-assessment measures of pragmatic language and theory of mind, whereas those with FXS only did not differ from controls. Theory of mind was related to pragmatic language ability in all groups. Pragmatic language and theory of mind also correlated with genetic variation at the FMR1 locus (Cytosine-Guanine-Guanine repeats and percent methylation). These results point toward substantial overlap in the social and language phenotypes in autism and FXS and suggest a molecular genetic basis to these phenotypic profiles. PMID:22934085

  5. Social communication and theory of mind in boys with autism and fragile x syndrome.

    PubMed

    Losh, Molly; Martin, Gary E; Klusek, Jessica; Hogan-Brown, Abigail L; Sideris, John

    2012-01-01

    Impairments in the social use of language, or pragmatics, constitute a core characteristic of autism. Problems with pragmatic language have also been documented in fragile X syndrome (FXS), a monogenic condition that is the most common known genetic cause of autism. Evidence suggests that social cognitive ability, or theory of mind, may also be impaired in both conditions, and in autism, may importantly relate to pragmatic language ability. Given the substantial overlap observed in autism and FXS, this study aimed to better define those social-communicative phenotypes that overlap in these two conditions by comparing pragmatic language ability and theory of mind in children with idiopathic autism and children with FXS, with and without autism, as well as children with Down syndrome and typically developing controls. We further examined correlations between these cognitive-behavioral phenotypes and molecular genetic variation related to the Fragile X Mental Retardation-1 gene (FMR1) in the FXS group. Results indicated that children with idiopathic autism and those with FXS and autism performed comparably on direct-assessment measures of pragmatic language and theory of mind, whereas those with FXS only did not differ from controls. Theory of mind was related to pragmatic language ability in all groups. Pragmatic language and theory of mind also correlated with genetic variation at the FMR1 locus (Cytosine-Guanine-Guanine repeats and percent methylation). These results point toward substantial overlap in the social and language phenotypes in autism and FXS and suggest a molecular genetic basis to these phenotypic profiles.

  6. Genetics Content in Introductory Biology Courses for Non-Science Majors: Theory and Practice.

    ERIC Educational Resources Information Center

    Hott, Adam M.; Huether, Carl A.; McInerney, Joseph D.; Christianson, Carol; Fowler, Robert; Bender, Harvey; Jenkins, John; Wysocki, Annette; Markle, Glenn; Karp, Richard

    2002-01-01

    Presents the recommendations of the Human Genetic Education Subcommittee of the American Society of Human Genetics (ASHG) on the development of introductory biology courses for non-science majors addressing the list of concepts including evolution, transmission, gene expression, gene regulation, and genetics and society. Used an online survey to…

  7. A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.

    PubMed

    Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R

    2011-10-01

    It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.

  8. Intention to communicate BRCA1/BRCA2 genetic test results to the family.

    PubMed

    Barsevick, Andrea M; Montgomery, Susan V; Ruth, Karen; Ross, Eric A; Egleston, Brian L; Bingler, Ruth; Malick, John; Miller, Suzanne M; Cescon, Terrence P; Daly, Mary B

    2008-04-01

    Guided by the theory of planned behavior, this analysis explores the communication skills of women who had genetic testing for BRCA1 and BRCA2. The key outcome was intention to tell test results to adult first-degree relatives. The theory predicts that global and specific attitudes, global and specific perceived social norms, and perceived control will influence the communication of genetic test results. A logistic regression model revealed that global attitude (p < .05), specific social influence (p < .01), and perceived control (p < .05) were significant predictors of intention to tell. When gender and generation of relatives were added to the regression, participants were more likely to convey genetic test results to female than to male relatives (p < .05) and were also more likely to communicate test results to children (p < .01) or siblings (p < .05) than to parents. However, this association depended on knowing the relative's opinion of genetic testing. Intention to tell was lowest among participants who did not know their relative's opinion. These results extend the theory of planned behavior by showing that gender and generation influence intention when the relative's opinion is unknown. (c) 2008 APA, all rights reserved.

  9. "The Theory was Beautiful Indeed": Rise, Fall and Circulation of Maximizing Methods in Population Genetics (1930-1980).

    PubMed

    Grodwohl, Jean-Baptiste

    2017-08-01

    Describing the theoretical population geneticists of the 1960s, Joseph Felsenstein reminisced: "our central obsession was finding out what function evolution would try to maximize. Population geneticists used to think, following Sewall Wright, that mean relative fitness, W, would be maximized by natural selection" (Felsenstein 2000). The present paper describes the genesis, diffusion and fall of this "obsession", by giving a biography of the mean fitness function in population genetics. This modeling method devised by Sewall Wright in the 1930s found its heyday in the late 1950s and early 1960s, in the wake of Motoo Kimura's and Richard Lewontin's works. It seemed a reliable guide in the mathematical study of deterministic effects (the study of natural selection in populations of infinite size, with no drift), leading to powerful generalizations presenting law-like properties. Progress in population genetics theory, it then seemed, would come from the application of this method to the study of systems with several genes. This ambition came to a halt in the context of the influential objections made by the Australian mathematician Patrick Moran in 1963. These objections triggered a controversy between mathematically- and biologically-inclined geneticists, with affected both the formal standards and the aims of population genetics as a science. Over the course of the 1960s, the mean fitness method withered with the ambition of developing the deterministic theory. The mathematical theory became increasingly complex. Kimura re-focused his modeling work on the theory of random processes; as a result of his computer simulations, Lewontin became the staunchest critic of maximizing principles in evolutionary biology. The mean fitness method then migrated to other research areas, being refashioned and used in evolutionary quantitative genetics and behavioral ecology.

  10. Genetic programming over context-free languages with linear constraints for the knapsack problem: first results.

    PubMed

    Bruhn, Peter; Geyer-Schulz, Andreas

    2002-01-01

    In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.

  11. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  12. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  13. Stigmatization of carrier status: social implications of heterozygote genetic screening programs.

    PubMed Central

    Kenen, R H; Schmidt, R M

    1978-01-01

    Possible latent psychological and social consequences ensuing from genetic screening programs need to be investigated during the planning phase of national genetic screening programs. The relatively few studies which have been performed to determine psychological, social, and economic consequences resulting from a genetic screening program are reviewed. Stigmatization of carrier-status, having major psychosocial implications in heterozygote genetic screening programs, is discussed and related to Erving Goffman's work in the area of stigmatization. Questions are raised regarding the relationship between such variables as religiosity and sex of the individual and acceptance of the status of newly identified carrier of a mutant gene. Severity of the deleterious gene and visibility of the carrier status are two important factors to consider in an estimation of potential stigma. Specific implications are discussed for four genetic diseases: Tay-Sachs, Sickle-Cell Anemia, Huntington's disease and Hemophilia. PMID:152585

  14. Genetic algorithms using SISAL parallel programming language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tejada, S.

    1994-05-06

    Genetic algorithms are a mathematical optimization technique developed by John Holland at the University of Michigan [1]. The SISAL programming language possesses many of the characteristics desired to implement genetic algorithms. SISAL is a deterministic, functional programming language which is inherently parallel. Because SISAL is functional and based on mathematical concepts, genetic algorithms can be efficiently translated into the language. Several of the steps involved in genetic algorithms, such as mutation, crossover, and fitness evaluation, can be parallelized using SISAL. In this paper I will l discuss the implementation and performance of parallel genetic algorithms in SISAL.

  15. Amount of Genetics Education is Low Among Didactic Programs in Dietetics.

    PubMed

    Beretich, Kaitlan; Pope, Janet; Erickson, Dawn; Kennedy, Angela

    2017-01-01

    Nutritional genomics is a growing area of research. Research has shown registered dietitian nutritionists (RDNs) have limited knowledge of genetics. Limited research is available regarding how didactic programs in dietetics (DPDs) meet the genetics knowledge requirement of the Accreditation Council for Education in Nutrition and Dietetics (ACEND®). The purpose of this study was to determine the extent to which the study of nutritional genomics is incorporated into undergraduate DPDs in response to the Academy of Nutrition and Dietetics position statement on nutritional genomics. The sample included 62 DPD directors in the U.S. Most programs (63.9%) reported the ACEND genetics knowledge requirement was being met by integrating genetic information into the current curriculum. However, 88.7% of programs reported devoting only 1-10 clock hours to genetics education. While 60.3% of directors surveyed reported they were confident in their program's ability to teach information related to genetics, only 6 directors reported having specialized training in genetics. The overall amount of clock hours devoted to genetics education is low. DPD directors, faculty, and instructors are not adequately trained to provide this education to students enrolled in DPDs. Therefore, the primary recommendation of this study is the development of a standardized curriculum for genetics education in DPDs.

  16. Software For Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  17. Genetic algorithm to solve the problems of lectures and practicums scheduling

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.

  18. Genetics Education in Nurse Residency Programs: A Natural Fit.

    PubMed

    Hamilton, Nalo M; Stenman, Christina W; Sang, Elaine; Palmer, Christina

    2017-08-01

    Scientific advances are shedding light on the genetic underpinning of common diseases. With such insight, the entire health care team is faced with the need to address patient questions regarding genetic risk, testing, and the psychosocial aspects of genetics information. Nurses are in a prime position to help with patient education about genetic conditions, yet they often lack adequate genetics education within their nursing curriculum to address patient questions and provide resources. One mechanism to address this knowledge deficit is the incorporation of a genetics-based curriculum into nurse residency programs. This article describes a novel genetics-based curriculum designed and implemented in the UCLA Health System Nurse Residency Program. J Contin Educ Nurs. 2017;48(8):379-384. Copyright 2017, SLACK Incorporated.

  19. Program Theory Evaluation: Logic Analysis

    ERIC Educational Resources Information Center

    Brousselle, Astrid; Champagne, Francois

    2011-01-01

    Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…

  20. Report on an Investigation into an Entry Level Clinical Doctorate for the Genetic Counseling Profession and a Survey of the Association of Genetic Counseling Program Directors.

    PubMed

    Reiser, Catherine; LeRoy, Bonnie; Grubs, Robin; Walton, Carol

    2015-10-01

    The master's degree is the required entry-level degree for the genetic counseling profession in the US and Canada. In 2012 the Association of Genetic Counseling Program Directors (AGCPD) passed resolutions supporting retention of the master's as the entry-level and terminal degree and opposing introduction of an entry-level clinical doctorate (CD) degree. An AGCPD workgroup surveyed directors of all 34 accredited training programs with the objective of providing the Genetic Counseling Advanced Degrees Task Force (GCADTF) with information regarding potential challenges if master's programs were required to transition to an entry-level CD. Program demographics, projected ability to transition to an entry-level CD, factors influencing ability to transition, and potential effects of transition on programs, students and the genetic counseling workforce were characterized. Two programs would definitely be able to transition, four programs would close, thirteen programs would be at risk to close and fourteen programs would probably be able to transition with varying degrees of difficulty. The most frequently cited limiting factors were economic, stress on clinical sites, and administrative approval of a new degree/program. Student enrollment under an entry-level CD model was projected to decrease by 26.2 %, negatively impacting the workforce pipeline. The results further illuminate and justify AGCPD's position to maintain the master's as the entry-level degree.

  1. Neuroinflammation and ageing: current theories and an overview of the data.

    PubMed

    Pizza, Vincenzo; Agresta, Anella; D'Acunto, Cosimo W; Festa, Michela; Capasso, Anna

    2011-09-01

    The increase in the average lifespan and the consequent proportional growth of the elderly segment of society has furthered the interest in studying ageing processes. Ageing may be considered a multifactorial process derived from the interaction between genetic and environmental factors including lifestyle. There is ample evidence in many species that the maximum age attainable (maximum lifespan potential, MLSP) is genetically determined and several mitochondrial DNA polymorphisms are associated with longevity. This review will address the current understanding of the relationship between ageing and several factors both genetics and life style related. Firstly we focused on the most reliable and commonly shared theories which attempt to explain the phenomenon of ageing as the genetic, cellular, neuroendocrine, immunological and free-radicals related theories. Many studies have shown that most of the phenotypic characteristics observed in the aging process are the result of the occurrence, with age, of a low grade chronic pro-inflammatory status called "inflammaging", partially under genetic control. The term indicate that aging is accompanied by a low degree of chronic inflammatory, an up-regulation of inflammatory response and that inflammatory changes are common to many age-related diseases. In this review special attention was dedicated to diseases related to age as atherosclerosis, cancer and Alzheimer disease. Despite the fact that in recent years many theories about ageing have been developed, we are still far from a full understanding of the mechanisms underlying the ageing process.

  2. The evolution of sexes: A specific test of the disruptive selection theory.

    PubMed

    da Silva, Jack

    2018-01-01

    The disruptive selection theory of the evolution of anisogamy posits that the evolution of a larger body or greater organismal complexity selects for a larger zygote, which in turn selects for larger gametes. This may provide the opportunity for one mating type to produce more numerous, small gametes, forcing the other mating type to produce fewer, large gametes. Predictions common to this and related theories have been partially upheld. Here, a prediction specific to the disruptive selection theory is derived from a previously published game-theoretic model that represents the most complete description of the theory. The prediction, that the ratio of macrogamete to microgamete size should be above three for anisogamous species, is supported for the volvocine algae. A fully population genetic implementation of the model, involving mutation, genetic drift, and selection, is used to verify the game-theoretic approach and accurately simulates the evolution of gamete sizes in anisogamous species. This model was extended to include a locus for gamete motility and shows that oogamy should evolve whenever there is costly motility. The classic twofold cost of sex may be derived from the fitness functions of these models, showing that this cost is ultimately due to genetic conflict.

  3. Combinatorial structures to modeling simple games and applications

    NASA Astrophysics Data System (ADS)

    Molinero, Xavier

    2017-09-01

    We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-)heuristics algorithms and parallel programming, among others.

  4. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2002-01-01

    In this paper we present a comparison of optimization approaches to the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP), Quasi-Newton, Simplex, Genetic Algorithms, and Simulated Annealing. Each method is applied to a variety of test cases including, circular to circular coplanar orbits, LEO to GEO, and orbit phasing in highly elliptic orbits. We also compare different constrained optimization routines on complex orbit rendezvous problems with complicated, highly nonlinear constraints.

  5. Portfolio optimization by using linear programing models based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  6. Genetic Programming as Alternative for Predicting Development Effort of Individual Software Projects

    PubMed Central

    Chavoya, Arturo; Lopez-Martin, Cuauhtemoc; Andalon-Garcia, Irma R.; Meda-Campaña, M. E.

    2012-01-01

    Statistical and genetic programming techniques have been used to predict the software development effort of large software projects. In this paper, a genetic programming model was used for predicting the effort required in individually developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating them. The models used two kinds of lines of code as well as programming language experience as independent variables. Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software development effort of individual projects when these projects have been developed in a disciplined manner within a development-controlled environment. PMID:23226305

  7. Purposeful Program Theory: Effective Use of Theories of Change and Logic Models

    ERIC Educational Resources Information Center

    Funnell, Sue C.; Rogers, Patricia J.

    2011-01-01

    Between good intentions and great results lies a program theory--not just a list of tasks but a vision of what needs to happen, and how. Now widely used in government and not-for-profit organizations, program theory provides a coherent picture of how change occurs and how to improve performance. "Purposeful Program Theory" shows how to develop,…

  8. Actor-network theory: a tool to support ethical analysis of commercial genetic testing.

    PubMed

    Williams-Jones, Bryn; Graham, Janice E

    2003-12-01

    Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.

  9. Estimation and interpretation of genetic effects with epistasis using the NOIA model.

    PubMed

    Alvarez-Castro, José M; Carlborg, Orjan; Rönnegård, Lars

    2012-01-01

    We introduce this communication with a brief outline of the historical landmarks in genetic modeling, especially concerning epistasis. Then, we present methods for the use of genetic modeling in QTL analyses. In particular, we summarize the essential expressions of the natural and orthogonal interactions (NOIA) model of genetic effects. Our motivation for reviewing that theory here is twofold. First, this review presents a digest of the expressions for the application of the NOIA model, which are often mixed with intermediate and additional formulae in the original articles. Second, we make the required theory handy for the reader to relate the genetic concepts to the particular mathematical expressions underlying them. We illustrate those relations by providing graphical interpretations and a diagram summarizing the key features for applying genetic modeling with epistasis in comprehensive QTL analyses. Finally, we briefly review some examples of the application of NOIA to real data and the way it improves the interpretability of the results.

  10. Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life

    PubMed Central

    Wong, J. Tze-Fei; Ng, Siu-Kin; Mat, Wai-Kin; Hu, Taobo; Xue, Hong

    2016-01-01

    The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets. PMID:26999216

  11. Genetic perspectives on northern population cycles: bridging the gap between theory and empirical studies.

    PubMed

    Norén, Karin; Angerbjörn, Anders

    2014-05-01

    Many key species in northern ecosystems are characterised by high-amplitude cyclic population demography. In 1924, Charles Elton described the ecology and evolution of cyclic populations in a classic paper and, since then, a major focus has been the underlying causes of population cycles. Elton hypothesised that fluctuations reduced population genetic variation and influenced the direction of selection pressures. In concordance with Elton, present theories concern the direct consequences of population cycles for genetic structure due to the processes of genetic drift and selection, but also include feedback models of genetic composition on population dynamics. Most of these theories gained mathematical support during the 1970s and onwards, but due to methodological drawbacks, difficulties in long-term sampling and a complex interplay between microevolutionary processes, clear empirical data allowing the testing of these predictions are still scarce. Current genetic tools allow for estimates of genetic variation and identification of adaptive genomic regions, making this an ideal time to revisit this subject. Herein, we attempt to contribute towards a consensus regarding the enigma described by Elton almost 90 years ago. We present nine predictions covering the direct and genetic feedback consequences of population cycles on genetic variation and population structure, and review the empirical evidence. Generally, empirical support for the predictions was low and scattered, with obvious gaps in the understanding of basic population processes. We conclude that genetic variation in northern cyclic populations generally is high and that the geographic distribution and amount of diversity are usually suggested to be determined by various forms of context- and density-dependent dispersal exceeding the impact of genetic drift. Furthermore, we found few clear signatures of selection determining genetic composition in cyclic populations. Dispersal is assumed to have a strong impact on genetic structuring and we suggest that the signatures of other microevolutionary processes such as genetic drift and selection are weaker and have been over-shadowed by density-dependent dispersal. We emphasise that basic biological and demographical questions still need to be answered and stress the importance of extensive sampling, appropriate choice of tools and the value of standardised protocols. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  12. Constraints in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    1996-01-01

    Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.

  13. Development and pilot evaluation of novel genetic educational materials designed for an underserved patient population.

    PubMed

    Lubitz, Rebecca Jean; Komaromy, Miriam; Crawford, Beth; Beattie, Mary; Lee, Robin; Luce, Judith; Ziegler, John

    2007-01-01

    Genetic counseling for BRCA1 and BRCA2 mutations involves teaching about hereditary cancer, genetics and risk, subjects that are difficult to grasp and are routinely misunderstood. Supported by a grant from the Avon Foundation, the UCSF Cancer Risk Program started the first genetic testing and counseling service for a population of traditionally underserved women of varied ethnic and social backgrounds at the San Francisco General Hospital (SFGH). Informed by educational theory and clinical experience, we devised and piloted two simplified explanations of heredity and genetic risk, with the aim of uncovering how to best communicate genetics and risk to this underserved population. A "conventional" version comprised pictures of genes, pedigrees, and quantitative representations of risk. A "colloquial" pictorial version used an analogy of the "information book" of genes, family stories and vignettes, and visual representations of risk, without using scientific words such as genes or chromosomes. A verbal narrative accompanied each picture. We presented these modules to four focus groups of five to eight women recruited from the SFGH Family Practice Clinic. Overall, women preferred a picture-based approach and commented that additional text would have been distracting. The majority of women preferred the colloquial version because it was easier to understand and better conveyed a sense of comfort and hope. We conclude that simplicity, analogies, and familiarity support comprehension while vignettes, family stories, and photos of real people provide comfort and hope. These elements may promote understanding of complex scientific topics in healthcare, particularly when communicating with patients who come from disadvantaged backgrounds.

  14. Mathematical fundamentals for the noise immunity of the genetic code.

    PubMed

    Fimmel, Elena; Strüngmann, Lutz

    2018-02-01

    Symmetry is one of the essential and most visible patterns that can be seen in nature. Starting from the left-right symmetry of the human body, all types of symmetry can be found in crystals, plants, animals and nature as a whole. Similarly, principals of symmetry are also some of the fundamental and most useful tools in modern mathematical natural science that play a major role in theory and applications. As a consequence, it is not surprising that the desire to understand the origin of life, based on the genetic code, forces us to involve symmetry as a mathematical concept. The genetic code can be seen as a key to biological self-organisation. All living organisms have the same molecular bases - an alphabet consisting of four letters (nitrogenous bases): adenine, cytosine, guanine, and thymine. Linearly ordered sequences of these bases contain the genetic information for synthesis of proteins in all forms of life. Thus, one of the most fascinating riddles of nature is to explain why the genetic code is as it is. Genetic coding possesses noise immunity which is the fundamental feature that allows to pass on the genetic information from parents to their descendants. Hence, since the time of the discovery of the genetic code, scientists have tried to explain the noise immunity of the genetic information. In this chapter we will discuss recent results in mathematical modelling of the genetic code with respect to noise immunity, in particular error-detection and error-correction. We will focus on two central properties: Degeneracy and frameshift correction. Different amino acids are encoded by different quantities of codons and a connection between this degeneracy and the noise immunity of genetic information is a long standing hypothesis. Biological implications of the degeneracy have been intensively studied and whether the natural code is a frozen accident or a highly optimised product of evolution is still controversially discussed. Symmetries in the structure of degeneracy of the genetic code are essential and give evidence of substantial advantages of the natural code over other possible ones. In the present chapter we will present a recent approach to explain the degeneracy of the genetic code by algorithmic methods from bioinformatics, and discuss its biological consequences. The biologists recognised this problem immediately after the detection of the non-overlapping structure of the genetic code, i.e., coding sequences are to be read in a unique way determined by their reading frame. But how does the reading head of the ribosome recognises an error in the grouping of codons, caused by e.g. insertion or deletion of a base, that can be fatal during the translation process and may result in nonfunctional proteins? In this chapter we will discuss possible solutions to the frameshift problem with a focus on the theory of so-called circular codes that were discovered in large gene populations of prokaryotes and eukaryotes in the early 90s. Circular codes allow to detect a frameshift of one or two positions and recently a beautiful theory of such codes has been developed using statistics, group theory and graph theory. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Genetic Programming of Industrial Microorganisms.

    ERIC Educational Resources Information Center

    Hopwood, David A.

    1981-01-01

    Traces the development of the field of industrial microbial genetics, describing a range of techniques for genetic programing. Includes a discussion of site-directed mutagenesis, protoplast fusion, and recombinant DNA manipulations. (CS)

  16. Genetic constraints on adaptation: a theoretical primer for the genomics era.

    PubMed

    Connallon, Tim; Hall, Matthew D

    2018-06-01

    Genetic constraints are features of inheritance systems that slow or prohibit adaptation. Several population genetic mechanisms of constraint have received sustained attention within the field since they were first articulated in the early 20th century. This attention is now reflected in a rich, and still growing, theoretical literature on the genetic limits to adaptive change. In turn, empirical research on constraints has seen a rapid expansion over the last two decades in response to changing interests of evolutionary biologists, along with new technologies, expanding data sets, and creative analytical approaches that blend mathematical modeling with genomics. Indeed, one of the most notable and exciting features of recent progress in genetic constraints is the close connection between theoretical and empirical research. In this review, we discuss five major population genetic contexts of genetic constraint: genetic dominance, pleiotropy, fitness trade-offs between types of individuals of a population, sign epistasis, and genetic linkage between loci. For each, we outline historical antecedents of the theory, specific contexts where constraints manifest, and their quantitative consequences for adaptation. From each of these theoretical foundations, we discuss recent empirical approaches for identifying and characterizing genetic constraints, each grounded and motivated by this theory, and outline promising areas for future work. © 2018 New York Academy of Sciences.

  17. Facial averageness and genetic quality: Testing heritability, genetic correlation with attractiveness, and the paternal age effect.

    PubMed

    Lee, Anthony J; Mitchem, Dorian G; Wright, Margaret J; Martin, Nicholas G; Keller, Matthew C; Zietsch, Brendan P

    2016-01-01

    Popular theory suggests that facial averageness is preferred in a partner for genetic benefits to offspring. However, whether facial averageness is associated with genetic quality is yet to be established. Here, we computed an objective measure of facial averageness for a large sample ( N = 1,823) of identical and nonidentical twins and their siblings to test two predictions from the theory that facial averageness reflects genetic quality. First, we use biometrical modelling to estimate the heritability of facial averageness, which is necessary if it reflects genetic quality. We also test for a genetic association between facial averageness and facial attractiveness. Second, we assess whether paternal age at conception (a proxy of mutation load) is associated with facial averageness and facial attractiveness. Our findings are mixed with respect to our hypotheses. While we found that facial averageness does have a genetic component, and a significant phenotypic correlation exists between facial averageness and attractiveness, we did not find a genetic correlation between facial averageness and attractiveness (therefore, we cannot say that the genes that affect facial averageness also affect facial attractiveness) and paternal age at conception was not negatively associated with facial averageness. These findings support some of the previously untested assumptions of the 'genetic benefits' account of facial averageness, but cast doubt on others.

  18. Aging in the colonial chordate, Botryllus schlosseri.

    PubMed

    Munday, Roma; Rodriguez, Delany; Di Maio, Alessandro; Kassmer, Susannah; Braden, Brian; Taketa, Daryl A; Langenbacher, Adam; De Tomaso, Anthony

    2015-01-30

    What mechanisms underlie aging? One theory, the wear-and-tear model, attributes aging to progressive deterioration in the molecular and cellular machinery which eventually lead to death through the disruption of physiological homeostasis. The second suggests that life span is genetically programmed, and aging may be derived from intrinsic processes which enforce a non-random, terminal time interval for the survivability of the organism. We are studying an organism that demonstrates both properties: the colonial ascidian, Botryllus schlosseri. Botryllus is a member of the Tunicata, the sister group to the vertebrates, and has a number of life history traits which make it an excellent model for studies on aging. First, Botryllus has a colonial life history, and grows by a process of asexual reproduction during which entire bodies, including all somatic and germline lineages, regenerate every week, resulting in a colony of genetically identical individuals. Second, previous studies of lifespan in genetically distinct Botryllus lineages suggest that a direct, heritable basis underlying mortality exists that is unlinked to reproductive effort and other life history traits. Here we will review recent efforts to take advantage of the unique life history traits of B. schlosseri and develop it into a robust model for aging research.

  19. Psychiatric Genomics: An Update and an Agenda.

    PubMed

    Sullivan, Patrick F; Agrawal, Arpana; Bulik, Cynthia M; Andreassen, Ole A; Børglum, Anders D; Breen, Gerome; Cichon, Sven; Edenberg, Howard J; Faraone, Stephen V; Gelernter, Joel; Mathews, Carol A; Nievergelt, Caroline M; Smoller, Jordan W; O'Donovan, Michael C

    2018-01-01

    The Psychiatric Genomics Consortium (PGC) is the largest consortium in the history of psychiatry. This global effort is dedicated to rapid progress and open science, and in the past decade it has delivered an increasing flow of new knowledge about the fundamental basis of common psychiatric disorders. The PGC has recently commenced a program of research designed to deliver "actionable" findings-genomic results that 1) reveal fundamental biology, 2) inform clinical practice, and 3) deliver new therapeutic targets. The central idea of the PGC is to convert the family history risk factor into biologically, clinically, and therapeutically meaningful insights. The emerging findings suggest that we are entering a phase of accelerated genetic discovery for multiple psychiatric disorders. These findings are likely to elucidate the genetic portions of these truly complex traits, and this knowledge can then be mined for its relevance for improved therapeutics and its impact on psychiatric practice within a precision medicine framework. [AJP at 175: Remembering Our Past As We Envision Our Future November 1946: The Genetic Theory of Schizophrenia Franz Kallmann's influential twin study of schizophrenia in 691 twin pairs was the largest in the field for nearly four decades. (Am J Psychiatry 1946; 103:309-322 )].

  20. Etiology of homosexuality and attitudes toward same-sex parenting: a randomized study.

    PubMed

    Frias-Navarro, Dolores; Monterde-I-Bort, Hector; Pascual-Soler, Marcos; Badenes-Ribera, Laura

    2015-01-01

    Attribution theory suggests the hypothesis that heterosexuals' attitudes toward homosexual sexual orientation will be more negative when homosexuality is attributed to controllable causes. Our randomized study analyzed (a) whether beliefs about the genetic or environmental etiology of the homosexual sexual orientation can be immediately modified by reading a text and (b) the causal effect of attributions about the controllability (environmental etiology) or noncontrollability (genetic etiology) of homosexual sexual orientation on the rejection of same-sex parenting and their social rights. The sample was composed of 190 Spanish university students with a mean age of 22.07 years (SD = 8.46). The results show that beliefs about the etiology of the sexual orientation could be modified by means of a written text. Furthermore, participants who believed that sexual orientation had a genetic etiology showed greater support for social rights and less rejection of same-sex parenting. However, the effects were detected only when there was a traditional opposition to the family with same-sex parenting. When the opposition was normative, the effect was not statistically significant. Our results can be useful in planning variables for intervention programs designed to foster tolerance toward and normality of sexual diversity.

  1. Prescriptive models to support decision making in genetics.

    PubMed

    Pauker, S G; Pauker, S P

    1987-01-01

    Formal prescriptive models can help patients and clinicians better understand the risks and uncertainties they face and better formulate well-reasoned decisions. Using Bayes rule, the clinician can interpret pedigrees, historical data, physical findings and laboratory data, providing individualized probabilities of various diagnoses and outcomes of pregnancy. With the advent of screening programs for genetic disease, it becomes increasingly important to consider the prior probabilities of disease when interpreting an abnormal screening test result. Decision trees provide a convenient formalism for structuring diagnostic, therapeutic and reproductive decisions; such trees can also enhance communication between clinicians and patients. Utility theory provides a mechanism for patients to understand the choices they face and to communicate their attitudes about potential reproductive outcomes in a manner which encourages the integration of those attitudes into appropriate decisions. Using a decision tree, the relevant probabilities and the patients' utilities, physicians can estimate the relative worth of various medical and reproductive options by calculating the expected utility of each. By performing relevant sensitivity analyses, clinicians and patients can understand the impact of various soft data, including the patients' attitudes toward various health outcomes, on the decision making process. Formal clinical decision analytic models can provide deeper understanding and improved decision making in clinical genetics.

  2. Aging in the colonial chordate, Botryllus schlosseri

    PubMed Central

    Munday, Roma; Rodriguez, Delany; Di Maio, Alessandro; Kassmer, Susannah; Braden, Brian; Taketa, Daryl A.; Langenbacher, Adam; De Tomaso, Anthony

    2015-01-01

    What mechanisms underlie aging? One theory, the wear-and-tear model, attributes aging to progressive deterioration in the molecular and cellular machinery which eventually lead to death through the disruption of physiological homeostasis. The second suggests that life span is genetically programmed, and aging may be derived from intrinsic processes which enforce a non-random, terminal time interval for the survivability of the organism. We are studying an organism that demonstrates both properties: the colonial ascidian, Botryllus schlosseri. Botryllus is a member of the Tunicata, the sister group to the vertebrates, and has a number of life history traits which make it an excellent model for studies on aging. First, Botryllus has a colonial life history, and grows by a process of asexual reproduction during which entire bodies, including all somatic and germline lineages, regenerate every week, resulting in a colony of genetically identical individuals. Second, previous studies of lifespan in genetically distinct Botryllus lineages suggest that a direct, heritable basis underlying mortality exists that is unlinked to reproductive effort and other life history traits. Here we will review recent efforts to take advantage of the unique life history traits of B. schlosseri and develop it into a robust model for aging research. PMID:26136620

  3. The Importance of Behavioural Genetics for Developmental Science

    ERIC Educational Resources Information Center

    Pike, Alison

    2012-01-01

    Many topics of interest to developmental scientists are informed by behavioural genetic findings and their implications. First, behavioural genetic theory and methods will be briefly outlined. Next, findings will be illustrated by considering two disparate areas--general cognitive ability (IQ), and children's self-conceptions. These topics have…

  4. Big Time Careers for the Little Woman: A Dual Role Dilemma

    ERIC Educational Resources Information Center

    Darley, Susan A.

    1976-01-01

    This paper focuses on the situational factors which operate on women to shape their domestic and professional choices and behavior. The analysis proposed is based on social psychological theories, such as role theory and social comparison and attribution theory, rather than on the genetic or personality theories. (Author/AM)

  5. Laboratory specimens and genetic privacy: evolution of legal theory.

    PubMed

    Lewis, Michelle Huckaby

    2013-03-01

    Although laboratory specimens are an important resource for biomedical research, controversy has arisen when research has been conducted without the knowledge or consent of the individuals who were the source of the specimens. This paper summarizes the most important litigation regarding the research use of laboratory specimens and traces the evolution of legal theory from property claims to claims related to genetic privacy interests. © 2013 American Society of Law, Medicine & Ethics, Inc.

  6. Developing close combat behaviors for simulated soldiers using genetic programming techniques.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Richard J.; Schaller, Mark J.

    2003-10-01

    Genetic programming is a powerful methodology for automatically producing solutions to problems in a variety of domains. It has been used successfully to develop behaviors for RoboCup soccer players and simple combat agents. We will attempt to use genetic programming to solve a problem in the domain of strategic combat, keeping in mind the end goal of developing sophisticated behaviors for compound defense and infiltration. The simplified problem at hand is that of two armed agents in a small room, containing obstacles, fighting against each other for survival. The base case and three changes are considered: a memory of positionsmore » using stacks, context-dependent genetic programming, and strongly typed genetic programming. Our work demonstrates slight improvements from the first two techniques, and no significant improvement from the last.« less

  7. The holist tradition in twentieth century genetics. Wilhelm Johannsen's genotype concept

    PubMed Central

    Roll-Hansen, Nils

    2014-01-01

    The terms ‘genotype’, ‘phenotype’ and ‘gene’ originally had a different meaning from that in the Modern Synthesis. These terms were coined in the first decade of the twentieth century by the Danish plant physiologist Wilhelm Johannsen. His bean selection experiment and his theoretical analysis of the difference between genotype and phenotype were important inputs to the formation of genetics as a well-defined special discipline. This paper shows how Johannsen's holistic genotype theory provided a platform for criticism of narrowly genocentric versions of the chromosome theory of heredity that came to dominate genetics in the middle decades of the twentieth century. Johannsen came to recognize the epoch-making importance of the work done by the Drosophila group, but he continued to insist on the incompleteness of the chromosome theory. Genes of the kind that they mapped on the chromosomes could only give a partial explanation of biological heredity and evolution. PMID:24882823

  8. A mixability theory for the role of sex in evolution

    PubMed Central

    Livnat, Adi; Papadimitriou, Christos; Dushoff, Jonathan; Feldman, Marcus W.

    2008-01-01

    The question of what role sex plays in evolution is still open despite decades of research. It has often been assumed that sex should facilitate the increase in fitness. Hence, the fact that it may break down highly favorable genetic combinations has been seen as a problem. Here, we consider an alternative approach. We define a measure that represents the ability of alleles to perform well across different combinations and, using numerical iterations within a classical population-genetic framework, show that selection in the presence of sex favors this ability in a highly robust manner. We also show that the mechanism responsible for this effect has been out of the purview of previous theory, because it operates during the evolutionary transient, and that the breaking down of favorable genetic combinations is an integral part of it. Implications of these results and more to evolutionary theory are discussed. PMID:19073912

  9. A mixability theory for the role of sex in evolution.

    PubMed

    Livnat, Adi; Papadimitriou, Christos; Dushoff, Jonathan; Feldman, Marcus W

    2008-12-16

    The question of what role sex plays in evolution is still open despite decades of research. It has often been assumed that sex should facilitate the increase in fitness. Hence, the fact that it may break down highly favorable genetic combinations has been seen as a problem. Here, we consider an alternative approach. We define a measure that represents the ability of alleles to perform well across different combinations and, using numerical iterations within a classical population-genetic framework, show that selection in the presence of sex favors this ability in a highly robust manner. We also show that the mechanism responsible for this effect has been out of the purview of previous theory, because it operates during the evolutionary transient, and that the breaking down of favorable genetic combinations is an integral part of it. Implications of these results and more to evolutionary theory are discussed.

  10. Rethinking the transmission gap: What behavioral genetics and evolutionary psychology mean for attachment theory: A comment on Verhage et al. (2016).

