Eynard, Sonia E; Croiseau, Pascal; Laloë, Denis; Fritz, Sebastien; Calus, Mario P L; Restoux, Gwendal
2018-01-04
Genomic selection (GS) is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding individuals. In this study, we propose a modification of the reference population composition to mitigate diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic interest. This study aims to answer the following questions: how would decisions on the reference population affect the breeding population, and how to best select individuals to update the reference population and balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating strategies for the reference population: random, truncation, and optimal contribution (OC) strategies. OC maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle population with 50K SNP chip genotypes and simulations over 10 generations were used to compare these different strategies using milk production as the trait of interest. Candidates were selected to update the reference population. Prediction bias and both genetic merit and diversity were measured. Changes in the reference population composition slightly affected the breeding population. Optimal contribution strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the reference and the breeding populations. Copyright © 2018 Eynard et al.
Genetic diversity of Trichomonas vaginalis reinfection in HIV-positive women
Conrad, Melissa D; Kissinger, Patricia; Schmidt, Norine; Martin, David H; Carlton, Jane M
2013-01-01
Objectives Recently developed genotyping tools allow better understanding of Trichomonas vaginalis population genetics and epidemiology. These tools have yet to be applied to T vaginalis collected from HIV+ populations, where understanding the interaction between the pathogens is of great importance due to the correlation between T vaginalis infection and HIV transmission. The objectives of the study were twofold: first, to compare the genetic diversity and population structure of T vaginalis collected from HIV+ women with parasites from reference populations; second, to use the genetic markers to perform a case study demonstrating the usefulness of these techniques in investigating the mechanisms of repeat infections. Methods Repository T vaginalis samples from a previously described treatment trial were genotyped at 11 microsatellite loci. Estimates of genetic diversity and population structure were determined using standard techniques and compared with previously reported estimates of global populations. Genotyping data were used in conjunction with behavioural data to evaluate mechanisms of repeat infections. Results T vaginalis from HIV+ women maintain many of the population genetic characteristics of parasites from global reference populations. Although there is evidence of reduced diversity and bias towards type 1 parasites in the HIV+ population, the populations share a two-type population structure and parasite haplotypes. Genotyping/behavioural data suggest that 36% (12/33) of repeat infections in HIV+ women can be attributed to treatment failure. Conclusions T vaginalis infecting HIV+ women is not genetically distinct from T vaginalis infecting reference populations. Information from genotyping can be valuable for understanding mechanisms of repeat infections. PMID:23694936
Genetic diversity of Trichomonas vaginalis reinfection in HIV-positive women.
Conrad, Melissa D; Kissinger, Patricia; Schmidt, Norine; Martin, David H; Carlton, Jane M
2013-09-01
Recently developed genotyping tools allow better understanding of Trichomonas vaginalis population genetics and epidemiology. These tools have yet to be applied to T vaginalis collected from HIV+ populations, where understanding the interaction between the pathogens is of great importance due to the correlation between T vaginalis infection and HIV transmission. The objectives of the study were twofold: first, to compare the genetic diversity and population structure of T vaginalis collected from HIV+ women with parasites from reference populations; second, to use the genetic markers to perform a case study demonstrating the usefulness of these techniques in investigating the mechanisms of repeat infections. Repository T vaginalis samples from a previously described treatment trial were genotyped at 11 microsatellite loci. Estimates of genetic diversity and population structure were determined using standard techniques and compared with previously reported estimates of global populations. Genotyping data were used in conjunction with behavioural data to evaluate mechanisms of repeat infections. T vaginalis from HIV+ women maintain many of the population genetic characteristics of parasites from global reference populations. Although there is evidence of reduced diversity and bias towards type 1 parasites in the HIV+ population, the populations share a two-type population structure and parasite haplotypes. Genotyping/behavioural data suggest that 36% (12/33) of repeat infections in HIV+ women can be attributed to treatment failure. T vaginalis infecting HIV+ women is not genetically distinct from T vaginalis infecting reference populations. Information from genotyping can be valuable for understanding mechanisms of repeat infections.
Effect of genotyped cows in the reference population on the genomic evaluation of Holstein cattle.
Uemoto, Y; Osawa, T; Saburi, J
2017-03-01
This study evaluated the dependence of reliability and prediction bias on the prediction method, the contribution of including animals (bulls or cows), and the genetic relatedness, when including genotyped cows in the progeny-tested bull reference population. We performed genomic evaluation using a Japanese Holstein population, and assessed the accuracy of genomic enhanced breeding value (GEBV) for three production traits and 13 linear conformation traits. A total of 4564 animals for production traits and 4172 animals for conformation traits were genotyped using Illumina BovineSNP50 array. Single- and multi-step methods were compared for predicting GEBV in genotyped bull-only and genotyped bull-cow reference populations. No large differences in realized reliability and regression coefficient were found between the two reference populations; however, a slight difference was found between the two methods for production traits. The accuracy of GEBV determined by single-step method increased slightly when genotyped cows were included in the bull reference population, but decreased slightly by multi-step method. A validation study was used to evaluate the accuracy of GEBV when 800 additional genotyped bulls (POPbull) or cows (POPcow) were included in the base reference population composed of 2000 genotyped bulls. The realized reliabilities of POPbull were higher than those of POPcow for all traits. For the gain of realized reliability over the base reference population, the average ratios of POPbull gain to POPcow gain for production traits and conformation traits were 2.6 and 7.2, respectively, and the ratios depended on heritabilities of the traits. For regression coefficient, no large differences were found between the results for POPbull and POPcow. Another validation study was performed to investigate the effect of genetic relatedness between cows and bulls in the reference and test populations. The effect of genetic relationship among bulls in the reference population was also assessed. The results showed that it is important to account for relatedness among bulls in the reference population. Our studies indicate that the prediction method, the contribution ratio of including animals, and genetic relatedness could affect the prediction accuracy in genomic evaluation of Holstein cattle, when including genotyped cows in the reference population.
Nirea, K G; Meuwissen, T H E
2017-04-01
We simulated a genomic selection pig breeding schemes containing nucleus and production herds to improve feed efficiency of production pigs that were cross-breed. Elite nucleus herds had access to high-quality feed, and production herds were fed low-quality feed. Feed efficiency in the nucleus herds had a heritability of 0.3 and 0.25 in the production herds. It was assumed the genetic relationships between feed efficiency in the nucleus and production were low (r g = 0.2), medium (r g = 0.5) and high (r g = 0.8). In our alternative breeding schemes, different proportion of production animals were recorded for feed efficiency and genotyped with high-density panel of genetic markers. Genomic breeding value of the selection candidates for feed efficiency was estimated based on three different approaches. In one approach, genomic breeding value was estimated including nucleus animals in the reference population. In the second approach, the reference population was containing a mixture of nucleus and production animals. In the third approach, the reference population was only consisting of production herds. Using a mixture reference population, we generated 40-115% more genetic gain in the production environment as compared to only using nucleus reference population that were fed high-quality feed sources when the production animals were offspring of the nucleus animals. When the production animals were grand offspring of the nucleus animals, 43-104% more genetic gain was generated. Similarly, a higher genetic gain generated in the production environment when mixed reference population was used as compared to only using production animals. This was up to 19 and 14% when the production animals were offspring and grand offspring of nucleus animals, respectively. Therefore, in genomic selection pig breeding programmes, feed efficiency traits could be improved by properly designing the reference population. © 2016 Blackwell Verlag GmbH.
Konganti, Kranti; Ehrlich, Andre; Rusyn, Ivan; Threadgill, David W
2018-06-07
Multi-parental recombinant inbred populations, such as the Collaborative Cross (CC) mouse genetic reference population, are increasingly being used for analysis of quantitative trait loci (QTL). However specialized analytic software for these complex populations is typically built in R that works only on command-line, which limits the utility of these powerful resources for many users. To overcome analytic limitations, we developed gQTL, a web accessible, simple graphical user interface application based on the DOQTL platform in R to perform QTL mapping using data from CC mice. Copyright © 2018, G3: Genes, Genomes, Genetics.
Strategies for implementing genomic selection for feed efficiency in dairy cattle breeding schemes.
Wallén, S E; Lillehammer, M; Meuwissen, T H E
2017-08-01
Alternative genomic selection and traditional BLUP breeding schemes were compared for the genetic improvement of feed efficiency in simulated Norwegian Red dairy cattle populations. The change in genetic gain over time and achievable selection accuracy were studied for milk yield and residual feed intake, as a measure of feed efficiency. When including feed efficiency in genomic BLUP schemes, it was possible to achieve high selection accuracies for genomic selection, and all genomic BLUP schemes gave better genetic gain for feed efficiency than BLUP using a pedigree relationship matrix. However, introducing a second trait in the breeding goal caused a reduction in the genetic gain for milk yield. When using contracted test herds with genotyped and feed efficiency recorded cows as a reference population, adding an additional 4,000 new heifers per year to the reference population gave accuracies that were comparable to a male reference population that used progeny testing with 250 daughters per sire. When the test herd consisted of 500 or 1,000 cows, lower genetic gain was found than using progeny test records to update the reference population. It was concluded that to improve difficult to record traits, the use of contracted test herds that had additional recording (e.g., measurements required to calculate feed efficiency) is a viable option, possibly through international collaborations. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit
2017-06-01
Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies.
Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit
2017-01-01
Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies. PMID:28401899
On the value of the phenotypes in the genomic era.
Gonzalez-Recio, O; Coffey, M P; Pryce, J E
2014-12-01
Genetic improvement programs around the world rely on the collection of accurate phenotypic data. These phenotypes have an inherent value that can be estimated as the contribution of an additional record to genetic gain. Here, the contribution of phenotypes to genetic gain was calculated using traditional progeny testing (PT) and 2 genomic selection (GS) strategies that, for simplicity, included either males or females in the reference population. A procedure to estimate the theoretical economic contribution of a phenotype to a breeding program is described for both GS and PT breeding programs through the increment in genetic gain per unit of increase in estimated breeding value reliability obtained when an additional phenotypic record is added. The main factors affecting the value of a phenotype were the economic value of the trait, the number of phenotypic records already available for the trait, and its heritability. Furthermore, the value of a phenotype was affected by several other factors, including the cost of establishing the breeding program and the cost of phenotyping and genotyping. The cost of achieving a reliability of 0.60 was assessed for different reference populations for GS. Genomic reference populations of more sires with small progeny group sizes (e.g., 20 equivalent daughters) had a lower cost than those reference populations with either large progeny group sizes for fewer genotyped sires, or female reference populations, unless the heritability was large and the cost of phenotyping exceeded a few hundred dollars; then, female reference populations were preferable from an economic perspective. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lind, Emma E; Grahn, Mats
2011-05-01
Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (P<0.005, 1000 permutations) and locus-by-locus Analysis of Molecular Variance (AMOVA) further confirmed that habitats are significantly separated (F(ST)=0.021, P<0.01, 1023 permutations). The amount of genetic variation between populations did not differ between habitats, and populations from both habitats had similar levels of heterozygosity (polluted sites Nei's Hs=0.11, reference sites Nei's Hs=0.11). Still, pairwise F(ST): s between three, out of four, pairs of polluted-reference sites were significant. A F(ST)-outlier analysis showed that 21 (8.4%) loci were statistically different from a neutral distribution at the P<0.05 level and therefore indicated to be under divergent selection. When removing 13 F(ST)-outlier loci, significant at the P<0.01 level, differentiation between habitats disappeared in a multidimensional scaling plot. In conclusion, pulp mill effluence has acted as a selective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment. © The Author(s) 2011. This article is published with open access at Springerlink.com
Roark, Shaun A; Kelble, Mary A; Nacci, Diane; Champlin, Denise; Coiro, Laura; Guttman, Sheldon I
2005-03-01
The present study was conducted to evaluate evidence of genetic adaptation to local contaminants in populations of the migratory marine fish Menidia menidia residing seasonally in reference sites or an industrial harbor contaminated with dioxin-like compounds (DLCs). For this purpose, we compared DLC sensitivity and genetic patterns of populations sampled from sites both inside and outside New Bedford Harbor (NBH; MA, USA), a U.S. Environmental Protection Agency Superfund site with extreme polychlorinated biphenyl (PCB) contamination. Offspring of M. menidia collected from NBH were significantly less sensitive regarding embryonic exposure to the dioxin-like PCB congener 3,3',4,4',5-pentachlorobiphenyl (PCB 126) than offspring of M. menidia from a reference site. Analysis of 10 polymorphic enzymatic loci indicated little genetic differentiation among populations in the study area. However, genotype frequencies of juveniles from both NBH and an adjacent site in Massachusetts exhibited significant deviations from Hardy-Weinberg equilibrium expectations at one locus, phosphoglucomutase (PGM*). Genetic analysis of survivors of embryonic laboratory exposure to PCB 126 indicated that genotypes at PGM* were related to survivorship. Although a relationship was identified between DLC tolerance and PGM* genotype, regional mixing of M. menidia populations during migration and absence of multigeneration exposure at contaminated sites may limit localized adaptation.
Balazik, Matthew T.; Farrae, Daniel J.; Darden, Tanya L.; Garman, Greg C.
2017-01-01
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) populations are currently at severely depleted levels due to historic overfishing, habitat loss, and pollution. The importance of biologically correct stock structure for effective conservation and management efforts is well known. Recent improvements in our understanding of Atlantic sturgeon migrations, movement, and the occurrence of putative dual spawning groups leads to questions regarding the true stock structure of this endangered species. In the James River, VA specifically, captures of spawning Atlantic sturgeon and accompanying telemetry data suggest there are two discrete spawning groups of Atlantic sturgeon. The two putative spawning groups were genetically evaluated using a powerful microsatellite marker suite to determine if they are genetically distinct. Specifically, this study evaluates the genetic structure, characterizes the genetic diversity, estimates effective population size, and measures inbreeding of Atlantic sturgeon in the James River. The results indicate that fall and spring spawning James River Atlantic sturgeon groups are genetically distinct (overall FST = 0.048, F’ST = 0.181) with little admixture between the groups. The observed levels of genetic diversity and effective population sizes along with the lack of detected inbreeding all indicated that the James River has two genetically healthy populations of Atlantic sturgeon. The study also demonstrates that samples from adult Atlantic sturgeon, with proper sample selection criteria, can be informative when creating reference population databases. The presence of two genetically-distinct spawning groups of Atlantic sturgeon within the James River raises concerns about the current genetic assignment used by managers. Other nearby rivers may also have dual spawning groups that either are not accounted for or are pooled in reference databases. Our results represent the second documentation of genetically distinct dual spawning groups of Atlantic sturgeon in river systems along the U.S. Atlantic coast, suggesting that current reference population database should be updated to incorporate both new samples and our increased understanding of Atlantic sturgeon life history. PMID:28686610
Population substructure in Cache County, Utah: the Cache County study
2014-01-01
Background Population stratification is a key concern for genetic association analyses. In addition, extreme homogeneity of ethnic origins of a population can make it difficult to interpret how genetic associations in that population may translate into other populations. Here we have evaluated the genetic substructure of samples from the Cache County study relative to the HapMap Reference populations and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Results Our findings show that the Cache County study is similar in ethnic diversity to the self-reported "Whites" in the ADNI sample and less homogenous than the HapMap CEU population. Conclusions We conclude that the Cache County study is genetically representative of the general European American population in the USA and is an appropriate population for conducting broadly applicable genetic studies. PMID:25078123
A Stepanov, V.; Balanovsky, O.P.; Melnikov, A.V.; Lash-Zavada, A.Yu.; Khar’kov, V.N.; Tyazhelova, T.V.; Akhmetova, V.L.; Zhukova, O.V.; Shneider, Yu.V.; Shil’nikova, I.N.; Borinskaya, S.A.; Marusin, A.V.; Spiridonova, M.G.; Simonova, K.V.; Khitrinskaya, I.Yu.; Radzhabov, M.O.; Romanov, A.G.; Shtygasheva, O.V.; Koshel’, S.M.; Balanovskaya, E.V.; Rybakova, A.V.; Khusnutdinova, E.K.; Puzyrev, V.P.; Yankovsky, N.K.
2011-01-01
Seventeen population groups within the Russian Federation were characterized for the first time using a panel of 15 genetic markers that are used for DNA identification and in forensic medical examinations. The degree of polymorphism and population diversity of microsatellite loci within the Power Plex system (Promega) in Russian populations; the distribution of alleles and genotypes within the populations of six cities and 11 ethnic groups of the Russian Federation; the levels of intra- and interpopulation genetic differentiation of population; genetic relations between populations; and the identification and forensic medical characteristics of the system of markers under study were determined. Significant differences were revealed between the Russian populations and the U.S. reference base that was used recently in the forensic medical examination of the RF. A database of the allelic frequencies of 15 microsatellite loci that are used for DNA identification and forensic medical examination was created; the database has the potential of becoming the reference for performing forensic medical examinations in Russia. The spatial organization of genetic diversity over the panel of the STR markers that are used for DNA identification was revealed. It represents the general regularities of geographical clusterization of human populations over various types of genetic markers. The necessity to take into account a population’s genetic structure during forensic medical examinations and DNA identification of criminal suspects was substantiated. PMID:22649684
Pembleton, Luke W; Inch, Courtney; Baillie, Rebecca C; Drayton, Michelle C; Thakur, Preeti; Ogaji, Yvonne O; Spangenberg, German C; Forster, John W; Daetwyler, Hans D; Cogan, Noel O I
2018-06-02
Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.
We evaluated a population of migratory fish (Menidia menidia) that spawn in New Bedford Harbor (NBH), MA, USA, a U.S. EPA Superfund site with extreme polychlorinated biphenyl (PCB) for evidence of pollution tolerance and population genetic changes. We selected this site because ...
Pool, John E
2015-12-01
North American populations of Drosophila melanogaster derive from both European and African source populations, but despite their importance for genetic research, patterns of ancestry along their genomes are largely undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome, which may have implications for reference alignment, association mapping, and population genomic studies in Drosophila. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Combining my estimate of admixture timing with historical records, I provide the first estimate of natural generation time for this species (approximately 15 generations per year). Ancestry levels were found to vary strikingly across the genome, with less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes (e.g., circadian rhythm). An important role for natural selection during the admixture process was further supported by evidence that many unlinked pairs of loci showed a deficiency of Africa-Europe allele combinations between them. Numerous epistatic fitness interactions may therefore exist between African and European genotypes, leading to ongoing selection against incompatible variants. By focusing on hubs in this network of fitness interactions, I identified a set of interacting loci that include genes with roles in sensation and neuropeptide/hormone reception. These findings suggest that admixed D. melanogaster samples could become an important study system for the genetics of early-stage isolation between populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Casillas, Sònia; Barbadilla, Antonio
2017-01-01
Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526
Molecular Population Genetics.
Casillas, Sònia; Barbadilla, Antonio
2017-03-01
Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.
Thomas E. Chase
1989-01-01
Recent advances in the genetics and population biology of Heterobasidion annosum are reviewed. H. annosum is a heterothallic (outbreeding) basidiomycete with a unifactorial, multiallelic incompatibility system which regulates mating. H. annosum in western North America consists of two intersterility groups (...
Comparing estimates of genetic variance across different relationship models.
Legarra, Andres
2016-02-01
Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.
Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L
2017-10-01
Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.
Genetics Home Reference: Amish lethal microcephaly
... occurs in approximately 1 in 500 newborns in the Old Order Amish population of Pennsylvania. It has not been found outside this population. Related Information What information about a genetic condition can statistics provide? Why ... in the SLC25A19 gene cause Amish lethal microcephaly . The SLC25A19 ...
Analysis of genetic admixture in Uyghur using the 26 Y-STR loci system
Bian, Yingnan; Zhang, Suhua; Zhou, Wei; Zhao, Qi; Siqintuya; Zhu, Ruxin; Wang, Zheng; Gao, Yuzhen; Hong, Jie; Lu, Daru; Li, Chengtao
2016-01-01
The Uyghur population has experienced extensive interaction with European and Eastern Asian populations historically. A set of high-resolution genetic markers could be useful to infer the genetic relationships between the Uyghur population and European and Asian populations. In this study we typed 100 unrelated Uyghur males living in southern Xinjiang at 26 Y-STR loci. Using the high-resolution 26 Y-STR loci system, we investigated genetic and phylogenetic relationship between the Uyghur population and 23 reference European or Asian populations. We found that the Uyghur population exhibited a genetic admixture of Eastern Asian and European populations, and had a slightly closer relationship with the selected European populations than the Eastern Asian populations. We also demonstrated that the 26 Y-STR loci system was potentially useful in forensic sciences because it has a large power of discrimination and rarely exhibits common haplotypes. However, ancestry inference of Uyghur samples could be challenging due to the admixed nature of the population. PMID:26842947
Analysis of genetic admixture in Uyghur using the 26 Y-STR loci system.
Bian, Yingnan; Zhang, Suhua; Zhou, Wei; Zhao, Qi; Siqintuya; Zhu, Ruxin; Wang, Zheng; Gao, Yuzhen; Hong, Jie; Lu, Daru; Li, Chengtao
2016-02-04
The Uyghur population has experienced extensive interaction with European and Eastern Asian populations historically. A set of high-resolution genetic markers could be useful to infer the genetic relationships between the Uyghur population and European and Asian populations. In this study we typed 100 unrelated Uyghur males living in southern Xinjiang at 26 Y-STR loci. Using the high-resolution 26 Y-STR loci system, we investigated genetic and phylogenetic relationship between the Uyghur population and 23 reference European or Asian populations. We found that the Uyghur population exhibited a genetic admixture of Eastern Asian and European populations, and had a slightly closer relationship with the selected European populations than the Eastern Asian populations. We also demonstrated that the 26 Y-STR loci system was potentially useful in forensic sciences because it has a large power of discrimination and rarely exhibits common haplotypes. However, ancestry inference of Uyghur samples could be challenging due to the admixed nature of the population.
Genetics Home Reference: trisomy 13
... and review of literature. Am J Med Genet A. 2006 Jan 1;140(1):92-3. Review. Citation on PubMed Parker MJ, Budd JL, Draper ES, Young ID. Trisomy 13 and trisomy 18 in a defined population: epidemiological, genetic and prenatal observations. Prenat ...
Genetics Home Reference: Usher syndrome
... more frequently in the Finnish population, where it accounts for about 40 percent of cases, and among people of Ashkenazi Jewish heritage. Related Information What information about a genetic condition can statistics ...
Genetic structure of Mexican Mestizo women with breast cancer based on three STR loci.
Calderón-Garcidueñas, Ana L; Rivera-Prieto, Roxana A; Ortíz-Lopez, Rocio; Rivas, Fernando; Barrera-Saldaña, Hugo A; Peñaloza-Espinosa, Rosenda I; Cerda-Flores, Ricardo M
2008-01-01
The aim of this population genetics study was to compare the genetic structure of Mexican women with breast cancer (BrCa) with previously reported data of four random populations (Nuevo León, Hispanics, Chihuahua, and Central Region of Mexico). A sample of 115 unrelated women with BrCa and whose four grandparents were born in five zones of Mexico were interviewed at a reference hospital in Northeastern Mexico. Noncodifying STRs D7S820, D13S317, and D16S39 were analyzed; genotype distribution was in agreement with Hardy-Weinberg expectations for all three markers. Similar allele frequencies among four random populations and this selected population were found. According with this and previous studies using molecular and nonmolecular nuclear DNA markers not associated with any disease, Mexican Mestizo population is genetically homogeneous and therefore, genetic causes of BrCa are less heterogeneous, simplifying genetic epidemiologic studies.
2014-01-01
Background Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600–800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Results Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600–800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. Conclusions We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600–800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed. PMID:24903056
Hansen, Michael M; Limborg, Morten T; Ferchaud, Anne-Laure; Pujolar, José-Martin
2014-06-05
Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600-800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600-800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600-800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed.
USDA-ARS?s Scientific Manuscript database
Genetic diversity analysis, which refers to the elaboration of total extent of genetic characteristics in the genetic makeup of a certain species, constitutes a classical strategy for the study of diversity, population genetic structure, and breeding practices. In this study, fluorescence-labeled se...
Dissection of Host Susceptibility to Bacterial Infections and Its Toxins.
Nashef, Aysar; Agbaria, Mahmoud; Shusterman, Ariel; Lorè, Nicola Ivan; Bragonzi, Alessandra; Wiess, Ervin; Houri-Haddad, Yael; Iraqi, Fuad A
2017-01-01
Infection is one of the leading causes of human mortality and morbidity. Exposure to microbial agents is obviously required. However, also non-microbial environmental and host factors play a key role in the onset, development and outcome of infectious disease, resulting in large of clinical variability between individuals in a population infected with the same microbe. Controlled and standardized investigations of the genetics of susceptibility to infectious disease are almost impossible to perform in humans whereas mouse models allow application of powerful genomic techniques to identify and validate causative genes underlying human diseases with complex etiologies. Most of current animal models used in complex traits diseases genetic mapping have limited genetic diversity. This limitation impedes the ability to create incorporated network using genetic interactions, epigenetics, environmental factors, microbiota, and other phenotypes. A novel mouse genetic reference population for high-resolution mapping and subsequently identifying genes underlying the QTL, namely the Collaborative Cross (CC) mouse genetic reference population (GRP) was recently developed. In this chapter, we discuss a variety of approaches using CC mice for mapping genes underlying quantitative trait loci (QTL) to dissect the host response to polygenic traits, including infectious disease caused by bacterial agents and its toxins.
Worldwide F(ST) estimates relative to five continental-scale populations.
Steele, Christopher D; Court, Denise Syndercombe; Balding, David J
2014-11-01
We estimate the population genetics parameter FST (also referred to as the fixation index) from short tandem repeat (STR) allele frequencies, comparing many worldwide human subpopulations at approximately the national level with continental-scale populations. FST is commonly used to measure population differentiation, and is important in forensic DNA analysis to account for remote shared ancestry between a suspect and an alternative source of the DNA. We estimate FST comparing subpopulations with a hypothetical ancestral population, which is the approach most widely used in population genetics, and also compare a subpopulation with a sampled reference population, which is more appropriate for forensic applications. Both estimation methods are likelihood-based, in which FST is related to the variance of the multinomial-Dirichlet distribution for allele counts. Overall, we find low FST values, with posterior 97.5 percentiles < 3% when comparing a subpopulation with the most appropriate population, and even for inter-population comparisons we find FST < 5%. These are much smaller than single nucleotide polymorphism-based inter-continental FST estimates, and are also about half the magnitude of STR-based estimates from population genetics surveys that focus on distinct ethnic groups rather than a general population. Our findings support the use of FST up to 3% in forensic calculations, which corresponds to some current practice.
The heterogeneous HLA genetic makeup of the Swiss population.
Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia
2012-01-01
This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9-13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national--and hence global--donor registry. It also indicates that HLA data of local donor recruitment centers can be used as reference data in both epidemiological and population genetic studies focusing on the genetic history of present European populations.
The Heterogeneous HLA Genetic Makeup of the Swiss Population
Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia
2012-01-01
This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9–13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national—and hence global—donor registry. It also indicates that HLA data of local donor recruitment centers can be used as reference data in both epidemiological and population genetic studies focusing on the genetic history of present European populations. PMID:22848484
Listman, Jennifer B; Hasin, Deborah; Kranzler, Henry R; Malison, Robert T; Mutirangura, Apiwat; Sughondhabirom, Atapol; Aharonovich, Efrat; Spivak, Baruch; Gelernter, Joel
2010-06-14
Detecting population substructure is a critical issue for association studies of health behaviors and other traits. Whether inherent in the population or an artifact of marker choice, determining aspects of a population's genetic history as potential sources of substructure can aid in design of future genetic studies. Jewish populations, among which association studies are often conducted, have a known history of migrations. As a necessary step in understanding population structure to conduct valid association studies of health behaviors among Israeli Jews, we investigated genetic signatures of this history and quantified substructure to facilitate future investigations of these phenotypes in this population. Using 32 autosomal STR markers and the program STRUCTURE, we differentiated between Ashkenazi (AJ, N = 135) and non-Ashkenazi (NAJ, N = 226) Jewish populations in the form of Northern and Southern geographic genetic components (AJ north 73%, south 23%, NAJ north 33%, south 60%). The ability to detect substructure within these closely related populations using a small STR panel was contingent on including additional samples representing major continental populations in the analyses. Although clustering programs such as STRUCTURE are designed to assign proportions of ancestry to individuals without reference population information, when Jewish samples were analyzed in the absence of proxy parental populations, substructure within Jews was not detected. Generally, for samples with a given grandparental country of birth, STRUCTURE assignment values to Northern, Southern, African and Asian clusters agreed with mitochondrial DNA and Y-chromosomal data from previous studies as well as historical records of migration and intermarriage.
2010-01-01
Background Detecting population substructure is a critical issue for association studies of health behaviors and other traits. Whether inherent in the population or an artifact of marker choice, determining aspects of a population's genetic history as potential sources of substructure can aid in design of future genetic studies. Jewish populations, among which association studies are often conducted, have a known history of migrations. As a necessary step in understanding population structure to conduct valid association studies of health behaviors among Israeli Jews, we investigated genetic signatures of this history and quantified substructure to facilitate future investigations of these phenotypes in this population. Results Using 32 autosomal STR markers and the program STRUCTURE, we differentiated between Ashkenazi (AJ, N = 135) and non-Ashkenazi (NAJ, N = 226) Jewish populations in the form of Northern and Southern geographic genetic components (AJ north 73%, south 23%, NAJ north 33%, south 60%). The ability to detect substructure within these closely related populations using a small STR panel was contingent on including additional samples representing major continental populations in the analyses. Conclusions Although clustering programs such as STRUCTURE are designed to assign proportions of ancestry to individuals without reference population information, when Jewish samples were analyzed in the absence of proxy parental populations, substructure within Jews was not detected. Generally, for samples with a given grandparental country of birth, STRUCTURE assignment values to Northern, Southern, African and Asian clusters agreed with mitochondrial DNA and Y-chromosomal data from previous studies as well as historical records of migration and intermarriage. PMID:20546593
Genetics Home Reference: non-alcoholic fatty liver disease
... different populations of microorganisms in the intestines (gut microbiota) on the breakdown and absorption of nutrients are ... Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterol Res Pract. 2016;2016: ...
Genetics Home Reference: oculopharyngeal muscular dystrophy
... This condition is much more common in the French-Canadian population of the Canadian province of Quebec, ... A, Perie S, Pouget J, Eymard B; Neurologists of French Neuromuscular Reference Centers CORNEMUS and FILNEMUS. Correlation between ...
High genetic load in an old isolated butterfly population.
Mattila, Anniina L K; Duplouy, Anne; Kirjokangas, Malla; Lehtonen, Rainer; Rastas, Pasi; Hanski, Ilkka
2012-09-11
We investigated inbreeding depression and genetic load in a small (N(e) ∼ 100) population of the Glanville fritillary butterfly (Melitaea cinxia), which has been completely isolated on a small island [Pikku Tytärsaari (PT)] in the Baltic Sea for at least 75 y. As a reference, we studied conspecific populations from the well-studied metapopulation in the Åland Islands (ÅL), 400 km away. A large population in Saaremaa, Estonia, was used as a reference for estimating genetic diversity and N(e). We investigated 58 traits related to behavior, development, morphology, reproductive performance, and metabolism. The PT population exhibited high genetic load (L = 1 - W(PT)/W(ÅL)) in a range of fitness-related traits including adult weight (L = 0.12), flight metabolic rate (L = 0.53), egg viability (L = 0.37), and lifetime production of eggs in an outdoor population cage (L = 0.70). These results imply extensive fixation of deleterious recessive mutations, supported by greatly reduced diversity in microsatellite markers and immediate recovery (heterosis) of egg viability and flight metabolic rate in crosses with other populations. There was no significant inbreeding depression in most traits due to one generation of full-sib mating. Resting metabolic rate was significantly elevated in PT males, which may be related to their short lifespan (L = 0.25). The demographic history and the effective size of the PT population place it in the part of the parameter space in which models predict mutation accumulation. This population exemplifies the increasingly common situation in fragmented landscapes, in which small and completely isolated populations are vulnerable to extinction due to high genetic load.
Integrating common and rare genetic variation in diverse human populations.
Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Dermitzakis, Emmanouil; Schaffner, Stephen F; Yu, Fuli; Peltonen, Leena; Dermitzakis, Emmanouil; Bonnen, Penelope E; Altshuler, David M; Gibbs, Richard A; de Bakker, Paul I W; Deloukas, Panos; Gabriel, Stacey B; Gwilliam, Rhian; Hunt, Sarah; Inouye, Michael; Jia, Xiaoming; Palotie, Aarno; Parkin, Melissa; Whittaker, Pamela; Yu, Fuli; Chang, Kyle; Hawes, Alicia; Lewis, Lora R; Ren, Yanru; Wheeler, David; Gibbs, Richard A; Muzny, Donna Marie; Barnes, Chris; Darvishi, Katayoon; Hurles, Matthew; Korn, Joshua M; Kristiansson, Kati; Lee, Charles; McCarrol, Steven A; Nemesh, James; Dermitzakis, Emmanouil; Keinan, Alon; Montgomery, Stephen B; Pollack, Samuela; Price, Alkes L; Soranzo, Nicole; Bonnen, Penelope E; Gibbs, Richard A; Gonzaga-Jauregui, Claudia; Keinan, Alon; Price, Alkes L; Yu, Fuli; Anttila, Verneri; Brodeur, Wendy; Daly, Mark J; Leslie, Stephen; McVean, Gil; Moutsianas, Loukas; Nguyen, Huy; Schaffner, Stephen F; Zhang, Qingrun; Ghori, Mohammed J R; McGinnis, Ralph; McLaren, William; Pollack, Samuela; Price, Alkes L; Schaffner, Stephen F; Takeuchi, Fumihiko; Grossman, Sharon R; Shlyakhter, Ilya; Hostetter, Elizabeth B; Sabeti, Pardis C; Adebamowo, Clement A; Foster, Morris W; Gordon, Deborah R; Licinio, Julio; Manca, Maria Cristina; Marshall, Patricia A; Matsuda, Ichiro; Ngare, Duncan; Wang, Vivian Ota; Reddy, Deepa; Rotimi, Charles N; Royal, Charmaine D; Sharp, Richard R; Zeng, Changqing; Brooks, Lisa D; McEwen, Jean E
2010-09-02
Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of
Palmero, Edenir I; Galvão, Henrique C R; Fernandes, Gabriela C; Paula, André E de; Oliveira, Junea C; Souza, Cristiano P; Andrade, Carlos E; Romagnolo, Luis G C; Volc, Sahlua; C Neto, Maximiliano; Sabato, Cristina; Grasel, Rebeca; Mauad, Edmundo; Reis, Rui M; Michelli, Rodrigo A D
2016-05-13
The identification of families at-risk for hereditary cancer is extremely important due to the prevention potential in those families. However, the number of Brazilian genetic services providing oncogenetic care is extremely low for the continental dimension of the country and its population. Therefore, at-risk patients do not receive appropriate assistance. This report describes the creation, structure and management of a cancer genetics service in a reference center for cancer prevention and treatment, the Barretos Cancer Hospital (BCH). The Oncogenetics Department (OD) of BCH offers, free of charge, to all patients/relatives with clinical criteria, the possibility to perform i) genetic counseling, ii) preventive examinations and iii) genetic testing with the best quality standards. The OD has a multidisciplinary team and is integrated with all specialties. The genetic counseling process consists (mostly) of two visits. In 2014, 614 individuals (371 families) were seen by the OD. To date, over 800 families were referred by the OD for genetic testing. The support provided by the Oncogenetics team is crucial to identify at-risk individuals and to develop preventive and personalized behaviors for each situation, not only to the upper-middle class population, but also to the people whose only possibility is the public health system.
Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses
Park, Danny S.; Brown, Brielin; Eng, Celeste; Huntsman, Scott; Hu, Donglei; Torgerson, Dara G.; Burchard, Esteban G.; Zaitlen, Noah
2015-01-01
Motivation: Approaches to identifying new risk loci, training risk prediction models, imputing untyped variants and fine-mapping causal variants from summary statistics of genome-wide association studies are playing an increasingly important role in the human genetics community. Current summary statistics-based methods rely on global ‘best guess’ reference panels to model the genetic correlation structure of the dataset being studied. This approach, especially in admixed populations, has the potential to produce misleading results, ignores variation in local structure and is not feasible when appropriate reference panels are missing or small. Here, we develop a method, Adapt-Mix, that combines information across all available reference panels to produce estimates of local genetic correlation structure for summary statistics-based methods in arbitrary populations. Results: We applied Adapt-Mix to estimate the genetic correlation structure of both admixed and non-admixed individuals using simulated and real data. We evaluated our method by measuring the performance of two summary statistics-based methods: imputation and joint-testing. When using our method as opposed to the current standard of ‘best guess’ reference panels, we observed a 28% decrease in mean-squared error for imputation and a 73.7% decrease in mean-squared error for joint-testing. Availability and implementation: Our method is publicly available in a software package called ADAPT-Mix available at https://github.com/dpark27/adapt_mix. Contact: noah.zaitlen@ucsf.edu PMID:26072481
Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M
2016-01-01
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.
2016-01-01
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722
Genetic diversity of the Arctic fox using SRAP markers.
Zhang, M; Bai, X J
2013-12-04
Sequence-related amplified polymorphism (SRAP) is a recently developed molecular marker technique that is stable, simple, reliable, and achieves moderate to high numbers of codominant markers. This study is the first to apply SRAP markers in a mammal, namely the Arctic fox. In order to investigate the genetic diversity of the Arctic fox and to provide a reference for use of its germplasm, we analyzed 7 populations of Arctic fox by SRAP. The genetic similarity coefficient, genetic distance, proportion of polymorphic loci, total genetic diversity (Ht), genetic diversity within populations (Hs), and genetic differentiation (Gst) were calculated using the Popgene software package. The results indicated abundant genetic diversity among the different populations of Arctic fox studied in China. The genetic similarity coefficient ranged from 0.1694 to 0.0417, genetic distance ranged from 0.8442 to 0.9592, and the proportion of polymorphic loci was smallest in the TS group. Genetic diversity ranged from 0.2535 to 0.3791, Ht was 0.3770, Hs was 0.3158, Gst was 0.1624, and gene flow (Nm) was estimated at 2.5790. Thus, a high level of genetic diversity and many genetic relationships were found in the populations of Arctic fox evaluated in this study.
Genetics Home Reference: Nakajo-Nishimura syndrome
... body and has been described only in the Japanese population. Beginning in infancy or early childhood, affected ... rare and has been described only in the Japanese population. About 30 cases have been reported in ...
Genetics Home Reference: primary sclerosing cholangitis
... with primary sclerosing cholangitis (PSC) in a southern European population. Dig Liver Dis. 2003 Aug;35(8): ... haplotypes in primary sclerosing cholangitis patients from five European populations. Tissue Antigens. 1999 May;53(5):459- ...
Sultana, Nasrin; Igawa, Takeshi; Islam, Mohammed Mafizul; Hasan, Mahmudul; Alam, Mohammad Shafiqul; Komaki, Shohei; Kawamura, Kensuke; Khan, Md Mukhlesur Rahman; Sumida, Masayuki
2017-03-17
The five frog species of the genus Hoplobatrachus are widely distributed in Asia and Africa, with Asia being considered the genus' origin. However, the evolutionary relationships of Asian Hoplobatrachus species remain ambiguous. Additionally, genetic diversity and fundamental differentiation processes within species have not been studied. We conducted molecular phylogenetic analysis on Asian Hoplobatrachus frogs and population genetic analysis on H. tigerinus in Bangladesh using the mitochondrial CYTB gene and 21 microsatellite markers. The resultant phylogenetic tree revealed monophyly in each species, notwithstanding the involvement of cryptic species in H. chinensis and H. tigerinus, which are evident from the higher genetic divergence between populations. Bayesian inference of population structure revealed genetic divergence between western and eastern H. tigerinus populations in Bangladesh, suggesting restricted gene flow caused by barriers posed by major rivers. However, genetic distances among populations were generally low. A discrete population is located in the low riverine delta region, which likely reflects long-distance dispersal. These results strongly suggest that the environment specific to this river system has maintained the population structure of H. tigerinus in this region.
Nelson, Sarah C.; Stilp, Adrienne M.; Papanicolaou, George J.; Taylor, Kent D.; Rotter, Jerome I.; Thornton, Timothy A.; Laurie, Cathy C.
2016-01-01
Imputation is commonly used in genome-wide association studies to expand the set of genetic variants available for analysis. Larger and more diverse reference panels, such as the final Phase 3 of the 1000 Genomes Project, hold promise for improving imputation accuracy in genetically diverse populations such as Hispanics/Latinos in the USA. Here, we sought to empirically evaluate imputation accuracy when imputing to a 1000 Genomes Phase 3 versus a Phase 1 reference, using participants from the Hispanic Community Health Study/Study of Latinos. Our assessments included calculating the correlation between imputed and observed allelic dosage in a subset of samples genotyped on a supplemental array. We observed that the Phase 3 reference yielded higher accuracy at rare variants, but that the two reference panels were comparable at common variants. At a sample level, the Phase 3 reference improved imputation accuracy in Hispanic/Latino samples from the Caribbean more than for Mainland samples, which we attribute primarily to the additional reference panel samples available in Phase 3. We conclude that a 1000 Genomes Project Phase 3 reference panel can yield improved imputation accuracy compared with Phase 1, particularly for rare variants and for samples of certain genetic ancestry compositions. Our findings can inform imputation design for other genome-wide association studies of participants with diverse ancestries, especially as larger and more diverse reference panels continue to become available. PMID:27346520
Li, Y. H.; Chu, H. P.; Jiang, Y. N.; Lin, C. Y.; Li, S. H.; Li, K. T.; Weng, G. J.; Cheng, C. C.; Lu, D. J.; Ju, Y. T.
2014-01-01
The Lanyu is a miniature pig breed indigenous to Lanyu Island, Taiwan. It is distantly related to Asian and European pig breeds. It has been inbred to generate two breeds and crossed with Landrace and Duroc to produce two hybrids for laboratory use. Selecting sets of informative genetic markers to track the genetic qualities of laboratory animals and stud stock is an important function of genetic databases. For more than two decades, Lanyu derived breeds of common ancestry and crossbreeds have been used to examine the effectiveness of genetic marker selection and optimal approaches for individual assignment. In this paper, these pigs and the following breeds: Berkshire, Duroc, Landrace and Yorkshire, Meishan and Taoyuan, TLRI Black Pig No. 1, and Kaohsiung Animal Propagation Station Black pig are studied to build a genetic reference database. Nineteen microsatellite markers (loci) provide information on genetic variation and differentiation among studied breeds. High differentiation index (FST) and Cavalli-Sforza chord distances give genetic differentiation among breeds, including Lanyu’s inbred populations. Inbreeding values (FIS) show that Lanyu and its derived inbred breeds have significant loss of heterozygosity. Individual assignment testing of 352 animals was done with different numbers of microsatellite markers in this study. The testing assigned 99% of the animals successfully into their correct reference populations based on 9 to 14 markers ranking D-scores, allelic number, expected heterozygosity (HE) or FST, respectively. All miss-assigned individuals came from close lineage Lanyu breeds. To improve individual assignment among close lineage breeds, microsatellite markers selected from Lanyu populations with high polymorphic, heterozygosity, FST and D-scores were used. Only 6 to 8 markers ranking HE, FST or allelic number were required to obtain 99% assignment accuracy. This result suggests empirical examination of assignment-error rates is required if discernible levels of co-ancestry exist. In the reference group, optimum assignment accuracy was achievable achieved through a combination of different markers by ranking the heterozygosity, FST and allelic number of close lineage populations. PMID:25049996
Gómez-Sucerquia, Leysa Jackeline; Triana-Chávez, Omar; Jaramillo-Ocampo, Nicolás
2009-09-01
Previous studies have reported genetic differences between wild-caught sylvatic, domestic and laboratory pop-ulations of several Triatominae species. The differences between sylvatic and laboratory colonies parallel are similar to the differences observed between sylvatic and domestic populations. Laboratory colonies are frequently used as references for field populations, but the consequences of founder events on the genetic makeup of laboratory or domestic populations are rarely quantified. Our goal was to quantify the genetic change in Rhodnius pallescens populations artificially submitted to founder effects via laboratory colonization. We compared the genetic makeup of two sylvatic populations and their laboratory descendants using a panel of 10 microsatellite markers. Both sylvatic populations were initially collected from palm trees, but the colonies differed in the number of founder insects and amount of time kept in the laboratory. We evaluated allelic polymorphism, differences between expected and observed heterozygosity, estimates of population differentiation (Fst) and inbreeding (Fis, Fit) and cluster analyses based on Nei's distances. We found a unique genetic structure for each sample population, with significant differentiation between the field insects and each of the laboratory generations. These analyses showed strong founder effects and showed that genetic drift had led to a genetic equilibrium over several generations of isolation. Our results suggest that laboratory colonies of R. pallescens have a different genetic structure than their wild relatives and similar processes likely affect other Triatominae laboratory stocks.
Plue, Jan; Vandepitte, Katrien; Honnay, Olivier; Cousins, Sara A O
2017-09-01
Habitat fragmentation threatens global biodiversity. Many plant species persist in habitat fragments via persistent life cycle stages such as seed banks, generating a species extinction debt. Here, seed banks are hypothesized to cause a temporal delay in the expected loss of genetic variation, which can be referred to as a genetic extinction debt, as a possible mechanism behind species extinction debts. Fragmented grassland populations of Campanula rotundifolia were examined for evidence of a genetic extinction debt, investigating if the seed bank contributed to the extinction debt build-up. The genetic make-up of 15 above- and below-ground populations was analysed in relation to historical and current levels of habitat fragmentation, both separately and combined. Genetic diversity was highest in above-ground populations, though below-ground populations contained 8 % of unique alleles that were absent above-ground. Above-ground genetic diversity and composition were related to historical patch size and connectivity, but not current patch characteristics, suggesting the presence of a genetic extinction debt in the above-ground populations. No such relationships were found for the below-ground populations. Genetic diversity measures still showed a response to historical but not present landscape characteristics when combining genetic diversity of the above- and below-ground populations. The fragmented C. rotundifolia populations exhibited a genetic extinction debt. However, the role of the seed banks in the build-up of this extinction debt is probably small, since the limited, unique genetic diversity of the seed bank alone seems unable to counter the detrimental effects of habitat fragmentation on the population genetic structure of C. rotundifolia. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Genetic determinants of prepubertal and pubertal growth and development.
Thomis, Martine A; Towne, Bradford
2006-12-01
This article surveys the current general understanding of genetic influences on within- and between-population variation in growth and development in the context of establishing an International Growth Standard for Preadolescent and Adolescent Children. Traditional genetic epidemiologic analysis methods are reviewed, and evidence from family studies for genetic effects on different measures of growth and development is then presented. Findings from linkage and association studies seeking to identify specific genomic locations and allelic variants of genes influencing variation in growth and maturation are then summarized. Special mention is made of the need to study the interactions between genes and environments. At present, specific genes and polymorphisms contributing to variation in growth and maturation are only beginning to be identified. Larger genetic epidemiologic studies are needed in different parts of the world to better explore population differences in gene frequencies and gene-environment interactions. As advances continue to be made in molecular and statistical genetic methods, the genetic architecture of complex processes, including those of growth and development, will become better elucidated. For now, it can only be concluded that although the fundamental genetic underpinnings of the growth and development of children worldwide are likely to be essentially the same, there are also likely to be differences between populations in the frequencies of allelic gene variants that influence growth and maturation and in the nature of gene-environment interactions. This does not necessarily preclude an international growth reference, but it does have important implications for the form that such a reference might ultimately take.
Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.
Mason, Annaliese S; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A P; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N
2016-02-01
Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. Copyright © 2016 by the Genetics Society of America.
A population genetic analysis of the midget faded rattlesnake in Wyoming
Oyler-McCance, Sara J.; Parker, J.M.
2010-01-01
Little is known about the population biology of midget faded rattlesnakes, a sensitive subspecies of the Western Rattlesnake, despite conservation efforts to protect them. We conducted a molecular genetic study of midget faded rattlesnakes in southwestern Wyoming to investigate population genetic structure in this area, particularly with reference to Flaming Gorge Reservoir and its associated human activities, and to document levels of genetic diversity. We genotyped 229 snakes from 11 sampling sites using 9 microsatellite loci. We found significant levels of genetic structure among sites that were better explained by geographic region and isolation by distance than by position relative to waterways. Sites on either side of the reservoir at its widest point were not significantly different. Six of the sites showed signatures of a population bottleneck using an alpha value of 0.05. Three of these bottlenecked sites (the three most northern) were the most genetically distinct and occur in areas of greatest impact from human activity.
Environmental change, phenotypic plasticity, and genetic compensation.
Grether, Gregory F
2005-10-01
When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; ...
2016-01-25
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less
Global Genetic Diversity of Aedes aegypti
Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D.; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi bin; Fernandez-Salas, Ildefonso; Kamal, Hany A.; Kamgang, Basile; Khater, Emad I. M.; Kramer, Laura D.; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B.; Saleh, Amag A.; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A.; Tabachnick, Walter J.; Troyo, Adriana; Powell, Jeffrey R.
2016-01-01
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti, from 30 countries in six continents and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya) the two subspecies remain genetically distinct whereas in urban settings they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats, and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th Centuries was followed by its introduction to Asia in the late 19th Century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l.. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for methods using genetic modification of populations. PMID:27671732
Volkova, P Yu; Geras'kin, S A; Horemans, N; Makarenko, E S; Saenen, E; Duarte, G T; Nauts, R; Bondarenko, V S; Jacobs, G; Voorspoels, S; Kudin, M
2018-01-01
Genetic and epigenetic changes were investigated in chronically irradiated Scots pine (Pinus sylvestris L.) populations from territories that were heavily contaminated by radionuclides as result of the Chernobyl Nuclear Power Plant accident. In comparison to the reference site, the genetic diversity revealed by electrophoretic mobility of AFLPs was found to be significantly higher at the radioactively contaminated areas. In addition, the genome of pine trees was significantly hypermethylated at 4 of the 7 affected sites. Copyright © 2017 Elsevier Ltd. All rights reserved.
McKenna, James E.
2000-01-01
Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.
Serrano-Vázquez, Angélica; Pérez-Juárez, Horacio; Poot-Hernández, Augusto C.; González, Enrique; Hernández, Eric; Nieves-Ramírez, Miriam E.; Magaña, Ulises; Eguiarte, Luis E.; Piñero, Daniel
2018-01-01
Blastocystis subtype 3 (ST3) is a parasitic protist found in the digestive tract of symptomatic and asymptomatic humans around the world. While this parasite exhibits a high prevalence in the human population, its true geographic distribution and global genetic diversity are still unknown. This gap in knowledge limits the understanding of the spread mechanisms, epidemiology, and impact that this parasite has on human populations. Herein, we provided new data on the geographical distribution and genetic diversity of Blastocystis ST3 from a rural human population in Mexico. To do so, we collected and targeted the SSU-rDNA region in fecal samples from this population and further compared its genetic diversity and structure with that previously observed in populations of Blastocystis ST3 from other regions of the planet. Our analyses reveled that diversity of Blastocystis ST3 showed a high haplotype diversity and genetic structure to the world level; however, they were low in the Morelos population. The haplotype network revealed a common widespread haplotype from which the others were generated recently. Finally, our results suggested a recent expansion of the diversity of Blastocystis ST3 worldwide. PMID:29744356
Rojas-Velázquez, Liliana; Morán, Patricia; Serrano-Vázquez, Angélica; Fernández, Leonardo D; Pérez-Juárez, Horacio; Poot-Hernández, Augusto C; Portillo, Tobías; González, Enrique; Hernández, Eric; Partida-Rodríguez, Oswaldo; Nieves-Ramírez, Miriam E; Magaña, Ulises; Torres, Javier; Eguiarte, Luis E; Piñero, Daniel; Ximénez, Cecilia
2018-01-01
Blastocystis subtype 3 (ST3) is a parasitic protist found in the digestive tract of symptomatic and asymptomatic humans around the world. While this parasite exhibits a high prevalence in the human population, its true geographic distribution and global genetic diversity are still unknown. This gap in knowledge limits the understanding of the spread mechanisms, epidemiology, and impact that this parasite has on human populations. Herein, we provided new data on the geographical distribution and genetic diversity of Blastocystis ST3 from a rural human population in Mexico. To do so, we collected and targeted the SSU-rDNA region in fecal samples from this population and further compared its genetic diversity and structure with that previously observed in populations of Blastocystis ST3 from other regions of the planet. Our analyses reveled that diversity of Blastocystis ST3 showed a high haplotype diversity and genetic structure to the world level; however, they were low in the Morelos population. The haplotype network revealed a common widespread haplotype from which the others were generated recently. Finally, our results suggested a recent expansion of the diversity of Blastocystis ST3 worldwide.
Efremov, V V
2005-05-01
The effect of subdivision on the effective size (Ne) of the early-run sockeye salmon Oncorhynchus nerka population of Lake Azabach'e (Kamchatka Peninsula) has been studied. The mode of this effect is determined by the relative productivity of the subpopulations and its magnitude, by the rate of individual migration among subpopulations and genetic differentiation. If the contributions of subpopulations (offspring numbers) are different, genetic differentiation can reduce the Ne of the subdivided population. At equal subpopulation contributions, genetic differentiation always increases the Ne of the subdivided population in comparison with a panmictic population. We have found that all sockeye salmon subpopulations of Azabach'e Lake produce equal offspring numbers contributing to the next generation. The genetic differentiation between sockeye salmon subpopulations is low, and the subdivision increases the Ne of the early-run race with reference to the sum of the effective sizes of the subpopulations by as little as 2%.
Genetics Home Reference: dihydrolipoamide dehydrogenase deficiency
... begin anytime from infancy to adulthood, is the primary symptom. The liver problems are usually associated with recurrent vomiting and ... of Ashkenazi Jewish descent. This population typically has liver disease as the primary symptom. In other populations, the prevalence of dihydrolipoamide ...
Culley, Theresa M.; Sbita, Sarah J.; Wick, Anne
2007-01-01
Background and Aims Fragmentation of natural habitats can negatively impact plant populations by leading to reduced genetic variation and increased genetic distance as populations become geographically and genetically isolated from one another. To test whether such detrimental effects occur within an urban landscape, the genetic structure of six populations of the perennial herb Viola pubescens was characterized in the metropolitan area of Greater Cincinnati in southwestern Ohio, USA. Methods Using three inter-simple sequence repeat (ISSR) markers, 51 loci amplified across all urban populations. For reference, four previously examined agricultural populations in central/northern Ohio and a geographically distant population in Michigan were also included in the analysis. Key Results Urban populations retained high levels of genetic variation (percentage of polymorphic loci, Pp = 80·7 %) with similar genetic distances among populations and an absence of unique alleles. Geographic and genetic distances were correlated with one another, and all populations grouped according to region. Individuals from urban populations clustered together and away from individuals from agricultural populations and from the Michigan population in a principle coordinates analysis. Hierarchical analysis of molecular variance (AMOVA) revealed that most of the genetic variability was partitioned within populations (69·1 %) and among groups (22·2 %) of southwestern Ohio, central/northern Ohio and Michigan groups. Mean Fst was 0·308, indicating substantial population differentiation. Conclusions It is concluded that urban fragmentation does not appear to impede gene flow in V. pubescens in southwestern Ohio. These results are consistent with life history traits of this species and the possibility of high insect abundance in urban habitats due to diverse floral resources and nesting sites. Combined with the cleistogamous breeding system of this species, pollinator availability in the urban matrix may buffer populations against detrimental effects of habitat fragmentation, at least in larger forest fragments. Consequently, it may be inappropriate to generalize about genetic effects of fragmentation across landscapes or even across plant species with different pollination systems. PMID:17556381
Dahl, Christopher R.; Bickham, John W.; Wickliffe, Jeffery K.; Custer, Thomas W.