    PubMed

    Barbaro, Nicole; Boutwell, Brian B; Barnes, J C; Shackelford, Todd K

    2017-01-01

    Traditional attachment theory posits that attachment in infancy and early childhood is the result of intergenerational transmission of attachment from parents to offspring. Verhage et al. (2016) present meta-analytic evidence addressing the intergenerational transmission of attachment between caregivers and young children. In this commentary, we argue that their appraisal of the behavioral genetics literature is incomplete. The suggested research focus on shared environmental effects may dissuade the pursuit of profitable avenues of research and may hinder progress in attachment theory. Specifically, further research on the "transmission gap" will continue to limit our understanding of attachment etiology. We discuss recent theoretical developments from an evolutionary psychological perspective that can provide a valuable framework to account for the existing behavioral genetic data. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Compatibility of breeding for increased wood production and longterm sustainability: the genetic variation of seed orchard seed and associated risks.

    Treesearch

    R Johnson; S. Lipow

    2002-01-01

    Because breeding imposes strong artificial selection for a narrow suite of economically important traits, genetic variation is reduced in seedlings derived from operational seed orchards. Both quantitative genetics theory and studies of allozyme variation show that seed orchards contain most of the genetic diversity found in natural populations, although low-frequency...

  12. Is abstinence education theory based? The underlying logic of abstinence education programs in Texas.

    PubMed

    Goodson, Patricia; Pruitt, B E; Suther, Sandy; Wilson, Kelly; Buhi, Eric

    2006-04-01

    Authors examined the logic (or the implicit theory) underlying 16 abstinence-only-until-marriage programs in Texas (50% of all programs funded under the federal welfare reform legislation during 2001 and 2002). Defined as a set of propositions regarding the relationship between program activities and their intended outcomes, program staff's implicit theories were summarized and compared to (a) data from studies on adolescent sexual behavior, (b) a theory-based model of youth abstinent behavior, and (c) preliminary findings from the national evaluation of Title V programs. Authors interviewed 62 program directors and instructors and employed selected principles of grounded theory to analyze interview data. Findings indicated that abstinence education staff could clearly articulate the logic guiding program activity choices. Comparisons between interview data and a theory-based model of adolescent sexual behavior revealed striking similarities. Implications of these findings for conceptualizing and evaluating abstinence-only-until-marriage (or similar) programs are examined.

  13. Empirical complexities in the genetic foundations of lethal mutagenesis.

    PubMed

    Bull, James J; Joyce, Paul; Gladstone, Eric; Molineux, Ian J

    2013-10-01

    From population genetics theory, elevating the mutation rate of a large population should progressively reduce average fitness. If the fitness decline is large enough, the population will go extinct in a process known as lethal mutagenesis. Lethal mutagenesis has been endorsed in the virology literature as a promising approach to viral treatment, and several in vitro studies have forced viral extinction with high doses of mutagenic drugs. Yet only one empirical study has tested the genetic models underlying lethal mutagenesis, and the theory failed on even a qualitative level. Here we provide a new level of analysis of lethal mutagenesis by developing and evaluating models specifically tailored to empirical systems that may be used to test the theory. We first quantify a bias in the estimation of a critical parameter and consider whether that bias underlies the previously observed lack of concordance between theory and experiment. We then consider a seemingly ideal protocol that avoids this bias-mutagenesis of virions-but find that it is hampered by other problems. Finally, results that reveal difficulties in the mere interpretation of mutations assayed from double-strand genomes are derived. Our analyses expose unanticipated complexities in testing the theory. Nevertheless, the previous failure of the theory to predict experimental outcomes appears to reside in evolutionary mechanisms neglected by the theory (e.g., beneficial mutations) rather than from a mismatch between the empirical setup and model assumptions. This interpretation raises the specter that naive attempts at lethal mutagenesis may augment adaptation rather than retard it.

  14. Theory-Based Stakeholder Evaluation

    ERIC Educational Resources Information Center

    Hansen, Morten Balle; Vedung, Evert

    2010-01-01

    This article introduces a new approach to program theory evaluation called theory-based stakeholder evaluation or the TSE model for short. Most theory-based approaches are program theory driven and some are stakeholder oriented as well. Practically, all of the latter fuse the program perceptions of the various stakeholder groups into one unitary…

  15. Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops

    PubMed Central

    Hoddle, Mark S.; Warner, Keith; Steggall, John; Jetter, Karen M.

    2014-01-01

    Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect. PMID:26463063

  16. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection.

    PubMed

    Lind, Martin I; Yarlett, Kylie; Reger, Julia; Carter, Mauricio J; Beckerman, Andrew P

    2015-10-07

    Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments. © 2015 The Authors.

  17. DEPRESSION AND INTERNALLY DIRECTED AGGRESSION: GENETIC AND ENVIRONMENTAL CONTRIBUTIONS

    PubMed Central

    Haddad, Suzanne K.; Neiderhiser, Jenae M.; Spotts, Erica L.; Ganiban, Jody; Lichtenstein, Paul; Reiss, David

    2013-01-01

    This study uses behavior genetic (BG) methodology to investigate Freud’s theory of depression as aggression directed toward the self (1930) and the extent to which genetically and environmentally influenced aggressive tendencies contribute to depressive symptoms. Data from the Twin and Offspring Study in Sweden (TOSS) is used to demonstrate how, in estimating shared and unique environmental influences, BG methods can inform psychoanalytic theory and practice, particularly because of their shared emphasis on the importance of individual experience in development. The TOSS sample consists of 909 pairs of adult twins, their partners, and one adolescent child per couple. The Center for Epidemiologic Studies Depression Scale (Radloff 1977) was used to measure depressive symptoms and the Karolinska Scales of Personality (Schalling and Edman 1993) to measure internally directed aggression. Genetic analyses indicated that for both men and women, their unique experiences as well as genetic factors contributed equally to the association between internally directed aggression and depressive symptoms. These findings support Freud’s theory that constitutionally based differences in aggression, along with individual experiences, contribute to a person’s depressive symptoms. Establishing that an individual’s unique, not shared, experiences and perceptions contribute to depressive symptoms and internally directed aggression reinforces the use of patient-specific treatment approaches implemented in psychoanalytic psychotherapy or psychoanalysis. PMID:18515705

  18. The potential use of genetics to increase the effectiveness of treatment programs for criminal offenders.

    PubMed

    Beaver, Kevin M; Jackson, Dylan B; Flesher, Dillon

    2014-01-01

    During the past couple of decades, the amount of research examining the genetic underpinnings to antisocial behaviors, including crime, has exploded. Findings from this body of work have generated a great deal of information linking genetics to criminal involvement. As a partial result, there is now a considerable amount of interest in how these findings should be integrated into the criminal justice system. In the current paper, we outline the potential ways that genetic information can be used to increase the effectiveness of treatment programs designed to reduce recidivism among offenders. We conclude by drawing attention to how genetic information can be used by rehabilitation programs to increase program effectiveness, reduce offender recidivism rates, and enhance public safety.

  19. Marital hostility and child sleep problems: direct and indirect associations via hostile parenting.

    PubMed

    Rhoades, Kimberly A; Leve, Leslie D; Harold, Gordon T; Mannering, Anne M; Neiderhiser, Jenae M; Shaw, Daniel S; Natsuaki, Misaki N; Reiss, David

    2012-08-01

    The current study examined two family process predictors of parent-reported child sleep problems at 4.5 years in an adoption sample: marital hostility and hostile parenting. Participants were 361 linked triads of birth parents, adoptive parents, and adopted children. We examined direct and indirect pathways from marital hostility to child sleep problems via hostile parenting. Mothers' marital hostility at 9 months was associated with child sleep problems at 4.5 years. Fathers' marital hostility at 9 months evidenced an indirect effect on child sleep problems at 4.5 years via fathers' hostile parenting at 27 months. Findings were significant even after controlling for genetic influences on child sleep (i.e., birth parent internalizing disorders). The findings suggest targets for prevention and intervention programs that are potentially modifiable (e.g., hostile parenting, marital hostility), and inform theory by demonstrating that relations among marital hostility, hostile parenting, and child sleep problems are significant after accounting for genetic influences. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  20. Marital Hostility and Child Sleep Problems: Direct and Indirect Associations via Hostile Parenting

    PubMed Central

    Rhoades, Kimberly A.; Leve, Leslie D.; Harold, Gordon T.; Mannering, Anne M.; Neiderhiser, Jenae M.; Shaw, Daniel S.; Natsuaki, Misaki N.; Reiss, David

    2013-01-01

    The current study examined two family process predictors of parent-reported child sleep problems at 4.5 years in an adoption sample: marital hostility and hostile parenting. Participants were 361 linked triads of birth parents, adoptive parents, and adopted children. We examined direct and indirect pathways from marital hostility to child sleep problems via hostile parenting. Mothers’ marital hostility at 9 months was associated with child sleep problems at 4.5 years. Fathers’ marital hostility at 9 months evidenced an indirect effect on child sleep problems at 4.5 years via fathers’ hostile parenting at 27 months. Findings were significant even after controlling for genetic influences on child sleep (i.e., birth parent internalizing disorders). The findings suggest targets for prevention and intervention programs that are potentially modifiable (e.g., hostile parenting, marital hostility), and inform theory by demonstrating that relations among marital hostility, hostile parenting, and child sleep problems are significant after accounting for genetic influences. PMID:22888782

  1. Improving the Impact and Implementation of Disaster Education: Programs for Children Through Theory-Based Evaluation.

    PubMed

    Johnson, Victoria A; Ronan, Kevin R; Johnston, David M; Peace, Robin

    2016-11-01

    A main weakness in the evaluation of disaster education programs for children is evaluators' propensity to judge program effectiveness based on changes in children's knowledge. Few studies have articulated an explicit program theory of how children's education would achieve desired outcomes and impacts related to disaster risk reduction in households and communities. This article describes the advantages of constructing program theory models for the purpose of evaluating disaster education programs for children. Following a review of some potential frameworks for program theory development, including the logic model, the program theory matrix, and the stage step model, the article provides working examples of these frameworks. The first example is the development of a program theory matrix used in an evaluation of ShakeOut, an earthquake drill practiced in two Washington State school districts. The model illustrates a theory of action; specifically, the effectiveness of school earthquake drills in preventing injuries and deaths during disasters. The second example is the development of a stage step model used for a process evaluation of What's the Plan Stan?, a voluntary teaching resource distributed to all New Zealand primary schools for curricular integration of disaster education. The model illustrates a theory of use; specifically, expanding the reach of disaster education for children through increased promotion of the resource. The process of developing the program theory models for the purpose of evaluation planning is discussed, as well as the advantages and shortcomings of the theory-based approaches. © 2015 Society for Risk Analysis.

  2. The genetic basis of female multiple mating in a polyandrous livebearing fish

    PubMed Central

    Evans, Jonathan P; Gasparini, Clelia

    2013-01-01

    The widespread occurrence of female multiple mating (FMM) demands evolutionary explanation, particularly in the light of the costs of mating. One explanation encapsulated by “good sperm” and “sexy-sperm” (GS-SS) theoretical models is that FMM facilitates sperm competition, thus ensuring paternity by males that pass on genes for elevated sperm competitiveness to their male offspring. While support for this component of GS-SS theory is accumulating, a second but poorly tested assumption of these models is that there should be corresponding heritable genetic variation in FMM – the proposed mechanism of postcopulatory preferences underlying GS-SS models. Here, we conduct quantitative genetic analyses on paternal half-siblings to test this component of GS-SS theory in the guppy (Poecilia reticulata), a freshwater fish with some of the highest known rates of FMM in vertebrates. As with most previous quantitative genetic analyses of FMM in other species, our results reveal high levels of phenotypic variation in this trait and a correspondingly low narrow-sense heritability (h2 = 0.11). Furthermore, although our analysis of additive genetic variance in FMM was not statistically significant (probably owing to limited statistical power), the ensuing estimate of mean-standardized additive genetic variance (IA = 0.7) was nevertheless relatively low compared with estimates published for life-history traits across a broad range of taxa. Our results therefore add to a growing body of evidence that FMM is characterized by relatively low additive genetic variation, thus apparently contradicting GS-SS theory. However, we qualify this conclusion by drawing attention to potential deficiencies in most designs (including ours) that have tested for genetic variation in FMM, particularly those that fail to account for intersexual interactions that underlie FMM in many systems. PMID:23403856

  3. Teaching strategies to incorporate genomics education into academic nursing curricula.

    PubMed

    Quevedo Garcia, Sylvia P; Greco, Karen E; Loescher, Lois J

    2011-11-01

    The translation of genomic science into health care has expanded our ability to understand the effects of genomics on human health and disease. As genomic advances continue, nurses are expected to have the knowledge and skills to translate genomic information into improved patient care. This integrative review describes strategies used to teach genomics in academic nursing programs and their facilitators and barriers to inclusion in nursing curricula. The Learning Engagement Model and the Diffusion of Innovations Theory guided the interpretation of findings. CINAHL, Medline, and Web of Science were resources for articles published during the past decade that included strategies for teaching genomics in academic nursing programs. Of 135 articles, 13 met criteria for review. Examples of effective genomics teaching strategies included clinical application through case studies, storytelling, online genomics resources, student self-assessment, guest lecturers, and a genetics focus group. Most strategies were not evaluated for effectiveness. Copyright 2011, SLACK Incorporated.

  4. Continuum theory of gene expression waves during vertebrate segmentation.

    PubMed

    Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank

    2015-09-01

    The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time.

  5. Continuum theory of gene expression waves during vertebrate segmentation

    PubMed Central

    Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank

    2015-01-01

    Abstract The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time. PMID:28725158

  6. Genetic programs can be compressed and autonomously decompressed in live cells

    NASA Astrophysics Data System (ADS)

    Lapique, Nicolas; Benenson, Yaakov

    2018-04-01

    Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes1-13 and genetically encoded circuits in live cells14-21. Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity22 of two bits per nucleotide23. In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum24. We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit25 that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits15,18,26-28. In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.

  7. Systems theory as a framework for examining a college campus-based support program for the former foster youth.

    PubMed

    Schelbe, Lisa; Randolph, Karen A; Yelick, Anna; Cheatham, Leah P; Groton, Danielle B

    2018-01-01

    Increased attention to former foster youth pursuing post-secondary education has resulted in the creation of college campus based support programs to address their need. However, limited empirical evidence and theoretical knowledge exist about these programs. This study seeks to describe the application of systems theory as a framework for examining a college campus based support program for former foster youth. In-depth semi-structured interviews were conducted with 32 program stakeholders including students, mentors, collaborative members, and independent living program staff. Using qualitative data analysis software, holistic coding techniques were employed to analyze interview transcripts. Then applying principles of extended case method using systems theory, data were analyzed. Findings suggest systems theory serves as a framework for understanding the functioning of a college campus based support program. The theory's concepts help delineate program components and roles of stakeholders; outline boundaries between and interactions among stakeholders; and identify program strengths and weakness. Systems theory plays an important role in identifying intervention components and providing a structure through which to identify and understand program elements as a part of the planning process. This study highlights the utility of systems theory as a framework for program planning and evaluation.

  8. Using Program Theory-Driven Evaluation Science to Crack the Da Vinci Code

    ERIC Educational Resources Information Center

    Donaldson, Stewart I.

    2005-01-01

    Program theory-driven evaluation science uses substantive knowledge, as opposed to method proclivities, to guide program evaluations. It aspires to update, clarify, simplify, and make more accessible the evolving theory of evaluation practice commonly referred to as theory-driven or theory-based evaluation. The evaluator in this chapter provides a…

  9. Explaining Michigan: developing an ex post theory of a quality improvement program.

    PubMed

    Dixon-Woods, Mary; Bosk, Charles L; Aveling, Emma Louise; Goeschel, Christine A; Pronovost, Peter J

    2011-06-01

    Understanding how and why programs work-not simply whether they work-is crucial. Good theory is indispensable to advancing the science of improvement. We argue for the usefulness of ex post theorization of programs. We propose an approach, located within the broad family of theory-oriented methods, for developing ex post theories of interventional programs. We use this approach to develop an ex post theory of the Michigan Intensive Care Unit (ICU) project, which attracted international attention by successfully reducing rates of central venous catheter bloodstream infections (CVC-BSIs). The procedure used to develop the ex post theory was (1) identify program leaders' initial theory of change and learning from running the program; (2) enhance this with new information in the form of theoretical contributions from social scientists; (3) synthesize prior and new information to produce an updated theory. The Michigan project achieved its effects by (1) generating isomorphic pressures for ICUs to join the program and conform to its requirements; (2) creating a densely networked community with strong horizontal links that exerted normative pressures on members; (3) reframing CVC-BSIs as a social problem and addressing it through a professional movement combining "grassroots" features with a vertically integrating program structure; (4) using several interventions that functioned in different ways to shape a culture of commitment to doing better in practice; (5) harnessing data on infection rates as a disciplinary force; and (6) using "hard edges." Updating program theory in the light of experience from program implementation is essential to improving programs' generalizability and transferability, although it is not a substitute for concurrent evaluative fieldwork. Future iterations of programs based on the Michigan project, and improvement science more generally, may benefit from the updated theory present here. © 2011 Milbank Memorial Fund. Published by Wiley Periodicals Inc.

  10. Interfacing theories of program with theories of evaluation for advancing evaluation practice: Reductionism, systems thinking, and pragmatic synthesis.

    PubMed

    Chen, Huey T

    2016-12-01

    Theories of program and theories of evaluation form the foundation of program evaluation theories. Theories of program reflect assumptions on how to conceptualize an intervention program for evaluation purposes, while theories of evaluation reflect assumptions on how to design useful evaluation. These two types of theories are related, but often discussed separately. This paper attempts to use three theoretical perspectives (reductionism, systems thinking, and pragmatic synthesis) to interface them and discuss the implications for evaluation practice. Reductionism proposes that an intervention program can be broken into crucial components for rigorous analyses; systems thinking view an intervention program as dynamic and complex, requiring a holistic examination. In spite of their contributions, reductionism and systems thinking represent the extreme ends of a theoretical spectrum; many real-world programs, however, may fall in the middle. Pragmatic synthesis is being developed to serve these moderate- complexity programs. These three theoretical perspectives have their own strengths and challenges. Knowledge on these three perspectives and their evaluation implications can provide a better guide for designing fruitful evaluations, improving the quality of evaluation practice, informing potential areas for developing cutting-edge evaluation approaches, and contributing to advancing program evaluation toward a mature applied science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Anticipatory Mechanisms in Evolutionary Living Systems

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.; Holmberg, Stig C.

    2010-11-01

    This paper deals firstly with a revisiting of Darwin's theory of Natural Selection. Darwin in his book never uses the word "evolution", but shows a clear position about mutability of species. Darwin's Natural Selection was mainly inspired by the anticipatory Artificial Selection by humans in domestication, and the Malthus struggle for existence. Darwin showed that the struggle for existence leads to the preservation of the most divergent offspring of any one species. He cited several times the canon of "Natura non facit saltum". He spoke about the origin of life from some one primordial form, into which life was first breathed. Finally, Darwin made anticipation about the future researches in psychology. This paper cites the work of Ernst Mayr who was the first, after 90 years of an intense scientific debate, to present a new and stable Darwinian paradigm as the "Evolutionary Synthesis" in 1942. To explain what is life, the Living Systems Theory (LST) by J. G. Miller is presented. It is showed that the Autopoietic Systems Theory of Varela et al is also a fundamental component of living systems. In agreement with Darwin, the natural selection is a necessary condition for transformation of biological systems, but is not a sufficient condition. Thus, in this paper we conjecture that an anticipatory evolutionary mechanism exists with the genetic code that is a self-replicating and self-modifying anticipatory program. As demonstrated by Nobel laureate McClintock, evolution in genomes is programmed. The word "program" comes from "pro-gram" meaning to write before, by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes of behavioural responses, that is part of an organism. For example, cell death may be programmed by what is called the apoptosis. This definitively is a great breakthrough in our understanding of biological evolution. Hence, it is possible to formulate a new principle of evolution, i.e. the principle of Double Anticipatory Loop (DAL) of evolution: Biological evolution is driven by interaction between a mindless environment that is passively selecting the fittest inhabitants and purposeful anticipatory living systems, which are actively selecting and creating their own environment. Evolution on the genome level is trigged by environmental stress but guided by an inherent program.

  12. Use of Program Theory in a Nutrition Program for Grandchildren and Grandparents

    ERIC Educational Resources Information Center

    Koenings, Mallory; Arscott, Sara

    2013-01-01

    Grandparents University ® (GPU) is a 2-day campus-based nutrition education program for grandparents and grandchildren based on constructs from Social Cognitive Theory and the Theory of Planned Behavior. This article describes how program theory was used to develop a working model, design activities, and select outcome measures of a 2-day…

  13. Routine human-competitive machine intelligence by means of genetic programming

    NASA Astrophysics Data System (ADS)

    Koza, John R.; Streeter, Matthew J.; Keane, Martin

    2004-01-01

    Genetic programming is a systematic method for getting computers to automatically solve a problem. Genetic programming starts from a high-level statement of what needs to be done and automatically creates a computer program to solve the problem. The paper demonstrates that genetic programming (1) now routinely delivers high-return human-competitive machine intelligence; (2) is an automated invention machine; (3) can automatically create a general solution to a problem in the form of a parameterized topology; and (4) has delivered a progression of qualitatively more substantial results in synchrony with five approximately order-of-magnitude increases in the expenditure of computer time. Recent results involving the automatic synthesis of the topology and sizing of analog electrical circuits and controllers demonstrate these points.

  14. Explaining Michigan: Developing an Ex Post Theory of a Quality Improvement Program

    PubMed Central

    Dixon-Woods, Mary; Bosk, Charles L; Aveling, Emma Louise; Goeschel, Christine A; Pronovost, Peter J

    2011-01-01

    Context: Understanding how and why programs work—not simply whether they work—is crucial. Good theory is indispensable to advancing the science of improvement. We argue for the usefulness of ex post theorization of programs. Methods: We propose an approach, located within the broad family of theory-oriented methods, for developing ex post theories of interventional programs. We use this approach to develop an ex post theory of the Michigan Intensive Care Unit (ICU) project, which attracted international attention by successfully reducing rates of central venous catheter bloodstream infections (CVC-BSIs). The procedure used to develop the ex post theory was (1) identify program leaders’ initial theory of change and learning from running the program; (2) enhance this with new information in the form of theoretical contributions from social scientists; (3) synthesize prior and new information to produce an updated theory. Findings: The Michigan project achieved its effects by (1) generating isomorphic pressures for ICUs to join the program and conform to its requirements; (2) creating a densely networked community with strong horizontal links that exerted normative pressures on members; (3) reframing CVC-BSIs as a social problem and addressing it through a professional movement combining “grassroots” features with a vertically integrating program structure; (4) using several interventions that functioned in different ways to shape a culture of commitment to doing better in practice; (5) harnessing data on infection rates as a disciplinary force; and (6) using “hard edges.” Conclusions: Updating program theory in the light of experience from program implementation is essential to improving programs’ generalizability and transferability, although it is not a substitute for concurrent evaluative fieldwork. Future iterations of programs based on the Michigan project, and improvement science more generally, may benefit from the updated theory present here. PMID:21676020

  15. Guidelines on the use of molecular genetics in reintroduction programs

    Treesearch

    Michael K. Schwartz

    2005-01-01

    The use of molecular genetics can play a key role in reintroduction efforts. Prior to the introduction of any individuals, molecular genetics can be used to identify the most appropriate source population for the reintroduction, ensure that no relic populations exist in the reintroduction area, and guide captive breeding programs. The use of molecular genetics post-...

  16. Social contract theory and just decision making: lessons from genetic testing for the BRCA mutations.

    PubMed

    Williams-Jones, Bryn; Burgess, Michael M

    2004-06-01

    Decisions about funding health services are crucial to controlling costs in health care insurance plans, yet they encounter serious challenges from intellectual property protection--e.g., patents--of health care services. Using Myriad Genetics' commercial genetic susceptibility test for hereditary breast cancer (BRCA testing) in the context of the Canadian health insurance system as a case study, this paper applies concepts from social contract theory to help develop more just and rational approaches to health care decision making. Specifically, Daniel's and Sabin's "accountability for reasonableness" is compared to broader notions of public consultation, demonstrating that expert assessments in specific decisions must be transparent and accountable and supplemented by public consultation.

  17. Geneticization of deviant behavior and consequences for stigma: the case of mental illness.

    PubMed

    Phelan, Jo C

    2005-12-01

    One likely consequence of the genetics revolution is an increased tendency to understand human behavior in genetic terms. How might this "geneticization" affect stigma? Attribution theory predicts a reduction in stigma via reduced blame, anger, and punishment and increased sympathy and help. According to "genetic essentialist" thinking, genes are the basis of human identity and strongly deterministic of behavior. If such ideas are commonly accepted, geneticization should exacerbate stigma by increasing perceptions of differentness, persistence, seriousness, and transmissibility, which in turn should increase social distance and reproductive restrictiveness. I test these predictions using the case of mental illness and a vignette experiment embedded in a nationally representative survey. There was little support for attribution theory predictions. Consistent with genetic essentialism, genetic attributions increased the perceived seriousness and persistence of the mental illness and the belief that siblings and children would develop the same problem. Genetic attribution did not affect reproductive restrictiveness or social distance from the ill person but did increase social distance from the person's sibling, particularly regarding intimate forms of contact involving dating, marriage, and having children.

  18. Statistical Physics of Population Genetics in the Low Population Size Limit

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder

    The understanding of evolutionary processes lends itself naturally to theory and computation, and the entire field of population genetics has benefited greatly from the influx of methods from applied mathematics for decades. However, in spite of all this effort, there are a number of key dynamical models of evolution that have resisted analytical treatment. In addition, modern DNA sequencing technologies have magnified the amount of genetic data available, revealing an excess of rare genetic variants in human genomes, challenging the predictions of conventional theory. Here I will show that methods from statistical physics can be used to model the distribution of genetic variants, incorporating selection and spatial degrees of freedom. In particular, a functional path-integral formulation of the Wright-Fisher process maps exactly to the dynamics of a particle in an effective potential, beyond the mean field approximation. In the small population size limit, the dynamics are dominated by instanton-like solutions which determine the probability of fixation in short timescales. These results are directly relevant for understanding the unusual genetic variant distribution at moving frontiers of populations.

  19. Space radiation health research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)

    1993-01-01

    The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.

  20. Modeling Reality - How Computers Mirror Life

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Iwona

    2005-01-01

    The bookModeling Reality covers a wide range of fascinating subjects, accessible to anyone who wants to learn about the use of computer modeling to solve a diverse range of problems, but who does not possess a specialized training in mathematics or computer science. The material presented is pitched at the level of high-school graduates, even though it covers some advanced topics (cellular automata, Shannon's measure of information, deterministic chaos, fractals, game theory, neural networks, genetic algorithms, and Turing machines). These advanced topics are explained in terms of well known simple concepts: Cellular automata - Game of Life, Shannon's formula - Game of twenty questions, Game theory - Television quiz, etc. The book is unique in explaining in a straightforward, yet complete, fashion many important ideas, related to various models of reality and their applications. Twenty-five programs, written especially for this book, are provided on an accompanying CD. They greatly enhance its pedagogical value and make learning of even the more complex topics an enjoyable pleasure.

  1. The “Genetic Program”: Behind the Genesis of an Influential Metaphor

    PubMed Central

    Peluffo, Alexandre E.

    2015-01-01

    The metaphor of the “genetic program,” indicating the genome as a set of instructions required to build a phenotype, has been very influential in biology despite various criticisms over the years. This metaphor, first published in 1961, is thought to have been invented independently in two different articles, one by Ernst Mayr and the other by François Jacob and Jacques Monod. Here, after a detailed analysis of what both parties meant by “genetic program,” I show, using unpublished archives, the strong resemblance between the ideas of Mayr and Monod and suggest that their idea of genetic program probably shares a common origin. I explore the possibility that the two men met before 1961 and also exchanged their ideas through common friends and colleagues in the field of molecular biology. Based on unpublished correspondence of Jacob and Monod, I highlight the important events that influenced the preparation of their influential paper, which introduced the concept of the genetic program. Finally, I suggest that the genetic program metaphor may have preceded both papers and that it was probably used informally before 1961. PMID:26170444

  2. Multi-scale genetic dynamic modelling I : an algorithm to compute generators.

    PubMed

    Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca

    2011-09-01

    We present a new approach or framework to model dynamic regulatory genetic activity. The framework is using a multi-scale analysis based upon generic assumptions on the relative time scales attached to the different transitions of molecular states defining the genetic system. At micro-level such systems are regulated by the interaction of two kinds of molecular players: macro-molecules like DNA or polymerases, and smaller molecules acting as transcription factors. The proposed genetic model then represents the larger less abundant molecules with a finite discrete state space, for example describing different conformations of these molecules. This is in contrast to the representations of the transcription factors which are-like in classical reaction kinetics-represented by their particle number only. We illustrate the method by considering the genetic activity associated to certain configurations of interacting genes that are fundamental to modelling (synthetic) genetic clocks. A largely unknown question is how different molecular details incorporated via this more realistic modelling approach lead to different macroscopic regulatory genetic models which dynamical behaviour might-in general-be different for different model choices. The theory will be applied to a real synthetic clock in a second accompanying article (Kirkilioniset al., Theory Biosci, 2011).

  3. Towards program theory validation: Crowdsourcing the qualitative analysis of participant experiences.

    PubMed

    Harman, Elena; Azzam, Tarek

    2018-02-01

    This exploratory study examines a novel tool for validating program theory through crowdsourced qualitative analysis. It combines a quantitative pattern matching framework traditionally used in theory-driven evaluation with crowdsourcing to analyze qualitative interview data. A sample of crowdsourced participants are asked to read an interview transcript and identify whether program theory components (Activities and Outcomes) are discussed and to highlight the most relevant passage about that component. The findings indicate that using crowdsourcing to analyze qualitative data can differentiate between program theory components that are supported by a participant's experience and those that are not. This approach expands the range of tools available to validate program theory using qualitative data, thus strengthening the theory-driven approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Genetic mating systems and reproductive natural histories of fishes: lessons for ecology and evolution.

    PubMed

    Avise, John C; Jones, Adam G; Walker, DeEtte; DeWoody, J Andrew

    2002-01-01

    Fish species have diverse breeding behaviors that make them valuable for testing theories on genetic mating systems and reproductive tactics. Here we review genetic appraisals of paternity and maternity in wild fish populations. Behavioral phenomena quantified by genetic markers in various species include patterns of multiple mating by both sexes; frequent cuckoldry by males and rare cuckoldry by females in nest-tending species; additional routes to surrogate parentage via nest piracy and egg-thievery; egg mimicry by nest-tending males; brood parasitism by helper males in cooperative breeders; clutch mixing in oral brooders; kinship in schooling fry of broadcast spawners; sperm storage by dams in female-pregnant species; and sex-role reversal, polyandry, and strong sexual selection on females in some male-pregnant species. Additional phenomena addressed by genetic parentage analyses in fishes include clustered mutations, filial cannibalism, and local population size. All results are discussed in the context of relevant behavioral and evolutionary theory.

  5. Admixture, Population Structure, and F-Statistics.

    PubMed

    Peter, Benjamin M

    2016-04-01

    Many questions about human genetic history can be addressed by examining the patterns of shared genetic variation between sets of populations. A useful methodological framework for this purpose isF-statistics that measure shared genetic drift between sets of two, three, and four populations and can be used to test simple and complex hypotheses about admixture between populations. This article provides context from phylogenetic and population genetic theory. I review how F-statistics can be interpreted as branch lengths or paths and derive new interpretations, using coalescent theory. I further show that the admixture tests can be interpreted as testing general properties of phylogenies, allowing extension of some ideas applications to arbitrary phylogenetic trees. The new results are used to investigate the behavior of the statistics under different models of population structure and show how population substructure complicates inference. The results lead to simplified estimators in many cases, and I recommend to replace F3 with the average number of pairwise differences for estimating population divergence. Copyright © 2016 by the Genetics Society of America.

  6. Sensitivity, Functional Analysis, and Behavior Genetics: A Response to Freeman et al.

    ERIC Educational Resources Information Center

    Reiss, Steven; Havercamp, Susan M.

    1999-01-01

    Sensitivity theory divides the causes of challenging behavior into three categories, aberrant contingencies, aberrant environments, and aberrant motivation. This paper replies to criticism that sensitivity theory is circular and unsupported by empirical evidence by reporting on studies that support the theory and rejecting the idea that…

  7. Theory, Method, and Triangulation in the Study of Street Children.

    ERIC Educational Resources Information Center

    Lucchini, Riccardo

    1996-01-01

    Describes how a comparative study of street children in Montevideo (Uruguay), Rio de Janeiro, and Mexico City contributes to a synergism between theory and method. Notes how theoretical approaches of symbolic interactionism, genetic structuralism, and habitus theory complement interview, participant observation, and content analysis methods;…

  8. Cultural evolutionary theory: How culture evolves and why it matters

    PubMed Central

    Creanza, Nicole; Kolodny, Oren; Feldman, Marcus W.

    2017-01-01

    Human cultural traits—behaviors, ideas, and technologies that can be learned from other individuals—can exhibit complex patterns of transmission and evolution, and researchers have developed theoretical models, both verbal and mathematical, to facilitate our understanding of these patterns. Many of the first quantitative models of cultural evolution were modified from existing concepts in theoretical population genetics because cultural evolution has many parallels with, as well as clear differences from, genetic evolution. Furthermore, cultural and genetic evolution can interact with one another and influence both transmission and selection. This interaction requires theoretical treatments of gene–culture coevolution and dual inheritance, in addition to purely cultural evolution. In addition, cultural evolutionary theory is a natural component of studies in demography, human ecology, and many other disciplines. Here, we review the core concepts in cultural evolutionary theory as they pertain to the extension of biology through culture, focusing on cultural evolutionary applications in population genetics, ecology, and demography. For each of these disciplines, we review the theoretical literature and highlight relevant empirical studies. We also discuss the societal implications of the study of cultural evolution and of the interactions of humans with one another and with their environment. PMID:28739941

  9. Cultural evolutionary theory: How culture evolves and why it matters.

    PubMed

    Creanza, Nicole; Kolodny, Oren; Feldman, Marcus W

    2017-07-24

    Human cultural traits-behaviors, ideas, and technologies that can be learned from other individuals-can exhibit complex patterns of transmission and evolution, and researchers have developed theoretical models, both verbal and mathematical, to facilitate our understanding of these patterns. Many of the first quantitative models of cultural evolution were modified from existing concepts in theoretical population genetics because cultural evolution has many parallels with, as well as clear differences from, genetic evolution. Furthermore, cultural and genetic evolution can interact with one another and influence both transmission and selection. This interaction requires theoretical treatments of gene-culture coevolution and dual inheritance, in addition to purely cultural evolution. In addition, cultural evolutionary theory is a natural component of studies in demography, human ecology, and many other disciplines. Here, we review the core concepts in cultural evolutionary theory as they pertain to the extension of biology through culture, focusing on cultural evolutionary applications in population genetics, ecology, and demography. For each of these disciplines, we review the theoretical literature and highlight relevant empirical studies. We also discuss the societal implications of the study of cultural evolution and of the interactions of humans with one another and with their environment.

  10. Role-playing is an effective instructional strategy for genetic counseling training: an investigation and comparative study.

    PubMed

    Xu, Xiao-Feng; Wang, Yan; Wang, Yan-Yan; Song, Ming; Xiao, Wen-Gang; Bai, Yun

    2016-09-02

    Genetic diseases represent a significant public health challenge in China that will need to be addressed by a correspondingly large number of professional genetic counselors. However, neither an official training program for genetic counseling, nor formal board certification, was available in China before 2015. In 2009, a genetic counseling training program based on role-playing was implemented as a pilot study at the Third Military Medical University to train third-year medical students. Questionnaires on participant attitudes to the program and role-playing were randomly administered to 324 students after they had finished their training. Pre- and post-training instructional tests, focusing on 42 key components of genetic counseling, were administered randomly to 200 participants to assess mastery of each component. Finally, scores in final examinations of 578 participants from 2009 to 2011 were compared to scores obtained by 614 non-participating students from 2006 to 2008 to further assess program efficacy. Both the training program and the instructional strategy of role-playing were accepted by most participants. Students believed that role-playing improved their practice of genetic counseling and medical genetics, enhanced their communication skills, and would likely contribute to future professional performance. The average understanding of 40 of the key points in genetic counseling was significantly improved, and most students approached excellent levels of mastery. Scores in final examinations and the percentages of students scoring above 90 were also significantly elevated. Role-playing is a feasible and effective instructional strategy for training genetic counselors in China as well as in other developing countries.

  11. Reproductive social behavior: cooperative games to replace sexual selection.

    PubMed

    Roughgarden, Joan; Oishi, Meeko; Akçay, Erol

    2006-02-17

    Theories about sexual selection can be traced back to Darwin in 1871. He proposed that males fertilize as many females as possible with inexpensive sperm, whereas females, with a limited supply of large eggs, select the genetically highest quality males to endow their offspring with superior capabilities. Since its proposal, problems with this narrative have continued to accumulate, and it is our view that sexual selection theory needs to be replaced. We suggest an approach that relies on the exchange of direct ecological benefits among cooperating animals without reference to genetic benefits. This approach can be expressed mathematically in a branch of game theory that pertains to bargaining and side payments.

  12. Piaget Misunderstood: A Critique of the Criticisms of His Theory of Moral Development

    ERIC Educational Resources Information Center

    Lickona, Thomas

    1969-01-01

    A defence of Piaget's theory of moral development against misunderstandings of his overemphasis on genetic maturation, underemphasis on role of intelligence, and imposition of a "universal order. (MH)

  13. Efficacy of a Web-based Intelligent Tutoring System for Communicating Genetic Risk of Breast Cancer: A Fuzzy-Trace Theory Approach

    PubMed Central

    Wolfe, Christopher R.; Reyna, Valerie F.; Widmer, Colin L.; Cedillos, Elizabeth M.; Fisher, Christopher R.; Brust-Renck, Priscila G.; Weil, Audrey M.

    2014-01-01

    Background Many healthy women consider genetic testing for breast cancer risk, yet BRCA testing issues are complex. Objective Determining whether an intelligent tutor, BRCA Gist, grounded in fuzzy-trace theory (FTT), increases gist comprehension and knowledge about genetic testing for breast cancer risk, improving decision-making. Design In two experiments, 410 healthy undergraduate women were randomly assigned to one of three groups: an online module using a web-based tutoring system (BRCA Gist) that uses artificial intelligence technology, a second group read highly similar content from the NCI web site, and a third completed an unrelated tutorial. Intervention BRCA Gist applied fuzzy trace theory and was designed to help participants develop gist comprehension of topics relevant to decisions about BRCA genetic testing, including how breast cancer spreads, inherited genetic mutations, and base rates. Measures We measured content knowledge, gist comprehension of decision-relevant information, interest in testing, and genetic risk and testing judgments. Results Control knowledge scores ranged from 54% to 56%, NCI improved significantly to 65% and 70%, and BRCA Gist improved significantly more to 75% and 77%, p<.0001. BRCA Gist scored higher on gist comprehension than NCI and control, p<.0001. Control genetic risk-assessment mean was 48% correct; BRCA Gist (61%), and NCI (56%) were significantly higher, p<.0001. BRCA Gist participants recommended less testing for women without risk factors (not good candidates), (24% and 19%) than controls (50%, both experiments) and NCI, (32%) Experiment 2, p<.0001. BRCA Gist testing interest was lower than controls, p<.0001. Limitations BRCA Gist has not been tested with older women from diverse groups. Conclusions Intelligent tutors, such as BRCA Gist, are scalable, cost effective ways of helping people understand complex issues, improving decision-making. PMID:24829276

  14. Reflections on changeability versus stability of health-related quality of life: distinguishing between its environmental and genetic components

    PubMed Central

    Sprangers, Mirjam AG; Schwartz, Carolyn E

    2008-01-01

    The field of health-related quality of life (HRQOL) could benefit from a broadening of perspectives to include recent advancements in research on adaptation, positive psychology, and genetics. These advances shed new light on the extent to which HRQOL is changeable or fixed. The objective of this paper is to integrate these insights and to discuss their implications for HRQOL research. We describe the Hedonic Treadmill theory, which asserts that positive events only temporarily affect happiness since people quickly return to hedonic neutrality. New empirical evidence suggests important revisions of this theory, providing a more optimistic picture of the possibility for change. Advances in positive psychology show that relatively simple interventions have the power to induce a sustainable increase in levels of happiness. Finally, a small but growing number of studies have found independent genetic influences in well-being, life satisfaction, perceived health, and even HRQOL. Given the increasing empirical evidence that HRQOL can be sustainably enhanced and is in part genetically determined, it may be useful to consider HRQOL as a concept that has state (environmental) and trait (genetic) components. This distinction will allow us to explore new pathways of improving theory, methods, and clinical practice. The overarching novel questions concern the extent to which HRQOL components are environmentally or genetically determined, and which factors lead to lasting improvement. This distinction begs for new research approaches, such as time-sampling techniques and interdisciplinary research investigating the genetic variants of HRQOL. Distinguishing between those aspects that are amenable to change from those that are relatively fixed and stable will help better target specific support interventions. PMID:18976504

  15. From Mendel's discovery on pea to today's plant genetics and breeding : Commemorating the 150th anniversary of the reading of Mendel's discovery.

    PubMed

    Smýkal, Petr; K Varshney, Rajeev; K Singh, Vikas; Coyne, Clarice J; Domoney, Claire; Kejnovský, Eduard; Warkentin, Thomas

    2016-12-01

    This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel. In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin's theory of evolution was based on differential survival and differential reproductive success, Mendel's theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin's concepts were continuous variation and "soft" heredity; Mendel espoused discontinuous variation and "hard" heredity. Thus, the combination of Mendelian genetics with Darwin's theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker-trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.

  16. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower

    PubMed Central

    Chanderbali, André S.; Yoo, Mi-Jeong; Zahn, Laura M.; Brockington, Samuel F.; Wall, P. Kerr; Gitzendanner, Matthew A.; Albert, Victor A.; Leebens-Mack, James; Altman, Naomi S.; Ma, Hong; dePamphilis, Claude W.; Soltis, Douglas E.; Soltis, Pamela S.

    2010-01-01

    The origin and rapid diversification of the angiosperms (Darwin's “Abominable Mystery”) has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants. PMID:21149731

  17. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower.

    PubMed

    Chanderbali, André S; Yoo, Mi-Jeong; Zahn, Laura M; Brockington, Samuel F; Wall, P Kerr; Gitzendanner, Matthew A; Albert, Victor A; Leebens-Mack, James; Altman, Naomi S; Ma, Hong; dePamphilis, Claude W; Soltis, Douglas E; Soltis, Pamela S

    2010-12-28

    The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.

  18. Using Implementation and Program Theory to Examine Communication Strategies in National Wildlife Federation's Backyard Wildlife Habitat Program

    ERIC Educational Resources Information Center

    Palmer, Dain; Dann, Shari L.

    2004-01-01

    Our evaluative approach used implementation theory and program theory, adapted from Weiss (1998) to examine communication processes and results for a national wildlife habitat stewardship education program. Using a mail survey of 1427 participants certified in National Wildlife Federation's (NWF) Backyard Wildlife Habitat (BWH) program and a study…

  19. Island phytophagy: explaining the remarkable diversity of plant-feeding insects

    PubMed Central

    Joy, Jeffrey B.; Crespi, Bernard J.

    2012-01-01

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa. PMID:22553094

  20. Island phytophagy: explaining the remarkable diversity of plant-feeding insects.

    PubMed

    Joy, Jeffrey B; Crespi, Bernard J

    2012-08-22

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.

  1. Molecular – genetic variance of RH blood group system within human population of Bosnia and Herzegovina

    PubMed Central

    Lasić, Lejla; Lojo-Kadrić, Naida; Silajdžić, Elma; Pojskić, Lejla; Hadžiselimović, Rifat; Pojskić, Naris

    2013-01-01

    There are two major theories for inheritance of Rh blood group system: Fisher – Race theory and Wiener theory. Aim of this study was identifying frequency of RHDCE alleles in Bosnian – Herzegovinian population and introduction of this method in screening for Rh phenotype in B&H since this type of analysis was not used for blood typing in B&H before. Rh blood group was typed by Polymerase Chain Reaction, using the protocols and primers previously established by other authors, then carrying out electrophoresis in 2-3% agarose gel. Percentage of Rh positive individuals in our sample is 84.48%, while the percentage of Rh negative individuals is 15.52%. Inter-rater agreement statistic showed perfect agreement (K=1) between the results of Rh blood system detection based on serological and molecular-genetics methods. In conclusion, molecular – genetic methods are suitable for prenatal genotyping and specific cases while standard serological method is suitable for high-throughput of samples. PMID:23448604

  2. Genetics and the unity of biology. Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-31

    International Congresses of Genetics, convened just once every five years, provide a rare opportunity for overview in the field of genetic engineering. The Congress, held August 20-27, 1988 in Toronto, Canada focused on the theme Genetics and the Unity of Biology, which was chosen because the concepts of modern genetics have provided biology with a unifying theoretical structure. This program guide contains a schedule of all Congress activities and a listing of all Symposia, Workshops and Poster Sessions held.

  3. The holist tradition in twentieth century genetics. Wilhelm Johannsen's genotype concept.

    PubMed

    Roll-Hansen, Nils

    2014-06-01

    The terms 'genotype', 'phenotype' and 'gene' originally had a different meaning from that in the Modern Synthesis. These terms were coined in the first decade of the twentieth century by the Danish plant physiologist Wilhelm Johannsen. His bean selection experiment and his theoretical analysis of the difference between genotype and phenotype were important inputs to the formation of genetics as a well-defined special discipline. This paper shows how Johannsen's holistic genotype theory provided a platform for criticism of narrowly genocentric versions of the chromosome theory of heredity that came to dominate genetics in the middle decades of the twentieth century. Johannsen came to recognize the epoch-making importance of the work done by the Drosophila group, but he continued to insist on the incompleteness of the chromosome theory. Genes of the kind that they mapped on the chromosomes could only give a partial explanation of biological heredity and evolution. © 2014 The Author. The Journal of Physiology © 2014 The Physiological Society.

  4. General Contingency Theory of Organizations: An Alternative to Open Systems Theory.

    DTIC Science & Technology

    1982-08-01

    genetic and mechanical open systems. We have recently proposed a general contingency theory (GCT) of management (Luthans and Stewart, 1977) which promises...developed in response to the need for an integrative theory of management that incorporates the environment (in the open systems sense. and begins to... management and desired performance out- comes. We will show that the GCT matrix can lead to organizational effec- tiveness. The Theory as a Basis for More

  5. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    ERIC Educational Resources Information Center

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  6. Gene genealogies in geographically structured populations

    Treesearch

    Bryan K. Epperson

    1999-01-01

    Population genetics theory has dealt only with the spatial or geographic pattern of degrees of relatedness or genetic similarity separately for each point in time. However, a frequent goal of experimental studies is to infer migration patterns that occurred in the past or over extended periods of time. To fully understand how a present geographic pattern of genetic...

  7. Analyzing Population Genetics Data: A Comparison of the Software

    USDA-ARS?s Scientific Manuscript database

    Choosing a software program for analyzing population genetic data can be a challenge without prior knowledge of the methods used by each program. There are numerous web sites listing programs by type of data analyzed, type of analyses performed, or other criteria. Even with programs categorized in ...

  8. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.

    PubMed

    Granleese, Tom; Clark, Samuel A; Swan, Andrew A; van der Werf, Julius H J

    2015-09-14

    Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro embryo production and embryo transfer (JIVET) can boost rates of genetic gain but they can also increase rates of inbreeding. Inbreeding can be managed using the principles of optimal contribution selection (OCS), which maximizes genetic gain while placing a penalty on the rate of inbreeding. We evaluated the potential benefits and synergies that exist between genomic selection (GS) and reproductive technologies under OCS for sheep and cattle breeding programs. Various breeding program scenarios were simulated stochastically including: (1) a sheep breeding program for the selection of a single trait that could be measured either early or late in life; (2) a beef breeding program with an early or late trait; and (3) a dairy breeding program with a sex limited trait. OCS was applied using a range of penalties (severe to no penalty) on co-ancestry of selection candidates, with the possibility of using multiple ovulation and embryo transfer (MOET) and/or juvenile in vitro embryo production and embryo transfer (JIVET) for females. Each breeding program was simulated with and without genomic selection. All breeding programs could be penalized to result in an inbreeding rate of 1 % increase per generation. The addition of MOET to artificial insemination or natural breeding (AI/N), without the use of GS yielded an extra 25 to 60 % genetic gain. The further addition of JIVET did not yield an extra genetic gain. When GS was used, MOET and MOET + JIVET programs increased rates of genetic gain by 38 to 76 % and 51 to 81 % compared to AI/N, respectively. Large increases in genetic gain were found across species when female reproductive technologies combined with genomic selection were applied and inbreeding was managed, especially for breeding programs that focus on the selection of traits measured late in life or that are sex-limited. Optimal contribution selection was an effective tool to optimally allocate different combinations of reproductive technologies. Applying a range of penalties to co-ancestry of selection candidates allows a comprehensive exploration of the inbreeding vs. genetic gain space.

  9. Cancer Genetics and Signaling | Center for Cancer Research

    Cancer.gov

    The Cancer, Genetics, and Signaling (CGS) Group at the National Cancer Institute at Frederick  offers a competitive postdoctoral training and mentoring program focusing on molecular and genetic aspects of cancer. The CGS Fellows Program is designed to attract and train exceptional postdoctoral fellows interested in pursuing independent research career tracks. CGS Fellows participate in a structured mentoring program designed for scientific and career development and transition to independent positions.

  10. Genetic programming and serial processing for time series classification.

    PubMed

    Alfaro-Cid, Eva; Sharman, Ken; Esparcia-Alcázar, Anna I

    2014-01-01

    This work describes an approach devised by the authors for time series classification. In our approach genetic programming is used in combination with a serial processing of data, where the last output is the result of the classification. The use of genetic programming for classification, although still a field where more research in needed, is not new. However, the application of genetic programming to classification tasks is normally done by considering the input data as a feature vector. That is, to the best of our knowledge, there are not examples in the genetic programming literature of approaches where the time series data are processed serially and the last output is considered as the classification result. The serial processing approach presented here fills a gap in the existing literature. This approach was tested in three different problems. Two of them are real world problems whose data were gathered for online or conference competitions. As there are published results of these two problems this gives us the chance to compare the performance of our approach against top performing methods. The serial processing of data in combination with genetic programming obtained competitive results in both competitions, showing its potential for solving time series classification problems. The main advantage of our serial processing approach is that it can easily handle very large datasets.

  11. Social evolution and genetic interactions in the short and long term.

    PubMed

    Van Cleve, Jeremy

    2015-08-01

    The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W.D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton's rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton's rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This short-term approach reproduces, synthesizes, and generalizes many previous results including the one-third law from evolutionary game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions of convergence stability from evolutionary game theory and generally depend on the additive genetic interactions inherent in Hamilton's rule. Surprisingly, the peaks of the long-term stationary distribution can predict the effects of simple kinds of non-additive interactions. Additionally, the peaks capture both weak and strong effects of social payoffs in a manner difficult to replicate with the short-term approach. Together, the results from the short and long-term approaches suggest both how Hamilton's insight may be robust in unexpected ways and how current analytical approaches can expand our understanding of social evolution far beyond Hamilton's original work. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Genetics of the peloponnesean populations and the theory of extinction of the medieval peloponnesean Greeks

    PubMed Central

    Stamatoyannopoulos, George; Bose, Aritra; Teodosiadis, Athanasios; Tsetsos, Fotis; Plantinga, Anna; Psatha, Nikoletta; Zogas, Nikos; Yannaki, Evangelia; Zalloua, Pierre; Kidd, Kenneth K; Browning, Brian L; Stamatoyannopoulos, John; Paschou, Peristera; Drineas, Petros

    2017-01-01

    Peloponnese has been one of the cradles of the Classical European civilization and an important contributor to the ancient European history. It has also been the subject of a controversy about the ancestry of its population. In a theory hotly debated by scholars for over 170 years, the German historian Jacob Philipp Fallmerayer proposed that the medieval Peloponneseans were totally extinguished by Slavic and Avar invaders and replaced by Slavic settlers during the 6th century CE. Here we use 2.5 million single-nucleotide polymorphisms to investigate the genetic structure of Peloponnesean populations in a sample of 241 individuals originating from all districts of the peninsula and to examine predictions of the theory of replacement of the medieval Peloponneseans by Slavs. We find considerable heterogeneity of Peloponnesean populations exemplified by genetically distinct subpopulations and by gene flow gradients within Peloponnese. By principal component analysis (PCA) and ADMIXTURE analysis the Peloponneseans are clearly distinguishable from the populations of the Slavic homeland and are very similar to Sicilians and Italians. Using a novel method of quantitative analysis of ADMIXTURE output we find that the Slavic ancestry of Peloponnesean subpopulations ranges from 0.2 to 14.4%. Subpopulations considered by Fallmerayer to be Slavic tribes or to have Near Eastern origin, have no significant ancestry of either. This study rejects the theory of extinction of medieval Peloponneseans and illustrates how genetics can clarify important aspects of the history of a human population. PMID:28272534

  13. An Approach to Theory-Based Youth Programming

    ERIC Educational Resources Information Center

    Duerden, Mat D.; Gillard, Ann

    2011-01-01

    A key but often overlooked aspect of intentional, out-of-school-time programming is the integration of a guiding theoretical framework. The incorporation of theory in programming can provide practitioners valuable insights into essential processes and principles of successful programs. While numerous theories exist that relate to youth development…

  14. How Cultural Evolutionary Theory Can Inform Social Psychology and Vice Versa

    ERIC Educational Resources Information Center

    Mesoudi, Alex

    2009-01-01

    Cultural evolutionary theory is an interdisciplinary field in which human culture is viewed as a Darwinian process of variation, competition, and inheritance, and the tools, methods, and theories developed by evolutionary biologists to study genetic evolution are adapted to study cultural change. It is argued here that an integration of the…

  15. Mind and Meaning: Piaget and Vygotsky on Causal Explanation.

    ERIC Educational Resources Information Center

    Beilin, Harry

    1996-01-01

    Piaget's theory has been characterized as descriptive and not explanatory, not qualifying as causal explanation. Piaget was consistent in showing how his theory was both explanatory and causal. Vygotsky also endorsed causal-genetic explanation but, on the basis of knowledge of only Piaget's earliest works, he claimed that Piaget's theory was not…

  16. What Risk Assessments of Genetically Modified Organisms Can Learn from Institutional Analyses of Public Health Risks

    PubMed Central

    Rajan, S. Ravi; Letourneau, Deborah K.

    2012-01-01

    The risks of genetically modified organisms (GMOs) are evaluated traditionally by combining hazard identification and exposure estimates to provide decision support for regulatory agencies. We question the utility of the classical risk paradigm and discuss its evolution in GMO risk assessment. First, we consider the problem of uncertainty, by comparing risk assessment for environmental toxins in the public health domain with genetically modified organisms in the environment; we use the specific comparison of an insecticide to a transgenic, insecticidal food crop. Next, we examine normal accident theory (NAT) as a heuristic to consider runaway effects of GMOs, such as negative community level consequences of gene flow from transgenic, insecticidal crops. These examples illustrate how risk assessments are made more complex and contentious by both their inherent uncertainty and the inevitability of failure beyond expectation in complex systems. We emphasize the value of conducting decision-support research, embracing uncertainty, increasing transparency, and building interdisciplinary institutions that can address the complex interactions between ecosystems and society. In particular, we argue against black boxing risk analysis, and for a program to educate policy makers about uncertainty and complexity, so that eventually, decision making is not the burden that falls upon scientists but is assumed by the public at large. PMID:23193357

  17. What risk assessments of genetically modified organisms can learn from institutional analyses of public health risks.

    PubMed

    Rajan, S Ravi; Letourneau, Deborah K

    2012-01-01

    The risks of genetically modified organisms (GMOs) are evaluated traditionally by combining hazard identification and exposure estimates to provide decision support for regulatory agencies. We question the utility of the classical risk paradigm and discuss its evolution in GMO risk assessment. First, we consider the problem of uncertainty, by comparing risk assessment for environmental toxins in the public health domain with genetically modified organisms in the environment; we use the specific comparison of an insecticide to a transgenic, insecticidal food crop. Next, we examine normal accident theory (NAT) as a heuristic to consider runaway effects of GMOs, such as negative community level consequences of gene flow from transgenic, insecticidal crops. These examples illustrate how risk assessments are made more complex and contentious by both their inherent uncertainty and the inevitability of failure beyond expectation in complex systems. We emphasize the value of conducting decision-support research, embracing uncertainty, increasing transparency, and building interdisciplinary institutions that can address the complex interactions between ecosystems and society. In particular, we argue against black boxing risk analysis, and for a program to educate policy makers about uncertainty and complexity, so that eventually, decision making is not the burden that falls upon scientists but is assumed by the public at large.

  18. A synthetic genetic edge detection program.

    PubMed

    Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D

    2009-06-26

    Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.

  19. A Synthetic Genetic Edge Detection Program

    PubMed Central

    Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.

    2009-01-01

    Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759

  20. Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer.

    PubMed

    Castelli, Mauro; Trujillo, Leonardo; Vanneschi, Leonardo

    2015-01-01

    Energy consumption forecasting (ECF) is an important policy issue in today's economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data.

  1. Which BRCA genetic testing programs are ready for implementation in health care? A systematic review of economic evaluations.

    PubMed

    D'Andrea, Elvira; Marzuillo, Carolina; De Vito, Corrado; Di Marco, Marco; Pitini, Erica; Vacchio, Maria Rosaria; Villari, Paolo

    2016-12-01

    There is considerable evidence regarding the efficacy and effectiveness of BRCA genetic testing programs, but whether they represent good use of financial resources is not clear. Therefore, we aimed to identify the main health-care programs for BRCA testing and to evaluate their cost-effectiveness. We performed a systematic review of full economic evaluations of health-care programs involving BRCA testing. Nine economic evaluations were included, and four main categories of BRCA testing programs were identified: (i) population-based genetic screening of individuals without cancer, either comprehensive or targeted based on ancestry; (ii) family history (FH)-based genetic screening, i.e., testing individuals without cancer but with FH suggestive of BRCA mutation; (iii) familial mutation (FM)-based genetic screening, i.e., testing individuals without cancer but with known familial BRCA mutation; and (iv) cancer-based genetic screening, i.e., testing individuals with BRCA-related cancers. Currently BRCA1/2 population-based screening represents good value for the money among Ashkenazi Jews only. FH-based screening is potentially very cost-effective, although further studies that include costs of identifying high-risk women are needed. There is no evidence of cost-effectiveness for BRCA screening of all newly diagnosed cases of breast/ovarian cancers followed by cascade testing of relatives, but programs that include tools for identifying affected women at higher risk for inherited forms are promising. Cost-effectiveness is highly sensitive to the cost of BRCA1/2 testing.Genet Med 18 12, 1171-1180.

  2. Relieving the Bottleneck: An Investigation of Barriers to Expansion of Supervision Networks at Genetic Counseling Training Programs.

    PubMed

    Berg, Jordan; Hoskovec, Jennifer; Hashmi, S Shahrukh; McCarthy Veach, Patricia; Ownby, Allison; Singletary, Claire N

    2018-02-01

    Rapid growth in the demand for genetic counselors has led to a workforce shortage. There is a prevailing assumption that the number of training slots for genetic counseling students is linked to the availability of clinical supervisors. This study aimed to determine and compare barriers to expansion of supervision networks at genetic counseling training programs as perceived by supervisors, non-supervisors, and Program Directors. Genetic counselors were recruited via National Society of Genetic Counselors e-blast; Program Directors received personal emails. Online surveys were completed by 216 supervisors, 98 non-supervisors, and 23 Program Directors. Respondents rated impact of 35 barriers; comparisons were made using Kruskal-Wallis and Wilcoxon ranked sum tests. Half of supervisors (51%) indicated willingness to increase supervision. All non-supervisors were willing to supervise. However, all agreed that being too busy impacted ability to supervise, highlighted by supervisors' most impactful barriers: lack of time, other responsibilities, intensive nature of supervision, desire for breaks, and unfilled positions. Non-supervisors noted unique barriers: distance, institutional barriers, and non-clinical roles. Program Directors' perceptions were congruent with those of genetic counselors with three exceptions they rated as impactful: lack of money, prefer not to supervise, and never been asked. In order to expand supervision networks and provide comprehensive student experiences, the profession must examine service delivery models to increase workplace efficiency, reconsider the supervision paradigm, and redefine what constitutes a countable case or place value on non-direct patient care experiences.

  3. Using a systems orientation and foundational theory to enhance theory-driven human service program evaluations.

    PubMed

    Wasserman, Deborah L

    2010-05-01

    This paper offers a framework for using a systems orientation and "foundational theory" to enhance theory-driven evaluations and logic models. The framework guides the process of identifying and explaining operative relationships and perspectives within human service program systems. Self-Determination Theory exemplifies how a foundational theory can be used to support the framework in a wide range of program evaluations. Two examples illustrate how applications of the framework have improved the evaluators' abilities to observe and explain program effect. In both exemplars improvements involved addressing and organizing into a single logic model heretofore seemingly disparate evaluation issues regarding valuing (by whose values); the role of organizational and program context; and evaluation anxiety and utilization. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. The complement of research and theory in practice: contact theory at work in nonfamilial intergenerational programs.

    PubMed

    Jarrott, Shannon E; Smith, Cynthia L

    2011-02-01

    We assessed whether a shared site intergenerational care program informed by contact theory contributed to more desirable social behaviors of elders and children during intergenerational programming than a center with a more traditional programming approach that lacks some or all of the contact theory tenets. We observed 59 elder and child participants from the two sites during intergenerational activities. Using the Intergenerational Observation Scale, we coded participants' predominant behavior in 15-s intervals through each activity's duration. We then calculated for each individual the percentage of time frames each behavior code was predominant. Participants at the theory-based program demonstrated higher rates of intergenerational interaction, higher rates of solitary behavior, and lower rates of watching than at the traditional program. Contact theory tenets were optimized when coupled with evidence-based practices. Intergenerational programs with stakeholder support that promotes equal group status, cooperation toward a common goal, and mechanisms of friendship among participants can achieve important objectives for elder and child participants in care settings.

  5. Genetic Parallel Programming: design and implementation.

    PubMed

    Cheang, Sin Man; Leung, Kwong Sak; Lee, Kin Hong

    2006-01-01

    This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential program if required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.

  6. Goodness of Fit Assessment of an Alcohol Intervention Program and the Underlying Theories of Change

    ERIC Educational Resources Information Center

    Ramos, Diana; Perkins, Daniel F.

    2006-01-01

    The authors conducted an investigation of The Pennsylvania State University's Alcohol Intervention Program Level 2 (AIP2) to determine goodness of fit of the program components and its underpinning theories. They determined that the Health Belief Model, Social Norms Theory, Social Learning Theory, and the Transtheoretical Model Stages of Change…

  7. Using Concept Mapping as as Tool for Program Theory Development

    ERIC Educational Resources Information Center

    Orsi, Rebecca

    2011-01-01

    The purpose of this methodological study is to explore how well a process called "concept mapping" (Trochim, 1989) can articulate the theory which underlies a social program. Articulation of a program's theory is a key step in completing a sound theory based evaluation (Weiss, 1997a). In this study, concept mapping is used to…

  8. SAM: The "Search and Match" Computer Program of the Escherichia coli Genetic Stock Center

    ERIC Educational Resources Information Center

    Bachmann, B. J.; And Others

    1973-01-01

    Describes a computer program used at a genetic stock center to locate particular strains of bacteria. The program can match up to 30 strain descriptions requested by a researcher with the records on file. Uses of this particular program can be made in many fields. (PS)

  9. Evolutionary Theory under Fire.

    ERIC Educational Resources Information Center

    Lewin, Roger

    1980-01-01

    Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)

  10. Complexity Theory

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  11. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.

  12. Cultural differences define diagnosis and genomic medicine practice: implications for undiagnosed diseases program in China.

    PubMed

    Duan, Xiaohong; Markello, Thomas; Adams, David; Toro, Camilo; Tifft, Cynthia; Gahl, William A; Boerkoel, Cornelius F

    2013-09-01

    Despite the current acceleration and increasing leadership of Chinese genetics research, genetics and its clinical application have largely been imported to China from the Occident. Neither genetics nor the scientific reductionism underpinning its clinical application is integral to the traditional Chinese worldview. Given that disease concepts and their incumbent diagnoses are historically derived and culturally meaningful, we hypothesize that the cultural expectations of genetic diagnoses and medical genetics practice differ between the Occident and China. Specifically, we suggest that an undiagnosed diseases program in China will differ from the recently established Undiagnosed Diseases Program at the United States National Institutes of Health; a culturally sensitive concept will integrate traditional Chinese understanding of disease with the scientific reductionism of Occidental medicine.

  13. The Design of Power System Stability Controller Based on the PCH Theory and Improved Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Zhijian; Yin, Donghui; Yan, Jun

    2017-05-01

    Low frequency oscillation is still frequently happened in the power system and it affects the safety and stability of power system directly. With the continuously expending of the interconnection scale of power grid, the risk of low frequency oscillation becomes more and more noticeable. Firstly, the basic theory of port-controlled Hamilton (PCH) and its application is analyzed. Secondly, based on the PCH theory and the dynamic model of system, from the viewpoint of energy, the nonlinear stability controller of power system is designed. By the improved genetic algorithm, the parameters of the PCH model are optimized. Finally, a simulation model with PCH is built to vary the effectiveness of the method proposed in this paper.

  14. The significant effects of puberty on the genetic diathesis of binge eating in girls.

    PubMed

    Klump, Kelly L; Culbert, Kristen M; O'Connor, Shannon; Fowler, Natasha; Burt, S Alexandra

    2017-08-01

    Recent data show significant phenotypic and genetic associations between ovarian hormones and binge eating in adulthood. Theories of hormonal risk focus on puberty and the possibility that hormone activation induces changes in genetic effects that then lead to differential risk for binge eating in postpuberty and adulthood. Although this theory is difficult to test in humans, an indirect test is to examine whether genetic influences on binge eating increase during the pubertal period in girls. Prior work has shown pubertal increases in genetic influences on overall disordered eating symptoms, but no study to date has examined binge eating. The present study was the first to examine these increases for binge eating. Participants included 1,568 female twins (aged 8-25 years) from the Michigan State University Twin Registry. Binge eating and pubertal development were assessed with self-report questionnaires. Twin moderation models showed significant linear increases in genetic effects from prepuberty (5%) to postpuberty (42%), even after controlling for the effects of age and body mass index. Results provide critical support for increased genetic influences on binge eating during puberty. Additional studies are needed to identify hormonal mechanisms and fully test contemporary models of ovarian hormone risk. © 2017 Wiley Periodicals, Inc.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhaus, K.A.; Bennett, R.L.; Resta, R.G.

    To determine consistency in usage of pedigree symbols by genetics professionals, we reviewed pedigrees printed in 10 human genetic and medical journals and 24 medical genetics textbooks. We found no consistent symbolization for common situations such as pregnancy, spontaneous abortion, death, or test results. Inconsistency in pedigree design can create difficulties in the interpretation of family studies and detract from the pedigree`s basic strength of simple and accurate communication of medical information. We recommend the development of standard pedigree symbols, and their incorporation into genetic publications, professional genetics training programs, pedigree software programs, and genetic board examinations. 5 refs., 11more » figs., 2 tabs.« less

  16. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  17. Dispersal similarly shapes both population genetics and community patterns in the marine realm

    NASA Astrophysics Data System (ADS)

    Chust, Guillem; Villarino, Ernesto; Chenuil, Anne; Irigoien, Xabier; Bizsel, Nihayet; Bode, Antonio; Broms, Cecilie; Claus, Simon; Fernández de Puelles, María L.; Fonda-Umani, Serena; Hoarau, Galice; Mazzocchi, Maria G.; Mozetič, Patricija; Vandepitte, Leen; Veríssimo, Helena; Zervoudaki, Soultana; Borja, Angel

    2016-06-01

    Dispersal plays a key role to connect populations and, if limited, is one of the main processes to maintain and generate regional biodiversity. According to neutral theories of molecular evolution and biodiversity, dispersal limitation of propagules and population stochasticity are integral to shaping both genetic and community structure. We conducted a parallel analysis of biological connectivity at genetic and community levels in marine groups with different dispersal traits. We compiled large data sets of population genetic structure (98 benthic macroinvertebrate and 35 planktonic species) and biogeographic data (2193 benthic macroinvertebrate and 734 planktonic species). We estimated dispersal distances from population genetic data (i.e., FST vs. geographic distance) and from β-diversity at the community level. Dispersal distances ranked the biological groups in the same order at both genetic and community levels, as predicted by organism dispersal ability and seascape connectivity: macrozoobenthic species without dispersing larvae, followed by macrozoobenthic species with dispersing larvae and plankton (phyto- and zooplankton). This ranking order is associated with constraints to the movement of macrozoobenthos within the seabed compared with the pelagic habitat. We showed that dispersal limitation similarly determines the connectivity degree of communities and populations, supporting the predictions of neutral theories in marine biodiversity patterns.

  18. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  19. An examination of environmental and genetic contributions to the determinants of suicidal behavior among male twins

    PubMed Central

    Smith, April Rose; Ribeiro, Jessica; Mikolajewski, Amy; Taylor, Jeanette; Joiner, Thomas; Iacono, William G.

    2012-01-01

    The purpose of the present study was to examine the relative association of genetic and environmental factors with individual differences in each of the proximal, jointly necessary, and sufficient causes for suicidal behavior, according to the Interpersonal-Psychological Theory of Suicide (IPTS; Joiner, 2005). We examined data on derived scales measuring acquired capability, belongingness, and burdensomeness (the determinants of suicidal behavior, according to theory) from 348 adolescent male twins. Univariate biometrical models were used to estimate the magnitude of additive genetic (A), non-additive genetic (D), shared environmental (C), and nonshared environmental (E) effects associated with the variance in acquired capability, belongingness, and burdensomeness. The best fitting model for the acquired capability allowed for additive genetic and environmental effects, whereas the best fitting model for burdensomeness and belongingness allowed for shared and nonshared environmental effects. The present research extends prior work by specifying the environmental and genetic contributions to the components of the IPTS, and our findings suggest that belongingness and burdensomeness may be more appropriate targets for clinical intervention than acquired capability as these factors may be more malleable or amenable to change. PMID:22417928

  20. Formal Theory versus Stakeholder Theory: New Insights from a Tobacco-Focused Prevention Program Evaluation

    ERIC Educational Resources Information Center

    Chen, Huey T.; Turner, Nannette C.

    2012-01-01

    Health promotion and social betterment program interventions are based on either formal theory from academia or stakeholder theory from stakeholders' observations and experiences in working with clients. Over time, formal theory-based interventions have acquired high prestige, while stakeholder theory-based interventions have been held in low…

  1. Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia.

    PubMed

    Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak

    2013-01-08

    Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.

  2. Evolving rule-based systems in two medical domains using genetic programming.

    PubMed

    Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf

    2004-11-01

    To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.

  3. Mate choice theory and the mode of selection in sexual populations.

    PubMed

    Carson, Hampton L

    2003-05-27

    Indirect new data imply that mate and/or gamete choice are major selective forces driving genetic change in sexual populations. The system dictates nonrandom mating, an evolutionary process requiring both revised genetic theory and new data on heritability of characters underlying Darwinian fitness. Successfully reproducing individuals represent rare selections from among vigorous, competing survivors of preadult natural selection. Nonrandom mating has correlated demographic effects: reduced effective population size, inbreeding, low gene flow, and emphasis on deme structure. Characters involved in choice behavior at reproduction appear based on quantitative trait loci. This variability serves selection for fitness within the population, having only an incidental relationship to the origin of genetically based reproductive isolation between populations. The claim that extensive hybridization experiments with Drosophila indicate that selection favors a gradual progression of "isolating mechanisms" is flawed, because intra-group random mating is assumed. Over deep time, local sexual populations are strong, independent genetic systems that use rich fields of variable polygenic components of fitness. The sexual reproduction system thus particularizes, in small subspecific populations, the genetic basis of the grand adaptive sweep of selective evolutionary change, much as Darwin proposed.

  4. Extending DFT-based genetic algorithms by atom-to-place re-assignment via perturbation theory: A systematic and unbiased approach to structures of mixed-metallic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigend, Florian, E-mail: florian.weigend@kit.edu

    2014-10-07

    Energy surfaces of metal clusters usually show a large variety of local minima. For homo-metallic species the energetically lowest can be found reliably with genetic algorithms, in combination with density functional theory without system-specific parameters. For mixed-metallic clusters this is much more difficult, as for a given arrangement of nuclei one has to find additionally the best of many possibilities of assigning different metal types to the individual positions. In the framework of electronic structure methods this second issue is treatable at comparably low cost at least for elements with similar atomic number by means of first-order perturbation theory, asmore » shown previously [F. Weigend, C. Schrodt, and R. Ahlrichs, J. Chem. Phys. 121, 10380 (2004)]. In the present contribution the extension of a genetic algorithm with the re-assignment of atom types to atom sites is proposed and tested for the search of the global minima of PtHf{sub 12} and [LaPb{sub 7}Bi{sub 7}]{sup 4−}. For both cases the (putative) global minimum is reliably found with the extended technique, which is not the case for the “pure” genetic algorithm.« less

  5. Perspectives and Practices of Academics and Students of English Language Teaching Post-Graduate Programs within the Mediation Theory

    ERIC Educational Resources Information Center

    Asmali, Mehmet

    2018-01-01

    Due to unsatisfactory number of researches investigating ELT post-graduate programs, and perceptions of academics and students in these programs regarding mediation theory of Feuerstein, this study attempted to investigate the aspects of this theory in doctorate and master programs in ELT department of a state university. Methodologically, this…

  6. A CAL Program to Teach the Basic Principles of Genetic Engineering--A Change from the Traditional Approach.

    ERIC Educational Resources Information Center

    Dewhurst, D. G.; And Others

    1989-01-01

    An interactive computer-assisted learning program written for the BBC microcomputer to teach the basic principles of genetic engineering is described. Discussed are the hardware requirements software, use of the program, and assessment. (Author/CW)

  7. Evolution of Aging Theories: Why Modern Programmed Aging Concepts Are Transforming Medical Research.

    PubMed

    Goldsmith, Theodore C

    2016-12-01

    Programmed aging refers to the idea that senescence in humans and other organisms is purposely caused by evolved biological mechanisms to obtain an evolutionary advantage. Until recently, programmed aging was considered theoretically impossible because of the mechanics of the evolution process, and medical research was based on the idea that aging was not programmed. Theorists struggled for more than a century in efforts to develop non-programmed theories that fit observations, without obtaining a consensus supporting any non-programmed theory. Empirical evidence of programmed lifespan limitations continued to accumulate. More recently, developments, especially in our understanding of biological inheritance, have exposed major issues and complexities regarding the process of evolution, some of which explicitly enable programmed aging of mammals. Consequently, science-based opposition to programmed aging has dramatically declined. This progression has major implications for medical research, because the theories suggest that very different biological mechanisms are ultimately responsible for highly age-related diseases that now represent most research efforts and health costs. Most particularly, programmed theories suggest that aging per se is a treatable condition and suggest a second path toward treating and preventing age-related diseases that can be exploited in addition to the traditional disease-specific approaches. The theories also make predictions regarding the nature of biological aging mechanisms and therefore suggest research directions. This article discusses developments of evolutionary mechanics, the consequent programmed aging theories, and logical inferences concerning biological aging mechanisms. It concludes that major medical research organizations cannot afford to ignore programmed aging concepts in assigning research resources and directions.