2001-01-01
DNA sequence analysis of a 215 base-pair region of the mitochondrial cytochrome b gene was used to examine genetic variation and search for evidence of an increased mutation rate in black-crowned night-herons. We examined five populations exposed to environmental contamination (primarily PAHs and PCBs) and one reference population from the eastern U.S. There was no evidence of a high mutation rate even within populations previously shown to exhibit increased variation in DNA content among somatic cells as a result of petroleum exposure. Three haplotypes were observed among 99 individuals. The low level of variability could be evidence for a genetic bottleneck, or that cytochrome b is too conservative for use in population genetic studies of this species. With the exception of one population from Louisiana, pair-wise Phist estimates were very low, indicative of little population structure and potentially high rates of effective migration among populations.
NASA Astrophysics Data System (ADS)
von Beeren, Christoph; Stoeckle, Mark Y.; Xia, Joyce; Burke, Griffin; Kronauer, Daniel J. C.
2015-02-01
DNA barcoding promises to be a useful tool to identify pest species assuming adequate representation of genetic variants in a reference library. Here we examined mitochondrial DNA barcodes in a global urban pest, the American cockroach (Periplaneta americana). Our sampling effort generated 284 cockroach specimens, most from New York City, plus 15 additional U.S. states and six other countries, enabling the first large-scale survey of P. americana barcode variation. Periplaneta americana barcode sequences (n = 247, including 24 GenBank records) formed a monophyletic lineage separate from other Periplaneta species. We found three distinct P. americana haplogroups with relatively small differences within (<=0.6%) and larger differences among groups (2.4%-4.7%). This could be interpreted as indicative of multiple cryptic species. However, nuclear DNA sequences (n = 77 specimens) revealed extensive gene flow among mitochondrial haplogroups, confirming a single species. This unusual genetic pattern likely reflects multiple introductions from genetically divergent source populations, followed by interbreeding in the invasive range. Our findings highlight the need for comprehensive reference databases in DNA barcoding studies, especially when dealing with invasive populations that might be derived from multiple genetically distinct source populations.
Genetic Structure and Gene Flows within Horses: A Genealogical Study at the French Population Scale
Pirault, Pauline; Danvy, Sophy; Verrier, Etienne; Leroy, Grégoire
2013-01-01
Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average of −0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges. PMID:23630596
Genotype imputation in a coalescent model with infinitely-many-sites mutation
Huang, Lucy; Buzbas, Erkan O.; Rosenberg, Noah A.
2012-01-01
Empirical studies have identified population-genetic factors as important determinants of the properties of genotype-imputation accuracy in imputation-based disease association studies. Here, we develop a simple coalescent model of three sequences that we use to explore the theoretical basis for the influence of these factors on genotype-imputation accuracy, under the assumption of infinitely-many-sites mutation. Employing a demographic model in which two populations diverged at a given time in the past, we derive the approximate expectation and variance of imputation accuracy in a study sequence sampled from one of the two populations, choosing between two reference sequences, one sampled from the same population as the study sequence and the other sampled from the other population. We show that under this model, imputation accuracy—as measured by the proportion of polymorphic sites that are imputed correctly in the study sequence—increases in expectation with the mutation rate, the proportion of the markers in a chromosomal region that are genotyped, and the time to divergence between the study and reference populations. Each of these effects derives largely from an increase in information available for determining the reference sequence that is genetically most similar to the sequence targeted for imputation. We analyze as a function of divergence time the expected gain in imputation accuracy in the target using a reference sequence from the same population as the target rather than from the other population. Together with a growing body of empirical investigations of genotype imputation in diverse human populations, our modeling framework lays a foundation for extending imputation techniques to novel populations that have not yet been extensively examined. PMID:23079542
Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis
Mason, Annaliese S.; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E.; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A. P.; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N.
2016-01-01
Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. PMID:26614742
Effects of population outcrossing on rotifer fitness
2010-01-01
Background Outcrossing between populations can exert either positive or negative effects on offspring fitness. Cyclically parthenogenetic rotifers, like other continental zooplankters, show high genetic differentiation despite their high potential for passive dispersal. Within this context, the effects of outcrossing may be relevant in modulating gene flow between populations through selection for or against interpopulation hybrids. Nevertheless, these effects remain practically unexplored in rotifers. Here, the consequences of outcrossing on the rotifer Brachionus plicatilis were investigated. Cross-mating experiments were performed between a reference population and three alternative populations that differed in their genetic distance with regard to the former. Two offspring generations were obtained: F1 and BC ('backcross'). Fitness of the outcrossed offspring was compared with fitness of the offspring of the reference population for both generations and for three different between-population combinations. Four fitness components were measured throughout the rotifer life cycle: the diapausing egg-hatching proportion, clone viability (for the clones originating from diapausing eggs), initial net growth rate R for each viable clone, and the proportion of male-producing clones. Additionally, both the parental fertilisation proportion and a compound fitness measure, integrating the complete life cycle, were estimated. Results In the F1 generation, hybrid vigour was detected for the diapausing egg-hatching proportion, while R was lower in the outcrossed offspring than in the offspring of the reference population. Despite these contrasting results, hybrid vigour was globally observed for the compound measure of fitness. Moreover, there was evidence that this vigour could increase with the genetic differentiation of the outcrossed populations. In the BC generation, the hybrid vigour detected for the egg-hatching proportion in the F1 generation reverted to outbreeding depression. By contrast, signs of hybrid vigour were observed for clone viability and R. The opposing trends observed for different life-cycle stages yielded a global pattern of hybrid vigour in the BC generation for two out of the three between-population comparisons. Conclusions Results suggest that outbreeding depression does not constitute a barrier to gene flow. In newly-founded populations, where the population size is still small, dilution of immigrants should be low. Thus, a lack of outbreeding depression would allow gene flow to have an impact on the genetic composition of these populations. PMID:20955598
Hsueh, Wen-Chi; He, Qimei; Willcox, D. Craig; Nievergelt, Caroline M.; Donlon, Timothy A.; Kwok, Pui-Yan; Suzuki, Makoto; Willcox, Bradley J.
2014-01-01
Isolated populations have advantages for genetic studies of longevity from decreased haplotype diversity and long-range linkage disequilibrium. This permits smaller sample sizes without loss of power, among other utilities. Little is known about the genome of the Okinawans, a potential population isolate, recognized for longevity. Therefore, we assessed genetic diversity, structure, and admixture in Okinawans, and compared this with Caucasians, Chinese, Japanese, and Africans from HapMap II, genotyped on the same Affymetrix GeneChip Human Mapping 500K array. Principal component analysis, haplotype coverage, and linkage disequilibrium decay revealed a distinct Okinawan genome—more homogeneity, less haplotype diversity, and longer range linkage disequilibrium. Population structure and admixture analyses utilizing 52 global reference populations from the Human Genome Diversity Cell Line Panel demonstrated that Okinawans clustered almost exclusively with East Asians. Sibling relative risk (λs) analysis revealed that siblings of Okinawan centenarians have 3.11 times (females) and 3.77 times (males) more likelihood of centenarianism. These findings suggest that Okinawans are genetically distinct and share several characteristics of a population isolate, which are prone to develop extreme phenotypes (eg, longevity) from genetic drift, natural selection, and population bottlenecks. These data support further exploration of genetic influence on longevity in the Okinawans. PMID:24444611
Global genetic diversity of Aedes aegypti.
Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R
2016-11-01
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations. © 2016 John Wiley & Sons Ltd.
Liu, Wei; Yin, Dongxue; Liu, Jianjun; Li, Na
2014-01-01
Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation.
Liu, Wei; Yin, Dongxue; Liu, Jianjun; Li, Na
2014-01-01
Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation. PMID:25333788
Theodorakis, Christopher W.; Bickham, John W.; Lamb, Trip; Medica, Philip A.; Lyne, T. Barrett
2001-01-01
We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations.
Li, X; Lund, M S; Zhang, Q; Costa, C N; Ducrocq, V; Su, G
2016-06-01
The present study investigated the improvement of prediction reliabilities for 3 production traits in Brazilian Holsteins that had no genotype information by adding information from Nordic and French Holstein bulls that had genotypes. The estimated across-country genetic correlations (ranging from 0.604 to 0.726) indicated that an important genotype by environment interaction exists between Brazilian and Nordic (or Nordic and French) populations. Prediction reliabilities for Brazilian genotyped bulls were greatly increased by including data of Nordic and French bulls, and a 2-trait single-step genomic BLUP performed much better than the corresponding pedigree-based BLUP. However, only a minor improvement in prediction reliabilities was observed in nongenotyped Brazilian cows. The results indicate that although there is a large genotype by environment interaction, inclusion of a foreign reference population can improve accuracy of genetic evaluation for the Brazilian Holstein population. However, a Brazilian reference population is necessary to obtain a more accurate genomic evaluation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Adaptation of human skin color in various populations.
Deng, Lian; Xu, Shuhua
2018-01-01
Skin color is a well-recognized adaptive trait and has been studied extensively in humans. Understanding the genetic basis of adaptation of skin color in various populations has many implications in human evolution and medicine. Impressive progress has been made recently to identify genes associated with skin color variation in a wide range of geographical and temporal populations. In this review, we discuss what is currently known about the genetics of skin color variation. We enumerated several cases of skin color adaptation in global modern humans and archaic hominins, and illustrated why, when, and how skin color adaptation occurred in different populations. Finally, we provided a summary of the candidate loci associated with pigmentation, which could be a valuable reference for further evolutionary and medical studies. Previous studies generally indicated a complex genetic mechanism underlying the skin color variation, expanding our understanding of the role of population demographic history and natural selection in shaping genetic and phenotypic diversity in humans. Future work is needed to dissect the genetic architecture of skin color adaptation in numerous ethnic minority groups around the world, which remains relatively obscure compared with that of major continental groups, and to unravel the exact genetic basis of skin color adaptation.
Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep.
Qwabe, Sithembele O; van Marle-Köster, Este; Visser, Carina
2013-02-01
The Namaqua Afrikaner is an endangered sheep breed indigenous to South Africa, primarily used in smallholder farming systems. Genetic characterization is essential for the breed's conservation and utilization. In this study, a genetic characterization was performed on 144 Namaqua Afrikaner sheep kept at the Karakul Experimental Station (KES), Carnarvon Experimental Station (CES), and a private farm Welgeluk (WGK) using 22 microsatellite markers. The mean number of alleles observed was low (3.7 for KES, 3.9 for CES, and 4.2 for WGK). Expected heterozygosity values across loci ranged between 46 % for WGK, 48 % for KES, and 55 % for CES, indicating low to moderate genetic variation. The analysis of molecular variance revealed that 89.5 % of the genetic variation was due to differences within populations. The population structure confirmed the differentiation of three clusters with high relationships between the CES and WGK populations. In the population structure comparison with Pedi and South African Mutton Merino sheep, limited hybridization between the Namaqua Afrikaner sheep and both of these breeds was observed. The results of this study will serve as a reference for genetic management and conservation of Namaqua Afrikaner sheep.
Loci Contributing to Boric Acid Toxicity in Two Reference Populations of Drosophila melanogaster
Najarro, Michael A.; Hackett, Jennifer L.; Macdonald, Stuart J.
2017-01-01
Populations maintain considerable segregating variation in the response to toxic, xenobiotic compounds. To identify variants associated with resistance to boric acid, a commonly-used household insecticide with a poorly understood mechanism of action, we assayed thousands of individuals from hundreds of strains. Using the Drosophila Synthetic Population Resource (DSPR), a multi-parental population (MPP) of inbred genotypes, we mapped six QTL to short genomic regions containing few protein-coding genes (3–188), allowing us to identify plausible candidate genes underlying resistance to boric acid toxicity. One interval contains multiple genes from the cytochrome P450 family, and we show that ubiquitous RNAi of one of these genes, Cyp9b2, markedly reduces resistance to the toxin. Resistance to boric acid is positively correlated with caffeine resistance. The two phenotypes additionally share a pair of QTL, potentially suggesting a degree of pleiotropy in the genetic control of resistance to these two distinct xenobiotics. Finally, we screened the Drosophila Genetic Reference Panel (DGRP) in an attempt to identify sequence variants within mapped QTL that are associated with boric acid resistance. The approach was largely unsuccessful, with only one QTL showing any associations at QTL-specific 20% False Discovery Rate (FDR) thresholds. Nonetheless, these associations point to a potential candidate gene that can be targeted in future validation efforts. Although the mapping data resulting from the two reference populations do not clearly overlap, our work provides a starting point for further genetic dissection of the processes underlying boric acid toxicity in insects. PMID:28592646
Loci Contributing to Boric Acid Toxicity in Two Reference Populations of Drosophila melanogaster.
Najarro, Michael A; Hackett, Jennifer L; Macdonald, Stuart J
2017-06-07
Populations maintain considerable segregating variation in the response to toxic, xenobiotic compounds. To identify variants associated with resistance to boric acid, a commonly-used household insecticide with a poorly understood mechanism of action, we assayed thousands of individuals from hundreds of strains. Using the Drosophila Synthetic Population Resource (DSPR), a multi-parental population (MPP) of inbred genotypes, we mapped six QTL to short genomic regions containing few protein-coding genes (3-188), allowing us to identify plausible candidate genes underlying resistance to boric acid toxicity. One interval contains multiple genes from the cytochrome P450 family, and we show that ubiquitous RNAi of one of these genes, Cyp9b2 , markedly reduces resistance to the toxin. Resistance to boric acid is positively correlated with caffeine resistance. The two phenotypes additionally share a pair of QTL, potentially suggesting a degree of pleiotropy in the genetic control of resistance to these two distinct xenobiotics. Finally, we screened the Drosophila Genetic Reference Panel (DGRP) in an attempt to identify sequence variants within mapped QTL that are associated with boric acid resistance. The approach was largely unsuccessful, with only one QTL showing any associations at QTL-specific 20% False Discovery Rate (FDR) thresholds. Nonetheless, these associations point to a potential candidate gene that can be targeted in future validation efforts. Although the mapping data resulting from the two reference populations do not clearly overlap, our work provides a starting point for further genetic dissection of the processes underlying boric acid toxicity in insects. Copyright © 2017 Najarro et al.
Saavedra-Sotelo, Nancy C; Calderon-Aguilera, Luis E; Reyes-Bonilla, Héctor; Paz-García, David A; López-Pérez, Ramón A; Cupul-Magaña, Amilcar; Cruz-Barraza, José A; Rocha-Olivares, Axayácatl
2013-01-01
The coral fauna of the Eastern Tropical Pacific (ETP) is depauperate and peripheral; hence, it has drawn attention to the factors allowing its survival. Here, we use a genetic seascape approach and ecological niche modeling to unravel the environmental factors correlating with the genetic variation of Porites panamensis, a hermatypic coral endemic to the ETP. Specifically, we test if levels of diversity and connectivity are higher among abundant than among depauperate populations, as expected by a geographically relaxed version of the Abundant Center Hypothesis (rel-ACH). Unlike the original ACH, referring to a geographical center of distribution of maximal abundance, the rel-ACH refers only to a center of maximum abundance, irrespective of its geographic position. The patterns of relative abundance of P. panamensis in the Mexican Pacific revealed that northern populations from Baja California represent its center of abundance; and southern depauperate populations along the continental margin are peripheral relative to it. Genetic patterns of diversity and structure of nuclear DNA sequences (ribosomal DNA and a single copy open reading frame) and five alloenzymatic loci partially agreed with rel-ACH predictions. We found higher diversity levels in peninsular populations and significant differentiation between peninsular and continental colonies. In addition, continental populations showed higher levels of differentiation and lower connectivity than peninsular populations in the absence of isolation by distance in each region. Some discrepancies with model expectations may relate to the influence of significant habitat discontinuities in the face of limited dispersal potential. Environmental data analyses and niche modeling allowed us to identify temperature, water clarity, and substrate availability as the main factors correlating with patterns of abundance, genetic diversity, and structure, which may hold the key to the survival of P. panamensis in the face of widespread environmental degradation. PMID:24324860
The peopling of the Americas and the origin of the Beringian occupation model.
Mulligan, Connie J; Szathmáry, Emőke J E
2017-03-01
The current model for peopling of the Americas involves divergence from an ancestral Asian population followed by a period of population isolation and genetic diversification in Beringia, and finally, a rapid expansion into and throughout the Americas. Studies in the 1970s sought to characterize the biological relationships between different indigenous populations and first proposed an occupation of Beringia. More recent studies using molecular genetic markers often neglect to reference early works that laid the groundwork for current colonization models. We address this matter, and briefly summarize the literature and technological advances that contributed to our current understanding of the peopling of the Americas. Furthermore, we argue that describing the process of peopling of the Americas as "migrations from Asia" minimizes the significant genetic diversification that occurred outside of Asia, and offends indigenous Americans by discounting their origin narratives and land rights. Rather than referring to the indigenous peoples of the Americas as "migrants" or "immigrants," we recommend consistency in the language used to describe all post-glacial expansions of people into Asia, Europe and the Americas. © 2017 Wiley Periodicals, Inc.
De Groot, G. A.; During, H. J.; Ansell, S. W.; Schneider, H.; Bremer, P.; Wubs, E. R. J.; Maas, J. W.; Korpelainen, H.; Erkens, R. H. J.
2012-01-01
Background and Aims Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal. Methods Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos. Key Results A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species. Conclusions The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades. PMID:22323427
Neutral Theory is the Foundation of Conservation Genetics.
Yoder, Anne D; Poelstra, Jelmer; Tiley, George P; Williams, Rachel
2018-04-16
Kimura's neutral theory of molecular evolution has been essential to virtually every advance in evolutionary genetics, and by extension, is foundational to the field of conservation genetics. Conservation genetics utilizes the key concepts of neutral theory to identify species and populations at risk of losing evolutionary potential by detecting patterns of inbreeding depression and low effective population size. In turn, this information can inform the management of organisms and their habitat providing hope for the long-term preservation of both. We expand upon Avise's "inventorial" and "functional" categories of conservation genetics by proposing a third category that is linked to the coalescent and that we refer to as "process-driven." It is here that connections between Kimura's theory and conservation genetics are strongest. Process-driven conservation genetics can be especially applied to large genomic datasets to identify patterns of historical risk, such as population bottlenecks, and accordingly, yield informed intuitions for future outcomes. By examining inventorial, functional, and process-driven conservation genetics in sequence, we assess the progression from theory, to data collection and analysis, and ultimately, to the production of hypotheses that can inform conservation policies.
Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E
2015-04-01
Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.
A Reference Genome for US Rice
USDA-ARS?s Scientific Manuscript database
The development of reference genomes for rice has served as means for understanding the allelic diversity and genetic structure of a cereal grain that feeds half of the world. It has long been understood that Oryza sativa diverged into two major sub-populations Indica and Japonica, over 400 K years ...
Munger, Steven C.; Raghupathy, Narayanan; Choi, Kwangbom; Simons, Allen K.; Gatti, Daniel M.; Hinerfeld, Douglas A.; Svenson, Karen L.; Keller, Mark P.; Attie, Alan D.; Hibbs, Matthew A.; Graber, Joel H.; Chesler, Elissa J.; Churchill, Gary A.
2014-01-01
Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. PMID:25236449
Hunter, MJ; Hippman, Catriona; Honer, William G; Austin, Jehannine C.
2014-01-01
Purpose Recent studies have shown that individuals with schizophrenia and their family members are interested in genetic counseling, but few have received this service. We conducted an exploratory, retrospective study to describe (a) the population of individuals who were referred to the provincial program for genetic counseling for a primary indication of schizophrenia, and (b) trends in number of referrals between 1968 and 2007. Methods Referrals for a primary indication of schizophrenia were identified through the provincial program database. Charts were reviewed and the following information was recorded: discipline of referring physician, demographics, psychiatric diagnosis, referred individual’s and partner’s (if applicable) family history, and any current pregnancy history. Data were characterized using descriptive statistics. Results Between 1968 and 2007, 288 referrals were made for a primary indication of schizophrenia. Most referrals were made: (a) for individuals who had a first-degree family member with schizophrenia, rather than for affected individuals, (b) for preconception counseling, and (c) by family physicians (69%), with only 2% by psychiatrists. Conclusions In British Columbia, individuals affected with schizophrenia and their family members are rarely referred for psychiatric genetic counseling. There is a need to identify barriers to psychiatric genetic counseling and develop strategies to improve access. PMID:20034078
Effect of cow reference group on validation reliability of genomic evaluation.
Koivula, M; Strandén, I; Aamand, G P; Mäntysaari, E A
2016-06-01
We studied the effect of including genomic data for cows in the reference population of single-step evaluations. Deregressed individual cow genetic evaluations (DRP) from milk production evaluations of Nordic Red Dairy cattle were used to estimate the single-step breeding values. Validation reliability and bias of the evaluations were calculated with four data sets including different amount of DRP record information from genotyped cows in the reference population. The gain in reliability was from 2% to 4% units for the production traits, depending on the used DRP data and the amount of genomic data. Moreover, inclusion of genotyped bull dams and their genotyped daughters seemed to create some bias in the single-step evaluation. Still, genotyping cows and their inclusion in the reference population is advantageous and should be encouraged.
Polymorphic Alu insertions among Mayan populations.
Herrera, R J; Rojas, D P; Terreros, M C
2007-01-01
The Mayan homeland within Mesoamerica spans five countries: Belize, El Salvador, Guatemala, Honduras and Mexico. There are indications that the people we call the Maya migrated from the north to the highlands of Guatemala as early as 4000 B.C. Their existence was village-based and agricultural. The culture of these Preclassic Mayans owes much to the earlier Olmec civilization, which flourished in the southern portion of North America. In this study, four different Mayan groups were examined to assess their genetic variability. Ten polymorphic Alu insertion (PAI) loci were employed to ascertain the genetic affinities among these Mayan groups. North American, African, European and Asian populations were also examined as reference populations. Our results suggest that the Mayan groups examined in this study are not genetically homogeneous.
Genotype Imputation with Thousands of Genomes
Howie, Bryan; Marchini, Jonathan; Stephens, Matthew
2011-01-01
Genotype imputation is a statistical technique that is often used to increase the power and resolution of genetic association studies. Imputation methods work by using haplotype patterns in a reference panel to predict unobserved genotypes in a study dataset, and a number of approaches have been proposed for choosing subsets of reference haplotypes that will maximize accuracy in a given study population. These panel selection strategies become harder to apply and interpret as sequencing efforts like the 1000 Genomes Project produce larger and more diverse reference sets, which led us to develop an alternative framework. Our approach is built around a new approximation that uses local sequence similarity to choose a custom reference panel for each study haplotype in each region of the genome. This approximation makes it computationally efficient to use all available reference haplotypes, which allows us to bypass the panel selection step and to improve accuracy at low-frequency variants by capturing unexpected allele sharing among populations. Using data from HapMap 3, we show that our framework produces accurate results in a wide range of human populations. We also use data from the Malaria Genetic Epidemiology Network (MalariaGEN) to provide recommendations for imputation-based studies in Africa. We demonstrate that our approximation improves efficiency in large, sequence-based reference panels, and we discuss general computational strategies for modern reference datasets. Genome-wide association studies will soon be able to harness the power of thousands of reference genomes, and our work provides a practical way for investigators to use this rich information. New methodology from this study is implemented in the IMPUTE2 software package. PMID:22384356
Provenance research: investigation of genetic diversity associated with geography
Robert Z. Callaham
1963-01-01
Provenance in forestry refers to the population of trees growing at n particular place of origin. Provenance research defines the genetic and environmental components of phenotypic variation associated with geographic source. Information on provenance is important in assuring sources of seed to give well-adapted, productive trees and in directing breeding of...
Simčič, Mojca; Smetko, Anamarija; Sölkner, Johann; Seichter, Doris; Gorjanc, Gregor; Kompan, Dragomir; Medugorac, Ivica
2015-01-01
The aim of this study was to obtain unbiased estimates of the diversity parameters, the population history, and the degree of admixture in Cika cattle which represents the local admixed breeds at risk of extinction undergoing challenging conservation programs. Genetic analyses were performed on the genome-wide Single Nucleotide Polymorphism (SNP) Illumina Bovine SNP50 array data of 76 Cika animals and 531 animals from 14 reference populations. To obtain unbiased estimates we used short haplotypes spanning four markers instead of single SNPs to avoid an ascertainment bias of the BovineSNP50 array. Genome-wide haplotypes combined with partial pedigree and type trait classification show the potential to improve identification of purebred animals with a low degree of admixture. Phylogenetic analyses demonstrated unique genetic identity of Cika animals. Genetic distance matrix presented by rooted Neighbour-Net suggested long and broad phylogenetic connection between Cika and Pinzgauer. Unsupervised clustering performed by the admixture analysis and two-dimensional presentation of the genetic distances between individuals also suggest Cika is a distinct breed despite being similar in appearance to Pinzgauer. Animals identified as the most purebred could be used as a nucleus for a recovery of the native genetic background in the current admixed population. The results show that local well-adapted strains, which have never been intensively managed and differentiated into specific breeds, exhibit large haplotype diversity. They suggest a conservation and recovery approach that does not rely exclusively on the search for the original native genetic background but rather on the identification and removal of common introgressed haplotypes would be more powerful. Successful implementation of such an approach should be based on combining phenotype, pedigree, and genome-wide haplotype data of the breed of interest and a spectrum of reference breeds which potentially have had direct or indirect historical contribution to the genetic makeup of the breed of interest. PMID:25923207
Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).
Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling
2014-04-01
This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.
Nelson, Matthew R.; Bryc, Katarzyna; King, Karen S.; Indap, Amit; Boyko, Adam R.; Novembre, John; Briley, Linda P.; Maruyama, Yuka; Waterworth, Dawn M.; Waeber, Gérard; Vollenweider, Peter; Oksenberg, Jorge R.; Hauser, Stephen L.; Stirnadel, Heide A.; Kooner, Jaspal S.; Chambers, John C.; Jones, Brendan; Mooser, Vincent; Bustamante, Carlos D.; Roses, Allen D.; Burns, Daniel K.; Ehm, Margaret G.; Lai, Eric H.
2008-01-01
Technological and scientific advances, stemming in large part from the Human Genome and HapMap projects, have made large-scale, genome-wide investigations feasible and cost effective. These advances have the potential to dramatically impact drug discovery and development by identifying genetic factors that contribute to variation in disease risk as well as drug pharmacokinetics, treatment efficacy, and adverse drug reactions. In spite of the technological advancements, successful application in biomedical research would be limited without access to suitable sample collections. To facilitate exploratory genetics research, we have assembled a DNA resource from a large number of subjects participating in multiple studies throughout the world. This growing resource was initially genotyped with a commercially available genome-wide 500,000 single-nucleotide polymorphism panel. This project includes nearly 6,000 subjects of African-American, East Asian, South Asian, Mexican, and European origin. Seven informative axes of variation identified via principal-component analysis (PCA) of these data confirm the overall integrity of the data and highlight important features of the genetic structure of diverse populations. The potential value of such extensively genotyped collections is illustrated by selection of genetically matched population controls in a genome-wide analysis of abacavir-associated hypersensitivity reaction. We find that matching based on country of origin, identity-by-state distance, and multidimensional PCA do similarly well to control the type I error rate. The genotype and demographic data from this reference sample are freely available through the NCBI database of Genotypes and Phenotypes (dbGaP). PMID:18760391
Fournier-Level, Alexandre; Perry, Emily O.; Wang, Jonathan A.; Braun, Peter T.; Migneault, Andrew; Cooper, Martha D.; Metcalf, C. Jessica E.; Schmitt, Johanna
2016-01-01
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico “resurrection experiments” showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation. PMID:27140640
Fournier-Level, Alexandre; Perry, Emily O; Wang, Jonathan A; Braun, Peter T; Migneault, Andrew; Cooper, Martha D; Metcalf, C Jessica E; Schmitt, Johanna
2016-05-17
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.
Patricia E. Maloney; Detlev R. Vogler; Andrew J. Eckert; Camille E. Jensen; David B. Neale
2011-01-01
Historical logging, fire suppression, and an invasive pathogen, Cronartium ribicola, the cause of white pine blister rust (WPBR), are assumed to have dramatically affected sugar pine (Pinus lambertiana) populations in the Lake Tahoe Basin. We examined population- and genetic-level consequences of these disturbances within 10...
A fifth major genetic group among honeybees revealed in Syria.
Alburaki, Mohamed; Bertrand, Bénédicte; Legout, Hélène; Moulin, Sibyle; Alburaki, Ali; Sheppard, Walter Steven; Garnery, Lionel
2013-12-06
Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria.
Yang, Melinda A; Harris, Kelley; Slatkin, Montgomery
2014-12-01
We introduce a method for comparing a test genome with numerous genomes from a reference population. Sites in the test genome are given a weight, w, that depends on the allele frequency, x, in the reference population. The projection of the test genome onto the reference population is the average weight for each x, [Formula: see text]. The weight is assigned in such a way that, if the test genome is a random sample from the reference population, then [Formula: see text]. Using analytic theory, numerical analysis, and simulations, we show how the projection depends on the time of population splitting, the history of admixture, and changes in past population size. The projection is sensitive to small amounts of past admixture, the direction of admixture, and admixture from a population not sampled (a ghost population). We compute the projections of several human and two archaic genomes onto three reference populations from the 1000 Genomes project-Europeans, Han Chinese, and Yoruba-and discuss the consistency of our analysis with previously published results for European and Yoruba demographic history. Including higher amounts of admixture between Europeans and Yoruba soon after their separation and low amounts of admixture more recently can resolve discrepancies between the projections and demographic inferences from some previous studies. Copyright © 2014 by the Genetics Society of America.
Pedigree and herd characterization of a donkey breed vulnerable to extinction.
Quaresma, M; Martins, A M F; Rodrigues, J B; Colaço, J; Payan-Carreira, R
2014-03-01
Most donkey and local horse breeds are vulnerable to extinction as mechanization of agriculture progress throughout the world. The present study analyzed the pedigree and herd records of the donkey Asinina de Miranda breed (RAM), identifying genealogical and human factors that may affect the breed genetic diversity in the future and suggesting suitable strategies to breed preservation, early on the conservation program. The breeding rate was very low, with a ratio of foaling/live animals of 0.23 (178/760). The estimated number of founders and ancestors contributing to the reference population was 128 and 121. The number of founder herds in the reference population was 64, with an effective number of founder herds for the reference population of 7.6. The mean age of herd owners was 65.50 ± 0.884 years, with a negative association among the herd size and owner's age (P<0.001). In contrast, the size of the herd and the ownership of a male were both positively associated (P<0.001) with the herd number of in-born foals. Both the owners' age and the herd location (RAM home region v. dispersal region) were negatively associated with the foaling number (P<0.001). The main identified risk factors were: low breeding rates; low number of males and their unequal contribution to the genetic pool; unequal contribution of the herds to genetic pool; and advanced age of herd owners.
Genetic diversity and population structure of Theileria parva in South Sudan.
Salih, Diaeldin A; Mwacharo, Joram M; Pelle, Roger; Njahira, Moses N; Odongo, David O; Mbole-Kariuki, Mary N; Marcellino, Wani L; Malak, Agol K; Kiara, Henary; El Hussein, Abdel Rahim M; Bishop, Richard P; Skilton, Robert A
2018-05-01
Theileria parva is a parasitic protozoan that causes East Coast fever (ECF), an economically important disease of cattle in eastern, central and southern Africa. In South Sudan, ECF is considered a major constraint for livestock development in regions where the disease is endemic. To obtain insights into the dynamics of T. parva in South Sudan, population genetic analysis was performed. Out of the 751 samples included in this study, 178 blood samples were positive for T. parva by species-specific PCR, were collected from cattle from four regions in South Sudan (Bor = 62; Juba = 45; Kajo keji = 41 and Yei = 30) were genotyped using 14 microsatellite markers spanning the four chromosomes. The T. parva Muguga strain was included in the study as a reference. Linkage disequilibrium was evident when populations from the four regions were treated as a single entity, but, when populations were analyzed separately, linkage disequilibrium was observed in Bor, Juba and Kajo keji. Juba region had a higher multiplicity of infection than the other three regions. Principal components analysis revealed a degree of sub-structure between isolates from each region, suggesting that populations are partially distinct, with genetic exchange and gene flow being limited between parasites in the four geographically separated populations studied. Panmixia was observed within individual populations. Overall T. parva population genetic analyses of four populations in South Sudan exhibited a low level of genetic exchange between the populations, but a high level of genetic diversity within each population. Copyright © 2018 Elsevier GmbH. All rights reserved.
The genome architecture of the Collaborative Cross mouse genetic reference population.
2012-02-01
The Collaborative Cross Consortium reports here on the development of a unique genetic resource population. The Collaborative Cross (CC) is a multiparental recombinant inbred panel derived from eight laboratory mouse inbred strains. Breeding of the CC lines was initiated at multiple international sites using mice from The Jackson Laboratory. Currently, this innovative project is breeding independent CC lines at the University of North Carolina (UNC), at Tel Aviv University (TAU), and at Geniad in Western Australia (GND). These institutions aim to make publicly available the completed CC lines and their genotypes and sequence information. We genotyped, and report here, results from 458 extant lines from UNC, TAU, and GND using a custom genotyping array with 7500 SNPs designed to be maximally informative in the CC and used a novel algorithm to infer inherited haplotypes directly from hybridization intensity patterns. We identified lines with breeding errors and cousin lines generated by splitting incipient lines into two or more cousin lines at early generations of inbreeding. We then characterized the genome architecture of 350 genetically independent CC lines. Results showed that founder haplotypes are inherited at the expected frequency, although we also consistently observed highly significant transmission ratio distortion at specific loci across all three populations. On chromosome 2, there is significant overrepresentation of WSB/EiJ alleles, and on chromosome X, there is a large deficit of CC lines with CAST/EiJ alleles. Linkage disequilibrium decays as expected and we saw no evidence of gametic disequilibrium in the CC population as a whole or in random subsets of the population. Gametic equilibrium in the CC population is in marked contrast to the gametic disequilibrium present in a large panel of classical inbred strains. Finally, we discuss access to the CC population and to the associated raw data describing the genetic structure of individual lines. Integration of rich phenotypic and genomic data over time and across a wide variety of fields will be vital to delivering on one of the key attributes of the CC, a common genetic reference platform for identifying causative variants and genetic networks determining traits in mammals.
Effects of genetic distance on heterosis in a Drosophila melanogaster model system.
Jensen, Charlotte; Ørsted, Michael; Kristensen, Torsten Nygaard
2018-05-14
Habitat fragmentation and small population sizes can lead to inbreeding and loss of genetic variation, which can potentially cause inbreeding depression and decrease the ability of populations to adapt to altered environmental conditions. One solution to these genetic problems is the implementation of genetic rescue, which re-establishes gene flow between separated populations. Similar techniques are being used in animal and plant breeding to produce superior production animals and plants. To optimize fitness benefits in genetic rescue programs and to secure high yielding domestic varieties in animal and plant breeding, knowledge on the genetic relatedness of populations being crossed is imperative. In this study, we conducted replicated crosses between isogenic Drosophila melanogaster lines from the Drosophila Genetic Reference Panel. We grouped lines in two genetic distance groups to study the effect of genetic divergence between populations on the expression of heterosis in two fitness components; starvation resistance and reproductive output. We further investigated the transgenerational effects of outcrossing by investigating the fitness consequences in both the F 1 - and the F 3 -generations. High fitness enhancements were observed in hybrid offspring compared to parental lines, especially for reproductive output. However, the level of heterosis declined from the F 1 - to the F 3 -generation. Generally, genetic distance did not have strong impact on the level of heterosis detected, although there were exceptions to this pattern. The best predictor of heterosis was performance of parental lines with poorly performing parental lines showing higher hybrid vigour when crossed, i.e. the potential for heterosis was proportional to the level of inbreeding depression. Overall, our results show that outcrossing can have very strong positive fitness consequences for genetically depauperate populations.
Research progress of plant population genomics based on high-throughput sequencing.
Wang, Yun-sheng
2016-08-01
Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.
Pereira, Rui; Phillips, Christopher; Pinto, Nádia; Santos, Carla; dos Santos, Sidney Emanuel Batista; Amorim, António; Carracedo, Ángel; Gusmão, Leonor
2012-01-01
Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies. This work presents a set of 46 ancestry-informative insertion deletion polymorphisms selected to efficiently measure population admixture proportions of four different origins (African, European, East Asian and Native American). All markers are analyzed in short fragments (under 230 basepairs) through a single PCR followed by capillary electrophoresis (CE) allowing a very simple one tube PCR-to-CE approach. HGDP-CEPH diversity panel samples from the four groups, together with Oceanians, were genotyped to evaluate the efficiency of the assay in clustering populations from different continental origins and to establish reference databases. In addition, other populations from diverse geographic origins were tested using the HGDP-CEPH samples as reference data. The results revealed that the AIM-INDEL set developed is highly efficient at inferring the ancestry of individuals and provides good estimates of ancestry proportions at the population level. In conclusion, we have optimized the multiplexed genotyping of 46 AIM-INDELs in a simple and informative assay, enabling a more straightforward alternative to the commonly available AIM-SNP typing methods dependent on complex, multi-step protocols or implementation of large-scale genotyping technologies. PMID:22272242
Rivas, Manuel A.; Avila, Brandon E.; Koskela, Jukka; Stevens, Christine; Pirinen, Matti; Neale, Benjamin M.; Ganna, Andrea; Graham, Daniel; Glaser, Benjamin; Peter, Inga; Atzmon, Gil; Barzilai, Nir; Levine, Adam P.; Schiff, Elena; Weisburd, Ben; Lek, Monkol; Bloom, Jonathan; Minikel, Eric V.; Petersen, Britt-Sabina; Beaugerie, Laurent; Seksik, Philippe; Cosnes, Jacques; Schreiber, Stefan; Bokemeyer, Bernd; Bethge, Johannes; Ahmad, Tariq; Plagnol, Vincent; Segal, Anthony W.; Targan, Stephan; Turner, Dan; Saavalainen, Paivi; Farkkila, Martti; Kontula, Kimmo; Palotie, Aarno; Brant, Steven R.; Duerr, Richard H.; Silverberg, Mark S.; Weersma, Rinse K.; Franke, Andre; Jostins, Luke; Barrett, Jeffrey C.; MacArthur, Daniel G.; Jalas, Chaim; Sokol, Harry; Xavier, Ramnik J.; Pulver, Ann; Cho, Judy H.; McGovern, Dermot P. B.; Daly, Mark J.
2018-01-01
As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10–100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10−16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations. PMID:29795570
Molecular Population Genetic Structure in the Piping Plover
Miller, Mark P.; Haig, Susan M.; Gratto-Trevor, Cheri L.; Mullins, Thomas D.
2009-01-01
The Piping Plover (Charadrius melodus) is a migratory shorebird currently listed as Endangered in Canada and the U.S. Great Lakes, and threatened throughout the remainder of its U.S. breeding and winter range. In this study, we undertook the first comprehensive molecular genetic-based investigation of Piping Plovers. Our primary goals were to (1) address higher level subspecific taxonomic issues, (2) characterize population genetic structure, and (3) make inferences regarding past bottlenecks or population expansions that have occurred within this species. Our analyses included samples of individuals from 23 U.S. States and Canadian Provinces, and were based on mitochondrial DNA sequences (580 bp, n = 245 individuals) and eight nuclear microsatellite loci (n = 229 individuals). Our findings illustrate strong support for separate Atlantic and Interior Piping Plover subspecies (C. m. melodus and C. m. circumcinctus, respectively). Birds from the Great Lakes region were allied with the Interior subspecies group and should be taxonomically referred to as C. m. circumcinctus. Population genetic analyses suggested that genetic structure was stronger among Atlantic birds relative to the Interior group. This pattern indicates that natal and breeding site fidelity may be reduced among Interior birds. Furthermore, analyses suggested that Interior birds have previously experienced genetic bottlenecks, whereas no evidence for such patterns existed among the Atlantic subspecies. Likewise, genetic analyses indicated that the Great Lakes region has experienced a population expansion. This finding may be interpreted as population growth following a previous bottleneck event. No genetic evidence for population expansions was found for Atlantic, Prairie Canada, or U.S. Northern Great Plains individuals. We interpret our population history insights in light of 25 years of Piping Plover census data. Overall, differences observed between Interior and Atlantic birds may reflect differences in spatiotemporal stability of Piping Plover nesting habitat between regions.
Voges, S; Distl, O
2009-10-01
The objective of this study was to analyse genetic diversity for the three scent-hound breeds Bavarian mountain hound (BMH), Hanoverian hound (HH) and Tyrolean hound (TH) using all available pedigree information from scent-hound kennel clubs for these three breeds throughout Europe. The pedigree data of the BMH and the HH date back to 1912 and 1894, respectively. Pedigree data of the TH were available from the 1960s onwards. The reference populations included all BMH (n = 3231), HH (n = 1371) and TH (n = 1167) dogs registered between 1992 and 2004. Average generation intervals were 5.3 years for the BMH and 5.0 years for the HH and TH. Average inbreeding coefficients for the reference populations were 4.5%, 6.8% and 9.5% for the BMH, HH and TH. The effective numbers of founders, ancestors and founder genomes were lowest for the TH and highest for the BMH. The effective numbers of founder genomes were 10.9, 5.6 and 4.3 for the BMH, HH and TH. Effective population size was largest for the BMH with 72.7 effective breeding animals, followed by the HH with 50.9 and TH with 26.5. The most important ten ancestors had genetic contributions to the reference populations of 54.4%, 65.2% and 77.9% in the BMH, HH and TH. The results of our study indicate the need for careful breed management in these highly specialized hound breeds to maintain genetic diversity. European stud books should be established for these dog breeds in order to avoid inbreeding due to missing pedigree records.
Khrunin, Andrey V.; Khokhrin, Denis V.; Filippova, Irina N.; Esko, Tõnu; Nelis, Mari; Bebyakova, Natalia A.; Bolotova, Natalia L.; Klovins, Janis; Nikitina-Zake, Liene; Rehnström, Karola; Ripatti, Samuli; Schreiber, Stefan; Franke, Andre; Macek, Milan; Krulišová, Veronika; Lubinski, Jan; Metspalu, Andres; Limborska, Svetlana A.
2013-01-01
Several studies examined the fine-scale structure of human genetic variation in Europe. However, the European sets analyzed represent mainly northern, western, central, and southern Europe. Here, we report an analysis of approximately 166,000 single nucleotide polymorphisms in populations from eastern (northeastern) Europe: four Russian populations from European Russia, and three populations from the northernmost Finno-Ugric ethnicities (Veps and two contrast groups of Komi people). These were compared with several reference European samples, including Finns, Estonians, Latvians, Poles, Czechs, Germans, and Italians. The results obtained demonstrated genetic heterogeneity of populations living in the region studied. Russians from the central part of European Russia (Tver, Murom, and Kursk) exhibited similarities with populations from central–eastern Europe, and were distant from Russian sample from the northern Russia (Mezen district, Archangelsk region). Komi samples, especially Izhemski Komi, were significantly different from all other populations studied. These can be considered as a second pole of genetic diversity in northern Europe (in addition to the pole, occupied by Finns), as they had a distinct ancestry component. Russians from Mezen and the Finnic-speaking Veps were positioned between the two poles, but differed from each other in the proportions of Komi and Finnic ancestries. In general, our data provides a more complete genetic map of Europe accounting for the diversity in its most eastern (northeastern) populations. PMID:23505534
Shaw, Alison; Hurst, Jane A
2008-08-01
Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.
Hakenberg, Jörg; Cheng, Wei-Yi; Thomas, Philippe; Wang, Ying-Chih; Uzilov, Andrew V; Chen, Rong
2016-01-08
Data from a plethora of high-throughput sequencing studies is readily available to researchers, providing genetic variants detected in a variety of healthy and disease populations. While each individual cohort helps gain insights into polymorphic and disease-associated variants, a joint perspective can be more powerful in identifying polymorphisms, rare variants, disease-associations, genetic burden, somatic variants, and disease mechanisms. We have set up a Reference Variant Store (RVS) containing variants observed in a number of large-scale sequencing efforts, such as 1000 Genomes, ExAC, Scripps Wellderly, UK10K; various genotyping studies; and disease association databases. RVS holds extensive annotations pertaining to affected genes, functional impacts, disease associations, and population frequencies. RVS currently stores 400 million distinct variants observed in more than 80,000 human samples. RVS facilitates cross-study analysis to discover novel genetic risk factors, gene-disease associations, potential disease mechanisms, and actionable variants. Due to its large reference populations, RVS can also be employed for variant filtration and gene prioritization. A web interface to public datasets and annotations in RVS is available at https://rvs.u.hpc.mssm.edu/.
Brysting, Anne Krag; Elven, Reidar; Alsos, Inger Greve
2017-01-01
Abstract Small, isolated and/or peripheral populations are expected to harbour low levels of genetic variation and may therefore have reduced adaptability to environmental change, including climate warming. In the Arctic, global warming has already caused vegetation change across the region and is acting as a significant stressor on Arctic biodiversity. Many of the rare plants in the Arctic are relicts from early Holocene warm periods, but their ability to benefit from the current warming is dependent on the viability of their populations. We therefore examined Amplified Fragment Length Polymorphism (AFLP) data from regional red listed vascular plant species in the High Arctic archipelago of Svalbard and reference populations from the main distribution area of: (1) Botrychium lunaria, (2) Carex capillaris ssp. fuscidula, (3) Comastoma tenellum, (4) Kobresia simpliciuscula ssp. subholarctica, (5) Ranunculus wilanderi, (6) Sibbaldia procumbens and (7) Tofieldia pusilla. In addition, we gathered population size data in Svalbard. The Svalbard populations had low genetic diversity and distinctiveness and few or no private markers compared to populations outside the archipelago. This is similar to observations in other rare species in Svalbard and the genetic depletion may be due to an initial founder effect and/or a genetic bottleneck caused by late Holocene cooling. There seems to be limited gene flow from other areas and the Svalbard populations should therefore be considered as demographically independent management units. Overall, these management units have small and/or few populations and are therefore prone to stochastic events which may further increase vulnerability to inbreeding depression, loss of genetic variation, and reduced evolutionary potential. Our results support theory predicting lower levels of genetic diversity in small, isolated and/or peripheral populations and may be of importance for management of other rare plant species in the Arctic. PMID:28108432
Collins, T.M.; Trexler, J.C.; Nico, L.G.; Rawlings, T.A.
2002-01-01
Genetic analysis of introduced populations, especially in morphologically conservative taxa, can clarify introduction histories, identify management units and source populations, provide a more realistic estimate of the frequency of successful invasion, and suggest strategies for preventing further introductions. In the last 7 years, populations of swamp eels, referred to the Asian genus Monopterus (Family Synbranchidae) on the basis of external morphology, have been discovered in aquatic habitats near Atlanta, Georgia; Tampa, Florida; North Miami, Florida; and most recently in close proximity to Everglades National Park in Homestead, Florida. Swamp eels are large predators capable of dispersal over land and have the potential to disrupt already threatened ecosystems. We analyzed mitochondrial DNA sequences from four known populations in the continental United States and samples from Malaysia, Indonesia, Vietnam, and two locations in China to determine introduction histories, source populations, genetic diversity, and relationships among populations. Our results indicate that there have been at least three independent introductions of genetically distinct forms. Introduced populations in close proximity (separated by <40 km) are genetically distinct. The level of sequence difference among introduced populations reaches levels seen among sister families of teleost fishes for the same region of the mitochondrial genome. These genetically distinct introduced populations in all likelihood represent at least two and possibly three species. Regardless of species status, these genetically distinct lineages may be expected to vary in ecological or life-history traits, representing different potential threats to the ecosystems where they have been introduced. Given the success of swamp eels in invading many habitats around the world, further study of these eels is warranted to elucidate the characteristics of successful invaders and invasions.
Parson, W; Gusmão, L; Hares, D R; Irwin, J A; Mayr, W R; Morling, N; Pokorak, E; Prinz, M; Salas, A; Schneider, P M; Parsons, T J
2014-11-01
The DNA Commission of the International Society of Forensic Genetics (ISFG) regularly publishes guidelines and recommendations concerning the application of DNA polymorphisms to the question of human identification. Previous recommendations published in 2000 addressed the analysis and interpretation of mitochondrial DNA (mtDNA) in forensic casework. While the foundations set forth in the earlier recommendations still apply, new approaches to the quality control, alignment and nomenclature of mitochondrial sequences, as well as the establishment of mtDNA reference population databases, have been developed. Here, we describe these developments and discuss their application to both mtDNA casework and mtDNA reference population databasing applications. While the generation of mtDNA for forensic casework has always been guided by specific standards, it is now well-established that data of the same quality are required for the mtDNA reference population data used to assess the statistical weight of the evidence. As a result, we introduce guidelines regarding sequence generation, as well as quality control measures based on the known worldwide mtDNA phylogeny, that can be applied to ensure the highest quality population data possible. For both casework and reference population databasing applications, the alignment and nomenclature of haplotypes is revised here and the phylogenetic alignment proffered as acceptable standard. In addition, the interpretation of heteroplasmy in the forensic context is updated, and the utility of alignment-free database searches for unbiased probability estimates is highlighted. Finally, we discuss statistical issues and define minimal standards for mtDNA database searches. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A fifth major genetic group among honeybees revealed in Syria
2013-01-01
Background Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Results Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. Conclusion This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria. PMID:24314104
Harmon, Monica; Lane, Thomas; Staton, Margaret; Coggeshall, Mark V; Best, Teodora; Chen, Chien-Chih; Liang, Haiying; Zembower, Nicole; Drautz-Moses, Daniela I; Hwee, Yap Zhei; Schuster, Stephan C; Schlarbaum, Scott E; Carlson, John E; Gailing, Oliver
2017-08-08
Sugar maple (Acer saccharum Marsh.) is a hardwood tree species native to northeastern North America and economically valued for its wood and sap. Yet, few molecular genetic resources have been developed for this species to date. Microsatellite markers have been a useful tool in population genetics, e.g., to monitor genetic variation and to analyze gene flow patterns. The objective of this study is to develop a reference transcriptome and microsatellite markers in sugar maple. A set of 117,861 putative unique transcripts were assembled using 29.2 Gb of RNA sequencing data derived from different tissues and stress treatments. From this set of sequences a total of 1068 microsatellite motifs were identified. Out of 58 genic microsatellite markers tested on a population of 47 sugar maple trees in upper Michigan, 22 amplified well, of which 16 were polymorphic and 6 were monomorphic. Values for expected heterozygosity varied from 0.224 to 0.726 for individual loci. Of the 16 polymorphic markers, 15 exhibited transferability to other Acer L. species. Genic microsatellite markers can be applied to analyze genetic variation in potentially adaptive genes relative to genomic reference markers as a basis for the management of sugar maple genetic resources in the face of climate change.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to investigate alternative methods for designing and utilizing reduced single nucleotide polymorphism (SNP) panels for imputing SNP genotypes. Two purebred Hereford populations, an experimental population known as Line 1 Hereford (L1, N=240) and registered Hereford wi...
Campoy, José Antonio; Lerigoleur-Balsemin, Emilie; Christmann, Hélène; Beauvieux, Rémi; Girollet, Nabil; Quero-García, José; Dirlewanger, Elisabeth; Barreneche, Teresa
2016-02-24
Depiction of the genetic diversity, linkage disequilibrium (LD) and population structure is essential for the efficient organization and exploitation of genetic resources. The objectives of this study were to (i) to evaluate the genetic diversity and to detect the patterns of LD, (ii) to estimate the levels of population structure and (iii) to identify a 'core collection' suitable for association genetic studies in sweet cherry. A total of 210 genotypes including modern cultivars and landraces from 16 countries were genotyped using the RosBREED cherry 6 K SNP array v1. Two groups, mainly bred cultivars and landraces, respectively, were first detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA). Further analyses identified nine subgroups using STRUCTURE and Discriminant Analysis of Principal Components (DAPC). Several sub-groups correspond to different eco-geographic regions of landraces distribution. Linkage disequilibrium was evaluated showing lower values than in peach, the reference Prunus species. A 'core collection' containing 156 accessions was selected using the maximum length sub tree method. The present study constitutes the first population genetics analysis in cultivated sweet cherry using a medium-density SNP (single nucleotide polymorphism) marker array. We provided estimations of linkage disequilibrium, genetic structure and the definition of a first INRA's Sweet Cherry core collection useful for breeding programs, germplasm management and association genetics studies.
A variant reference data set for the Africanized honeybee, Apis mellifera
Kadri, Samir M.; Harpur, Brock A.; Orsi, Ricardo O.; Zayed, Amro
2016-01-01
The Africanized honeybee (AHB) is a population of Apis mellifera found in the Americas. AHBs originated in 1956 in Rio Clara, Brazil where imported African A. m. scutellata escaped and hybridized with local populations of European A. mellifera. Africanized populations can now be found from Northern Argentina to the Southern United States. AHBs—often referred to as ‘Killer Bees’— are a major concern to the beekeeping industry as well as a model for the evolutionary genetics of colony defence. We performed high coverage pooled-resequencing of 360 diploid workers from 30 Brazilian AHB colonies using Illumina Hi-Seq (150 bp PE). This yielded a high density SNP data set with an average read depth at each site of 20.25 reads. With 3,606,720 SNPs and 155,336 SNPs within 11,365 genes, this data set is the largest genomic resource available for AHBs and will enable high-resolution studies of the population dynamics, evolution, and genetics of this successful biological invader, in addition to facilitating the development of SNP-based tools for identifying AHBs. PMID:27824336
A variant reference data set for the Africanized honeybee, Apis mellifera.
Kadri, Samir M; Harpur, Brock A; Orsi, Ricardo O; Zayed, Amro
2016-11-08
The Africanized honeybee (AHB) is a population of Apis mellifera found in the Americas. AHBs originated in 1956 in Rio Clara, Brazil where imported African A. m. scutellata escaped and hybridized with local populations of European A. mellifera. Africanized populations can now be found from Northern Argentina to the Southern United States. AHBs-often referred to as 'Killer Bees'- are a major concern to the beekeeping industry as well as a model for the evolutionary genetics of colony defence. We performed high coverage pooled-resequencing of 360 diploid workers from 30 Brazilian AHB colonies using Illumina Hi-Seq (150 bp PE). This yielded a high density SNP data set with an average read depth at each site of 20.25 reads. With 3,606,720 SNPs and 155,336 SNPs within 11,365 genes, this data set is the largest genomic resource available for AHBs and will enable high-resolution studies of the population dynamics, evolution, and genetics of this successful biological invader, in addition to facilitating the development of SNP-based tools for identifying AHBs.
Genetics Home Reference: thiopurine S-methyltransferase deficiency
... activity: a large, prospective population study. Pharmacogenomics. 2008 Mar;9(3):303-9. doi: 10.2217/14622416. ... genotype and thiopurine dosing. Clin Pharmacol Ther. 2011 Mar;89(3):387-91. doi: 10.1038/clpt. ...
Living on the edge: reconstructing the genetic history of the Finnish wolf population
2014-01-01
Background Many western European carnivore populations became almost or completely eradicated during the last ~200 years, but are now recovering. Extirpation of wolves started in Finland in the 19th century, and for more than 150 years the population size of wolves has remained small. To investigate historical patterns of genetic variation, we extracted DNA from 114 wolf samples collected in zoological museums over the last ~150 years. Fifteen microsatellite loci were used to look at genotypic variation in this historical sample. Additionally, we amplified a 430 bp sequence of mtDNA control region from the same samples. Contemporary wolf samples (N = 298) obtained after the population recovery in the mid-1990s, were used as a reference. Results Our analyses of mtDNA revealed reduced variation in the mtDNA control region through the loss of historical haplotypes observed prior to wolf declines. Heterozygosity at autosomal microsatellite loci did not decrease significantly. However, almost 20% of microsatellite alleles were unique to wolves collected before the 1960s. The genetic composition of the population changed gradually with the largest changes occurring prior to 1920. Half of the oldest historical samples formed a distinguishable genetic cluster not detected in the modern-day Finnish or Russian samples, and might therefore represent northern genetic variation lost from today’s gene pool. Point estimates of Ne were small (13.2 and 20.5) suggesting population fragmentation. Evidence of a genetic population bottleneck was also detected. Conclusions Our genetic analyses confirm changes in the genetic composition of the Finnish wolf population through time, despite the geographic interconnectivity to a much larger population in Russia. Our results emphasize the need for restoration of the historical connectivity between the present wolf populations to secure long-term viability. This might be challenging, however, because the management policies between Western and Eastern Europe often differ greatly. Additionally, wolf conservation is still a rather controversial issue, and anthropogenic pressure towards wolves remains strong. PMID:24678616
Genetic Predictors for Cardiovascular Disease in Hispanics
Qi, Lu; Campos, Hannia
2012-01-01
A less favorable cardiovascular risk factor profile, but paradoxically lower cardiovascular morbidity and mortality have been observed in Hispanics, a pattern often referred to as the Hispanic Paradox. It was proposed the specific genetic susceptibility of this admixed population and gene-environment interactions may partly explain the paradox. The past few years have seen great advances in discovering genetic risk factors using genome-wide association studies (GWAS) for cardiovascular disease especially in Caucasians. However, there is no GWAS of cardiovascular disease that have been reported in Hispanics. In the Costa Rican Heart Study we reported both the consistency and disparity of genetic effects on risk of coronary heart disease (CHD) between Hispanics and other ethnic groups. We demonstrated the improvement in the identified genetic markers on discrimination of CHD in Hispanics was modest. Future genetic research in Hispanics would consider the diversities in genetic structure, lifestyle and socioeconomics among various sub-populations, and comprehensively evaluate potential gene-environment interactions in relation to cardiovascular risk. PMID:22498015
Genetic Diversity and Phylogenetic Evolution of Tibetan Sheep Based on mtDNA D-Loop Sequences
Yue, Yaojing; Guo, Xian; Guo, Tingting; Chu, Min; Wang, Fan; Han, Jilong; Feng, Ruilin; Sun, Xiaoping; Niu, Chune; Yang, Bohui; Guo, Jian; Yuan, Chao
2016-01-01
The molecular and population genetic evidence of the phylogenetic status of the Tibetan sheep (Ovis aries) is not well understood, and little is known about this species’ genetic diversity. This knowledge gap is partly due to the difficulty of sample collection. This is the first work to address this question. Here, the genetic diversity and phylogenetic relationship of 636 individual Tibetan sheep from fifteen populations were assessed using 642 complete sequences of the mitochondrial DNA D-loop. Samples were collected from the Qinghai-Tibetan Plateau area in China, and reference data were obtained from the six reference breed sequences available in GenBank. The length of the sequences varied considerably, between 1031 and 1259 bp. The haplotype diversity and nucleotide diversity were 0.992±0.010 and 0.019±0.001, respectively. The average number of nucleotide differences was 19.635. The mean nucleotide composition of the 350 haplotypes was 32.961% A, 29.708% T, 22.892% C, 14.439% G, 62.669% A+T, and 37.331% G+C. Phylogenetic analysis showed that all four previously defined haplogroups (A, B, C, and D) were found in the 636 individuals of the fifteen Tibetan sheep populations but that only the D haplogroup was found in Linzhou sheep. Further, the clustering analysis divided the fifteen Tibetan sheep populations into at least two clusters. The estimation of the demographic parameters from the mismatch analyses showed that haplogroups A, B, and C had at least one demographic expansion in Tibetan sheep. These results contribute to the knowledge of Tibetan sheep populations and will help inform future conservation programs about the Tibetan sheep native to the Qinghai-Tibetan Plateau. PMID:27463976
Genetic basis of hearing loss in Spanish, Hispanic and Latino populations.
Mittal, Rahul; Patel, Amit P; Nguyen, Desiree; Pan, Debbie R; Jhaveri, Vasanti M; Rudman, Jason R; Dharmaraja, Arjuna; Yan, Denise; Feng, Yong; Chapagain, Prem; Lee, David J; Blanton, Susan H; Liu, Xue Zhong
2018-03-20
Hearing loss (HL) is the most common neurosensory disorder affecting humans. The screening, prevention and treatment of HL require a better understanding of the underlying molecular mechanisms. Genetic predisposition is one of the most common factors that leads to HL. Most HL studies include few Spanish, Hispanic and Latino participants, leaving a critical gap in our understanding about the prevalence, impact, unmet health care needs, and genetic factors associated with hearing impairment among Spanish, Hispanic and Latino populations. The few studies which have been performed show that the gene variants commonly associated with HL in non-Spanish and non-Hispanic populations are infrequently responsible for hearing impairment in Spanish as well as Hispanic and Latino populations (hereafter referred to as Hispanic). To design effective screening tools to detect HL in Spanish and Hispanic populations, studies must be conducted to determine the gene variants that are most commonly associated with hearing impairment in this racial/ethnic group. In this review article, we summarize gene variants and loci associated with HL in Spanish and Hispanic populations. Identifying new genetic variants associated with HL in Spanish and Hispanic populations will pave the way to develop effective screening tools and therapeutic strategies for HL. Copyright © 2018 Elsevier B.V. All rights reserved.
SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access.
Amigo, Jorge; Salas, Antonio; Phillips, Christopher; Carracedo, Angel
2008-10-10
In the last five years large online resources of human variability have appeared, notably HapMap, Perlegen and the CEPH foundation. These databases of genotypes with population information act as catalogues of human diversity, and are widely used as reference sources for population genetics studies. Although many useful conclusions may be extracted by querying databases individually, the lack of flexibility for combining data from within and between each database does not allow the calculation of key population variability statistics. We have developed a novel tool for accessing and combining large-scale genomic databases of single nucleotide polymorphisms (SNPs) in widespread use in human population genetics: SPSmart (SNPs for Population Studies). A fast pipeline creates and maintains a data mart from the most commonly accessed databases of genotypes containing population information: data is mined, summarized into the standard statistical reference indices, and stored into a relational database that currently handles as many as 4 x 10(9) genotypes and that can be easily extended to new database initiatives. We have also built a web interface to the data mart that allows the browsing of underlying data indexed by population and the combining of populations, allowing intuitive and straightforward comparison of population groups. All the information served is optimized for web display, and most of the computations are already pre-processed in the data mart to speed up the data browsing and any computational treatment requested. In practice, SPSmart allows populations to be combined into user-defined groups, while multiple databases can be accessed and compared in a few simple steps from a single query. It performs the queries rapidly and gives straightforward graphical summaries of SNP population variability through visual inspection of allele frequencies outlined in standard pie-chart format. In addition, full numerical description of the data is output in statistical results panels that include common population genetics metrics such as heterozygosity, Fst and In.
Genetic portrait of Tamil non-tribal and Irula tribal population using Y chromosome STR markers.
Raghunath, Rajshree; Krishnamoorthy, Kamalakshi; Balasubramanian, Lakshmi; Kunka Mohanram, Ramkumar
2016-03-01
The 17 Y chromosomal short tandem repeat loci included in the AmpFlSTR® Yfiler™ PCR Amplification Kit were used to analyse the genetic diversity of 517 unrelated males representing the non-tribal and Irula tribal population of Tamil Nadu. A total of 392 unique haplotypes were identified among the 400 non-tribal samples whereas 111 were observed among the 117 Irula tribal samples. Rare alleles for the loci DYS458, DYS635 and YGATAH4.1 were also observed in both population. The haplotype diversity for the non-tribal and Irula tribal population were found to be 0.9999, and the gene diversity ranged from 0.2041 (DYS391) to 0.9612 (DYS385). Comparison of the test population with 26 national and global population using principal coordinate analysis (PCoA) and determination of the genetic distance matrix using phylogenetic molecular analysis indicate a clustering of the Tamil Nadu non-tribal and Irula tribal population away from other unrelated population and proximity towards some Indo-European (IE) and Asian population. Data are available in the Y chromosome haplotype reference database (YHRD) under accession number YA004055 for Tamil non-tribal and YA004056 for the Irula tribal group.
Applications of the 1000 Genomes Project resources
Zheng-Bradley, Xiangqun
2017-01-01
Abstract The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the 1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression Quantitative Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer genome sequencing projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies. PMID:27436001
USDA-ARS?s Scientific Manuscript database
A DArT marker platform is developed for the cotton genome to evaluate the use of DArT markers compared to AFLPs in mapping, and transferability across the mapping populations. We used a reference genetic map of tetraploid Gossypium that already contained ~5000 loci which coalesced into 26 chromosom...
Genetic variation in Indian populations of Scirpophaga incertulas as revealed by RAPD-PCR analysis.
Kumar, L S; Sawant, A S; Gupta, V S; Ranjekar, P K
2001-02-01
Scirpophaga incertulas, commonly referred to as yellow stem borer, is a predominant pest of rice causing serious losses in its yield. Genetic variation among populations of Scirpophaga incertulas collected from 28 hotspot locations in India was examined using the randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In all, 32 primers were used and 354 amplification products were observed. No RAPD-PCR bands diagnostic to the pest population from any specific region were identified. Cluster analysis using UPGMA showed that, with the exception of the pest population from Pattambi, all the populations cluster as one group with GD values in the range of 6-22%, suggesting that gene flow between populations is independent of geographic distance and appears to be unrestricted. The relatively high GD value of 48% exhibited by the pest population from Pattambi was the only exception.
Charoute, Hicham; Nahili, Halima; Abidi, Omar; Gabi, Khalid; Rouba, Hassan; Fakiri, Malika; Barakat, Abdelhamid
2014-03-01
National and ethnic mutation databases provide comprehensive information about genetic variations reported in a population or an ethnic group. In this paper, we present the Moroccan Genetic Disease Database (MGDD), a catalogue of genetic data related to diseases identified in the Moroccan population. We used the PubMed, Web of Science and Google Scholar databases to identify available articles published until April 2013. The Database is designed and implemented on a three-tier model using Mysql relational database and the PHP programming language. To date, the database contains 425 mutations and 208 polymorphisms found in 301 genes and 259 diseases. Most Mendelian diseases in the Moroccan population follow autosomal recessive mode of inheritance (74.17%) and affect endocrine, nutritional and metabolic physiology. The MGDD database provides reference information for researchers, clinicians and health professionals through a user-friendly Web interface. Its content should be useful to improve researches in human molecular genetics, disease diagnoses and design of association studies. MGDD can be publicly accessed at http://mgdd.pasteur.ma.
Cazes, Marie-Hélène
2006-09-01
The development of demographic studies in anthropology is directly linked to the success of population genetics. The anthropodemographic or anthropogenetic approach is thus underpinned by questions of genetics. While demographers focus on population dynamics and renewal in quantitative terms, population geneticists refer not to individuals but to the sets of genes carried by individuals in a population. Their aim is to detect the factors and processes which influence the genetic evolution of a group, i.e. which modify gene frequencies from one generation to the next. Among them are the factors which affect modes of reproduction. To illustrate the association of these three approaches, i.e. demographic, anthropological and genetic, I use here the example of matrimonial exchanges--which lie at the heart of the population renewal process--among the Dogon of Boni, a Malian ethnic group living in the southern Sahel. We can see how successive analyses--starting with endogamy at macroscopic level and moving down to the individual with choice of spouse and preferential marriage-- combining both quantitative and qualitative approaches, can be used to obtain a detailed description of matrimonial exchanges which shed light upon and complement the three different viewpoints.
Mapping the genetic diversity of HLA haplotypes in the Japanese populations
Saw, Woei-Yuh; Liu, Xuanyao; Khor, Chiea-Chuen; Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Akiyama, Koichi; Asano, Hiroyuki; Asayama, Kei; Haga, Toshikazu; Hara, Azusa; Hirose, Takuo; Hosaka, Miki; Ichihara, Sahoko; Imai, Yutaka; Inoue, Ryusuke; Ishiguro, Aya; Isomura, Minoru; Isono, Masato; Kamide, Kei; Kato, Norihiro; Katsuya, Tomohiro; Kikuya, Masahiro; Kohara, Katsuhiko; Matsubara, Tatsuaki; Matsuda, Ayako; Metoki, Hirohito; Miki, Tetsuro; Murakami, Keiko; Nabika, Toru; Nakatochi, Masahiro; Ogihara, Toshio; Ohnaka, Keizo; Ohkubo, Takayoshi; Rakugi, Hiromi; Satoh, Michihiro; Shiwaku, Kunihiro; Sugimoto, Ken; Tabara, Yasuharu; Takami, Yoichi; Takayanagi, Ryoichi; Takeuchi, Fumihiko; Tsubota-Utsugi, Megumi; Yamamoto, Ken; Yamamoto, Koichi; Yamasaki, Masayuki; Yasui, Daisaku; Yokota, Mitsuhiro; Teo, Yik-Ying; Kato, Norihiro
2015-01-01
Japan has often been viewed as an Asian country that possesses a genetically homogenous community. The basis for partitioning the country into prefectures has largely been geographical, although cultural and linguistic differences still exist between some of the districts/prefectures, especially between Okinawa and the mainland prefectures. The Major Histocompatibility Complex (MHC) region has consistently emerged as the most polymorphic region in the human genome, harbouring numerous biologically important variants; nevertheless the presence of population-specific long haplotypes hinders the imputation of SNPs and classical HLA alleles. Here, we examined the extent of genetic variation at the MHC between eight Japanese populations sampled from Okinawa, and six other prefectures located in or close to the mainland of Japan, specifically focusing at the haplotypes observed within each population, and what the impact of any variation has on imputation. Our results indicated that Okinawa was genetically farther to the mainland Japanese than were Gujarati Indians from Tamil Indians, while the mainland Japanese from six prefectures were more homogeneous than between northern and southern Han Chinese. The distribution of haplotypes across Japan was similar, although imputation was most accurate for Okinawa and several mainland prefectures when population-specific panels were used as reference. PMID:26648100
Multivariate selection and intersexual genetic constraints in a wild bird population.
Poissant, J; Morrissey, M B; Gosler, A G; Slate, J; Sheldon, B C
2016-10-01
When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra- and intersex additive genetic (co)variances and sex-specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex-specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex-specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross-sex genetic correlation = -0.003, 95% CI = -0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex-specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Rębała, Krzysztof; Veselinović, Igor; Siváková, Daniela; Patskun, Erika; Kravchenko, Sergey; Szczerkowska, Zofia
2014-01-01
Studies on Y-chromosomal markers revealed significant genetic differentiation between Southern and Northern (Western and Eastern) Slavic populations. The northern Serbian region of Vojvodina is inhabited by Southern Slavic Serbian majority and, inter alia, Western Slavic (Slovak) and Eastern Slavic (Ruthenian) minorities. In the study, 15 autosomal STR markers were analysed in unrelated Slovaks, Ruthenians and Serbs from northern Serbia and western Slovakia. Additionally, Slovak males from Serbia were genotyped for 17 Y-chromosomal STR loci. The results were compared to data available for other Slavic populations. Genetic distances for autosomal markers revealed homogeneity between Serbs from northern Serbia and Slovaks from western Slovakia and distinctiveness of Serbian Slovaks and Ruthenians. Y-STR variation showed a clear genetic departure of the Slovaks and Ruthenians inhabiting Vojvodina from their Serbian neighbours and genetic similarity to the Northern Slavic populations of Slovakia and Ukraine. Admixture estimates revealed negligible Serbian paternal ancestry in both Northern Slavic minorities of Vojvodina, providing evidence for their genetic isolation from the Serbian majority population. No reduction of genetic diversity at autosomal and Y-chromosomal markers was found, excluding genetic drift as a reason for differences observed at autosomal STRs. Analysis of molecular variance detected significant population stratification of autosomal and Y-chromosomal microsatellites in the three Slavic populations of northern Serbia, indicating necessity for separate databases used for estimations of frequencies of autosomal and Y-chromosomal STR profiles in forensic casework. Our results demonstrate that regarding Y-STR haplotypes, Serbian Slovaks and Ruthenians fit in the Eastern European metapopulation defined in the Y chromosome haplotype reference database. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Brahimi, Amina; Tarai, Nacer; Benhassane, Abdelkrim; Henrard, Arnaud; Libois, Roland
2016-02-01
Climatic variations during the Quaternary period had a considerable impact on landscapes and habitat fragmentation (rivers) in North Africa. These historical events can have significant consequences on the genetic structure of the populations. Indeed, geographically separated and genetically isolated populations tend to differentiate themselves through time, eventually becoming distinct lineages, allowing new species to emerge in later generations. The aim of the present study is to use genetic and morphological techniques to evaluate the major role of the Saalian glaciation (Middle Quaternary) in the establishment of the geographic space and in the evolution of the intraspecific genetic diversity, by tracing the demographic history of barbels belonging to the Luciobarbus pallaryi (Cyprinidae) species in the Guir Basin (Algeria). In this context, two populations, from two distinct and isolated sites, were studied. Analysis of the cytochrome b (cyt b) mitochondrial markers and of the "D-loop" control region has shown that the "upstream" and "downstream" Guir populations are genetically differentiated. The molecular analyses suggest that the upstream population was disconnected from this hydrographic system during the Saalian glaciation period of the Quaternary. Subsequently, it was isolated in the foggaras underground waters in the Great Western Erg, at approximately 320 000 years BP, creating, through a bottleneck effect, a new allopatric lineage referred to as "Adrar". Conversely, the high genetic diversity in the upstream Guir (Bechar) population suggests that the stock is globally in expansion. These barbels (n=52) were also examined with meristic, morphometric, osteological, and biological features. These data also reveal a complete discrimination between the two populations, with a remarkable and distinctive behavioural adaptation for the Adrar specimens: neoteny. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
de Miguel, Marina; de Maria, Nuria; Guevara, M Angeles; Diaz, Luis; Sáez-Laguna, Enrique; Sánchez-Gómez, David; Chancerel, Emilie; Aranda, Ismael; Collada, Carmen; Plomion, Christophe; Cabezas, José-Antonio; Cervera, María-Teresa
2012-10-04
Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.
2012-01-01
Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest. PMID:23036012
A global reference for human genetic variation
2016-01-01
The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245
Larno, V; Laroche, J; Launey, S; Flammarion, P; Devaux, A
2001-06-01
Indicators of effects at the population level (genetic variation using allozymes) and early indicators of pollution (EROD activity and DNA strand break formation) were analysed in chub (Leuciscus cephalus) living in weakly and heavily contaminated stations of the Rhône River watershed. The genetic erosion was mainly detected in a fish population living in a contaminated small river system, through modifications in allelic and genotypic frequencies for PGM-2 locus and could be linked to a genetic bottleneck and to the reduced gene flow from upstream unable to maintain or restore the genetic diversity. In a contaminated large river system, the genetic diversity for PGM-2 and other loci was maintained and was probably the consequence of a high gene flow from upstream, linked to a sustained drift of larvae and juveniles in the system. A convergent increase of the frequency of the 90 allele at PGM-2 was observed in two contaminated stations compared with the reference station, this trend being confirmed on a more extensive geographic scale over the Rhône River basin. A high level of EROD activity was detected in both contaminated sites but only the fish in the large river system showed a significant DNA damage level compared to the reference population. The low DNA damage level and high hepato-somatic ratio characterized the impacted population of the small river system and could be associated to a chronic high-level exposure of fish to pollutants which selected individuals exhibiting a high level of DNA damage repair. In the two contaminated systems, some genotypes at the PGM-2 and EST-2 loci showed a low level of DNA damage and/or a high EROD activity and may be considered as being tolerant to pollutants. A higher tolerance of the most heterozygous fish was also detected in the contaminated large system and confirmed that a high level of heterozygosity may be necessary for survival in such a system.
Osorio-Guarín, Jaime A; Berdugo-Cely, Jhon; Coronado, Roberto Antonio; Zapata, Yeny Patricia; Quintero, Constanza; Gallego-Sánchez, Gerardo; Yockteng, Roxana
2017-01-01
Beans of the species Theobroma cacao L., also known as cacao, are the raw material to produce chocolate. Colombian cacao has been classified as a fine flavor cacao that represents the 5% of cacao world's production. Colombian genetic resources from this species are conserved in ex situ and in-field germplasm banks, since T. cacao has recalcitrant seeds to desication and long-term storage. Currently, the collection of T. cacao of the Colombian Corporation of Agricultural Research (CORPOICA) has approximately 700 germplasm accessions. We conducted a molecular analysis of Corpoica's cacao collection and a morphological characterization of some accessions with the goal to study its genetic diversity and population structure and, to select interesting accessions for the cacao's breeding program. Phenotypic evaluation was performed based on 18 morphological traits and 4 biochemical traits. PCA analysis of morphological traits explained 60.6% of the total variation in seven components and 100% of the total variation of biochemical traits in four components, grouping the collection in 4 clusters for both variables. We explored 565 accessions from Corpoica's germplasm and 252 accessions from reference populations using 96 single nucleotide polymorphism (SNP) molecular markers. Molecular patterns of cacao Corpoica's collection were obtained amplifying specific alleles in a Fluidigm platform that used integrated circuits of fluids. Corpoica's collection showed highest genetic diversity [Expected Heterozygosity ( H E = 0.314), Observed Heterozygosity ( H O = 0.353)] that is reduced when reference populations were included in the dataset ( H E = 0.294, H O = 0.261). The collection was divided into four clusters based on population structure analysis. Cacao accessions from distinct groups showed some taxonomic concordance and reflected their geographic origins. For instance, accessions classified as Criollo were clearly differentiated in one group and we identified two new Colombian genetic groups. Using a number of allelic variations based on 87 SNP markers and 22 different morphological/biochemical traits, a core collection with a total of 232 accessions was selected as a primary genetic resource for cacao breeders.
Osorio-Guarín, Jaime A.; Berdugo-Cely, Jhon; Coronado, Roberto Antonio; Zapata, Yeny Patricia; Quintero, Constanza; Gallego-Sánchez, Gerardo; Yockteng, Roxana
2017-01-01
Beans of the species Theobroma cacao L., also known as cacao, are the raw material to produce chocolate. Colombian cacao has been classified as a fine flavor cacao that represents the 5% of cacao world’s production. Colombian genetic resources from this species are conserved in ex situ and in-field germplasm banks, since T. cacao has recalcitrant seeds to desication and long-term storage. Currently, the collection of T. cacao of the Colombian Corporation of Agricultural Research (CORPOICA) has approximately 700 germplasm accessions. We conducted a molecular analysis of Corpoica’s cacao collection and a morphological characterization of some accessions with the goal to study its genetic diversity and population structure and, to select interesting accessions for the cacao’s breeding program. Phenotypic evaluation was performed based on 18 morphological traits and 4 biochemical traits. PCA analysis of morphological traits explained 60.6% of the total variation in seven components and 100% of the total variation of biochemical traits in four components, grouping the collection in 4 clusters for both variables. We explored 565 accessions from Corpoica’s germplasm and 252 accessions from reference populations using 96 single nucleotide polymorphism (SNP) molecular markers. Molecular patterns of cacao Corpoica’s collection were obtained amplifying specific alleles in a Fluidigm platform that used integrated circuits of fluids. Corpoica’s collection showed highest genetic diversity [Expected Heterozygosity (HE = 0.314), Observed Heterozygosity (HO = 0.353)] that is reduced when reference populations were included in the dataset (HE = 0.294, HO = 0.261). The collection was divided into four clusters based on population structure analysis. Cacao accessions from distinct groups showed some taxonomic concordance and reflected their geographic origins. For instance, accessions classified as Criollo were clearly differentiated in one group and we identified two new Colombian genetic groups. Using a number of allelic variations based on 87 SNP markers and 22 different morphological/biochemical traits, a core collection with a total of 232 accessions was selected as a primary genetic resource for cacao breeders. PMID:29209353
McAllister, Christine A; Miller, Allison J
2016-07-01
Autopolyploidy, genome duplication within a single lineage, can result in multiple cytotypes within a species. Geographic distributions of cytotypes may reflect the evolutionary history of autopolyploid formation and subsequent population dynamics including stochastic (drift) and deterministic (differential selection among cytotypes) processes. Here, we used a population genomic approach to investigate whether autopolyploidy occurred once or multiple times in Andropogon gerardii, a widespread, North American grass with two predominant cytotypes. Genotyping by sequencing was used to identify single nucleotide polymorphisms (SNPs) in individuals collected from across the geographic range of A. gerardii. Two independent approaches to SNP calling were used: the reference-free UNEAK pipeline and a reference-guided approach based on the sequenced Sorghum bicolor genome. SNPs generated using these pipelines were analyzed independently with genetic distance and clustering. Analyses of the two SNP data sets showed very similar patterns of population-level clustering of A. gerardii individuals: a cluster of A. gerardii individuals from the southern Plains, a northern Plains cluster, and a western cluster. Groupings of individuals corresponded to geographic localities regardless of cytotype: 6x and 9x individuals from the same geographic area clustered together. SNPs generated using reference-guided and reference-free pipelines in A. gerardii yielded unique subsets of genomic data. Both data sets suggest that the 9x cytotype in A. gerardii likely evolved multiple times from 6x progenitors across the range of the species. Genomic approaches like GBS and diverse bioinformatics pipelines used here facilitate evolutionary analyses of complex systems with multiple ploidy levels. © 2016 Botanical Society of America.
Haller, Toomas; Leitsalu, Liis; Fischer, Krista; Nuotio, Marja-Liisa; Esko, Tõnu; Boomsma, Dorothea Irene; Kyvik, Kirsten Ohm; Spector, Tim D; Perola, Markus; Metspalu, Andres
2017-01-01
Ancestry information at the individual level can be a valuable resource for personalized medicine, medical, demographical and history research, as well as for tracing back personal history. We report a new method for quantitatively determining personal genetic ancestry based on genome-wide data. Numerical ancestry component scores are assigned to individuals based on comparisons with reference populations. These comparisons are conducted with an existing analytical pipeline making use of genotype phasing, similarity matrix computation and our addition-multidimensional best fitting by MixFit. The method is demonstrated by studying Estonian and Finnish populations in geographical context. We show the main differences in the genetic composition of these otherwise close European populations and how they have influenced each other. The components of our analytical pipeline are freely available computer programs and scripts one of which was developed in house (available at: www.geenivaramu.ee/en/tools/mixfit).
Genetic conflicts: the usual suspects and beyond
McLaughlin, Richard N.
2017-01-01
ABSTRACT Selfishness is pervasive and manifests at all scales of biology, from societies, to individuals, to genetic elements within a genome. The relentless struggle to seek evolutionary advantages drives perpetual cycles of adaptation and counter-adaptation, commonly referred to as Red Queen interactions. In this review, we explore insights gleaned from molecular and genetic studies of such genetic conflicts, both extrinsic (between genomes) and intrinsic (within genomes or cells). We argue that many different characteristics of selfish genetic elements can be distilled into two types of advantages: an over-replication advantage (e.g. mobile genetic elements in genomes) and a transmission distortion advantage (e.g. meiotic drivers in populations). These two general categories may help classify disparate types of selfish genetic elements. PMID:28057823
Estoup, Arnaud; Jarne, Philippe; Cornuet, Jean-Marie
2002-09-01
Homoplasy has recently attracted the attention of population geneticists, as a consequence of the popularity of highly variable stepwise mutating markers such as microsatellites. Microsatellite alleles generally refer to DNA fragments of different size (electromorphs). Electromorphs are identical in state (i.e. have identical size), but are not necessarily identical by descent due to convergent mutation(s). Homoplasy occurring at microsatellites is thus referred to as size homoplasy. Using new analytical developments and computer simulations, we first evaluate the effect of the mutation rate, the mutation model, the effective population size and the time of divergence between populations on size homoplasy at the within and between population levels. We then review the few experimental studies that used various molecular techniques to detect size homoplasious events at some microsatellite loci. The relationship between this molecularly accessible size homoplasy size and the actual amount of size homoplasy is not trivial, the former being considerably influenced by the molecular structure of microsatellite core sequences. In a third section, we show that homoplasy at microsatellite electromorphs does not represent a significant problem for many types of population genetics analyses realized by molecular ecologists, the large amount of variability at microsatellite loci often compensating for their homoplasious evolution. The situations where size homoplasy may be more problematic involve high mutation rates and large population sizes together with strong allele size constraints.
2013-01-01
Background Faba bean (Vicia faba L.) is among the earliest domesticated crops from the Near East. Today this legume is a key protein feed and food worldwide and continues to serve an important role in culinary traditions throughout Middle East, Mediterranean region, China and Ethiopia. Adapted to a wide range of soil types, the main faba bean breeding objectives are to improve yield, resistance to biotic and abiotic stresses, seed quality and other agronomic traits. Genomic approaches aimed at enhancing faba bean breeding programs require high-quality genetic linkage maps to facilitate quantitative trait locus analysis and gene tagging for use in a marker-assisted selection. The objective of this study was to construct a reference consensus map in faba bean by joining the information from the most relevant maps reported so far in this crop. Results A combination of two approaches, increasing the number of anchor loci in diverse mapping populations and joining the corresponding genetic maps, was used to develop a reference consensus map in faba bean. The map was constructed from three main recombinant inbreed populations derived from four parental lines, incorporates 729 markers and is based on 69 common loci. It spans 4,602 cM with a range from 323 to 1041 loci in six main linkage groups or chromosomes, and an average marker density of one locus every 6 cM. Locus order is generally well maintained between the consensus map and the individual maps. Conclusion We have constructed a reliable and fairly dense consensus genetic linkage map that will serve as a basis for genomic approaches in faba bean research and breeding. The core map contains a larger number of markers than any previous individual map, covers existing gaps and achieves a wider coverage of the large faba bean genome as a whole. This tool can be used as a reference resource for studies in different genetic backgrounds, and provides a framework for transferring genetic information when using different marker technologies. Combined with syntenic approaches, the consensus map will increase marker density in selected genomic regions and will be useful for future faba bean molecular breeding applications. PMID:24377374
Paschou, Peristera
2010-01-01
Recent large-scale studies of European populations have demonstrated the existence of population genetic structure within Europe and the potential to accurately infer individual ancestry when information from hundreds of thousands of genetic markers is used. In fact, when genomewide genetic variation of European populations is projected down to a two-dimensional Principal Components Analysis plot, a surprising correlation with actual geographic coordinates of self-reported ancestry has been reported. This substructure can hamper the search of susceptibility genes for common complex disorders leading to spurious correlations. The identification of genetic markers that can correct for population stratification becomes therefore of paramount importance. Analyzing 1,200 individuals from 11 populations genotyped for more than 500,000 SNPs (Population Reference Sample), we present a systematic exploration of the extent to which geographic coordinates of origin within Europe can be predicted, with small panels of SNPs. Markers are selected to correlate with the top principal components of the dataset, as we have previously demonstrated. Performing thorough cross-validation experiments we show that it is indeed possible to predict individual ancestry within Europe down to a few hundred kilometers from actual individual origin, using information from carefully selected panels of 500 or 1,000 SNPs. Furthermore, we show that these panels can be used to correctly assign the HapMap Phase 3 European populations to their geographic origin. The SNPs that we propose can prove extremely useful in a variety of different settings, such as stratification correction or genetic ancestry testing, and the study of the history of European populations. PMID:20805874
Analysis of genetic diversity in Bolivian llama populations using microsatellites.
Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J
2013-08-01
South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.
HGDP and HapMap Analysis by Ancestry Mapper Reveals Local and Global Population Relationships
Magalhães, Tiago R.; Casey, Jillian P.; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J.; Shah, Naisha; Sobral, João; Ennis, Sean
2012-01-01
Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set. PMID:23189146
HGDP and HapMap analysis by Ancestry Mapper reveals local and global population relationships.
Magalhães, Tiago R; Casey, Jillian P; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J; Shah, Naisha; Sobral, João; Ennis, Sean
2012-01-01
Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set.
Gong, Xian; Zhang, Chao; Yiliyasi·Aisa, Yiliyasi·Aisa; Shi, Ying; Yang, Xue-wei; NuersimanguliAosiman, NuersimanguliAosiman; Guan, Ya-qun; Xu, Shu-hua
2016-06-20
Over the last decade, a larger number of type 2 diabetes mellitus (T2DM) susceptible candidate genes have been reported by numerous genome-wide association studies (GWAS). Understanding the genetic diversity of these candidate genes among worldwide populations not only facilitates to elucidating the genetic mechanism of T2DM, but also provides guidance to further studies of pathogenesis of T2DM in any certain population. In this study, we identified 170 genes or genomic regions associated with T2DM by searching the GWAS databases and related literatures. We next analyzed the genetic diversity of these genes (or genomic regions) among present-day human populations by curetting the 1000 Genomes Projects phase1 dataset covering 14 worldwide populations. We further compared the characteristics of T2DM genes in different populations. No significant differences of genetic diversity were observed among the 14 worldwide populations between the T2DM candidate genes and the non-T2DM genes in terms of overall pattern. However, we observed some genes, such as IL20RA, RNMTL1-NXN, NOTCH2, ADRA2A-BTBD7P2, TBC1D4, RBM38-HMGB1P1, UBE2E2, and PPARD, show considerable differentiation between populations. In particular, IL20RA (FST=0.1521) displays the greatest population difference which is mainly contributed by that between Africans and non-Africans. Moreover, we revealed genetic differences between East Asians and Europeans on some candidate genes such as DGKB-AGMO (FST=0.173) and JAZF1 (FST=0.182). Our results indicate that some T2DM susceptible candidate genes harbor highly-differentiated variants between populations. These analyses, despite preliminary, should advance our understanding of the population difference of susceptibility to T2DM and provide insightful reference that future studies can relay on.
Giardia/giardiasis - a perspective on diagnostic and analytical tools.
Koehler, Anson V; Jex, Aaron R; Haydon, Shane R; Stevens, Melita A; Gasser, Robin B
2014-01-01
Giardiasis is a gastrointestinal disease of humans and other animals caused by species of parasitic protists of the genus Giardia. This disease is transmitted mainly via the faecal-oral route (e.g., in water or food) and is of socioeconomic importance worldwide. The accurate detection and genetic characterisation of the different species and population variants (usually referred to as assemblages and/or sub-assemblages) of Giardia are central to understanding their transmission patterns and host spectra. The present article provides a background on Giardia and giardiasis, and reviews some key techniques employed for the identification and genetic characterisation of Giardia in biological samples, the diagnosis of infection and the analysis of genetic variation within and among species of Giardia. Advances in molecular techniques provide a solid basis for investigating the systematics, population genetics, ecology and epidemiology of Giardia species and genotypes as well as the prevention and control of giardiasis. Copyright © 2013 Elsevier Inc. All rights reserved.
Applications of the 1000 Genomes Project resources.
Zheng-Bradley, Xiangqun; Flicek, Paul
2017-05-01
The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the 1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression Quantitative Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer genome sequencing projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies. © The Author 2016. Published by Oxford University Press.
Hall, Taryn O; Renz, Anne D; Snapinn, Katherine W; Bowen, Deborah J; Edwards, Karen L
2012-07-01
To determine if awareness of, interest in, and use of direct-to-consumer (DTC) genetic testing is greater in a sample of high-risk individuals (cancer cases and their relatives), compared to controls. Participants were recruited from the Northwest Cancer Genetics Network. A follow-up survey was mailed to participants to assess DTC genetic testing awareness, interest, and use. One thousand two hundred sixty-seven participants responded to the survey. Forty-nine percent of respondents were aware of DTC genetic testing. Of those aware, 19% indicated interest in obtaining and <1% reported having used DTC genetic testing. Additional information supplied by respondents who reported use of DTC genetic tests indicated that 55% of these respondents likely engaged in clinical genetic testing, rather than DTC genetic testing. Awareness of DTC genetic testing was greater in our sample of high-risk individuals than in controls and population-based studies. Although interest in and use of these tests among cases in our sample were equivalent to other population-based studies, interest in testing was higher among relatives and people who self-referred for a registry focused on cancer than among cases and controls. Additionally, our results suggest that there may be some confusion about what constitutes DTC genetic testing.
Marchani, Elizabeth E; Watkins, W Scott; Bulayeva, Kazima; Harpending, Henry C; Jorde, Lynn B
2008-01-01
Background Near the junction of three major continents, the Caucasus region has been an important thoroughfare for human migration. While the Caucasus Mountains have diverted human traffic to the few lowland regions that provide a gateway from north to south between the Caspian and Black Seas, highland populations have been isolated by their remote geographic location and their practice of patrilocal endogamy. We investigate how these cultural and historical differences between highland and lowland populations have affected patterns of genetic diversity. We test 1) whether the highland practice of patrilocal endogamy has generated sex-specific population relationships, and 2) whether the history of migration and military conquest associated with the lowland populations has left Central Asian genes in the Caucasus, by comparing genetic diversity and pairwise population relationships between Daghestani populations and reference populations throughout Europe and Asia for autosomal, mitochondrial, and Y-chromosomal markers. Results We found that the highland Daghestani populations had contrasting histories for the mitochondrial DNA and Y-chromosome data sets. Y-chromosomal haplogroup diversity was reduced among highland Daghestani populations when compared to other populations and to highland Daghestani mitochondrial DNA haplogroup diversity. Lowland Daghestani populations showed Turkish and Central Asian affinities for both mitochondrial and Y-chromosomal data sets. Autosomal population histories are strongly correlated to the pattern observed for the mitochondrial DNA data set, while the correlation between the mitochondrial DNA and Y-chromosome distance matrices was weak and not significant. Conclusion The reduced Y-chromosomal diversity exhibited by highland Daghestani populations is consistent with genetic drift caused by patrilocal endogamy. Mitochondrial and Y-chromosomal phylogeographic comparisons indicate a common Near Eastern origin of highland populations. Lowland Daghestani populations show varying influence from Near Eastern and Central Asian populations. PMID:18637195
2016-01-01
Background Warfarin is the most commonly used oral anticoagulant for the treatment and prevention of thromboembolic disorders. Pharmacogenomics studies have shown that variants in CYP2C9 and VKORC1 genes are strongly and consistently associated with warfarin dose variability. Although different populations from the Middle East and North Africa (MENA) region may share the same ancestry, it is still unclear how they compare in the genetic and non-genetic factors affecting their warfarin dosing. Objective To explore the prevalence of CYP2C9 and VKORC1 variants in MENA, and the effect of these variants along with other non-genetic factors in predicting warfarin dose. Methods In this systematic review, we included observational cross sectional and cohort studies that enrolled patients on stable warfarin dose and had the genetics and non-genetics factors associated with mean warfarin dose as the primary outcome. We searched PubMed, Medline, Scopus, PharmGKB, PHGKB, Google scholar and reference lists of relevant reviews. Results We identified 17 studies in eight different populations: Iranian, Israeli, Egyptian, Lebanese, Omani, Kuwaiti, Sudanese and Turkish. Most common genetic variant in all populations was the VKORC1 (-1639G>A), with a minor allele frequency ranging from 30% in Egyptians and up to 52% and 56% in Lebanese and Iranian, respectively. Variants in the CYP2C9 were less common, with the highest MAF for CYP2C9*2 among Iranians (27%). Variants in the VKORC1 and CYP2C9 were the most significant predictors of warfarin dose in all populations. Along with other genetic and non-genetic factors, they explained up to 63% of the dose variability in Omani and Israeli patients. Conclusion Variants of VKORC1 and CYP2C9 are the strongest predictors of warfarin dose variability among the different populations from MENA. Although many of those populations share the same ancestry and are similar in their warfarin dose predictors, a population specific dosing algorithm is needed for the prospective estimation of warfarin dose. PMID:27992547
Bader, Loulia Akram; Elewa, Hazem
2016-01-01
Warfarin is the most commonly used oral anticoagulant for the treatment and prevention of thromboembolic disorders. Pharmacogenomics studies have shown that variants in CYP2C9 and VKORC1 genes are strongly and consistently associated with warfarin dose variability. Although different populations from the Middle East and North Africa (MENA) region may share the same ancestry, it is still unclear how they compare in the genetic and non-genetic factors affecting their warfarin dosing. To explore the prevalence of CYP2C9 and VKORC1 variants in MENA, and the effect of these variants along with other non-genetic factors in predicting warfarin dose. In this systematic review, we included observational cross sectional and cohort studies that enrolled patients on stable warfarin dose and had the genetics and non-genetics factors associated with mean warfarin dose as the primary outcome. We searched PubMed, Medline, Scopus, PharmGKB, PHGKB, Google scholar and reference lists of relevant reviews. We identified 17 studies in eight different populations: Iranian, Israeli, Egyptian, Lebanese, Omani, Kuwaiti, Sudanese and Turkish. Most common genetic variant in all populations was the VKORC1 (-1639G>A), with a minor allele frequency ranging from 30% in Egyptians and up to 52% and 56% in Lebanese and Iranian, respectively. Variants in the CYP2C9 were less common, with the highest MAF for CYP2C9*2 among Iranians (27%). Variants in the VKORC1 and CYP2C9 were the most significant predictors of warfarin dose in all populations. Along with other genetic and non-genetic factors, they explained up to 63% of the dose variability in Omani and Israeli patients. Variants of VKORC1 and CYP2C9 are the strongest predictors of warfarin dose variability among the different populations from MENA. Although many of those populations share the same ancestry and are similar in their warfarin dose predictors, a population specific dosing algorithm is needed for the prospective estimation of warfarin dose.
Phylogenomics of the killer whale indicates ecotype divergence in sympatry.
Moura, A E; Kenny, J G; Chaudhuri, R R; Hughes, M A; Reisinger, R R; de Bruyn, P J N; Dahlheim, M E; Hall, N; Hoelzel, A R
2015-01-01
For many highly mobile species, the marine environment presents few obvious barriers to gene flow. Even so, there is considerable diversity within and among species, referred to by some as the 'marine speciation paradox'. The recent and diverse radiation of delphinid cetaceans (dolphins) represents a good example of this. Delphinids are capable of extensive dispersion and yet many show fine-scale genetic differentiation among populations. Proposed mechanisms include the division and isolation of populations based on habitat dependence and resource specializations, and habitat release or changing dispersal corridors during glacial cycles. Here we use a phylogenomic approach to investigate the origin of differentiated sympatric populations of killer whales (Orcinus orca). Killer whales show strong specialization on prey choice in populations of stable matrifocal social groups (ecotypes), associated with genetic and phenotypic differentiation. Our data suggest evolution in sympatry among populations of resource specialists.
Phylogenomics of the killer whale indicates ecotype divergence in sympatry
Moura, A E; Kenny, J G; Chaudhuri, R R; Hughes, M A; Reisinger, R R; de Bruyn, P J N; Dahlheim, M E; Hall, N; Hoelzel, A R
2015-01-01
For many highly mobile species, the marine environment presents few obvious barriers to gene flow. Even so, there is considerable diversity within and among species, referred to by some as the ‘marine speciation paradox'. The recent and diverse radiation of delphinid cetaceans (dolphins) represents a good example of this. Delphinids are capable of extensive dispersion and yet many show fine-scale genetic differentiation among populations. Proposed mechanisms include the division and isolation of populations based on habitat dependence and resource specializations, and habitat release or changing dispersal corridors during glacial cycles. Here we use a phylogenomic approach to investigate the origin of differentiated sympatric populations of killer whales (Orcinus orca). Killer whales show strong specialization on prey choice in populations of stable matrifocal social groups (ecotypes), associated with genetic and phenotypic differentiation. Our data suggest evolution in sympatry among populations of resource specialists. PMID:25052415
Mahammi, F Z; Gaouar, S B S; Laloë, D; Faugeras, R; Tabet-Aoul, N; Rognon, X; Tixier-Boichard, M; Saidi-Mehtar, N
2016-02-01
The objectives of this study were to characterize the genetic variability of village chickens from three agro-ecological regions of western Algeria: coastal (CT), inland plains (IP) and highlands (HL), to reveal any underlying population structure, and to evaluate potential genetic introgression from commercial lines into local populations. A set of 233 chickens was genotyped with a panel of 23 microsatellite markers. Geographical coordinates were individually recorded. Eight reference populations were included in the study to investigate potential gene flow: four highly selected commercial pure lines and four lines of French slow-growing chickens. Two populations of wild red jungle fowls were also genotyped to compare the range of diversity between domestic and wild fowls. A genetic diversity analysis was conducted both within and between populations. Multivariate redundancy analyses were performed to assess the relative influence of geographical location among Algerian ecotypes. The results showed a high genetic variability within the Algerian population, with 184 alleles and a mean number of 8.09 alleles per locus. The values of heterozygosity (He and Ho) ranged from 0.55 to 0.62 in Algerian ecotypes and were smaller than values found in Jungle fowl populations and higher than values found in commercial populations. Although the structuring analysis of genotypes did not reveal clear subpopulations within Algerian ecotypes, the supervised approach using geographical data showed a significant (p < 0.01) differentiation between the three ecotypes which was mainly due to altitude. Thus, the genetic diversity of Algerian ecotypes may be under the influence of two factors with contradictory effects: the geographical location and climatic conditions may induce some differentiation, whereas the high level of exchanges and gene flow may suppress it. Evidence of gene flow between commercial and Algerian local populations was observed, which may be due to unrecorded crossing with commercial chickens. Chicken ecotypes from western Algeria are characterized by a high genetic diversity and must be safeguarded as an important reservoir of genetic diversity. © 2015 Blackwell Verlag GmbH.
Growth in indigenous and nonindigenous Chilean schoolchildren from 3 poverty strata.
Bustos, P; Amigo, H; Muñoz, S R; Martorell, R
2001-10-01
This study sought to determine whether the short stature of Mapuche children, an indigenous group in Chile, reflects poverty or genetic heritage and whether the international reference population, derived from studies of US children of mostly European origin, is appropriate for assessing growth failure in indigenous peoples of the Americas. The study assessed 768 schoolchildren of Mapuche and non-Mapuche ancestry, aged 6 to 9 years, living under conditions of extreme, medium, and low poverty. Growth retardation was strongly related to poverty in both ethnic groups. Within poverty levels, there were no significant differences in stature between ethnic groups, and in low-poverty areas in Santiago, the capital city, mean stature was only slightly less than in the reference population. Poverty, not ancestry, explains the short stature of Mapuche children, and use of the international reference to assess growth in this population is appropriate.
Growth in Indigenous and Nonindigenous Chilean Schoolchildren From 3 Poverty Strata
Bustos, Patricia; Amigo, Hugo; Muñoz, Sergio R.; Martorell, Reynaldo
2001-01-01
Objectives. This study sought to determine whether the short stature of Mapuche children, an indigenous group in Chile, reflects poverty or genetic heritage and whether the international reference population, derived from studies of US children of mostly European origin, is appropriate for assessing growth failure in indigenous peoples of the Americas. Methods. The study assessed 768 schoolchildren of Mapuche and non-Mapuche ancestry, aged 6 to 9 years, living under conditions of extreme, medium, and low poverty. Results. Growth retardation was strongly related to poverty in both ethnic groups. Within poverty levels, there were no significant differences in stature between ethnic groups, and in low-poverty areas in Santiago, the capital city, mean stature was only slightly less than in the reference population. Conclusions. Poverty, not ancestry, explains the short stature of Mapuche children, and use of the international reference to assess growth in this population is appropriate. PMID:11574328
Tofanelli, Sergio; Taglioli, Luca; Varesi, Laurent; Paoli, Giorgio
2004-04-01
To genetically reconstruct the demographic history of the human population of Corsica (western Mediterranean), we analyzed the variability at eight autosomal STR loci (FES, VWA, CSF1PO, TH01, F13A1, TPOX, CD4, and D3S1358) in a sample of 179 native blood donors from 4 out of the 5 administrative districts. The main line of genetic discontinuity inferred from the spatial distribution of STR variability overlapped the linguistic and geographic boundaries. In the innermost areas (Corte district) several estimators had larger stochastic effects on allele frequencies. Genetic distance measures underlying different evolutionary models all pointed to a higher variability within Corsicans than within the rest of the Mediterranean reference populations. All Corsican subsamples showed the highest distance with a pooled sample from central Sardinia, thus making recent gene flow between the two neighboring islands unlikely. Hierarchical AMOVA and distance-based multivariate genetic spaces stressed the closeness of Tuscan and Corsican frequency distributions, which could reflect peopling events with different time depths. Anyway, estimated separation times well support the linguistic hypothesis that Neolithic/Chalcolithic events have been far more important than Paleolithic or historical processes in the shaping of present Corsican variability.
An overview of STRUCTURE: applications, parameter settings, and supporting software
Porras-Hurtado, Liliana; Ruiz, Yarimar; Santos, Carla; Phillips, Christopher; Carracedo, Ángel; Lareu, Maria V.
2013-01-01
Objectives: We present an up-to-date review of STRUCTURE software: one of the most widely used population analysis tools that allows researchers to assess patterns of genetic structure in a set of samples. STRUCTURE can identify subsets of the whole sample by detecting allele frequency differences within the data and can assign individuals to those sub-populations based on analysis of likelihoods. The review covers STRUCTURE's most commonly used ancestry and frequency models, plus an overview of the main applications of the software in human genetics including case-control association studies (CCAS), population genetics, and forensic analysis. The review is accompanied by supplementary material providing a step-by-step guide to running STRUCTURE. Methods: With reference to a worked example, we explore the effects of changing the principal analysis parameters on STRUCTURE results when analyzing a uniform set of human genetic data. Use of the supporting software: CLUMPP and distruct is detailed and we provide an overview and worked example of STRAT software, applicable to CCAS. Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct, and STRAT can be applied to provide researchers with an informed choice of parameter settings and supporting software when analyzing their own genetic data. PMID:23755071
Inferring Admixture Histories of Human Populations Using Linkage Disequilibrium
Loh, Po-Ru; Lipson, Mark; Patterson, Nick; Moorjani, Priya; Pickrell, Joseph K.; Reich, David; Berger, Bonnie
2013-01-01
Long-range migrations and the resulting admixtures between populations have been important forces shaping human genetic diversity. Most existing methods for detecting and reconstructing historical admixture events are based on allele frequency divergences or patterns of ancestry segments in chromosomes of admixed individuals. An emerging new approach harnesses the exponential decay of admixture-induced linkage disequilibrium (LD) as a function of genetic distance. Here, we comprehensively develop LD-based inference into a versatile tool for investigating admixture. We present a new weighted LD statistic that can be used to infer mixture proportions as well as dates with fewer constraints on reference populations than previous methods. We define an LD-based three-population test for admixture and identify scenarios in which it can detect admixture events that previous formal tests cannot. We further show that we can uncover phylogenetic relationships among populations by comparing weighted LD curves obtained using a suite of references. Finally, we describe several improvements to the computation and fitting of weighted LD curves that greatly increase the robustness and speed of the calculations. We implement all of these advances in a software package, ALDER, which we validate in simulations and apply to test for admixture among all populations from the Human Genome Diversity Project (HGDP), highlighting insights into the admixture history of Central African Pygmies, Sardinians, and Japanese. PMID:23410830
Tracing the genomic ancestry of Peruvians reveals a major legacy of pre-Columbian ancestors.
Sandoval, Jose R; Salazar-Granara, Alberto; Acosta, Oscar; Castillo-Herrera, Wilder; Fujita, Ricardo; Pena, Sergio D J; Santos, Fabricio R
2013-09-01
In order to investigate the underlying genetic structure and genomic ancestry proportions of Peruvian subpopulations, we analyzed 551 human samples of 25 localities from the Andean, Amazonian, and Coastal regions of Peru with a set of 40 ancestry informative insertion-deletion polymorphisms. Using genotypes of reference populations from different continents for comparison, our analysis indicated that populations from all 25 Peruvian locations had predominantly Amerindian genetic ancestry. Among populations from the Titicaca Lake islands of Taquile, Amantani, Anapia, and Uros, and the Yanque locality from the southern Peruvian Andes, there was no significant proportion of non-autochthonous genomes, indicating that their genetic background is effectively derived from the first settlers of South America. However, the Andean populations from San Marcos, Cajamarca, Characato and Chogo, and coastal populations from Lambayeque and Lima displayed a low but significant European ancestry proportion. Furthermore, Amazonian localities of Pucallpa, Lamas, Chachapoyas, and Andean localities of Ayacucho and Huancayo displayed intermediate levels of non-autochthonous ancestry, mostly from Europe. These results are in close agreement with the documented history of post-Columbian immigrations in Peru and with several reports suggesting a larger effective size of indigenous inhabitants during the formation of the current country's population.
Genetic conflicts: the usual suspects and beyond.
McLaughlin, Richard N; Malik, Harmit S
2017-01-01
Selfishness is pervasive and manifests at all scales of biology, from societies, to individuals, to genetic elements within a genome. The relentless struggle to seek evolutionary advantages drives perpetual cycles of adaptation and counter-adaptation, commonly referred to as Red Queen interactions. In this review, we explore insights gleaned from molecular and genetic studies of such genetic conflicts, both extrinsic (between genomes) and intrinsic (within genomes or cells). We argue that many different characteristics of selfish genetic elements can be distilled into two types of advantages: an over-replication advantage (e.g. mobile genetic elements in genomes) and a transmission distortion advantage (e.g. meiotic drivers in populations). These two general categories may help classify disparate types of selfish genetic elements. © 2017. Published by The Company of Biologists Ltd.
Lönn, Mikael; Lind, Emma E.; Świeżak, Justyna; Smolarz, Katarzyna; Grahn, Mats
2016-01-01
Human-derived environmental pollutants and nutrients that reach the aquatic environment through sewage effluents, agricultural and industrial processes are constantly contributing to environmental changes that serve as drivers for adaptive responses and evolutionary changes in many taxa. In this study, we examined how two types of point sources of aquatic environmental pollution, harbors and sewage treatment plants, affect gene diversity and genetic differentiation in the blue mussel in the Baltic Sea area and off the Swedish west coast (Skagerrak). Reference sites (REF) were geographically paired with sites from sewage treatments plant (STP) and harbors (HAR) with a nested sampling scheme, and genetic differentiation was evaluated using a high-resolution marker amplified fragment length polymorphism (AFLP). This study showed that genetic composition in the Baltic Sea blue mussel was associated with exposure to sewage treatment plant effluents. In addition, mussel populations from harbors were genetically divergent, in contrast to the sewage treatment plant populations, suggesting that there is an effect of pollution from harbors but that the direction is divergent and site specific, while the pollution effect from sewage treatment plants on the genetic composition of blue mussel populations acts in the same direction in the investigated sites. PMID:27812424
Subspecies status and population genetic structure in Piping Plover (Charadrius melodus)
Miller, M.P.; Haig, S.M.; Gratto-Trevor, C. L.; Mullins, T.D.
2010-01-01
Piping Plover (Charadrius melodus) is a migratory shorebird that is listed as endangered in Canada and the U.S. Great Lakes and as threatened throughout the rest of its breeding and winter range. We undertook a comprehensive molecular-genetic investigation to (1) address subspecific taxonomy, (2) characterize population genetic structure, and (3) infer past bottlenecks and demographic processes in this species. Analyses included individuals from 23 U.S. states and Canadian provinces and were based on mitochondrial DNA sequences (580 base pairs, n = 245) and 8 nuclear microsatellite loci (n = 229). Our findings provide support for separate Atlantic and Interior subspecies (C. m. melodus and C. m. circumcinctus, respectively). Birds from the Great Lakes region were allied with the Interior subspecies and should be referred to as C. m. circumcinctus. Population genetic analyses illustrated stronger genetic structure among Atlantic than among Interior birds, which may reflect reduced natal- and breeding-site fidelity of Interior individuals. Furthermore, analyses suggested that Interior birds previously experienced genetic bottlenecks, whereas there was no evidence of such patterns in the Atlantic subspecies. We interpret these results in light of 25 years of range-wide census data. Overall, differences between Interior and Atlantic Piping Plovers may reflect differences in spatiotemporal stability of nesting habitat between regions. ?? 2010 The American Ornithologists' Union.
kWIP: The k-mer weighted inner product, a de novo estimator of genetic similarity.