  8. Cancer Genetics and Signaling | Center for Cancer Research

    Cancer.gov

    The Cancer, Genetics, and Signaling (CGS) Group at the National Cancer Institute at Frederick  offers a competitive postdoctoral training and mentoring program focusing on molecular and genetic aspects of cancer. The CGS Fellows Program is designed to attract and train exceptional postdoctoral fellows interested in pursuing independent research career tracks. CGS Fellows

  9. 7 CFR 3430.309 - Priority areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...

  10. 7 CFR 3430.309 - Priority areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...

  11. 7 CFR 3430.309 - Priority areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...

  12. 7 CFR 3430.309 - Priority areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...

  13. A General Definition of the Heritable Variation That Determines the Potential of a Population to Respond to Selection

    PubMed Central

    Bijma, Piter

    2011-01-01

    Genetic selection is a major force shaping life on earth. In classical genetic theory, response to selection is the product of the strength of selection and the additive genetic variance in a trait. The additive genetic variance reflects a population’s intrinsic potential to respond to selection. The ordinary additive genetic variance, however, ignores the social organization of life. With social interactions among individuals, individual trait values may depend on genes in others, a phenomenon known as indirect genetic effects. Models accounting for indirect genetic effects, however, lack a general definition of heritable variation. Here I propose a general definition of the heritable variation that determines the potential of a population to respond to selection. This generalizes the concept of heritable variance to any inheritance model and level of organization. The result shows that heritable variance determining potential response to selection is the variance among individuals in the heritable quantity that determines the population mean trait value, rather than the usual additive genetic component of phenotypic variance. It follows, therefore, that heritable variance may exceed phenotypic variance among individuals, which is impossible in classical theory. This work also provides a measure of the utilization of heritable variation for response to selection and integrates two well-known models of maternal genetic effects. The result shows that relatedness between the focal individual and the individuals affecting its fitness is a key determinant of the utilization of heritable variance for response to selection. PMID:21926298

  14. A general definition of the heritable variation that determines the potential of a population to respond to selection.

    PubMed

    Bijma, Piter

    2011-12-01

    Genetic selection is a major force shaping life on earth. In classical genetic theory, response to selection is the product of the strength of selection and the additive genetic variance in a trait. The additive genetic variance reflects a population's intrinsic potential to respond to selection. The ordinary additive genetic variance, however, ignores the social organization of life. With social interactions among individuals, individual trait values may depend on genes in others, a phenomenon known as indirect genetic effects. Models accounting for indirect genetic effects, however, lack a general definition of heritable variation. Here I propose a general definition of the heritable variation that determines the potential of a population to respond to selection. This generalizes the concept of heritable variance to any inheritance model and level of organization. The result shows that heritable variance determining potential response to selection is the variance among individuals in the heritable quantity that determines the population mean trait value, rather than the usual additive genetic component of phenotypic variance. It follows, therefore, that heritable variance may exceed phenotypic variance among individuals, which is impossible in classical theory. This work also provides a measure of the utilization of heritable variation for response to selection and integrates two well-known models of maternal genetic effects. The result shows that relatedness between the focal individual and the individuals affecting its fitness is a key determinant of the utilization of heritable variance for response to selection.

  15. Does population size affect genetic diversity? A test with sympatric lizard species.

    PubMed

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations.

  16. Do-it-yourself statistics: A computer-assisted likelihood approach to analysis of data from genetic crosses.

    PubMed Central

    Robbins, L G

    2000-01-01

    Graduate school programs in genetics have become so full that courses in statistics have often been eliminated. In addition, typical introductory statistics courses for the "statistics user" rather than the nascent statistician are laden with methods for analysis of measured variables while genetic data are most often discrete numbers. These courses are often seen by students and genetics professors alike as largely irrelevant cookbook courses. The powerful methods of likelihood analysis, although commonly employed in human genetics, are much less often used in other areas of genetics, even though current computational tools make this approach readily accessible. This article introduces the MLIKELY.PAS computer program and the logic of do-it-yourself maximum-likelihood statistics. The program itself, course materials, and expanded discussions of some examples that are only summarized here are available at http://www.unisi. it/ricerca/dip/bio_evol/sitomlikely/mlikely.h tml. PMID:10628965

  17. Genetic counseling for beta-thalassemia trait following health screening in a health maintenance organization: comparison of programmed and conventional counseling.

    PubMed Central

    Fisher, L; Rowley, P T; Lipkin, M

    1981-01-01

    Providing adequate counseling of patients identified in genetic screening programs is a major responsibility and expense. Adults in a health maintenance organization, unselected for interest, were screened for beta-thalassemia trait as part of preventive health care. Counseling was provided by either a trained physician (conventional counseling) or by a videotape containing the same information followed by an opportunity to question a trained physician (programmed counseling). Immediately before and after counseling, knowledge of thalassemia, knowledge of genetics, and mood change were assessed by questionnaire. Comparable mood changes and similar learning about thalassemia and genetics occurred with both counseling methods. Thus, as judged by immediate effects on knowledge and mood, videotaped instruction can greatly reduce professional time required for genetic counseling and facilitate the incorporation of genetic screening into primary health care. PMID:7325162

  18. Blood pressure and cerebral white matter share common genetic factors in Mexican Americans.

    PubMed

    Kochunov, Peter; Glahn, David C; Lancaster, Jack; Winkler, Anderson; Karlsgodt, Kathrin; Olvera, Rene L; Curran, Joanna E; Carless, Melanie A; Dyer, Thomas D; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John

    2011-02-01

    Elevated arterial pulse pressure and blood pressure (BP) can lead to atrophy of cerebral white matter (WM), potentially attributable to shared genetic factors. We calculated the magnitude of shared genetic variance between BP and fractional anisotropy of water diffusion, a sensitive measurement of WM integrity in a well-characterized population of Mexican Americans. The patterns of whole-brain and regional genetic overlap between BP and fractional anisotropy were interpreted in the context the pulse-wave encephalopathy theory. We also tested whether regional pattern in genetic pleiotropy is modulated by the phylogeny of WM development. BP and high-resolution (1.7 × 1.7 × 3 mm; 55 directions) diffusion tensor imaging data were analyzed for 332 (202 females; mean age 47.9 ± 13.3 years) members of the San Antonio Family Heart Study. Bivariate genetic correlation analysis was used to calculate the genetic overlap between several BP measurements (pulse pressure, systolic BP, and diastolic BP) and fractional anisotropy (whole-brain and regional values). Intersubject variance in pulse pressure and systolic BP exhibited a significant genetic overlap with variance in whole-brain fractional anisotropy values, sharing 36% and 22% of genetic variance, respectively. Regionally, shared genetic variance was significantly influenced by rates of WM development (r=-0.75; P=0.01). The pattern of genetic overlap between BP and WM integrity was generally in agreement with the pulse-wave encephalopathy theory. Our study provides evidence that a set of pleiotropically acting genetic factors jointly influence phenotypic variation in BP and WM integrity. The magnitude of this overlap appears to be influenced by phylogeny of WM development, suggesting a possible role for genotype-by-age interactions.

  19. Blood Pressure and Cerebral White Matter Share Common Genetic Factors in Mexican-Americans

    PubMed Central

    Kochunov, Peter; Glahn, David C; Lancaster, Jack; Winkler, Anderson; Karlsgodt, Kathrin; Olvera, Rene L; Curran, Joanna E; Carless, Melanie A; Dyer, Thomas D; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John

    2010-01-01

    Elevated arterial pulse pressure (PP) and blood pressure (BP) can lead to atrophy of cerebral white matter (WM), potentially due to shared genetic factors. We calculated the magnitude of shared genetic variance between BP and fractional anisotropy (FA) of water diffusion, a sensitive measurement of WM integrity in a well-characterized population of Mexican-Americans. The patterns of whole-brain and regional genetic overlap between BP and FA were interpreted in the context the pulse-wave encephalopathy (PWE) theory. We also tested whether regional pattern in genetic pleiotropy is modulated by the phylogeny of WM development. BP and high-resolution (1.7×1.7×3mm, 55 directions) diffusion tensor imaging (DTI) data were analyzed for 332 (202 females; mean age=47.9±13.3years) members of the San Antonio Family Heart Study. Bivariate genetic correlation analysis was used to calculate the genetic overlap between several BP measurements [PP, systolic (SBP) and diastolic (DBP)] and FA (whole-brain and regional values). Intersubject variance in PP and SBP exhibited a significant genetic overlap with variance in whole-brain FA values, sharing 36% and 22% of genetic variance, respectively. Regionally, shared genetic variance was significantly influenced by rates of WM development (r=−.75, p=0.01). The pattern of genetic overlap between BP and WM integrity was generally in-agreement with the PWE theory. Our study provides evidence that a set of pleiotropically acting genetic factors jointly influence phenotypic variation in BP and WM integrity. The magnitude of this overlap appears to be influenced by phylogeny of WM development suggesting a possible role for genotype-by-age interactions. PMID:21135356

  20. Program theory-driven evaluation science in a youth development context.

    PubMed

    Deane, Kelsey L; Harré, Niki

    2014-08-01

    Program theory-driven evaluation science (PTDES) provides a useful framework for uncovering the mechanisms responsible for positive change resulting from participation in youth development (YD) programs. Yet it is difficult to find examples of PTDES that capture the complexity of such experiences. This article offers a much-needed example of PTDES applied to Project K, a youth development program with adventure, service-learning and mentoring components. Findings from eight program staff focus groups, 351 youth participants' comments, four key program documents, and results from six previous Project K research projects were integrated to produce a theory of change for the program. A direct logic analysis was then conducted to assess the plausibility of the proposed theory against relevant research literature. This demonstrated that Project K incorporates many of the best practice principles discussed in the literature that covers the three components of the program. The contributions of this theory-building process to organizational learning and development are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Using organization theory to understand the determinants of effective implementation of worksite health promotion programs.

    PubMed

    Weiner, Bryan J; Lewis, Megan A; Linnan, Laura A

    2009-04-01

    The field of worksite health promotion has moved toward the development and testing of comprehensive programs that target health behaviors with interventions operating at multiple levels of influence. Yet, observational and process evaluation studies indicate that such programs are challenging for worksites to implement effectively. Research has identified several organizational factors that promote or inhibit effective implementation of comprehensive worksite health promotion programs. However, no integrated theory of implementation has emerged from this research. This article describes a theory of the organizational determinants of effective implementation of comprehensive worksite health promotion programs. The model is adapted from theory and research on the implementation of complex innovations in manufacturing, education and health care settings. The article uses the Working Well Trial to illustrate the model's theoretical constructs. Although the article focuses on comprehensive worksite health promotion programs, the conceptual model may also apply to other types of complex health promotion programs. An organization-level theory of the determinants of effective implementation of worksite health promotion programs.

  2. Drosophila melanogaster and the development of biology in the 20th century.

    PubMed

    Arias, Alfonso Martinez

    2008-01-01

    The fruit fly Drosophila has played a central role in the development of biology during the 20th century. First chosen as a convenient organism to test evolutionary theories soon became the central element in an elaborate, fruitful, and insightful research program dealing with the nature and function of the gene. Through the activities of TH Morgan and his students, Drosophila did more than any other organism to lay down the foundations of genetics as a discipline and a tool for biology. In the last third of the century, a judicious blend of classical genetics and molecular biology focused on some mutants affecting the pattern of the Drosophila larva and the adult, and unlocked the molecular mechanisms of development. Surprisingly, many of the genes identified in this exercise turned to be conserved across organisms. This observation provided a vista of universality at a fundamental level of biological activity. At the dawn of the 21st century, Drosophila continues to be center stage in the development of biology and to open new ways of seeing cells and to understand the construction and the functioning of organisms.

  3. A novel recruitment message to increase enrollment into a smoking cessation treatment program: preliminary results from a randomized trial.

    PubMed

    Schnoll, Robert A; Cappella, Joseph; Lerman, Caryn; Pinto, Angela; Patterson, Freda; Wileyto, E Paul; Bigman, Cabral; Leone, Frank

    2011-12-01

    Most smokers do not utilize approved interventions for nicotine dependence, reducing the probability of cessation. Smoking cessation programs typically use recruitment messages emphasizing the health threats of smoking. Augmenting this threat message by describing the genetic aspects of nicotine addiction may enhance enrollment into a cessation program. During telephone recruitment, 125 treatment-seeking smokers were randomized to receive by phone either a standard threat message or a threat plus genetic prime message and were offered open-label varenicline and counseling. There was a greater rate of enrollment into the cessation program for the threat plus genetic prime participants (51.7%) versus the threat-only participants (37.7%; p = .03). Smokers who self-identified from racial/ethnic minority groups were less likely to enroll in the cessation program (p = .01) versus smokers who self-identified as Caucasian. These preliminary data suggest that a simple, affordable, and transportable communication approach enhances enrollment of smokers into a smoking cessation program. A larger clinical trial to evaluate a genetic prime message for improving recruitment into smoking cessation programs is warranted.

  4. Descriptive survey of Summer Genetics Institute nurse graduates in the USA.

    PubMed

    Hickey, Kathleen T; Sciacca, Robert R; McCarthy, Mary S

    2013-03-01

    The purpose of this study was to describe the clinical, research, educational, and professional activities that nurses are engaged in following participation in a 2 month intramural genetics training program. An online survey was administered in 2010 to graduates of the program sponsored by the US National Institute of Nursing Research from 2000 to 2009, in Bethesda, Maryland, USA. The electronic, voluntary survey was sent to 189 graduates via email. The survey included demographic characteristics, educational preparation, professional roles and responsibilities, and attitudes about genetic testing and privacy issues. Of the 95 graduates responding to the survey, 74% had doctorates and 70% were advanced practice nurses. All respondents reported incorporating genetics knowledge into daily clinical, academic, or research practices since completing the program, with 72% reporting being involved in genetically-focused research (52% with research funding), 32% incorporating genetics into patient care, and 79% providing genetics education. Respondents working in a hospital setting or academic institution were more likely to desire additional training in genetics. National Institute of Nursing Research graduates have successfully integrated genomics into a variety of nursing practices. © 2012 Wiley Publishing Asia Pty Ltd.

  5. Wright's Shifting Balance Theory and the Diversification of Aposematic Signals

    PubMed Central

    Chouteau, Mathieu; Angers, Bernard

    2012-01-01

    Despite accumulating evidence for selection within natural systems, the importance of random genetic drift opposing Wright's and Fisher's views of evolution continue to be a subject of controversy. The geographical diversification of aposematic signals appears to be a suitable system to assess the factors involved in the process of adaptation since both theories were independently proposed to explain this phenomenon. In the present study, the effects of drift and selection were assessed from population genetics and predation experiments on poison-dart frogs, Ranitomaya imitator, of Northern Peru. We specifically focus on the transient zone between two distinct aposematic signals. In contrast to regions where high predation maintains a monomorphic aposematic signal, the transient zones are characterized by lowered selection and a high phenotypic diversity. As a result, the diversification of phenotypes may occur via genetic drift without a significant loss of fitness. These new phenotypes may then colonize alternative habitats if successfully recognized and avoided by predators. This study highlights the interplay between drift and selection as determinant processes in the adaptive diversification of aposematic signals. Results are consistent with the expectations of the Wright's shifting balance theory and represent, to our knowledge, the first empirical demonstration of this highly contested theory in a natural system. PMID:22470509

  6. Darwin and Mendel today: a comment on "Limits of imagination: the 150th Anniversary of Mendel's Laws, and why Mendel failed to see the importance of his discovery for Darwin's theory of evolution".

    PubMed

    Liu, Yongsheng; Li, Xiuju

    2016-01-01

    We comment on a recent paper by Rama Singh, who concludes that Mendel deserved to be called the father of genetics, and Darwin would not have understood the significance of Mendel's paper had he read it. We argue that Darwin should have been regarded as the father of genetics not only because he was the first to formulate a unifying theory of heredity, variation, and development -- Pangenesis, but also because he clearly described almost all genetical phenomena of fundamental importance, including what he called "prepotency" and what we now call "dominance" or "Mendelian inheritance". The word "gene" evolved from Darwin's imagined "gemmules", instead of Mendel's so-called "factors".

  7. Graduate nurse internship program: a formalized orientation program.

    PubMed

    Phillips, Tracy; Hall, Mellisa

    2014-01-01

    The graduate nurse internship program was developed on the basis of Watson's Human Caring Theory. In this article, the author discusses how an orientation program was formalized into an internship program and how the theory was applied.

  8. A longitudinal twin and sibling study of the hopelessness theory of depression in adolescence and young adulthood.

    PubMed

    Waszczuk, M A; Coulson, A E; Gregory, A M; Eley, T C

    2016-07-01

    Maladaptive cognitive biases such as negative attributional style and hopelessness have been implicated in the development and maintenance of depression. According to the hopelessness theory of depression, hopelessness mediates the association between attributional style and depression. The aetiological processes underpinning this influential theory remain unknown. The current study investigated genetic and environmental influences on hopelessness and its concurrent and longitudinal associations with attributional style and depression across adolescence and emerging adulthood. Furthermore, given high co-morbidity between depression and anxiety, the study investigated whether these maladaptive cognitions constitute transdiagnostic cognitive content common to both internalizing symptoms. A total of 2619 twins/siblings reported attributional style (mean age 15 and 17 years), hopelessness (mean age 17 years), and depression and anxiety symptoms (mean age 17 and 20 years). Partial correlations revealed that attributional style and hopelessness were uniquely associated with depression but not anxiety symptoms. Hopelessness partially mediated the relationship between attributional style and depression. Hopelessness was moderately heritable (A = 0.37, 95% confidence interval 0.28-0.47), with remaining variance accounted for by non-shared environmental influences. Independent pathway models indicated that a set of common genetic influences largely accounted for the association between attributional style, hopelessness and depression symptoms, both concurrently and across development. The results provide novel evidence that associations between attributional style, hopelessness and depression symptoms are largely due to shared genetic liability, suggesting developmentally stable biological pathways underpinning the hopelessness theory of depression. Both attributional style and hopelessness constituted unique cognitive content in depression. The results inform molecular genetics research and cognitive treatment approaches.

  9. Genetic Evolution of Shape-Altering Programs for Supersonic Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Bencze, Daniel P. (Technical Monitor)

    2002-01-01

    Two constrained shape optimization problems relevant to aerodynamics are solved by genetic programming, in which a population of computer programs evolves automatically under pressure of fitness-driven reproduction and genetic crossover. Known optimal solutions are recovered using a small, naive set of elementary operations. Effectiveness is improved through use of automatically defined functions, especially when one of them is capable of a variable number of iterations, even though the test problems lack obvious exploitable regularities. An attempt at evolving new elementary operations was only partially successful.

  10. The Father Friendly Initiative within Families: Using a logic model to develop program theory for a father support program.

    PubMed

    Gervais, Christine; de Montigny, Francine; Lacharité, Carl; Dubeau, Diane

    2015-10-01

    The transition to fatherhood, with its numerous challenges, has been well documented. Likewise, fathers' relationships with health and social services have also begun to be explored. Yet despite the problems fathers experience in interactions with healthcare services, few programs have been developed for them. To explain this, some authors point to the difficulty practitioners encounter in developing and structuring the theory of programs they are trying to create to promote and support father involvement (Savaya, R., & Waysman, M. (2005). Administration in Social Work, 29(2), 85), even when such theory is key to a program's effectiveness (Chen, H.-T. (2005). Practical program evaluation. Thousand Oaks, CA: Sage Publications). The objective of the present paper is to present a tool, the logic model, to bridge this gap and to equip practitioners for structuring program theory. This paper addresses two questions: (1) What would be a useful instrument for structuring the development of program theory in interventions for fathers? (2) How would the concepts of a father involvement program best be organized? The case of the Father Friendly Initiative within Families (FFIF) program is used to present and illustrate six simple steps for developing a logic model that are based on program theory and demonstrate its relevance. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  11. An enhanced reliability-oriented workforce planning model for process industry using combined fuzzy goal programming and differential evolution approach

    NASA Astrophysics Data System (ADS)

    Ighravwe, D. E.; Oke, S. A.; Adebiyi, K. A.

    2018-03-01

    This paper draws on the "human reliability" concept as a structure for gaining insight into the maintenance workforce assessment in a process industry. Human reliability hinges on developing the reliability of humans to a threshold that guides the maintenance workforce to execute accurate decisions within the limits of resources and time allocations. This concept offers a worthwhile point of deviation to encompass three elegant adjustments to literature model in terms of maintenance time, workforce performance and return-on-workforce investments. These fully explain the results of our influence. The presented structure breaks new grounds in maintenance workforce theory and practice from a number of perspectives. First, we have successfully implemented fuzzy goal programming (FGP) and differential evolution (DE) techniques for the solution of optimisation problem in maintenance of a process plant for the first time. The results obtained in this work showed better quality of solution from the DE algorithm compared with those of genetic algorithm and particle swarm optimisation algorithm, thus expressing superiority of the proposed procedure over them. Second, the analytical discourse, which was framed on stochastic theory, focusing on specific application to a process plant in Nigeria is a novelty. The work provides more insights into maintenance workforce planning during overhaul rework and overtime maintenance activities in manufacturing systems and demonstrated capacity in generating substantially helpful information for practice.

  12. Understanding GINA and How GINA Affects Nurses.

    PubMed

    Delk, Kayla L

    2015-11-01

    The Genetic Information Nondiscrimination Act (GINA) is a federal law that became fully effective in 2009 and is intended to prevent employers and health insurers from discriminating against individuals based on their genetic or family history. The article discusses the sections of GINA, what information constitutes genetic information, who enforces GINA, and scenarios in which GINA does not apply. Also discussed are the instances in which an employer may request genetic information from employees, including wellness or genetic monitoring programs. Finally, the article offers a look at how GINA affects nurses who are administering wellness or genetic monitoring programs on behalf of employers. © 2015 The Author(s).

  13. Continuing Commentary.

    ERIC Educational Resources Information Center

    Burgess, R. L.; Molenaar, P. C. M.

    1993-01-01

    Comments on an earlier paper by Lerner and von Eye on sociobiology and human development; general theory in science, especially evolutionary theory; adaptation and behavior plasticity; and modern behavior genetics. Examines assertion that "heritability says nothing about the extent to which a trait is commonly inherited." Discusses…

  14. The Alberta Hereditary Diseases Program: a regional model for delivery of genetic services.

    PubMed Central

    Lowry, R B; Bowen, P

    1990-01-01

    Genetic counselling and related services are generally provided at major university medical centres because they are very specialized. The need for rurally based genetic services prompted the inclusion of an outreached program in the Alberta Hereditary Diseases Program (AHDP), which was established in 1979; the AHDP was designed to provide services to the entire province through two regional centres and seven outreach clinics. There is a community health nurse in almost every health unit whose duties are either totally or partially devoted to the AHDP; thus, genetic help and information are as close as a rural health unit. The AHDP is designed to provide complete clinical (diagnostic, counselling and some management) services and laboratory (cytogenetic, biochemical and molecular) services for genetic disorders. In addition, the program emphasizes education and publishes a quarterly bulletin, which is sent free of charge to all physicians, hospitals, public health units, social service units, major radio and television stations, newspapers and public libraries and to selected individuals and groups in Alberta. PMID:2302614

  15. Current Progresses of Single Cell DNA Sequencing in Breast Cancer Research.

    PubMed

    Liu, Jianlin; Adhav, Ragini; Xu, Xiaoling

    2017-01-01

    Breast cancers display striking genetic and phenotypic diversities. To date, several hypotheses are raised to explain and understand the heterogeneity, including theories for cancer stem cell (CSC) and clonal evolution. According to the CSC theory, the most tumorigenic cells, while maintaining themselves through symmetric division, divide asymmetrically to generate non-CSCs with less tumorigenic and metastatic potential, although they can also dedifferentiate back to CSCs. Clonal evolution theory recapitulates that a tumor initially arises from a single cell, which then undergoes clonal expansion to a population of cancer cells. During tumorigenesis and evolution process, cancer cells undergo different degrees of genetic instability and consequently obtain varied genetic aberrations. Yet the heterogeneity in breast cancers is very complex, poorly understood and subjected to further investigation. In recent years, single cell sequencing (SCS) technology developed rapidly, providing a powerful new way to better understand the heterogeneity, which may lay foundations to some new strategies for breast cancer therapies. In this review, we will summarize development of SCS technologies and recent advances of SCS in breast cancer.

  16. A Web-Based Genetic Polymorphism Learning Approach for High School Students and Science Teachers

    ERIC Educational Resources Information Center

    Amenkhienan, Ehichoya; Smith, Edward J.

    2006-01-01

    Variation and polymorphism are concepts that are central to genetics and genomics, primary biological disciplines in which high school students and undergraduates require a solid foundation. From 1998 through 2002, a web-based genetics education program was developed for high school teachers and students. The program included an exercise on using…

  17. Assessing the Effects of Tutorial and Edutainment Software Programs on Students' Achievements, Misconceptions and Attitudes towards Biology

    ERIC Educational Resources Information Center

    Kara, Yilmaz; Yesilyurt, Selami

    2007-01-01

    The purpose of this study was to investigate the effects of tutorial and edutainment software programs related to "genetic concepts" topic on student achievements, misconceptions and attitudes. An experimental research design including the genetic concepts achievement test (GAT), the genetic concept test (GCT) and biology attitude scale…

  18. Genetic contributions to antisocial personality and behavior: a meta-analytic review from an evolutionary perspective.

    PubMed

    Ferguson, Christopher J

    2010-01-01

    Evidence from behavioral genetics supports the conclusion that a significant amount of the variance in antisocial personality and behavior (APB) is due to genetic contributions. Many scientific fields such as psychology, medicine, and criminal justice struggle to incorporate this information with preexisting paradigms that focused exclusively on external or learned etiology of antisocial behavior. The current paper presents a meta-analytic review of behavioral genetic etiological studies of APB. Results indicated that 56% of the variance in APB can be explained through genetic influences, with 11% due to shared non-genetic influences, and 31% due to unique non-genetic influences. This data is discussed in relation to evolutionary psychological theory.

  19. The conscious mind and its emergent properties; an analysis based on decision theory.

    PubMed

    Morris, James A

    2011-08-01

    The process of conscious and unconscious decision making is analyzed using decision theory. An essential part of an optimum decision strategy is the assessment of values and costs associated with correct and incorrect decisions. In the case of unconscious decisions this involves an automatic process akin to computation using numerical values. But for conscious decisions the conscious mind must experience the outcome of the decision as pleasure or pain. It is suggested that the rules of behavior are programmed in our genes but modified by experience of the society in which we are reared. Our unconscious then uses the rules to reward or punish our conscious mind for the decisions it makes. This is relevant to concepts of altruism and religion in society. It is consistent with the observation that we prefer beauty to utility. The decision theory equations also explain the paradox that a single index of happiness can be applied in society. The symptoms of mental illness can be due to appropriate or inappropriate action by the unconscious. The former indicates a psychological conflict between conscious and unconscious decision making. Inappropriate action indicates that a pathological process has switched on genetic networks that should be switched off. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Construction of an Integrated Positive Youth Development Conceptual Framework for the Prevention of the Use of Psychotropic Drugs among Adolescents

    PubMed Central

    Lee, Tak Yan

    2011-01-01

    This is a theoretical paper with an aim to construct an integrated conceptual framework for the prevention of adolescents' use and abuse of psychotropic drugs. This paper first reports the subjective reasons for adolescents' drug use and abuse in Hong Kong and reviews the theoretical underpinnings. Theories of drug use and abuse, including neurological, pharmacological, genetic predisposition, psychological, and sociological theories, were reviewed. It provides a critical re-examination of crucial factors that support the construction of a conceptual framework for primary prevention of adolescents' drug use and abuse building on, with minor revision, the model of victimization and substance abuse among women presented by Logan et al. This revised model provides a comprehensive and coherent framework synthesized from theories of drug abuse. This paper then provides empirical support for integrating a positive youth development perspective in the revised model. It further explains how the 15 empirically sound constructs identified by Catalano et al. and used in a positive youth development program, the Project P.A.T.H.S., relate generally to the components of the revised model to formulate an integrated positive youth development conceptual framework for primary prevention of adolescent drug use. Theoretical and practical implications as well as limitations and recommendations are discussed. PMID:22194671

  1. Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  2. The evolution of the genetic code: Impasses and challenges.

    PubMed

    Kun, Ádám; Radványi, Ádám

    2018-02-01

    The origin of the genetic code and translation is a "notoriously difficult problem". In this survey we present a list of questions that a full theory of the genetic code needs to answer. We assess the leading hypotheses according to these criteria. The stereochemical, the coding coenzyme handle, the coevolution, the four-column theory, the error minimization and the frozen accident hypotheses are discussed. The integration of these hypotheses can account for the origin of the genetic code. But experiments are badly needed. Thus we suggest a host of experiments that could (in)validate some of the models. We focus especially on the coding coenzyme handle hypothesis (CCH). The CCH suggests that amino acids attached to RNA handles enhanced catalytic activities of ribozymes. Alternatively, amino acids without handles or with a handle consisting of a single adenine, like in contemporary coenzymes could have been employed. All three scenarios can be tested in in vitro compartmentalized systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Gene by Social-Context Interactions for Number of Sexual Partners Among White Male Youths: Genetics-informed Sociology

    PubMed Central

    Guo, Guang; Tong, Yuying; Cai, Tianji

    2010-01-01

    In this study, we set out to investigate whether introducing molecular genetic measures into an analysis of sexual partner variety will yield novel sociological insights. The data source is the white male DNA sample in the National Longitudinal Study of Adolescent Health. Our empirical analysis has produced a robust protective effect of the 9R/9R genotype relative to the Any10R genotype in the dopamine transporter gene (DAT1). The gene-environment interaction analysis demonstrates that the protective effect of 9R/9R tends to be lost in schools in which higher proportions of students start having sex early or among those with relatively low levels of cognitive ability. Our genetics-informed sociological analysis suggests that the “one size” of a single social theory may not fit all. Explaining a human trait or behavior may require a theory that accommodates the complex interplay between social contextual and individual influences and genetic predispositions. PMID:19569400

  4. Genetics and Crime: Integrating New Genomic Discoveries Into Psychological Research About Antisocial Behavior.

    PubMed

    Wertz, J; Caspi, A; Belsky, D W; Beckley, A L; Arseneault, L; Barnes, J C; Corcoran, D L; Hogan, S; Houts, R M; Morgan, N; Odgers, C L; Prinz, J A; Sugden, K; Williams, B S; Poulton, R; Moffitt, T E

    2018-05-01

    Drawing on psychological and sociological theories of crime causation, we tested the hypothesis that genetic risk for low educational attainment (assessed via a genome-wide polygenic score) is associated with criminal offending. We further tested hypotheses of how polygenic risk relates to the development of antisocial behavior from childhood through adulthood. Across the Dunedin and Environmental Risk (E-Risk) birth cohorts of individuals growing up 20 years and 20,000 kilometers apart, education polygenic scores predicted risk of a criminal record with modest effects. Polygenic risk manifested during primary schooling in lower cognitive abilities, lower self-control, academic difficulties, and truancy, and it was associated with a life-course-persistent pattern of antisocial behavior that onsets in childhood and persists into adulthood. Crime is central in the nature-nurture debate, and findings reported here demonstrate how molecular-genetic discoveries can be incorporated into established theories of antisocial behavior. They also suggest that improving school experiences might prevent genetic influences on crime from unfolding.

  5. Genetics and crime: Integrating new genomic discoveries into psychological research about antisocial behavior

    PubMed Central

    Wertz, J.; Caspi, A.; Belsky, D. W.; Beckley, A. L.; Arseneault, L.; Barnes, J. C.; Corcoran, D. L.; Hogan, S.; Houts, R. M.; Morgan, N.; Odgers, C. L.; Prinz, J. A.; Sugden, K.; Williams, B. S.; Poulton, R.; Moffitt, T. E.

    2018-01-01

    Drawing on psychological and sociological theories of crime causation, we tested the hypothesis that genetic risk for low educational attainment (assessed via a genome-wide polygenic score) is associated with offending. We further tested hypotheses of how polygenic risk relates to the development of antisocial behavior from childhood through adulthood. Across the Dunedin and E-Risk birth cohorts of individuals growing up 20 years and 20,000 kilometres apart, education polygenic scores predicted risk of a criminal record, with modest effects. Polygenic risk manifested during primary schooling, in lower cognitive abilities, lower self-control, academic difficulties, and truancy, and predicted a life-course persistent pattern of antisocial behavior that onsets in childhood and persists into adulthood. Crime is central in the nature/nurture debate, and findings reported here demonstrate how molecular-genetic discoveries can be incorporated into established theories of antisocial behavior. They also suggest the hypothesis that improving school experiences might prevent genetic influences on crime from unfolding. PMID:29513605

  6. From ecology to base pairs: nursing and genetic science.

    PubMed

    Williams, J K; Tripp-Reimer, T

    2001-07-01

    With the mapping of the human genome has come the opportunity for nursing research to explore topics of concern to the maintenance, restoration, and attainment of genetic-related health. Initially, nursing research on genetic topics originated primarily from physical anthropology and from a clinical, disease-focused perspective. Nursing research subsequently focused on psychosocial aspects of genetic conditions for individuals and their family members. As findings emerge from current human genome discovery, new programs of genetic nursing research are originating from a biobehavioral interface, ranging from the investigations of the influence of specific molecular changes on gene function to social/ethical issues of human health and disease. These initiatives reflect nursing's response to discoveries of gene mutations related to phenotypic expression in both clinical and community-based populations. Genetic research programs are needed that integrate or adapt theoretical and methodological advances in epidemiology, family systems, anthropology, and ethics with those from nursing. Research programs must address not only populations with a specific disease but also community-based genetic health care issues. As genetic health care practice evolves, so will opportunities for research by nurses who can apply genetic concepts and interventions to improve the health of the public. This article presents an analysis of the evolution of genetic nursing research and challengesfor the future.

  7. The Effects of Embedded Generative Learning Strategies and Collaboration on Knowledge Acquisition in a Cognitive Flexibility-Based Computer Learning Environment

    DTIC Science & Technology

    1998-08-07

    cognitive flexibility theory and generative learning theory which focus primarily on the individual student’s cognitive development , collaborative... develop "Handling Transfusion Hazards," a computer program based upon cognitive flexibility theory principles. The Program: Handling Transfusion Hazards...computer program was developed according to cognitive flexibility theory principles. A generative version was then developed by embedding

  8. The Development of a Program Engagement Theory for Group Offending Behavior Programs.

    PubMed

    Holdsworth, Emma; Bowen, Erica; Brown, Sarah; Howat, Douglas

    2017-10-01

    Offender engagement in group offending behavior programs is poorly understood and under-theorized. In addition, there is no research on facilitators' engagement. This article presents the first ever theory to address this gap. A Program Engagement Theory (PET) was derived from a constructivist grounded theory analysis that accounts for both facilitators' and offenders' engagement in group offending behavior programs (GOBPs). Interviews and session observations were used to collect data from 23 program facilitators and 28 offenders (group members). The analysis revealed that group members' engagement involved shared identities and moving on as a group. In turn, this was dependent on facilitators personalising treatment frameworks and establishing a hook to help group members move on. The PET emphasizes the importance of considering change during treatment as a process rather than simply a program outcome. Solution-focused (SF) programs were more conducive to engagement and the change process than offence-focused programs.

  9. Concerns about dose and underutilization of twelve-step programs: models, scales, and theory that inform treatment planning.