Murray, Kevin D; Webers, Christfried; Ong, Cheng Soon; Borevitz, Justin; Warthmann, Norman
2017-09-01
Modern genomics techniques generate overwhelming quantities of data. Extracting population genetic variation demands computationally efficient methods to determine genetic relatedness between individuals (or "samples") in an unbiased manner, preferably de novo. Rapid estimation of genetic relatedness directly from sequencing data has the potential to overcome reference genome bias, and to verify that individuals belong to the correct genetic lineage before conclusions are drawn using mislabelled, or misidentified samples. We present the k-mer Weighted Inner Product (kWIP), an assembly-, and alignment-free estimator of genetic similarity. kWIP combines a probabilistic data structure with a novel metric, the weighted inner product (WIP), to efficiently calculate pairwise similarity between sequencing runs from their k-mer counts. It produces a distance matrix, which can then be further analysed and visualised. Our method does not require prior knowledge of the underlying genomes and applications include establishing sample identity and detecting mix-up, non-obvious genomic variation, and population structure. We show that kWIP can reconstruct the true relatedness between samples from simulated populations. By re-analysing several published datasets we show that our results are consistent with marker-based analyses. kWIP is written in C++, licensed under the GNU GPL, and is available from https://github.com/kdmurray91/kwip.
van Baal, Sjozef; Kaimakis, Polynikis; Phommarinh, Manyphong; Koumbi, Daphne; Cuppens, Harry; Riccardino, Francesca; Macek, Milan; Scriver, Charles R; Patrinos, George P
2007-01-01
Frequency of INherited Disorders database (FINDbase) (http://www.findbase.org) is a relational database, derived from the ETHNOS software, recording frequencies of causative mutations leading to inherited disorders worldwide. Database records include the population and ethnic group, the disorder name and the related gene, accompanied by links to any corresponding locus-specific mutation database, to the respective Online Mendelian Inheritance in Man entries and the mutation together with its frequency in that population. The initial information is derived from the published literature, locus-specific databases and genetic disease consortia. FINDbase offers a user-friendly query interface, providing instant access to the list and frequencies of the different mutations. Query outputs can be either in a table or graphical format, accompanied by reference(s) on the data source. Registered users from three different groups, namely administrator, national coordinator and curator, are responsible for database curation and/or data entry/correction online via a password-protected interface. Databaseaccess is free of charge and there are no registration requirements for data querying. FINDbase provides a simple, web-based system for population-based mutation data collection and retrieval and can serve not only as a valuable online tool for molecular genetic testing of inherited disorders but also as a non-profit model for sustainable database funding, in the form of a 'database-journal'.
Genetics Home Reference: multiple sclerosis
... HLA-DRB1 gene belongs to a family of genes called the human leukocyte antigen (HLA) complex . The HLA complex helps ... DRB1*1501 associates with high expression of DRB1 gene in different human populations. PLoS One. 2012;7(1):e29819. doi: ...
Ladybirds as Teaching Aids: 2. Potential for Practical and Project Work.
ERIC Educational Resources Information Center
Majerus, M. E. N.; And Others
1989-01-01
Presented are several ideas for projects involving ladybird beetles. Discussed is background information about the insects; and projects involving life histories, intra-specific variation, taxonomy, genetics, behavior, ecology, habitat surveys, population biology, and overwintering biology. Lists 12 references. (CW)
Growth references for Tsimane forager-horticulturalists of the Bolivian Amazon
Blackwell, Aaron D.; Urlacher, Samuel S.; Beheim, Bret; von Rueden, Christopher; Jaeggi, Adrian; Stieglitz, Jonathan; Trumble, Benjamin C.; Gurven, Michael; Kaplan, Hillard
2016-01-01
Objectives Growth standards and references currently used to assess population and individual health are derived primarily from urban populations, including few individuals from indigenous or subsistence groups. Given environmental and genetic differences, growth may vary in these populations. Thus, there is a need to assess whether international standards are appropriate for all populations, and to produce population specific references if growth differs. Here we present and assess growth references for the Tsimane, an indigenous population of Bolivian forager-horticulturalists. Methods Mixed cross-sectional/longitudinal anthropometrics (9,614 individuals; 30,118 observations; ages 0–29 years) were used to generate centile curves and Lambda-Mu-Sigma (LMS) tables for height-for-age, weight-for-age, body mass index (BMI)-for-age, and weight-for-height (WFH) using Generalized Additive Models for Location Shape and Scale (GAMLSS). Velocity curves were generated using SuperImposition by Translation and Rotation (SITAR). Tsimane ≤5 years were compared World Health Organization (WHO) standards while those >5 years were compared to WHO school age references. All ages were compared to published references for Shuar forager-horticulturalists of the Ecuadorian Amazon. Results Tsimane growth differs from WHO values in height and weight, but is similar for BMI and WFH. Tsimane growth is characterized by slow height velocity in childhood and early adolescent peak height velocity at 11.3 and 13.2 years for girls and boys. Tsimane growth patterns are similar to Shuar, suggesting shared features of growth among indigenous South Americans. Conclusions International references for BMI-for-age and WFH are likely appropriate for Tsimane, but differences in height-for-age and weight-for-age suggest Tsimane specific references may be useful for these measures. PMID:28218400
Growth references for Tsimane forager-horticulturalists of the Bolivian Amazon.
Blackwell, Aaron D; Urlacher, Samuel S; Beheim, Bret; von Rueden, Christopher; Jaeggi, Adrian; Stieglitz, Jonathan; Trumble, Benjamin C; Gurven, Michael; Kaplan, Hillard
2017-03-01
Growth standards and references currently used to assess population and individual health are derived primarily from urban populations, including few individuals from indigenous or subsistence groups. Given environmental and genetic differences, growth may vary in these populations. Thus, there is a need to assess whether international standards are appropriate for all populations, and to produce population specific references if growth differs. Here we present and assess growth references for the Tsimane, an indigenous population of Bolivian forager-horticulturalists. Mixed cross-sectional/longitudinal anthropometrics (9,614 individuals; 30,118 observations; ages 0-29 years) were used to generate centile curves and Lambda-Mu-Sigma (LMS) tables for height-for-age, weight-for-age, body mass index (BMI)-for-age, and weight-for-height (WFH) using Generalized Additive Models for Location Shape and Scale (GAMLSS). Velocity curves were generated using SuperImposition by Translation and Rotation (SITAR). Tsimane ≤5 years were compared to World Health Organization (WHO) standards while those >5 years were compared to WHO school age references. All ages were compared to published references for Shuar forager-horticulturalists of the Ecuadorian Amazon. Tsimane growth differs from WHO values in height and weight, but is similar for BMI and WFH. Tsimane growth is characterized by slow height velocity in childhood and early adolescent peak height velocity at 11.3 and 13.2 years for girls and boys. Tsimane growth patterns are similar to Shuar, suggesting shared features of growth among indigenous South Americans. International references for BMI-for-age and WFH are likely appropriate for Tsimane, but differences in height-for-age and weight-for-age suggest Tsimane specific references may be useful for these measures. © 2016 Wiley Periodicals, Inc.
Permanent neonatal diabetes: different aetiology in Arabs compared to Europeans.
Habeb, Abdelhadi M; Flanagan, Sarah E; Deeb, Asma; Al-Alwan, Ibrahim; Alawneh, Hussain; Balafrej, Angham A L; Mutair, Angam; Hattersley, Andrew T; Hussain, Khalid; Ellard, Sian
2012-08-01
Mutations in the KCNJ11 and ABCC8 genes that encode the pancreatic K(ATP) channel are the commonest cause of permanent neonatal diabetes mellitus (PNDM). The authors aimed to define the genetic causes of PNDM in a large cohort of Arab patients and compare them with a British cohort tested in the same laboratory. Retrospective observational study. International genetics centre. Arab and British subjects with PNDM who were referred for genetic testing over the same period. Comparison of genotypes and phenotypes between the two cohorts. The aetiology and phenotype of PNDM in an Arab compared to a British cohort. 88 Arab and 77 British probands were referred between 2006 and 2011, inclusive. Consanguinity was higher among Arabs (63.6% vs 10.4%) and a higher percentage had a genetic diagnosis compared to the British cohort (63.6% vs 41.6%). Recessive EIF2AK3 gene mutations were the commonest cause of PNDM in the Arab cohort (22.7%) followed by INS (12.5%), and KCNJ11 and GCK (5.7% each), whereas K(ATP) channel mutations were the commonest cause (29.9%) in the British cohort. In 37.5% of Arab patients PNDM was part of a genetic syndrome compared to 7.8% of the British cohort. PNDM in the Arab population has a different genetic spectrum compared to British patients where KATP channel mutations are the commonest cause, similar to other European populations. In Arabs, PNDM is more likely to be part of a recessively inherited syndrome, possibly due to the higher rate of consanguinity.
The Geography of Recent Genetic Ancestry across Europe
Ralph, Peter; Coop, Graham
2013-01-01
The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (in the Population Reference Sample [POPRES] dataset) to conduct one of the first surveys of recent genealogical ancestry over the past 3,000 years at a continental scale. We detected 1.9 million shared long genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 2–12 genetic common ancestors from the last 1,500 years, and upwards of 100 genetic ancestors from the previous 1,000 years. These numbers drop off exponentially with geographic distance, but since these genetic ancestors are a tiny fraction of common genealogical ancestors, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1,000 years. There is also substantial regional variation in the number of shared genetic ancestors. For example, there are especially high numbers of common ancestors shared between many eastern populations that date roughly to the migration period (which includes the Slavic and Hunnic expansions into that region). Some of the lowest levels of common ancestry are seen in the Italian and Iberian peninsulas, which may indicate different effects of historical population expansions in these areas and/or more stably structured populations. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world. PMID:23667324
NASA Astrophysics Data System (ADS)
Liang, L.; Liao, J. S.; Gong, P.
2012-12-01
The transmission and distribution of schistomiasis, one of the most serious infectious diseases in East and Southeast Asia, tied closely to its unique intermediate snail host Oncomelania hupensis. The coevolved relationships of O. hupensis populations with its parasite Schistosoma japonisum are important in understanding the mechanism of disease spread. The genetic diversification pattern within population is supposed to influence the amount of parasite loads, and the susceptibility of snails determined the chance for human or mammals to get infected. Meanwhile, intervening environmental features had been long suggested to affect snail population dynamics and evolutionary trajectories of species. However, no comprehensive study referring to the above topics has been carried out on O.hupensis populations before. In this study, we reanalyzed published data in mainland China to evaluate whether human infection rate and genetic diversification patterns are related under natural environment. Besides that, we used an array of remotely sensed image derived environmental variables to quantify the amount of variation in population genetic structure that could be explained by those factors by landscape genetic analysis. We found that human schistosomiasis infection rate is positively correlated with intra-population genetic diversification and inter-population genetic exchange, which is contradictory with the Red Queen hypothesis. The patterns of genetic diversification are better revealed when non-Euclidean, environmentally determined distance measures or features are used in large heterogeneous landscape. The impact of stream connectivity on the snail inter-population genetic distances does not so evident unless taking wetlands into calculation, and thus control activities planned solely along river systems may be suboptimal. Climate features have a stronger impact on genetic structure of snails than topology, and precipitation seasonality dominates the highest proportion of explanation in genetic diversification. Different types of genes respond different to landscape effects, and it is suspected to be related with their evolution rate. Our study raises an important opportunity for public health decision making by combining geo-informatics and bio-informatics technology. Since the schistomiasis disease persistence, establishment, and intervention optimization are dependent on the genetic diversification pattern of O.hupensis populations, and that pattern is strongly environmentally determined, then certain key environmental features or landscape distances have the potential to inform public health decisions such as where to focus surveillance efforts, or disrupt the connection to stop the gene exchange. This is especially useful for Yangze River basin region under both extensive anthropogenic activities and climate change.
Fong, Cristian; Menzel, Stephan; Lizarralde, María Alejandra; Barreto, Guillermo
2015-01-01
Fetal hemoglobin is an important factor in modulating the severity of sickle cell anemia. Its level in peripheral blood underlies strong genetic determination. Associated loci with increased levels of fetal hemoglobin display population-specific allele frequencies. We investigated the presence and effect of known common genetic variants promoting fetal hemoglobin persistence (rs11886868, rs9399137, rs4895441, and rs7482144) in 60 Colombian patients with sickle cell anemia. Four single nucleotide polymorphisms (SNP) were genotyped by restriction fragment length polymorphisms (RFLP) and the use of the TaqMan procedure. Fetal hemoglobin (HbF) from these patients was quantified using the oxyhemoglobin alkaline denaturation technique. Genotype frequencies were compared with frequencies reported in global reference populations. We detected genetic variants in the four SNPs, reported to be associated with higher HbF levels for all four SNPs in the Colombian patients. Genetic association between SNPs and HbF levels did not reach statistical significance. The frequency of these variants reflected the specific ethnic make-up of our patient population: A high prevalence of rs7482144-'A' reflects the West-African origin of the sickle cell mutation, while high frequencies of rs4895441-'G' and rs11886868-'C' point to a significant influence of an Amerindian ethnic background in the Colombian sickle cell disease population. These results showed that in the sickle cell disease population in Colombia there is not a unique genetic background, but two (African and Amerindian). This unique genetic situation will provide opportunities for a further study of these loci, such as fine-mapping and molecular-biological investigation. Colombian patients are expected to yield a distinctive insight into the effect of modifier loci in sickle cell disease.
The environmental zero-point problem in evolutionary reaction norm modeling.
Ergon, Rolf
2018-04-01
There is a potential problem in present quantitative genetics evolutionary modeling based on reaction norms. Such models are state-space models, where the multivariate breeder's equation in some form is used as the state equation that propagates the population state forward in time. These models use the implicit assumption of a constant reference environment, in many cases set to zero. This zero-point is often the environment a population is adapted to, that is, where the expected geometric mean fitness is maximized. Such environmental reference values follow from the state of the population system, and they are thus population properties. The environment the population is adapted to, is, in other words, an internal population property, independent of the external environment. It is only when the external environment coincides with the internal reference environment, or vice versa, that the population is adapted to the current environment. This is formally a result of state-space modeling theory, which is an important theoretical basis for evolutionary modeling. The potential zero-point problem is present in all types of reaction norm models, parametrized as well as function-valued, and the problem does not disappear when the reference environment is set to zero. As the environmental reference values are population characteristics, they ought to be modeled as such. Whether such characteristics are evolvable is an open question, but considering the complexity of evolutionary processes, such evolvability cannot be excluded without good arguments. As a straightforward solution, I propose to model the reference values as evolvable mean traits in their own right, in addition to other reaction norm traits. However, solutions based on an evolvable G matrix are also possible.
Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B
2015-01-01
Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map. PMID:25060816
Molecular and morphologic data reveal multiple species in Peromyscus pectoralis
Bradley, Robert D.; Schmidly, David J.; Amman, Brian R.; Platt, Roy N.; Neumann, Kathy M.; Huynh, Howard M.; Muñiz-Martínez, Raúl; López-González, Celia; Ordóñez-Garza, Nicté
2015-01-01
DNA sequence and morphometric data were used to re-evaluate the taxonomy and systematics of Peromyscus pectoralis. Phylogenetic analyses (maximum likelihood and Bayesian inference) of DNA sequences from the mitochondrial cytochrome-b gene in 44 samples of P. pectoralis indicated 2 well-supported monophyletic clades. The 1st clade contained specimens from Texas historically assigned to P. p. laceianus; the 2nd was comprised of specimens previously referable to P. p. collinus, P. p. laceianus, and P. p. pectoralis obtained from northern and eastern Mexico. Levels of genetic variation (~7%) between these 2 clades indicated that the genetic divergence typically exceeded that reported for other species of Peromyscus. Samples of P. p. laceianus north and south of the Río Grande were not monophyletic. In addition, samples representing P. p. collinus and P. p. pectoralis formed 2 clades that differed genetically by 7.14%. Multivariate analyses of external and cranial measurements from 63 populations of P. pectoralis revealed 4 morpho-groups consistent with clades in the DNA sequence analysis: 1 from Texas and New Mexico assignable to P. p. laceianus; a 2nd from western and southern Mexico assignable to P. p. pectoralis; a 3rd from northern and central Mexico previously assigned to P. p. pectoralis but herein shown to represent an undescribed taxon; and a 4th from southeastern Mexico assignable to P. p. collinus. Based on the concordance of these results, populations from the United States are referred to as P. laceianus, whereas populations from Mexico are referred to as P. pectoralis (including some samples historically assigned to P. p. collinus, P. p. laceianus, and P. p. pectoralis). A new subspecies is described to represent populations south of the Río Grande in northern and central Mexico. Additional research is needed to discern if P. p. collinus warrants species recognition. PMID:26937045
Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population
Wu, Yibo; Williams, Evan G.; Dubuis, Sébastien; Mottis, Adrienne; Jovaisaite, Virginija; Houten, Sander M.; Argmann, Carmen A.; Faridi, Pouya; Wolski, Witold; Kutalik, Zoltán; Zamboni, Nicola; Auwerx, Johan; Aebersold, Ruedi
2014-01-01
SUMMARY The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study, we quantified the transcriptome—a subset of the metabolome—and, using targeted proteomics, quantified a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein, and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. These integrated molecular profiles also allowed further characterization of complex pathways, particularly the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved among C. elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes. PMID:25215496
Mei, Ting; Shen, Chun-Mei; Liu, Yao-Shun; Meng, Hao-Tian; Zhang, Yu-Dang; Guo, Yu-Xin; Dong, Qian; Wang, Xin-Xin; Yan, Jiang-Wei; Zhu, Bo-Feng; Zhang, Li-Ping
2016-01-01
The Uigur ethnic minority is the largest ethnic group in the Xinjiang Uygur Autonomous Region of China, and valuable resource for the study of ethnogeny. The objective of this study was to estimate the genetic diversities and forensic parameters of 30 insertion-deletion loci in Uigur ethnic group from Xinjiang Uigur Autonomous Region of China and to analyze the genetic relationships between Xinjiang Uigur group and other previously published groups based on population data of these loci. All the tested loci were conformed to Hardy-Weinberg equilibrium after Bonferroni correction. The observed and expected heterozygosity ranged from 0.3750 to 0.5515; and 0.4057 to 0.5037, respectively. The combined power of discrimination and probability of exclusion in the group were 0.99999999999940 and 0.9963, respectively. We analyzed the D A distance, interpopulation differentiations and population structure, conducted principal component analysis and neighbor-joining tree based on our studied group and 21 reference groups. The present results indicated that the studied Xinjiang Uigur group (represented our samples from the whole territory of Xinjiang Uigur Autonomous Region) had a close relationships with Urumchi Uigur (represented previously reported samples from Urumchi of Xinjiang) and Kazak groups. The present study may provide novel biological information for the study of population genetics, and can also increase our understanding of the genetic relationships between Xinjiang Uigur group and other groups.
Saxena, Rachit K.; Varma Penmetsa, R.; Upadhyaya, Hari D.; Kumar, Ashish; Carrasquilla-Garcia, Noelia; Schlueter, Jessica A.; Farmer, Andrew; Whaley, Adam M.; Sarma, Birinchi K.; May, Gregory D.; Cook, Douglas R.; Varshney, Rajeev K.
2012-01-01
Single-nucleotide polymorphisms (SNPs, >2000) were discovered by using RNA-seq and allele-specific sequencing approaches in pigeonpea (Cajanus cajan). For making the SNP genotyping cost-effective, successful competitive allele-specific polymerase chain reaction (KASPar) assays were developed for 1616 SNPs and referred to as PKAMs (pigeonpea KASPar assay markers). Screening of PKAMs on 24 genotypes [23 from cultivated species and 1 wild species (Cajanus scarabaeoides)] defined a set of 1154 polymorphic markers (77.4%) with a polymorphism information content (PIC) value from 0.04 to 0.38. One thousand and ninety-four PKAMs showed polymorphisms between parental lines of the reference mapping population (C. cajan ICP 28 × C. scarabaeoides ICPW 94). By using high-quality marker genotyping data on 167 F2 lines from the population, a comprehensive genetic map comprising 875 PKAMs with an average inter-marker distance of 1.11 cM was developed. Previously mapped 35 simple sequence repeat markers were integrated into the PKAM map and an integrated genetic map of 996.21 cM was constructed. Mapped PKAMs showed a higher degree of synteny with the genome of Glycine max followed by Medicago truncatula and Lotus japonicus and least with Vigna unguiculata. These PKAMs will be useful for genetics research and breeding applications in pigeonpea and for utilizing genome information from other legume species. PMID:23103470
Silady, Rebecca A; Effgen, Sigi; Koornneef, Maarten; Reymond, Matthieu
2011-01-01
A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.
van Arendonk, Johan A M; Bijma, Piter
2003-01-15
Reproductive techniques have a major impact on the structure of breeding programmes, the rate of genetic gain and dissemination of genetic gain in populations. This manuscript reviews the impact of reproductive technologies on the underlying components of genetic gain and inbreeding with special reference to the role of female reproductive technology. Evaluation of alternative breeding schemes should be based on genetic gain while constraining inbreeding. Optimum breeding schemes can be characterised by: decreased importance of sib information; increased accuracy at the expense of intensity; and a factorial mating strategy. If large-scale embryo cloning becomes feasible, this will have a small impact on the rate of genetic gain but will have a large impact on the structure of breeding programmes.
Gorostiza, Amaya; Acunha-Alonzo, Víctor; Regalado-Liu, Lucía; Tirado, Sergio; Granados, Julio; Sámano, David; Rangel-Villalobos, Héctor; González-Martín, Antonio
2012-01-01
The study of genetic information can reveal a reconstruction of human population’s history. We sequenced the entire mtDNA control region (positions 16.024 to 576 following Cambridge Reference Sequence, CRS) of 605 individuals from seven Mesoamerican indigenous groups and one Aridoamerican from the Greater Southwest previously defined, all of them in present Mexico. Samples were collected directly from the indigenous populations, the application of an individual survey made it possible to remove related or with other origins samples. Diversity indices and demographic estimates were calculated. Also AMOVAs were calculated according to different criteria. An MDS plot, based on FST distances, was also built. We carried out the construction of individual networks for the four Amerindian haplogroups detected. Finally, barrier software was applied to detect genetic boundaries among populations. The results suggest: a common origin of the indigenous groups; a small degree of European admixture; and inter-ethnic gene flow. The process of Mesoamerica’s human settlement took place quickly influenced by the region’s orography, which development of genetic and cultural differences facilitated. We find the existence of genetic structure is related to the region’s geography, rather than to cultural parameters, such as language. The human population gradually became fragmented, though they remained relatively isolated, and differentiated due to small population sizes and different survival strategies. Genetic differences were detected between Aridoamerica and Mesoamerica, which can be subdivided into “East”, “Center”, “West” and “Southeast”. The fragmentation process occurred mainly during the Mesoamerican Pre-Classic period, with the Otomí being one of the oldest groups. With an increased number of populations studied adding previously published data, there is no change in the conclusions, although significant genetic heterogeneity can be detected in Pima and Huichol groups. This result may be explained because populations historically assigned as belonging to the same group were, in fact, different indigenous populations. PMID:23028577
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, M.Y.
Lead mining has historically been in operation in Missouri since the 1700`s, and an extensively mineralized region known as the ``Old Lead Belt`` in the southeastern portion of the state contained some of the most substantial deposits in the district. Although mining is currently inactive in this region, intensive past mining resulted in accumulation of large tailings piles placed adjacent to aquatic resources. Erosion and accidental releases of mine tailings rich in lead, zinc, cadmium and copper have resulted in contamination in the Big River drainage, one of two principal tributaries in the Meramec River Basin. Substantial bioaccumulation of metalsmore » has previously been documented for freshwater mussels collected from the Big River, as well as for other aquatic biota. This research project investigated the effects of metal pollution on biochemical genetic variability among three populations of the freshwater mussel Lampsilis ventricosa in the Meramec River Basin. Specimens were collected from metal-contaminated reaches of the Big River, and two reference populations in Meramec and Bourbeuse Rivers. Using techniques of starch gel electrophoresis, significant differences were found in allozyme frequencies at the phosphoglucomutase locus between mussels collected from the metal-contaminated Big River versus reference populations, suggesting that certain allozyme genotypes may be more sensitive than others to metal pollutants. The genetic response to geographic variation in environmental contamination between the L. ventricosa populations examined in the Meramec River Basin suggests that differential pollution-induced selection of allozyme genotypes has occurred in the Big River.« less
Liu, Xiao-Ping; Gao, Bao-Zhen; Han, Feng-Qing; Fang, Zhi-Yuan; Yang, Li-Mei; Zhuang, Mu; Lv, Hong-Hao; Liu, Yu-Mei; Li, Zhan-Sheng; Cai, Cheng-Cheng; Yu, Hai-Long; Li, Zhi-Yuan; Zhang, Yang-Yong
2017-03-14
Due to its variegated and colorful leaves, ornamental kale (Brassica oleracea L. var. acephala) has become a popular ornamental plant. In this study, we report the fine mapping and analysis of a candidate purple leaf gene using a backcross population and an F 2 population derived from two parental lines: W1827 (with white leaves) and P1835 (with purple leaves). Genetic analysis indicated that the purple leaf trait is controlled by a single dominant gene, which we named BoPr. Using markers developed based on the reference genome '02-12', the BoPr gene was preliminarily mapped to a 280-kb interval of chromosome C09, with flanking markers M17 and BoID4714 at genetic distances of 4.3 cM and 1.5 cM, respectively. The recombination rate within this interval is almost 12 times higher than the usual level, which could be caused by assembly error for reference genome '02-12' at this interval. Primers were designed based on 'TO1000', another B. oleracea reference genome. Among the newly designed InDel markers, BRID485 and BRID490 were found to be the closest to BoPr, flanking the gene at genetic distances of 0.1 cM and 0.2 cM, respectively; the interval between the two markers is 44.8 kb (reference genome 'TO1000'). Seven annotated genes are located within the 44.8 kb genomic region, of which only Bo9g058630 shows high homology to AT5G42800 (dihydroflavonol reductase), which was identified as a candidate gene for BoPr. Blast analysis revealed that this 44.8 kb interval is located on an unanchored scaffold (Scaffold000035_P2) of '02-12', confirming the existence of assembly error at the interval between M17 and BoID4714 for reference genome '02-12'. This study identified a candidate gene for BoPr and lays a foundation for the cloning and functional analysis of this gene.
Fondevila, M; Phillips, C; Santos, C; Freire Aradas, A; Vallone, P M; Butler, J M; Lareu, M V; Carracedo, A
2013-01-01
A revision of an established 34 SNP forensic ancestry test has been made by swapping the under-performing rs727811 component SNP with the highly informative rs3827760 that shows a near-fixed East Asian specific allele. We collated SNP variability data for the revised SNP set in 66 reference populations from 1000 Genomes and HGDP-CEPH panels and used this as reference data to analyse four U.S. populations showing a range of admixture patterns. The U.S. Hispanics sample in particular displayed heterogeneous values of co-ancestry between European, Native American and African contributors, likely to reflect in part, the way this disparate group is defined using cultural as well as population genetic parameters. The genotyping of over 700 U.S. population samples also provided the opportunity to thoroughly gauge peak mobility variation and peak height ratios observed from routine use of the single base extension chemistry of the 34-plex test. Finally, the genotyping of the widely used DNA profiling Standard Reference Material samples plus other control DNAs completes the audit of the 34-plex assay to allow forensic practitioners to apply this test more readily in their own laboratories. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Reference intervals: current status, recent developments and future considerations.
Ozarda, Yesim
2016-01-01
Reliable and accurate reference intervals (RIs) for laboratory analyses are an integral part of the process of correct interpretation of clinical laboratory test results. RIs given in laboratory reports have an important role in aiding the clinician in interpreting test results in reference to values for healthy populations. Since the 1980s, the International Federation of Clinical Chemistry (IFCC) has been proactive in establishing recommendations to clarify the true significance of the term 'RIs, to select the appropriate reference population and statistically analyse the data. The C28-A3 guideline published by the Clinical and Laboratory Standards Institute (CLSI) and IFCC is still the most widely-used source of reference in this area. In recent years, protocols additional to the Guideline have been published by the IFCC, Committee on Reference Intervals and Decision Limits (C-RIDL), including all details of multicenter studies on RIs to meet the requirements in this area. Multicentric RIs studies are the most important development in the area of RIs. Recently, the C-RIDL has performed many multicentric studies to obtain common RIs. Confusion of RIs and clinical decision limits (CDLs) remains an issue and pediatric and geriatric age groups are a significant problem. For future studies of RIs, the genetic effect would seem to be the most challenging area. The aim of the review is to present the current theory and practice of RIs, with special emphasis given to multicenter RIs studies, RIs studies for pediatric and geriatric age groups, clinical decision limits and partitioning by genetic effects on RIs.
Reference intervals: current status, recent developments and future considerations
Ozarda, Yesim
2016-01-01
Reliable and accurate reference intervals (RIs) for laboratory analyses are an integral part of the process of correct interpretation of clinical laboratory test results. RIs given in laboratory reports have an important role in aiding the clinician in interpreting test results in reference to values for healthy populations. Since the 1980s, the International Federation of Clinical Chemistry (IFCC) has been proactive in establishing recommendations to clarify the true significance of the term ‘RIs, to select the appropriate reference population and statistically analyse the data. The C28-A3 guideline published by the Clinical and Laboratory Standards Institute (CLSI) and IFCC is still the most widely-used source of reference in this area. In recent years, protocols additional to the Guideline have been published by the IFCC, Committee on Reference Intervals and Decision Limits (C-RIDL), including all details of multicenter studies on RIs to meet the requirements in this area. Multicentric RIs studies are the most important development in the area of RIs. Recently, the C-RIDL has performed many multicentric studies to obtain common RIs. Confusion of RIs and clinical decision limits (CDLs) remains an issue and pediatric and geriatric age groups are a significant problem. For future studies of RIs, the genetic effect would seem to be the most challenging area. The aim of the review is to present the current theory and practice of RIs, with special emphasis given to multicenter RIs studies, RIs studies for pediatric and geriatric age groups, clinical decision limits and partitioning by genetic effects on RIs. PMID:26981015
[Genetic diseases in pediatric patients hospitalised in the town of Ubaté, Colombia].
Páez, Paola; Suárez-Obando, Fernando; Zarante, Ignacio
2008-01-01
Describing genetic disease frequency in a second-level hospital's in-patient paediatric service The hospital's statistical department's records for 2005 were comprehensively reviewed; the study was carried out in the town of Ubaté during 2006. Complex diseases led to nearly 25% of all hospitalisations, including multifactor diseases and congenital malformations. However, an aetiological study and/or geneticist consultation or referral took place on a few occasions. Primary care hospitals should become more relevant reference centres for detecting genetic diseases amongst the paediatric population. New mechanisms are needed for implementing this to allow patients access to a geneticist and for an aetiological diagnosis to be made and providing suitable genetic counselling.
Ali, Mohammad; Liu, Xuanyao; Pillai, Esakimuthu Nisha; Chen, Peng; Khor, Chiea-Chuen; Ong, Rick Twee-Hee; Teo, Yik-Ying
2014-07-22
India is home to many ethnically and linguistically diverse populations. It is hypothesized that history of invasions by people from Persia and Central Asia, who are referred as Aryans in Hindu Holy Scriptures, had a defining role in shaping the Indian population canvas. A shift in spoken languages from Dravidian languages to Indo-European languages around 1500 B.C. is central to the Aryan Invasion Theory. Here we investigate the genetic differences between two sub-populations of India consisting of: (1) The Indo-European language speaking Gujarati Indians with genome-wide data from the International HapMap Project; and (2) the Dravidian language speaking Tamil Indians with genome-wide data from the Singapore Genome Variation Project. We implemented three population genetics measures to identify genomic regions that are significantly differentiated between the two Indian populations originating from the north and south of India. These measures singled out genomic regions with: (i) SNPs exhibiting significant variation in allele frequencies in the two Indian populations; and (ii) differential signals of positive natural selection as quantified by the integrated haplotype score (iHS) and cross-population extended haplotype homozygosity (XP-EHH). One of the regions that emerged spans the SLC24A5 gene that has been functionally shown to affect skin pigmentation, with a higher degree of genetic sharing between Gujarati Indians and Europeans. Our finding points to a gene-flow from Europe to north India that provides an explanation for the lighter skin tones present in North Indians in comparison to South Indians.
Richmond, Jonathan Q.; Jacobs, David K.; Backlin, Adam R.; Swift, Camm C.; Dellith, Chris; Fisher, Robert N.
2015-01-01
Much remains to be understood about the evolutionary history and contemporary landscape genetics of unarmored threespine stickleback in southern California, where populations collectively referred to as Gasterosteus aculeatus williamsoni have severely declined over the past 70+ years and are now endangered. We used mitochondrial sequence and microsatellite data to assess the population genetics and phylogeography of unarmored populations sampled immediately downstream from the type locality of G. a. williamsoni in the upper Santa Clara River, and assessed their distinctiveness with respect to low-armor populations in the downstream sections of the river and the adjacent Ventura River. We also characterized the geographic limits of different plate morphs and evaluated the congruence of those boundaries with barriers to dispersal in both river systems and to neutral genetic variation. We show substantial population structuring within the upper reach of the Santa Clara River, but little partitioning between the lower Santa Clara and Ventura Rivers—we attribute these patterns to different ancestry between spatially subdivided populations within the same drainage, a predominance of downstream gene flow, and ability for coastal dispersal between the Santa Clara and Ventura Rivers. We also show that alleles from introduced low-plate stock have infiltrated a native population in at least one upper Santa Clara River tributary, causing this formerly unarmored population to become gradually low-plated over a 30 + year time period. Measures of genetic diversity, census surveys, and severe habitat disturbance all indicate that unarmored stickleback near the type locality are currently at high risk of extinction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesler, Elissa J; Branstetter, Lisa R; Churchill, Gary A
2008-01-01
Complex traits and disease co-morbidity in humans and in model organisms are the result of naturally occurring polymorphisms that interact with each other and with the environment. To ensure the availability of the resources needed to investigate biomolecular networks and ultimately systems level phenotypes, we have initiated breeding of a new genetic reference population of mice, the Collaborative Cross. This population has been designed to optimally support systems genetics analysis. Its novel and important features include high levels of genetic diversity, a large population size to ensure sufficient power in high-dimensional studies, and high mapping precision through accumulation of independentmore » recombination events. Implementation of the Collaborative Cross has been in progress at the Oak Ridge National Laboratory (ORNL) since May 2005. This is achieved through a software assisted breeding program with fully traceable lineages, performed in a uniform environment. Currently, there are 650 lines in production with almost 200 lines over seven generations of inbreeding. Retired breeders enter a high-throughput phenotyping protocol and DNA samples are banked for analysis of recombination history, allele loss, and population structure. Herein we present a progress report of the Collaborative Cross breeding program at ORNL and a description of the kinds of investigations that this resource will support.« less
Boguski, D A; Reid, S B; Goodman, D H; Docker, M F
2012-11-01
Phylogenetic structure of four Lampetra species from the Pacific drainage of North America (western brook lamprey Lampetra richardsoni, Pacific brook lamprey Lampetra pacifica, river lamprey Lampetra ayresii and Kern brook lamprey Lampetra hubbsi) and unidentified Lampetra specimens (referred to as Lampetra sp.) from 36 locations was estimated using the mitochondrial cytochrome b gene. Maximum parsimony and Bayesian inferences did not correspond with any taxonomic scheme proposed to date. Rather, although L. richardsoni (from Alaska to California) and L. ayresii (from British Columbia to California) together constituted a well-supported clade distinct from several genetically divergent Lampetra populations in Oregon and California, these two species were not reciprocally monophyletic. The genetically divergent populations included L. pacifica (from the Columbia River basin) and L. hubbsi (from the Kern River basin) and four Lampetra sp. populations in Oregon (Siuslaw River and Fourmile Creek) and California (Kelsey and Mark West Creeks). These four Lampetra sp. populations showed genetic divergence between 2.3 and 5.7% from any known species (and up to 8.0% from each other), and may represent morphologically cryptic and thus previously undescribed species. A fifth population (from Paynes Creek, California) may represent a range extension of L. hubbsi into the Upper Sacramento River. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Genetic structure of a unique admixed population: implications for medical research.
Patterson, Nick; Petersen, Desiree C; van der Ross, Richard E; Sudoyo, Herawati; Glashoff, Richard H; Marzuki, Sangkot; Reich, David; Hayes, Vanessa M
2010-02-01
STATEMENT: In naming population groups, we think a chief aim is to use terms that the group members use themselves, or find familiar and comfortable. The terms used in this manuscript to describe populations are as historically correct as possible and are chosen so as not to offend any population group. Two of the authors (DCP and REvdR) belong to the Coloured population, with one of the authors (REvdR) having contributed extensively to current literature on the history of the Coloured people of South Africa and served as Vice-President of the South African Institute of Race Relations. According to the 2001 South African census (http://www.statssa.gov.za/census01/HTML/CInBrief/CIB2001.pdf), "Statistics South Africa continues to classify people by population group, in order to monitor progress in moving away from the apartheid-based discrimination of the past. However, membership of a population group is now based on self-perception and self-classification, not on a legal definition. Five options were provided on the questionnaire, Black African, Coloured, Indian or Asian, White and Other. Responses in the category 'Other' were very few and were therefore imputed". We have elected to use the term Bushmen rather than San to refer to the hunter-gatherer people of Southern Africa. Although they have no collective name for themselves, this decision was based on the term Bushmen (or Bossiesman) being the more familiar to the communities themselves, while the term San is the more accepted academic classification. Understanding human genetic structure has fundamental implications for understanding the evolution and impact of human diseases. In this study, we describe the complex genetic substructure of a unique and recently admixed population arising approximately 350 years ago as a direct result of European settlement in South Africa. Analysis was performed using over 900 000 genome-wide single nucleotide polymorphisms in 20 unrelated ancestry-informative marker selected Coloured individuals and made comparisons with historically predicted founder populations. We show that there is substantial genetic contribution from at least four distinct population groups: Europeans, South Asians, Indonesians and a population genetically close to the isiXhosa sub-Saharan Bantu. This is in good accord with the historical record. We briefly examine the implications of determining the genetic diversity of this population, not only for furthering understanding of human evolution out of Africa, but also for genome-wide association studies using admixture mapping. In conclusion, we define the genetic structure of a uniquely admixed population that holds great potential to advance genetic-based medical research.
Tsybovskii, I S; Veremeichik, V M; Kotova, S A; Kritskaya, S V; Evmenenko, S A; Udina, I G
2017-02-01
For the Republic of Belarus, development of a forensic reference database on the basis of 18 autosomal microsatellites (STR) using a population dataset (N = 1040), “familial” genotypic dataset (N = 2550) obtained from expertise performance of paternity testing, and a dataset of genotypes from a criminal registration database (N = 8756) is described. Population samples studied consist of 80% ethnic Belarusians and 20% individuals of other nationality or of mixed origin (by questionnaire data). Genotypes of 12346 inhabitants of the Republic of Belarus from 118 regional samples studied by 18 autosomal microsatellites are included in the sample: 16 tetranucleotide STR (D2S1338, TPOX, D3S1358, CSF1PO, D5S818, D8S1179, D7S820, THO1, vWA, D13S317, D16S539, D18S51, D19S433, D21S11, F13B, and FGA) and two pentanucleotide STR (Penta D and Penta E). The samples studied are in Hardy–Weinberg equilibrium according to distribution of genotypes by 18 STR. Significant differences were not detected between discrete populations or between samples from various historical ethnographic regions of the Republic of Belarus (Western and Eastern Polesie, Podneprovye, Ponemanye, Poozerye, and Center), which indicates the absence of prominent genetic differentiation. Statistically significant differences between the studied genotypic datasets also were not detected, which made it possible to combine the datasets and consider the total sample as a unified forensic reference database for 18 “criminalistic” STR loci. Differences between reference database of the Republic of Belarus and Russians and Ukrainians by the distribution of the range of autosomal STR also were not detected, corresponding to a close genetic relationship of the three Eastern Slavic nations mediated by common origin and intense mutual migrations. Significant differences by separate STR loci between the reference database of Republic of Belarus and populations of Southern and Western Slavs were observed. The necessity of using original reference database for support of forensic expertise practice in the Republic of Belarus was demonstrated.
Microevolutionary dynamics of a macroevolutionary key innovation in a Lepidopteran herbivore
2010-01-01
Background A molecular population genetics understanding is central to the study of ecological and evolutionary functional genomics. Population genetics identifies genetic variation and its distribution within and among populations, it reveals the demographic history of the populations studied, and can provide indirect insights into historical selection dynamics. Here we use this approach to examine the demographic and selective dynamics acting of a candidate gene involved in plant-insect interactions. Previous work documents the macroevolutionary and historical ecological importance of the nitrile-specifier protein (Nsp), which facilitated the host shift of Pieridae butterflies onto Brassicales host plants ~80 Myr ago. Results Here we assess the microevolutionary dynamics of the Nsp gene by studying the within and among-population variation at Nsp and reference genes in the butterfly Pieris rapae (Small Cabbage White). Nsp exhibits unexpectedly high amounts of amino acid polymorphism, unequally distributed across the gene. The vast majority of genetic variation exists within populations, with little to no genetic differentiation among four populations on two continents. A comparison of synonymous and nonsynonymous substitutions in 70 randomly chosen genes among P. rapae and its close relative Pieris brassicae (Large Cabbage White) finds Nsp to have a significantly relaxed functional constraint compared to housekeeping genes. We find strong evidence for a recent population expansion and no role for strong purifying or directional selection upon the Nsp gene. Conclusions The microevolutionary dynamics of the Nsp gene in P. rapae are dominated by recent population expansion and variation in functional constraint across the repeated domains of the Nsp gene. While the high amounts of amino acid diversity suggest there may be significant functional differences among allelic variants segregating within populations, indirect tests of selection could not conclusively identify a signature of historical selection. The importance of using this information for planning future studies of potential performance and fitness consequences of the observed variation is discussed. PMID:20181249
Ducci, Francesca; Roy, Alec; Shen, Pei-Hong; Yuan, Qiaoping; Yuan, Nicole P; Hodgkinson, Colin A; Goldman, Lynn R; Goldman, David
2009-09-01
Genetic variation influences differential vulnerability to addiction within populations. However, it remains unclear whether differences in frequencies of vulnerability alleles contribute to disparities between populations and to what extent ancestry correlates with differential exposure to environmental risk factors, including poverty and trauma. The authors used 186 ancestry-informative markers to measure African ancestry in 407 addicts and 457 comparison subjects self-identified as African Americans. The reference group was 1,051 individuals from the Human Genome Diversity Cell Line Panel, which includes 51 diverse populations representing most worldwide genetic diversity. African Americans varied in degrees of African, European, Middle Eastern, and Central Asian genetic heritage. The overall level of African ancestry was actually smaller among cocaine, opiate, and alcohol addicts (proportion=0.76-0.78) than nonaddicted African American comparison subjects (proportion=0.81). African ancestry was associated with living in impoverished neighborhoods, a factor previously associated with risk. There was no association between African ancestry and exposure to childhood abuse or neglect, a factor that strongly predicted all types of addictions. These results suggest that African genetic heritage does not increase the likelihood of genetic risk for addictions. They highlight the complex interrelation between genetic ancestry and social, economic, and environmental conditions and the strong relation of those factors to addiction. Studies of epidemiological samples characterized for genetic ancestry and social, psychological, demographic, economic, cultural, and historical factors are needed to better disentangle the effects of genetic and environmental factors underlying interpopulation differences in vulnerability to addiction and other health disparities.
Ducci, Francesca; Roy, Alec; Shen, Pei-Hong; Yuan, Qiaoping; Yuan, Nicole P.; Hodgkinson, Colin A.; Goldman, Lynn R.; Goldman, David
2009-01-01
Objective Genetic variation influences differential vulnerability to addiction within populations. However, it remains unclear whether differences in frequencies of vulnerability alleles contribute to disparities between populations and to what extent ancestry correlates with differential exposure to environmental risk factors, including poverty and trauma. Method The authors used 186 ancestry-informative markers to measure African ancestry in 407 addicts and 457 comparison subjects self-identified as African Americans. The reference group was 1,051 individuals from the Human Genome Diversity Cell Line Panel, which includes 51 diverse populations representing most worldwide genetic diversity. Results African Americans varied in degrees of African, European, Middle Eastern, and Central Asian genetic heritage. The overall level of African ancestry was actually smaller among cocaine, opiate, and alcohol addicts (proportion=0.76–0.78) than nonaddicted African American comparison subjects (proportion=0.81). African ancestry was associated with living in impoverished neighborhoods, a factor previously associated with risk. There was no association between African ancestry and exposure to childhood abuse or neglect, a factor that strongly predicted all types of addictions. Conclusions These results suggest that African genetic heritage does not increase the likelihood of genetic risk for addictions. They highlight the complex interrelation between genetic ancestry and social, economic, and environmental conditions and the strong relation of those factors to addiction. Studies of epidemiological samples characterized for genetic ancestry and social, psychological, demographic, economic, cultural, and historical factors are needed to better disentangle the effects of genetic and environmental factors underlying interpopulation differences in vulnerability to addiction and other health disparities. PMID:19605534
Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst
2016-09-01
The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.
Sharma, Sanjeev Kumar; Bolser, Daniel; de Boer, Jan; Sønderkær, Mads; Amoros, Walter; Carboni, Martin Federico; D’Ambrosio, Juan Martín; de la Cruz, German; Di Genova, Alex; Douches, David S.; Eguiluz, Maria; Guo, Xiao; Guzman, Frank; Hackett, Christine A.; Hamilton, John P.; Li, Guangcun; Li, Ying; Lozano, Roberto; Maass, Alejandro; Marshall, David; Martinez, Diana; McLean, Karen; Mejía, Nilo; Milne, Linda; Munive, Susan; Nagy, Istvan; Ponce, Olga; Ramirez, Manuel; Simon, Reinhard; Thomson, Susan J.; Torres, Yerisf; Waugh, Robbie; Zhang, Zhonghua; Huang, Sanwen; Visser, Richard G. F.; Bachem, Christian W. B.; Sagredo, Boris; Feingold, Sergio E.; Orjeda, Gisella; Veilleux, Richard E.; Bonierbale, Merideth; Jacobs, Jeanne M. E.; Milbourne, Dan; Martin, David Michael Alan; Bryan, Glenn J.
2013-01-01
The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker−based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal “pseudomolecules”. PMID:24062527
Clark, Samuel A; Hickey, John M; Daetwyler, Hans D; van der Werf, Julius H J
2012-02-09
The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values. Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated. The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy. An animal's relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.
An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function.
Li, Hao; Wang, Xu; Rukina, Daria; Huang, Qingyao; Lin, Tao; Sorrentino, Vincenzo; Zhang, Hongbo; Bou Sleiman, Maroun; Arends, Danny; McDaid, Aaron; Luan, Peiling; Ziari, Naveed; Velázquez-Villegas, Laura A; Gariani, Karim; Kutalik, Zoltan; Schoonjans, Kristina; Radcliffe, Richard A; Prins, Pjotr; Morgenthaler, Stephan; Williams, Robert W; Auwerx, Johan
2018-01-24
Identifying genetic and environmental factors that impact complex traits and common diseases is a high biomedical priority. Here, we developed, validated, and implemented a series of multi-layered systems approaches, including (expression-based) phenome-wide association, transcriptome-/proteome-wide association, and (reverse-) mediation analysis, in an open-access web server (systems-genetics.org) to expedite the systems dissection of gene function. We applied these approaches to multi-omics datasets from the BXD mouse genetic reference population, and identified and validated associations between genes and clinical and molecular phenotypes, including previously unreported links between Rpl26 and body weight, and Cpt1a and lipid metabolism. Furthermore, through mediation and reverse-mediation analysis we established regulatory relations between genes, such as the co-regulation of BCKDHA and BCKDHB protein levels, and identified targets of transcription factors E2F6, ZFP277, and ZKSCAN1. Our multifaceted toolkit enabled the identification of gene-gene and gene-phenotype links that are robust and that translate well across populations and species, and can be universally applied to any populations with multi-omics datasets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Niederstätter, Harald; Rampl, Gerhard; Erhart, Daniel; Pitterl, Florian; Oberacher, Herbert; Neuhuber, Franz; Hausner, Isolde; Gassner, Christoph; Schennach, Harald; Berger, Burkhard; Parson, Walther
2012-01-01
The small alpine district of East Tyrol (Austria) has an exceptional demographic history. It was contemporaneously inhabited by members of the Romance, the Slavic and the Germanic language groups for centuries. Since the Late Middle Ages, however, the population of the principally agrarian-oriented area is solely Germanic speaking. Historic facts about East Tyrol's colonization are rare, but spatial density-distribution analysis based on the etymology of place-names has facilitated accurate spatial mapping of the various language groups' former settlement regions. To test for present-day Y chromosome population substructure, molecular genetic data were compared to the information attained by the linguistic analysis of pasture names. The linguistic data were used for subdividing East Tyrol into two regions of former Romance (A) and Slavic (B) settlement. Samples from 270 East Tyrolean men were genotyped for 17 Y-chromosomal microsatellites (Y-STRs) and 27 single nucleotide polymorphisms (Y-SNPs). Analysis of the probands' surnames revealed no evidence for spatial genetic structuring. Also, spatial autocorrelation analysis did not indicate significant correlation between genetic (Y-STR haplotypes) and geographic distance. Haplogroup R-M17 chromosomes, however, were absent in region A, but constituted one of the most frequent haplogroups in region B. The R-M343 (R1b) clade showed a marked and complementary frequency distribution pattern in these two regions. To further test East Tyrol's modern Y-chromosomal landscape for geographic patterning attributable to the early history of settlement in this alpine area, principal coordinates analysis was performed. The Y-STR haplotypes from region A clearly clustered with those of Romance reference populations and the samples from region B matched best with Germanic speaking reference populations. The combined use of onomastic and molecular genetic data revealed and mapped the marked structuring of the distribution of Y chromosomes in an alpine region that has been culturally homogeneous for centuries.
Liu, San-Xu; Hou, Wei; Zhang, Xue-Yan; Peng, Chang-Jun; Yue, Bi-Song; Fan, Zhen-Xin; Li, Jing
2018-07-18
The Tibetan macaque, which is endemic to China, is currently listed as a Near Endangered primate species by the International Union for Conservation of Nature (IUCN). Short tandem repeats (STRs) refer to repetitive elements of genome sequence that range in length from 1-6 bp. They are found in many organisms and are widely applied in population genetic studies. To clarify the distribution characteristics of genome-wide STRs and understand their variation among Tibetan macaques, we conducted a genome-wide survey of STRs with next-generation sequencing of five macaque samples. A total of 1 077 790 perfect STRs were mined from our assembly, with an N50 of 4 966 bp. Mono-nucleotide repeats were the most abundant, followed by tetra- and di-nucleotide repeats. Analysis of GC content and repeats showed consistent results with other macaques. Furthermore, using STR analysis software (lobSTR), we found that the proportion of base pair deletions in the STRs was greater than that of insertions in the five Tibetan macaque individuals (P<0.05, t-test). We also found a greater number of homozygous STRs than heterozygous STRs (P<0.05, t-test), with the Emei and Jianyang Tibetan macaques showing more heterozygous loci than Huangshan Tibetan macaques. The proportion of insertions and mean variation of alleles in the Emei and Jianyang individuals were slightly higher than those in the Huangshan individuals, thus revealing differences in STR allele size between the two populations. The polymorphic STR loci identified based on the reference genome showed good amplification efficiency and could be used to study population genetics in Tibetan macaques. The neighbor-joining tree classified the five macaques into two different branches according to their geographical origin, indicating high genetic differentiation between the Huangshan and Sichuan populations. We elucidated the distribution characteristics of STRs in the Tibetan macaque genome and provided an effective method for screening polymorphic STRs. Our results also lay a foundation for future genetic variation studies of macaques.
Niederstätter, Harald; Rampl, Gerhard; Erhart, Daniel; Pitterl, Florian; Oberacher, Herbert; Neuhuber, Franz; Hausner, Isolde; Gassner, Christoph; Schennach, Harald; Berger, Burkhard; Parson, Walther
2012-01-01
The small alpine district of East Tyrol (Austria) has an exceptional demographic history. It was contemporaneously inhabited by members of the Romance, the Slavic and the Germanic language groups for centuries. Since the Late Middle Ages, however, the population of the principally agrarian-oriented area is solely Germanic speaking. Historic facts about East Tyrol's colonization are rare, but spatial density-distribution analysis based on the etymology of place-names has facilitated accurate spatial mapping of the various language groups' former settlement regions. To test for present-day Y chromosome population substructure, molecular genetic data were compared to the information attained by the linguistic analysis of pasture names. The linguistic data were used for subdividing East Tyrol into two regions of former Romance (A) and Slavic (B) settlement. Samples from 270 East Tyrolean men were genotyped for 17 Y-chromosomal microsatellites (Y-STRs) and 27 single nucleotide polymorphisms (Y-SNPs). Analysis of the probands' surnames revealed no evidence for spatial genetic structuring. Also, spatial autocorrelation analysis did not indicate significant correlation between genetic (Y-STR haplotypes) and geographic distance. Haplogroup R-M17 chromosomes, however, were absent in region A, but constituted one of the most frequent haplogroups in region B. The R-M343 (R1b) clade showed a marked and complementary frequency distribution pattern in these two regions. To further test East Tyrol's modern Y-chromosomal landscape for geographic patterning attributable to the early history of settlement in this alpine area, principal coordinates analysis was performed. The Y-STR haplotypes from region A clearly clustered with those of Romance reference populations and the samples from region B matched best with Germanic speaking reference populations. The combined use of onomastic and molecular genetic data revealed and mapped the marked structuring of the distribution of Y chromosomes in an alpine region that has been culturally homogeneous for centuries. PMID:22848647
Genetic factors affecting dental caries risk.
Opal, S; Garg, S; Jain, J; Walia, I
2015-03-01
This article reviews the literature on genetic aspects of dental caries and provides a framework for the rapidly changing disease model of caries. The scope is genetic aspects of various dental factors affecting dental caries. The PubMed database was searched for articles with keywords 'caries', 'genetics', 'taste', 'diet' and 'twins'. This was followed by extensive handsearching using reference lists from relevant articles. The post-genomic era will present many opportunities for improvement in oral health care but will also present a multitude of challenges. We can conclude from the literature that genes have a role to play in dental caries; however, both environmental and genetic factors have been implicated in the aetiology of caries. Additional studies will have to be conducted to replicate the findings in a different population. Identification of genetic risk factors will help screen and identify susceptible patients to better understand the contribution of genes in caries aetiopathogenesis. Information derived from these diverse studies will provide new tools to target individuals and/or populations for a more efficient and effective implementation of newer preventive measures and diagnostic and novel therapeutic approaches in the management of this disease. © 2015 Australian Dental Association.
Dale, Julia; Price, Erin P; Hornstra, Heidie; Busch, Joseph D; Mayo, Mark; Godoy, Daniel; Wuthiekanun, Vanaporn; Baker, Anthony; Foster, Jeffrey T; Wagner, David M; Tuanyok, Apichai; Warner, Jeffrey; Spratt, Brian G; Peacock, Sharon J; Currie, Bart J; Keim, Paul; Pearson, Talima
2011-12-01
Rapid assignment of bacterial pathogens into predefined populations is an important first step for epidemiological tracking. For clonal species, a single allele can theoretically define a population. For non-clonal species such as Burkholderia pseudomallei, however, shared allelic states between distantly related isolates make it more difficult to identify population defining characteristics. Two distinct B. pseudomallei populations have been previously identified using multilocus sequence typing (MLST). These populations correlate with the major foci of endemicity (Australia and Southeast Asia). Here, we use multiple Bayesian approaches to evaluate the compositional robustness of these populations, and provide assignment results for MLST sequence types (STs). Our goal was to provide a reference for assigning STs to an established population without the need for further computational analyses. We also provide allele frequency results for each population to enable estimation of population assignment even when novel STs are discovered. The ability for humans and potentially contaminated goods to move rapidly across the globe complicates the task of identifying the source of an infection or outbreak. Population genetic dynamics of B. pseudomallei are particularly complicated relative to other bacterial pathogens, but the work here provides the ability for broad scale population assignment. As there is currently no independent empirical measure of successful population assignment, we provide comprehensive analytical details of our comparisons to enable the reader to evaluate the robustness of population designations and assignments as they pertain to individual research questions. Finer scale subdivision and verification of current population compositions will likely be possible with genotyping data that more comprehensively samples the genome. The approach used here may be valuable for other non-clonal pathogens that lack simple group-defining genetic characteristics and provides a rapid reference for epidemiologists wishing to track the origin of infection without the need to compile population data and learn population assignment algorithms.
Lazzaro, Brian P.; Little, Tom J.