    PubMed

    Cloud, Richard N; Kingree, J B

    2008-01-01

    Researchers have observed that a majority of addicted persons who are encouraged and facilitated by treatment providers to attend twelve-step (TS) programs either drop out or sporadically use twelve-step programs following treatment. This is troubling given considerable evidence of TS program benefits associated with regular weekly attendance and ubiquitous reliance by treatment professionals on these programs to provide important support services. This chapter reviews and advances theory of TS utilization and dose that is supported by prior research, multivariate models, and scales that predict risk of TS meeting underutilization. Advancing theory should organize and clarify the process of initial utilization, guide intervention development, and improve adherence of TS program referrals, all of which should lead to improved treatment planning and better outcomes. Three theories are integrated to explain processes that may influence TS program dose: the health belief model, self-determination theory (motivational theory), and a person-in-organization cultural fit theory. Four multidimensional scales developed specifically to predict participation are described. Implications for practice and future research are considered in a final discussion. Information contained in this chapter raises awareness of the need for TS-focused treatments to focus on achieving weekly attendance during and after treatment.

  10. Population genetics of commercial and feral honey bees in Western Australia.

    PubMed

    Chapman, Nadine C; Lim, Julianne; Oldroyd, Benjamin P

    2008-04-01

    Due to the introduction of exotic honey bee (Apis mellifera L.) diseases in the eastern states, the borders of the state of Western Australia were closed to the import of bees for breeding and other purposes > 25 yr ago. To provide genetically improved stock for the industry, a closed population breeding program was established that now provides stock for the majority of Western Australian beekeepers. Given concerns that inbreeding may have resulted from the closed population breeding structure, we assessed the genetic diversity within and between the breeding lines by using microsatellite and mitochondrial markers. We found that the breeding population still maintains considerable genetic diversity, despite 25 yr of selective breeding. We also investigated the genetic distance of the closed population breeding program to that of beekeepers outside of the program, and the feral Western Australian honey bee population. The feral population is genetically distinct from the closed population, but not from the genetic stock maintained by beekeepers outside of the program. The honey bees of Western Australia show three mitotypes, originating from two subspecies: Apis mellifera ligustica (mitotypes C1 and M7b) and Apis mellifera iberica (mitotype M6). Only mitotypes C1 and M6 are present in the commercial populations. The feral population contains all three mitotypes.

  11. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    PubMed Central

    Hanson, Daniel R; Gottesman, Irving I

    2005-01-01

    Background Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. Discussion A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. Summary A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons. PMID:15707482

  12. The current state of genetic counseling and newborn screening: an interview with Megan Tucker

    PubMed Central

    Tucker, Megan

    2017-01-01

    Megan Tucker talks to Francesca Lake, Managing Editor: A certified genetic counselor for over 10 years, Megan is currently the director of the Indiana State University Genetic Counseling Graduate Program and the Genetic Counseling Clinic at Union Hospital (Terre Haute, IN, USA). She began her career split between the Center for Prenatal Diagnosis and the Medical Genetics and Neurodevelopmental Center at St Vincent Hospital (Indianapolis, IN, USA). During this time she was instrumental in both the development of the statewide Perinatal Loss Evaluation Program and a hospital protocol to ensure collection of cord blood to allow time to effectively genetically evaluate babies. Her current clinical focus is in cancer and psychiatric genetic counseling. PMID:28883988

  13. Processing and population genetic analysis of multigenic datasets with ProSeq3 software.

    PubMed

    Filatov, Dmitry A

    2009-12-01

    The current tendency in molecular population genetics is to use increasing numbers of genes in the analysis. Here I describe a program for handling and population genetic analysis of DNA polymorphism data collected from multiple genes. The program includes a sequence/alignment editor and an internal relational database that simplify the preparation and manipulation of multigenic DNA polymorphism datasets. The most commonly used DNA polymorphism analyses are implemented in ProSeq3, facilitating population genetic analysis of large multigenic datasets. Extensive input/output options make ProSeq3 a convenient hub for sequence data processing and analysis. The program is available free of charge from http://dps.plants.ox.ac.uk/sequencing/proseq.htm.

  14. Teaching Evolution & the Nature of Science.

    ERIC Educational Resources Information Center

    Farber, Paul

    2003-01-01

    The theory of evolution provides direction in many fields, such as ecology, genetics, and embryology. Examines issues concerning the teaching of the subject in the United States. Presents a case study approach to teach about the nature of science using the theory of evolution. (SOE)

  15. The Role of the History of Science in the Understanding of Social Darwinism and Eugenics.

    ERIC Educational Resources Information Center

    Bowler, Peter

    1990-01-01

    The link between science and society is examined by studying the application of evolution theories and genetics to human affairs. Described are the ways in which biological theories have been applied to social issues. (KR)

  16. Inference and Analysis of Population Structure Using Genetic Data and Network Theory

    PubMed Central

    Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli

    2016-01-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080

  17. Unified theory of Alzheimer's disease (UTAD): implications for prevention and curative therapy.

    PubMed

    Nehls, Michael

    2016-01-01

    The aim of this review is to propose a Unified Theory of Alzheimer's disease (UTAD) that integrates all key behavioural, genetic and environmental risk factors in a causal chain of etiological and pathogenetic events. It is based on three concepts that emanate from human's evolutionary history: (1) The grandmother-hypothesis (GMH), which explains human longevity due to an evolutionary advantage in reproduction by trans-generational transfer of acquired knowledge. Consequently it is argued that mental health at old-age must be the default pathway of humans' genetic program and not development of AD. (2) Therefore, mechanism like neuronal rejuvenation (NRJ) and adult hippocampal neurogenesis (AHN) that still function efficiently even at old age provide the required lifelong ability to memorize personal experiences important for survival. Cumulative evidence from a multitude of experimental and epidemiological studies indicate that behavioural and environmental risk factors, which impair productive AHN, result in reduced episodic memory performance and in reduced psychological resilience. This leads to avoidance of novelty, dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and cortisol hypersecretion, which drives key pathogenic mechanisms of AD like the accumulation and oligomerization of synaptotoxic amyloid beta, chronic neuroinflammation and neuronal insulin resistance. (3) By applying to AHN the law of the minimum (LOM), which defines the basic requirements of biological growth processes, the UTAD explains why and how different lifestyle deficiencies initiate the AD process by impairing AHN and causing dysregulation of the HPA-axis, and how environmental and genetic risk factors such as toxins or ApoE4, respectively, turn into disease accelerators under these unnatural conditions. Consequently, the UTAD provides a rational strategy for the prevention of mental decline and a system-biological approach for the causal treatment of AD, which might even be curative if the systemic intervention is initiated early enough in the disease process. Hence an individualized system-biological treatment of patients with early AD is proposed as a test for the validity of UTAD and outlined in this review.

  18. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    NASA Astrophysics Data System (ADS)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  19. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    PubMed

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  20. Screening Jews and genes: a consideration of the ethics of genetic screening within the Jewish community: challenges and responses.

    PubMed

    Levin, M

    1999-01-01

    Screening for genetic disorders, particularly Tay-Sachs Disease, has been traditionally welcome by the Jewish community. I review the history of genetic screening among Jews and the views from the Jewish tradition on the subject, and then discuss ethical challenges of screening and the impact of historical memories upon future acceptance of screening programs. Some rational principles to guide future design of genetic screening programs among Jews are proposed.

  1. Ecological genetics at the USGS National Wetlands Research Center

    USGS Publications Warehouse

    Travis, Steven

    2006-01-01

    The Ecological Genetics Program at the USGS National Wetlands Research Center (NWRC) employs state-of-the-art DNA fingerprinting technologies in characterizing critical management aspects of the population biology of species of concern (fig. 1). The overarching themes of this program have been (1) the critical role that genetic diversity plays in maintaining population viability and (2) how management strategies might incorporate genetic information in preventing the decline of desirable species or in controlling the spread of invasive species.

  2. Introduction of the transtheoretical model and organisational development theory in weight management: A narrative review.

    PubMed

    Wu, Ya-Ke; Chu, Nain-Feng

    2015-01-01

    Overweight and obesity are serious public health and medical problems among children and adults worldwide. Behavioural change has been demonstrably contributory to weight management programs. Behavioural change-based weight loss programs require a theoretical framework. We will review the transtheoretical model and the organisational development theory in weight management. The transtheoretical model is a behaviour theory of individual level frequently used for weight management programs. The organisational development theory is a more complicated behaviour theory that applies to behavioural change on the system level. Both of these two theories have their respective strengths and weaknesses. In this manuscript, we try to introduce the transtheoretical model and the organisational development theory in the context of weight loss programs among population that are overweight or obese. Ultimately, we wish to present a new framework/strategy of weight management by integrating these two theories together. Copyright © 2015 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  3. Integrating Social Theory Into Public Health Practice

    PubMed Central

    Potvin, Louise; Gendron, Sylvie; Bilodeau, Angèle; Chabot, Patrick

    2005-01-01

    The innovative practice that resulted from the Ottawa Charter challenges public health knowledge about programming and evaluation. Specifically, there is a need to formulate program theory that embraces social determinants of health and local actors’ mobilization for social change. Likewise, it is imperative to develop a theory of evaluation that fosters reflexive understanding of public health programs engaged in social change. We believe advances in contemporary social theory that are founded on a critique of modernity and that articulate a coherent theory of practice should be considered when addressing these critical challenges. PMID:15798114

  4. Between physics and metaphysics: structure as a boundary concept.

    PubMed

    Tau, Ramiro

    2015-03-01

    The notion of structure is found to be used in a great number of theories, scientific research programs and world views. However, its uses and definitions are as diverse as the objects of the scientific disciplines where it can be found. Without trying to recreate the structuralist aspiration from the mid XX century, which believed to have found in this notion a common transdisciplinary language, I discuss a specific aspect of this concept that could be considered a constant in different perspectives. This aspect refers to the location of the notions of structure as boundaries in the different scientific theories. With this, I try to argue that the definition or presentation of a structure configures in itself the frontier for scientific knowledge, defining at the same time implied ontological assumptions. In order to discuss this hypothesis, and taking into consideration the double origin of contemporary notions of structure -the mathematical and linguistic line-, I revise several theoretical perspectives which made explicit the relation between structures and knowledge, and their relation with the real: the arguments on physical knowledge by Eddington, structural anthropology, structural linguistics, Lacanian psychoanalysis and Piaget's genetic psychology.

  5. Theoretical aspects of Systems Biology.

    PubMed

    Bizzarri, Mariano; Palombo, Alessandro; Cucina, Alessandra

    2013-05-01

    The natural world consists of hierarchical levels of complexity that range from subatomic particles and molecules to ecosystems and beyond. This implies that, in order to explain the features and behavior of a whole system, a theory might be required that would operate at the corresponding hierarchical level, i.e. where self-organization processes take place. In the past, biological research has focused on questions that could be answered by a reductionist program of genetics. The organism (and its development) was considered an epiphenomenona of its genes. However, a profound rethinking of the biological paradigm is now underway and it is likely that such a process will lead to a conceptual revolution emerging from the ashes of reductionism. This revolution implies the search for general principles on which a cogent theory of biology might rely. Because much of the logic of living systems is located at higher levels, it is imperative to focus on them. Indeed, both evolution and physiology work on these levels. Thus, by no means Systems Biology could be considered a 'simple' 'gradual' extension of Molecular Biology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Who Are We Talking About? A Discussion of Peter Molenaar's Interpretation of Gottlieb's Legacy. Commentary on: "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics"

    ERIC Educational Resources Information Center

    von Eye, Alexander

    2015-01-01

    The concepts and paradigms "development", "evolution", and "developmental behavior genetics" target, in their statements, populations. The laws of genetics and evolution are supposed to apply to every single case in a population. It can be counted among the major contributions of Gottlieb (1992, 1995) to have pointed…

  7. Genetic data analysis for plant and animal breeding

    USDA-ARS?s Scientific Manuscript database

    This book is an advanced textbook covering the application of quantitative genetics theory to analysis of actual data (both trait and DNA marker information) for breeding populations of crops, trees, and animals. Chapter 1 is an introduction to basic software used for trait data analysis. Chapter 2 ...

  8. Dispersal similarly shapes both population genetics and community patterns in the marine realm

    PubMed Central

    Chust, Guillem; Villarino, Ernesto; Chenuil, Anne; Irigoien, Xabier; Bizsel, Nihayet; Bode, Antonio; Broms, Cecilie; Claus, Simon; Fernández de Puelles, María L.; Fonda-Umani, Serena; Hoarau, Galice; Mazzocchi, Maria G.; Mozetič, Patricija; Vandepitte, Leen; Veríssimo, Helena; Zervoudaki, Soultana; Borja, Angel

    2016-01-01

    Dispersal plays a key role to connect populations and, if limited, is one of the main processes to maintain and generate regional biodiversity. According to neutral theories of molecular evolution and biodiversity, dispersal limitation of propagules and population stochasticity are integral to shaping both genetic and community structure. We conducted a parallel analysis of biological connectivity at genetic and community levels in marine groups with different dispersal traits. We compiled large data sets of population genetic structure (98 benthic macroinvertebrate and 35 planktonic species) and biogeographic data (2193 benthic macroinvertebrate and 734 planktonic species). We estimated dispersal distances from population genetic data (i.e., FST vs. geographic distance) and from β-diversity at the community level. Dispersal distances ranked the biological groups in the same order at both genetic and community levels, as predicted by organism dispersal ability and seascape connectivity: macrozoobenthic species without dispersing larvae, followed by macrozoobenthic species with dispersing larvae and plankton (phyto- and zooplankton). This ranking order is associated with constraints to the movement of macrozoobenthos within the seabed compared with the pelagic habitat. We showed that dispersal limitation similarly determines the connectivity degree of communities and populations, supporting the predictions of neutral theories in marine biodiversity patterns. PMID:27344967

  9. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters.

    PubMed

    Hadfield, J D; Nakagawa, S

    2010-03-01

    Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

  10. On the path to genetic novelties: insights from programmed DNA elimination and RNA splicing.

    PubMed

    Catania, Francesco; Schmitz, Jürgen

    2015-01-01

    Understanding how genetic novelties arise is a central goal of evolutionary biology. To this end, programmed DNA elimination and RNA splicing deserve special consideration. While programmed DNA elimination reshapes genomes by eliminating chromatin during organismal development, RNA splicing rearranges genetic messages by removing intronic regions during transcription. Small RNAs help to mediate this class of sequence reorganization, which is not error-free. It is this imperfection that makes programmed DNA elimination and RNA splicing excellent candidates for generating evolutionary novelties. Leveraging a number of these two processes' mechanistic and evolutionary properties, which have been uncovered over the past years, we present recently proposed models and empirical evidence for how splicing can shape the structure of protein-coding genes in eukaryotes. We also chronicle a number of intriguing similarities between the processes of programmed DNA elimination and RNA splicing, and highlight the role that the variation in the population-genetic environment may play in shaping their target sequences. © 2015 Wiley Periodicals, Inc.

  11. The social dynamics of genetic testing: the case of Fragile-X.

    PubMed

    Nelkin, D

    1996-12-01

    This article considers a program to screen school children for Fragile-X Syndrome as a way to explore several features of the growing practice of genetic testing in American society. These include the common practice of predictive testing in nonclinical settings; the economic, entrepreneurial, and policy interests that are driving the development of genetic screening programs; and the public support for genetic testing even when there are no effective therapeutic interventions. Drawing from research on popular images of genetics, I argue that cultural beliefs and expectations, widely conveyed through popular narratives, are encouraging the search for diagnostic information and enhancing the appeal of genetic explanations for a growing range of conditions.

  12. How organisms do the right thing: The attractor hypothesis

    USGS Publications Warehouse

    Emlen, J.M.; Freeman, D.C.; Mills, A.; Graham, J.H.

    1998-01-01

    Neo-Darwinian theory is highly successful at explaining the emergence of adaptive traits over successive generations. However, there are reasons to doubt its efficacy in explaining the observed, impressively detailed adaptive responses of organisms to day-to-day changes in their surroundings. Also, the theory lacks a clear mechanism to account for both plasticity and canalization. In effect, there is a growing sentiment that the neo-Darwinian paradigm is incomplete, that something more than genetic structure, mutation, genetic drift, and the action of natural selection is required to explain organismal behavior. In this paper we extend the view of organisms as complex self-organizing entities by arguing that basic physical laws, coupled with the acquisitive nature of organisms, makes adaptation all but tautological. That is, much adaptation is an unavoidable emergent property of organisms' complexity and, to some a significant degree, occurs quite independently of genomic changes wrought by natural selection. For reasons that will become obvious, we refer to this assertion as the attractor hypothesis. The arguments also clarify the concept of "adaptation." Adaptation across generations, by natural selection, equates to the (game theoretic) maximization of fitness (the success with which one individual produces more individuals), while self-organizing based adaptation, within generations, equates to energetic efficiency and the matching of intake and biosynthesis to need. Finally, we discuss implications of the attractor hypothesis for a wide variety of genetical and physiological phenomena, including genetic architecture, directed mutation, genetic imprinting, paramutation, hormesis, plasticity, optimality theory, genotype-phenotype linkage and puncuated equilibrium, and present suggestions for tests of the hypothesis. ?? 1998 American Institute of Physics.

  13. How organisms do the right thing: The attractor hypothesis

    NASA Astrophysics Data System (ADS)

    Emlen, John M.; Freeman, D. Carl; Mills, April; Graham, John H.

    1998-09-01

    Neo-Darwinian theory is highly successful at explaining the emergence of adaptive traits over successive generations. However, there are reasons to doubt its efficacy in explaining the observed, impressively detailed adaptive responses of organisms to day-to-day changes in their surroundings. Also, the theory lacks a clear mechanism to account for both plasticity and canalization. In effect, there is a growing sentiment that the neo-Darwinian paradigm is incomplete, that something more than genetic structure, mutation, genetic drift, and the action of natural selection is required to explain organismal behavior. In this paper we extend the view of organisms as complex self-organizing entities by arguing that basic physical laws, coupled with the acquisitive nature of organisms, makes adaptation all but tautological. That is, much adaptation is an unavoidable emergent property of organisms' complexity and, to some a significant degree, occurs quite independently of genomic changes wrought by natural selection. For reasons that will become obvious, we refer to this assertion as the attractor hypothesis. The arguments also clarify the concept of "adaptation." Adaptation across generations, by natural selection, equates to the (game theoretic) maximization of fitness (the success with which one individual produces more individuals), while self-organizing based adaptation, within generations, equates to energetic efficiency and the matching of intake and biosynthesis to need. Finally, we discuss implications of the attractor hypothesis for a wide variety of genetical and physiological phenomena, including genetic architecture, directed mutation, genetic imprinting, paramutation, hormesis, plasticity, optimality theory, genotype-phenotype linkage and puncuated equilibrium, and present suggestions for tests of the hypothesis.

  14. Dragon Genetics.

    ERIC Educational Resources Information Center

    Harrell, Pamela Esprivalo

    1997-01-01

    Describes an activity that combines Mendel's Postulates with Morgan's Chromosome theory of inheritance. Students pair up the mother's and father's genes and learn how the genes line up with each other. Background information on the theories is provided and tips that can be used to aid student understanding are included. (DDR)

  15. From Foucault to Freire Through Facebook: Toward an Integrated Theory of mHealth.

    PubMed

    Bull, Sheana; Ezeanochie, Nnamdi

    2016-08-01

    To document the integration of social science theory in literature on mHealth (mobile health) and consider opportunities for integration of classic theory, health communication theory, and social networking to generate a relevant theory for mHealth program design. A secondary review of research syntheses and meta-analyses published between 2005 and 2014 related to mHealth, using the AMSTAR (A Measurement Tool to Assess Systematic Reviews) methodology for assessment of the quality of each review. High-quality articles from those reviews using a randomized controlled design and integrating social science theory in program design, implementation, or evaluation were reviewed. Results There were 1,749 articles among the 170 reviews with a high AMSTAR score (≥30). Only 13 were published from 2005 to 2014, used a randomized controlled design and made explicit mention of theory in any aspect of their mHealth program. All 13 included theoretical perspectives focused on psychological and/or psychosocial theories and constructs. Conclusions There is a very limited use of social science theory in mHealth despite demonstrated benefits in doing so. We propose an integrated theory of mHealth that incorporates classic theory, health communication theory, and social networking to guide development and evaluation of mHealth programs. © 2015 Society for Public Health Education.

  16. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    PubMed

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  17. Enriching a Collaborative Teacher Inquiry Discourse: Exploring Teachers' Experiences of a Theory-Framed Discourse in a Singapore Case of Lesson Study

    ERIC Educational Resources Information Center

    Tan, Yuen Sze Michelle

    2014-01-01

    This paper explores how a learning theory enriched a collaborative teacher inquiry discourse where lesson study was adopted as the educational action research model to promote teacher professional development. Four Grade 9-10 biology teachers in Singapore drew from variation theory to collaboratively plan and teach new genetics content as part of…

  18. Family-Based Interventions for the Prevention of Substance Abuse and Other Impulse Control Disorders in Girls

    PubMed Central

    Kumpfer, K. L.

    2014-01-01

    Standardized family-based interventions are the most effective way of preventing or treating adolescent substance abuse and delinquency. This paper first reviews the incidence of adolescent substance abuse worldwide emphasizing gender and causes by etiological risk and protective factors. New epigenetic research is included suggesting that nurturing parenting significantly prevents the phenotypic expression of inherited genetic diseases including substance abuse. Evidence-based family interventions are reviewed including family change theories behind their success, principles and types of family-based interventions, research results, cultural adaptation steps for ethnic and international translation, and dissemination issues. The author's Strengthening Family Program is used as an example of how these principles of effective prevention and cultural adaptation can result in highly effective prevention programs not only for substance abuse, but for other impulse control disorders as well. The conclusions include recommendations for more use of computer technologies to cut the high cost of family interventions relative to youth-only prevention programs and increase the public health impact of evidence-based prevention programs. The paper recommends that to reduce health care costs these family-based approaches should be applied to the prevention and treatment of other impulse control disorders such as obesity and type 2 diabetes, sexually transmitted diseases, and delinquency. PMID:25938121

  19. Genetic programming applied to RFI mitigation in radio astronomy

    NASA Astrophysics Data System (ADS)

    Staats, K.

    2016-12-01

    Genetic Programming is a type of machine learning that employs a stochastic search of a solutions space, genetic operators, a fitness function, and multiple generations of evolved programs to resolve a user-defined task, such as the classification of data. At the time of this research, the application of machine learning to radio astronomy was relatively new, with a limited number of publications on the subject. Genetic Programming had never been applied, and as such, was a novel approach to this challenging arena. Foundational to this body of research, the application Karoo GP was developed in the programming language Python following the fundamentals of tree-based Genetic Programming described in "A Field Guide to Genetic Programming" by Poli, et al. Karoo GP was tasked with the classification of data points as signal or radio frequency interference (RFI) generated by instruments and machinery which makes challenging astronomers' ability to discern the desired targets. The training data was derived from the output of an observation run of the KAT-7 radio telescope array built by the South African Square Kilometre Array (SKA-SA). Karoo GP, kNN, and SVM were comparatively employed, the outcome of which provided noteworthy correlations between input parameters, the complexity of the evolved hypotheses, and performance of raw data versus engineered features. This dissertation includes description of novel approaches to GP, such as upper and lower limits to the size of syntax trees, an auto-scaling multiclass classifier, and a Numpy array element manager. In addition to the research conducted at the SKA-SA, it is described how Karoo GP was applied to fine-tuning parameters of a weather prediction model at the South African Astronomical Observatory (SAAO), to glitch classification at the Laser Interferometer Gravitational-wave Observatory (LIGO), and to astro-particle physics at The Ohio State University.

  20. What Use Is Population Genetics?

    PubMed

    Charlesworth, Brian

    2015-07-01

    The Genetic Society of America's Thomas Hunt Morgan Medal is awarded to an individual GSA member for lifetime achievement in the field of genetics. For over 40 years, 2015 recipient Brian Charlesworth has been a leader in both theoretical and empirical evolutionary genetics, making substantial contributions to our understanding of how evolution acts on genetic variation. Some of the areas in which Charlesworth's research has been most influential are the evolution of sex chromosomes, transposable elements, deleterious mutations, sexual reproduction, and life history. He also developed the influential theory of background selection, whereby the recurrent elimination of deleterious mutations reduces variation at linked sites, providing a general explanation for the correlation between recombination rate and genetic variation. Copyright © 2015 by the Genetics Society of America.

  1. The effects of selection and genetic drift on the genomic distribution of sexually antagonistic alleles.

    PubMed

    Mullon, Charles; Pomiankowski, Andrew; Reuter, Max

    2012-12-01

    Sexual antagonism (SA) occurs when an allele that is beneficial to one sex, is detrimental to the other. This conflict can result in balancing, directional, or disruptive selection acting on SA alleles. A body of theory predicts the conditions under which sexually antagonistic mutants will invade and be maintained in stable polymorphism under balancing selection. There remains, however, considerable debate over the distribution of SA genetic variation across autosomes and sex chromosomes, with contradictory evidence coming from data and theory. In this article, we investigate how the interplay between selection and genetic drift will affect the genomic distribution of sexually antagonistic alleles. The effective population sizes can differ between the autosomes and the sex chromosomes due to a number of ecological factors and, consequently, the distribution of SA genetic variation in genomes. In general, we predict the interplay of SA selection and genetic drift should lead to the accumulation of SA alleles on the X in male heterogametic (XY) species and, on the autosomes in female heterogametic (ZW) species, especially when sexual competition is strong among males. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  2. Genes, Environments, and Sex Differences in Alcohol Research.

    PubMed

    Salvatore, Jessica E; Cho, Seung Bin; Dick, Danielle M

    2017-07-01

    The study of sex differences has been identified as one way to enhance scientific reproducibility, and the National Institutes of Health (NIH) have implemented a new policy to encourage the explicit examination of sex differences. Our goal here is to address sex differences in behavioral genetic research on alcohol outcomes. We review sex differences for alcohol outcomes and whether the source and magnitude of genetic influences on alcohol consumption and alcohol use disorder (AUD) are the same across sexes; describe common research designs for studying sex-specific gene-by-environment interaction (G × E) effects; and discuss the role of statistical power and theory when testing sex-specific genetic effects. There are robust sex differences for many alcohol outcomes. The weight of evidence suggests that the source and magnitude of genetic influences on alcohol consumption and AUD are the same across sexes. Whether there are sex-specific G × E effects has received less attention to date. The new NIH policy necessitates a systematic approach for studying sex-specific genetic effects in alcohol research. Researchers are encouraged to report power for tests of these effects and to use theory to develop testable hypotheses, especially for studies of G × E.

  3. Interpretation in reproductive genetic counseling: a methodological framework.

    PubMed

    Tóth, Adél; Szeverényi, Péter

    2007-09-01

    In case of genetic risk, parents are often faced with reproductive decisions affecting their life essentially, so it is advisable to pursue careful deliberation. For this reason, the genetic counselor is expected to help the counselee make well-informed and well-considered decisions, which requires the understanding of the patient as an individual. To reach emphatic understanding, physicians can use the results of the Gadamerian theory of interpretation that contains the idea -- as it has been summarized by V. Arnason -- that four aspects of openness are necessary to fully understand the other, such as openness to oneself, to the other, to the subject matter and to tradition. In our paper, we are applying the four-openness model of interpretation to genetic consultation, and we argue that during counseling double interpretation takes place: the physician interprets the patient, and the patient interprets the physician. Double interpretation leads to the clarification of those factors which influence the patient's decision-making: the counselor's attitude and prejudices, the counselee's values and needs, the medical, social, and moral implications of the genetic disease, and the social expectations. By adopting the theory of interpretation, counselors can also advance the provision of emotional support patients need in hard situations.

  4. Quantitative genetics of age at reproduction in wild swans: Support for antagonistic pleiotropy models of senescence

    PubMed Central

    Charmantier, Anne; Perrins, Christopher; McCleery, Robin H.; Sheldon, Ben C.

    2006-01-01

    Why do individuals stop reproducing after a certain age, and how is this age determined? The antagonistic pleiotropy theory for the evolution of senescence predicts that increased early-life performance should be accompanied by earlier (or faster) senescence. Hence, an individual that has started to breed early should also lose its reproductive capacities early. We investigate here the relationship between age at first reproduction (AFR) and age at last reproduction (ALR) in a free-ranging mute swan (Cygnus olor) population monitored for 36 years. Using multivariate analyses on the longitudinal data, we show that both traits are strongly selected in opposite directions. Analysis of the phenotypic covariance between these characters shows that individuals vary in their inherent quality, such that some individuals have earlier AFR and later ALR than expected. Quantitative genetic pedigree analyses show that both traits possess additive genetic variance but also that AFR and ALR are positively genetically correlated. Hence, although both traits display heritable variation and are under opposing directional selection, their evolution is constrained by a strong evolutionary tradeoff. These results are consistent with the theory that increased early-life performance comes with faster senescence because of genetic tradeoffs. PMID:16618935

  5. A matching-allele model explains host resistance to parasites.

    PubMed

    Luijckx, Pepijn; Fienberg, Harris; Duneau, David; Ebert, Dieter

    2013-06-17

    The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lead to an ongoing advantage for rare genotypes, parasites should infect specific host genotypes and hosts should resist specific parasite genotypes. The most prominent genetics capturing such specificity are matching-allele models (MAMs), which have the key feature that resistance for two parasite genotypes can reverse by switching one allele at one host locus. Despite the lack of empirical support, MAMs have played a central role in the theoretical development of antagonistic coevolution, local adaptation, speciation, and sexual selection. Using genetic crosses, we show that resistance of the crustacean Daphnia magna against the parasitic bacterium Pasteuria ramosa follows a MAM. Simulation results show that the observed genetics can explain the maintenance of genetic variation and contribute to the maintenance of sex in the facultatively sexual host as predicted by the Red Queen Theory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Genetic applications in avian conservation

    Treesearch

    Susan M. Haig; Whitcomb M. Bronaugh; Rachel S. Crowhurst; Jesse D' Elia; Collin A. Eagles-Smith; Clinton W. Epps; Brian Knaus; Mark P. Miller; Michael L. Moses; Sara Oyler-McCance; W. Douglas Robinson; Brian. Sidlauskas

    2011-01-01

    A fundamental need in conserving species and their habitats is defining distinct entities that range from individuals to species to ecosystems and beyond. Rapid progression in this interdisciplinary field continues at an exponential rate; thus, periodic updates on theory, techniques, and applications are important for informing practitioners and consumers of genetic...

  7. Darwin and Mendel: Evolution and Genetics

    ERIC Educational Resources Information Center

    Bizzo, Nelio; El-Hani, Charbel N.

    2009-01-01

    Many studies have shown that students' understanding of evolution is low and some sort of historical approach would be necessary in order to allow students to understand the theory of evolution. It is common to present Mendelian genetics to high school students prior to Biological Evolution, having in mind historical and epistemological…

  8. A Critical Analysis of IQ Studies of Adopted Children

    ERIC Educational Resources Information Center

    Richardson, Ken; Norgate, Sarah H.

    2006-01-01

    The pattern of parent-child correlations in adoption studies has long been interpreted to suggest substantial additive genetic variance underlying variance in IQ. The studies have frequently been criticized on methodological grounds, but those criticisms have not reflected recent perspectives in genetics and developmental theory. Here we apply…

  9. A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules.

    PubMed

    Nguyen, Su; Mei, Yi; Xue, Bing; Zhang, Mengjie

    2018-06-04

    Designing effective dispatching rules for production systems is a difficult and timeconsuming task if it is done manually. In the last decade, the growth of computing power, advanced machine learning, and optimisation techniques has made the automated design of dispatching rules possible and automatically discovered rules are competitive or outperform existing rules developed by researchers. Genetic programming is one of the most popular approaches to discovering dispatching rules in the literature, especially for complex production systems. However, the large heuristic search space may restrict genetic programming from finding near optimal dispatching rules. This paper develops a new hybrid genetic programming algorithm for dynamic job shop scheduling based on a new representation, a new local search heuristic, and efficient fitness evaluators. Experiments show that the new method is effective regarding the quality of evolved rules. Moreover, evolved rules are also significantly smaller and contain more relevant attributes.

  10. The Relationship of Mentoring on Middle School Girls' Science-Related Attitudes

    ERIC Educational Resources Information Center

    Clark, Lynette M.

    2013-01-01

    This quantitative study examined the science-related attitudes of middle school girls who attended a science-focused mentoring program and those of middle school girls who attended a traditional mentoring program. Theories related to this study include social cognitive theory, cognitive development theory, and possible selves' theory. These…

  11. The genetic architecture of local adaptation and reproductive isolation in sympatry within the Mimulus guttatus species complex.

    PubMed

    Ferris, Kathleen G; Barnett, Laryssa L; Blackman, Benjamin K; Willis, John H

    2017-01-01

    The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system-related traits, and leaf shape between Mimulus laciniatus and a sympatric population of its close relative M. guttatus. These three traits are probably involved in M. laciniatus' adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them 'magic traits'. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next-generation sequencing, we generate dense SNP markers across the genome and map quantitative trait loci (QTLs) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to few QTL of large effect including a highly pleiotropic QTL on chromosome 8. This QTL region contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in other Mimulus species. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects. © 2016 John Wiley & Sons Ltd.

  12. Application of medical cases in general genetics teaching in universities.

    PubMed

    He, Zhumei; Bie, Linsai; Li, Wei

    2018-01-20

    General genetics is a core course in life sciences, medicine, agriculture and other related fields. As one of the most fast-developing disciplines of life sciences in the 21th century, the influence of the genetics knowledge on daily life is expanding, especially on human health and reproduction. In order to make it easier for students to understand the profound principles of genetics and to better apply the theories to daily life, we have introduced appropriate medical cases in general genetics teaching and further extended them combined with theoretical basis of genetics. This approach will be beneficial to enhance students' abilities of genetic analysis and promote their enthusiasm to learn and master practical skills. In this paper, we enumerate medical cases related to the modern genetics teaching system to provide a reference for genetics teaching in general and normal universities.

  13. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  14. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2010-12-01

    Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  15. The Role of the Catechol-O-Methyltransferase (COMT) Gene in Personality and Related Psychopathological Disorders

    PubMed Central

    Montag, Christian; Jurkiewicz, Magdalena; Reuter, Martin

    2015-01-01

    This review provides a short overview of the most significant biologically oriented theories of human personality. Personality concepts of Eysenck, Gray and McNaughton, Cloninger and Panksepp will be introduced and the focal evidence for the heritability of personality will be summarized. In this context, a synopsis of a large number of COMT genetic association studies (with a focus on the COMT Val158Met polymorphism) in the framework of the introduced biologically oriented personality theories will be given. In line with the theory of a continuum model between healthy anxious behavior and related psychopathological behavior, the role of the COMT gene in anxiety disorders will be discussed. A final outlook considers new research strategies such as genetic imaging and epigenetics for a better understanding of human personality. PMID:22483293

  16. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle.

    PubMed

    Miglior, Filippo; Fleming, Allison; Malchiodi, Francesca; Brito, Luiz F; Martin, Pauline; Baes, Christine F

    2017-12-01

    Over the past 100 yr, the range of traits considered for genetic selection in dairy cattle populations has progressed to meet the demands of both industry and society. At the turn of the 20th century, dairy farmers were interested in increasing milk production; however, a systematic strategy for selection was not available. Organized milk performance recording took shape, followed quickly by conformation scoring. Methodological advances in both genetic theory and statistics around the middle of the century, together with technological innovations in computing, paved the way for powerful multitrait analyses. As more sophisticated analytical techniques for traits were developed and incorporated into selection programs, production began to increase rapidly, and the wheels of genetic progress began to turn. By the end of the century, the focus of selection had moved away from being purely production oriented toward a more balanced breeding goal. This shift occurred partly due to increasing health and fertility issues and partly due to societal pressure and welfare concerns. Traits encompassing longevity, fertility, calving, health, and workability have now been integrated into selection indices. Current research focuses on fitness, health, welfare, milk quality, and environmental sustainability, underlying the concentrated emphasis on a more comprehensive breeding goal. In the future, on-farm sensors, data loggers, precision measurement techniques, and other technological aids will provide even more data for use in selection, and the difficulty will lie not in measuring phenotypes but rather in choosing which traits to select for. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. In and of the City: Theory of Action and the NYU Partnership School Program

    ERIC Educational Resources Information Center

    McDonald, Joseph P.; Domingo, Myrrh; Jeffery, Jill V.; Pietanza, Rosa Riccio; Pignatosi, Frank

    2013-01-01

    This article explores the theory of action underlying New York University's (NYU's) Partnership Schools Program--explaining in the process what a theory of action is, and how it can be constructed for other innovations in other contexts. NYU's Partnership Program involves 23 schools, K-12, spanning several of New York City's most economically…

  18. Learning genetic inquiry through the use, revision, and justification of explanatory models

    NASA Astrophysics Data System (ADS)

    Cartier, Jennifer Lorraine

    Central to the process of inquiry in science is the construction and assessment of models that can be used to explain (and in some cases, predict) natural phenomena. This dissertation is a qualitative study of student learning in a high school biology course that was designed to give students opportunities to learn about genetic inquiry in part by providing them with authentic experiences doing inquiry in the discipline. With the aid of a computer program that generates populations of "fruit flies", the students in this class worked in groups structured like scientific communities to build, revise, and defend explanatory models for various inheritance phenomena. Analysis of the ways in which the first cohort of students assessed their inheritance models revealed that all students assessed models based upon empirical fit (data/model match). However, in contrast to the practice of scientists and despite explicit instruction, students did not consistently apply conceptual assessment criteria to their models. That is, they didn't seek consistency between underlying concepts or processes in their models and those of other important genetic models, such as meiosis. This is perhaps in part because they lacked an understanding of models as conceptual rather than physical entities. Subsequently, the genetics curriculum was altered in order to create more opportunities for students to address epistemological issues associated with model assessment throughout the course. The second cohort of students' understanding of models changed over the nine-week period: initially the majority of students equated scientific models with "proof" (generally physical) of "theories"; at the end of the course, most students demonstrated understanding of the conceptual nature of scientific models and the need to justify such knowledge according to both its empirical utility and conceptual consistency. Through model construction and assessment (i.e. scientific inquiry), students were able to come to a rich understanding of both the central concepts of transmission genetics and important epistemological aspects of genetic practice.