2008-01-01
Immune function is likely to be a critical determinant of an organism's fitness, yet most natural animal and plant populations exhibit tremendous genetic variation for immune traits. Accumulating evidence suggests that environmental heterogeneity may retard the long-term efficiency of natural selection and even maintain polymorphism, provided alternative host genotypes are favoured under different environmental conditions. ‘Environment’ in this context refers to abiotic factors such as ambient temperature or availability of nutrient resources, genetic diversity of pathogens or competing physiological demands on the host. These factors are generally controlled in laboratory experiments measuring immune performance, but variation in them is likely to be very important in the evolution of resistance to infection. Here, we review some of the literature emphasizing the complexity of natural selection on immunity. Our aim is to describe how environmental and genetic heterogeneities, often excluded from experimentation as ‘noise’, may determine the evolutionary potential of populations or the potential for interacting species to coevolve. PMID:18926975
Holtz, Yan; Ardisson, Morgane; Ranwez, Vincent; Besnard, Alban; Leroy, Philippe; Poux, Gérard; Roumet, Pierre; Viader, Véronique; Santoni, Sylvain; David, Jacques
2016-01-01
Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays. PMID:27171472
Zhang, Ge; Karns, Rebekah; Sun, Guangyun; Indugula, Subba Rao; Cheng, Hong; Havas-Augustin, Dubravka; Novokmet, Natalija; Rudan, Dusko; Durakovic, Zijad; Missoni, Sasa; Chakraborty, Ranajit; Rudan, Pavao; Deka, Ranjan
2011-01-01
Human height is a classical example of a polygenic quantitative trait. Recent large-scale genome-wide association studies (GWAS) have identified more than 200 height-associated loci, though these variants explain only 2∼10% of overall variability of normal height. The objective of this study was to investigate the variance explained by these loci in a relatively isolated population of European descent with limited admixture and homogeneous genetic background from the Adriatic coast of Croatia. In a sample of 1304 individuals from the island population of Hvar, Croatia, we performed genome-wide SNP typing and assessed the variance explained by genetic scores constructed from different panels of height-associated SNPs extracted from five published studies. The combined information of the 180 SNPs reported by Lango Allen el al. explained 7.94% of phenotypic variation in our sample. Genetic scores based on 20~50 SNPs reported by the remaining individual GWA studies explained 3~5% of height variance. These percentages of variance explained were within ranges comparable to the original studies and heterogeneity tests did not detect significant differences in effect size estimates between our study and the original reports, if the estimates were obtained from populations of European descent. We have evaluated the portability of height-associated loci and the overall fitting of estimated effect sizes reported in large cohorts to an isolated population. We found proportions of explained height variability were comparable to multiple reference GWAS in cohorts of European descent. These results indicate similar genetic architecture and comparable effect sizes of height loci among populations of European descent. © 2011 Zhang et al.
2017-01-01
A central feature of Darwin's theory of natural selection is that it explains the purpose of biological adaptation. Here, I: emphasize the scientific importance of understanding what adaptations are for, in terms of facilitating the derivation of empirically testable predictions; discuss the population genetical basis for Darwin's theory of the purpose of adaptation, with reference to Fisher's ‘fundamental theorem of natural selection'; and show that a deeper understanding of the purpose of adaptation is achieved in the context of social evolution, with reference to inclusive fitness and superorganisms. PMID:28839927
Gardner, Andy
2017-10-06
A central feature of Darwin's theory of natural selection is that it explains the purpose of biological adaptation. Here, I: emphasize the scientific importance of understanding what adaptations are for, in terms of facilitating the derivation of empirically testable predictions; discuss the population genetical basis for Darwin's theory of the purpose of adaptation, with reference to Fisher's 'fundamental theorem of natural selection'; and show that a deeper understanding of the purpose of adaptation is achieved in the context of social evolution, with reference to inclusive fitness and superorganisms.
Joint genomic evaluation of French dairy cattle breeds using multiple-trait models.
Karoui, Sofiene; Carabaño, María Jesús; Díaz, Clara; Legarra, Andrés
2012-12-07
Using a multi-breed reference population might be a way of increasing the accuracy of genomic breeding values in small breeds. Models involving mixed-breed data do not take into account the fact that marker effects may differ among breeds. This study was aimed at investigating the impact on accuracy of increasing the number of genotyped candidates in the training set by using a multi-breed reference population, in contrast to single-breed genomic evaluations. Three traits (milk production, fat content and female fertility) were analyzed by genomic mixed linear models and Bayesian methodology. Three breeds of French dairy cattle were used: Holstein, Montbéliarde and Normande with 2976, 950 and 970 bulls in the training population, respectively and 964, 222 and 248 bulls in the validation population, respectively. All animals were genotyped with the Illumina Bovine SNP50 array. Accuracy of genomic breeding values was evaluated under three scenarios for the correlation of genomic breeding values between breeds (r(g)): uncorrelated (1), r(g) = 0; estimated r(g) (2); high, r(g) = 0.95 (3). Accuracy and bias of predictions obtained in the validation population with the multi-breed training set were assessed by the coefficient of determination (R(2)) and by the regression coefficient of daughter yield deviations of validation bulls on their predicted genomic breeding values, respectively. The genetic variation captured by the markers for each trait was similar to that estimated for routine pedigree-based genetic evaluation. Posterior means for rg ranged from -0.01 for fertility between Montbéliarde and Normande to 0.79 for milk yield between Montbéliarde and Holstein. Differences in R(2) between the three scenarios were notable only for fat content in the Montbéliarde breed: from 0.27 in scenario (1) to 0.33 in scenarios (2) and (3). Accuracies for fertility were lower than for other traits. Using a multi-breed reference population resulted in small or no increases in accuracy. Only the breed with a small data set and large genetic correlation with the breed with a large data set showed increased accuracy for the traits with moderate (milk) to high (fat content) heritability. No benefit was observed for fertility, a lowly heritable trait.
Joint genomic evaluation of French dairy cattle breeds using multiple-trait models
2012-01-01
Background Using a multi-breed reference population might be a way of increasing the accuracy of genomic breeding values in small breeds. Models involving mixed-breed data do not take into account the fact that marker effects may differ among breeds. This study was aimed at investigating the impact on accuracy of increasing the number of genotyped candidates in the training set by using a multi-breed reference population, in contrast to single-breed genomic evaluations. Methods Three traits (milk production, fat content and female fertility) were analyzed by genomic mixed linear models and Bayesian methodology. Three breeds of French dairy cattle were used: Holstein, Montbéliarde and Normande with 2976, 950 and 970 bulls in the training population, respectively and 964, 222 and 248 bulls in the validation population, respectively. All animals were genotyped with the Illumina Bovine SNP50 array. Accuracy of genomic breeding values was evaluated under three scenarios for the correlation of genomic breeding values between breeds (rg): uncorrelated (1), rg = 0; estimated rg (2); high, rg = 0.95 (3). Accuracy and bias of predictions obtained in the validation population with the multi-breed training set were assessed by the coefficient of determination (R2) and by the regression coefficient of daughter yield deviations of validation bulls on their predicted genomic breeding values, respectively. Results The genetic variation captured by the markers for each trait was similar to that estimated for routine pedigree-based genetic evaluation. Posterior means for rg ranged from −0.01 for fertility between Montbéliarde and Normande to 0.79 for milk yield between Montbéliarde and Holstein. Differences in R2 between the three scenarios were notable only for fat content in the Montbéliarde breed: from 0.27 in scenario (1) to 0.33 in scenarios (2) and (3). Accuracies for fertility were lower than for other traits. Conclusions Using a multi-breed reference population resulted in small or no increases in accuracy. Only the breed with a small data set and large genetic correlation with the breed with a large data set showed increased accuracy for the traits with moderate (milk) to high (fat content) heritability. No benefit was observed for fertility, a lowly heritable trait. PMID:23216664
Native South American genetic structure and prehistory inferred from hierarchical modeling of mtDNA.
Lewis, Cecil M; Long, Jeffrey C
2008-03-01
Genetic diversity in Native South Americans forms a complex pattern at both the continental and local levels. In comparing the West to the East, there is more variation within groups and smaller genetic distances between groups. From this pattern, researchers have proposed that there is more variation in the West and that a larger, more genetically diverse, founding population entered the West than the East. Here, we question this characterization of South American genetic variation and its interpretation. Our concern arises because others have inferred regional variation from the mean variation within local populations without taking into account the variation among local populations within the same region. This failure produces a biased view of the actual variation in the East. In this study, we analyze the mitochondrial DNA sequence between positions 16040 and 16322 of the Cambridge reference sequence. Our sample represents a total of 886 people from 27 indigenous populations from South (22), Central (3), and North America (2). The basic unit of our analyses is nucleotide identity by descent, which is easily modeled and proportional to nucleotide diversity. We use a forward modeling strategy to fit a series of nested models to identity by descent within and between all pairs of local populations. This method provides estimates of identity by descent at different levels of population hierarchy without assuming homogeneity within populations, regions, or continents. Our main discovery is that Eastern South America harbors more genetic variation than has been recognized. We find no evidence that there is increased identity by descent in the East relative to the total for South America. By contrast, we discovered that populations in the Western region, as a group, harbor more identity by descent than has been previously recognized, despite the fact that average identity by descent within groups is lower. In this light, there is no need to postulate separate founding populations for the East and the West because the variability in the East could serve as a source for the Western gene pools.
Benner, Christian; Havulinna, Aki S; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ripatti, Samuli; Pirinen, Matti
2017-10-05
During the past few years, various novel statistical methods have been developed for fine-mapping with the use of summary statistics from genome-wide association studies (GWASs). Although these approaches require information about the linkage disequilibrium (LD) between variants, there has not been a comprehensive evaluation of how estimation of the LD structure from reference genotype panels performs in comparison with that from the original individual-level GWAS data. Using population genotype data from Finland and the UK Biobank, we show here that a reference panel of 1,000 individuals from the target population is adequate for a GWAS cohort of up to 10,000 individuals, whereas smaller panels, such as those from the 1000 Genomes Project, should be avoided. We also show, both theoretically and empirically, that the size of the reference panel needs to scale with the GWAS sample size; this has important consequences for the application of these methods in ongoing GWAS meta-analyses and large biobank studies. We conclude by providing software tools and by recommending practices for sharing LD information to more efficiently exploit summary statistics in genetics research. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Korean Variant Archive (KOVA): a reference database of genetic variations in the Korean population.
Lee, Sangmoon; Seo, Jihae; Park, Jinman; Nam, Jae-Yong; Choi, Ahyoung; Ignatius, Jason S; Bjornson, Robert D; Chae, Jong-Hee; Jang, In-Jin; Lee, Sanghyuk; Park, Woong-Yang; Baek, Daehyun; Choi, Murim
2017-06-27
Despite efforts to interrogate human genome variation through large-scale databases, systematic preference toward populations of Caucasian descendants has resulted in unintended reduction of power in studying non-Caucasians. Here we report a compilation of coding variants from 1,055 healthy Korean individuals (KOVA; Korean Variant Archive). The samples were sequenced to a mean depth of 75x, yielding 101 singleton variants per individual. Population genetics analysis demonstrates that the Korean population is a distinct ethnic group comparable to other discrete ethnic groups in Africa and Europe, providing a rationale for such independent genomic datasets. Indeed, KOVA conferred 22.8% increased variant filtering power in addition to Exome Aggregation Consortium (ExAC) when used on Korean exomes. Functional assessment of nonsynonymous variant supported the presence of purifying selection in Koreans. Analysis of copy number variants detected 5.2 deletions and 10.3 amplifications per individual with an increased fraction of novel variants among smaller and rarer copy number variable segments. We also report a list of germline variants that are associated with increased tumor susceptibility. This catalog can function as a critical addition to the pre-existing variant databases in pursuing genetic studies of Korean individuals.
Accessing genetic diversity for crop improvement.
Glaszmann, J C; Kilian, B; Upadhyaya, H D; Varshney, R K
2010-04-01
Vast germplasm collections are accessible but their use for crop improvement is limited-efficiently accessing genetic diversity is still a challenge. Molecular markers have clarified the structure of genetic diversity in a broad range of crops. Recent developments have made whole-genome surveys and gene-targeted surveys possible, shedding light on population dynamics and on the impact of selection during domestication. Thanks to this new precision, germplasm description has gained analytical power for resolving the genetic basis of trait variation and adaptation in crops such as major cereals, chickpea, grapevine, cacao, or banana. The challenge now is to finely characterize all the facets of plant behavior in carefully chosen materials. We suggest broadening the use of 'core reference sets' so as to facilitate material sharing within the scientific community.
Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo)
2012-01-01
Background The turkey (Meleagris gallopavo) is an important agricultural species and the second largest contributor to the world’s poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection. The presence of genomic diversity in domestic livestock species therefore, is of great importance and a prerequisite for rapid and accurate genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. Genomic selection requires a large number of genetic markers such as e.g. single nucleotide polymorphisms (SNPs) the most abundant source of genetic variation within the genome. Results Alignment of next generation sequencing data of 32 individual turkeys from different populations was used for the discovery of 5.49 million SNPs, which subsequently were used for the analysis of genetic diversity among the different populations. All of the commercial lines branched from a single node relative to the heritage varieties and the South Mexican turkey population. Heterozygosity of all individuals from the different turkey populations ranged from 0.17-2.73 SNPs/Kb, while heterozygosity of populations ranged from 0.73-1.64 SNPs/Kb. The average frequency of heterozygous SNPs in individual turkeys was 1.07 SNPs/Kb. Five genomic regions with very low nucleotide variation were identified in domestic turkeys that showed state of fixation towards alleles different than wild alleles. Conclusion The turkey genome is much less diverse with a relatively low frequency of heterozygous SNPs as compared to other livestock species like chicken and pig. The whole genome SNP discovery study in turkey resulted in the detection of 5.49 million putative SNPs compared to the reference genome. All commercial lines appear to share a common origin. Presence of different alleles/haplotypes in the SM population highlights that specific haplotypes have been selected in the modern domesticated turkey. PMID:22891612
Health-Care Referrals from Direct-to-Consumer Genetic Testing
Giovanni, Monica A.; Fickie, Matthew R.; Lehmann, Lisa S.; Green, Robert C.; Meckley, Lisa M.; Veenstra, David
2010-01-01
Background: Direct-to-consumer genetic testing (DTC-GT) provides personalized genetic risk information directly to consumers. Little is known about how and why consumers then communicate the results of this testing to health-care professionals. Aim: To query specialists in clinical genetics about their experience with individuals who consulted them after DTC-GT. Methods: Invitations to participate in a questionnaire were sent to three different groups of genetic professionals, totaling 4047 invitations, asking questions about individuals who consulted them after DTC-GT. For each case reported, respondents were asked to describe how the case was referred to them, the patient's rationale for DTC-GT, and the type of DTC-GT performed. Respondents were also queried about the consequences of the consultations in terms of additional testing ordered. The costs associated with each consultation were estimated. A clinical case series was compiled based upon clinician responses. Results: The invitation resulted in 133 responses describing 22 cases of clinical interactions following DTC-GT. Most consultations (59.1%) were self-referred to genetics professionals, but 31.8% were physician referred. Among respondents, 52.3% deemed the DTC-GT to be “clinically useful.” BRCA1/2 testing was considered clinically useful in 85.7% of cases; 35.7% of other tests were considered clinically useful. Subsequent referrals from genetics professionals to specialists and/or additional diagnostic testing were common, generating individual downstream costs estimated to range from $40 to $20,600. Conclusions: This clinical case series suggests that approximately half of clinical geneticists who saw patients after DTC-GT judged that testing was clinically useful, especially the BRCA1/2 testing. Further studies are needed in larger and more diverse populations to better understand the interactions between DTC-GT and the health-care system. PMID:20979566
Health-care referrals from direct-to-consumer genetic testing.
Giovanni, Monica A; Fickie, Matthew R; Lehmann, Lisa S; Green, Robert C; Meckley, Lisa M; Veenstra, David; Murray, Michael F
2010-12-01
direct-to-consumer genetic testing (DTC-GT) provides personalized genetic risk information directly to consumers. Little is known about how and why consumers then communicate the results of this testing to health-care professionals. to query specialists in clinical genetics about their experience with individuals who consulted them after DTC-GT. invitations to participate in a questionnaire were sent to three different groups of genetic professionals, totaling 4047 invitations, asking questions about individuals who consulted them after DTC-GT. For each case reported, respondents were asked to describe how the case was referred to them, the patient's rationale for DTC-GT, and the type of DTC-GT performed. Respondents were also queried about the consequences of the consultations in terms of additional testing ordered. The costs associated with each consultation were estimated. A clinical case series was compiled based upon clinician responses. the invitation resulted in 133 responses describing 22 cases of clinical interactions following DTC-GT. Most consultations (59.1%) were self-referred to genetics professionals, but 31.8% were physician referred. Among respondents, 52.3% deemed the DTC-GT to be "clinically useful." BRCA1/2 testing was considered clinically useful in 85.7% of cases; 35.7% of other tests were considered clinically useful. Subsequent referrals from genetics professionals to specialists and/or additional diagnostic testing were common, generating individual downstream costs estimated to range from $40 to $20,600. this clinical case series suggests that approximately half of clinical geneticists who saw patients after DTC-GT judged that testing was clinically useful, especially the BRCA1/2 testing. Further studies are needed in larger and more diverse populations to better understand the interactions between DTC-GT and the health-care system.
The justification of studies in genetic epidemiology - political scaling in China Medical City.
Sleeboom-Faulkner, Margaret
2018-04-01
Genetic epidemiology examines the role of genetic factors in determining health and disease in families and in populations to help addressing health problems in a responsible manner. This paper uses a case study of genetic epidemiology in Taizhou, China, to explore ways in which anthropology can contribute to the validation of studies in genetic epidemiology. It does so, first, by identifying potential overgeneralizations of data, often due to mismatching scale and, second, by examining it's embedding in political, historical and local contexts. The example of the longitudinal cohort study in Taizhou illustrates dimensions of such 'political scaling'. Political scaling is a notion used here to refer to the effects of scaling biases in relation to the justification of research in terms of relevance, reach and research ethics. The justification of a project on genetic epidemiology involves presenting a maximum of benefits and a minimum of burden for the population. To facilitate the delineation of political scaling, an analytical distinction between donating and benefiting communities was made using the notions of 'scaling of relevance', 'scaling of reach' and 'scaling of ethics'. Political scaling results at least partly from factors external to research. By situating political scaling in the context of historical, political and local discourses, anthropologists can play a complementary role in genetic epidemiology.
Zinck, John W. R.
2016-01-01
Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus) to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD) were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation. PMID:27387485
Yu, Qichao; Zhang, Wei; Zhang, Xiaolong; Zeng, Yongli; Wang, Yeming; Wang, Yanhui; Xu, Liqin; Huang, Xiaoyun; Li, Nannan; Zhou, Xinlan; Lu, Jie; Guo, Xiaosen; Li, Guibo; Hou, Yong; Liu, Shiping; Li, Bo
2017-09-01
Active retrotransposons play important roles during evolution and continue to shape our genomes today, especially in genetic polymorphisms underlying a diverse set of diseases. However, studies of human retrotransposon insertion polymorphisms (RIPs) based on whole-genome deep sequencing at the population level have not been sufficiently undertaken, despite the obvious need for a thorough characterization of RIPs in the general population. Herein, we present a novel and efficient computational tool called Specific Insertions Detector (SID) for the detection of non-reference RIPs. We demonstrate that SID is suitable for high-depth whole-genome sequencing data using paired-end reads obtained from simulated and real datasets. We construct a comprehensive RIP database using a large population of 90 Han Chinese individuals with a mean ×68 depth per individual. In total, we identify 9342 recent RIPs, and 8433 of these RIPs are novel compared with dbRIP, including 5826 Alu, 2169 long interspersed nuclear element 1 (L1), 383 SVA, and 55 long terminal repeats. Among the 9342 RIPs, 4828 were located in gene regions and 5 were located in protein-coding regions. We demonstrate that RIPs can, in principle, be an informative resource to perform population evolution and phylogenetic analyses. Taking the demographic effects into account, we identify a weak negative selection on SVA and L1 but an approximately neutral selection for Alu elements based on the frequency spectrum of RIPs. SID is a powerful open-source program for the detection of non-reference RIPs. We built a non-reference RIP dataset that greatly enhanced the diversity of RIPs detected in the general population, and it should be invaluable to researchers interested in many aspects of human evolution, genetics, and disease. As a proof of concept, we demonstrate that the RIPs can be used as biomarkers in a similar way as single nucleotide polymorphisms. © The Authors 2017. Published by Oxford University Press.
Face shape differs in phylogenetically related populations.
Hopman, Saskia M J; Merks, Johannes H M; Suttie, Michael; Hennekam, Raoul C M; Hammond, Peter
2014-11-01
3D analysis of facial morphology has delineated facial phenotypes in many medical conditions and detected fine grained differences between typical and atypical patients to inform genotype-phenotype studies. Next-generation sequencing techniques have enabled extremely detailed genotype-phenotype correlative analysis. Such comparisons typically employ control groups matched for age, sex and ethnicity and the distinction between ethnic categories in genotype-phenotype studies has been widely debated. The phylogenetic tree based on genetic polymorphism studies divides the world population into nine subpopulations. Here we show statistically significant face shape differences between two European Caucasian populations of close phylogenetic and geographic proximity from the UK and The Netherlands. The average face shape differences between the Dutch and UK cohorts were visualised in dynamic morphs and signature heat maps, and quantified for their statistical significance using both conventional anthropometry and state of the art dense surface modelling techniques. Our results demonstrate significant differences between Dutch and UK face shape. Other studies have shown that genetic variants influence normal facial variation. Thus, face shape difference between populations could reflect underlying genetic difference. This should be taken into account in genotype-phenotype studies and we recommend that in those studies reference groups be established in the same population as the individuals who form the subject of the study.
Saw, Woei-Yuh; Tantoso, Erwin; Begum, Husna; Zhou, Lihan; Zou, Ruiyang; He, Cheng; Chan, Sze Ling; Tan, Linda Wei-Lin; Wong, Lai-Ping; Xu, Wenting; Moong, Don Kyin Nwe; Lim, Yenly; Li, Bowen; Pillai, Nisha Esakimuthu; Peterson, Trevor A; Bielawny, Tomasz; Meikle, Peter J; Mundra, Piyushkumar A; Lim, Wei-Yen; Luo, Ma; Chia, Kee-Seng; Ong, Rick Twee-Hee; Brunham, Liam R; Khor, Chiea-Chuen; Too, Heng Phon; Soong, Richie; Wenk, Markus R; Little, Peter; Teo, Yik-Ying
2017-09-21
The Singapore Integrative Omics Study provides valuable insights on establishing population reference measurement in 364 Chinese, Malay, and Indian individuals. These measurements include > 2.5 millions genetic variants, 21,649 transcripts expression, 282 lipid species quantification, and 284 clinical, lifestyle, and dietary variables. This concept paper introduces the depth of the data resource, and investigates the extent of ethnic variation at these omics and non-omics biomarkers. It is evident that there are specific biomarkers in each of these platforms to differentiate between the ethnicities, and intra-population analyses suggest that Chinese and Indians are the most biologically homogeneous and heterogeneous, respectively, of the three groups. Consistent patterns of correlations between lipid species also suggest the possibility of lipid tagging to simplify future lipidomics assays. The Singapore Integrative Omics Study is expected to allow the characterization of intra-omic and inter-omic correlations within and across all three ethnic groups through a systems biology approach.The Singapore Genome Variation projects characterized the genetics of Singapore's Chinese, Malay, and Indian populations. The Singapore Integrative Omics Study introduced here goes further in providing multi-omic measurements in individuals from these populations, including genetic, transcriptome, lipidome, and lifestyle data, and will facilitate the study of common diseases in Asian communities.
Emmenegger, Eveline J.; Troyer, Ryan M.; Kurath, Gael
2003-01-01
Infectious hematopoietic necrosis virus (IHNV) is an RNA virus that causes significant mortalities of salmonids in the Pacific Northwest of North America. RNA virus populations typically contain genetic variants that form a heterogeneous virus pool, referred to as a quasispecies or mutant spectrum. This study characterized the mutant spectra of IHNV populations within individual fish reared in different environmental settings by RT–PCR of genomic viral RNA and determination of partial glycoprotein gene sequences of molecular clones. The diversity of the mutant spectra from ten in vivo populations was low and the average mutation frequencies of duplicate populations did not significantly exceed the background mutation level expected from the methodology. In contrast, two in vitro populations contained variants with an identical mutational hot spot. These results indicated that the mutant spectra of natural IHNV populations is very homogeneous, and does not explain the different magnitudes of genetic diversity observed between the different IHNV genogroups. Overall the mutant frequency of IHNV within its host is one of the lowest reported for RNA viruses.
Jiang, Li; Wei, Yi-Liang; Zhao, Lei; Li, Na; Liu, Tao; Liu, Hai-Bo; Ren, Li-Jie; Li, Jiu-Ling; Hao, Hui-Fang; Li, Qing; Li, Cai-Xia
2018-07-01
Over the last decade, several panels of ancestry-informative markers have been proposed for the analysis of population genetic structure. The differentiation efficiency depends on the discriminatory ability of the included markers and the reference population coverage. We previously developed a small set of 27 autosomal single nucleotide polymorphisms (SNPs) for analyzing African, European, and East Asian ancestries. In the current study, we gathered a high-coverage reference database of 110 populations (10,350 individuals) from across the globe. The discrimination power of the panel was re-evaluated using four continental ancestry groups (as well as Indigenous Americans). We observed that all the 27 SNPs demonstrated stratified population specificity leading to a striking ancestral discrimination. Five markers (rs728404, rs7170869, rs2470102, rs1448485, and rs4789193) showed differences (δ > 0.3) in the frequency profiles between East Asian and Indigenous American populations. Ancestry components of all involved populations were accurately accessed compared with those from previous genome-wide analyses, thereafter achieved broadly population separation. Thus, our ancestral inference panel of a small number of highly informative SNPs in combination with a large-scale reference database provides a high-resolution in estimating ancestry compositions and distinguishing individual origins. We propose extensive usage in biomedical studies and forensics. Copyright © 2018 Elsevier B.V. All rights reserved.
2016-01-01
The whitefly Bemisia tabaci sibling species (sibsp.) group comprises morphologically indiscernible lineages of well-known exemplars referred to as biotypes. It is distributed throughout tropical and subtropical latitudes and includes the contemporary invasive haplotypes, termed B and Q. Several well-studied B. tabaci biotypes exhibit ecological and biological diversity, however, most members are poorly studied or completely uncharacterized. Genetic studies have revealed substantial diversity within the group based on a fragment of the mitochondrial cytochrome oxidase I (mtCOI) sequence (haplotypes), with other tested markers being less useful for deep phylogenetic comparisons. The view of global relationships within the B. tabaci sibsp. group is largely derived from this single marker, making assessment of gene flow and genetic structure difficult at the population level. Here, the population structure was explored for B. tabaci in a global context using nuclear data from variable microsatellite markers. Worldwide collections were examined representing most of the available diversity, including known monophagous, polyphagous, invasive, and indigenous haplotypes. Well-characterized biotypes and other related geographic lineages discovered represented highly differentiated genetic clusters with little or no evidence of gene flow. The invasive B and Q biotypes exhibited moderate to high levels of genetic diversity, suggesting that they stemmed from large founding populations that have maintained ancestral variation, despite homogenizing effects, possibly due to human-mediated among-population gene flow. Results of the microsatellite analyses are in general agreement with published mtCOI phylogenies; however, notable conflicts exist between the nuclear and mitochondrial relationships, highlighting the need for a multifaceted approach to delineate the evolutionary history of the group. This study supports the hypothesis that the extant B. tabaci sibsp. group contains ancient genetic entities and highlights the vast cryptic diversity throughout the genome in the group. PMID:27855173
A Perspective on Micro-Evo-Devo: Progress and Potential
Nunes, Maria D. S.; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P.
2013-01-01
The term “micro-evo-devo” refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field. PMID:24190920
A perspective on micro-evo-devo: progress and potential.
Nunes, Maria D S; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P
2013-11-01
The term "micro-evo-devo" refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field.
A genetic map and germplasm diversity estimation of Mangifera indica (mango) with SNPs
USDA-ARS?s Scientific Manuscript database
Mango (Mangifera indica) is often referred to as the “King of Fruits”. As the first steps in developing a mango genomics project, we genotyped 582 individuals comprising six mapping populations with 1054 SNP markers. The resulting consensus map had 20 linkage groups defined by 726 SNP markers with...
Elberse, Karin E. M.; van de Pol, Ingrid; Witteveen, Sandra; van der Heide, Han G. J.; Schot, Corrie S.; van Dijk, Anita; van der Ende, Arie; Schouls, Leo M.
2011-01-01
The introduction of nationwide pneumococcal vaccination may lead to serotype replacement and the emergence of new variants that have expanded their genetic repertoire through recombination. To monitor alterations in the pneumococcal population structure, we have developed and utilized Capsular Sequence Typing (CST) in addition to Multiple-Locus Variable number tandem repeat Analysis (MLVA). To assess the serotype of each isolate CST was used. Based on the determination of the partial sequence of the capsular wzh gene, this method assigns a capsular type of an isolate within a single PCR reaction using multiple primersets. The genetic background of pneumococcal isolates was assessed by MLVA. MLVA and CST were used to create a snapshot of the Dutch pneumococcal population causing invasive disease before the introduction of the 7-valent pneumococcal conjugate vaccine in the Netherlands in 2006. A total of 1154 clinical isolates collected and serotyped by the Netherlands Reference Laboratory for Bacterial Meningitis were included in the snapshot. The CST was successful in discriminating most serotypes present in our collection. MLVA demonstrated that isolates belonging to some serotypes had a relatively high genetic diversity whilst other serotypes had a very homogeneous genetic background. MLVA and CST appear to be valuable tools to determine the population structure of pneumococcal isolates and are useful in monitoring the effects of pneumococcal vaccination. PMID:21637810
The Arab genome: Health and wealth.
Zayed, Hatem
2016-11-05
The 22 Arab nations have a unique genetic structure, which reflects both conserved and diverse gene pools due to the prevalent endogamous and consanguineous marriage culture and the long history of admixture among different ethnic subcultures descended from the Asian, European, and African continents. Human genome sequencing has enabled large-scale genomic studies of different populations and has become a powerful tool for studying disease predictions and diagnosis. Despite the importance of the Arab genome for better understanding the dynamics of the human genome, discovering rare genetic variations, and studying early human migration out of Africa, it is poorly represented in human genome databases, such as HapMap and the 1000 Genomes Project. In this review, I demonstrate the significance of sequencing the Arab genome and setting an Arab genome reference(s) for better understanding the molecular pathogenesis of genetic diseases, discovering novel/rare variants, and identifying a meaningful genotype-phenotype correlation for complex diseases. Copyright © 2016. Published by Elsevier B.V.
Besaggio, Davide; Fuselli, Silvia; Srikummool, Metawee; Kampuansai, Jatupol; Castrì, Loredana; Tyler-Smith, Chris; Seielstad, Mark; Kangwanpong, Daoroong; Bertorelle, Giorgio
2007-01-01
Background Ethnic minorities in Northern Thailand, often referred to as Hill Tribes, are considered an ideal model to study the different genetic impact of sex-specific migration rates expected in matrilocal (women remain in their natal villages after the marriage and men move to their wife's village) and patrilocal societies (the opposite is true). Previous studies identified such differences, but little is known about the possible interaction with another cultural factor that may potentially affect genetic diversity, i.e. linguistic differences. In addition, Hill Tribes started to migrate to Thailand in the last centuries from different Northern areas, but the history of these migrations, the level of genetic legacy with their places of origin, and the possible confounding effects related to this migration history in the patterns of genetic diversity, have not been analysed yet. Using both original and published data on the Hill Tribes and several other Asian populations, we focused on all these aspects. Results Genetic variation within population at mtDNA is lower in matrilocal, compared to patrilocal, tribes. The opposite is true for Y-chromosome microsatellites within the Sino-Tibetan linguistic family, but Hmong-Mien speaking patrilocal groups have a genetic diversity very similar to the matrilocal samples. Population divergence ranges between 5% and 14% at mtDNA sequences, and between 5% and 36% at Y- chromosomes STRs, and follows the sex-specific differences expected in patrilocal and matrilocal tribes. On the average, about 2 men and 14 women, and 4 men and 4 women, are exchanged in patrilocal and matrilocal tribes every generation, respectively. Most of the Hill Tribes in Thailand seem to preserve a genetic legacy with their likely geographic origin, with children adoption probably affecting this pattern in one tribe. Conclusion Overall, the sex specific genetic signature of different postmarital habits of residence in the Hill Tribes is robust. However, specific perturbations related to linguistic differences, population specific traits, and the complex migratory history of these groups, can be identified. Additional studies in different populations are needed, especially to obtain more precise estimates of the migration parameters. PMID:17767728
Besaggio, Davide; Fuselli, Silvia; Srikummool, Metawee; Kampuansai, Jatupol; Castrì, Loredana; Tyler-Smith, Chris; Seielstad, Mark; Kangwanpong, Daoroong; Bertorelle, Giorgio
2007-08-16
Ethnic minorities in Northern Thailand, often referred to as Hill Tribes, are considered an ideal model to study the different genetic impact of sex-specific migration rates expected in matrilocal (women remain in their natal villages after the marriage and men move to their wife's village) and patrilocal societies (the opposite is true). Previous studies identified such differences, but little is known about the possible interaction with another cultural factor that may potentially affect genetic diversity, i.e. linguistic differences. In addition, Hill Tribes started to migrate to Thailand in the last centuries from different Northern areas, but the history of these migrations, the level of genetic legacy with their places of origin, and the possible confounding effects related to this migration history in the patterns of genetic diversity, have not been analysed yet. Using both original and published data on the Hill Tribes and several other Asian populations, we focused on all these aspects. Genetic variation within population at mtDNA is lower in matrilocal, compared to patrilocal, tribes. The opposite is true for Y-chromosome microsatellites within the Sino-Tibetan linguistic family, but Hmong-Mien speaking patrilocal groups have a genetic diversity very similar to the matrilocal samples. Population divergence ranges between 5% and 14% at mtDNA sequences, and between 5% and 36% at Y-chromosomes STRs, and follows the sex-specific differences expected in patrilocal and matrilocal tribes. On the average, about 2 men and 14 women, and 4 men and 4 women, are exchanged in patrilocal and matrilocal tribes every generation, respectively. Most of the Hill Tribes in Thailand seem to preserve a genetic legacy with their likely geographic origin, with children adoption probably affecting this pattern in one tribe. Overall, the sex specific genetic signature of different postmarital habits of residence in the Hill Tribes is robust. However, specific perturbations related to linguistic differences, population specific traits, and the complex migratory history of these groups, can be identified. Additional studies in different populations are needed, especially to obtain more precise estimates of the migration parameters.
Pandey, Ram Vinay; Kofler, Robert; Orozco-terWengel, Pablo; Nolte, Viola; Schlötterer, Christian
2011-03-02
The enormous potential of natural variation for the functional characterization of genes has been neglected for a long time. Only since recently, functional geneticists are starting to account for natural variation in their analyses. With the new sequencing technologies it has become feasible to collect sequence information for multiple individuals on a genomic scale. In particular sequencing pooled DNA samples has been shown to provide a cost-effective approach for characterizing variation in natural populations. While a range of software tools have been developed for mapping these reads onto a reference genome and extracting SNPs, linking this information to population genetic estimators and functional information still poses a major challenge to many researchers. We developed PoPoolation DB a user-friendly integrated database. Popoolation DB links variation in natural populations with functional information, allowing a wide range of researchers to take advantage of population genetic data. PoPoolation DB provides the user with population genetic parameters (Watterson's θ or Tajima's π), Tajima's D, SNPs, allele frequencies and indels in regions of interest. The database can be queried by gene name, chromosomal position, or a user-provided query sequence or GTF file. We anticipate that PoPoolation DB will be a highly versatile tool for functional geneticists as well as evolutionary biologists. PoPoolation DB, available at http://www.popoolation.at/pgt, provides an integrated platform for researchers to investigate natural polymorphism and associated functional annotations from UCSC and Flybase genome browsers, population genetic estimators and RNA-seq information.
Vázquez-Ovando, J A; Molina-Freaner, F; Nuñez-Farfán, J; Ovando-Medina, I; Salvador-Figueroa, M
2014-12-12
Criollo-type cacao trees are an important pool of genes with potential to be used in cacao breeding and selection programs. For that reason, we assessed the diversity and population structure of Criollo-type trees (108 cultivars with Criollo phenotypic characteristics and 10 Criollo references) using 12 simple sequence repeat (SSR) markers. Cultivars were selected from 7 demes in the Soconusco region of southern Mexico. SSRs amplified 74 alleles with an average of 3.6 alleles per population. The overall populations showed an average observed heterozygosity of 0.28, indicating heterozygote deficiency (average fixation index F = 0.50). However, moderate allelic diversity was found within populations (Shannon index for all populations I = 0.97). Bayesian method analysis determined 2 genetic clusters (K = 2) within individuals. In concordance, an assignment test grouped 37 multilocus genotypes (including 10 references) into a first cluster (Criollo), 54 into a second (presumably Amelonado), and 27 admixed individuals unassigned at the 90% threshold likely corresponding to the Trinitario genotype. This classification was supported by the principal coordinate analysis and analysis of molecular variance, which showed 12% of variation among populations (FST = 0.123, P < 0.0001). Sampled demes sites (1- 7) in the Soconusco region did not show any evidence of clustering by geographic location, and this was supported by the Mantel test (Rxy = 0.54, P = 0.120). Individuals with high Criollo lineage planted in Soconusco farms could be an important reservoir of genes for future breeding programs searching for fine, taste, flavor, and aroma cocoa.
Al-Mamun, Hawlader Abdullah; Clark, Samuel A; Kwan, Paul; Gondro, Cedric
2015-11-24
Knowledge of the genetic structure and overall diversity of livestock species is important to maximise the potential of genome-wide association studies and genomic prediction. Commonly used measures such as linkage disequilibrium (LD), effective population size (N e ), heterozygosity, fixation index (F ST) and runs of homozygosity (ROH) are widely used and help to improve our knowledge about genetic diversity in animal populations. The development of high-density single nucleotide polymorphism (SNP) arrays and the subsequent genotyping of large numbers of animals have greatly increased the accuracy of these population-based estimates. In this study, we used the Illumina OvineSNP50 BeadChip array to estimate and compare LD (measured by r (2) and D'), N e , heterozygosity, F ST and ROH in five Australian sheep populations: three pure breeds, i.e., Merino (MER), Border Leicester (BL), Poll Dorset (PD) and two crossbred populations i.e. F1 crosses of Merino and Border Leicester (MxB) and MxB crossed to Poll Dorset (MxBxP). Compared to other livestock species, the sheep populations that were analysed in this study had low levels of LD and high levels of genetic diversity. The rate of LD decay was greater in Merino than in the other pure breeds. Over short distances (<10 kb), the levels of LD were higher in BL and PD than in MER. Similarly, BL and PD had comparatively smaller N e than MER. Observed heterozygosity in the pure breeds ranged from 0.3 in BL to 0.38 in MER. Genetic distances between breeds were modest compared to other livestock species (highest F ST = 0.063) but the genetic diversity within breeds was high. Based on ROH, two chromosomal regions showed evidence of strong recent selection. This study shows that there is a large range of genome diversity in Australian sheep breeds, especially in Merino sheep. The observed range of diversity will influence the design of genome-wide association studies and the results that can be obtained from them. This knowledge will also be useful to design reference populations for genomic prediction of breeding values in sheep.
References for Haplotype Imputation in the Big Data Era
Li, Wenzhi; Xu, Wei; Li, Qiling; Ma, Li; Song, Qing
2016-01-01
Imputation is a powerful in silico approach to fill in those missing values in the big datasets. This process requires a reference panel, which is a collection of big data from which the missing information can be extracted and imputed. Haplotype imputation requires ethnicity-matched references; a mismatched reference panel will significantly reduce the quality of imputation. However, currently existing big datasets cover only a small number of ethnicities, there is a lack of ethnicity-matched references for many ethnic populations in the world, which has hampered the data imputation of haplotypes and its downstream applications. To solve this issue, several approaches have been proposed and explored, including the mixed reference panel, the internal reference panel and genotype-converted reference panel. This review article provides the information and comparison between these approaches. Increasing evidence showed that not just one or two genetic elements dictate the gene activity and functions; instead, cis-interactions of multiple elements dictate gene activity. Cis-interactions require the interacting elements to be on the same chromosome molecule, therefore, haplotype analysis is essential for the investigation of cis-interactions among multiple genetic variants at different loci, and appears to be especially important for studying the common diseases. It will be valuable in a wide spectrum of applications from academic research, to clinical diagnosis, prevention, treatment, and pharmaceutical industry. PMID:27274952
Genomic copy number variations in three Southeast Asian populations.
Ku, Chee-Seng; Pawitan, Yudi; Sim, Xueling; Ong, Rick T H; Seielstad, Mark; Lee, Edmund J D; Teo, Yik-Ying; Chia, Kee-Seng; Salim, Agus
2010-07-01
Research on the role of copy number variations (CNVs) in the genetic risk of diseases in Asian populations has been hampered by a relative lack of reference CNV maps for Asian populations outside the East Asians. In this article, we report the population characteristics of CNVs in Chinese, Malay, and Asian Indian populations in Singapore. Using the Illumina Human 1M Beadchip array, we identify 1,174 CNV loci in these populations that corroborated with findings when the same samples were typed on the Affymetrix 6.0 platform. We identify 441 novel loci not previously reported in the Database of Genomic Variations (DGV). We observe a considerable number of loci that span all three populations and were previously unreported, as well as population-specific loci that are quite common in the respective populations. From this we observe the distribution of CNVs in the Asian Indian population to be considerably different from the Chinese and Malay populations. About half of the deletion loci and three-quarters of duplication loci overlap UCSC genes. Tens of loci show population differentiation and overlap with genes previously known to be associated with genetic risk of diseases. One of these loci is the CYP2A6 deletion, previously linked to reduced susceptibility to lung cancer. (c) 2010 Wiley-Liss, Inc.
Salazar-Flores, J; Zuñiga-Chiquette, F; Rubi-Castellanos, R; Álvarez-Miranda, J L; Zetina-Hérnandez, A; Martínez-Sevilla, V M; González-Andrade, F; Corach, D; Vullo, C; Álvarez, J C; Lorente, J A; Sánchez-Diz, P; Herrera, R J; Cerda-Flores, R M; Muñoz-Valle, J F; Rangel-Villalobos, H
2015-02-01
Short tandem repeats (STRs) of the combined DNA index system (CODIS) are probably the most employed markers for human identification purposes. STR databases generated to interpret DNA profiles are also helpful for anthropological purposes. In this work, we report admixture, population structure, and genetic relationships of Mexican Mestizos with respect to Latin American and Caribbean populations based on 13 CODIS-STRs. In addition, new STR population data were included from Tijuana, Baja California (Northwest, Mexico), which represents an interesting case of elevated genetic flow as a bordering city with the USA. Inter-population analyses included CODIS-STR data from 11 Mexican Mestizo, 12 Latin American and four Caribbean populations, in addition to European, Amerindian, and African genetic pools as ancestral references. We report allele frequencies and statistical parameters of forensic interest (PD, PE, Het, PIC, typical PI), for 15 STRs in Tijuana, Baja California. This Mexican border city was peculiar by the increase of African ancestry, and by presenting three STRs in Hardy-Weinberg disequilibrium, probably explained by recurrent gene flow. The Amerindian ancestry in Central and Southeast of Mexico was the greatest in Latin America (50.9-68.6%), only comparable with the North of Central America and Ecuador (48.8-56.4%), whereas the European ancestry was prevalent in South America (66.7-75%). The African ancestry in Mexico was the smallest (2.2-6.3%) in Latin America (≥ 2.6%), particularly regarding Brazil (21%), Honduras (62%), and the Caribbean (43.2-65.2%). CODIS-STRs allowed detecting significant population structure in Latin America based on greater presence of European, Amerindian, and African ancestries in Central/South America, Mexican Mestizos, and the Caribbean, respectively. Copyright © 2014 Elsevier GmbH. All rights reserved.
Molecular diagnosis of α-thalassemia in a multiethnic population.
Gilad, Oded; Shemer, Orna Steinberg; Dgany, Orly; Krasnov, Tanya; Nevo, Michal; Noy-Lotan, Sharon; Rabinowicz, Ron; Amitai, Nofar; Ben-Dor, Shifra; Yaniv, Isaac; Yacobovich, Joanne; Tamary, Hannah
2017-06-01
α-Thalassemia, one of the most common genetic diseases, is caused by deletions or point mutations affecting one to four α-globin genes. Molecular diagnosis is important to prevent the most severe forms of the disease. However, the diagnosis of α-thalassemia is complex due to a high variability of the genetic defects involved, with over 250 described mutations. We summarize herein the findings of genetic analyses of DNA samples referred to our laboratory for the molecular diagnosis of α-thalassemia, along with a detailed clinical description. We utilized a diagnostic algorithm including Gap-PCR, to detect known deletions, followed by sequencing of the α-globin gene, to identify known and novel point mutations, and multiplex ligation-dependent probe amplification (MLPA) for the diagnosis of rare or novel deletions. α-Thalassemia was diagnosed in 662 of 975 samples referred to our laboratory. Most commonly found were deletions (75.3%, including two novel deletions previously described by us); point mutations comprised 25.4% of the cases, including five novel mutations. Our population included mostly Jews (of Ashkenazi and Sephardic origin) and Muslim Arabs, who presented with a higher rate of point mutations and hemoglobin H disease. Overall, we detected 53 different genotype combinations causing a spectrum of clinical phenotypes, from asymptomatic to severe anemia. Our work constitutes the largest group of patients with α-thalassemia originating in the Mediterranean whose clinical characteristics and molecular basis have been determined. We suggest a diagnostic algorithm that leads to an accurate molecular diagnosis in multiethnic populations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Population data for 15 Y-chromosome STRs in a population sample from Quito (Ecuador).
Baeza, Carlos; Guzmán, Rodrigo; Tirado, Miriam; López-Parra, Ana María; Rodríguez, Tatiana; Mesa, María Soledad; Fernández, Eva; Arroyo-Pardo, Eduardo
2007-12-20
Population frequencies for the 9 Y-STR loci included in the "minimal haplotype" from Y-STR Haplotype Reference Database (YHRD), plus other 6 Y-STRs (DYS437, DYS438, DYS439, GATA A7.2, GATA H4 and GATA A10) were obtained for a sample of 120 males from Quito (Ecuador). One hundred and sixteen unique haplotypes were identified within the sample. Haplotype diversity (0.9994) was among the highest in comparison to other populations from Iberia and South-America. Genetic distances were calculated and our sample presented significative differences with all other samples, the lowest values being with a Guinean sample.
Auten, Candace R; Thomasy, Sara M; Kass, Philip H; Good, Kathryn L; Hollingsworth, Steven R; Maggs, David J
2018-05-01
To determine factors associated with sudden acquired retinal degeneration syndrome (SARDS) diagnosed within one referral population. 151 dogs diagnosed with SARDS. Breed, age, sex, and body weight were compared between dogs with electroretinogram-confirmed SARDS and dogs presented to the UC Davis Veterinary Medical Teaching Hospital (UCD-VMTH) from 1991 to 2014. SARDS was diagnosed in 151 dogs, representing 1.3% of dogs presented to the UCD-VMTH for ophthalmic disease. Although dogs of 36 breeds were affected, the Dachshund (n = 31, 21%), Schnauzer (16, 11%), Pug (11, 7%), and Brittany (5, 3%) were significantly overrepresented, and the Labrador Retriever (3, 2%) was significantly underrepresented vs. the reference population (P < 0.001). Median (range) age and body weight of affected vs. reference dogs were 8.9 (3-20) vs. 6.8 (0.1-26) years and 12.4 (2.8-52.7) vs. 22.3 (0.1-60) kg, respectively. Dogs 6-10 years of age and between 10-20 kg in body weight were significantly overrepresented in the SARDS population, while dogs <6 years of age were significantly underrepresented (P < 0.01). Spayed females (59% of affected dogs) were significantly overrepresented compared to the reference population, whereas intact females (1% of affected dogs) were significantly underrepresented. Consistent with previous studies, smaller, middle-aged, spayed female dogs may be at increased risk of developing SARDS. Unlike previous studies, this is the first study comparing a variety of SARDS-affected breeds to a reference population. Potentially increased risk of SARDS in several breeds, particularly Dachshunds, suggests a familial factor that warrants further investigation using genetic techniques. © 2017 American College of Veterinary Ophthalmologists.
Kessels, Koen; Eisinger, Joey D; Letteboer, Tom G; Offerhaus, G Johan A; Siersema, Peter D; Moons, Leon M G
2017-06-01
To investigate whether sending a family history questionnaire to patients prior to undergoing colonoscopy results in an increased availability of family history and better genetic counseling. A questionnaire was mailed to patients before they underwent outpatient colonoscopy at a university hospital in 2013. These patients' additional characteristics and referral for genetic evaluation were retrieved from the electronic medical records. Patients undergoing inpatient coloboscopy, with confirmed hereditary colorectal cancer (CRC) or inflammatory bowel disease were excluded. All study patients from 2010 to 2013 were matched with the database of the genetics department to determine who consulted a geneticist. A total of 6163 patients underwent colonoscopy from 2010 to 2013. Of 1421 who underwent colonoscopy in 2013, 53 (3.7%) consulted a geneticist, while 75 (1.6%) of 4742 patients undergoing colonoscopy between 2010 and 2012 did so (P < 0.01). A total of 974 patients undergoing colonoscopy in 2013 were included to evaluate the completed questionnaire. Of these, 282 (29.0%) completed the questionnaire. Family history was not recorded in the electronic medical records of 393 (40.3%). In 129 (32.8%), family history was obtained from the completed questionnaire. In 2013, 49 (60.5%) out of 81 patients referred for genetic counseling were referred based on their family history. Eight (9.9%) patients were referred based on the completed questionnaire. Screening for hereditary CRC in a population undergoing outpatient colonoscopy with a questionnaire sent by mail resulted in an increased availability of family histories and genetic counseling. © 2017 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Matsumoto, Toshimi; Okumura, Naohiko; Uenishi, Hirohide; Hayashi, Takeshi; Hamasima, Noriyuki; Awata, Takashi
2012-01-01
We have collected more than 190000 porcine expressed sequence tags (ESTs) from full-length complementary DNA (cDNA) libraries and identified more than 2800 single nucleotide polymorphisms (SNPs). In this study, we tentatively chose 222 SNPs observed in assembled ESTs to study pigs of different breeds; 104 were selected by comparing the cDNA sequences of a Meishan pig and samples of three-way cross pigs (Landrace, Large White, and Duroc: LWD), and 118 were selected from LWD samples. To evaluate the genetic variation between the chosen SNPs from pig breeds, we determined the genotypes for 192 pig samples (11 pig groups) from our DNA reference panel with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Of the 222 reference SNPs, 186 were successfully genotyped. A neighbor-joining tree showed that the pig groups were classified into two large clusters, namely, Euro-American and East Asian pig populations. F-statistics and the analysis of molecular variance of Euro-American pig groups revealed that approximately 25% of the genetic variations occurred because of intergroup differences. As the F(IS) values were less than the F(ST) values(,) the clustering, based on the Bayesian inference, implied that there was strong genetic differentiation among pig groups and less divergence within the groups in our samples. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.
Frequency of cystathionine beta-synthase 844INS68 polymorphism in Southern Iran.
Senemar, Sara; Doroudchi, Mehrnoosh; Pezeshki, Abdul Mohammad; Bazrgar, Masood; Torab-Jahromi, Ardeshir; Ghaderi, Abbas
2009-02-01
Iranian population with an Indo-European origin is one of the oldest populations in the world. Historical evidence suggests the close similarity in the origin of Iranian, European and north Indian population. However, there are few anthropological and genetic evidences on this subject. This study, which is the first report from Iran, was performed to investigate the genetic origin of Iranian population using a polymorphism in Cystathionine beta synthase (CBS) gene known as 844INS68bp in this respect, genomic DNA was extracted from the whole blood of 480 healthy normal blood donors referred to Fars Blood Transfusion Center, using a salting out method. The fragment containing 844INS68bp was amplified, the normal fragment was 174 bp and the fragment containing the insertion was 242 bp in length. Results indicated that 418 (87.08%) out of 480 individuals had a normal (N/N) genotype, 59 (12.29%) individuals were heterozygote (N/I) and 3 (0.63%) had homozygote a mutated genotype (I/I). The total frequency of 844INS68bp allele was found 6.8% which is similar to with the reported in White Caucasians. Comparison of the genotype of this study with the polymorphism in other populations revealed that Southern Iranian population has a great similarity with other Caucasians populations' especially South Italy and North America while differed from East Asian and African populations. These results are in agreement with the result of other studied polymorphisms. Therefore, despite the great admixture of Iranian population with the neighboring non-Caucasian populations during the time, Iranian population still share a genetic background with other Caucasian populations.
USDA-ARS?s Scientific Manuscript database
Research into the mineral contents of cereal grains and vegetables is motivated by interest in improving their nutritional value. Biofortification refers to natural enhancement of the grain/food product through traditional breeding. Since it does not require genetic engineering, it is acceptable t...
Heritability of specific language impairment depends on diagnostic criteria.
Bishop, D V M; Hayiou-Thomas, M E
2008-04-01
Heritability estimates for specific language impairment (SLI) have been inconsistent. Four twin studies reported heritability of 0.5 or more, but a recent report from the Twins Early Development Study found negligible genetic influence in 4-year-olds. We considered whether the method of ascertainment influenced results and found substantially higher heritability if SLI was defined in terms of referral to speech and language pathology services than if defined by language test scores. Further analysis showed that presence of speech difficulties played a major role in determining whether a child had contact with services. Childhood language disorders that are identified by population screening are likely to have a different phenotype and different etiology from clinically referred cases. Genetic studies are more likely to find high heritability if they focus on cases who have speech difficulties and who have been referred for intervention.
Smerecnik, Chris M R; Mesters, Ilse; de Vries, Nanne K; de Vries, Hein
2009-11-01
Health messages alerting the public to previously unknown genetic risk factors for multifactorial diseases are a potentially useful strategy to create public awareness, and may be an important first step in promoting public health. However, there is a lack of evidence-based insight into its impact on individuals who were unaware of the existence of genetic risk factors at the moment of information exposure. The authors conducted 3 experimental studies with health messages communicating information about genetic risk factors for salt sensitivity (Studies 1A and 1B) and heightened cholesterol (Study 2) compared with general information without reference to genetic risk factors as a between-subjects variable and risk perception and intention to engage in preventive behavior as dependent variables. All 3 studies revealed lower perceived susceptibility among participants who received information on genetic risk factors, which was associated with lowered intentions to engage in preventive behavior. In Studies 1A and 1B, these effects were observed only for previously unaware individuals, whereas in Study 2, they were observed for the entire sample. Alerting the public to the existence of genetic risk factors may not necessarily be beneficial to public health. Public health promoters should be aware of the possible adverse effects of alerting the general population to genetic risk factors, and should simultaneously educate the public about the meaning and consequences of such factors. PsycINFO Database Record (c) 2009 APA, all rights reserved.
Lee, S Hong; Clark, Sam; van der Werf, Julius H J
2017-01-01
Genomic prediction is emerging in a wide range of fields including animal and plant breeding, risk prediction in human precision medicine and forensic. It is desirable to establish a theoretical framework for genomic prediction accuracy when the reference data consists of information sources with varying degrees of relationship to the target individuals. A reference set can contain both close and distant relatives as well as 'unrelated' individuals from the wider population in the genomic prediction. The various sources of information were modeled as different populations with different effective population sizes (Ne). Both the effective number of chromosome segments (Me) and Ne are considered to be a function of the data used for prediction. We validate our theory with analyses of simulated as well as real data, and illustrate that the variation in genomic relationships with the target is a predictor of the information content of the reference set. With a similar amount of data available for each source, we show that close relatives can have a substantially larger effect on genomic prediction accuracy than lesser related individuals. We also illustrate that when prediction relies on closer relatives, there is less improvement in prediction accuracy with an increase in training data or marker panel density. We release software that can estimate the expected prediction accuracy and power when combining different reference sources with various degrees of relationship to the target, which is useful when planning genomic prediction (before or after collecting data) in animal, plant and human genetics.