  19. What makes community engagement effective?: Lessons from the Eliminate Dengue Program in Queensland Australia.

    PubMed

    Kolopack, Pamela A; Parsons, Janet A; Lavery, James V

    2015-04-01

    Worldwide, more than 40% of the population is at risk from dengue and recent estimates suggest that up to 390 million dengue infections are acquired every year. The Eliminate Dengue (ED) Program is investigating the use of Wolbachia-infected, transmission-compromised, mosquitoes to reduce dengue transmission. Previous introductions of genetically-modified strategies for dengue vector control have generated controversy internationally by inadequately engaging host communities. Community Engagement (CE) was a key component of the ED Program's initial open release trials in Queensland Australia. Their approach to CE was perceived as effective by the ED team's senior leadership, members of its CE team, and by its funders, but if and why this was the case was unclear. We conducted a qualitative case study of the ED Program's approach to CE to identify and critically examine its components, and to explain whether and how these efforts contributed to the support received by stakeholders. In-depth semi-structured interviews were conducted with 24 participants with a range of experiences and perspectives related to the ED Program's CE activities. Our analytic approach combined techniques of grounded theory and qualitative description. The ED Program's approach to CE reflected four foundational features: 1) enabling conditions; 2) leadership; 3) core commitments and guiding values; and 4) formative social science research. These foundations informed five key operational practices: 1) building the CE team; 2) integrating CE into management practices; 3) discerning the community of stakeholders; 4) establishing and maintaining a presence in the community; and 5) socializing the technology and research strategy. We also demonstrate how these practices contributed to stakeholders' willingness to support the trials. Our case study has identified, and explained the functional relationships among, the critical features of the ED Program's approach to CE. It has also illuminated how these features were meaningful to stakeholders and contributed to garnering support within the host communities for the open-release trials. Our findings reveal how translating ethical intentions into effective action is more socially complex than is currently reflected in the CE literature. Because our case study delineates the critical features of the ED Program's approach to CE, it can serve as a framework for other programs to follow when designing their own strategies. And because the findings outline a theory of change for CE, it can also serve as a starting point for developing an evaluation framework for CE.

  20. Theory! The Missing Link in Understanding the Performance of Neonate/Infant Home-Visiting Programs to Prevent Child Maltreatment: A Systematic Review

    PubMed Central

    Segal, Leonie; Sara Opie, Rachelle; Dalziel, Kim

    2012-01-01

    Context Home-visiting programs have been offered for more than sixty years to at-risk families of newborns and infants. But despite decades of experience with program delivery, more than sixty published controlled trials, and more than thirty published literature reviews, there is still uncertainty surrounding the performance of these programs. Our particular interest was the performance of home visiting in reducing child maltreatment. Methods We developed a program logic framework to assist in understanding the neonate/infant home-visiting literature, identified through a systematic literature review. We tested whether success could be explained by the logic model using descriptive synthesis and statistical analysis. Findings Having a stated objective of reducing child maltreatment—a theory or mechanism of change underpinning the home-visiting program consistent with the target population and their needs and program components that can deliver against the nominated theory of change—considerably increased the chance of success. We found that only seven of fifty-three programs demonstrated such consistency, all of which had a statistically significant positive outcome, whereas of the fifteen that had no match, none was successful. Programs with a partial match had an intermediate success rate. The relationship between program success and full, partial or no match was statistically significant. Conclusions Employing a theory-driven approach provides a new way of understanding the disparate performance of neonate/infant home-visiting programs. Employing a similar theory-driven approach could also prove useful in the review of other programs that embody a diverse set of characteristics and may apply to diverse populations and settings. A program logic framework provides a rigorous approach to deriving policy-relevant meaning from effectiveness evidence of complex programs. For neonate/infant home-visiting programs, it means that in developing these programs, attention to consistency of objectives, theory of change, target population, and program components is critical. PMID:22428693

  1. Theory! The missing link in understanding the performance of neonate/infant home-visiting programs to prevent child maltreatment: a systematic review.

    PubMed

    Segal, Leonie; Sara Opie, Rachelle; Dalziel, Kim

    2012-03-01

    Home-visiting programs have been offered for more than sixty years to at-risk families of newborns and infants. But despite decades of experience with program delivery, more than sixty published controlled trials, and more than thirty published literature reviews, there is still uncertainty surrounding the performance of these programs. Our particular interest was the performance of home visiting in reducing child maltreatment. We developed a program logic framework to assist in understanding the neonate/infant home-visiting literature, identified through a systematic literature review. We tested whether success could be explained by the logic model using descriptive synthesis and statistical analysis. Having a stated objective of reducing child maltreatment-a theory or mechanism of change underpinning the home-visiting program consistent with the target population and their needs and program components that can deliver against the nominated theory of change-considerably increased the chance of success. We found that only seven of fifty-three programs demonstrated such consistency, all of which had a statistically significant positive outcome, whereas of the fifteen that had no match, none was successful. Programs with a partial match had an intermediate success rate. The relationship between program success and full, partial or no match was statistically significant. Employing a theory-driven approach provides a new way of understanding the disparate performance of neonate/infant home-visiting programs. Employing a similar theory-driven approach could also prove useful in the review of other programs that embody a diverse set of characteristics and may apply to diverse populations and settings. A program logic framework provides a rigorous approach to deriving policy-relevant meaning from effectiveness evidence of complex programs. For neonate/infant home-visiting programs, it means that in developing these programs, attention to consistency of objectives, theory of change, target population, and program components is critical. © 2012 Milbank Memorial Fund.

  2. Devil is in the details: Using logic models to investigate program process.

    PubMed

    Peyton, David J; Scicchitano, Michael

    2017-12-01

    Theory-based logic models are commonly developed as part of requirements for grant funding. As a tool to communicate complex social programs, theory based logic models are an effective visual communication. However, after initial development, theory based logic models are often abandoned and remain in their initial form despite changes in the program process. This paper examines the potential benefits of committing time and resources to revising the initial theory driven logic model and developing detailed logic models that describe key activities to accurately reflect the program and assist in effective program management. The authors use a funded special education teacher preparation program to exemplify the utility of drill down logic models. The paper concludes with lessons learned from the iterative revision process and suggests how the process can lead to more flexible and calibrated program management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Intervention mapping: a process for developing theory- and evidence-based health education programs.

    PubMed

    Bartholomew, L K; Parcel, G S; Kok, G

    1998-10-01

    The practice of health education involves three major program-planning activities: needs assessment, program development, and evaluation. Over the past 20 years, significant enhancements have been made to the conceptual base and practice of health education. Models that outline explicit procedures and detailed conceptualization of community assessment and evaluation have been developed. Other advancements include the application of theory to health education and promotion program development and implementation. However, there remains a need for more explicit specification of the processes by which one uses theory and empirical findings to develop interventions. This article presents the origins, purpose, and description of Intervention Mapping, a framework for health education intervention development. Intervention Mapping is composed of five steps: (1) creating a matrix of proximal program objectives, (2) selecting theory-based intervention methods and practical strategies, (3) designing and organizing a program, (4) specifying adoption and implementation plans, and (5) generating program evaluation plans.

  4. Polyglot Programming in Applications Used for Genetic Data Analysis

    PubMed Central

    Nowak, Robert M.

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633

  5. Polyglot programming in applications used for genetic data analysis.

    PubMed

    Nowak, Robert M

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.

  6. Integrating Program Theory and Systems-Based Procedures in Program Evaluation: A Dynamic Approach to Evaluate Educational Programs

    ERIC Educational Resources Information Center

    Grammatikopoulos, Vasilis

    2012-01-01

    The current study attempts to integrate parts of program theory and systems-based procedures in educational program evaluation. The educational program that was implemented, called the "Early Steps" project, proposed that physical education can contribute to various educational goals apart from the usual motor skills improvement. Basic…

  7. Theory-Based Evaluation Meets Ambiguity: The Role of Janus Variables

    ERIC Educational Resources Information Center

    Dahler-Larsen, Peter

    2018-01-01

    As theory-based evaluation (TBE) engages in situations where multiple stakeholders help develop complex program theory about dynamic phenomena in politically contested settings, it becomes difficult to develop and use program theory without ambiguity. The purpose of this article is to explore ambiguity as a fruitful perspective that helps TBE face…

  8. Developing program theory for purveyor programs

    PubMed Central

    2013-01-01

    Background Frequently, social interventions produce less for the intended beneficiaries than was initially planned. One possible reason is that ideas embodied in interventions are not self-executing and require careful and systematic translation to put into practice. The capacity of implementers to deliver interventions is thus paramount. Purveyor organizations provide external support to implementers to develop that capacity and to encourage high-fidelity implementation behavior. Literature on the theory underlying this type of program is not plentiful. Research shows that detailed, explicit, and agreed-upon program theory contributes to and encourages high-fidelity implementation behavior. The process of developing and depicting program theory is flexible and leaves the researcher with what might be seen as an overwhelming number of options. Methods This study was designed to develop and depict the program theory underlying the support services delivered by a South African purveyor. The purveyor supports seventeen local organizations in delivering a peer education program to young people as an HIV/AIDS prevention intervention. Purposive sampling was employed to identify and select study participants. An iterative process that involved site visits, a desktop review of program documentation, one-on-one unstructured interviews, and a subsequent verification process, was used to develop a comprehensive program logic model. Results The study resulted in a formalized logic model of how the specific purveyor is supposed to function; that model was accepted by all study participants. Conclusion The study serves as an example of how program theory of a ‘real life’ program can be developed and depicted. It highlights the strengths and weakness of this evaluation approach, and provides direction and recommendations for future research on programs that employ the purveyor method to disseminate interventions. PMID:23421855

  9. A survey of application: genomics and genetic programming, a new frontier.

    PubMed

    Khan, Mohammad Wahab; Alam, Mansaf

    2012-08-01

    The aim of this paper is to provide an introduction to the rapidly developing field of genetic programming (GP). Particular emphasis is placed on the application of GP to genomics. First, the basic methodology of GP is introduced. This is followed by a review of applications in the areas of gene network inference, gene expression data analysis, SNP analysis, epistasis analysis and gene annotation. Finally this paper concluded by suggesting potential avenues of possible future research on genetic programming, opportunities to extend the technique, and areas for possible practical applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Genetic assessment of a summer chum salmon metapopulation in recovery

    PubMed Central

    Small, Maureen P; Johnson, Thom H; Bowman, Cherril; Martinez, Edith

    2014-01-01

    Programs to rebuild imperiled wild fish populations often include hatchery-born fish derived from wild populations to supplement natural spawner abundance. These programs require monitoring to determine their demographic, biological, and genetic effects. In 1990s in Washington State, the Summer Chum Salmon Conservation Initiative developed a recovery program for the threatened Hood Canal summer chum salmon Evolutionarily Significant Unit (ESU) (the metapopulation) that used in-river spawners (wild fish) for each respective supplementation broodstock in six tributaries. Returning spawners (wild-born and hatchery-born) composed subsequent broodstocks, and tributary-specific supplementation was limited to three generations. We assessed impacts of the programs on neutral genetic diversity in this metapopulation using 16 microsatellite loci and a thirty-year dataset spanning before and after supplementation, roughly eight generations. Following supplementation, differentiation among subpopulations decreased (but not significantly) and isolation by distance patterns remained unchanged. There was no decline in genetic diversity in wild-born fish, but hatchery-born fish sampled in the same spawning areas had significantly lower genetic diversity and unequal family representation. Despite potential for negative effects from supplementation programs, few were detected in wild-born fish. We hypothesize that chum salmon natural history makes them less vulnerable to negative impacts from hatchery supplementation. PMID:24567747

  11. Genetic Wild Card: A Marker for Learners at Risk.

    ERIC Educational Resources Information Center

    Williams, Christine A.

    This paper surveys past and current theories about the workings of the mind, current brain research and psychological applications of non-linear dynamics. Parallels are drawn between the world of high-functioning autism, gifted individuals with learning disabilities, and aspects of genius. An organizing theory is presented, which includes these…

  12. Hemispheric Dissociation and Dyslexia in a Computational Model of Reading

    ERIC Educational Resources Information Center

    Monaghan, Padraic; Shillcock, Richard

    2008-01-01

    There are several causal explanations for dyslexia, drawing on distinctions between dyslexics and control groups at genetic, biological, or cognitive levels of description. However, few theories explicitly bridge these different levels of description. In this paper, we review a long-standing theory that some dyslexics' reading impairments are due…

  13. When are Racial Disparities in Education the Result of Racial Discrimination? A Social Science Perspective.

    ERIC Educational Resources Information Center

    Mickelson, Roslyn Arlin

    2003-01-01

    Synthesizes the social science research on racially correlated disparities in education, focusing on biological determinism (behavioral genetics); social structure (e.g., reproduction theory and resistance theory); school organization and opportunities to learn (e.g., resources, racial composition, and tracking); family background (financial,…

  14. Vico's Theory of Knowledge and Some Problems in Genetic Epistemology.

    ERIC Educational Resources Information Center

    Gash, Hugh

    1983-01-01

    Argues that Vico's constructivist epistemology is germane to contemporary cognitive developmental psychology, first in clarifying the meaning of the environment in Piaget's theory and second by providing, through the description of mental operations, a way of overcoming directions to the overly formal quality of Piaget's basic concrete-operational…

  15. Developmental Dyslexia as Developmental and Linguistic Variation: Editor's Commentary.

    ERIC Educational Resources Information Center

    Leong, Che Kan

    2002-01-01

    This commentary reviews forthcoming articles on the scientific study of dyslexia, genetic and neurophysiological aspects of dyslexia, cross-linguistic aspects of literacy development and dyslexia, and theory-based practice. It concludes that educators should continue to strive to promote theory-based research and evidence-based practice to achieve…

  16. Race and Genetics from a Modal Materialist Perspective

    ERIC Educational Resources Information Center

    Condit, Celeste M.

    2008-01-01

    Prevailing idealist and materialist theories of rhetoric fail to account for the continual circulation and recirculation of "racism" as a scientific discourse. An alternative theory of modal materialism addresses this problem by suggesting that the properties of all being are constituted through three distinguishable forms of matter that include…

  17. Investigating CSI: portrayals of DNA testing on a forensic crime show and their potential effects.

    PubMed

    Ley, Barbara L; Jankowski, Natalie; Brewer, Paul R

    2012-01-01

    The popularity of forensic crime shows such as CSI has fueled debate about their potential social impact. This study considers CSI's potential effects on public understandings regarding DNA testing in the context of judicial processes, the policy debates surrounding crime laboratory procedures, and the forensic science profession, as well as an effect not discussed in previous accounts: namely, the show's potential impact on public understandings of DNA and genetics more generally. To develop a theoretical foundation for research on the "CSI effect," it draws on cultivation theory, social cognitive theory, and audience reception studies. It then uses content analysis and textual analysis to illuminate how the show depicts DNA testing. The results demonstrate that CSI tends to depict DNA testing as routine, swift, useful, and reliable and that it echoes broader discourses about genetics. At times, however, the show suggests more complex ways of thinking about DNA testing and genetics.

  18. Biometric Modeling of Gene-Environment Interplay: The Intersection of Theory and Method and Applications for Social Inequality

    PubMed Central

    South, Susan C.; Hamdi, Nayla; Krueger, Robert F.

    2015-01-01

    For more than a decade, biometric moderation models have been used to examine whether genetic and environmental influences on individual differences might vary within the population. These quantitative gene × environment interaction (G×E) models not only have the potential to elucidate when genetic and environmental influences on a phenotype might differ, but why, as they provide an empirical test of several theoretical paradigms that serve as useful heuristics to explain etiology—diathesis-stress, bioecological, differential susceptibility, and social control. In the current manuscript, we review how these developmental theories align with different patterns of findings from statistical models of gene-environment interplay. We then describe the extant empirical evidence, using work by our own research group and others, to lay out genetically-informative plausible accounts of how phenotypes related to social inequality—physical health and cognition—might relate to these theoretical models. PMID:26426103

  19. Biometric Modeling of Gene-Environment Interplay: The Intersection of Theory and Method and Applications for Social Inequality.

    PubMed

    South, Susan C; Hamdi, Nayla R; Krueger, Robert F

    2017-02-01

    For more than a decade, biometric moderation models have been used to examine whether genetic and environmental influences on individual differences might vary within the population. These quantitative Gene × Environment interaction models have the potential to elucidate not only when genetic and environmental influences on a phenotype might differ, but also why, as they provide an empirical test of several theoretical paradigms that serve as useful heuristics to explain etiology-diathesis-stress, bioecological, differential susceptibility, and social control. In the current article, we review how these developmental theories align with different patterns of findings from statistical models of gene-environment interplay. We then describe the extant empirical evidence, using work by our own research group and others, to lay out genetically informative plausible accounts of how phenotypes related to social inequality-physical health and cognition-might relate to these theoretical models. © 2015 Wiley Periodicals, Inc.

  20. Disentangling the Importance of Psychological Predispositions and Social Constructions in the Organization of American Political Ideology.

    PubMed

    Verhulst, Brad; Hatemi, Peter K; Eaves, Lindon J

    2012-06-01

    Ideological preferences within the American electorate are contingent on both the environmental conditions that provide the content of the contemporary political debate and internal predispositions that motivate people to hold liberal or conservative policy preferences. In this article we apply Jost, Federico, and Napier's (2009) top-down/bottom-up theory of political attitude formation to a genetically informative population sample. In doing so, we further develop the theory by operationalizing the top-down pathway to be a function of the social environment and the bottom-up pathway as a latent set of genetic factors. By merging insights from psychology, behavioral genetics, and political science, we find strong support for the top-down/bottom-up framework that segregates the two independent pathways in the formation of political attitudes and identifies a different pattern of relationships between political attitudes at each level of analysis.

  1. "Genetically Engineered" Nanoelectronics

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas

    2000-01-01

    The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.

  2. Genetic screening: programs, principles, and research--thirty years later. Reviewing the recommendations of the Committee for the Study of Inborn Errors of Metabolism (SIEM).

    PubMed

    Simopoulos, A P

    2009-01-01

    Screening programs for genetic diseases and characteristics have multiplied in the last 50 years. 'Genetic Screening: Programs, Principles, and Research' is the report of the Committee for the Study of Inborn Errors of Metabolism (SIEM Committee) commissioned by the Division of Medical Sciences of the National Research Council at the National Academy of Sciences in Washington, DC, published in 1975. The report is considered a classic in the field worldwide, therefore it was thought appropriate 30 years later to present the Committee's modus operandi and bring the Committee's recommendations to the attention of those involved in genetics, including organizational, educational, legal, and research aspects of genetic screening. The Committee's report anticipated many of the legal, ethical, economic, social, medical, and policy aspects of genetic screening. The recommendations are current, and future committees should be familiar with them. In 1975 the Committee stated: 'As new screening tests are devised, they should be carefully reviewed. If the experimental rate of discovery of new genetic characteristics means an accelerating rate of appearance of new screening tests, now is the time to develop the medical and social apparatus to accommodate what later on may otherwise turn out to be unmanageable growth.' What a prophetic statement that was. If the Committee's recommendations had been implemented on time, there would be today a federal agency in existence, responsive and responsible to carry out the programs and support research on various aspects of genetic screening, including implementation of a federal law that protects consumers from discrimination by their employers and the insurance industry on the basis of genetic information. Copyright 2008 S. Karger AG, Basel.

  3. Theories that narrate the world: Ronald A. Fisher's mass selection and Sewall Wright's shifting balance.

    PubMed

    Rosales, Alirio

    2017-04-01

    Theories are composed of multiple interacting components. I argue that some theories have narratives as essential components, and that narratives function as integrative devices of the mathematical components of theories. Narratives represent complex processes unfolding in time as a sequence of stages, and hold the mathematical elements together as pieces in the investigation of a given process. I present two case studies from population genetics: R. A. Fisher's "mas selection" theory, and Sewall Wright's shifting balance theory. I apply my analysis to an early episode of the "R. A. Fisher - Sewall Wright controversy." Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Testing the Engagement Theory of Program Quality in CACREP-Accredited Counselor Education Programs

    ERIC Educational Resources Information Center

    Warden, Shannon P.; Benshoff, James M.

    2012-01-01

    This study examined the engagement theory of program quality (Haworth & Conrad, 1997), which highlights positive student learning outcomes that result from stakeholder involvement in program evaluation within master's-level graduate programs. A total of 481 master's-level counseling students and 63 faculty members, representing 68 Council for…

  5. American Indian Substance Abuse Prevention Efforts: A Review of Programs, 2003-2013.

    PubMed

    Walsh, Margaret L; Baldwin, Julie A

    2015-01-01

    The purpose of the review was to assess substance abuse prevention (SAP) efforts in American Indian and Alaska Native (AI/AN) communities from 2003-2013. In the past, many SAP programs were unable to meet the unique cultural needs of AI/AN communities adequately. It has been suggested that a disconnect may exist between the theories that are used to guide development of prevention programs in AI/AN communities and culturally appropriate theoretical constructs of AI/AN worldviews. To explore this possible disconnect further, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to assess a total of 18 articles (N = 31 programs) on program location and method, participant characteristics, described program cultural elements, use of theory, program outcomes, program measures, and future recommendations. Results indicated that SAP programs in AI/AN communities vary widely in their use of theory, implementation strategies, view and definition of cultural constructs, overall evaluational rigor, and reporting methods. Future research is needed to integrate appropriate theory and cultural elements into SAP programs to tie them to measurable outcomes for AI/AN communities.

  6. Theory and models for planning and evaluating institutional influenza prevention and control programs.

    PubMed

    Russell, Margaret L; Thurston, Wilfreda E; Henderson, Elizabeth A

    2003-10-01

    Low rates of staff influenza vaccine coverage occur in many health care facilities. Many programs do not offer vaccination to physicians or to volunteers, and some programs do not measure coverage or do so only for a subset of staff. The use of theory in planning and evaluation may prevent these problems and lead to more effective programs. We discuss the use of theory in the planning and evaluation of health programs and demonstrate how it can be used for the evaluation and planning of a hospital or nursing home influenza control program. The application of theory required explicit statement of the goals of the program and examination of the assumptions underlying potential program activities. This indicated that staff should probably be considered as employees, volunteers, physicians, and contractors of the facility. It also directed attention to evidence-based strategies for increasing vaccination rates. The application of a program planning model to a problem of institutional influenza prevention may prevent planners from excluding important target populations and failing to monitor the important indicators of program success.

  7. An object oriented code for simulating supersymmetric Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Joseph, Anosh

    2012-06-01

    We present SUSY_LATTICE - a C++ program that can be used to simulate certain classes of supersymmetric Yang-Mills (SYM) theories, including the well known N=4 SYM in four dimensions, on a flat Euclidean space-time lattice. Discretization of SYM theories is an old problem in lattice field theory. It has resisted solution until recently when new ideas drawn from orbifold constructions and topological field theories have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theories in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local, free of doublers and also possess exact gauge-invariance. In principle they form the basis for a truly non-perturbative definition of the continuum SYM theories. In the continuum limit they reproduce versions of the SYM theories formulated in terms of twisted fields, which on a flat space-time is just a change of the field variables. In this paper, we briefly review these ideas and then go on to provide the details of the C++ code. We sketch the design of the code, with particular emphasis being placed on SYM theories with N=(2,2) in two dimensions and N=4 in three and four dimensions, making one-to-one comparisons between the essential components of the SYM theories and their corresponding counterparts appearing in the simulation code. The code may be used to compute several quantities associated with the SYM theories such as the Polyakov loop, mean energy, and the width of the scalar eigenvalue distributions. Program summaryProgram title: SUSY_LATTICE Catalogue identifier: AELS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9315 No. of bytes in distributed program, including test data, etc.: 95 371 Distribution format: tar.gz Programming language: C++ Computer: PCs and Workstations Operating system: Any, tested on Linux machines Classification:: 11.6 Nature of problem: To compute some of the observables of supersymmetric Yang-Mills theories such as supersymmetric action, Polyakov/Wilson loops, scalar eigenvalues and Pfaffian phases. Solution method: We use the Rational Hybrid Monte Carlo algorithm followed by a Leapfrog evolution and a Metropolis test. The input parameters of the model are read in from a parameter file. Restrictions: This code applies only to supersymmetric gauge theories with extended supersymmetry, which undergo the process of maximal twisting. (See Section 2 of the manuscript for details.) Running time: From a few minutes to several hours depending on the amount of statistics needed.

  8. [A brief history of the natural causes of human disease].

    PubMed

    Lips-Castro, Walter

    2015-01-01

    In the study of the causes of disease that have arisen during the development of humankind, one can distinguish three major perspectives: the natural, the supernatural, and the artificial. In this paper we distinguish the rational natural causes of disease from the irrational natural causes. Within the natural and rational causal approaches of disease, we can highlight the Egyptian theory of putrid intestinal materials called "wechdu", the humoral theory, the atomistic theory, the contagious theory, the cellular theory, the molecular (genetic) theory, and the ecogenetic theory. Regarding the irrational, esoteric, and mystic causal approaches to disease, we highlight the astrological, the alchemical, the iatrochemical, the iatromechanical, and others (irritability, solidism, brownism, and mesmerism).

  9. The long-term evolution of multilocus traits under frequency-dependent disruptive selection.

    PubMed

    van Doorn, G Sander; Dieckmann, Ulf

    2006-11-01

    Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.

  10. Intervention mapping protocol for developing a theory-based diabetes self-management education program.

    PubMed

    Song, Misoon; Choi, Suyoung; Kim, Se-An; Seo, Kyoungsan; Lee, Soo Jin

    2015-01-01

    Development of behavior theory-based health promotion programs is encouraged with the paradigm shift from contents to behavior outcomes. This article describes the development process of the diabetes self-management program for older Koreans (DSME-OK) using intervention mapping (IM) protocol. The IM protocol includes needs assessment, defining goals and objectives, identifying theory and determinants, developing a matrix to form change objectives, selecting strategies and methods, structuring the program, and planning for evaluation and pilot testing. The DSME-OK adopted seven behavior objectives developed by the American Association of Diabetes Educators as behavioral outcomes. The program applied an information-motivation-behavioral skills model, and interventions were targeted to 3 determinants to change health behaviors. Specific methods were selected to achieve each objective guided by IM protocol. As the final step, program evaluation was planned including a pilot test. The DSME-OK was structured as the 3 determinants of the IMB model were intervened to achieve behavior objectives in each session. The program has 12 weekly 90-min sessions tailored for older adults. Using the IM protocol in developing a theory-based self-management program was beneficial in terms of providing a systematic guide to developing theory-based and behavior outcome-focused health education programs.

  11. THE MENTALLY RETARDED CHILD, A PSYCHOLOGICAL APPROACH. MCGRAW-HILL SERIES IN PSYCHOLOGY.

    ERIC Educational Resources Information Center

    ROBINSON, HALBERT B.; ROBINSON, NANCY M.

    PRESENTING A PSYCHOLOGICAL APPROACH TO MENTAL RETARDATION, THIS TEXT BEGINS WITH A DISCUSSION OF THEORIES OF INTELLIGENCE, PROBLEMS OF DEFINITION, AND THE CURRENT STATUS OF THE FIELD OF MENTAL RETARDATION. A SECTION ON ETIOLOGY AND SYNDROMES PRESENTS INFORMATION ON GENETIC FACTORS AND GENETIC SYNDROMES AND THE PHYSICAL AND PSYCHOLOGICAL…

  12. Not Your Grandma's Genetics: Some Theoretical Notes

    ERIC Educational Resources Information Center

    Fausto-Sterling, Anne

    2012-01-01

    The author's goal in this comment is not only to build on the Salk and Hyde (2012) exhortation but also to shape it toward certain kinds of developmental/genetic theory and away from others. She has several priorities: (a) to emphasize best practices in empirically defensible, nonreductive biology, (b) to provide feminist (and other) biologists…

  13. The addictive brain: all roads lead to dopamine.

    PubMed

    Blum, Kenneth; Chen, Amanda L C; Giordano, John; Borsten, Joan; Chen, Thomas J H; Hauser, Mary; Simpatico, Thomas; Femino, John; Braverman, Eric R; Barh, Debmalya

    2012-01-01

    This article will touch on theories, scientific research and conjecture about the evolutionary genetics of the brain function and the impact of genetic variants called polymorphisms on drug-seeking behavior. It will cover the neurological basis of pleasure-seeking and addiction, which affects multitudes in a global atmosphere where people are seeking "pleasure states".

  14. Caste load and the evolution of reproductive skew.

    PubMed

    Holman, Luke

    2014-01-01

    Reproductive skew theory seeks to explain how reproduction is divided among group members in animal societies. Existing theory is framed almost entirely in terms of selection, though nonadaptive processes must also play some role in the evolution of reproductive skew. Here I propose that a genetic correlation between helper fecundity and breeder fecundity may frequently constrain the evolution of reproductive skew. This constraint is part of a wider phenomenon that I term "caste load," which is defined as the decline in mean fitness caused by caste-specific selection pressures, that is, differential selection on breeding and nonbreeding individuals. I elaborate the caste load hypothesis using quantitative and population genetic arguments and individual-based simulations. Although selection can sometimes erode genetic correlations and resolve caste load, this may be constrained when mutations have similar pleiotropic effects on breeder and helper traits. I document evidence for caste load, identify putative genomic adaptations to it, and suggest future research directions. The models highlight the value of considering adaptation within the boundaries imposed by genetic architecture and incidentally reaffirm that monogamy promotes the evolutionary transition to eusociality.

  15. DNA as information: at the crossroads between biology, mathematics, physics and chemistry

    PubMed Central

    2016-01-01

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems—or parts of them—within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. PMID:26857674

  16. Variation in Women's Preferences Regarding Male Facial Masculinity Is Better Explained by Genetic Differences Than by Previously Identified Context-Dependent Effects.

    PubMed

    Zietsch, Brendan P; Lee, Anthony J; Sherlock, James M; Jern, Patrick

    2015-09-01

    Women's preferences for masculine versus feminine male faces are highly variable. According to a dominant theory in evolutionary psychology, this variability results from adaptations that optimize preferences by calibrating them to certain contextual factors, including women's self-perceived attractiveness, short- versus long-term relationship orientation, pathogen disgust sensitivity, and stage of the menstrual cycle. The theory does not account for the possible contribution of genetic variation on women's facial masculinity preference. Using a large sample (N = 2,160) of identical and nonidentical female Finnish twins and their siblings, we showed that the proportion of variation in women's preferences regarding male facial masculinity that was attributable to genetic variation (38%) dwarfed the variation due to the combined effect of contextual factors (< 1%). These findings cast doubt on the importance of these context-dependent effects and may suggest a need for refocusing in the field toward understanding the wide genetic variation in these preferences and how this variation relates to the evolution of sexual dimorphism in faces. © The Author(s) 2015.

  17. Genetic and life-history consequences of extreme climate events

    PubMed Central

    Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J.

    2017-01-01

    Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event. PMID:28148745

  18. Development of FOCUS-GC: Framework for Outcomes of Clinical Communication Services in Genetic Counseling.

    PubMed

    Cragun, Deborah; Zierhut, Heather

    2018-02-01

    Conceptual frameworks bring together existing theories and models in order to identify, consolidate, and fill in gaps between theory, practice, and evidence. Given the vast number of possible outcomes that could be studied in genetic counseling, a framework for organizing outcomes and postulating relationships between communication services and genetic counseling outcomes was sought. Through an iterative approach involving literature review, thematic analysis, and consolidation, outcomes and processes were categorized to create and define components of a conceptual framework. The final product, "Framework for Outcomes of Clinical commUnication Services" (FOCUS) contains the following domains: communication strategy; communication process measures; patient care experience, patient changes, patient health; and family changes. A website was created to allow easier access and ongoing modifications to the framework. In addition, a step-by-step guide and two examples were created to show flexibility in how the framework can be used. FOCUS may help in conceptualizing, organizing and summarizing outcomes research related to risk communication and counseling in genetic service delivery as well as other healthcare settings.

  19. Research on prediction of agricultural machinery total power based on grey model optimized by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng

    2009-07-01

    Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.

  20. Genetics and Common Disorders: Implications for Primary Care and Public Health Providers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, Joseph D.; Greendale, Karen; Peay, Holly L.

    We developed this program for primary care providers (PCPs) and public health professionals (PHPs) who are interested in increasing their understanding of the genetics of common chronic diseases and of the implications of genetics and genomics for their fields. The program differs from virtually all previous educational efforts in genetics for health professionals in that it focuses on the genetics of common chronic disease and on the broad principles that emerge when one views disease from the perspectives of variation and individuality, which are at the heart of thinking genetically. The CD-ROM introduces users to content that will improve theirmore » understanding of topics such as: • A framework for genetics and common disease; • Basic information on genetics, genomics, genetic medicine, and public health genetics, all in the context of common chronic disease; • The status of research on genetic contributions to specific common diseases, including a review of research methods; • Genetic/environmental interaction as the new “central dogma” of public health genetics; • The importance of taking and analyzing a family history; • The likely impact of potential gene discovery and genetic testing on genetic counseling and risk assessment and on the practices of PCPs and PHPs; • Stratification of populations into low-, moderate-, and high-risk categories; • The potential role of PCPs and PHPs in identifying high-risk individuals and families, in providing limited genetics services, and in referring to clinical genetics specialists; the potential for standard referral algorithms; • Implications of genetic insights for diagnosis and treatment; • Ethical, legal, and social issues that arise from genetic testing for common chronic diseases; and • Specific prevention strategies based on understanding of genetics and genetic/ environmental interactions. The interactive content – developed by experts in genetics, primary care, and public health – is organized around two case studies designed to appeal to primary care providers (thrombophilia) and public health professionals (development of a screening grogram for colorectal cancer). NCHPEG has distributed more than 0000 copies of the CD-ROM to NCHPEG member organizations and to other organizations and individuals in response to requests. The program also is available at www.nchpeg.org.« less

  1. Introduction to the Natural Anticipator and the Artificial Anticipator

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.

    2010-11-01

    This short communication deals with the introduction of the concept of anticipator, which is one who anticipates, in the framework of computing anticipatory systems. The definition of anticipation deals with the concept of program. Indeed, the word program, comes from "pro-gram" meaning "to write before" by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes or behavioural responses, that is part of an organism. Any natural or artificial programs are thus related to anticipatory rewriting systems, as shown in this paper. All the cells in the body, and the neurons in the brain, are programmed by the anticipatory genetic code, DNA, in a low-level language with four signs. The programs in computers are also computing anticipatory systems. It will be shown, at one hand, that the genetic code DNA is a natural anticipator. As demonstrated by Nobel laureate McClintock [8], genomes are programmed. The fundamental program deals with the DNA genetic code. The properties of the DNA consist in self-replication and self-modification. The self-replicating process leads to reproduction of the species, while the self-modifying process leads to new species or evolution and adaptation in existing ones. The genetic code DNA keeps its instructions in memory in the DNA coding molecule. The genetic code DNA is a rewriting system, from DNA coding to DNA template molecule. The DNA template molecule is a rewriting system to the Messenger RNA molecule. The information is not destroyed during the execution of the rewriting program. On the other hand, it will be demonstrated that Turing machine is an artificial anticipator. The Turing machine is a rewriting system. The head reads and writes, modifying the content of the tape. The information is destroyed during the execution of the program. This is an irreversible process. The input data are lost.

  2. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development.

    PubMed

    Rebeiz, Mark; Patel, Nipam H; Hinman, Veronica F

    2015-01-01

    The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.