Jo, Jinkwan; Purushotham, Preethi M.; Han, Koeun; Lee, Heung-Ryul; Nah, Gyoungju; Kang, Byoung-Cheorl
2017-01-01
Single nucleotide polymorphisms (SNPs) play important roles as molecular markers in plant genomics and breeding studies. Although onion (Allium cepa L.) is an important crop globally, relatively few molecular marker resources have been reported due to its large genome and high heterozygosity. Genotyping-by-sequencing (GBS) offers a greater degree of complexity reduction followed by concurrent SNP discovery and genotyping for species with complex genomes. In this study, GBS was employed for SNP mining in onion, which currently lacks a reference genome. A segregating F2 population, derived from a cross between ‘NW-001’ and ‘NW-002,’ as well as multiple parental lines were used for GBS analysis. A total of 56.15 Gbp of raw sequence data were generated and 1,851,428 SNPs were identified from the de novo assembled contigs. Stringent filtering resulted in 10,091 high-fidelity SNP markers. Robust SNPs that satisfied the segregation ratio criteria and with even distribution in the mapping population were used to construct an onion genetic map. The final map contained eight linkage groups and spanned a genetic length of 1,383 centiMorgans (cM), with an average marker interval of 8.08 cM. These robust SNPs were further analyzed using the high-throughput Fluidigm platform for marker validation. This is the first study in onion to develop genome-wide SNPs using GBS. The resulting SNP markers and developed linkage map will be valuable tools for genetic mapping of important agronomic traits and marker-assisted selection in onion breeding programs. PMID:28959273
Petzel, Sue V; Vogel, Rachel Isaksson; Bensend, Tracy; Leininger, Anna; Argenta, Peter A; Geller, Melissa A
2013-10-01
Little is known about genetic service utilization and ovarian cancer. We identified the frequency and outcome of genetic counseling referral, predictors of referral, and referral uptake for ovarian cancer patients. Using pathology reports, we identified all epithelial ovarian cancer patients seen in a university gynecologic oncology clinic (1/04-8/06). Electronic medical records (EMR) were used to document genetic service referral, time from diagnosis-to-referral, point-in-treatment at referral, personal/family cancer history, demographics, and genetic test results. Groups were compared using chi-squared and Fisher's exact test for categorical variables and t-tests for continuous variables. The study population consisted of 376 women with ovarian cancer, 72 (19 %) of who were referred for genetic counseling/testing, primarily during surveillance. Of those referred, 42 (58 %) had personal or family genetic counseling and 34 (47 %) were ultimately tested or identified due to known family mutation. Family history and prior cancer were associated with referral. Family history, living in a larger community, higher-stage disease, and serous histology were associated with undergoing genetic counseling. Risk assessment identified 20 BRCA1/2 (5.3 %) and 1 HNPCC (0.3 %) mutation carriers. Based on recent estimates that 11.7-16.6 % of women with ovarian cancer are BRCA carriers and 2 % are HNPCC carriers, results suggest under-identification of carriers and under-utilization of genetic services by providers and patients. Interventions to increase medical providers' referrals, even in a specialized oncology clinic, are necessary and may include innovations in educating these providers using web-based methods. Ease of referral by the introduction of an electronic cancer genetic referral form represents another new direction that may increase genetic risk assessment for high-risk women with ovarian cancer.
[Progress in genetic research of human height].
Chen, Kaixu; Wang, Weilan; Zhang, Fuchun; Zheng, Xiufen
2015-08-01
It is well known that both environmental and genetic factors contribute to adult height variation in general population. However, heritability studies have shown that the variation in height is more affected by genetic factors. Height is a typical polygenic trait which has been studied by traditional linkage analysis and association analysis to identify common DNA sequence variation associated with height, but progress has been slow. More recently, with the development of genotyping and DNA sequencing technologies, tremendous achievements have been made in genetic research of human height. Hundreds of single nucleotide polymorphisms (SNPs) associated with human height have been identified and validated with the application of genome-wide association studies (GWAS) methodology, which deepens our understanding of the genetics of human growth and development and also provides theoretic basis and reference for studying other complex human traits. In this review, we summarize recent progress in genetic research of human height and discuss problems and prospects in this research area which may provide some insights into future genetic studies of human height.
Regidor-Cerrillo, Javier; Díez-Fuertes, Francisco; García-Culebras, Alicia; Moore, Dadín P.; González-Warleta, Marta; Cuevas, Carmen; Schares, Gereon; Katzer, Frank; Pedraza-Díaz, Susana; Mezo, Mercedes; Ortega-Mora, Luis M.
2013-01-01
The cyst-forming protozoan parasite Neospora caninum is one of the main causes of bovine abortion worldwide and is of great economic importance in the cattle industry. Recent studies have revealed extensive genetic variation among N . caninum isolates based on microsatellite sequences (MSs). MSs may be suitable molecular markers for inferring the diversity of parasite populations, molecular epidemiology and the basis for phenotypic variations in N . caninum , which have been poorly defined. In this study, we evaluated nine MS markers using a panel of 11 N . caninum -derived reference isolates from around the world and 96 N . caninum bovine clinical samples and one ovine clinical sample collected from four countries on two continents, including Spain, Argentina, Germany and Scotland, over a 10-year period. These markers were used as molecular tools to investigate the genetic diversity, geographic distribution and population structure of N . caninum . Multilocus microsatellite genotyping based on 7 loci demonstrated high levels of genetic diversity in the samples from all of the different countries, with 96 microsatellite multilocus genotypes (MLGs) identified from 108 N . caninum samples. Geographic sub-structuring was present in the country populations according to pairwise F ST. Principal component analysis (PCA) and Neighbor Joining tree topologies also suggested MLG segregation partially associated with geographical origin. An analysis of the MLG relationships, using eBURST, confirmed that the close genetic relationship observed between the Spanish and Argentinean populations may be the result of parasite migration (i.e., the introduction of novel MLGs from Spain to South America) due to cattle movement. The eBURST relationships also revealed genetically different clusters associated with the abortion. The presence of linkage disequilibrium, the co-existence of specific MLGs to individual farms and eBURST MLG relationships suggest a predominant clonal propagation for Spanish N . caninum MLGs in cattle. PMID:23940816
Mattila, Tiina M; Aalto, Esa A; Toivainen, Tuomas; Niittyvuopio, Anne; Piltonen, Susanna; Kuittinen, Helmi; Savolainen, Outi
2016-01-01
Spatially varying selection can lead to population-specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location-specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population-specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population-specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species. © 2015 John Wiley & Sons Ltd.
Kim, Tae-Sung; He, Qiang; Kim, Kyu-Won; Yoon, Min-Young; Ra, Won-Hee; Li, Feng Peng; Tong, Wei; Yu, Jie; Oo, Win Htet; Choi, Buung; Heo, Eun-Beom; Yun, Byoung-Kook; Kwon, Soon-Jae; Kwon, Soon-Wook; Cho, Yoo-Hyun; Lee, Chang-Yong; Park, Beom-Seok; Park, Yong-Jin
2016-05-26
Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era.
Legras, Jean-Luc; Galeote, Virginie; Bigey, Frédéric; Camarasa, Carole; Marsit, Souhir; Nidelet, Thibault; Sanchez, Isabelle; Couloux, Arnaud; Guy, Julie; Franco-Duarte, Ricardo; Marcet-Houben, Marina; Gabaldon, Toni; Schuller, Dorit; Sampaio, José Paulo; Dequin, Sylvie
2018-07-01
The budding yeast Saccharomyces cerevisiae can be found in the wild and is also frequently associated with human activities. Despite recent insights into the phylogeny of this species, much is still unknown about how evolutionary processes related to anthropogenic niches have shaped the genomes and phenotypes of S. cerevisiae. To address this question, we performed population-level sequencing of 82 S. cerevisiae strains from wine, flor, rum, dairy products, bakeries, and the natural environment (oak trees). These genomic data enabled us to delineate specific genetic groups corresponding to the different ecological niches and revealed high genome content variation across the groups. Most of these strains, compared with the reference genome, possessed additional genetic elements acquired by introgression or horizontal transfer, several of which were population-specific. In addition, several genomic regions in each population showed evidence of nonneutral evolution, as shown by high differentiation, or of selective sweeps including genes with key functions in these environments (e.g., amino acid transport for wine yeast). Linking genetics to lifestyle differences and metabolite traits has enabled us to elucidate the genetic basis of several niche-specific population traits, such as growth on galactose for cheese strains. These data indicate that yeast has been subjected to various divergent selective pressures depending on its niche, requiring the development of customized genomes for better survival in these environments. These striking genome dynamics associated with local adaptation and domestication reveal the remarkable plasticity of the S. cerevisiae genome, revealing this species to be an amazing complex of specialized populations.
Laukkanen-Ninios, Riikka; Didelot, Xavier; Jolley, Keith A.; Morelli, Giovanna; Sangal, Vartul; Kristo, Paula; Imori, Priscilla F. M.; Fukushima, Hiroshi; Siitonen, Anja; Tseneva, Galina; Voskressenskaya, Ekaterina; Falcao, Juliana P.; Korkeala, Hannu; Maiden, Martin C. J.; Mazzoni, Camila; Carniel, Elisabeth; Skurnik, Mikael; Achtman, Mark
2014-01-01
Summary Multilocus sequence analysis of 417 strains of Yersinia pseudotuberculosis revealed that it is a complex of four populations, three of which have been previously assigned species status [Y. pseudotuberculosis sensu stricto (s.s.), Yersinia pestis and Yersinia similis] and a fourth population, which we refer to as the Korean group, which may be in the process of speciation. We detected clear signs of recombination within Y. pseudotuberculosis s.s. as well as imports from Y. similis and the Korean group. The sources of genetic diversification within Y. pseudotuberculosis s.s. were approximately equally divided between recombination and mutation, whereas recombination has not yet been demonstrated in Y. pestis, which is also much more genetically monomorphic than is Y. pseudotuberculosis s.s. Most Y. pseudotuberculosis s.s. belong to a diffuse group of sequence types lacking clear population structure, although this species contains a melibiose-negative clade that is present globally in domesticated animals. Yersinia similis corresponds to the previously identified Y. pseudotuberculosis genetic type G4, which is probably not pathogenic because it lacks the virulence factors that are typical for Y. pseudotuberculosis s.s. In contrast, Y. pseudotuberculosis s.s., the Korean group and Y. pestis can all cause disease in humans. PMID:21951486
Ma, X; Cai, Z; Liu, W; Ge, S; Tang, L
2017-09-01
The self-incompatibility (SI) gene that is specifically expressed in pistils encodes the SI-associated ribonuclease (S-RNase), functioning as the female-specificity determinant of a gametophytic SI system. Despite extensive surveys in Malus domestica, the S-alleles have not been fully investigated for Malus sieversii, the primary wild ancestor of the domesticated apple. Here we screened the M. sieversii S-alleles via PCR amplification and sequencing, and identified 14 distinct alleles in this species. By contrast, nearly 40 are present in its close wild relative, Malus sylvestris. We further sequenced 8 nuclear genes to provide a neutral reference, and investigated the evolution of S-alleles via genealogical and population genetic analyses. Both shared ancestral polymorphism and an excess of non-synonymous substitution were detected in the S-RNases of the tribe Maleae in Rosaceae, indicating the action of long-term balancing selection. Approximate Bayesian Computations based on the reference neutral loci revealed a severe bottleneck in four of the six studied M. sieversii populations, suggesting that the low number of S-alleles found in this species is mainly the result of diversity loss due to a drastic population contraction. Such a bottleneck may lead to ambiguous footprints of ongoing balancing selection detected at the S-locus. This study not only elucidates the constituents and number of S-alleles in M. sieversii but also illustrates the potential utility of S-allele number shifts in demographic inference for self-incompatible plant species.
Pagani, Luca; Kivisild, Toomas; Tarekegn, Ayele; Ekong, Rosemary; Plaster, Chris; Gallego Romero, Irene; Ayub, Qasim; Mehdi, S. Qasim; Thomas, Mark G.; Luiselli, Donata; Bekele, Endashaw; Bradman, Neil; Balding, David J.; Tyler-Smith, Chris
2012-01-01
Humans and their ancestors have traversed the Ethiopian landscape for millions of years, and present-day Ethiopians show great cultural, linguistic, and historical diversity, which makes them essential for understanding African variability and human origins. We genotyped 235 individuals from ten Ethiopian and two neighboring (South Sudanese and Somali) populations on an Illumina Omni 1M chip. Genotypes were compared with published data from several African and non-African populations. Principal-component and STRUCTURE-like analyses confirmed substantial genetic diversity both within and between populations, and revealed a match between genetic data and linguistic affiliation. Using comparisons with African and non-African reference samples in 40-SNP genomic windows, we identified “African” and “non-African” haplotypic components for each Ethiopian individual. The non-African component, which includes the SLC24A5 allele associated with light skin pigmentation in Europeans, may represent gene flow into Africa, which we estimate to have occurred ∼3 thousand years ago (kya). The non-African component was found to be more similar to populations inhabiting the Levant rather than the Arabian Peninsula, but the principal route for the expansion out of Africa ∼60 kya remains unresolved. Linkage-disequilibrium decay with genomic distance was less rapid in both the whole genome and the African component than in southern African samples, suggesting a less ancient history for Ethiopian populations. PMID:22726845
Shanks, Orin C.; White, Karen; Kelty, Catherine A.; Hayes, Sam; Sivaganesan, Mano; Jenkins, Michael; Varma, Manju; Haugland, Richard A.
2010-01-01
There are numerous PCR-based assays available to characterize bovine fecal pollution in ambient waters. The determination of which approaches are most suitable for field applications can be difficult because each assay targets a different gene, in many cases from different microorganisms, leading to variation in assay performance. We describe a performance evaluation of seven end-point PCR and real-time quantitative PCR (qPCR) assays reported to be associated with either ruminant or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations and 175 fecal DNA extracts from 24 different animal species. Bovine-associated genetic markers were broadly distributed among individual bovine samples ranging from 39 to 93%. Specificity levels of the assays spanned 47.4% to 100%. End-point PCR sensitivity also varied between assays and among different bovine populations. For qPCR assays, the abundance of each host-associated genetic marker was measured within each bovine population and compared to results of a qPCR assay targeting 16S rRNA gene sequences from Bacteroidales. Experiments indicate large discrepancies in the performance of bovine-associated assays across different bovine populations. Variability in assay performance between host populations suggests that the use of bovine microbial source-tracking applications will require a priori characterization at each watershed of interest. PMID:20061457
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevska, Tanya
This is the first code, designed to run on a desktop, which models the intracellular replication and the cell-to-cell infection and demonstrates virus evolution at the molecular level. This code simulates the infection of a population of "idealized biological cells" (represented as objects that do not divide or have metabolism) with "virus" (represented by its genetic sequence), the replication and simultaneous mutation of the virus which leads to evolution of the population of genetically diverse viruses. The code is built to simulate single-stranded RNA viruses. The input for the code is 1. the number of biological cells in the culture,more » 2. the initial composition of the virus population, 3. the reference genome of the RNA virus, 4. the coordinates of the genome regions and their significance and, 5. parameters determining the dynamics of virus replication, such as the mutation rate. The simulation ends when all cells have been infected or when no more infections occurs after a given number of attempts. The code has the ability to simulate the evolution of the virus in serial passage of cell "cultures", i.e. after the end of a simulation, a new one is immediately scheduled with a new culture of infected cells. The code outputs characteristics of the resulting virus population dynamics and genetic composition of the virus population, such as the top dominant genomes, percentage of a genome with specific characteristics.« less
Walther, Alexander; Özkan, Hakan; Graner, Andreas; Kilian, Benjamin
2014-01-01
Global environmental change and increasing human population emphasize the urgent need for higher yielding and better adapted crop plants. One strategy to achieve this aim is to exploit the wealth of so called landraces of crop species, representing diverse traditional domesticated populations of locally adapted genotypes. In this study, we investigated a comprehensive set of 1485 spring barley landraces (Lrc1485) adapted to a wide range of climates, which were selected from one of the largest genebanks worldwide. The landraces originated from 5° to 62.5° N and 16° to 71° E. The whole collection was genotyped using 42 SSR markers to assess the genetic diversity and population structure. With an average allelic richness of 5.74 and 372 alleles, Lrc1485 harbours considerably more genetic diversity than the most polymorphic current GWAS panel for barley. Ten major clusters defined most of the population structure based on geographical origin, row type of the ear and caryopsis type – and were assigned to specific climate zones. The legacy core reference set Lrc648 established in this study will provide a long-lasting resource and a very valuable tool for the scientific community. Lrc648 is best suited for multi-environmental field testing to identify candidate genes underlying quantitative traits but also for allele mining approaches. PMID:25541702
Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA
Larson, Greger; Liu, Ranran; Zhao, Xingbo; Yuan, Jing; Fuller, Dorian; Barton, Loukas; Dobney, Keith; Fan, Qipeng; Gu, Zhiliang; Liu, Xiao-Hui; Luo, Yunbing; Lv, Peng; Andersson, Leif; Li, Ning
2010-01-01
The establishment of agricultural economies based upon domestic animals began independently in many parts of the world and led to both increases in human population size and the migration of people carrying domestic plants and animals. The precise circumstances of the earliest phases of these events remain mysterious given their antiquity and the fact that subsequent waves of migrants have often replaced the first. Through the use of more than 1,500 modern (including 151 previously uncharacterized specimens) and 18 ancient (representing six East Asian archeological sites) pig (Sus scrofa) DNA sequences sampled across East Asia, we provide evidence for the long-term genetic continuity between modern and ancient Chinese domestic pigs. Although the Chinese case for independent pig domestication is supported by both genetic and archaeological evidence, we discuss five additional (and possibly) independent domestications of indigenous wild boar populations: one in India, three in peninsular Southeast Asia, and one off the coast of Taiwan. Collectively, we refer to these instances as “cryptic domestication,” given the current lack of corroborating archaeological evidence. In addition, we demonstrate the existence of numerous populations of genetically distinct and widespread wild boar populations that have not contributed maternal genetic material to modern domestic stocks. The overall findings provide the most complete picture yet of pig evolution and domestication in East Asia, and generate testable hypotheses regarding the development and spread of early farmers in the Far East. PMID:20404179
Hozé, C; Fritz, S; Phocas, F; Boichard, D; Ducrocq, V; Croiseau, P
2014-01-01
Single-breed genomic selection (GS) based on medium single nucleotide polymorphism (SNP) density (~50,000; 50K) is now routinely implemented in several large cattle breeds. However, building large enough reference populations remains a challenge for many medium or small breeds. The high-density BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA) containing 777,609 SNP developed in 2010 is characterized by short-distance linkage disequilibrium expected to be maintained across breeds. Therefore, combining reference populations can be envisioned. A population of 1,869 influential ancestors from 3 dairy breeds (Holstein, Montbéliarde, and Normande) was genotyped with the HD chip. Using this sample, 50K genotypes were imputed within breed to high-density genotypes, leading to a large HD reference population. This population was used to develop a multi-breed genomic evaluation. The goal of this paper was to investigate the gain of multi-breed genomic evaluation for a small breed. The advantage of using a large breed (Normande in the present study) to mimic a small breed is the large potential validation population to compare alternative genomic selection approaches more reliably. In the Normande breed, 3 training sets were defined with 1,597, 404, and 198 bulls, and a unique validation set included the 394 youngest bulls. For each training set, estimated breeding values (EBV) were computed using pedigree-based BLUP, single-breed BayesC, or multi-breed BayesC for which the reference population was formed by any of the Normande training data sets and 4,989 Holstein and 1,788 Montbéliarde bulls. Phenotypes were standardized by within-breed genetic standard deviation, the proportion of polygenic variance was set to 30%, and the estimated number of SNP with a nonzero effect was about 7,000. The 2 genomic selection (GS) approaches were performed using either the 50K or HD genotypes. The correlations between EBV and observed daughter yield deviations (DYD) were computed for 6 traits and using the different prediction approaches. Compared with pedigree-based BLUP, the average gain in accuracy with GS in small populations was 0.057 for the single-breed and 0.086 for multi-breed approach. This gain was up to 0.193 and 0.209, respectively, with the large reference population. Improvement of EBV prediction due to the multi-breed evaluation was higher for animals not closely related to the reference population. In the case of a breed with a small reference population size, the increase in correlation due to multi-breed GS was 0.141 for bulls without their sire in reference population compared with 0.016 for bulls with their sire in reference population. These results demonstrate that multi-breed GS can contribute to increase genomic evaluation accuracy in small breeds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies
Supple, Megan A.; Hines, Heather M.; Dasmahapatra, Kanchon K.; Lewis, James J.; Nielsen, Dahlia M.; Lavoie, Christine; Ray, David A.; Salazar, Camilo; McMillan, W. Owen; Counterman, Brian A.
2013-01-01
Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations. PMID:23674305
Genetic ancestry of participants in the National Children’s Study
2014-01-01
Background The National Children’s Study (NCS) is a prospective epidemiological study in the USA tasked with identifying a nationally representative sample of 100,000 children, and following them from their gestation until they are 21 years of age. The objective of the study is to measure environmental and genetic influences on growth, development, and health. Determination of the ancestry of these NCS participants is important for assessing the diversity of study participants and for examining the effect of ancestry on various health outcomes. Results We estimated the genetic ancestry of a convenience sample of 641 parents enrolled at the 7 original NCS Vanguard sites, by analyzing 30,000 markers on exome arrays, using the 1000 Genomes Project superpopulations as reference populations, and compared this with the measures of self-reported ethnicity and race. For 99% of the individuals, self-reported ethnicity and race agreed with the predicted superpopulation. NCS individuals self-reporting as Asian had genetic ancestry of either South Asian or East Asian groups, while those reporting as either Hispanic White or Hispanic Other had similar genetic ancestry. Of the 33 individuals who self-reported as Multiracial or Non-Hispanic Other, 33% matched the South Asian or East Asian groups, while these groups represented only 4.4% of the other reported categories. Conclusions Our data suggest that self-reported ethnicity and race have some limitations in accurately capturing Hispanic and South Asian populations. Overall, however, our data indicate that despite the complexity of the US population, individuals know their ancestral origins, and that self-reported ethnicity and race is a reliable indicator of genetic ancestry. PMID:24490717
Genetic ancestry of participants in the National Children's Study.
Smith, Erin N; Jepsen, Kristen; Arias, Angelo D; Shepard, Peter J; Chambers, Christina D; Frazer, Kelly A
2014-02-03
The National Children's Study (NCS) is a prospective epidemiological study in the USA tasked with identifying a nationally representative sample of 100,000 children, and following them from their gestation until they are 21 years of age. The objective of the study is to measure environmental and genetic influences on growth, development, and health. Determination of the ancestry of these NCS participants is important for assessing the diversity of study participants and for examining the effect of ancestry on various health outcomes. We estimated the genetic ancestry of a convenience sample of 641 parents enrolled at the 7 original NCS Vanguard sites, by analyzing 30,000 markers on exome arrays, using the 1000 Genomes Project superpopulations as reference populations, and compared this with the measures of self-reported ethnicity and race. For 99% of the individuals, self-reported ethnicity and race agreed with the predicted superpopulation. NCS individuals self-reporting as Asian had genetic ancestry of either South Asian or East Asian groups, while those reporting as either Hispanic White or Hispanic Other had similar genetic ancestry. Of the 33 individuals who self-reported as Multiracial or Non-Hispanic Other, 33% matched the South Asian or East Asian groups, while these groups represented only 4.4% of the other reported categories. Our data suggest that self-reported ethnicity and race have some limitations in accurately capturing Hispanic and South Asian populations. Overall, however, our data indicate that despite the complexity of the US population, individuals know their ancestral origins, and that self-reported ethnicity and race is a reliable indicator of genetic ancestry.
Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent.
Baker, Robert J; Dickins, Benjamin; Wickliffe, Jeffrey K; Khan, Faisal A A; Gaschak, Sergey; Makova, Kateryna D; Phillips, Caleb D
2017-09-01
Currently, the effects of chronic, continuous low dose environmental irradiation on the mitochondrial genome of resident small mammals are unknown. Using the bank vole ( Myodes glareolus ) as a model system, we tested the hypothesis that approximately 50 generations of exposure to the Chernobyl environment has significantly altered genetic diversity of the mitochondrial genome. Using deep sequencing, we compared mitochondrial genomes from 131 individuals from reference sites with radioactive contamination comparable to that present in northern Ukraine before the 26 April 1986 meltdown, to populations where substantial fallout was deposited following the nuclear accident. Population genetic variables revealed significant differences among populations from contaminated and uncontaminated localities. Therefore, we rejected the null hypothesis of no significant genetic effect from 50 generations of exposure to the environment created by the Chernobyl meltdown. Samples from contaminated localities exhibited significantly higher numbers of haplotypes and polymorphic loci, elevated genetic diversity, and a significantly higher average number of substitutions per site across mitochondrial gene regions. Observed genetic variation was dominated by synonymous mutations, which may indicate a history of purify selection against nonsynonymous or insertion/deletion mutations. These significant differences were not attributable to sample size artifacts. The observed increase in mitochondrial genomic diversity in voles from radioactive sites is consistent with the possibility that chronic, continuous irradiation resulting from the Chernobyl disaster has produced an accelerated mutation rate in this species over the last 25 years. Our results, being the first to demonstrate this phenomenon in a wild mammalian species, are important for understanding genetic consequences of exposure to low-dose radiation sources.
Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa
Arauna, Lara R.; Mendoza-Revilla, Javier; Mas-Sandoval, Alex; Izaabel, Hassan; Bekada, Asmahan; Benhamamouch, Soraya; Fadhlaoui-Zid, Karima; Zalloua, Pierre; Hellenthal, Garrett
2017-01-01
North Africa is characterized by its diverse cultural and linguistic groups and its genetic heterogeneity. Genomic data has shown an amalgam of components mixed since pre-Holocean times. Though no differences have been found in uniparental and classical markers between Berbers and Arabs, the two main ethnic groups in the region, the scanty genomic data available have highlighted the singularity of Berbers. We characterize the genetic heterogeneity of North African groups, focusing on the putative differences of Berbers and Arabs, and estimate migration dates. We analyze genome-wide autosomal data in five Berber and six Arab groups, and compare them to Middle Easterns, sub-Saharans, and Europeans. Haplotype-based methods show a lack of correlation between geographical and genetic populations, and a high degree of genetic heterogeneity, without strong differences between Berbers and Arabs. Berbers enclose genetically diverse groups, from isolated endogamous groups with high autochthonous component frequencies, large homozygosity runs and low effective population sizes, to admixed groups with high frequencies of sub-Saharan and Middle Eastern components. Admixture time estimates show a complex pattern of recent historical migrations, with a peak around the 7th century C.E. coincident with the Arabization of the region; sub-Saharan migrations since the 1st century B.C. in agreement with Roman slave trade; and a strong migration in the 17th century C.E., coincident with a huge impact of the trans-Atlantic and trans-Saharan trade of sub-Saharan slaves in the Modern Era. The genetic complexity found should be taken into account when selecting reference groups in population genetics and biomedical studies. PMID:27744413
Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa.
Arauna, Lara R; Mendoza-Revilla, Javier; Mas-Sandoval, Alex; Izaabel, Hassan; Bekada, Asmahan; Benhamamouch, Soraya; Fadhlaoui-Zid, Karima; Zalloua, Pierre; Hellenthal, Garrett; Comas, David
2017-02-01
North Africa is characterized by its diverse cultural and linguistic groups and its genetic heterogeneity. Genomic data has shown an amalgam of components mixed since pre-Holocean times. Though no differences have been found in uniparental and classical markers between Berbers and Arabs, the two main ethnic groups in the region, the scanty genomic data available have highlighted the singularity of Berbers. We characterize the genetic heterogeneity of North African groups, focusing on the putative differences of Berbers and Arabs, and estimate migration dates. We analyze genome-wide autosomal data in five Berber and six Arab groups, and compare them to Middle Easterns, sub-Saharans, and Europeans. Haplotype-based methods show a lack of correlation between geographical and genetic populations, and a high degree of genetic heterogeneity, without strong differences between Berbers and Arabs. Berbers enclose genetically diverse groups, from isolated endogamous groups with high autochthonous component frequencies, large homozygosity runs and low effective population sizes, to admixed groups with high frequencies of sub-Saharan and Middle Eastern components. Admixture time estimates show a complex pattern of recent historical migrations, with a peak around the 7th century C.E. coincident with the Arabization of the region; sub-Saharan migrations since the 1st century B.C. in agreement with Roman slave trade; and a strong migration in the 17th century C.E., coincident with a huge impact of the trans-Atlantic and trans-Saharan trade of sub-Saharan slaves in the Modern Era. The genetic complexity found should be taken into account when selecting reference groups in population genetics and biomedical studies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Population differences in the rate of proliferation of international HapMap cell lines.
Stark, Amy L; Zhang, Wei; Zhou, Tong; O'Donnell, Peter H; Beiswanger, Christine M; Huang, R Stephanie; Cox, Nancy J; Dolan, M Eileen
2010-12-10
The International HapMap Project is a resource for researchers containing genotype, sequencing, and expression information for EBV-transformed lymphoblastoid cell lines derived from populations across the world. The expansion of the HapMap beyond the four initial populations of Phase 2, referred to as Phase 3, has increased the sample number and ethnic diversity available for investigation. However, differences in the rate of cellular proliferation between the populations can serve as confounders in phenotype-genotype studies using these cell lines. Within the Phase 2 populations, the JPT and CHB cell lines grow faster (p < 0.0001) than the CEU or YRI cell lines. Phase 3 YRI cell lines grow significantly slower than Phase 2 YRI lines (p < 0.0001), with no widespread genetic differences based on common SNPs. In addition, we found significant growth differences between the cell lines in the Phase 2 ASN populations and the Han Chinese from the Denver metropolitan area panel in Phase 3 (p < 0.0001). Therefore, studies that separate HapMap panels into discovery and replication sets must take this into consideration. Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
The biology of small, introduced populations, with special reference to biological control
Fauvergue, Xavier; Vercken, Elodie; Malausa, Thibaut; Hufbauer, Ruth A
2012-01-01
Populations are introduced into novel environments in different contexts, one being the biological control of pests. Despite intense efforts, less than half introduced biological control agents establish. Among the possible approaches to improve biological control, one is to better understand the processes that underpin introductions and contribute to ecological and evolutionary success. In this perspective, we first review the demographic and genetic processes at play in small populations, be they stochastic or deterministic. We discuss the theoretical outcomes of these different processes with respect to individual fitness, population growth rate, and establishment probability. Predicted outcomes differ subtly in some cases, but enough so that the evaluating results of introductions have the potential to reveal which processes play important roles in introduced populations. Second, we attempt to link the theory we have discussed with empirical data from biological control introductions. A main result is that there are few available data, but we nonetheless report on an increasing number of well-designed, theory-driven, experimental approaches. Combining demography and genetics from both theoretical and empirical perspectives highlights novel and exciting avenues for research on the biology of small, introduced populations, and great potential for improving both our understanding and practice of biological control. PMID:22949919
Soltyszewski, Ireneusz; Plocienniczak, Andrzej; Fabricius, Hans Ake; Kornienko, Igor; Vodolazhsky, Dmitrij; Parson, Walther; Hradil, Roman; Schmitter, Hermann; Ivanov, Pavel; Kuzniar, Piotr; Malyarchuk, Boris A; Grzybowski, Tomasz; Woźniak, Marcin; Henke, Jurgen; Henke, Lotte; Olkhovets, Sergiv; Voitenko, Vladimir; Lagus, Vita; Ficek, Andrej; Minárik, Gabriel; de Knijff, Peter; Rebała, Krzysztof; Wysocka, Joanna; Kapińska, Ewa; Cybulska, Lidia; Mikulich, Alexei I; Tsybovsky, Iosif S; Szczerkowska, Zofia; Krajewski, Paweł; Ploski, Rafał
2008-06-01
The purpose of this study was to evaluate the homogeneity of Polish populations with respect to STRs chosen as core markers of the Polish Forensic National DNA Intelligence Database, and to provide reference allele frequencies and to explore the genetic interrelationship between Poland and neighboring countries. The allele frequency distribution of 10 STRs included in the SGMplus kit was analyzed among 2176 unrelated individuals from 6 regional Polish populations and among 4321 individuals from Germany (three samples), Austria, The Netherlands, Sweden, Czech Republic, Slovakia, Belarus, Ukraine and the Russian Federation (six samples). The statistical approach consisted of AMOVA, calculation of pairwise Rst values and analysis by multidimensional scaling. We found homogeneity of present day Poland and consistent differences between Polish and German populations which contrasted with relative similarities between Russian and German populations. These discrepancies between genetic and geographic distances were confirmed by analysis of an independent data set on Y chromosome STRs. Migrations of Goths, Viking influences, German settlements in the region of Volga river and/or forced population resettlements and other events related to World War II are the historic events which might have caused these finding.
Dalirsefat, Seyed Benyamin; Dong, Xianggui; Deng, Xuemei
2015-08-01
In total, 246 individuals from 8 Chinese indigenous blue- and brown-shelled chicken populations (Yimeng Blue, Wulong Blue, Lindian Blue, Dongxiang Blue, Lushi Blue, Jingmen Blue, Dongxiang Brown, and Lushi Brown) were genotyped for 21 SNP markers from the SLCO1B3 gene to evaluate phylogenetic relationships. As a representative of nonblue-shelled breeds, White Leghorn was included in the study for reference. A high proportion of SNP polymorphism was observed in Chinese chicken populations, ranging from 89% in Jingmen Blue to 100% in most populations, with a mean of 95% across all populations. The White Leghorn breed showed the lowest polymorphism, accounting for 43% of total SNPs. The mean expected heterozygosity varied from 0.11 in Dongxiang Blue to 0.46 in Yimeng Blue. Analysis of molecular variation (AMOVA) for 2 groups of Chinese chickens based on eggshell color type revealed 52% within-group and 43% between-group variations of the total genetic variation. As expected, FST and Reynolds' genetic distance were greatest between White Leghorn and Chinese chicken populations, with average values of 0.40 and 0.55, respectively. The first and second principal coordinates explained approximately 92% of the total variation and supported the clustering of the populations according to their eggshell color type and historical origins. STRUCTURE analysis showed a considerable source of variation among populations for the clustering into blue-shelled and nonblue-shelled chicken populations. The low estimation of genetic differentiation (FST) between Chinese chicken populations is possibly due to a common historical origin and high gene flow. Remarkably similar population classifications were obtained with all methods used in the study. Aligning endogenous avian retroviral (EAV)-HP insertion sequences showed no difference among the blue-shelled chickens. © 2015 Poultry Science Association Inc.
Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior
Shorter, John; Couch, Charlene; Huang, Wen; Carbone, Mary Anna; Peiffer, Jason; Anholt, Robert R. H.; Mackay, Trudy F. C.
2015-01-01
Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics. PMID:26100892
Mapping landscape friction to locate isolated tsetse populations that are candidates for elimination
Dicko, Ahmadou H.; Cecchi, Giuliano; Ravel, Sophie; Guerrini, Laure; Solano, Philippe; Vreysen, Marc J. B.; De Meeûs, Thierry; Lancelot, Renaud
2015-01-01
Tsetse flies are the cyclical vectors of deadly human and animal trypanosomes in sub-Saharan Africa. Tsetse control is a key component for the integrated management of both plagues, but local eradication successes have been limited to less than 2% of the infested area. This is attributed to either resurgence of residual populations that were omitted from the eradication campaign or reinvasion from neighboring infested areas. Here we focused on Glossina palpalis gambiensis, a riverine tsetse species representing the main vector of trypanosomoses in West Africa. We mapped landscape resistance to tsetse genetic flow, hereafter referred to as friction, to identify natural barriers that isolate tsetse populations. For this purpose, we fitted a statistical model of the genetic distance between 37 tsetse populations sampled in the region, using a set of remotely sensed environmental data as predictors. The least-cost path between these populations was then estimated using the predicted friction map. The method enabled us to avoid the subjectivity inherent in the expert-based weighting of environmental parameters. Finally, we identified potentially isolated clusters of G. p. gambiensis habitat based on a species distribution model and ranked them according to their predicted genetic distance to the main tsetse population. The methodology presented here will inform the choice on the most appropriate intervention strategies to be implemented against tsetse flies in different parts of Africa. It can also be used to control other pests and to support conservation of endangered species. PMID:26553973
Good, Kathryn L; Komáromy, András M; Kass, Philip H; Ofri, Ron
2016-09-01
To conduct ophthalmic, behavioral, electrophysiological, and genetic testing on two related Gordon setters presented for day blindness and compare findings with those of nine related and unrelated Gordon setters. All dogs underwent comprehensive ophthalmic examination. Maze testing was conducted under different light intensities. Rod and cone function was assessed electroretinographically. DNA samples were screened for five canine retinal disease gene mutations. Ophthalmic examination was unremarkable in all dogs. There was no notable difference between day blind dogs and the reference population in scotopic and mesopic maze tests. Day blind dogs performed worse in the photopic maze with slower course completion time and more obstacle collisions. Electroretinography revealed extinguished cone function in day blind dogs and depressed rod responses in all but two reference dogs. One reference population dog presented with day blindness 1 year after initial examination. Mutations that cause achromatopsia (in CNGB3) and cone-rod dystrophies (in ADAM9 and IQCB1) were not detected in any dog tested, although five reference dogs were carriers of the mutation in C2orf71 that causes rod-cone degeneration 4 (rcd4) in Gordon setters and in polski owczarek nizinny dogs. This report describes a novel retinopathy in related Gordon setters that has clinical signs and vision testing results consistent with achromatopsia but electroretinographic results suggestive of cone-rod dystrophy. The majority of Gordon setters in this study had low rod responses on electroretinography but it is unclear whether this was indicative of rod dysfunction or normal for the breed. Longer-term observation of affected individuals is warranted. © 2015 American College of Veterinary Ophthalmologists.
Raboanatahiry, Nadia; Chao, Hongbo; Guo, Liangxing; Gan, Jianping; Xiang, Jun; Yan, Mingli; Zhang, Libin; Yu, Longjiang; Li, Maoteng
2017-10-12
Deciphering the genetic architecture of a species is a good way to understand its evolutionary history, but also to tailor its profile for breeding elite cultivars with desirable traits. Aligning QTLs from diverse population in one map and utilizing it for comparison, but also as a basis for multiple analyses assure a stronger evidence to understand the genetic system related to a given phenotype. In this study, 439 genes involved in fatty acid (FA) and triacylglycerol (TAG) biosyntheses were identified in Brassica napus. B. napus genome showed mixed gene loss and insertion compared to B. rapa and B. oleracea, and C genome had more inserted genes. Identified QTLs for oil (OC-QTLs) and fatty acids (FA-QTLs) from nine reported populations were projected on the physical map of the reference genome "Darmor-bzh" to generate a map. Thus, 335 FA-QTLs and OC-QTLs could be highlighted and 82 QTLs were overlapping. Chromosome C3 contained 22 overlapping QTLs with all trait studied except for C18:3. In total, 218 candidate genes which were potentially involved in FA and TAG were identified in 162 QTLs confidence intervals and some of them might affect many traits. Also, 76 among these candidate genes were found inside 57 overlapping QTLs, and candidate genes for oil content were in majority (61/76 genes). Then, sixteen genes were found in overlapping QTLs involving three populations, and the remaining 60 genes were found in overlapping QTLs of two populations. Interaction network and pathway analysis of these candidate genes indicated ten genes that might have strong influence over the other genes that control fatty acids and oil formation. The present results provided new information for genetic basis of FA and TAG formation in B. napus. A map including QTLs from numerous populations was built, which could serve as reference to study the genome profile of B. napus, and new potential genes emerged which might affect seed oil. New useful tracks were showed for the selection of population or/and selection of interesting genes for breeding improvement purpose.
Desert Tortoise (Gopherus agassizii)
Boarman, William I.; Boarman, William I.; Beaman, K.
2002-01-01
The desert tortoise is widely distributed throughout major portions of the Mojave and Sonoran deserts of California, Nevada, Utah, Arizona, Sonora, and Sinaloa. Genetic, morphological, ecological, and behavioral features suggest an evolutionary divergence between the tortoises found south and east of the Colorado River (“Sonoran population”), and those found north and west of the river (“Mojave population;” Lamb et al. 1989). The latter is the population Federally and State-listed as threatened. This population will be referred to in the remainder of this account. The majority of animals in the Mojave population occur at variable densities in six distinct population segments (i.e., evolutionarily significant units), each identified in the Recovery Plan for desert tortoises as separate Recovery Units (USFWS 1994).
Peles, John D; Pistole, David H; Moffe, Mickey C
2012-03-01
The influence of exposure time on gill Na+/K+ ATPase activity and metabolic rate in populations of fathead minnows (Pimephales promelas) and golden shiners (Notemigonus crysoleucas) hatcheries in Ohio (OH) and Pennsylvania (PA) when exposed to sublethal concentrations of copper (Cu) was examined. The pattern of change in gill Na+/K+ ATPase activity was similar in all species/populations and results support expectations based on the concept of acclimation. In all populations, Na+/K+ ATPase activity declined significantly compared to reference values within 24 h, recovered by 48 h, and then continued to increase before exceeding reference values by 192 h. With the exception of PA fathead minnows, Na+/K+ ATPase activities returned to reference levels by 384 h. Although metabolic rates of individual fish were not strongly correlated with Na+/K+ ATPase activities, the pattern of change in mean values of these physiological parameters was very similar. However, OH populations of both fathead minnows and golden shiners demonstrated much more dramatic changes in metabolic rate compared to PA fish. At 24 h, metabolic rate of PA fathead minnows had decreased by 16% compared to the reference value whereas the OH population had decreased by 31%; metabolic rate of PA golden shiners declined by 23% compared to 59% in OH shiners at 24 h. Similar differences were observed in the maximum metabolic rates achieved at 192 h. While the increased sensitivity of OH fish to Cu is not readily explainable by genetic or environmental factors, results suggest the need for considering population level differences when evaluating the physiological effects of toxicants. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
MacKillop, James
2013-01-01
Delayed reward discounting is a behavioral economic index of impulsivity, referring to how much an individual devalues a reward based on its delay in time. As a behavioral process that varies considerably across individuals, delay discounting has been studied extensively as a model for self-control, both in the general population and in clinical…
Ladakh, India: the land of high passes and genetic heterogeneity reveals a confluence of migrations.
Rowold, Diane J; Perez Benedico, David; Garcia-Bertrand, Ralph; Chennakrishnaiah, Shilpa; Alfonso-Sanchez, Miguel A; Gayden, Tenzin; Herrera, Rene J
2016-03-01
Owing to its geographic location near the longitudinal center of Asia, Ladakh, the land of high passes, has witnessed numerous demographic movements during the past millenniums of occupation. In an effort to view Ladakh's multicultural history from a paternal genetic perspective, we performed a high-resolution Y-chromosomal survey of Ladakh, within the context of Y haplogroup and haplotype distributions of 41 Asian reference populations. The results of this investigation highlight the rich ethnic and genetic diversity of Ladkah which includes genetic contributions from disparate regions of the continent including, West, East, South and Central Asia. The phylogenetic signals from Ladakh are consistent with the Indo-Aryans' occupation during the Neolithic age and its historic connection with Tibet, as well as the East-West gene flow associated with the Silk Road.
Whole genome resequencing of a laboratory-adapted Drosophila melanogaster population sample
Gilks, William P.; Pennell, Tanya M.; Flis, Ilona; Webster, Matthew T.; Morrow, Edward H.
2016-01-01
As part of a study into the molecular genetics of sexually dimorphic complex traits, we used high-throughput sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly ( Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LH M). The use of a static and known genetic background enabled us to obtain sequences from whole-genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth-of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics ( https://zenodo.org/communities/sussex_drosophila_sequencing/). PMID:27928499
Portuguese crypto-Jews: the genetic heritage of a complex history
Nogueiro, Inês; Teixeira, João C.; Amorim, António; Gusmão, Leonor; Alvarez, Luis
2015-01-01
The first documents mentioning Jewish people in Iberia are from the Visigothic period. It was also in this period that the first documented anti-Judaic persecution took place. Other episodes of persecution would happen again and again during the long troubled history of the Jewish people in Iberia and culminated with the Decrees of Expulsion and the establishment of the Inquisition: some Jews converted to Catholicism while others resisted and were forcedly baptized, becoming the first Iberian Crypto-Jews. In the 18th century the official discrimination and persecution carried out by the Inquisition ended and several Jewish communities emerged in Portugal. From a populational genetics point of view, the worldwide Diaspora of contemporary Jewish communities has been intensely studied. Nevertheless, very little information is available concerning Sephardic and Iberian Crypto-Jewish descendants. Data from the Iberian Peninsula, the original geographic source of Sephardic Jews, is limited to two populations in Portugal, Belmonte, and Bragança district, and the Chueta community from Mallorca. Belmonte was the first Jewish community studied for uniparental markers. The construction of a reference model for the history of the Portuguese Jewish communities, in which the genetic and classical historical data interplay dynamically, is still ongoing. Recently an enlarged sample covering a wide region in the Northeast Portugal was undertaken, allowing the genetic profiling of male and female lineages. A Jewish specific shared female lineage (HV0b) was detected between the community of Belmonte and Bragança. In contrast to what was previously described as a hallmark of the Portuguese Jews, an unexpectedly high polymorphism of lineages was found in Bragança, showing a surprising resistance to the erosion of genetic diversity typical of small-sized isolate populations, as well as signs of admixture with the Portuguese host population. PMID:25699075
Portuguese crypto-Jews: the genetic heritage of a complex history.
Nogueiro, Inês; Teixeira, João C; Amorim, António; Gusmão, Leonor; Alvarez, Luis
2015-01-01
The first documents mentioning Jewish people in Iberia are from the Visigothic period. It was also in this period that the first documented anti-Judaic persecution took place. Other episodes of persecution would happen again and again during the long troubled history of the Jewish people in Iberia and culminated with the Decrees of Expulsion and the establishment of the Inquisition: some Jews converted to Catholicism while others resisted and were forcedly baptized, becoming the first Iberian Crypto-Jews. In the 18th century the official discrimination and persecution carried out by the Inquisition ended and several Jewish communities emerged in Portugal. From a populational genetics point of view, the worldwide Diaspora of contemporary Jewish communities has been intensely studied. Nevertheless, very little information is available concerning Sephardic and Iberian Crypto-Jewish descendants. Data from the Iberian Peninsula, the original geographic source of Sephardic Jews, is limited to two populations in Portugal, Belmonte, and Bragança district, and the Chueta community from Mallorca. Belmonte was the first Jewish community studied for uniparental markers. The construction of a reference model for the history of the Portuguese Jewish communities, in which the genetic and classical historical data interplay dynamically, is still ongoing. Recently an enlarged sample covering a wide region in the Northeast Portugal was undertaken, allowing the genetic profiling of male and female lineages. A Jewish specific shared female lineage (HV0b) was detected between the community of Belmonte and Bragança. In contrast to what was previously described as a hallmark of the Portuguese Jews, an unexpectedly high polymorphism of lineages was found in Bragança, showing a surprising resistance to the erosion of genetic diversity typical of small-sized isolate populations, as well as signs of admixture with the Portuguese host population.
Nuclear, chloroplast, and mitochondrial data of a US cannabis DNA database.
Houston, Rachel; Birck, Matthew; LaRue, Bobby; Hughes-Stamm, Sheree; Gangitano, David
2018-05-01
As Cannabis sativa (marijuana) is a controlled substance in many parts of the world, the ability to track biogeographical origin of cannabis could provide law enforcement with investigative leads regarding its trade and distribution. Population substructure and inbreeding may cause cannabis plants to become more genetically related. This genetic relatedness can be helpful for intelligence purposes. Analysis of autosomal, chloroplast, and mitochondrial DNA allows for not only prediction of biogeographical origin of a plant but also discrimination between individual plants. A previously validated, 13-autosomal STR multiplex was used to genotype 510 samples. Samples were analyzed from four different sites: 21 seizures at the US-Mexico border, Northeastern Brazil, hemp seeds purchased in the US, and the Araucania area of Chile. In addition, a previously reported multi-loci system was modified and optimized to genotype five chloroplast and two mitochondrial markers. For this purpose, two methods were designed: a homopolymeric STR pentaplex and a SNP triplex with one chloroplast (Cscp001) marker shared by both methods for quality control. For successful mitochondrial and chloroplast typing, a novel real-time PCR quantitation method was developed and validated to accurately estimate the quantity of the chloroplast DNA (cpDNA) using a synthetic DNA standard. Moreover, a sequenced allelic ladder was also designed for accurate genotyping of the homopolymeric STR pentaplex. For autosomal typing, 356 unique profiles were generated from the 425 samples that yielded full STR profiles and 25 identical genotypes within seizures were observed. Phylogenetic analysis and case-to-case pairwise comparisons of 21 seizures at the US-Mexico border, using the Fixation Index (F ST ) as genetic distance, revealed the genetic association of nine seizures that formed a reference population. For mitochondrial and chloroplast typing, subsampling was performed, and 134 samples were genotyped. Complete haplotypes (STRs and SNPs) were observed for 127 samples. As expected, extensive haplotype sharing was observed; five distinguishable haplotypes were detected. In the reference population, the same haplotype was observed 39 times and two unique haplotypes were also detected. Haplotype sharing was observed between the US border seizures, Brazil, and Chile, while the hemp samples generated a distinct haplotype. Phylogenetic analysis of the four populations was performed, and results revealed that both autosomal and lineage markers could discern population substructure.
Blood groups and human groups: collecting and calibrating genetic data after World War Two.
Bangham, Jenny
2014-09-01
Arthur Mourant's The Distribution of the Human Blood Groups (1954) was an "indispensable" reference book on the "anthropology of blood groups" containing a vast collection of human genetic data. It was based on the results of blood-grouping tests carried out on half-a-million people and drew together studies on diverse populations around the world: from rural communities, to religious exiles, to volunteer transfusion donors. This paper pieces together sequential stages in the production of a small fraction of the blood-group data in Mourant's book, to examine how he and his colleagues made genetic data from people. Using sources from several collecting projects, I follow how blood was encountered, how it was inscribed, and how it was turned into a laboratory resource. I trace Mourant's analytical and representational strategies to make blood groups both credibly 'genetic' and understood as relevant to human ancestry, race and history. In this story, 'populations' were not simply given, but were produced through public health, colonial and post-colonial institutions, and by the labour and expertise of subjects, assistants and mediators. Genetic data were not self-evidently 'biological', but were shaped by existing historical and geographical identities, by political relationships, and by notions of kinship and belonging. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
Ethical issues in genetic counselling with special reference to haemoglobinopathies.
Muthuswamy, Vasantha
2011-10-01
Genetic counselling is provided in places where genetic tests are carried out. The process involves pre-test counselling as well as post-test counselling to enable the individuals to face the situation and take appropriate decisions with the right frame of mind. Major ethical principles which govern the attitudes and actions of counsellors include: respect for patient autonomy, non-maleficence, beneficence, or taking action to help benefit others and prevent harm, both physical and mental, and justice, which requires that services be distributed fairly to those in need. Other moral issues include veracity, the duty to disclose information or to be truthful, and respect for patient confidentiality. Nondirective counselling, a hallmark of this profession, is in accordance with the principle of individual autonomy. High prevalence of haemoglobinopathies with availability of good and sensitive carrier detection tests and prenatal diagnostic techniques makes these good candidates for population screening of carriers along with genetic counselling for primary prevention of the disease. Screening of the extended family members of the affected child, high risk communities and general population screening including antenatal women are the main target groups for planning a Haemoglobinopathy control programme. A critical mass of trained genetic counsellors who have understanding of the ethical issues and its appropriate handling with the required sensitivity is needed in India.
Inference of biogeographical ancestry across central regions of Eurasia.
Bulbul, O; Filoglu, G; Zorlu, T; Altuncul, H; Freire-Aradas, A; Söchtig, J; Ruiz, Y; Klintschar, M; Triki-Fendri, S; Rebai, A; Phillips, C; Lareu, M V; Carracedo, Á; Schneider, P M
2016-01-01
The inference of biogeographical ancestry (BGA) can provide useful information for forensic investigators when there are no suspects to be compared with DNA collected at the crime scene or when no DNA database matches exist. Although public databases are increasing in size and population scope, there is a lack of information regarding genetic variation in Eurasian populations, especially in central regions such as the Middle East. Inhabitants of these regions show a high degree of genetic admixture, characterized by an allele frequency cline running from NW Europe to East Asia. Although a proper differentiation has been established between the cline extremes of western Europe and South Asia, populations geographically located in between, i.e, Middle East and Mediterranean populations, require more detailed study in order to characterize their genetic background as well as to further understand their demographic histories. To initiate these studies, three ancestry informative SNP (AI-SNP) multiplex panels: the SNPforID 34-plex, Eurasiaplex and a novel 33-plex assay were used to describe the ancestry patterns of a total of 24 populations ranging across the longitudinal axis from NW Europe to East Asia. Different ancestry inference approaches, including STRUCTURE, PCA, DAPC and Snipper Bayes analysis, were applied to determine relationships among populations. The structure results show differentiation between continental groups and a NW to SE allele frequency cline running across Eurasian populations. This study adds useful population data that could be used as reference genotypes for future ancestry investigations in forensic cases. The 33-plex assay also includes pigmentation predictive SNPs, but this study primarily focused on Eurasian population differentiation using 33-plex and its combination with the other two AI-SNP sets.
Freitas, Elyse S; Bauer, Aaron M; Siler, Cameron D; Broadley, Donald G; Jackman, Todd R
2018-06-02
The aridification of Africa resulted in the fragmentation of forests and the expansion of an arid corridor stretching from the northeast to southwest portion of sub-Saharan Africa, but the role this corridor has had in species-level diversification of southern African vertebrates is poorly understood. The skink species Mochlus afer and M. sundevallii inhabit wide areas of the arid corridor and are therefore an ideal species pair for studying patterns of genetic and phenotypic diversity associated with this landscape. However, species boundaries between these taxa have been controversial. Using multi-locus molecular and morphological datasets, we investigate diversification patterns of the M. afer-sundevallii Species Complex across the arid corridor. Although analyses of genetic data reveals some genetic structure among geographic populations, results of phylogenetic and morphological analyses provide little support for two distinct evolutionary lineages, suggesting that populations previously referred to as M. afer and M. sundevallii represent a single species, Mochlus sundevallii. Genetic diversity is unequally distributed across the arid corridor, with observed patterns consistent with aridification-facilitated diversification southward across southern Africa. Additional geographic and population-level sampling is necessary before more conclusive inferences can be drawn about the role historical climate transitions have played in skink diversification patterns across southern Africa. Copyright © 2018 Elsevier Inc. All rights reserved.
Carmi, Shai; Hui, Ken Y.; Kochav, Ethan; Liu, Xinmin; Xue, James; Grady, Fillan; Guha, Saurav; Upadhyay, Kinnari; Ben-Avraham, Dan; Mukherjee, Semanti; Bowen, B. Monica; Thomas, Tinu; Vijai, Joseph; Cruts, Marc; Froyen, Guy; Lambrechts, Diether; Plaisance, Stéphane; Van Broeckhoven, Christine; Van Damme, Philip; Van Marck, Herwig; Barzilai, Nir; Darvasi, Ariel; Offit, Kenneth; Bressman, Susan; Ozelius, Laurie J.; Peter, Inga; Cho, Judy H.; Ostrer, Harry; Atzmon, Gil; Clark, Lorraine N.; Lencz, Todd; Pe’er, Itsik
2014-01-01
The Ashkenazi Jewish (AJ) population is a genetic isolate close to European and Middle Eastern groups, with genetic diversity patterns conducive to disease mapping. Here we report high-depth sequencing of 128 complete genomes of AJ controls. Compared with European samples, our AJ panel has 47% more novel variants per genome and is eightfold more effective at filtering benign variants out of AJ clinical genomes. Our panel improves imputation accuracy for AJ SNP arrays by 28%, and covers at least one haplotype in ≈67% of any AJ genome with long, identical-by-descent segments. Reconstruction of recent AJ history from such segments confirms a recent bottleneck of merely ≈350 individuals. Modelling of ancient histories for AJ and European populations using their joint allele frequency spectrum determines AJ to be an even admixture of European and likely Middle Eastern origins. We date the split between the two ancestral populations to ≈12–25 Kyr, suggesting a predominantly Near Eastern source for the repopulation of Europe after the Last Glacial Maximum. PMID:25203624
DNA mutations of the cat: the good, the bad and the ugly.
Lyons, Leslie A
2015-03-01
The health of the cat is a complex interaction between its environment (nurture) and its genetics (nature). Over 70 genetic mutations (variants) have been defined in the cat, many involving diseases, structural abnormalities and clinically relevant health concerns. As more of the cat's genome is deciphered, less commonly will the term 'idiopathic' be used regarding the diagnosis of diseases and unique health conditions. State-of-the-art health care will include DNA profiling of the individual cat, and perhaps its tumor, to establish the best treatment approaches. Genetic testing and eventually whole genome sequencing should become routine diagnostics for feline health care. Cat breeds have disseminated around the world. Thus, practitioners should be aware of the breeds common to their region and the mutations found in those regional populations. Specific random-bred populations can also have defined genetic characteristics and mutations. This review of 'the good, the bad and the ugly' DNA variants provides the current state of knowledge for genetic testing and genetic health management for cats. It is aimed at feline and general practitioners wanting to update and review the basics of genetics, what tests are available for cats and sources for genetic testing. The tables are intended to be used as references in the clinic. Practitioners with a high proportion of cat breeder clientele will especially benefit from the review. The data presented is extracted from peer-reviewed publications pertaining to mutation identification, and relevant articles concerning the heritable trait and/or disease. The author also draws upon personal experience and expertise in feline genetics. © ISFM and AAFP 2015.
Mayer, René E; Reischer, Georg H; Ixenmaier, Simone K; Derx, Julia; Blaschke, Alfred Paul; Ebdon, James E; Linke, Rita; Egle, Lukas; Ahmed, Warish; Blanch, Anicet R; Byamukama, Denis; Savill, Marion; Mushi, Douglas; Cristóbal, Héctor A; Edge, Thomas A; Schade, Margit A; Aslan, Asli; Brooks, Yolanda M; Sommer, Regina; Masago, Yoshifumi; Sato, Maria I; Taylor, Huw D; Rose, Joan B; Wuertz, Stefan; Shanks, Orin C; Piringer, Harald; Mach, Robert L; Savio, Domenico; Zessner, Matthias; Farnleitner, Andreas H
2018-05-01
Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log 10 7.2-8.0 marker equivalents (ME) 100 mL -1 ) and biologically treated wastewater samples (median log 10 4.6-6.0 ME 100 mL -1 ) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.
Reference genotype and exome data from an Australian Aboriginal population for health-based research
Tang, Dave; Anderson, Denise; Francis, Richard W.; Syn, Genevieve; Jamieson, Sarra E.; Lassmann, Timo; Blackwell, Jenefer M.
2016-01-01
Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians. PMID:27070114
Tang, Dave; Anderson, Denise; Francis, Richard W; Syn, Genevieve; Jamieson, Sarra E; Lassmann, Timo; Blackwell, Jenefer M
2016-04-12
Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians.
den Toom, Marjolein L; Meiling, Agnes E; Thomas, Rachel E; Leegwater, Peter A J; Heuven, Henri C M
2016-06-13
Patent ductus arteriosus (PDA) is one of the most common congenital heart defects in dogs and is considered to be a complex, polygenic threshold trait for which a female sex predisposition has been described. Histological studies in dogs suggest that smooth muscle hypoplasia and asymmetry of the ductus tissue is the major cause of PDA. The Stabyhoun population is small and a predisposition for PDA has been suggested. The aims of this study were to describe the incidence, presentation from a clinical and histopathological perspective, and the population genetics of PDA in the Dutch Stabyhoun population. Forty-six cases were identified between 2000 and 2013. Between 2009 and 2012 the birth incidence of PDA in the Stabyhoun breed was 1.05 %. We estimated this to be 7-13 times higher than expected in the general dog population. Twelve of the 46 cases were part of a litter in which more than one sibling was affected. There was no sex predilection in our case cohort. Dogs diagnosed in adulthood showed severe cardiomegaly. The mean inbreeding coefficient of the reference population of Stabyhoun dogs was 31.4 % and the actual and effective numbers of founders were 14 and 6.5, respectively. The heritability of PDA was 0.51 (±0.09) for the reference population and 0.41 (±0.10) for the phenotyped population. Histopathology of sections of the PDA from two dogs showed findings similar to those described in other breeds although the smooth muscle of the ductus adjacent to the pulmonary artery appeared more hypoplastic than that in the ductus adjacent to the aorta. The Stabyhoun breed shows a strong predisposition for PDA. Apart from the absence of a higher incidence in females, no other significant features distinguish PDA in Stabyhouns from the condition in other dog breeds. Heritability and the mean inbreeding coefficient are both very high making the Dutch Stabyhoun breed particularly suited to the study of inherited risk factors for PDA.
Genomic analyses of the CAM plant pineapple.
Zhang, Jisen; Liu, Juan; Ming, Ray
2014-07-01
The innovation of crassulacean acid metabolism (CAM) photosynthesis in arid and/or low CO2 conditions is a remarkable case of adaptation in flowering plants. As the most important crop that utilizes CAM photosynthesis, the genetic and genomic resources of pineapple have been developed over many years. Genetic diversity studies using various types of DNA markers led to the reclassification of the two genera Ananas and Pseudananas and nine species into one genus Ananas and two species, A. comosus and A. macrodontes with five botanical varieties in A. comosus. Five genetic maps have been constructed using F1 or F2 populations, and high-density genetic maps generated by genotype sequencing are essential resources for sequencing and assembling the pineapple genome and for marker-assisted selection. There are abundant expression sequence tag resources but limited genomic sequences in pineapple. Genes involved in the CAM pathway has been analysed in several CAM plants but only a few of them are from pineapple. A reference genome of pineapple is being generated and will accelerate genetic and genomic research in this major CAM crop. This reference genome of pineapple provides the foundation for studying the origin and regulatory mechanism of CAM photosynthesis, and the opportunity to evaluate the classification of Ananas species and botanical cultivars. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kalubi, K N; Mehes-Smith, M; Narendrula, R; Michael, P; Omri, A
2015-04-01
Red maple (Acer rubrum) species is one of the most widespread deciduous (hardwood) trees of eastern North America. It is among the dominant tree species in the Northern Ontario after land reclamation. To date, the effects of heavy metal contamination from the mining activities on terrestrial ecosystems are not well understood. The main objectives of the present study are (1) to determine the level of phytoavailable metal in soil and accumulation in A. rubrum, and (2) to compare the levels of genetic variation among and within A. rubrum populations from areas with different metal contents in a Northern Ontario region. The total heavy metal levels were found to be high but the availability of these metals were much lower. We found that red maple does not accumulate heavy metals in their leaves as other hardwood species. The translocation factors were 0.05, 0.21, 0.38, 0.90, and 2.8 for Cu, Ni, Fe, Zn, and Mg, respectively. The levels of genetic variation in red maple populations from reclaimed lands in Northern Ontario were moderate to high since the percentage of polymorphic loci varied between 51 and 67%. The mean values for observed number of alleles (Na), effective number of alleles (Ne), Nei's gene diversity (h), and Shannon's information index (I) were 1.60, 1.24, 0.15 and 0.24, respectively. The population differentiation (GST) among the fragmented populations was high (0.28) despite a high level of gene flow (Nm = 1.28). Nevertheless, all the populations within the targeted region were genetically closely related. A specific ISSR marker that was identified in all the samples from the reference sites was absent in most samples from metal contaminated. This specific band was cloned and sequenced. Overall, the present study confirms that red maple populations in Northern Ontario are genetically sustainable despite the high level of total metal content in soil.
2012-01-01
Background Most modern citrus cultivars have an interspecific origin. As a foundational step towards deciphering the interspecific genome structures, a reference whole genome sequence was produced by the International Citrus Genome Consortium from a haploid derived from Clementine mandarin. The availability of a saturated genetic map of Clementine was identified as an essential prerequisite to assist the whole genome sequence assembly. Clementine is believed to be a ‘Mediterranean’ mandarin × sweet orange hybrid, and sweet orange likely arose from interspecific hybridizations between mandarin and pummelo gene pools. The primary goals of the present study were to establish a Clementine reference map using codominant markers, and to perform comparative mapping of pummelo, sweet orange, and Clementine. Results Five parental genetic maps were established from three segregating populations, which were genotyped with Single Nucleotide Polymorphism (SNP), Simple Sequence Repeats (SSR) and Insertion-Deletion (Indel) markers. An initial medium density reference map (961 markers for 1084.1 cM) of the Clementine was established by combining male and female Clementine segregation data. This Clementine map was compared with two pummelo maps and a sweet orange map. The linear order of markers was highly conserved in the different species. However, significant differences in map size were observed, which suggests a variation in the recombination rates. Skewed segregations were much higher in the male than female Clementine mapping data. The mapping data confirmed that Clementine arose from hybridization between ‘Mediterranean’ mandarin and sweet orange. The results identified nine recombination break points for the sweet orange gamete that contributed to the Clementine genome. Conclusions A reference genetic map of citrus, used to facilitate the chromosome assembly of the first citrus reference genome sequence, was established. The high conservation of marker order observed at the interspecific level should allow reasonable inferences of most citrus genome sequences by mapping next-generation sequencing (NGS) data in the reference genome sequence. The genome of the haploid Clementine used to establish the citrus reference genome sequence appears to have been inherited primarily from the ‘Mediterranean’ mandarin. The high frequency of skewed allelic segregations in the male Clementine data underline the probable extent of deviation from Mendelian segregation for characters controlled by heterozygous loci in male parents. PMID:23126659
De Kort, H; Vandepitte, K; Mergeay, J; Mijnsbrugge, K V; Honnay, O
2015-01-01
The evaluation of the molecular signatures of selection in species lacking an available closely related reference genome remains challenging, yet it may provide valuable fundamental insights into the capacity of populations to respond to environmental cues. We screened 25 native populations of the tree species Frangula alnus subsp. alnus (Rhamnaceae), covering three different geographical scales, for 183 annotated single-nucleotide polymorphisms (SNPs). Standard population genomic outlier screens were combined with individual-based and multivariate landscape genomic approaches to examine the strength of selection relative to neutral processes in shaping genomic variation, and to identify the main environmental agents driving selection. Our results demonstrate a more distinct signature of selection with increasing geographical distance, as indicated by the proportion of SNPs (i) showing exceptional patterns of genetic diversity and differentiation (outliers) and (ii) associated with climate. Both temperature and precipitation have an important role as selective agents in shaping adaptive genomic differentiation in F. alnus subsp. alnus, although their relative importance differed among spatial scales. At the ‘intermediate' and ‘regional' scales, where limited genetic clustering and high population diversity were observed, some indications of natural selection may suggest a major role for gene flow in safeguarding adaptability. High genetic diversity at loci under selection in particular, indicated considerable adaptive potential, which may nevertheless be compromised by the combined effects of climate change and habitat fragmentation. PMID:25944466
Roy, Neha Samir; Park, Kyong-Cheul; Lee, Sung-Il; Im, Min-Ji; Ramekar, Rahul Vasudeo; Kim, Nam-Soo
2018-02-01
Molecular marker technologies have proven to be an important breakthrough for genetic studies, construction of linkage maps and population genetics analysis. Transposable elements (TEs) constitute major fractions of repetitive sequences in plants and offer a wide range of possible areas to be explored as molecular markers. Sequence characterized amplified region (SCAR) marker development provides us with a simple and time saving alternative approach for marker development. We employed the CACTA-TD to develop SCARs and then integrated them into linkage map and used them for population structure and genetic diversity analysis of corn inbred population. A total of 108 dominant SCAR markers were designed out of which, 32 were successfully integrated in to the linkage map of maize RIL population and the remaining were added to a physical map for references to check the distribution throughout all chromosomes. Moreover, 76 polymorphic SCARs were used for diversity analysis of corn accessions being used in Korean corn breeding program. The overall average polymorphic information content (PIC) was 0.34, expected heterozygosity was 0.324 and Shannon's information index was 0.491 with a percentage of polymorphism of 98.67%. Further analysis by associating with desirable traits may also provide some accurate trait specific tagged SCAR markers. TE linked SCARs can provide an added level of polymorphism as well as improved discriminating ability and therefore can be useful in further breeding programs to develop high yielding germplasm.
Genetic ancestry is associated with colorectal adenomas and adenocarcinomas in Latino populations.
Hernandez-Suarez, Gustavo; Sanabria, Maria Carolina; Serrano, Marta; Herran, Oscar F; Perez, Jesus; Plata, Jose L; Zabaleta, Jovanny; Tenesa, Albert
2014-10-01
Colorectal cancer rates in Latin American countries are less than half of those observed in the United States. Latin Americans are the resultant of generations of an admixture of Native American, European, and African individuals. The potential role of genetic admixture in colorectal carcinogenesis has not been examined. We evaluate the association of genetic ancestry with colorectal neoplasms in 190 adenocarcinomas, 113 sporadic adenomas and 243 age- and sex-matched controls enrolled in a multicentric case-control study in Colombia. Individual ancestral genetic fractions were estimated using the STRUCTURE software, based on allele frequencies and assuming three distinct population origins. We used the Illumina Cancer Panel to genotype 1,421 sparse single-nucleotide polymorphisms (SNPs), and Northern and Western European ancestry, LWJ and Han Chinese in Beijing, China populations from the HapMap project as references. A total of 678 autosomal SNPs overlapped with the HapMap data set SNPs and were used for ancestry estimations. African mean ancestry fraction was higher in adenomas (0.13, 95% confidence interval (95% CI)=0.11-0.15) and cancer cases (0.14, 95% CI=0.12-0.16) compared with controls (0.11, 95% CI=0.10-0.12). Conditional logistic regression analysis, controlling for known risk factors, showed a positive association of African ancestry per 10% increase with both colorectal adenoma (odds ratio (OR)=1.12, 95% CI=0.97-1.30) and adenocarcinoma (OR=1.19, 95% CI=1.05-1.35). In conclusion, increased African ancestry (or variants linked to it) contributes to the increased susceptibility of colorectal cancer in admixed Latin American population.
Lin, Zibei; Cogan, Noel O I; Pembleton, Luke W; Spangenberg, German C; Forster, John W; Hayes, Ben J; Daetwyler, Hans D
2016-03-01
Genomic selection (GS) provides an attractive option for accelerating genetic gain in perennial ryegrass () improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time). Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD) in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot). Genomic estimated breeding values (GEBVs) for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively). Higher accuracy of GEBVs was obtained for flowering time (up to 0.7), partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy. Copyright © 2016 Crop Science Society of America.
Lipschutz-Powell, Debby; Woolliams, John A.; Bijma, Piter; Doeschl-Wilson, Andrea B.
2012-01-01
Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce disease prevalence. PMID:22768088
Fine-scale human genetic structure in Western France.
Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael Gb; Dina, Christian
2015-06-01
The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses.
The efficiency of close inbreeding to reduce genetic adaptation to captivity
Theodorou, K; Couvet, D
2015-01-01
Although ex situ conservation is indispensable for thousands of species, captive breeding is associated with negative genetic changes: loss of genetic variance and genetic adaptation to captivity that is deleterious in the wild. We used quantitative genetic individual-based simulations to model the effect of genetic management on the evolution of a quantitative trait and the associated fitness of wild-born individuals that are brought to captivity. We also examined the feasibility of the breeding strategies under a scenario of a large number of loci subject to deleterious mutations. We compared two breeding strategies: repeated half-sib mating and a method of minimizing mean coancestry (referred to as gc/mc). Our major finding was that half-sib mating is more effective in reducing genetic adaptation to captivity than the gc/mc method. Moreover, half-sib mating retains larger allelic and adaptive genetic variance. Relative to initial standing variation, the additive variance of the quantitative trait increased under half-sib mating during the sojourn in captivity. Although fragmentation into smaller populations improves the efficiency of the gc/mc method, half-sib mating still performs better in the scenarios tested. Half-sib mating shows two caveats that could mitigate its beneficial effects: low heterozygosity and high risk of extinction when populations are of low fecundity and size and one of the following conditions are met: (i) the strength of selection in captivity is comparable with that in the wild, (ii) deleterious mutations are numerous and only slightly deleterious. Experimental validation of half-sib mating is therefore needed for the advancement of captive breeding programs. PMID:25052417
[Infantile spinal atrophy: our experience in the last 25 years].
Madrid Rodríguez, A; Martínez Martínez, P L; Ramos Fernández, J M; Urda Cardona, A; Martínez Antón, J
2015-03-01
To determine the incidence of spinal muscular atrophy (SMA) in our study population and genetic distribution and epidemiological and clinical characteristics and to analyze the level of care and development. Retrospective descriptive study of patients treated in our hospital in the past 25 years (from 1987 to early 2013), with a clinical and neurophysiological diagnosis of SMA. A total of 37 patients were found, representing an incidence for our reference population and year of 1 case per 10,000 live births. Males predominated (male/female ratio: 1.6/1). The type of SMA diagnosed more frequently was, type i (26 cases), followed by type ii (9 cases), one case with SMA type iii, and one case of spinal muscular atrophy with respiratory distress type 1 (SMARD1). The most frequent genetic alteration was homozygous deletion of exons 7 and 8 of SMN1 gene in 31 cases, while five patients had atypical genetics. The median survival for type i was 8.0 months and 15.8 years for type ii. The incidence in our population remains stable at around 1/10.000. Most cases presented with, predominantly male, typical genetics. In approximately 1/10 patients the genetic alteration was different from the classical one to the SMN gene. The prevalence of AME unrelated SMN gene was 1/37. The level of care has increased in line with social and welfare demands in recent years. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.
Mekonnen, Zewdie; Amuamuta, Asmare; Mulu, Wondemagegn; Yimer, Mulat; Zenebe, Yohannes; Adem, Yesuf; Abera, Bayeh; Gebeyehu, Wondemu; Gebregziabher, Yakob
2017-01-01
Reference interval is crucial for disease screening, diagnosis, monitoring, progression and treatment efficacy. Due to lack of locally derived reference values for the parameters, clinicians use reference intervals derived from western population. But, studies conducted in different African countries have indicated differences between locally and western derived reference values. Different studies also indicated considerable variation in clinical chemistry reference intervals by several variables such as age, sex, geographical location, environment, lifestyle and genetic variation. This study aimed to determine the reference intervals of common clinical chemistry parameters of the community of Gojjam Zones, Northwest Ethiopia. Population based cross-sectional study was conducted from November 2015 to December 2016 in healthy adult populations of Gojjam zone. Data such as, medical history, physical examination and socio-demographic data were collected. In addition, laboratory investigations were undertaken to screen the population. Clinical chemistry parameters were measured using Mindray BS 200 clinical chemistry autoanalyzer as per the manufacturer's instructions. Descriptive statistics was used to calculate mean, median and 95th percentiles. Independent sample T-test and one way ANOVA were used to see association between variables. After careful screening of a total of 799 apparently healthy adults who were consented for this study, complete data from 446 (224 females and 222 males) were included for the analysis. The mean age of both the study participants was 28.8 years. Males had high (P<0.05) mean and 2.5th-97.5th percentile ranges of ALT, AST, ALP, creatinine and direct bilirubin. The reference intervals of amylase, LDH, total protein and total bilirubin were not significantly different between the two sex groups (P>0.05). Mean, median, 95% percentile values of AST, ALP, amylase, LDH, creatinine, total protein, total bilirubin, and direct bilirubin across all age groups of participants were similar (P>0.05). But, there was a significant difference in the value of ALT (P<0.05). The reference intervals of ALT, total protein and creatinine were significantly (P<0.05) high in people having monthly income >1500 ETB compared to those with low monthly income. Significant (P<0.05) higher values of the ALT, ALP and total protein were observed in people living in high land compared to low land residences. The study showed that some of the common clinical chemistry parameters reference intervals of healthy adults in Gojjam zones were higher than the reference intervals generated from developed countries. Therefore, strict adherence to the reference values generated in developed countries could lead to inappropriate diagnosis and treatment of patients. There was also variation of reference interval values based on climate, gender, age, monthly income and geographical locations. Therefore, further study is required to establish reference intervals for Ethiopian population.
Recombination rate variation in mice from an isolated island.
Wang, Richard J; Gray, Melissa M; Parmenter, Michelle D; Broman, Karl W; Payseur, Bret A
2017-01-01
Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including subchromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genomewide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbour a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales. © 2016 John Wiley & Sons Ltd.
Recombination rate variation in mice from an isolated island
Wang, Richard J.; Gray, Melissa M.; Parmenter, Michelle D.; Broman, Karl W.; Payseur, Bret A.
2016-01-01
Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1,212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including sub-chromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genome-wide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbor a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales. PMID:27864900
Multi-InDel Analysis for Ancestry Inference of Sub-Populations in China
Sun, Kuan; Ye, Yi; Luo, Tao; Hou, Yiping
2016-01-01
Ancestry inference is of great interest in diverse areas of scientific researches, including the forensic biology, medical genetics and anthropology. Various methods have been published for distinguishing populations. However, few reports refer to sub-populations (like ethnic groups) within Asian populations for the limitation of markers. Several InDel loci located very tightly in physical positions were treated as one marker by us, which is multi-InDel. The multi-InDel shows potential as Ancestry Inference Marker (AIM). In this study, we performed a genome-wide scan for multi-InDels as AIM. After examining the FST distributions in the 1000 Genomes Database, 12 candidates were selected and validated for eastern Asian populations. A multiplexed assay was developed as a panel to genotype 12 multi-InDel markers simultaneously. Ancestry component analysis with STRUCTURE and principal component analysis (PCA) were employed to estimate its capability for ancestry inference. Furthermore, ancestry assignments of trial individuals were conducted. It proved to be very effective when 210 samples from Han and Tibetan individuals in China were tested. The panel consisting of multi-InDel markers exhibited considerable potency in ancestry inference, and was suggested to be applied in forensic practices and genetic population studies. PMID:28004788
Zhang, Honghua; Xia, Mingying; Qi, Lijie; Dong, Lei; Song, Shuang; Ma, Teng; Yang, Shuping; Jin, Li; Li, Liming; Li, Shilin
2016-05-01
Estimating the allele frequencies and forensic statistical parameters of commonly used short tandem repeat (STR) loci of the Uyghur population, which is the fifth largest group in China, provides a more precise reference database for forensic investigation. The 6-dye GlobalFiler™ Express PCR Amplification kit incorporates 21 autosomal STRs, which have been proven that could provide reliable DNA typing results and enhance the power of discrimination. Here we analyzed the GlobalFiler STR loci on 1962 unrelated individuals from Chinese Uyghur population of Xinjiang, China. No significant deviations from Hardy-Weinberg equilibrium and linkage disequilibrium were detected within and between the GlobalFiler STR loci. SE33 showed the greatest power of discrimination in Uyghur population, whereas TPOX showed the lowest. The combined power of discrimination was 99.999999999999999999999998746%. No significant difference was observed between Uyghur and the other two Uyghur populations at all tested STRs, as well as Dai and Mongolian. Significant differences were only observed between Uyghur and other Chinese populations at TH01, as well as Central-South Asian at D13S317, East Asian at TH01 and VWA. The phylogenetic analysis showed that Uyghur is genetically close to Chinese populations, as well as East Asian and Central-South Asian. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Buján, Noemí; Balboa, Sabela; L Romalde, Jesús; E Toranzo, Alicia; Magariños, Beatriz
2018-05-08
At present, the genus Edwardsiella compiles five species: E. tarda, E. hoshinae, E. ictaluri, E. piscicida and E. anguillarum. Some species of this genus such us E. ictaluri and E. piscicida are important pathogens of numerous fish species. With the description of the two latter species, the phylogeny of Edwardsiella became more complicated. With the aim to clarify the relationships among all species in the genus, a multilocus sequence typing (MLST) approach was developed and applied to characterize 56 isolates and 6 reference strains belonging to the five Edwardsiella species. Moreover, several analyses based on the MLST scheme were performed to investigate the evolution within the genus, as well as the influence of recombination and mutation in the speciation. Edwardsiella isolates presented a high genetic variability reflected in the fourteen sequence types (ST) represented by a single isolates out of eighteen total ST. Mutation events were considerably more frequent than recombination, although both approximately equal influenced the genetic diversification. However, the speciation among species occurred mostly by recombination. Edwardsiella genus displays a non-clonal population structure with some degree of geographical isolation followed by a population expansion of E. piscicida. A database from this study was created and hosted on pubmlst.org (http://pubmlst.org/edwardsiella/). Copyright © 2018 Elsevier Inc. All rights reserved.
Changing Patterns of Fungal Toxins in Crops: Challenges for Analysts.
Miller, J David
2016-07-01
This short review discusses the need to manage climate-driven expansion of old toxins in new geographic areas (e.g., aflatoxin or fumonisin in corn in historically cooler areas, and ergot where rainfall and cropping patterns have changed). In addition, a renewed consideration of the toxins that can occur in feed sources used in cool-season dairy areas is needed (e.g., silage and distillers dry grains with solubles). A separate issue concerns genetic changes that are occurring in the species that cause Fusarium head blight/Gibberella ear rot. Small differences in climate appear to determine the distribution of the two dominant populations (native to the new world and from Asia). The chemotype that produces deoxynivalenol via the monoacetate at the 3 position results in the accumulation of somewhat more deoxynivalenol than the native population, which involves the monoacetate at the 15 position. There are also genetic changes occurring that have resulted in populations that produce different metabolites. Similarly, an increase in the area where Aspergillus flavus can thrive and the discovery of the sexual stage of this fungus have raised the potential of genetic change accelerated by climate. To address all these issues, new methods and increased availability of reference standards, as well as training and awareness, will be required.
Can multi-subpopulation reference sets improve the genomic predictive ability for pigs?
Fangmann, A; Bergfelder-Drüing, S; Tholen, E; Simianer, H; Erbe, M
2015-12-01
In most countries and for most livestock species, genomic evaluations are obtained from within-breed analyses. To achieve reliable breeding values, however, a sufficient reference sample size is essential. To increase this size, the use of multibreed reference populations for small populations is considered a suitable option in other species. Over decades, the separate breeding work of different pig breeding organizations in Germany has led to stratified subpopulations in the breed German Large White. Due to this fact and the limited number of Large White animals available in each organization, there was a pressing need for ascertaining if multi-subpopulation genomic prediction is superior compared with within-subpopulation prediction in pigs. Direct genomic breeding values were estimated with genomic BLUP for the trait "number of piglets born alive" using genotype data (Illumina Porcine 60K SNP BeadChip) from 2,053 German Large White animals from five different commercial pig breeding companies. To assess the prediction accuracy of within- and multi-subpopulation reference sets, a random 5-fold cross-validation with 20 replications was performed. The five subpopulations considered were only slightly differentiated from each other. However, the prediction accuracy of the multi-subpopulations approach was not better than that of the within-subpopulation evaluation, for which the predictive ability was already high. Reference sets composed of closely related multi-subpopulation sets performed better than sets of distantly related subpopulations but not better than the within-subpopulation approach. Despite the low differentiation of the five subpopulations, the genetic connectedness between these different subpopulations seems to be too small to improve the prediction accuracy by applying multi-subpopulation reference sets. Consequently, resources should be used for enlarging the reference population within subpopulation, for example, by adding genotyped females.
Rukambile, Elpidius; Machuka, Eunice; Njahira, Moses; Kyalo, Martina; Skilton, Robert; Mwega, Elisa; Chota, Andrew; Mathias, Mkama; Sallu, Raphael; Salih, Diaeldin
2016-07-15
A population genetic study of Theileria parva was conducted on 103 cattle and 30 buffalo isolates from Kibaha, Lushoto, Njombe Districts and selected National parks in Tanzania. Bovine blood samples were collected from these study areas and categorized into 5 populations; Buffalo, Cattle which graze close to buffalo, Kibaha, Lushoto and Njombe. Samples were tested by nested PCR for T. parva DNA and positives were compared for genetic diversity to the T. parva Muguga vaccine reference strain, using 3micro and 11 minisatellite markers selected from all 4 chromosomes of the parasite genome. The diversity across populations was determined by the mean number of different alleles, mean number of effective alleles, mean number of private allele and expected heterozygosity. The mean number of allele unique to populations for Cattle close to buffalo, Muguga, Njombe, Kibaha, Lushoto and Buffalo populations were 0.18, 0.24, 0.63, 0.71, 1.63 and 3.37, respectively. The mean number of different alleles ranged from 6.97 (Buffalo) to 0.07 (Muguga). Mean number of effective alleles ranged from 4.49 (Buffalo) to 0.29 (Muguga). The mean expected heterozygosity were 0.07 0.29, 0.45, 0.48, 0.59 and 0.64 for Muguga, cattle close to buffalo, Kibaha, Njombe, Lushoto and Buffalo populations, respectively. The Buffalo and Lushoto isolates possessed a close degree of diversity in terms of mean number of different alleles, effective alleles, private alleles and expected heterozygosity. The study revealed more diversity in buffalo isolates and further studies are recommended to establish if there is sharing of parasites between cattle and buffaloes which may affect the effectiveness of the control methods currently in use. Copyright © 2016 Elsevier B.V. All rights reserved.
Ren, Weizheng; Hu, Liangliang; Guo, Liang; Zhang, Jian; Tang, Lu; Zhang, Entao; Zhang, Jiaen; Luo, Shiming; Tang, Jianjun; Chen, Xin
2018-01-01
We examined how traditional farmers preserve the genetic diversity of a local common carp (Cyprinus carpio), which is locally referred to as “paddy field carp” (PF-carp), in a “globally important agricultural heritage system” (GIAHS), i.e., the 1,200-y-old rice–fish coculture system in Zhejiang Province, China. Our molecular and morphological analysis showed that the PF-carp has changed into a distinct local population with higher genetic diversity and diverse color types. Within this GIAHS region, PF-carps exist as a continuous metapopulation, although three genetic groups could be identified by microsatellite markers. Thousands of small farmer households interdependently obtained fry and parental carps for their own rice–fish production, resulting in a high gene flow and large numbers of parent carps distributing in a mosaic pattern in the region. Landscape genetic analysis indicated that farmers’ connectivity was one of the major factors that shaped this genetic pattern. Population viability analysis further revealed that the numbers of these interconnected small farmer households and their connection intensity affect the carps’ inherent genetic diversity. The practice of mixed culturing of carps with diverse color types helped to preserve a wide range of genetic resources in the paddy field. This widespread traditional practice increases fish yield and resource use, which, in return, encourages famers to continue their practice of selecting and conserving diverse color types of PF-carp. Our results suggested that traditional farmers secure the genetic diversity of PF-carp and its viability over generations in this region through interdependently incubating and mixed-culturing practices within the rice−fish system. PMID:29295926
George, Jan-Peter; Konrad, Heino; Collin, Eric; Thevenet, Jean; Ballian, Dalibor; Idzojtic, Marilena; Kamm, Urs; Zhelev, Peter; Geburek, Thomas
2015-06-01
Sorbus domestica (Rosaceae) is one of the rarest deciduous tree species in Europe and is characterized by a scattered distribution. To date, no large-scale geographic studies on population genetics have been carried out. Therefore, the aims of this study were to infer levels of molecular diversity across the major part of the European distribution of S. domestica and to determine its population differentiation and structure. In addition, spatial genetic structure was examined together with the patterns of historic and recent gene flow between two adjacent populations. Leaf or cambium samples were collected from 17 populations covering major parts of the European native range from north-west France to south-east Bulgaria. Seven nuclear microsatellites and one chloroplast minisatellite were examined and analysed using a variety of methods. Allelic richness was unexpectedly high for both markers within populations (mean per locus: 3·868 for nSSR and 1·647 for chloroplast minisatellite). Moreover, there was no evidence of inbreeding (mean Fis = -0·047). The Italian Peninsula was characterized as a geographic region with comparatively high genetic diversity for both genomes. Overall population differentiation was moderate (FST = 0·138) and it was clear that populations formed three groups in Europe, namely France, Mediterranean/Balkan and Austria. Historic gene flow between two local Austrian populations was high and asymmetric, while recent gene flow seemed to be disrupted. It is concluded that molecular mechanisms such as self-incompatibility and high gene flow distances are responsible for the observed level of allelic richness as well as for population differentiation. However, human influence could have contributed to the present genetic pattern, especially in the Mediterranean region. Comparison of historic and recent gene flow may mirror the progress of habitat fragmentation in eastern Austria. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii).
Bansal, Sheel; Harrington, Constance A; Gould, Peter J; St Clair, J Bradley
2015-02-01
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought-resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space-for-time substitution, common garden experiment with 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as 'cool/moist', 'moderate', or 'warm/dry') to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought-resistance, (ii) the patterns of genetic variation are related to the native source-climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought-resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpiration(min)), water deficit (% below turgid saturation), and specific leaf area (SLA, cm(2) g(-1)) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought-resistance (i.e., lower transpiration(min), water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought-resistance across all test sites. Multiple regression analysis indicated that Douglas-fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Bighiu, Maria Alexandra; Watermann, Burkard; Guo, Xueli; Almroth, Bethanie Carney; Eriksson-Wiklund, Ann-Kristin
2017-09-01
Contaminants are important stressors in the aquatic environment and may exert selective pressures on organisms. We hypothesized that snails originating from a metal-contaminated habitat (B) would have increased tolerance to harbour contaminants (e.g. metals from antifouling paints), compared to snails originating from a relatively clean habitat (A). We assessed tolerance to metals in terms of survival and histopathological alterations after 2, 4 and 8 weeks of in situ exposure in three Baltic Sea boat harbours and three reference sites. We also hypothesized that any potential tolerance to contaminants would be associated with differences in genetic diversity between the two snail populations (evaluated as mitochondrial cytochrome c oxidase subunit I, COI). The results show that snails from population A survived to a higher extent compared to population B, possibly indicating either a lack of adaptation to metals in snails B or impaired health condition due to contaminant pre-exposure or a higher resilience of snails A. Moreover, the genetic diversity of COI was low within each population and did not differ between populations. In general, 83% of all the types of histopathological alterations (e.g. lysis and necrosis of gonads and digestive gland or granulocytoma and phagocytosis in the storage tissue, among others) had a higher probability of occurrence among harbour-exposed snails compared to reference-exposed snails, regardless of snail population origin. The only significant difference in histological effects between the two populations was in the frequency of parasite infestations and shell fouling, both being larger for population A than B. Interestingly, the rate of parasite infestations was higher for males than females from population A, whereas no sexual dichotomy was observed for population B. Our results show that exposure to harbour contaminants causes both lethal and sublethal toxicity to snails, and the association between many of the toxic responses and metals substantiates that antifouling substances contribute to the observed effects, although there is a large proportion of variation in our data that remains unexplained. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Reference-based phasing using the Haplotype Reference Consortium panel.
Loh, Po-Ru; Danecek, Petr; Palamara, Pier Francesco; Fuchsberger, Christian; A Reshef, Yakir; K Finucane, Hilary; Schoenherr, Sebastian; Forer, Lukas; McCarthy, Shane; Abecasis, Goncalo R; Durbin, Richard; L Price, Alkes
2016-11-01
Haplotype phasing is a fundamental problem in medical and population genetics. Phasing is generally performed via statistical phasing in a genotyped cohort, an approach that can yield high accuracy in very large cohorts but attains lower accuracy in smaller cohorts. Here we instead explore the paradigm of reference-based phasing. We introduce a new phasing algorithm, Eagle2, that attains high accuracy across a broad range of cohort sizes by efficiently leveraging information from large external reference panels (such as the Haplotype Reference Consortium; HRC) using a new data structure based on the positional Burrows-Wheeler transform. We demonstrate that Eagle2 attains a ∼20× speedup and ∼10% increase in accuracy compared to reference-based phasing using SHAPEIT2. On European-ancestry samples, Eagle2 with the HRC panel achieves >2× the accuracy of 1000 Genomes-based phasing. Eagle2 is open source and freely available for HRC-based phasing via the Sanger Imputation Service and the Michigan Imputation Server.
NASA Astrophysics Data System (ADS)
Simmonds, Sara E.; Chou, Vincent; Cheng, Samantha H.; Rachmawati, Rita; Calumpong, Hilconida P.; Ngurah Mahardika, G.; Barber, Paul H.
2018-06-01
We studied how host-associations and geography shape the genetic structure of sister species of marine snails Coralliophila radula (A. Adams, 1853) and C. violacea (Kiener, 1836). These obligate ectoparasites prey upon corals and are sympatric throughout much of their ranges in coral reefs of the tropical and subtropical Indo-Pacific. We tested for population genetic structure of snails in relation to geography and their host corals using mtDNA (COI) sequences in minimum spanning trees and AMOVAs. We also examined the evolutionary relationships of their Porites host coral species using maximum likelihood trees of RAD-seq (restriction site-associated DNA sequencing) loci mapped to a reference transcriptome. A maximum likelihood tree of host corals revealed three distinct clades. Coralliophila radula showed a pronounced genetic break across the Sunda Shelf ( Φ CT = 0.735) but exhibited no genetic structure with respect to host. C. violacea exhibited significant geographic structure ( Φ CT = 0.427), with divergence among Hawaiian populations, the Coral Triangle and the Indian Ocean. Notably, C. violacea showed evidence of ecological divergence; two lineages were associated with different groups of host coral species, one widespread found at all sites, and the other restricted to the Coral Triangle. Sympatric populations of C. violacea found on different suites of coral species were highly divergent ( Φ CT = 0.561, d = 5.13%), suggesting that symbiotic relationships may contribute to lineage diversification in the Coral Triangle.
Molecular and systems approaches towards drought-tolerant canola crops.
Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M
2016-06-01
1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Zhao, Zhenqing; Gu, Honghui; Sheng, Xiaoguang; Yu, Huifang; Wang, Jiansheng; Huang, Long; Wang, Dan
2016-01-01
Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower. PMID:27047515
2018-01-01
Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750–4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log10 7.2–8.0 marker equivalents (ME) 100 mL–1) and biologically treated wastewater samples (median log10 4.6–6.0 ME 100 mL–1) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe. PMID:29570973
Genome-Wide Association Study of Breast Cancer in the Japanese Population
Low, Siew-Kee; Takahashi, Atsushi; Ashikawa, Kyota; Inazawa, Johji; Miki, Yoshio; Kubo, Michiaki; Nakamura, Yusuke; Katagiri, Toyomasa
2013-01-01
Breast cancer is the most common malignancy among women in worldwide including Japan. Several studies have identified common genetic variants to be associated with the risk of breast cancer. Due to the complex linkage disequilibrium structure and various environmental exposures in different populations, it is essential to identify variants associated with breast cancer in each population, which subsequently facilitate the better understanding of mammary carcinogenesis. In this study, we conducted a genome-wide association study (GWAS) as well as whole-genome imputation with 2,642 cases and 2,099 unaffected female controls. We further examined 13 suggestive loci (P<1.0×10−5) using an independent sample set of 2,885 cases and 3,395 controls and successfully validated two previously-reported loci, rs2981578 (combined P-value of 1.31×10−12, OR = 1.23; 95% CI = 1.16–.30) on chromosome 10q26 (FGFR2), rs3803662 (combined P-value of 2.79×10−11, OR = 1.21; 95% CI = 1.15–.28) and rs12922061 (combined P-value of 3.97×10−10, OR = 1.23; 95% CI = 1.15–.31) on chromosome 16q12 (TOX3-LOC643714). Weighted genetic risk score on the basis of three significantly associated variants and two previously reported breast cancer associated loci in East Asian population revealed that individuals who carry the most risk alleles in category 5 have 2.2 times higher risk of developing breast cancer in the Japanese population than those who carry the least risk alleles in reference category 1. Although we could not identify additional loci associated with breast cancer, our study utilized one of the largest sample sizes reported to date, and provided genetic status that represent the Japanese population. Further local and international collaborative study is essential to identify additional genetic variants that could lead to a better, accurate prediction for breast cancer. PMID:24143190
Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.
2016-01-01
Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major genomic regions harboring each of pod number and seed yield robust QTLs (15–28% phenotypic variation explained) were identified on chromosomes 2, 4, and 6. The integration of genetic and physical maps at these QTLs mapped on chromosomes scaled-down the long major QTL intervals into high-resolution short pod number and seed yield robust QTL physical intervals (0.89–2.94 Mb) which were essentially got validated in multiple genetic backgrounds of two chickpea mapping populations. The genome-wide InDel markers including natural allelic variants and genomic loci/genes delineated at major six especially in one colocalized novel congruent robust pod number and seed yield robust QTLs mapped on a high-density consensus genetic map were found most promising in chickpea. These functionally relevant molecular tags can drive marker-assisted genetic enhancement to develop high-yielding cultivars with increased seed/pod number and yield in chickpea. PMID:27695461
Too Many Referrals of Low-risk Women for BRCA1/2 Genetic Services by Family Physicians
White, Della Brown; Bonham, Vence L.; Jenkins, Jean; Stevens, Nancy; McBride, Colleen M.
2009-01-01
Increasing availability and public awareness of BRCA1/2 genetic testing will increase women’s self-referrals to genetic services. The objective of this study was to examine whether patient characteristics influence family physicians’ (FPs’) referral decisions when a patient requests BRCA1/2 genetic testing. FPs (n = 284) completed a web-based survey in 2006 to assess their attitudes and practices related to using genetics in their clinical practice. Using a 2×2×2 factorial design we tested the effects of a hypothetical patient’s race, level of worry and insurance status on FPs’ decisions to refer her for BRCA1/2 testing. The patient was not appropriate for referral based on USPSTF guidelines. No patient characteristics were associated with FPs’ referral decisions. Although referral was not indicated, only 8% did not refer to genetic services, 92% referred for genetic services, and 50% referred to genetic counseling. FPs regarded it unlikely that the patient carried a mutation. However, 65% of FPs believed if they refused to refer for genetic services it would harm their relationship with the patient. Despite scarce and costly genetic services FPs were likely to inappropriately refer a low-risk patient who requested BRCA1/2 testing. The implications of this inappropriate referral on women’s screening behavior, genetic services, and health care costs are unknown. Clinicians and patients could benefit from education about appropriate use of genetic services so that both are more comfortable with a decision against referral. PMID:18990739
Cattaneo, Zaira; Daini, Roberta; Malaspina, Manuela; Manai, Federico; Lillo, Mariarita; Fermi, Valentina; Schiavi, Susanna; Suchan, Boris; Comincini, Sergio
2016-12-17
Face-recognition deficits, referred to with the term prosopagnosia (i.e., face blindness), may manifest during development in the absence of any brain injury (from here the term congenital prosopagnosia, CP). It has been estimated that approximately 2.5% of the population is affected by face-processing deficits not depending on brain lesions, and varying a lot in severity. The genetic bases of this disorder are not known. In this study we tested for genetic association between single-nucleotide polymorphisms (SNPs) in the oxytocin receptor gene (OXTR) and CP in a restricted cohort of Italian participants. We found evidence of an association between the common genetic variants rs53576 and rs2254298 OXTR SNPs and prosopagnosia. This association was also found when including an additional group of German individuals classified as prosopagnosic in the analysis. Our preliminary data provide initial support for the involvement of genetic variants of OXTR in a relevant cognitive impairment, whose genetic bases are still largely unexplored. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Muchero, Wellington; Diop, Ndeye N; Bhat, Prasanna R; Fenton, Raymond D; Wanamaker, Steve; Pottorff, Marti; Hearne, Sarah; Cisse, Ndiaga; Fatokun, Christian; Ehlers, Jeffrey D; Roberts, Philip A; Close, Timothy J
2009-10-27
Consensus genetic linkage maps provide a genomic framework for quantitative trait loci identification, map-based cloning, assessment of genetic diversity, association mapping, and applied breeding in marker-assisted selection schemes. Among "orphan crops" with limited genomic resources such as cowpea [Vigna unguiculata (L.) Walp.] (2n = 2x = 22), the use of transcript-derived SNPs in genetic maps provides opportunities for automated genotyping and estimation of genome structure based on synteny analysis. Here, we report the development and validation of a high-throughput EST-derived SNP assay for cowpea, its application in consensus map building, and determination of synteny to reference genomes. SNP mining from 183,118 ESTs sequenced from 17 cDNA libraries yielded approximately 10,000 high-confidence SNPs from which an Illumina 1,536-SNP GoldenGate genotyping array was developed and applied to 741 recombinant inbred lines from six mapping populations. Approximately 90% of the SNPs were technically successful, providing 1,375 dependable markers. Of these, 928 were incorporated into a consensus genetic map spanning 680 cM with 11 linkage groups and an average marker distance of 0.73 cM. Comparison of this cowpea genetic map to reference legumes, soybean (Glycine max) and Medicago truncatula, revealed extensive macrosynteny encompassing 85 and 82%, respectively, of the cowpea map. Regions of soybean genome duplication were evident relative to the simpler diploid cowpea. Comparison with Arabidopsis revealed extensive genomic rearrangement with some conserved microsynteny. These results support evolutionary closeness between cowpea and soybean and identify regions for synteny-based functional genomics studies in legumes.
Bellcross, Cecelia A; Leadbetter, Steven; Alford, Sharon Hensley; Peipins, Lucy A
2013-04-01
In 2005, the United States Preventive Services Task Force (USPSTF) released guidelines which outlined specific family history patterns associated with an increased risk for BRCA1/2 mutations, and recommended at-risk individuals be referred for genetic counseling and evaluation for BRCA testing. The purpose of this study was to assess the prevalence of individuals with a USPSTF increased-risk family history pattern, the frequency with which specific patterns were met, and resulting healthcare actions among women from the Henry Ford Health System. As part of a study evaluating ovarian cancer risk perception and screening, 2,524 randomly selected participants completed a detailed interview (response rate 76%) from an initial eligible cohort of 16,720 women. Approximately 6% of participants had a family history fulfilling one or more of the USPSTF patterns. Although 90% of these women had shared their family history with their provider, less than 20% had been referred for genetic counseling and only 8% had undergone genetic testing. Caucasian women with higher income and education levels were more likely to receive referrals. Among the 95 participants in the total study cohort who reported BRCA testing, 78% did not have a family history that met one of the USPSTF patterns. These results suggest a higher prevalence of women with an increased-risk family history than originally predicted by the USPSTF, and lack of provider recognition and referral for genetic services. Improvements in healthcare infrastructure and clinician education will be required to realize population level benefits from BRCA genetic counseling and testing.
Allee effect: the story behind the stabilization or extinction of microbial ecosystem.
Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun
2017-03-01
A population exhibiting Allee effect shows a positive correlation between population fitness and population size or density. Allee effect decides the extinction or conservation of a microbial population and thus appears to be an important criterion in population ecology. The underlying factor of Allee effect that decides the stabilization and extinction of a particular population density is the threshold or the critical density of their abundance. According to Allee, microbial populations exhibit a definite, critical or threshold density, beyond which the population fitness of a particular population increases with the rise in population density and below it, the population fitness goes down with the decrease in population density. In particular, microbial population displays advantageous traits such as biofilm formation, expression of virulence genes, spore formation and many more only at a high population density. It has also been observed that microorganisms exhibiting a lower population density undergo complete extinction from the residual microbial ecosystem. In reference to Allee effect, decrease in population density or size introduces deleterious mutations among the population density through genetic drift. Mutations are carried forward to successive generations resulting in its accumulation among the population density thus reducing its microbial fitness and thereby increasing the risk of extinction of a particular microbial population. However, when the microbial load is high, the chance of genetic drift is less, and through the process of biofilm formation, the cooperation existing among the microbial population increases that increases the microbial fitness. Thus, the high microbial population through the formation of microbial biofilm stabilizes the ecosystem by increasing fitness. Taken together, microbial fitness shows positive correlation with the ecosystem conservation and negative correlation with ecosystem extinction.
Genetics Home Reference: ornithine translocase deficiency
... Diagnosis of Japanese patients with HHH syndrome by molecular genetic analysis: a common mutation, R179X. J Hum Genet. ... M, Fariello G, Dionisi-Vici C. Clinical and molecular findings in hyperornithinemia-hyperammonemia-homocitrullinuria ... Bulletins Genetics Home Reference Celebrates Its ...
2012-01-01
Background Cultivated peanut or groundnut (Arachis hypogaea L.) is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20), which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. Results A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat) markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons) derived from 70,771 long-read (Sanger) and 270,957 short-read (454) sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639) and GKBSPSc 30081 (PI 468327) in the B-genome species A. batizocoi. A high degree of macrosynteny was observed when comparing the homoeologous linkage groups between A (A. duranensis) and B (A. batizocoi) genomes. Comparison of the A- and B-genome genetic linkage maps also showed a total of five inversions and one major reciprocal translocation between two pairs of chromosomes under our current mapping resolution. Conclusions Our findings will contribute to understanding tetraploid peanut genome origin and evolution and eventually promote its genetic improvement. The newly developed EST-SSR markers will enrich current molecular marker resources in peanut. PMID:23140574
Balaguer, Luís; Arroyo-García, Rosa; Jiménez, Percy; Jiménez, María Dolores; Villegas, Luís; Cordero, Irene; Rubio de Casas, Rafael; Fernández-Delgado, Raúl; Ron, María Eugenia; Manrique, Esteban; Vargas, Pablo; Cano, Emilio; Pueyo, José J.; Aronson, James
2011-01-01
Background In the Peruvian Coastal Desert, an archipelago of fog oases, locally called lomas, are centers of biodiversity and of past human activity. Fog interception by a tree canopy, dominated by the legume tree tara (Caesalpinia spinosa), enables the occurrence in the Atiquipa lomas (southern Peru) of an environmental island with a diverse flora and high productivity. Although this forest provides essential services to the local population, it has suffered 90% anthropogenic reduction in area. Restoration efforts are now getting under way, including discussion as to the most appropriate reference ecosystem to use. Methodology/Principal Findings Genetic diversity of tara was studied in the Atiquipa population and over a wide geographical and ecological range. Neither exclusive plastid haplotypes to loma formations nor clear geographical structuring of the genetic diversity was found. Photosynthetic performance and growth of seedlings naturally recruited in remnant patches of loma forest were compared with those of seedlings recruited or planted in the adjacent deforested area. Despite the greater water and nitrogen availability under tree canopy, growth of forest seedlings did not differ from that of those recruited into the deforested area, and was lower than that of planted seedlings. Tara seedlings exhibited tight stomatal control of photosynthesis, and a structural photoprotection by leaflet closure. These drought-avoiding mechanisms did not optimize seedling performance under the conditions produced by forest interception of fog moisture. Conclusions/Significance Both weak geographic partitioning of genetic variation and lack of physiological specialization of seedlings to the forest water regime strongly suggest that tara was introduced to lomas by humans. Therefore, the most diverse fragment of lomas is the result of landscape management and resource use by pre-Columbian cultures. We argue that an appropriate reference ecosystem for ecological restoration of lomas should include sustainable agroforestry practices that emulate the outcomes of ancient uses. PMID:21829680
Genetic diversity, breed composition and admixture of Kenyan domestic pigs.
Mujibi, Fidalis Denis; Okoth, Edward; Cheruiyot, Evans K; Onzere, Cynthia; Bishop, Richard P; Fèvre, Eric M; Thomas, Lian; Masembe, Charles; Plastow, Graham; Rothschild, Max
2018-01-01
The genetic diversity of African pigs, whether domestic or wild has not been widely studied and there is very limited published information available. Available data suggests that African domestic pigs originate from different domestication centers as opposed to international commercial breeds. We evaluated two domestic pig populations in Western Kenya, in order to characterize the genetic diversity, breed composition and admixture of the pigs in an area known to be endemic for African swine fever (ASF). One of the reasons for characterizing these specific populations is the fact that a proportion of indigenous pigs have tested ASF virus (ASFv) positive but do not present with clinical symptoms of disease indicating some form of tolerance to infection. Pigs were genotyped using either the porcine SNP60 or SNP80 chip. Village pigs were sourced from Busia and Homabay counties in Kenya. Because bush pigs (Potamochoerus larvatus) and warthogs (Phacochoerus spp.) are known to be tolerant to ASFv infection (exhibiting no clinical symptoms despite infection), they were included in the study to assess whether domestic pigs have similar genomic signatures. Additionally, samples representing European wild boar and international commercial breeds were included as references, given their potential contribution to the genetic make-up of the target domestic populations. The data indicate that village pigs in Busia are a non-homogenous admixed population with significant introgression of genes from international commercial breeds. Pigs from Homabay by contrast, represent a homogenous population with a "local indigenous' composition that is distinct from the international breeds, and clusters more closely with the European wild boar than African wild pigs. Interestingly, village pigs from Busia that tested negative by PCR for ASFv genotype IX, had significantly higher local ancestry (>54%) compared to those testing positive, which contained more commercial breed gene introgression. This may have implication for breed selection and utilization in ASF endemic areas. A genome wide scan detected several regions under preferential selection with signatures for pigs from Busia and Homabay being very distinct. Additionally, there was no similarity in specific genes under selection between the wild pigs and domestic pigs despite having some broad areas under similar selection signatures. These results provide a basis to explore possible genetic determinants underlying tolerance to infection by ASFv genotypes and suggests multiple pathways for genetically mediated ASFv tolerance given the diversity of selection signatures observed among the populations studied.
Taranto, F; D'Agostino, N; Greco, B; Cardi, T; Tripodi, P
2016-11-21
Knowledge on population structure and genetic diversity in vegetable crops is essential for association mapping studies and genomic selection. Genotyping by sequencing (GBS) represents an innovative method for large scale SNP detection and genotyping of genetic resources. Herein we used the GBS approach for the genome-wide identification of SNPs in a collection of Capsicum spp. accessions and for the assessment of the level of genetic diversity in a subset of 222 cultivated pepper (Capsicum annum) genotypes. GBS analysis generated a total of 7,568,894 master tags, of which 43.4% uniquely aligned to the reference genome CM334. A total of 108,591 SNP markers were identified, of which 105,184 were in C. annuum accessions. In order to explore the genetic diversity of C. annuum and to select a minimal core set representing most of the total genetic variation with minimum redundancy, a subset of 222 C. annuum accessions were analysed using 32,950 high quality SNPs. Based on Bayesian and Hierarchical clustering it was possible to divide the collection into three clusters. Cluster I had the majority of varieties and landraces mainly from Southern and Northern Italy, and from Eastern Europe, whereas clusters II and III comprised accessions of different geographical origins. Considering the genome-wide genetic variation among the accessions included in cluster I, a second round of Bayesian (K = 3) and Hierarchical (K = 2) clustering was performed. These analysis showed that genotypes were grouped not only based on geographical origin, but also on fruit-related features. GBS data has proven useful to assess the genetic diversity in a collection of C. annuum accessions. The high number of SNP markers, uniformly distributed on the 12 chromosomes, allowed the accessions to be distinguished according to geographical origin and fruit-related features. SNP markers and information on population structure developed in this study will undoubtedly support genome-wide association mapping studies and marker-assisted selection programs.
Communicating genetics and smoking through social media: are we there yet?
de Viron, Sylviane; Suggs, L Suzanne; Brand, Angela; Van Oyen, Herman
2013-09-09
Social media is a recent source of health information that could disseminate new scientific research, such as the genetics of smoking. The objectives were (1) to evaluate the availability of genetic information about smoking on different social media platforms (ie, YouTube, Facebook, and Twitter) and (2) to assess the type and the content of the information displayed on the social media as well as the profile of people publishing this information. We screened posts on YouTube, Facebook, and Twitter with the terms "smoking" and "genetic" at two time points (September 18, 2012, and May 7, 2013). The first 100 posts were reviewed for each media for the time points. Google was searched during Time 2 as an indicator of available information on the Web and the other social media that discussed genetics and smoking. The source of information, the country of the publisher, characteristics of the posts, and content of the posts were extracted. On YouTube, Facebook, and Twitter, 31, 0, and 84 posts, respectively, were included. Posts were mostly based on smoking-related diseases, referred to scientific publications, and were largely from the United States. From the Google search, most results were scientific databases. Six scientific publications referred to within the Google search were also retrieved on either YouTube or Twitter. Despite the importance of public understanding of smoking and genetics, and the high use of social media, little information on this topic is actually present on social media. Therefore, there is a need to monitor the information that is there and to evaluate the population's understanding of the information related to genetics and smoking that is displayed on social media.
Newborn Screening: MedlinePlus Health Topic
... deficiency (National Library of Medicine) Genetics Home Reference: glutaric acidemia type I (National Library of Medicine) Genetics Home Reference: glutaric acidemia type II (National Library of Medicine) Genetics ...