  3. Limited dispersal in mobile hunter–gatherer Baka Pygmies

    PubMed Central

    Verdu, Paul; Leblois, Raphaël; Froment, Alain; Théry, Sylvain; Bahuchet, Serge; Rousset, François; Heyer, Evelyne; Vitalis, Renaud

    2010-01-01

    Hunter–gatherer Pygmies from Central Africa are described as being extremely mobile. Using neutral genetic markers and population genetics theory, we explored the dispersal behaviour of the Baka Pygmies from Cameroon, one of the largest Pygmy populations in Central Africa. We found a strong correlation between genetic and geographical distances: a pattern of isolation by distance arising from limited parent–offspring dispersal. Our study suggests that mobile hunter–gatherers do not necessarily disperse over wide geographical areas. PMID:20427330

  4. Learning Theories Applied to Teaching Technology: Constructivism versus Behavioral Theory for Instructing Multimedia Software Programs

    ERIC Educational Resources Information Center

    Reed, Cajah S.

    2012-01-01

    This study sought to find evidence for a beneficial learning theory to teach computer software programs. Additionally, software was analyzed for each learning theory's applicability to resolve whether certain software requires a specific method of education. The results are meant to give educators more effective teaching tools, so students…

  5. Genetic Network Programming with Reconstructed Individuals

    NASA Astrophysics Data System (ADS)

    Ye, Fengming; Mabu, Shingo; Wang, Lutao; Eto, Shinji; Hirasawa, Kotaro

    A lot of research on evolutionary computation has been done and some significant classical methods such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strategies (ES) have been studied. Recently, a new approach named Genetic Network Programming (GNP) has been proposed. GNP can evolve itself and find the optimal solution. It is based on the idea of Genetic Algorithm and uses the data structure of directed graphs. Many papers have demonstrated that GNP can deal with complex problems in the dynamic environments very efficiently and effectively. As a result, recently, GNP is getting more and more attentions and is used in many different areas such as data mining, extracting trading rules of stock markets, elevator supervised control systems, etc., and GNP has obtained some outstanding results. Focusing on the GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP-RI). The aim of GNP-RI is to balance the exploitation and exploration of GNP, that is, to strengthen the exploitation ability by using the exploited information extensively during the evolution process of GNP and finally obtain better performances than that of GNP. In the proposed method, the worse individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worse individuals mimics the maturing phenomenon in nature, where bad individuals can become smarter after receiving a good education. In this paper, GNP-RI is applied to the tile-world problem which is an excellent bench mark for evaluating the proposed architecture. The performance of GNP-RI is compared with that of the conventional GNP. The simulation results show some advantages of GNP-RI demonstrating its superiority over the conventional GNPs.

  6. Impact of computer-assisted data collection, evaluation and management on the cancer genetic counselor's time providing patient care.

    PubMed

    Cohen, Stephanie A; McIlvried, Dawn E

    2011-06-01

    Cancer genetic counseling sessions traditionally encompass collecting medical and family history information, evaluating that information for the likelihood of a genetic predisposition for a hereditary cancer syndrome, conveying that information to the patient, offering genetic testing when appropriate, obtaining consent and subsequently documenting the encounter with a clinic note and pedigree. Software programs exist to collect family and medical history information electronically, intending to improve efficiency and simplicity of collecting, managing and storing this data. This study compares the genetic counselor's time spent in cancer genetic counseling tasks in a traditional model and one using computer-assisted data collection, which is then used to generate a pedigree, risk assessment and consult note. Genetic counselor time spent collecting family and medical history and providing face-to-face counseling for a new patient session decreased from an average of 85-69 min when using the computer-assisted data collection. However, there was no statistically significant change in overall genetic counselor time on all aspects of the genetic counseling process, due to an increased amount of time spent generating an electronic pedigree and consult note. Improvements in the computer program's technical design would potentially minimize data manipulation. Certain aspects of this program, such as electronic collection of family history and risk assessment, appear effective in improving cancer genetic counseling efficiency while others, such as generating an electronic pedigree and consult note, do not.

  7. Genetics objective structured clinical exams at the Maimonides Infants & Children's Hospital of Brooklyn, New York.

    PubMed

    Altshuler, Lisa; Kachur, Elizabeth; Krinshpun, Shifra; Sullivan, Deborah

    2008-11-01

    In 2003, the Maimonides Infants & Children's Hospital received a Title VII Residency Training in Primary Care grant to integrate genetic-specific competencies into postgraduate pediatrics education. As part of that endeavor, mandatory yearly genetics objective structured clinical exams (OSCEs) were instituted for third-year residents. This article reports on the first three years of experience with this innovative educational tool.After an overview of genetic concepts, dysmorphology, and communication styles, residents complete a five-station OSCE and receive feedback from standardized patients and from the faculty who observe them. After this clinical exercise, the residents participate in a small-group debriefing session to share strategies for effective communication and clinical case management and to discuss the ethical issues that arise with these genetic cases.In three years, 60 residents have completed the genetics OSCE program. Evaluation data demonstrate that the program has been effective in both introducing genetic-specific challenges and assessing residents' clinical skills. It has helped trainees self-identify both strengths and further training needs. Pre- and postsurveys among the trainees show increased comfort levels in performing 5 of 12 genetic-related clinical tasks.We conclude that genetics OSCEs are an enriching educational tool. Merely providing trainees and practicing physicians with the latest scientific information is unlikely to prepare them for counseling patients about complex genetic issues. Developing proficiency requires focused practice and effective feedback.This article is part of a theme issue of Academic Medicine on the Title VII health professions training programs.

  8. Theoretical models for application in school health education research.

    PubMed

    Parcel, G S

    1984-01-01

    Theoretical models that may be useful to research studies in school health education are reviewed. Selected, well-defined theories include social learning theory, problem-behavior theory, theory of reasoned action, communications theory, coping theory, social competence, and social and family theories. Also reviewed are multiple theory models including models of health related-behavior, the PRECEDE Framework, social-psychological approaches and the Activated Health Education Model. Two major reviews of teaching models are also discussed. The paper concludes with a brief outline of the general applications of theory to the field of school health education including applications to basic research, development and design of interventions, program evaluation, and program utilization.

  9. Theory in the Service of Practice: Theories in Action Research Dissertations Written by Students in Education Doctorate Programs

    ERIC Educational Resources Information Center

    Zambo, Debby

    2014-01-01

    Educational leaders are enrolling in second-generation education doctorate (EdD) programs because these are allowing them to remain in the field as they pursue their degree and perform action research within their workplace. As part of degree requirements, students in these programs are challenged to cross the theory-to-practice divide. However,…

  10. Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery.

    PubMed

    Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A

    2013-08-01

    As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p < .001). Artificial neural nets were less accurate with AU ROC = 0.597 ± .001 in the Construction group. Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.

  11. Isolation–By–Distance–and–Time in a stepping–stone model

    PubMed Central

    Duforet-Frebourg, Nicolas; Slatkin, Montgomery

    2015-01-01

    With the great advances in ancient DNA extraction, genetic data are now obtained from geographically separated individuals from both present and past. However, population genetics theory about the joint effect of space and time has not been thoroughly studied. Based on the classical stepping–stone model, we develop the theory of Isolation by Distance and Time. We derive the correlation of allele frequencies between demes in the case where ancient samples are present, and investigate the impact of edge effects with forward–in–time simulations. We also derive results about coalescent times in circular and toroidal models. As one of the most common ways to investigate population structure is principal components analysis (PCA), we evaluate the impact of our theory on PCA plots. Our results demonstrate that time between samples is an important factor. Ancient samples tend to be drawn to the center of a PCA plot. PMID:26592162

  12. Relatedness in spatially structured populations with empty sites: An approach based on spatial moment equations.

    PubMed

    Lion, Sébastien

    2009-09-07

    Taking into account the interplay between spatial ecological dynamics and selection is a major challenge in evolutionary ecology. Although inclusive fitness theory has proven to be a very useful tool to unravel the interactions between spatial genetic structuring and selection, applications of the theory usually rely on simplifying demographic assumptions. In this paper, I attempt to bridge the gap between spatial demographic models and kin selection models by providing a method to compute approximations for relatedness coefficients in a spatial model with empty sites. Using spatial moment equations, I provide an approximation of nearest-neighbour relatedness on random regular networks, and show that this approximation performs much better than the ordinary pair approximation. I discuss the connection between the relatedness coefficients I define and those used in population genetics, and sketch some potential extensions of the theory.

  13. Paranormal experience and the COMT dopaminergic gene: a preliminary attempt to associate phenotype with genotype using an underlying brain theory.

    PubMed

    Raz, Amir; Hines, Terence; Fossella, John; Castro, Daniella

    2008-01-01

    Paranormal belief and suggestibility seem related. Given our recent findings outlining a putative association between suggestibility and a specific dopaminergic genetic polymorphism, we hypothesized that similar exploratory genetic data may offer supplementary insights into a similar correlation with paranormal belief. With more affordable costs and better technology in the aftermath of the human genome project, genotyping is increasingly ubiquitous. Compelling brain theories guide specific research hypotheses as scientists begin to unravel tentative relationships between phenotype and genotype. In line with a dopaminergic brain theory, we tried to correlate a specific phenotype concerning paranormal belief with a dopaminergic gene (COMT) known for its involvement in prefrontal executive cognition and for a polymorphism that is positively correlated with suggestibility. Although our preliminary findings are inconclusive, the research approach we outline should pave the road to a more scientific account of elucidating paranormal belief.

  14. National Newborn Screening and Genetics Resource Center

    MedlinePlus

    ... GENERAL INFORMATION Conditions Screened by US Programs General Resources Genetics Birth Defects Hearing Screening FOR PROFESSIONALS ACT Sheets(ACMG) General Resources Newborn Screening Genetics Birth Defects FOR FAMILIES FAQs ...

  15. Historical changes in population structure during rice breeding programs in the northern limits of rice cultivation.

    PubMed

    Shinada, Hiroshi; Yamamoto, Toshio; Yamamoto, Eiji; Hori, Kiyosumi; Yonemaru, Junichi; Matsuba, Shuichi; Fujino, Kenji

    2014-04-01

    The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world. Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.

  16. Learning Theory Foundations of Simulation-Based Mastery Learning.

    PubMed

    McGaghie, William C; Harris, Ilene B

    2018-06-01

    Simulation-based mastery learning (SBML), like all education interventions, has learning theory foundations. Recognition and comprehension of SBML learning theory foundations are essential for thoughtful education program development, research, and scholarship. We begin with a description of SBML followed by a section on the importance of learning theory foundations to shape and direct SBML education and research. We then discuss three principal learning theory conceptual frameworks that are associated with SBML-behavioral, constructivist, social cognitive-and their contributions to SBML thought and practice. We then discuss how the three learning theory frameworks converge in the course of planning, conducting, and evaluating SBML education programs in the health professions. Convergence of these learning theory frameworks is illustrated by a description of an SBML education and research program in advanced cardiac life support. We conclude with a brief coda.

  17. High genetic diversity of Jatropha curcas assessed by ISSR.

    PubMed

    Díaz, B G; Argollo, D M; Franco, M C; Nucci, S M; Siqueira, W J; de Laat, D M; Colombo, C A

    2017-05-31

    Jatropha curcas L. is a highly promising oilseed for sustainable production of biofuels and bio-kerosene due to its high oil content and excellent quality. However, it is a perennial and incipiently domesticated species with none stable cultivar created until now despite genetic breeding programs in progress in several countries. Knowledge of the genetic structure and diversity of the species is a necessary step for breeding programs. The molecular marker can be used as a tool for speed up the process. This study was carried out to assess genetic diversity of a germplasm bank represented by J. curcas accessions from different provenance beside interspecific hybrid and backcrosses generated by IAC breeding programs using inter-simple sequence repeat markers. The molecular study revealed 271 bands of which 98.9% were polymorphic with an average of 22.7 polymorphic bands per primer. Genetic diversity of the germplasm evaluated was slightly higher than other germplasm around the world and ranged from 0.55 to 0.86 with an average of 0.59 (Jaccard index). Cluster analysis (UPGMA) revealed no clear grouping as to the geographical origin of accessions, consistent with genetic structure analysis using the Structure software. For diversity analysis between groups, accessions were divided into eight groups by origin. Nei's genetic distance between groups was 0.14. The results showed the importance of Mexican accessions, congeneric wild species, and interspecific hybrids for conservation and development of new genotypes in breeding programs.

  18. Improving health equity through theory-informed evaluations: a look at housing first strategies, cross-sectoral health programs, and prostitution policy.

    PubMed

    Dunn, James R; van der Meulen, Emily; O'Campo, Patricia; Muntaner, Carles

    2013-02-01

    The emergent realist perspective on evaluation is instructive in the quest to use theory-informed evaluations to reduce health inequities. This perspective suggests that in addition to knowing whether a program works, it is imperative to know 'what works for whom in what circumstances and in what respects, and how?' (Pawson & Tilley, 1997). This addresses the important issue of heterogeneity of effect, in other words, that programs have different effects for different people, potentially even exacerbating inequities and worsening the situation of marginalized groups. But in addition, the realist perspective implies that a program may not only have a greater or lesser effect, but even for the same effect, it may work by way of a different mechanism, about which we must theorize, for different groups. For this reason, theory, and theory-based evaluations are critical to health equity. We present here three examples of evaluations with a focus on program theories and their links to inequalities. All three examples illustrate the importance of theory-based evaluations in reducing health inequities. We offer these examples from a wide variety of settings to illustrate that the problem of which we write is not an exception to usual practice. The 'Housing First' model of supportive housing for people with severe mental illness is based on a theory of the role of housing in living with mental illness that has a number of elements that directly contradict the theory underlying the dominant model. Multisectoral action theories form the basis for the second example on Venezuela's revolutionary national Barrio Adentro health improvement program. Finally, decriminalization of prostitution and related health and safety policies in New Zealand illustrate how evaluations can play an important role in both refining the theory and contributing to improved policy interventions to address inequalities. The theoretically driven and transformative nature of these interventions create special demands for the use of theory in evaluations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Putting Children's Sleep Problems to Bed: Using Behavior Change Theory to Increase the Success of Children's Sleep Education Programs and Contribute to Healthy Development.

    PubMed

    Blunden, Sarah; Benveniste, Tessa; Thompson, Kirrilly

    2016-07-01

    Sleep is critical for the healthy development of children, yet most children simply don't get enough. Whilst school based sleep education programs have been developed for parents and their children, they have had mixed success. We consider how use of behavior change theory in existing school-based sleep education programs can be improved by applying and apply a broader model to these programs. We find that the mixed success of school-based sleep education programs may be due to a plausible but misleading assumption that simply increasing information about the importance of sleep and the risks of insufficient and/or inefficient sleep will necessarily result in improved sleep behaviors. We identify the potential benefits of using behavior change theory in the development of sleep education programs but in particular, there is a need for theories incorporate the multiple biological, environmental and social impacts on children's sleep. Bronfenbrenner's Bioecological model is presented to illustrate how one such behavior change theory could significantly improve the success of sleep education programs and ultimately support the healthy development of children.

  20. Using a Participatory Approach to Investigate a Leadership Program's Theory of Change

    ERIC Educational Resources Information Center

    Burbaugh, Bradley; Seibel, Seibel,; Archibald, Thomas

    2017-01-01

    The linkages between interventions and outcomes of leadership initiatives have been insufficiently studied. To better understand these links, the Virginia agricultural leadership program conducted a pathway mapping session to investigate the program's theory of change. In this novel process, program participants engaged in collaborative…

  1. Transdisciplinary research strategies for understanding socially patterned disease: the Asthma Coalition on Community, Environment, and Social Stress (ACCESS) project as a case study

    PubMed Central

    Wright, Rosalind J.; Suglia, Shakira Franco; Levy, Jonathan; Fortun, Kim; Shields, Alexandra; Subramanian, SV; Wright, Robert

    2009-01-01

    As we have seen a global increase in asthma in the past three decades it has also become clear that it is a socially patterned disease, based on demographic and socioeconomic indicators clustered by areas of residence. This trend is not readily explained by traditional genetic paradigms or physical environmental exposures when considered alone. This has led to consideration of the interplay among physical and psychosocial environmental hazards and the molecular and genetic determinants of risk (i.e., biomedical framing) within the broader socioenvironmental context including socioeconomic position as an upstream “cause of the causes” (i.e., ecological framing). Transdisciplinary research strategies or programs that embrace this complexity through a shared conceptual framework that integrates diverse discipline-specific theories, models, measures, and analytical methods into ongoing asthma research may contribute most significantly toward furthering our understanding of socially patterned disease. This paper provides an overview of a multilevel, multimethod longitudinal study, the Asthma Coalition on Community, Environment and Social Stress (ACCESS), as a case study to exemplify both the opportunities and challenges of transdisciplinary research on urban asthma expression in the United States. PMID:18833350

  2. Learning directed acyclic graphs from large-scale genomics data.

    PubMed

    Nikolay, Fabio; Pesavento, Marius; Kritikos, George; Typas, Nassos

    2017-09-20

    In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.

  3. Epistasis analysis using artificial intelligence.

    PubMed

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data.

  4. Nurses' knowledge and educational needs regarding genetics.

    PubMed

    Seven, Memnun; Akyüz, Aygül; Elbüken, Burcu; Skirton, Heather; Öztürk, Hatice

    2015-03-01

    Nurses now require a basic knowledge of genetics to provide patient care in a range of settings. To determine Turkish registered nurses' current knowledge and educational needs in relation to genetics. A descriptive, cross-sectional study. Turkish registered nurses working in a university hospital in Turkey were recruited. All registered nurses were invited to participate and 175 completed the study. The survey instrument, basic knowledge of health genetics, confidence in knowledge and the nurses' need for genetics education were used to collect data. The majority (81.1%, n=142) of participants indicated that genetics was not taught during their degree program, although 53.1% to 96% of respondents felt confident in defining different genetic concepts. The average genetics knowledge score was 6.89±1.99 of a possible 11 (range 0-11). The majority (70.3%) expressed a strong wish to attend a continuing nursing education program in genetics. The study shows that although Turkish nurses are not sufficiently knowledgeable to apply genetics in practice, they are willing to have more education to support their care of patients. Nurses need to have more education related to genetics in accordance with advances in human genetics to optimize health care. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law

    PubMed Central

    Carbonell-Ballestero, M.; Garcia-Ramallo, E.; Montañez, R.; Rodriguez-Caso, C.; Macía, J.

    2016-01-01

    Synthetic biology seeks to envision living cells as a matter of engineering. However, increasing evidence suggests that the genetic load imposed by the incorporation of synthetic devices in a living organism introduces a sort of unpredictability in the design process. As a result, individual part characterization is not enough to predict the behavior of designed circuits and thus, a costly trial-error process is eventually required. In this work, we provide a new theoretical framework for the predictive treatment of the genetic load. We mathematically and experimentally demonstrate that dependences among genes follow a quantitatively predictable behavior. Our theory predicts the observed reduction of the expression of a given synthetic gene when an extra genetic load is introduced in the circuit. The theory also explains that such dependence qualitatively differs when the extra load is added either by transcriptional or translational modifications. We finally show that the limitation of the cellular resources for gene expression leads to a mathematical formulation that converges to an expression analogous to the Ohm's law for electric circuits. Similitudes and divergences with this law are outlined. Our work provides a suitable framework with predictive character for the design process of complex genetic devices in synthetic biology. PMID:26656950

  6. Mathematical ability and the right-shift theory of handedness.

    PubMed

    Whittington, J E; Richards, P N

    1991-01-01

    A genetic theory of handedness, the right-shift theory, associates differential patterns of cerebral functioning with contrasting handedness groups and suggests that individuals with an rs + + genotype will be disadvantaged in mathematical performance. This hypothesis is investigated with contrasting handedness groups drawn from a national sample of over 11,000 children from the National Child Development Study. Some differentiation in cognitive performance between handedness groups is found in the direction predicted by the right-shift theory but the level of the findings is not statistically significant. The rs+ +/mathematical deficit hypothesis is not confirmed.

  7. Enhancing Subjective Well-Being in Individuals with Asthma

    ERIC Educational Resources Information Center

    Bray, Melissa A.; Kehle, Thomas J.; Peck, Heather L.; Theodore, Lea A.; Zhou, Zheng

    2004-01-01

    Asthma, a chronic respiratory disease, is caused by a complex interaction between genetic and environmental variables. The intent of this article is to propose a theory that provides an explanation for the reduction of emotionally triggered asthma through treatments derived from positive psychology. The basic tenet of the theory is that physical…

  8. How College Science Students Engage in Note-Taking Strategies

    ERIC Educational Resources Information Center

    Bonner, Janice M.; Holliday, William G.

    2006-01-01

    A composite theory of college science student note-taking strategies was derived from a periodic series of five interviews with 23 students and with other variables, including original and final versions of notes analyzed during a semester-long genetics course. This evolving composite theory was later compared with Van Meter, Yokoi, and Pressley's…

  9. Influence of Genetic Counseling Graduate Program Websites on Student Application Decisions.

    PubMed

    Ivan, Kristina M; Hassed, Susan; Darden, Alix G; Aston, Christopher E; Guy, Carrie

    2017-12-01

    This study investigated how genetic counseling educational program websites affect application decisions via an online survey sent to current students and recent graduates. Program leadership: directors, assistant directors, associate directors, were also surveyed to determine where their opinions coincided or differed from those reported by students and recent graduates. Chi square analysis and t-tests were used to determine significance of results. A two-sample t-test was used to compare factors students identified as important on a 5-point Likert scale with those identified by directors. Thematic analysis revealed three major themes students consider important for program websites: easy navigation, website content, and website impression. Directors were interested in how prospective students use their program website and what information they found most useful. Students indicated there were specific programs they chose not to apply to due to the difficulty of using the website for that program. Directors significantly underestimated how important information about application requirements was to students in making application decisions. The information reported herein will help individual genetic counseling graduate programs improve website functionality and retain interested applicants.

  10. A selfish genetic element influencing longevity correlates with reactive behavioural traits in female house mice (Mus domesticus).

    PubMed

    Auclair, Yannick; König, Barbara; Lindholm, Anna K

    2013-01-01

    According to theory in life-history and animal personality, individuals with high fitness expectations should be risk-averse, while individuals with low fitness expectations should be more bold. In female house mice, a selfish genetic element, the t haplotype, is associated with increased longevity under natural conditions, representing an appropriate case study to investigate this recent theory empirically. Following theory, females heterozygous for the t haplotype (+/t) are hypothesised to express more reactive personality traits and be more shy, less explorative and less active compared to the shorter-lived homozygous wildtype females (+/+). As males of different haplotype do not differ in survival, no similar pattern is expected. We tested these predictions by quantifying boldness, exploration, activity, and energetic intake in both +/t and +/+ mice. +/t females, unlike +/+ ones, expressed some reactive-like personality traits: +/t females were less active, less prone to form an exploratory routine and tended to ingest less food. Taken together these results suggest that differences in animal personality may contribute to the survival advantage observed in +/t females but fail to provide full empirical support for recent theory.

  11. Algorithmic Trading with Developmental and Linear Genetic Programming

    NASA Astrophysics Data System (ADS)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  12. Programming languages for circuit design.

    PubMed

    Pedersen, Michael; Yordanov, Boyan

    2015-01-01

    This chapter provides an overview of a programming language for Genetic Engineering of Cells (GEC). A GEC program specifies a genetic circuit at a high level of abstraction through constraints on otherwise unspecified DNA parts. The GEC compiler then selects parts which satisfy the constraints from a given parts database. GEC further provides more conventional programming language constructs for abstraction, e.g., through modularity. The GEC language and compiler is available through a Web tool which also provides functionality, e.g., for simulation of designed circuits.

  13. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2017-11-01

    Integration Theory of intelligence (Jung and Haier, Behave Brain Sci, 2007...predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are heritable and highly sensitive to both normal and...pathological aging processes. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity

  14. Genetic Moderation of Stability in Attachment Security from Early Childhood to Age 18 Years: A Replication Study

    ERIC Educational Resources Information Center

    Raby, K. Lee; Roisman, Glenn I.; Booth-LaForce, Cathryn

    2015-01-01

    A longstanding question for attachment theory and research is whether genetically based characteristics of the child influence the development of attachment security and its stability over time. This study attempted to replicate and extend recent findings indicating that the developmental stability of attachment security is moderated by oxytocin…

  15. Softly, Softly: Genetics, Intelligence and the Hidden Racism of the New Geneism

    ERIC Educational Resources Information Center

    Gillborn, David

    2016-01-01

    Crude and dangerous ideas about the genetic heritability of intelligence, and a supposed biological basis for the Black/White achievement gap, are alive and well inside the education policy process but taking new and more subtle forms. Drawing on Critical Race Theory, the paper analyses recent hereditarian writing, in the UK and the USA, and…

  16. Biology and Gender: False Theories about Women and Blacks

    ERIC Educational Resources Information Center

    Burnham, Dorothy

    1977-01-01

    Asserts that it is irrational that the ideas of genetics should be used by some scientists to support the ideologies of racism and sexism. Whether the boundaries of women's "place in society" were erected with the "bricks of theology or the cement of genetic determinism," the intention is that the barriers shall remain strong. (Author/JM)

  17. The Genetic Precursors and the Advantageous and Disadvantageous Sequelae of Inhibited Temperament: An Evolutionary Perspective

    ERIC Educational Resources Information Center

    Davies, Patrick T.; Cicchetti, Dante; Hentges, Rochelle F.; Sturge-Apple, Melissa L.

    2013-01-01

    Guided by evolutionary game theory (Korte, Koolhaas, Wingfield, & McEwen, 2005), this study aimed to identify the genetic precursors and the psychosocial sequelae of inhibited temperament in a sociodemographically disadvantaged and racially diverse sample (N = 201) of 2-year-old children who experienced elevated levels of domestic violence.…

  18. Teaching Molecular Biology with Microcomputers.

    ERIC Educational Resources Information Center

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  19. SPSS and SAS programs for generalizability theory analyses.

    PubMed

    Mushquash, Christopher; O'Connor, Brian P

    2006-08-01

    The identification and reduction of measurement errors is a major challenge in psychological testing. Most investigators rely solely on classical test theory for assessing reliability, whereas most experts have long recommended using generalizability theory instead. One reason for the common neglect of generalizability theory is the absence of analytic facilities for this purpose in popular statistical software packages. This article provides a brief introduction to generalizability theory, describes easy to use SPSS, SAS, and MATLAB programs for conducting the recommended analyses, and provides an illustrative example, using data (N = 329) for the Rosenberg Self-Esteem Scale. Program output includes variance components, relative and absolute errors and generalizability coefficients, coefficients for D studies, and graphs of D study results.

  20. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Genetics of Cancer Susceptibility Section in the Mouse Cancer Genetics Program at NCI is seeking a highly motivated postdoctoral researcher to identify novel genetic interactors of BRCA2 using CRISPR-based genetic screen in mouse embryonic stem cells and perform functional studies in mouse models.

  1. Harnessing quantitative genetics and genomics for understanding and improving complex traits in crops

    USDA-ARS?s Scientific Manuscript database

    Classical quantitative genetics aids crop improvement by providing the means to estimate heritability, genetic correlations, and predicted responses to various selection schemes. Genomics has the potential to aid quantitative genetics and applied crop improvement programs via large-scale, high-thro...

  2. Quality assurance and quality improvement in U.S. clinical molecular genetic laboratories.

    PubMed

    Chen, Bin; Richards, C Sue; Wilson, Jean Amos; Lyon, Elaine

    2011-04-01

    A robust quality-assurance program is essential for laboratories that perform molecular genetic testing to maintain high-quality testing and be able to address challenges associated with performance or delivery of testing services as the use of molecular genetic tests continues to expand in clinical and public health practice. This unit discusses quality-assurance and quality-improvement considerations that are critical for molecular genetic testing performed for heritable diseases and conditions. Specific discussion is provided on applying regulatory standards and best practices in establishing/verifying test performance, ensuring quality of the total testing process, monitoring and maintaining personnel competency, and continuing quality improvement. The unit provides a practical reference for laboratory professionals to use in recognizing and addressing essential quality-assurance issues in human molecular genetic testing. It should also provide useful information for genetics researchers, trainees, and fellows in human genetics training programs, as well as others who are interested in quality assurance and quality improvement for molecular genetic testing. 2011 by John Wiley & Sons, Inc.

  3. Methods to address poultry robustness and welfare issues through breeding and associated ethical considerations

    PubMed Central

    Muir, William M.; Cheng, Heng-Wei; Croney, Candace

    2014-01-01

    As consumers and society in general become more aware of ethical and moral dilemmas associated with intensive rearing systems, pressure is put on the animal and poultry industries to adopt alternative forms of housing. This presents challenges especially regarding managing competitive social interactions between animals. However, selective breeding programs are rapidly advancing, enhanced by both genomics and new quantitative genetic theory that offer potential solutions by improving adaptation of the bird to existing and proposed production environments. The outcomes of adaptation could lead to improvement of animal welfare by increasing fitness of the animal for the given environments, which might lead to increased contentment and decreased distress of birds in those systems. Genomic selection, based on dense genetic markers, will allow for more rapid improvement of traits that are expensive or difficult to measure, or have a low heritability, such as pecking, cannibalism, robustness, mortality, leg score, bone strength, disease resistance, and thus has the potential to address many poultry welfare concerns. Recently selection programs to include social effects, known as associative or indirect genetic effects (IGEs), have received much attention. Group, kin, multi-level, and multi-trait selection including IGEs have all been shown to be highly effective in reducing mortality while increasing productivity of poultry layers and reduce or eliminate the need for beak trimming. Multi-level selection was shown to increases robustness as indicated by the greater ability of birds to cope with stressors. Kin selection has been shown to be easy to implement and improve both productivity and animal well-being. Management practices and rearing conditions employed for domestic animal production will continue to change based on ethical and scientific results. However, the animal breeding tools necessary to provide an animal that is best adapted to these changing conditions are readily available and should be used, which will ultimately lead to the best possible outcomes for all impacted. PMID:25505483

  4. Implementation of inpatient models of pharmacogenetics programs

    PubMed Central

    Cavallari, Larisa H.; Lee, Craig R.; Duarte, Julio D.; Nutescu, Edith A.; Weitzel, Kristin W.; Stouffer, George A.; Johnson, Julie A.

    2017-01-01

    Purpose The operational elements essential for establishing an inpatient pharmacogenetic service are reviewed, and the role of the pharmacist in the provision of genotype-guided drug therapy in pharmacogenetics programs at three institutions is highlighted. Summary Pharmacists are well positioned to assume important roles in facilitating the clinical use of genetic information to optimize drug therapy given their expertise in clinical pharmacology and therapeutics. Pharmacists have assumed important roles in implementing inpatient pharmacogenetics programs. This includes programs designed to incorporate genetic test results to optimize antiplatelet drug selection after percutaneous coronary intervention and personalize warfarin dosing. Pharmacist involvement occurs on many levels, including championing and leading pharmacogenetics implementation efforts, establishing clinical processes to support genotype-guided therapy, assisting the clinical staff with interpreting genetic test results and applying them to prescribing decisions, and educating other healthcare providers and patients on genomic medicine. The three inpatient pharmacogenetics programs described use reactive versus preemptive genotyping, the most feasible approach under the current third-party payment structure. All three sites also follow Clinical Pharmacogenetics Implementation Consortium guidelines for drug therapy recommendations based on genetic test results. Conclusion With the clinical emergence of pharmacogenetics into the inpatient setting, it is important that pharmacists caring for hospitalized patients are well prepared to serve as experts in interpreting and applying genetic test results to guide drug therapy decisions. Since genetic test results may not be available until after patient discharge, pharmacists practicing in the ambulatory care setting should also be prepared to assist with genotype-guided drug therapy as part of transitions in care. PMID:27864202

  5. Implementation of inpatient models of pharmacogenetics programs.

    PubMed

    Cavallari, Larisa H; Lee, Craig R; Duarte, Julio D; Nutescu, Edith A; Weitzel, Kristin W; Stouffer, George A; Johnson, Julie A

    2016-12-01

    The operational elements essential for establishing an inpatient pharmacogenetic service are reviewed, and the role of the pharmacist in the provision of genotype-guided drug therapy in pharmacogenetics programs at three institutions is highlighted. Pharmacists are well positioned to assume important roles in facilitating the clinical use of genetic information to optimize drug therapy given their expertise in clinical pharmacology and therapeutics. Pharmacists have assumed important roles in implementing inpatient pharmacogenetics programs. This includes programs designed to incorporate genetic test results to optimize antiplatelet drug selection after percutaneous coronary intervention and personalize warfarin dosing. Pharmacist involvement occurs on many levels, including championing and leading pharmacogenetics implementation efforts, establishing clinical processes to support genotype-guided therapy, assisting the clinical staff with interpreting genetic test results and applying them to prescribing decisions, and educating other healthcare providers and patients on genomic medicine. The three inpatient pharmacogenetics programs described use reactive versus preemptive genotyping, the most feasible approach under the current third-party payment structure. All three sites also follow Clinical Pharmacogenetics Implementation Consortium guidelines for drug therapy recommendations based on genetic test results. With the clinical emergence of pharmacogenetics into the inpatient setting, it is important that pharmacists caring for hospitalized patients are well prepared to serve as experts in interpreting and applying genetic test results to guide drug therapy decisions. Since genetic test results may not be available until after patient discharge, pharmacists practicing in the ambulatory care setting should also be prepared to assist with genotype-guided drug therapy as part of transitions in care. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  6. A comparison of machine learning techniques for survival prediction in breast cancer

    PubMed Central

    2011-01-01

    Background The ability to accurately classify cancer patients into risk classes, i.e. to predict the outcome of the pathology on an individual basis, is a key ingredient in making therapeutic decisions. In recent years gene expression data have been successfully used to complement the clinical and histological criteria traditionally used in such prediction. Many "gene expression signatures" have been developed, i.e. sets of genes whose expression values in a tumor can be used to predict the outcome of the pathology. Here we investigate the use of several machine learning techniques to classify breast cancer patients using one of such signatures, the well established 70-gene signature. Results We show that Genetic Programming performs significantly better than Support Vector Machines, Multilayered Perceptrons and Random Forests in classifying patients from the NKI breast cancer dataset, and comparably to the scoring-based method originally proposed by the authors of the 70-gene signature. Furthermore, Genetic Programming is able to perform an automatic feature selection. Conclusions Since the performance of Genetic Programming is likely to be improvable compared to the out-of-the-box approach used here, and given the biological insight potentially provided by the Genetic Programming solutions, we conclude that Genetic Programming methods are worth further investigation as a tool for cancer patient classification based on gene expression data. PMID:21569330

  7. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.

    PubMed

    Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping

    2018-01-01

    In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable predictions on an accumulated and preferred mutation spectrum in normal tissue. The validation of predicted cancer state mutation patterns demonstrates the usefulness and potential of a causal dynamical framework to understand and predict genetic mutations in cancer. We also obtained the following implication related to HCC therapy, (1) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (2) inhibiting proliferation and inflammation-related positive feedback loops, and simultaneously inducing liver-specific positive feedback loop is predicated as the potential strategy to cure or relieve HCC; (3) the genesis and regression of HCC is asymmetric. In light of the characteristic property of the nonlinear dynamical system, we demonstrate that positive feedback loops must be existed as a simple and general molecular basis for the maintenance of phenotypes such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.

  8. Computer Series 41: Potential-Energy Surfaces and Transition-State Theory.

    ERIC Educational Resources Information Center

    Moss, S. J.; Coady, C. J.

    1983-01-01

    Describes computer programs involving the London-Eyring-Polany-Sato method (LEPS). The programs provide a valuable means of introducing students to potential energy surfaces and to the foundations of transition state theory. Program listings (with copies of student scripts) or programs on DOS 3.3 disc are available from authors. (JN)

  9. Using Adult Learning Theory for New-Hire Training

    ERIC Educational Resources Information Center

    Woodard, Chris A.

    2007-01-01

    To test if adult learning theory can inform a training program for newly-hired employees in industry, a training program was set up using Knowles' concepts of andragogy. Evaluation results from before and after the new training program indicate that the perceptions of those in the new training program changed in a positive direction. This…

  10. Learning in Context: Technology Integration in a Teacher Preparation Program Informed by Situated Learning Theory

    ERIC Educational Resources Information Center

    Bell, Randy L.; Maeng, Jennifer L.; Binns, Ian C.

    2013-01-01

    This investigation explores the effectiveness of a teacher preparation program aligned with situated learning theory on preservice science teachers' use of technology during their student teaching experiences. Participants included 26 preservice science teachers enrolled in a 2-year Master of Teaching program. A specific program goal was to…

  11. Information theory and the ethylene genetic network.

    PubMed

    González-García, José S; Díaz, José

    2011-10-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of information content in the input message that the cell's genetic machinery is processing during a given time interval. Furthermore, combining Information Theory with the frequency response analysis of dynamical systems we can examine the cell's genetic response to input signals with varying frequencies, amplitude and form, in order to determine if the cell can distinguish between different regimes of information flow from the environment. In the particular case of the ethylene signaling pathway, the amount of information managed by the root cell of Arabidopsis can be correlated with the frequency of the input signal. The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a varying input. Outside of this window the nucleus reads the input message as an approximately non-varying one. This frequency response analysis is also useful to estimate the rate of information transfer during the transport of each new ERF1 molecule into the nucleus. Additionally, application of Information Theory to analysis of the flow of information in the ethylene signaling pathway provides a deeper insight in the form in which the transition between auxin and ethylene hormonal activity occurs during a circadian cycle. An ambitious goal for the future would be to use Information Theory as a theoretical foundation for a suitable model of the information flow that runs at each level and through all levels of biological organization.

  12. Factors influencing parents' decision to donate their healthy infant's DNA for minimal-risk genetic research.

    PubMed

    Hatfield, Linda A; Pearce, Margaret M

    2014-11-01

    To examine factors that influence a parent's decision to donate their healthy infant's DNA for minimal-risk genetic research. Grounded theory, using semi-structured interviews conducted with 35 postpartum mother or mother-father dyads in an urban teaching hospital. Data were collected from July 2011 to January 2012. Audiorecorded semistructured interviews were conducted in private rooms with mothers or mother-father dyads 24 to 48 hr after the birth of their healthy, full-term infant. Data-driven content analysis using selected principles of grounded theory was performed. Parents' willingness to donate their healthy infant's DNA for minimal-risk pediatric genetic research emerged as a process involving three interacting components: the parents, the scientist, and the comfort of the child embedded within the context of benefit to the child. The purpose of the study and parents' perception of their commitment of time and resources determined their willingness to participate. The scientist's ability to communicate trust in the research process influenced parents' decisions. Physical discomfort of the child shaped parents' decision to donate DNA. Parental perception of a direct benefit to their child affected their willingness to discuss genetic research and its outcomes. Significant gaps and misunderstandings in parental knowledge of pediatric genetic research may affect parental willingness to donate their healthy child's DNA. Nurses knowledgeable about the decision-making process parents utilize to donate their healthy infant's DNA for minimal-risk genetic research and the factors influencing that decision are well positioned to educate parents about the role of genetics in health and illness and reassure potential research participants of the value and safeguards in pediatric genetic research. © 2014 Sigma Theta Tau International.

  13. Assessment of a Professional Development Program on Adult Learning Theory

    ERIC Educational Resources Information Center

    Malik, Melinda

    2016-01-01

    Librarians at colleges and universities invested in graduate education must understand and incorporate adult learning theories in their reference and instruction interactions with graduate students to more effectively support the students' learning. After participating in a professional development program about adult learning theory, librarians…

  14. Models for Theory-Based M.A. and Ph.D. Programs.

    ERIC Educational Resources Information Center

    Botan, Carl; Vasquez, Gabriel

    1999-01-01

    Presents work accomplished at the 1998 National Communication Association Summer Conference. Outlines reasons for theory-based education in public relations. Presents an integrated model of student outcomes, curriculum, pedagogy, and assessment for theory-based master's and doctoral programs, including assumptions made and rationale for such…

  15. Psychoanalysis and homosexuality: do we need a new theory?

    PubMed

    Auchincloss, E L; Vaughan, S C

    2001-01-01

    No need exists, it is argued, for a new psychoanalytic theory of homosexuality. Certainly psychoanalysis should not be expected to generate such a theory using its own methodology alone. The preoccupation with producing such a theory avoids more important questions about psychoanalytic theory building raised by an examination of the long relationship between psychoanalysis and homosexuality. These questions concern the problems related to using psychoanalytic methodology (1) to construct categories (including the categories normal and abnormal), (2) to construct causal theory (the problems include the limitations of psychoanalytic developmental theory and a long-standing confusion between psychoanalytic developmental theory, psychoanalytic genetic reconstruction, and psychodynamics), and (3) to identify "bedrock." Finally, the question is addressed of what might be needed that is new in the psychoanalytic approach to homosexuality.

  16. Genetic diversity and differentiation of exotic and American commercial cattle breeds raised in Brazil.

    PubMed

    Brasil, B S A F; Coelho, E G A; Drummond, M G; Oliveira, D A A

    2013-11-18

    The Brazilian cattle population is mainly composed of breeds of zebuine origin and their American derivatives. Comprehensive knowledge about the genetic diversity of these populations is fundamental for animal breeding programs and the conservation of genetic resources. This study aimed to assess the phylogenetic relationships, levels of genetic diversity, and patterns of taurine/zebuine admixture among 9 commercial cattle breeds raised in Brazil. Analysis of DNA polymorphisms was performed on 2965 animals using the 11 microsatellite markers recommended by the International Society of Animal Genetics. High genetic diversity was detected in all breeds, even though significant inbreeding was observed within some. Differences among the breeds accounted for 14.72% of the total genetic variability, and genetic differentiation was higher among taurine than among zebuine cattle. Of note, Nelore cattle presented with high levels of admixture, which is consistent with the history of frequent gene flow during the establishment of this breed in Brazil. Furthermore, significant genetic variability was partitioned within the commercial cattle breeds formed in America, which, therefore, comprise important resources of genetic diversity in the tropics. The genetic characterization of these important Brazilian breeds may now facilitate the development of management and breeding programs for these populations.

  17. Improving your genetic literacy in epilepsy-A new series.

    PubMed

    Tan, Nigel C K; Lowenstein, Daniel H

    2015-11-01

    Advances in epilepsy genetics have been rapid, and it is challenging for clinicians on the ground to keep pace with these advances. The International League Against Epilepsy (ILAE) Genetics Commission has thus crafted a new Genetic Literacy series targeted at busy clinicians. Our goal is to help provide a concise, accessible resource on epilepsy genetics for the busy, on-the-ground clinician so that he/she can apply that knowledge at point-of-care to help patients. This new series is grounded in educational theories and evidence to ensure that learning is effective and efficient. We hope that by promoting and encouraging continuing medical education in epilepsy genetics, this eventually translates to better patient management and therefore better patient health outcomes. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  18. USDA forest service southern region – It’s all about GRITS

    Treesearch

    Barbara S. Crane; Kevin M. Potter

    2017-01-01

    Genetic resource management programs across the U.S. Department of Agriculture Forest Service (USDA FS) play a key role in supporting successful land management activities. The programs are responsible for developing and providing plant material for revegetation, seed management guidelines, emergency fire recovery assistance, genetic conservation strategies, climate...

  19. A Microcomputer Exercise on Genetic Transcription and Translation.

    ERIC Educational Resources Information Center

    Meisenheimer, John L.

    1985-01-01

    Describes a microcomputer program (written for the Apple II+) which can serve as a lecture demonstration aid in explaining genetic transcription and translation. The program provides unemotional information on student errors, thus serving as a review drill to supplement the classroom. Student participation and instructor options are discussed. (DH)

  20. Initial experiences utilizing exotic landrace germplasm in an upland cotton breeding program

    USDA-ARS?s Scientific Manuscript database

    A critical objective of plant breeding programs is accessing new sources of genetic variation. In upland cotton, one of the relatively untapped sources of genetic variation is maintained in the USDA-ARS cotton germplasm collection and is the exotic landrace collection. Photoperiod sensitivity is a m...

  1. Information Business: Applying Infometry (Informational Geometry) in Cognitive Coordination and Genetic Programming for Electronic Information Packaging and Marketing.

    ERIC Educational Resources Information Center

    Tsai, Bor-sheng

    1994-01-01

    Describes the use of infometry, or informational geometry, to meet the challenges of information service businesses. Highlights include theoretical models for cognitive coordination and genetic programming; electronic information packaging; marketing electronic information products, including cost-benefit analyses; and recapitalization, including…

  2. Genetics in Relation to Biology.

    ERIC Educational Resources Information Center

    Stewart, J. Bird

    1987-01-01

    Claims that most instruction dealing with genetics is limited to sex education and personal hygiene. Suggests that the biology curriculum should begin to deal with other issues related to genetics, including genetic normality, prenatal diagnoses, race, and intelligence. Predicts these topics will begin to appear in British examination programs.…

  3. A unifying theory for genetic epidemiological analysis of binary disease data

    PubMed Central

    2014-01-01

    Background Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Results Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. Conclusions We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness. PMID:24552188

  4. A unifying theory for genetic epidemiological analysis of binary disease data.

    PubMed

    Lipschutz-Powell, Debby; Woolliams, John A; Doeschl-Wilson, Andrea B

    2014-02-19

    Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.

  5. Importance of dispersal routes that minimize open-ocean movement to the genetic structure of island populations.

    PubMed

    Harradine, E L; Andrew, M E; Thomas, J W; How, R A; Schmitt, L H; Spencer, P B S

    2015-12-01

    Islands present a unique scenario in conservation biology, offering refuge yet imposing limitations on insular populations. The Kimberley region of northwestern Australia has more than 2500 islands that have recently come into focus as substantial conservation resources. It is therefore of great interest for managers to understand the driving forces of genetic structure of species within these island archipelagos. We used the ubiquitous bar-shouldered skink (Ctenotus inornatus) as a model species to represent the influence of landscape factors on genetic structure across the Kimberley islands. On 41 islands and 4 mainland locations in a remote area of Australia, we genotyped individuals across 18 nuclear (microsatellite) markers. Measures of genetic differentiation and diversity were used in two complementary analyses. We used circuit theory and Mantel tests to examine the influence of the landscape matrix on population connectivity and linear regression and model selection based on Akaike's information criterion to investigate landscape controls on genetic diversity. Genetic differentiation between islands was best predicted with circuit-theory models that accounted for the large difference in resistance to dispersal between land and ocean. In contrast, straight-line distances were unrelated to either resistance distances or genetic differentiation. Instead, connectivity was determined by island-hopping routes that allow organisms to minimize the distance of difficult ocean passages. Island populations of C. inornatus retained varying degrees of genetic diversity (NA = 1.83 - 7.39), but it was greatest on islands closer to the mainland, in terms of resistance-distance units. In contrast, genetic diversity was unrelated to island size. Our results highlight the potential for islands to contribute to both theoretical and applied conservation, provide strong evidence of the driving forces of population structure within undisturbed landscapes, and identify the islands most valuable for conservation based on their contributions to gene flow and genetic diversity. © 2015 Society for Conservation Biology.

  6. Women, Rape, and War: ’Gaining Redress within A Human Rights Framework’

    DTIC Science & Technology

    1993-12-01

    the biogenetic theory argue that the biological and genetic aspects of men and women such as in hormonal patterns, physical strength and size...units support this theory . Either the perpetrators actually encouraged to rape or just not punished for their acts. A. SYSTEMATIC RAPE Rape in the ...34lunatic theory " of the rapist, which assumes that the rapist is suffering from some mental disorder. In this case, the rapist is undisciplined. The rapist

  7. Integrating Genetics and Social Science: Genetic Risk Scores

    PubMed Central

    Belsky, Daniel W.; Israel, Salomon

    2014-01-01

    The sequencing of the human genome and the advent of low-cost genome-wide assays that generate millions of observations of individual genomes in a matter of hours constitute a disruptive innovation for social science. Many public-use social science datasets have or will soon add genome-wide genetic data. With these new data come technical challenges, but also new possibilities. Among these, the lowest hanging fruit and the most potentially disruptive to existing research programs is the ability to measure previously invisible contours of health and disease risk within populations. In this article, we outline why now is the time for social scientists to bring genetics into their research programs. We discuss how to select genetic variants to study. We explain how the polygenic architecture of complex traits and the low penetrance of individual genetic loci pose challenges to research integrating genetics and social science. We introduce genetic risk scores as a method of addressing these challenges and provide guidance on how genetic risk scores can be constructed. We conclude by outlining research questions that are ripe for social science inquiry. PMID:25343363

  8. Contrasting results from molecular and pedigree-based population diversity measures in captive zebra highlight challenges facing genetic management of zoo populations.

    PubMed

    Ito, Hideyuki; Ogden, Rob; Langenhorst, Tanya; Inoue-Murayama, Miho

    2017-01-01

    Zoo conservation breeding programs manage the retention of population genetic diversity through analysis of pedigree records. The range of demographic and genetic indices determined through pedigree analysis programs allows the conservation of diversity to be monitored relative to the particular founder population for a species. Such approaches are based on a number of well-documented founder assumptions, however without knowledge of actual molecular genetic diversity there is a risk that pedigree-based measures will be misinterpreted and population genetic diversity misunderstood. We examined the genetic diversity of the captive populations of Grevy's zebra, Hartmann's mountain zebra and plains zebra in Japan and the United Kingdom through analysis of mitochondrial DNA sequences. Very low nucleotide variability was observed in Grevy's zebra. The results were evaluated with respect to current and historic diversity in the wild, and indicate that low genetic diversity in the captive population is likely a result of low founder diversity, which in turn suggests relatively low wild genetic diversity prior to recent population declines. Comparison of molecular genetic diversity measures with analogous diversity indices generated from the studbook data for Grevy's zebra and Hartmann's mountain zebra show contrasting patterns, with Grevy's zebra displaying markedly less molecular diversity than mountain zebra, despite studbook analysis indicating that the Grevy's zebra population has substantially more founders, greater effective population size, lower mean kinship, and has suffered less loss of gene diversity. These findings emphasize the need to validate theoretical estimates of genetic diversity in captive breeding programs with empirical molecular genetic data. Zoo Biol. 36:87-94, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Brief Instrumental School-Based Mentoring for Middle School Students: Theory and Impact

    ERIC Educational Resources Information Center

    McQuillin, Samuel D.; Lyons, Michael D.

    2016-01-01

    This study evaluated the efficacy of an intentionally brief school-based mentoring program. This academic goal-focused mentoring program was developed through a series of iterative randomized controlled trials, and is informed by research in social cognitive theory, cognitive dissonance theory, motivational interviewing, and research in academic…

  10. Child and Ancient Man: How to Define Their Commonalities and Differences.

    PubMed

    Oesterdiekhoff, Georg W

    2016-09-01

    Developmental psychology is not only a psychology of development from childhood to old age but a psychology of human development in world history. Eighty years of cross-cultural empirical research findings indicate that the adolescent stage of formal operations evolved late in history and is not a universal development of adult humans across cultures and history. Correspondingly, preoperational or concrete operational stages describe adult psychological stages in past or premodern cultures, as Jean Piaget and some of his followers have mentioned. Developmental psychology is likewise a historical or anthropological psychology capable of describing humans in premodern cultures. The article develops a general anthropological or psychological theory answering the many questions that arise from the correspondences between (modern) children and ancient adults. On this psychological basis, the new structural genetic theory program is capable of explaining, better than previous approaches, the history of humankind from prehistory through ancient to modern societies, the history of economy, society, culture, religion, philosophy, sciences, morals, and everyday life. The accomplishment of this task was once demanded of some classical founders of psychology, sociology, history, and ethnology but was largely avoided by the postwar generations of authors for political and ideological reasons.

  11. Applying ecological models to communities of genetic elements: the case of neutral theory.

    PubMed

    Linquist, Stefan; Cottenie, Karl; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Gregory, T Ryan

    2015-07-01

    A promising recent development in molecular biology involves viewing the genome as a mini-ecosystem, where genetic elements are compared to organisms and the surrounding cellular and genomic structures are regarded as the local environment. Here, we critically evaluate the prospects of ecological neutral theory (ENT), a popular model in ecology, as it applies at the genomic level. This assessment requires an overview of the controversy surrounding neutral models in community ecology. In particular, we discuss the limitations of using ENT both as an explanation of community dynamics and as a null hypothesis. We then analyse a case study in which ENT has been applied to genomic data. Our central finding is that genetic elements do not conform to the requirements of ENT once its assumptions and limitations are made explicit. We further compare this genome-level application of ENT to two other, more familiar approaches in genomics that rely on neutral mechanisms: Kimura's molecular neutral theory and Lynch's mutational-hazard model. Interestingly, this comparison reveals that there are two distinct concepts of neutrality associated with these models, which we dub 'fitness neutrality' and 'competitive neutrality'. This distinction helps to clarify the various roles for neutral models in genomics, for example in explaining the evolution of genome size. © 2015 John Wiley & Sons Ltd.

  12. CDFISH: an individual-based, spatially-explicit, landscape genetics simulator for aquatic species in complex riverscapes

    USGS Publications Warehouse

    Erin L. Landguth,; Muhlfeld, Clint C.; Luikart, Gordon

    2012-01-01

    We introduce Cost Distance FISHeries (CDFISH), a simulator of population genetics and connectivity in complex riverscapes for a wide range of environmental scenarios of aquatic organisms. The spatially-explicit program implements individual-based genetic modeling with Mendelian inheritance and k-allele mutation on a riverscape with resistance to movement. The program simulates individuals in subpopulations through time employing user-defined functions of individual migration, reproduction, mortality, and dispersal through straying on a continuous resistance surface.

  13. Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world.

    PubMed

    Vrieze, Scott I; Iacono, William G; McGue, Matt

    2012-11-01

    This article serves to outline a research paradigm to investigate main effects and interactions of genes, environment, and development on behavior and psychiatric illness. We provide a historical context for candidate gene studies and genome-wide association studies, including benefits, limitations, and expected payoffs. Using substance use and abuse as our driving example, we then turn to the importance of etiological psychological theory in guiding genetic, environmental, and developmental research, as well as the utility of refined phenotypic measures, such as endophenotypes, in the pursuit of etiological understanding and focused tests of genetic and environmental associations. Phenotypic measurement has received considerable attention in the history of psychology and is informed by psychometrics, whereas the environment remains relatively poorly measured and is often confounded with genetic effects (i.e., gene-environment correlation). Genetically informed designs, which are no longer limited to twin and adoption studies thanks to ever-cheaper genotyping, are required to understand environmental influences. Finally, we outline the vast amount of individual difference in structural genomic variation, most of which remains to be leveraged in genetic association tests. Although the genetic data can be massive and burdensome (tens of millions of variants per person), we argue that improved understanding of genomic structure and function will provide investigators with new tools to test specific a priori hypotheses derived from etiological psychological theory, much like current candidate gene research but with less confusion and more payoff than candidate gene research has to date.

  14. A theory-informed approach to mental health care capacity building for pharmacists.

    PubMed

    Murphy, Andrea L; Gardner, David M; Kutcher, Stan P; Martin-Misener, Ruth

    2014-01-01

    Pharmacists are knowledgeable, accessible health care professionals who can provide services that improve outcomes in mental health care. Various challenges and opportunities can exist in pharmacy practice to hinder or support pharmacists' efforts. We used a theory-informed approach to development and implementation of a capacity-building program to enhance pharmacists' roles in mental health care. Theories and frameworks including the Consolidated Framework for Implementation Research, the Theoretical Domains Framework, and the Behaviour Change Wheel were used to inform the conceptualization, development, and implementation of a capacity-building program to enhance pharmacists' roles in mental health care. The More Than Meds program was developed and implemented through an iterative process. The main program components included: an education and training day; use of a train-the-trainer approach from partnerships with pharmacists and people with lived experience of mental illness; development of a community of practice through email communications, a website, and a newsletter; and use of educational outreach delivered by pharmacists. Theories and frameworks used throughout the program's development and implementation facilitated a means to conceptualize the component parts of the program as well as its overall presence as a whole from inception through evolution in implementation. Using theoretical foundations for the program enabled critical consideration and understanding of issues related to trialability and adaptability of the program. Theory was essential to the underlying development and implementation of a capacity-building program for enhancing services by pharmacists for people with lived experience of mental illness. Lessons learned from the development and implementation of this program are informing current research and evolution of the program.

  15. Phenoptosis as genetically determined aging influenced by signals from the environment.

    PubMed

    Khalyavkin, A V

    2013-09-01

    Aging is a complex and not well understood process. Two opposite concepts try to explain its causes and mechanisms - programmed aging and aging of "wear and tear" (stochastic aging). To date, much evidence has been obtained that contradicts the theories of aging as being due to accumulation of various damages. For example, creation of adequate conditions for the functioning of the organism's components (appropriate microenvironment, humoral background, etc.) has been shown to cause partial or complete reversibility of signs of its aging. Programmed aging and death of an organism can be termed phenoptosis by analogy to the term apoptosis for programmed cell death (this term was first suggested by V. P. Skulachev). The necessity of this phenomenon, since A. Weismann, has been justified by the need for population renewal according to ecological and evolutionary requirements. Species-specific lifespan, age-dependent changes in expression pattern of genes, etc. are compatible with the concept of phenoptosis. However, the intraspecific rate of aging was shown to vary over of a wide range depending on living conditions. This means that the "aging program" is not set rigidly; it sensitively adjusts an individual to the specific realities of its habitat. Moreover, there are indications that in rather severe conditions of natural habitat the aging program can be completely cancelled, as the need for it disappears because of the raised mortality from external causes (high extrinsic mortality), providing fast turnover of the population.

  16. Genetically-Based Biologic Technologies. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Mayer, William V.; McInerney, Joseph D.

    The purpose of this six-part booklet is to review the current status of genetically-based biologic technologies and to suggest how information about these technologies can be inserted into existing educational programs. Topic areas included in the six parts are: (1) genetically-based technologies in the curriculum; (2) genetic technologies…

  17. Putting Children’s Sleep Problems to Bed: Using Behavior Change Theory to Increase the Success of Children’s Sleep Education Programs and Contribute to Healthy Development

    PubMed Central

    Blunden, Sarah; Benveniste, Tessa; Thompson, Kirrilly

    2016-01-01

    Sleep is critical for the healthy development of children, yet most children simply don’t get enough. Whilst school based sleep education programs have been developed for parents and their children, they have had mixed success. We consider how existing school-based sleep education programs can be improved by applying a broader model to behaviour change theory. We find that the mixed success of school-based sleep education programs may be due to a plausible but misleading assumption that simply increasing information about the importance of sleep and the risks of insufficient and/or inefficient sleep, will necessarily result in improved sleep behaviours. We identify the potential benefits of using a more inclusive behavior change theory in the development of sleep education programs with a particular need for theories that incorporate the multiple biological, environmental and social impacts on children’s sleep. Bronfenbrenner’s Bioecological model is presented to illustrate how one such inclusive behavior change theory could significantly improve the success of sleep education programs and ultimately support the healthy development of children. PMID:27417249

  18. Reducing Violence in Non-Controlling Ways: A Change Program Based on Self Determination Theory

    ERIC Educational Resources Information Center

    Assor, Avi; Feinberg, Ofra; Kanat-Maymon, Yaniv; Kaplan, Haya

    2018-01-01

    This paper presents and examines the first school change program focusing on violence and caring based on self-determination theory (Deci & Ryan, 2012). The program aimed at promoting teachers' capacity to cope with violence and enhance caring without becoming more controlling. Comparisons of the effects of a 22-month-long program in three…

  19. The Impact of Familial Autism Diagnoses on Autism Symptomatology in Infants and Toddlers

    ERIC Educational Resources Information Center

    Kozlowski, Alison M.; Matson, Johnny L.; Worley, Julie A.

    2012-01-01

    Debate regarding the etiology of Autism Spectrum Disorders (ASD) is on the rise with numerous theories being put forth. Currently, the theory with the most empirical support is the interaction of multiple genes. Many studies have provided evidence that as the incidence of ASD increases so do genetic similarities. However, very little research has…

  20. Should Science Educators Deal with the Science/Religion Issue?

    ERIC Educational Resources Information Center

    Reiss, Michael J.

    2008-01-01

    I begin by examining the natures of science and religion before looking at the ways in which they relate to one another. I then look at a number of case studies that centre on the relationships between science and religion, including attempts to find mechanisms for divine action in quantum theory and chaos theory, creationism, genetic engineering…

  1. Corn Culture: A Story of Intelligent Design

    ERIC Educational Resources Information Center

    Todd, Jude

    2008-01-01

    Scientists are not sure of how corn was created. There were two competing genetic theories about how corn came to be. One theory maintains that corn had been teased out of a wheatlike grass called teosinte (genus Zea), and the other contends that one now-extinct ancestor of corn had crossed with another grass, "Tripsacum," several millennia ago.…

  2. Learning about a Fish from an ANT: Actor Network Theory and Science Education in the Postgenomic Era

    ERIC Educational Resources Information Center

    Pierce, Clayton

    2015-01-01

    This article uses actor network theory (ANT) to develop a more appropriate model of scientific literacy for students, teachers, and citizens in a society increasingly populated with biotechnological and bioscientific nonhumans. In so doing, I take the recent debate surrounding the first genetically engineered animal food product under review by…

  3. The nature of nurture and the future of evodevo: toward a theory of developmental evolution.

    PubMed

    Moczek, Armin P

    2012-07-01

    This essay has three parts. First, I posit that much research in contemporary evodevo remains steeped in a traditional framework that views traits and trait differences as being caused by genes and genetic variation, and the environment as providing an external context in which development and evolution unfold. Second, I discuss three attributes of organismal development and evolution, broadly applicable to all organisms and traits that call into question the usefulness of gene- and genome-centric views of development and evolution. I then focus on the third and main aim of this essay and ask: what conceptual and empirical opportunities exist that would permit evodevo research to transcend the traditional boundaries inherited from its parent disciplines and to move toward the development of a more comprehensive and realistic theory of developmental evolution? Here, I focus on three conceptual frameworks, the theory of facilitated variation, the theory of evolution by genetic accommodation, and the theory of niche construction. I conclude that combined they provide a rich, interlocking framework within which to revise existing and develop novel empirical approaches toward a better understanding of the nature of developmental evolution. Examples of such approaches are highlighted, and the consequences of expanding existing frameworks are discussed.

  4. Feature extraction from multiple data sources using genetic programming

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Brumby, Steven P.; Pope, Paul A.; Eads, Damian R.; Esch-Mosher, Diana M.; Galassi, Mark C.; Harvey, Neal R.; McCulloch, Hersey D.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Bloch, Jeffrey J.; David, Nancy A.

    2002-08-01

    Feature extraction from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. We use the GENetic Imagery Exploitation (GENIE) software for this purpose, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land cover features including towns, wildfire burnscars, and forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.

  5. Promiscuity, sexual selection, and genetic diversity: a reply to Spurgin.

    PubMed

    Lifjeld, Jan T; Gohli, Jostein; Johnsen, Arild

    2013-10-01

    We recently reported a positive association between female promiscuity and genetic diversity across passerine birds, and launched the hypothesis that female promiscuity acts as a balancing selection, pressure maintaining genetic diversity in populations (Gohli et al.2013). Spurgin (2013) questions both our analyses and interpretations. While we agree that the hypothesis needs more comprehensive empirical testing, we find his specific points of criticism unjustified. In a more general perspective, we call for a more explicit recognition of female mating preferences as mechanisms of selection in population genetics theory. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  6. Recreating Liberal Education: Student-Designed Programming after a Decade.

    ERIC Educational Resources Information Center

    Smith, Mark; Clarke, John

    1980-01-01

    Though student-designed programs have been justified by references to humanism, systems theory, and romantic idealism, a more secure foundation lies in developmental theory. When properly advised, it is suggested, student-designed programs resemble the most desirable processes of liberal education. (Author/MLW)

  7. Evaluating theory-based evaluation: information, norms, and adherence.

    PubMed

    Jacobs, W Jake; Sisco, Melissa; Hill, Dawn; Malter, Frederic; Figueredo, Aurelio José

    2012-08-01

    Programmatic social interventions attempt to produce appropriate social-norm-guided behavior in an open environment. A marriage of applicable psychological theory, appropriate program evaluation theory, and outcome of evaluations of specific social interventions assures the acquisition of cumulative theory and the production of successful social interventions--the marriage permits us to advance knowledge by making use of both success and failures. We briefly review well-established principles within the field of program evaluation, well-established processes involved in changing social norms and social-norm adherence, the outcome of several program evaluations focusing on smoking prevention, pro-environmental behavior, and rape prevention and, using the principle of learning from our failures, examine why these programs often do not perform as expected. Finally, we discuss the promise of learning from our collective experiences to develop a cumulative science of program evaluation and to improve the performance of extant and future interventions. Copyright © 2012. Published by Elsevier Ltd.

  8. Initialization Method for Grammar-Guided Genetic Programming

    NASA Astrophysics Data System (ADS)

    García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.

    This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.

  9. The Influence of Self-Efficacy Beliefs and Metacognitive Prompting on Genetics Problem Solving Ability among High School Students in Kenya

    ERIC Educational Resources Information Center

    Aurah, Catherine Muhonja

    2013-01-01

    Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the…

  10. Memes and the evolution of religion: We need memetics, too.

    PubMed

    Blackmore, Susan

    2016-01-01

    In their analysis, Norenzayan et al. completely ignore memetics, which, unlike other theories, treats memes as replicators and looks to memetic as well as genetic advantage. Now that memes are evolving ever faster, genetic advantage is less relevant. So when religious and secular values are at odds, we need a memetic analysis to understand what is going on.

  11. Relaxation of herbivore-mediated selection drives the evolution of genetic covariances between plant competitive and defense traits.

    PubMed

    Uesugi, Akane; Connallon, Tim; Kessler, André; Monro, Keyne

    2017-06-01

    Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition-mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore-free habitat altered the orientation of G, revealing a negative genetic covariation between defense- and competition-related metabolites that is typically masked in herbivore-exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition-allocation trade-offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Sexually antagonistic polymorphism in simultaneous hermaphrodites

    PubMed Central

    Jordan, Crispin Y.; Connallon, Tim

    2015-01-01

    In hermaphrodites, pleiotropic genetic tradeoffs between female and male reproductive functions can lead to sexually antagonistic (SA) selection, where individual alleles have conflicting fitness effects on each sex function. While an extensive theory of SA selection exists for dioecious species, these results have not been generalized to hermaphrodites. We develop population genetic models of SA selection in simultaneous hermaphrodites, and evaluate effects of dominance, selection on each sex function, self-fertilization, and population size, on the maintenance of polymorphism. Under obligate outcrossing, hermaphrodite model predictions converge exactly with those of dioecious populations. Self-fertilization in hermaphrodites generates three points of divergence with dioecious theory. First, opportunities for stable polymorphism decline sharply and become less sensitive to dominance with increased selfing. Second, selfing introduces an asymmetry in the relative importance of selection through male versus female reproductive functions, expands the parameter space favorable for the evolutionary invasion of female-beneficial alleles, and restricts invasion criteria for male-beneficial alleles. Finally, contrary to models of unconditionally beneficial alleles, selfing decreases genetic hitchhiking effects of invading SA alleles, and should therefore decrease these population genetic signals of SA polymorphisms. We discuss implications of SA selection in hermaphrodites, including its potential role in the evolution of “selfing syndromes”. PMID:25311368

  13. DNA as information: at the crossroads between biology, mathematics, physics and chemistry.

    PubMed

    Cartwright, Julyan H E; Giannerini, Simone; González, Diego L

    2016-03-13

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems-or parts of them-within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. © 2016 The Author(s).

  14. EDENetworks: a user-friendly software to build and analyse networks in biogeography, ecology and population genetics.

    PubMed

    Kivelä, Mikko; Arnaud-Haond, Sophie; Saramäki, Jari

    2015-01-01

    The recent application of graph-based network theory analysis to biogeography, community ecology and population genetics has created a need for user-friendly software, which would allow a wider accessibility to and adaptation of these methods. EDENetworks aims to fill this void by providing an easy-to-use interface for the whole analysis pipeline of ecological and evolutionary networks starting from matrices of species distributions, genotypes, bacterial OTUs or populations characterized genetically. The user can choose between several different ecological distance metrics, such as Bray-Curtis or Sorensen distance, or population genetic metrics such as FST or Goldstein distances, to turn the raw data into a distance/dissimilarity matrix. This matrix is then transformed into a network by manual or automatic thresholding based on percolation theory or by building the minimum spanning tree. The networks can be visualized along with auxiliary data and analysed with various metrics such as degree, clustering coefficient, assortativity and betweenness centrality. The statistical significance of the results can be estimated either by resampling the original biological data or by null models based on permutations of the data. © 2014 John Wiley & Sons Ltd.

  15. A Genomic Selection Index Applied to Simulated and Real Data

    PubMed Central

    Ceron-Rojas, J. Jesus; Crossa, José; Arief, Vivi N.; Basford, Kaye; Rutkoski, Jessica; Jarquín, Diego; Alvarado, Gregorio; Beyene, Yoseph; Semagn, Kassa; DeLacy, Ian

    2015-01-01

    A genomic selection index (GSI) is a linear combination of genomic estimated breeding values that uses genomic markers to predict the net genetic merit and select parents from a nonphenotyped testing population. Some authors have proposed a GSI; however, they have not used simulated or real data to validate the GSI theory and have not explained how to estimate the GSI selection response and the GSI expected genetic gain per selection cycle for the unobserved traits after the first selection cycle to obtain information about the genetic gains in each subsequent selection cycle. In this paper, we develop the theory of a GSI and apply it to two simulated and four real data sets with four traits. Also, we numerically compare its efficiency with that of the phenotypic selection index (PSI) by using the ratio of the GSI response over the PSI response, and the PSI and GSI expected genetic gain per selection cycle for observed and unobserved traits, respectively. In addition, we used the Technow inequality to compare GSI vs. PSI efficiency. Results from the simulated data were confirmed by the real data, indicating that GSI was more efficient than PSI per unit of time. PMID:26290571

  16. Genetic and life-history consequences of extreme climate events.

    PubMed

    Vincenzi, Simone; Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J

    2017-02-08

    Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event. © 2017 The Author(s).

  17. Genetic conservation and paddlefish propagation

    USGS Publications Warehouse

    Sloss, Brian L.; Klumb, Robert A.; Heist, Edward J.

    2009-01-01

    The conservation of genetic diversity of our natural resources is overwhelmingly one of the central foci of 21st century management practices. Three recommendations related to the conservation of paddlefish Polyodon spathula genetic diversity are to (1) identify genetic diversity at both nuclear and mitochondrial DNA loci using a suggested list of 20 sampling locations, (2) use genetic diversity estimates to develop genetic management units, and (3) identify broodstock sources to minimize effects of supplemental stocking on the genetic integrity of native paddlefish populations. We review previous genetic work on paddlefish and described key principles and concepts associated with maintaining genetic diversity within and among paddlefish populations and also present a genetic case study of current paddlefish propagation at the U.S. Fish and Wildlife Service Gavins Point National Fish Hatchery. This study confirmed that three potential sources of broodfish were genetically indistinguishable at the loci examined, allowing the management agencies cooperating on this program flexibility in sampling gametes. This study also showed significant bias in the hatchery occurred in terms of male reproductive contribution, which resulted in a shift in the genetic diversity of progeny compared to the broodfish. This shift was shown to result from differential male contributions, partially attributed to the mode of egg fertilization. Genetic insights enable implementation of a paddlefish propagation program within an adaptive management strategy that conserves inherent genetic diversity while achieving demographic goals.

  18. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution.

    PubMed

    Danchin, Étienne; Charmantier, Anne; Champagne, Frances A; Mesoudi, Alex; Pujol, Benoit; Blanchet, Simon

    2011-06-17

    Many biologists are calling for an 'extended evolutionary synthesis' that would 'modernize the modern synthesis' of evolution. Biological information is typically considered as being transmitted across generations by the DNA sequence alone, but accumulating evidence indicates that both genetic and non-genetic inheritance, and the interactions between them, have important effects on evolutionary outcomes. We review the evidence for such effects of epigenetic, ecological and cultural inheritance and parental effects, and outline methods that quantify the relative contributions of genetic and non-genetic heritability to the transmission of phenotypic variation across generations. These issues have implications for diverse areas, from the question of missing heritability in human complex-trait genetics to the basis of major evolutionary transitions.

  19. Genetic bottlenecks and successful biological invasions: the case of a recent Lessepsian migrant.

    PubMed

    Golani, Daniel; Azzurro, Ernesto; Corsini-Foka, Maria; Falautano, Manuela; Andaloro, Franco; Bernardi, Giacomo

    2007-10-22

    Our current understanding of the mechanisms that lead to successful biological invasions is limited. Although adaptations play a central role in biological invasions, genetic studies have so far failed to produce a unified theory. The bluespotted cornetfish, a recent Red Sea invader in the Mediterranean Sea via the Suez Canal, provides an ideal case study for research in the mechanisms of invasive genetics. In this study, we show that the invading bluespotted cornetfish underwent a severe population bottleneck that reduced the genetic diversity of this immigrant to only two mitochondrial haplotypes. Although loss of genetic diversity is considered detrimental to the need to adapt to new environments, bluespotted cornetfish experienced an unprecedented success and rapid spread across the Mediterranean.

  20. Arranging marriage; negotiating risk: genetics and society in Qatar.

    PubMed

    Kilshaw, Susie; Al Raisi, Tasneem; Alshaban, Fouad

    2015-01-01

    This paper considers how the globalized discourse of genetic risk in cousin marriage is shaped, informed and taken up in local moral worlds within the context of Qatar. This paper investigates the way Qataris are negotiating the discourse on genetics and risk. It is based on data from ongoing ethnographic research in Qatar and contributes to anthropological knowledge about this understudied country. Participants were ambivalent about genetic risks and often pointed to other theories of causation in relation to illness and disability. The discourse on genetic risk associated with marrying in the family was familiar, but for some participants the benefits of close marriage outweighed potential risks. Furthermore, the introduction of mandatory pre-marital screening gave participants confidence that risks were monitored and minimized.

Top