Characterization of the Iberian Y chromosome haplogroup R-DF27 in Northern Spain.
Villaescusa, Patricia; Illescas, María José; Valverde, Laura; Baeta, Miriam; Nuñez, Carolina; Martínez-Jarreta, Begoña; Zarrabeitia, Maria Teresa; Calafell, Francesc; de Pancorbo, Marian M
2017-03-01
The European paternal lineage R-DF27 has been proposed as a haplogroup of Iberian origin due to its maximum frequencies in the Iberian Peninsula. In this study, the distribution and structure of DF27 were characterized in 591 unrelated male individuals from four key populations of the north area of the Iberian Peninsula through the analysis of 12 Y-SNPs that define DF27 main sublineages. Additionally, Y-SNP allele frequencies were also gathered from the reference populations in the 1000 Genomes Project to compare and obtain a better landscape of the distribution of DF27. Our results reveal frequencies over 35% of DF27 haplogroup in the four North Iberian populations analyzed and high frequencies for its subhaplogroups. Considering the low frequency of DF27 and its sublineages in most populations outside of the Iberian Peninsula, this haplogroup seems to have geographical significance; thus, indicating a possible Iberian patrilineal origin of vestiges bearing this haplogroup. The dataset presented here contributes with new data to better understand the complex genetic variability of the Y chromosome in the Iberian Peninsula, that can be applied in Forensic Genetics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A Bacillus anthracis Genome Sequence from the Sverdlovsk 1979 Autopsy Specimens
Sahl, Jason W.; Pearson, Talima; Okinaka, Richard; Schupp, James M.; Gillece, John D.; Heaton, Hannah; Birdsell, Dawn; Hepp, Crystal; Fofanov, Viacheslav; Noseda, Ramón; Fasanella, Antonio; Hoffmaster, Alex; Wagner, David M.
2016-01-01
ABSTRACT Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both state-sponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world’s largest biological weapons program and provides an extensive B. anthracis phylogenetic reference. PMID:27677796
Bacterial Population Genetics in a Forensic Context
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velsko, S P
This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population geneticsmore » by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations augmented by phylogenetic representations of relatedness will not and enzootic outbreaks noted through international outbreak surveillance systems, and 'representative' genetic sequences from each outbreak. (5) Interpretation of genetic comparisons between an attack strain and reference strains requires a model for the network structure of maintenance foci, enzootic outbreaks, and human outbreaks of that disease, coupled with estimates of mutational rate constants. Validation of the model requires a set of sequences from exemplary outbreaks and laboratory data on mutation rates during animal passage. The necessary number of isolates in each validation set is determined by disease transmission network theory, and is based on the 'network diameter' of the outbreak. (6) The 8 bacteria in this study can be classified into 4 categories based on the complexity of the transmission network structure of their natural maintenance foci and their outbreaks, both enzootic and zoonotic. (7) For B. anthracis, Y. pestis, E. coli O157, and Brucella melitensis, and their primary natural animal hosts, most of the fundamental parameters needed for modeling genetic change within natural host or human transmission networks have been determined or can be estimated from existing field and laboratory studies. (8) For Burkholderia mallei, plausible approaches to transmission network models exist, but much of the fundamental parameterization does not. In addition, a validated high-resolution typing system for characterizing genetic change within outbreaks or foci has not yet been demonstrated, although a candidate system exists. (9) For Francisella tularensis, the increased complexity of the transmission network and unresolved questions about maintenance and transmission suggest that it will be more complex and difficult to develop useful models based on currently available data. (10) For Burkholderia pseudomallei and Clostridium botulinum, the transmission and maintenance networks involve complex soil communities and metapopulations about which very little is known. It is not clear that these pathogens can be brought into the inference-on-networks framework without additional conceptual advances. (11) For all 8 bacteria some combination of field studies, computational modeling, and laboratory experiments are needed to provide a useful forensic capability for bacterial genetic inference.« less
Yuan, Huwei; Niu, Shihui; El-Kassaby, Yousry A; Li, Yue; Li, Wei
2016-01-01
Chinese pine seed orchards are in a period of transition from first-generation to advanced-generations. How to effectively select populations for second-generation seed orchards and significantly increase genetic gain through rational deployment have become major issues. In this study, we examined open- and control-pollinated progeny of the first-generation Chinese pine seed orchards in Zhengning (Gansu Province, China) and Xixian (Shanxi Province, China) to address issues related to phenotypic selection for high volume growth, genetic diversity analysis and genetic distance-based phylogenetic analysis of the selections by simple sequence repeats (SSRs), and phylogenetic relationship-based field deployment for advanced-generation orchards. In total, 40, 28, 20, and 13 superior individuals were selected from the large-scale no-pedigree open-pollinated progeny of Zhengning (ZN-NP), open-pollinated families of Zhengning (ZN-OP), open-pollinated families of Xixian (XX-OP), and control-pollinated families of Xixian, with mean volume dominance ratios of 0.83, 0.15, 0.25, and 0.20, respectively. Phylogenetic relationship analysis of the ZN-NP and XX-OP populations showed that the 40 superior individuals in the ZN-NP selected population belonged to 23 families and could be further divided into five phylogenetic groups, and that families in the same group were closely related. Similarly, 20 families in the XX-OP population were related to varying degrees. Based on these results, we found that second-generation Chinese pine seed orchards in Zhengning and Xixian should adopt a grouped, unbalanced, complete, fixed block design and an unbalanced, incomplete, fixed block design, respectively. This study will provide practical references for applying molecular markers to establishing advanced-generation seed orchards.
Genetic ancestry is associated with colorectal adenomas and adenocarcinomas in Latino populations
Hernandez-Suarez, Gustavo; Sanabria, Maria Carolina; Serrano, Marta; Herran, Oscar F; Perez, Jesus; Plata, Jose L; Zabaleta, Jovanny; Tenesa, Albert
2014-01-01
Colorectal cancer rates in Latin American countries are less than half of those observed in the United States. Latin Americans are the resultant of generations of an admixture of Native American, European, and African individuals. The potential role of genetic admixture in colorectal carcinogenesis has not been examined. We evaluate the association of genetic ancestry with colorectal neoplasms in 190 adenocarcinomas, 113 sporadic adenomas and 243 age- and sex-matched controls enrolled in a multicentric case–control study in Colombia. Individual ancestral genetic fractions were estimated using the STRUCTURE software, based on allele frequencies and assuming three distinct population origins. We used the Illumina Cancer Panel to genotype 1,421 sparse single-nucleotide polymorphisms (SNPs), and Northern and Western European ancestry, LWJ and Han Chinese in Beijing, China populations from the HapMap project as references. A total of 678 autosomal SNPs overlapped with the HapMap data set SNPs and were used for ancestry estimations. African mean ancestry fraction was higher in adenomas (0.13, 95% confidence interval (95% CI)=0.11–0.15) and cancer cases (0.14, 95% CI=0.12–0.16) compared with controls (0.11, 95% CI=0.10–0.12). Conditional logistic regression analysis, controlling for known risk factors, showed a positive association of African ancestry per 10% increase with both colorectal adenoma (odds ratio (OR)=1.12, 95% CI=0.97–1.30) and adenocarcinoma (OR=1.19, 95% CI=1.05–1.35). In conclusion, increased African ancestry (or variants linked to it) contributes to the increased susceptibility of colorectal cancer in admixed Latin American population. PMID:24518838
Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.
Morse, Alison M; Calabro, Kaitlyn R; Fear, Justin M; Bloom, David C; McIntyre, Lauren M
2017-08-16
High-throughput sequencing (HTS) has resulted in data for a number of herpes simplex virus (HSV) laboratory strains and clinical isolates. The knowledge of these sequences has been critical for investigating viral pathogenicity. However, the assembly of complete herpesviral genomes, including HSV, is complicated due to the existence of large repeat regions and arrays of smaller reiterated sequences that are commonly found in these genomes. In addition, the inherent genetic variation in populations of isolates for viruses and other microorganisms presents an additional challenge to many existing HTS sequence assembly pipelines. Here, we evaluate two approaches for the identification of genetic variants in HSV1 strains using Illumina short read sequencing data. The first, a reference-based approach, identifies variants from reads aligned to a reference sequence and the second, a de novo assembly approach, identifies variants from reads aligned to de novo assembled consensus sequences. Of critical importance for both approaches is the reduction in the number of low complexity regions through the construction of a non-redundant reference genome. We compared variants identified in the two methods. Our results indicate that approximately 85% of variants are identified regardless of the approach. The reference-based approach to variant discovery captures an additional 15% representing variants divergent from the HSV1 reference possibly due to viral passage. Reference-based approaches are significantly less labor-intensive and identify variants across the genome where de novo assembly-based approaches are limited to regions where contigs have been successfully assembled. In addition, regions of poor quality assembly can lead to false variant identification in de novo consensus sequences. For viruses with a well-assembled reference genome, a reference-based approach is recommended.
Berry, Kristin H.; Edwards, Taylor
2013-01-01
The conservation of tortoises poses a unique situation because several threatened species are commonly kept as pets within their native ranges. Thus, there is potential for captive populations to be a reservoir for repatriation efforts. We assess the utility of captive populations of the threatened Agassiz’s desert tortoise (Gopherus agassizii) for recovery efforts based on genetic affinity to local areas. We collected samples from 130 captive desert tortoises from three desert communities: two in California (Ridgecrest and Joshua Tree) and the Desert Tortoise Conservation Center (Las Vegas) in Nevada. We tested all samples for 25 short tandem repeats and sequenced 1,109 bp of the mitochondrial genome. We compared captive genotypes to a database of 1,258 Gopherus samples, including 657 wild caught G. agassizii spanning the full range of the species. We conducted population assignment tests to determine the genetic origins of the captive individuals. For our total sample set, only 44 % of captive individuals were assigned to local populations based on genetic units derived from the reference database. One individual from Joshua Tree, California, was identified as being a Morafka’s desert tortoise, G. morafkai, a cryptic species which is not native to the Mojave Desert. Our data suggest that captive desert tortoises kept within the native range of G. agassizii cannot be presumed to have a genealogical affiliation to wild tortoises in their geographic proximity. Precautions should be taken before considering the release of captive tortoises into the wild as a management tool for recovery.
Dogan, Serkan; Kovacević, Lejla; Marjanović, Damir
2013-12-01
Allele frequencies of 15 STRs included in the PowerPlex 16 System (D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, VWA, D8S1179, TPOX and FGA) were calculated from the referent sample of 100 unrelated individuals of both sexes from Turkish student population living in Sarajevo, Bosnia and Herzegovina. Buccal swab, as a source of DNA, was collected from the volunteers from whom the informed consent form was obtained. DNA extraction was performed using QIAamp DNA Micro kit by Qiagen. DNA template ranging from 0.5 to 2 ng was used to amplify 15 STR loci by PCR multiplex amplification which was performed by using the PowerPlex 16 kit (Promega Corp., Madison, WI, USA) according to the manufacturer's protocol. The amplifications were carried out in a PE Gene Amp PCR System thermal cycler (Applied Biosystems) and capillary electrophoresis was carried out in an ABI PRISM 310 Genetic Analyzer (Applied Biosystems) in accordance with the manufacturer's recommendations. The frequency of each locus was calculated from the numbers of each observed genotype. Deviation from Hardy-Weinberg equilibrium and observed heterozygosity were calculated. Data were analyzed by using Microsoft Excel workbook template--Powerstats V12 and the power of discrimination (PD), power of exclusion (PE), as well as other population genetic indices for the 15 STR loci were calculated. Obtained results contribute to existing Turkish DNA database, as well as insight of differences and similarities in comparison to population of Bosnia and Herzegovina. In addition, 13 autosomal STR loci frequencies (D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSFIPO, Penta D, VWA, D8S1 179, TPOX, and FGA) were studied in 15 different worldwide populations (Turkish, Bosnian, Croatian, Serbian, Montenegrin, Macedonian, Albanian, Kosovan, Greek, Russian, Japanese, Korean, Lithuanian, Iraqi, Belarusian). For the proof of corresponding data, two different Turkish population STR data obtained from previously published articles were compared with our data and this showed that our data correspond to these 2 previously published data. Further, STR allele frequency data for 13 loci for each population were obtained from previous scientific articles and the allele frequencies and genetic diversity among the 15 sample populations were compared. In addition, even though the populations are from different nationalities, the STR data are similar among the geographically close populations. The phylogenetic tree established among worldwide populations and genetic distance values show a great affinity among the 15populations. Our data is useful for anthropological and further comparative genetic studies of populations.
Species and genetic diversity in the genus Drosophila inhabiting the Indian subcontinent.
Singh, Bashisth N
2015-06-01
Biodiversity is the sum total of all living things on the earth with particular reference to the profound variety in structure,function and genetic constitution. It includes both number and frequency of species or genes in a given assemblage and the variety of resulting ecosystems in a region. It is usually considered at three different levels: genetic, species and ecological diversities. Genus Drosophila belongs to the family Drosophilidae (class Insecta, order Diptera), characterized by rich species diversity at global level and also in India, which is a megadiverse country. At global level, more than 1500 species have been described and several thousands estimated. Hawaiian Islands are particularly rich in species diversity with more than 500 species which provides a unique opportunity to study evolution in genus Drosophila. About 150 species of Drosophila have been reported from India. Certain species of Drosophila found in India have been investigated for genetic diversity within the species. In this regard, Drosophila ananassae is noteworthy. It is a cosmopolitan and domestic species with common occurrence in India and is endowed with many genetic peculiarities. Population genetics and evolutionary studies in this species have revealed as to how genetic diversity within a species play an important role in adaptation of populations to varying environments. In addition, the work carried on D. melanogaster, D. nasuta, D. bipectinata and certain other species in India has shown that these species vary in degree and pattern of genetic diversity, and have evolved different mechanisms for adjusting to their environments. The ecological adaptations to various kinds of stress studied in certain species of Drosophila inhabiting the Indian subcontinent are also discussed.
A reference linkage map for Eucalyptus
2012-01-01
Background Genetic linkage maps are invaluable resources in plant research. They provide a key tool for many genetic applications including: mapping quantitative trait loci (QTL); comparative mapping; identifying unlinked (i.e. independent) DNA markers for fingerprinting, population genetics and phylogenetics; assisting genome sequence assembly; relating physical and recombination distances along the genome and map-based cloning of genes. Eucalypts are the dominant tree species in most Australian ecosystems and of economic importance globally as plantation trees. The genome sequence of E. grandis has recently been released providing unprecedented opportunities for genetic and genomic research in the genus. A robust reference linkage map containing sequence-based molecular markers is needed to capitalise on this resource. Several high density linkage maps have recently been constructed for the main commercial forestry species in the genus (E. grandis, E. urophylla and E. globulus) using sequenced Diversity Arrays Technology (DArT) and microsatellite markers. To provide a single reference linkage map for eucalypts a composite map was produced through the integration of data from seven independent mapping experiments (1950 individuals) using a marker-merging method. Results The composite map totalled 1107 cM and contained 4101 markers; comprising 3880 DArT, 213 microsatellite and eight candidate genes. Eighty-one DArT markers were mapped to two or more linkage groups, resulting in the 4101 markers being mapped to 4191 map positions. Approximately 13% of DArT markers mapped to identical map positions, thus the composite map contained 3634 unique loci at an average interval of 0.31 cM. Conclusion The composite map represents the most saturated linkage map yet produced in Eucalyptus. As the majority of DArT markers contained on the map have been sequenced, the map provides a direct link to the E. grandis genome sequence and will serve as an important reference for progressing eucalypt research. PMID:22702473
Jørgensen, Karin Meinike; Wassermann, Tina; Jensen, Peter Østrup; Hengzuang, Wang; Molin, Søren; Høiby, Niels
2013-01-01
The dynamics of occurrence and the genetic basis of ciprofloxacin resistance were studied in a long-term evolution experiment (940 generations) in wild-type, reference strain (PAO1) and hypermutable (PAOΔmutS and PAOMY-Mgm) P. aeruginosa populations continuously exposed to sub-MICs (1/4) of ciprofloxacin. A rapid occurrence of ciprofloxacin-resistant mutants (MIC of ≥12 μg/ml, representing 100 times the MIC of the original population) were observed in all ciprofloxacin-exposed lineages of PAOΔmutS and PAOMY-Mgm populations after 100 and 170 generations, respectively, and in one of the PAO1 lineages after 240 generations. The genetic basis of resistance was mutations in gyrA (C248T and G259T) and gyrB (C1397A). Cross-resistance to beta-lactam antibiotics was observed in the bacterial populations that evolved during exposure to sublethal concentrations of ciprofloxacin. Our study shows that mutants with high-level ciprofloxacin resistance are selected in P. aeruginosa bacterial populations exposed to sub-MICs of ciprofloxacin. This can have implications for the long-term persistence of resistant bacteria and spread of antibiotic resistance by exposure of commensal bacterial flora to low antibiotic concentrations. PMID:23774442
Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel.
Huang, Jie; Howie, Bryan; McCarthy, Shane; Memari, Yasin; Walter, Klaudia; Min, Josine L; Danecek, Petr; Malerba, Giovanni; Trabetti, Elisabetta; Zheng, Hou-Feng; Gambaro, Giovanni; Richards, J Brent; Durbin, Richard; Timpson, Nicholas J; Marchini, Jonathan; Soranzo, Nicole
2015-09-14
Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants.
Clinical Applications of Molecular Genetic Discoveries
Marian, A.J.
2015-01-01
Genome-wide association studies (GWAS) of complex traits have mapped more than 15,000 common single nucleotide variants (SNVs). Likewise, applications of massively parallel nucleic acid sequencing technologies often referred to as Next Generation Sequencing, to molecular genetic studies of complex traits have catalogued a large number of rare variants (population frequency of <0.01) in cases with complex traits. Moreover, high throughput nucleic acid sequencing, variant burden analysis, and linkage studies are illuminating the presence of large number of SNVs in cases and families with single gene disorders. The plethora of the genetic variants has exposed the formidable challenge of identifying the causal and pathogenic variants from the enormous number of innocuous common and rare variants that exist in the population as well as in an individual genome. The arduous task of identifying the causal and pathogenic variants is further compounded by the pleiotropic effects of the variants, complexity of cis and trans interactions in the genome, variability in phenotypic expression of the disease, as well as phenotypic plasticity, and the multifarious determinants of the phenotype. Population genetic studies offer the initial roadmaps and have the potential to elucidate novel pathways involved in the pathogenesis of the disease. However, the genome of an individual is unique, rendering unambiguous identification of the causal or pathogenic variant in a single individual exceedingly challenging. Yet, the focus of the practice of medicine is on the individual, as Sir William Osler elegantly expressed in his insightful quotation: “The good physician treats the disease; the great physician treats the patient who has the disease.” The daunting task facing physicians, patients, and researchers alike is to apply the modern genetic discoveries to care of the individual with or at risk of the disease. PMID:26548329
Diversity and population-genetic properties of copy number variations and multicopy genes in cattle
Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.
2016-01-01
The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184
LPA and PLG sequence variation and kringle IV-2 copy number in two populations.
Crawford, Dana C; Peng, Ze; Cheng, Jan-Fang; Boffelli, Dario; Ahearn, Magdalena; Nguyen, Dan; Shaffer, Tristan; Yi, Qian; Livingston, Robert J; Rieder, Mark J; Nickerson, Deborah A
2008-01-01
Lp(a) levels have long been recognized as a potential risk factor for coronary heart disease that is almost completely under genetic control. Much of the genetics impacting Lp(a) levels has been attributed to the highly polymorphic LPA kringle IV-2 copy number variant, and most of the variance in Lp(a) levels in populations of European-descent is inversely correlated with kringle IV copy number. However, less of the variance is explained in African-descent populations for the same structural variation. African-descent populations have, on average, higher levels of Lp(a), suggesting other genetic factors contribute to Lp(a) level variability across populations. To identify potential cis-acting factors, we re-sequenced the gene LPA for single nucleotide polymorphism (SNP) discovery in 23 European-Americans and 24 African-Americans. We also re- sequenced the neighboring gene plasminogen (PLG) and genotyped the kringle IV copy number variant in the same reference samples. These data are the most comprehensive description of sequence variation in LPA and its relationship with the kringle IV copy number variant. With these data, we demonstrate that only a fraction of LPA sequence diversity has been previously documented. Also, we identify several high frequency SNPs present in the African-American sample but absent in the European-American sample. Finally, we show that SNPs within PLG are not in linkage disequilibrium with SNPs in LPA, and we show that kringle IV copy number variation is not in linkage disequilibrium with either LPA or PLG SNPs. Together, these data suggest that LPA SNPs could independently contribute to Lp(a) levels in the general population. Copyright (c) 2008 S. Karger AG, Basel.
Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints.
Degen, B; Ward, S E; Lemes, M R; Navarro, C; Cavers, S; Sebbenn, A M
2013-01-01
Illegal logging is one of the main causes of ongoing worldwide deforestation and needs to be eradicated. The trade in illegal timber and wood products creates market disadvantages for products from sustainable forestry. Although various measures have been established to counter illegal logging and the subsequent trade, there is a lack of practical mechanisms for identifying the origin of timber and wood products. In this study, six nuclear microsatellites were used to generate DNA fingerprints for a genetic reference database characterising the populations of origin of a large set of mahogany (Swietenia macrophylla King, Meliaceae) samples. For the database, leaves and/or cambium from 1971 mahogany trees sampled in 31 stands from Mexico to Bolivia were genotyped. A total of 145 different alleles were found, showing strong genetic differentiation (δ(Gregorious)=0.52, F(ST)=0.18, G(ST(Hedrick))=0.65) and clear correlation between genetic and spatial distances among stands (r=0.82, P<0.05). We used the genetic reference database and Bayesian assignment testing to determine the geographic origins of two sets of mahogany wood samples, based on their multilocus genotypes. In both cases the wood samples were assigned to the correct country of origin. We discuss the overall applicability of this methodology to tropical timber trading. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Flow cytometry used to assess genetic damage in frogs from farm ponds
Bly, B.L.; Knutson, M.G.; Sandheinrich, M.B.; Gray, B.R.; Jobe, D.A.
2004-01-01
Flow cytometry (FC) is a laboratory method used to detect genetic damage induced by environmental contaminants and other stressors in animals, including amphibians. We tested FC methods on three species of ranid frogs collected from farm ponds and natural wetlands in southeastern Minnesota. We compared FC metrics for Rana clamitans between ponds with direct exposure to agricultural contaminants and reference (unexposed) ponds. Concentrations of atrazine in water from our farm ponds ranged from 0.04 to 0.55 ppb. We found that R. clamitans from exposed ponds had DNA content similar to frogs from unexposed ponds. Pond-averaged C-values (a measure of DNA content) ranged from 6.53 to 7.08 for R. pipiens (n . 13), 6.55 to 6.60 for R. clamitans (n . 40) and 6.74 for R. palustris (n . 5). Among all species, the mean sample CVs ranged from 1.91 (R. palustris) to 6.31 (R. pipiens). Deformities were observed in only 2 of 796 individuals among all species and occurred in both reference and exposed ponds. Although we did not detect evidence of DNA damage associated with agriculture in our study, we demonstrated the potential of FC for screening amphibian populations for genetic damage. Metrics from a variety of amphibian species and locations as well as laboratory studies are needed to further assess the value of FC for monitoring amphibian genetic integrity in contaminated sites.
Recuero, Ernesto; García-París, Mario
2011-07-01
The Pleistocene was characterized by climatic changes that greatly altered the distribution of organisms. Population extinctions, bottlenecks, isolation, range expansions and contractions were often associated with glaciations, leaving signatures in the spatial patterns of genetic diversity across species. Lissotriton helveticus belongs to a Pan-European lineage of newts that were strongly affected by glaciations and represent an excellent model to analyse the effect of generalized climatic changes in phylogeographic patterns. We studied the genetic diversity of the species using data from two mitochondrial and three nuclear genes analyzed in a Bayesian phylogenetic framework to investigate the historical processes shaping spatial patterns of genetic diversity. Mitochondrial haplotypes cluster in four different groups present in the Iberian Peninsula and of Pleistocene origin, probably by allopatric fragmentation. Nuclear genes present no obvious geographic structure patterns, suggesting gene flow and generalized incomplete lineage sorting. Populations north of the Pyrenees are closely related to those from northeastern Iberia, suggesting recent range expansion from this region. Historical demographic analyses indicate a demographic expansion starting about 100,000years ago and more recent population declines. Compared to other Lissotriton species, L. helveticus includes only relatively young genetic lineages, suggesting a Central European pre-Pleistocene distribution followed by complete extirpation of the species during glaciations in that area. Historical demographic trends in the Iberian Peninsula are reversed with respect to the more Mediterranean species Lissotriton boscai, indicating different responses of both species to climate changes. Diversity patterns among Lissotriton species seem to be defined by four main factors: ancestral distributions, colonization capabilities, interactions with other species and effective population sizes. Differences in these factors define two types of species, referred to as "R" (refugia) and "S" (sanctuaries) that explain part of the diversity in patterns of genetic diversity created by glaciations in Western Europe. Copyright © 2011 Elsevier Inc. All rights reserved.
How Much Nutrition for How Much Growth? .
Hermanussen, Michael; Wit, Jan M
2017-01-01
Increasing agreement exists about the use of length-for-age as the indicator of choice in monitoring the long-term impact of chronic nutritional deficiency. Yet, already shortly after World War I, a causal link between nutrition and growth was questioned. Also, modern meta-analyses of controlled nutrition intervention studies show that the net effect of nutrition on body height is small. Broad evidence obtained from historic observations on human starvation made since the 19th century questions an obligatory association between nutrition and growth. Many additional explanations for the apparent shortness of people from developing countries have been published since, focusing on genetic factors, environment, economy, epigenetics, and, recently, psychosocial factors, such as strategic growth adjustments suggesting stature to be a social signal. The marked variability in average population height of up to 20 cm within a few generations complicates the use of normative growth charts, even though they have been widely propagated. We support the concept of local growth references, for example using the "Synthetic Growth References" methodology. These references combine local growth information obtained from a given population of interest and common features of human population growth, with LMS values for height, weight, and BMI from birth to maturity. . © 2016 S. Karger AG, Basel.
Attitudes and Practices Among Internists Concerning Genetic Testing
Chung, Wendy; Marder, Karen; Shanmugham, Anita; Chin, Lisa J.; Stark, Meredith; Leu, Cheng-Shiun; Appelbaum, Paul S.
2012-01-01
Many questions remain concerning whether, when, and how physicians order genetic tests, and what factors are involved in their decisions. We surveyed 220 internists from two academic medical centers about their utilization of genetic testing. Rates of genetic utilizations varied widely by disease. Respondents were most likely to have ordered tests for Factor V Leiden (16.8%), followed by Breast/Ovarian Cancer (15.0%). In the past 6 months, 65% had counseled patients on genetic issues, 44% had ordered genetic tests, 38.5% had referred patients to a genetic counselor or geneticist, and 27.5% had received ads from commercial labs for genetic testing. Only 4.5% had tried to hide or disguise genetic information, and <2% have had patients report genetic discrimination. Only 53.4% knew of a geneticist/genetic counselor to whom to refer patients. Most rated their knowledge as very/somewhat poor concerning genetics (73.7%) and guidelines for genetic testing (87.1%). Most felt needs for more training on when to order tests (79%), and how to counsel patients (82%), interpret results (77.3%), and maintain privacy (80.6%). Physicians were more likely to have ordered a genetic test if patients inquired about genetic testing (p<.001), and if physicians had a geneticist/genetic counselor to whom to refer patients (p<.002), had referred patients to a geneticist/genetic counselor in the past 6 months, had more comfort counseling patients about testing (p<.019), counseled patients about genetics, larger practices (p<.032), fewer African-American patients (p<.027), and patients who had reported genetic discrimination (p<.044). In a multiple logistic regression, ordering a genetic test was associated with patients inquiring about testing, having referred patients to a geneticist/genetic counselor and knowing how to order tests., These data suggest that physicians recognize their knowledge deficits, and are interested in training. These findings have important implications for future medical practice, research, and education. PMID:22585186
Xu, Laixiang; Xue, Huiliang; Song, Mingjing; Zhao, Qinghua; Dong, Jingping; Liu, Juan; Guo, Yu; Xu, Tongqin; Cao, Xiaoping; Wang, Fusheng; Wang, Shuqing; Hao, Shushen; Yang, Hefang; Zhang, Zhibin
2013-01-01
Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984-1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.
URLACHER, SAMUEL S.; BLACKWELL, AARON D.; LIEBERT, MELISSA A.; MADIMENOS, FELICIA C.; CEPON-ROBINS, TARA J.; GILDNER, THERESA E.; SNODGRASS, J. JOSH; SUGIYAMA, LAWRENCE S.
2015-01-01
Objectives Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Methods Mixed-longitudinal measures of height, weight, and BMI were collected from Shuar participants (n = 2,463; age 0–29 years). Centile growth curves and tables were created for each anthropometric variable of interest using GAMLSS. Pseudo-velocity and LMS curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with U.S. CDC and multinational WHO growth references. Results The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Conclusions Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. PMID:26126793
Amuamuta, Asmare; Mulu, Wondemagegn; Yimer, Mulat; Zenebe, Yohannes; Adem, Yesuf; Abera, Bayeh; Gebeyehu, Wondemu; Gebregziabher, Yakob
2017-01-01
Background Reference interval is crucial for disease screening, diagnosis, monitoring, progression and treatment efficacy. Due to lack of locally derived reference values for the parameters, clinicians use reference intervals derived from western population. But, studies conducted in different African countries have indicated differences between locally and western derived reference values. Different studies also indicated considerable variation in clinical chemistry reference intervals by several variables such as age, sex, geographical location, environment, lifestyle and genetic variation. Objective This study aimed to determine the reference intervals of common clinical chemistry parameters of the community of Gojjam Zones, Northwest Ethiopia. Method Population based cross-sectional study was conducted from November 2015 to December 2016 in healthy adult populations of Gojjam zone. Data such as, medical history, physical examination and socio-demographic data were collected. In addition, laboratory investigations were undertaken to screen the population. Clinical chemistry parameters were measured using Mindray BS 200 clinical chemistry autoanalyzer as per the manufacturer’s instructions. Descriptive statistics was used to calculate mean, median and 95th percentiles. Independent sample T-test and one way ANOVA were used to see association between variables. Results After careful screening of a total of 799 apparently healthy adults who were consented for this study, complete data from 446 (224 females and 222 males) were included for the analysis. The mean age of both the study participants was 28.8 years. Males had high (P<0.05) mean and 2.5th-97.5th percentile ranges of ALT, AST, ALP, creatinine and direct bilirubin. The reference intervals of amylase, LDH, total protein and total bilirubin were not significantly different between the two sex groups (P>0.05). Mean, median, 95% percentile values of AST, ALP, amylase, LDH, creatinine, total protein, total bilirubin, and direct bilirubin across all age groups of participants were similar (P>0.05). But, there was a significant difference in the value of ALT (P<0.05). The reference intervals of ALT, total protein and creatinine were significantly (P<0.05) high in people having monthly income >1500 ETB compared to those with low monthly income. Significant (P<0.05) higher values of the ALT, ALP and total protein were observed in people living in high land compared to low land residences. Conclusion The study showed that some of the common clinical chemistry parameters reference intervals of healthy adults in Gojjam zones were higher than the reference intervals generated from developed countries. Therefore, strict adherence to the reference values generated in developed countries could lead to inappropriate diagnosis and treatment of patients. There was also variation of reference interval values based on climate, gender, age, monthly income and geographical locations. Therefore, further study is required to establish reference intervals for Ethiopian population. PMID:28886191
Genetic diversity in Monoporeia affinis at polluted and reference sites of the Baltic Bothnian Bay.
Guban, Peter; Wennerström, Lovisa; Elfwing, Tina; Sundelin, Brita; Laikre, Linda
2015-04-15
The amphipod Monoporeia affinis plays an important role in the Baltic Sea ecosystem as prey and as detritivore. The species is monitored for contaminant effects, but almost nothing is known about its genetics in this region. A pilot screening for genetic variation at the mitochondrial COI gene was performed in 113 individuals collected at six sites in the northern Baltic. Three coastal sites were polluted by pulp mill effluents, PAHs, and trace metals, and two coastal reference sites were without obvious connection to pollution sources. An off-coastal reference site was also included. Contaminated sites showed lower levels of genetic diversity than the coastal reference ones although the difference was not statistically significant. Divergence patterns measured as ΦST showed no significant differentiation within reference and polluted groups, but there was significant genetic divergence between them. The off-coastal sample differed significantly from all coastal sites and also showed lower genetic variation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Construction of an almond linkage map in an Australian population Nonpareil × Lauranne
2010-01-01
Background Despite a high genetic similarity to peach, almonds (Prunus dulcis) have a fleshless fruit and edible kernel, produced as a crop for human consumption. While the release of peach genome v1.0 provides an excellent opportunity for almond genetic and genomic studies, well-assessed segregating populations and the respective saturated genetic linkage maps lay the foundation for such studies to be completed in almond. Results Using an almond intraspecific cross between 'Nonpareil' and 'Lauranne' (N × L), we constructed a moderately saturated map with SSRs, SNPs, ISSRs and RAPDs. The N × L map covered 591.4 cM of the genome with 157 loci. The average marker distance of the map was 4.0 cM. The map displayed high synteny and colinearity with the Prunus T × E reference map in all eight linkage groups (G1-G8). The positions of 14 mapped gene-anchored SNPs corresponded approximately with the positions of homologous sequences in the peach genome v1.0. Analysis of Mendelian segregation ratios showed that 17.9% of markers had significantly skewed genotype ratios at the level of P < 0.05. Due to the large number of skewed markers in the linkage group 7, the potential existence of deleterious gene(s) was assessed in the group. Integrated maps produced by two different mapping methods using JoinMap® 3 were compared, and their high degree of similarity was evident despite the positional inconsistency of a few markers. Conclusions We presented a moderately saturated Australian almond map, which is highly syntenic and collinear with the Prunus reference map and peach genome V1.0. Therefore, the well-assessed almond population reported here can be used to investigate the traits of interest under Australian growing conditions, and provides more information on the almond genome for the international community. PMID:20932335
Li, Shou-Li; Vasemägi, Anti; Ramula, Satu
2016-01-01
Background and Aims Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Methods Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. Key Results It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (QST) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F′ST), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. Conclusions The study suggests that although genetic variation may facilitate plant invasions by increasing seedling establishment, it may not necessarily affect the long-term population growth rate. Therefore, established invasions may be able to grow equally well regardless of their genetic diversity. PMID:26420202
Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang; Estrada, Karol; Rosello-Diez, Alberto; Leo, Paul J; Dahia, Chitra L; Park-Min, Kyung Hyun; Tobias, Jonathan H; Kooperberg, Charles; Kleinman, Aaron; Styrkarsdottir, Unnur; Liu, Ching-Ti; Uggla, Charlotta; Evans, Daniel S; Nielson, Carrie M; Walter, Klaudia; Pettersson-Kymmer, Ulrika; McCarthy, Shane; Eriksson, Joel; Kwan, Tony; Jhamai, Mila; Trajanoska, Katerina; Memari, Yasin; Min, Josine; Huang, Jie; Danecek, Petr; Wilmot, Beth; Li, Rui; Chou, Wen-Chi; Mokry, Lauren E; Moayyeri, Alireza; Claussnitzer, Melina; Cheng, Chia-Ho; Cheung, Warren; Medina-Gómez, Carolina; Ge, Bing; Chen, Shu-Huang; Choi, Kwangbom; Oei, Ling; Fraser, James; Kraaij, Robert; Hibbs, Matthew A; Gregson, Celia L; Paquette, Denis; Hofman, Albert; Wibom, Carl; Tranah, Gregory J; Marshall, Mhairi; Gardiner, Brooke B; Cremin, Katie; Auer, Paul; Hsu, Li; Ring, Sue; Tung, Joyce Y; Thorleifsson, Gudmar; Enneman, Anke W; van Schoor, Natasja M; de Groot, Lisette C.P.G.M.; van der Velde, Nathalie; Melin, Beatrice; Kemp, John P; Christiansen, Claus; Sayers, Adrian; Zhou, Yanhua; Calderari, Sophie; van Rooij, Jeroen; Carlson, Chris; Peters, Ulrike; Berlivet, Soizik; Dostie, Josée; Uitterlinden, Andre G; Williams, Stephen R.; Farber, Charles; Grinberg, Daniel; LaCroix, Andrea Z; Haessler, Jeff; Chasman, Daniel I; Giulianini, Franco; Rose, Lynda M; Ridker, Paul M; Eisman, John A; Nguyen, Tuan V; Center, Jacqueline R; Nogues, Xavier; Garcia-Giralt, Natalia; Launer, Lenore L; Gudnason, Vilmunder; Mellström, Dan; Vandenput, Liesbeth; Karlsson, Magnus K; Ljunggren, Östen; Svensson, Olle; Hallmans, Göran; Rousseau, François; Giroux, Sylvie; Bussière, Johanne; Arp, Pascal P; Koromani, Fjorda; Prince, Richard L; Lewis, Joshua R; Langdahl, Bente L; Hermann, A Pernille; Jensen, Jens-Erik B; Kaptoge, Stephen; Khaw, Kay-Tee; Reeve, Jonathan; Formosa, Melissa M; Xuereb-Anastasi, Angela; Åkesson, Kristina; McGuigan, Fiona E; Garg, Gaurav; Olmos, Jose M; Zarrabeitia, Maria T; Riancho, Jose A; Ralston, Stuart H; Alonso, Nerea; Jiang, Xi; Goltzman, David; Pastinen, Tomi; Grundberg, Elin; Gauguier, Dominique; Orwoll, Eric S; Karasik, David; Davey-Smith, George; Smith, Albert V; Siggeirsdottir, Kristin; Harris, Tamara B; Zillikens, M Carola; van Meurs, Joyce BJ; Thorsteinsdottir, Unnur; Maurano, Matthew T; Timpson, Nicholas J; Soranzo, Nicole; Durbin, Richard; Wilson, Scott G; Ntzani, Evangelia E; Brown, Matthew A; Stefansson, Kari; Hinds, David A; Spector, Tim; Cupples, L Adrienne; Ohlsson, Claes; Greenwood, Celia MT; Jackson, Rebecca D; Rowe, David W; Loomis, Cynthia A; Evans, David M; Ackert-Bicknell, Cheryl L; Joyner, Alexandra L; Duncan, Emma L; Kiel, Douglas P; Rivadeneira, Fernando; Richards, J Brent
2016-01-01
SUMMARY The extent to which low-frequency (minor allele frequency [MAF] between 1–5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is largely unknown. Bone mineral density (BMD) is highly heritable, is a major predictor of osteoporotic fractures and has been previously associated with common genetic variants1–8, and rare, population-specific, coding variants9. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n=2,882 from UK10K), whole-exome sequencing (n= 3,549), deep imputation of genotyped samples using a combined UK10K/1000Genomes reference panel (n=26,534), and de-novo replication genotyping (n= 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size 4-fold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564[T], MAF = 1.7%, replication effect size = +0.20 standard deviations [SD], Pmeta = 2×10−14), which was also associated with a decreased risk of fracture (OR = 0.85; P = 2×10−11; ncases = 98,742 and ncontrols = 409,511). Using an En1Cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, likely as a consequence of high bone turn-over. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817[T], MAF = 1.1%, replication effect size = +0.39 SD, Pmeta = 1×10−11). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population. PMID:26367794
Harrill, Alison H; McAllister, Kimberly A
2017-08-15
This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene-environment interactions in human disease and to inform human health risk assessment. This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. These unique resources have the potential to be powerful tools for generating hypotheses related to gene-environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274.
Harrill, Alison H.
2017-01-01
Background: This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene–environment interactions in human disease and to inform human health risk assessment. Objectives: This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. Methods: This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. Discussion: These unique resources have the potential to be powerful tools for generating hypotheses related to gene–environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. Conclusions: These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274 PMID:28886592
Louwers, Y V; Lao, O; Fauser, B C J M; Kayser, M; Laven, J S E
2014-10-01
It is well established that ethnicity is associated with the phenotype of polycystic ovary syndrome (PCOS). Self-reported ethnicity was shown to be an inaccurate proxy for ethnic origin in other disease traits, and it remains unclear how in PCOS patients self-reported ethnicity compares with a biological proxy such as genetic ancestry. We compared the impact of self-reported ethnicity versus genetic ancestry on PCOS and tested which of these 2 classifications better predicts the variability in phenotypic characteristics of PCOS. A total of 1499 PCOS patients from The Netherlands, comprising 11 self-reported ethnic groups of European, African, American, and Asian descent were genotyped with the Illumina 610K Quad BeadChip and merged with the data genotyped with the Illumina HumanHap650K available for the reference panel collected by the Human Genome Diversity Project (HGDP), in a collaboration with the Centre Etude Polymorphism Humain (CEPH), including 53 populations for ancestry reference. Algorithms for inferring genetic relationships among individuals, including multidimensional scaling and ADMIXTURE, were applied to recover genetic ancestry for each individual. Regression analysis was used to determine the best predictor for the variability in PCOS characteristics. The association between self-reported ethnicity and genetic ancestry was moderate. For amenorrhea, total follicle count, body mass index, SHBG, dehydroepiandrosterone sulfate, and insulin, mainly genetic ancestry clusters ended up in the final models (P values < .004), indicating that they explain a larger proportion of variability of these PCOS characteristics compared with self-reported ethnicity. Especially variability of insulin levels seems predominantly explained by genetic ancestry. Self-reported ancestry is not a perfect proxy for genetic ancestry in patients with PCOS, emphasizing that by using genetic ancestry data instead of self-reported ethnicity, PCOS-relevant misclassification can be avoided. Moreover, because genetic ancestry explained a larger proportion of phenotypic variability associated with PCOS than self-reported ethnicity, future studies should focus on genetic ancestry verification of PCOS patients for research questions and treatment as well as preventive strategies in these women.
Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.)
2013-01-01
Background Genetic linkage maps are important tools for many genetic applications including mapping of quantitative trait loci (QTLs), identifying DNA markers for fingerprinting, and map-based gene cloning. Carnation (Dianthus caryophyllus L.) is an important ornamental flower worldwide. We previously reported a random amplified polymorphic DNA (RAPD)-based genetic linkage map derived from Dianthus capitatus ssp. andrezejowskianus and a simple sequence repeat (SSR)-based genetic linkage map constructed using data from intraspecific F2 populations; however, the number of markers was insufficient, and so the number of linkage groups (LGs) did not coincide with the number of chromosomes (x = 15). Therefore, we aimed to produce a high-density genetic map to improve its usefulness for breeding purposes and genetic research. Results We improved the SSR-based genetic linkage map using SSR markers derived from a genomic library, expression sequence tags, and RNA-seq data. Linkage analysis revealed that 412 SSR loci (including 234 newly developed SSR loci) could be mapped to 17 linkage groups (LGs) covering 969.6 cM. Comparison of five minor LGs covering less than 50 cM with LGs in our previous RAPD-based genetic map suggested that four LGs could be integrated into two LGs by anchoring common SSR loci. Consequently, the number of LGs corresponded to the number of chromosomes (x = 15). We added 192 new SSRs, eight RAPD, and two sequence-tagged site loci to refine the RAPD-based genetic linkage map, which comprised 15 LGs consisting of 348 loci covering 978.3 cM. The two maps had 125 SSR loci in common, and most of the positions of markers were conserved between them. We identified 635 loci in carnation using the two linkage maps. We also mapped QTLs for two traits (bacterial wilt resistance and anthocyanin pigmentation in the flower) and a phenotypic locus for flower-type by analyzing previously reported genotype and phenotype data. Conclusions The improved genetic linkage maps and SSR markers developed in this study will serve as reference genetic linkage maps for members of the genus Dianthus, including carnation, and will be useful for mapping QTLs associated with various traits, and for improving carnation breeding programs. PMID:24160306
Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.).
Yagi, Masafumi; Yamamoto, Toshiya; Isobe, Sachiko; Hirakawa, Hideki; Tabata, Satoshi; Tanase, Koji; Yamaguchi, Hiroyasu; Onozaki, Takashi
2013-10-26
Genetic linkage maps are important tools for many genetic applications including mapping of quantitative trait loci (QTLs), identifying DNA markers for fingerprinting, and map-based gene cloning. Carnation (Dianthus caryophyllus L.) is an important ornamental flower worldwide. We previously reported a random amplified polymorphic DNA (RAPD)-based genetic linkage map derived from Dianthus capitatus ssp. andrezejowskianus and a simple sequence repeat (SSR)-based genetic linkage map constructed using data from intraspecific F2 populations; however, the number of markers was insufficient, and so the number of linkage groups (LGs) did not coincide with the number of chromosomes (x = 15). Therefore, we aimed to produce a high-density genetic map to improve its usefulness for breeding purposes and genetic research. We improved the SSR-based genetic linkage map using SSR markers derived from a genomic library, expression sequence tags, and RNA-seq data. Linkage analysis revealed that 412 SSR loci (including 234 newly developed SSR loci) could be mapped to 17 linkage groups (LGs) covering 969.6 cM. Comparison of five minor LGs covering less than 50 cM with LGs in our previous RAPD-based genetic map suggested that four LGs could be integrated into two LGs by anchoring common SSR loci. Consequently, the number of LGs corresponded to the number of chromosomes (x = 15). We added 192 new SSRs, eight RAPD, and two sequence-tagged site loci to refine the RAPD-based genetic linkage map, which comprised 15 LGs consisting of 348 loci covering 978.3 cM. The two maps had 125 SSR loci in common, and most of the positions of markers were conserved between them. We identified 635 loci in carnation using the two linkage maps. We also mapped QTLs for two traits (bacterial wilt resistance and anthocyanin pigmentation in the flower) and a phenotypic locus for flower-type by analyzing previously reported genotype and phenotype data. The improved genetic linkage maps and SSR markers developed in this study will serve as reference genetic linkage maps for members of the genus Dianthus, including carnation, and will be useful for mapping QTLs associated with various traits, and for improving carnation breeding programs.
Ethical, legal and social implications of forensic molecular phenotyping in South Africa.
Slabbert, Nandi; Heathfield, Laura Jane
2018-06-01
Conventional forensic DNA analysis involves a matching principle, which compares DNA profiles from evidential samples to those from reference samples of known origin. In casework, however, the accessibility to a reference sample is not guaranteed which limits the use of DNA as an investigative tool. This has led to the development of phenotype prediction, which uses SNP analysis to estimate the physical appearance of the sample donor. Physical traits, such as eye, hair and skin colour, have been associated with certain alleles within specific genes involved in the melanogenesis pathways. These genetic markers are also associated with ancestry and their trait prediction ability has mainly been assessed in European and North American populations. This has prompted research investigating the discriminatory power of these markers in other populations, especially those exhibiting admixture. South Africa is well known for its diversity, and the viability of these particular SNPs still needs to be assessed within this population. South African law currently restricts the use of DNA for molecular phenotyping, and there are also numerous ethical and social considerations, all of which are discussed. © 2018 John Wiley & Sons Ltd.
Kong, Tingting; Chen, Yahao; Guo, Yuxin; Wei, Yuanyuan; Jin, Xiaoye; Xie, Tong; Mu, Yuling; Dong, Qian; Wen, Shaoqing; Zhou, Boyan; Zhang, Li; Shen, Chunmei; Zhu, Bofeng
2017-01-01
In the present study, we assessed the genetic diversities of the Chinese Kazak ethnic group on the basis of 30 well-chosen autosomal insertion and deletion loci and explored the genetic relationships between Kazak and 23 reference groups. We detected the level of the expected heterozygosity ranging from 0.3605 at HLD39 locus to 0.5000 at HLD136 locus and the observed heterozygosity ranging from 0.3548 at HLD39 locus to 0.5283 at HLD136 locus. The combined power of discrimination and the combined power of exclusion for all 30 loci in the studied Kazak group were 0.999999999999128 and 0.9945, respectively. The dataset generated in this study indicated the panel of 30 InDels was highly efficient in forensic individual identifcation but may not have enough power in paternity cases. The results of the interpopulation differentiations, PCA plots, phylogenetic trees and STRUCTURE analyses showed a close genetic affiliation between the Kazak and Uigur group. PMID:28915619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasin-Brumshtein, Yehudit; Khan, Arshad H.; Hormozdiari, Farhad
2016-09-13
Previous studies had shown that the integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals bothlocalandtransexpression Quantitative Trait Loci (eQTLs) demonstrating 2transeQTL 'hotspots' associated with expression of hundreds of genes. We alsomore » report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provide a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation.« less
Tenggardjaja, Kimberly A; Bowen, Brian W; Bernardi, Giacomo
2014-01-01
Understanding vertical and horizontal connectivity is a major priority in research on mesophotic coral ecosystems (30-150 m). However, horizontal connectivity has been the focus of few studies, and data on vertical connectivity are limited to sessile benthic mesophotic organisms. Here we present patterns of vertical and horizontal connectivity in the Hawaiian Islands-Johnston Atoll endemic threespot damselfish, Chromis verater, based on 319 shallow specimens and 153 deep specimens. The mtDNA markers cytochrome b and control region were sequenced to analyze genetic structure: 1) between shallow (< 30 m) and mesophotic (30-150 m) populations and 2) across the species' geographic range. Additionally, the nuclear markers rhodopsin and internal transcribed spacer 2 of ribosomal DNA were sequenced to assess connectivity between shallow and mesophotic populations. There was no significant genetic differentiation by depth, indicating high levels of vertical connectivity between shallow and deep aggregates of C. verater. Consequently, shallow and deep samples were combined by location for analyses of horizontal connectivity. We detected low but significant population structure across the Hawaiian Archipelago (overall cytochrome b: ΦST = 0.009, P = 0.020; control region: ΦST = 0.012, P = 0.009) and a larger break between the archipelago and Johnston Atoll (cytochrome b: ΦST = 0.068, P < 0.001; control region: ΦST = 0.116, P < 0.001). The population structure within the archipelago was driven by samples from the island of Hawaii at the southeast end of the chain and Lisianski in the middle of the archipelago. The lack of vertical genetic structure supports the refugia hypothesis that deep reefs may constitute a population reservoir for species depleted in shallow reef habitats. These findings represent the first connectivity study on a mobile organism that spans shallow and mesophotic depths and provide a reference point for future connectivity studies on mesophotic fishes.
Tenggardjaja, Kimberly A.; Bowen, Brian W.; Bernardi, Giacomo
2014-01-01
Understanding vertical and horizontal connectivity is a major priority in research on mesophotic coral ecosystems (30–150 m). However, horizontal connectivity has been the focus of few studies, and data on vertical connectivity are limited to sessile benthic mesophotic organisms. Here we present patterns of vertical and horizontal connectivity in the Hawaiian Islands-Johnston Atoll endemic threespot damselfish, Chromis verater, based on 319 shallow specimens and 153 deep specimens. The mtDNA markers cytochrome b and control region were sequenced to analyze genetic structure: 1) between shallow (<30 m) and mesophotic (30–150 m) populations and 2) across the species' geographic range. Additionally, the nuclear markers rhodopsin and internal transcribed spacer 2 of ribosomal DNA were sequenced to assess connectivity between shallow and mesophotic populations. There was no significant genetic differentiation by depth, indicating high levels of vertical connectivity between shallow and deep aggregates of C. verater. Consequently, shallow and deep samples were combined by location for analyses of horizontal connectivity. We detected low but significant population structure across the Hawaiian Archipelago (overall cytochrome b: ΦST = 0.009, P = 0.020; control region: ΦST = 0.012, P = 0.009) and a larger break between the archipelago and Johnston Atoll (cytochrome b: ΦST = 0.068, P<0.001; control region: ΦST = 0.116, P<0.001). The population structure within the archipelago was driven by samples from the island of Hawaii at the southeast end of the chain and Lisianski in the middle of the archipelago. The lack of vertical genetic structure supports the refugia hypothesis that deep reefs may constitute a population reservoir for species depleted in shallow reef habitats. These findings represent the first connectivity study on a mobile organism that spans shallow and mesophotic depths and provide a reference point for future connectivity studies on mesophotic fishes. PMID:25517964
Ricklefs, Robert E; Bermingham, Eldredge
2004-08-01
Understanding patterns of diversity can be furthered by analysis of the dynamics of colonization, speciation, and extinction on islands using historical information provided by molecular phylogeography. The land birds of the Lesser Antilles are one of the most thoroughly described regional faunas in this context. In an analysis of colonization times, Ricklefs and Bermingham (2001) found that the cumulative distribution of lineages with respect to increasing time since colonization exhibits a striking change in slope at a genetic distance of about 2% mitochondrial DNA sequence divergence (about one million years). They further showed how this heterogeneity could be explained by either an abrupt increase in colonization rates or a mass extinction event. Cherry et al. (2002), referring to a model developed by Johnson et al. (2000), argued instead that the pattern resulted from a speciation threshold for reproductive isolation of island populations from their continental source populations. Prior to this threshold, genetic divergence is slowed by migration from the source, and species of varying age accumulate at a low genetic distance. After the threshold is reached, source and island populations diverge more rapidly, creating heterogeneity in the distribution of apparent ages of island taxa. We simulated of Johnson et al.'s speciation-threshold model, incorporating genetic divergence at rate k and fixation at rate M of genes that have migrated between the source and the island population. Fixation resets the divergence clock to zero. The speciation-threshold model fits the distribution of divergence times of Lesser Antillean birds well with biologically plausible parameter estimates. Application of the model to the Hawaiian avifauna, which does not exhibit marked heterogeneity of genetic divergence, and the West Indian herpetofauna, which does, required unreasonably high migration-fixation rates, several orders of magnitude greater than the colonization rate. However, the plausibility of the speciation-divergence model for Lesser Antillean birds emphasizes the importance of further investigation of historical biogeography on a regional scale for whole biotas, as well as the migration of genes between populations on long time scales and the achievement of reproductive isolation.
Herzog, Rebecca; Hadrys, Heike
2017-01-01
Modern conservationists call for long term genetic monitoring datasets to evaluate and understand the impact of human activities on natural ecosystems and species on a global but also local scale. However, long-term monitoring datasets are still rare but in high demand to correctly identify, evaluate and respond to environmental changes. In the presented study, a population of the riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae), was monitored over a time period from 1989 to 2013. Study site was an artificial irrigation ditch in one of the last European stone steppes and "nature heritage", the Crau in Southern France. This artificial riverine habitat has an unusual high diversity of odonate species, prominent indicators for evaluating freshwater habitats. A clearing of the canal and destruction of the bank vegetation in 1996 was assumed to have great negative impact on the odonate larval and adult populations. Two mitochondrial markers (CO1 & ND1) and a panel of nuclear microsatellite loci were used to assess the genetic diversity. Over time they revealed a dramatic decline in diversity parameters between the years 2004 and 2007, however not between 1996 and 1997. From 2007 onwards the population shows a stabilizing trend but has not reached the amount of genetic variation found at the beginning of this survey. This decline cannot be referred to the clearing of the canal or any other direct anthropogenic impact. Instead, it is most likely that the populations' decay was due to by extreme weather conditions during the specific years. A severe drought was recorded for the summer months of these years, leading to reduced water levels in the canal causing also other water parameters to change, and therefore impacting temperature sensitive riverine habitat specialists like the O. coerulescens in a significant way. The data provide important insights into population genetic dynamics and metrics not always congruent with traditional monitoring data (e.g. abundance); a fact that should be regarded with caution when management plans for developed landscapes are designed.
Baroncelli, Riccardo; Zapparata, Antonio; Sarrocco, Sabrina; Sukno, Serenella A.; Lane, Charles R.; Thon, Michael R.; Vannacci, Giovanni; Holub, Eric; Sreenivasaprasad, Surapareddy
2015-01-01
Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production. PMID:26086351
On the importance of balancing selection in plants
Delph, Lynda F.; Kelly, John K.
2013-01-01
Summary Balancing selection refers to a variety of selective regimes that maintain advantageous genetic diversity within populations. We review the history of the ideas regarding the types of selection that maintain such polymorphism in flowering plants, notably heterozygote advantage, negative frequency-dependent selection, and spatial heterogeneity. One shared feature of these mechanisms is that whether an allele is beneficial or detrimental is conditional on its frequency in the population. We highlight examples of balancing selection on a variety of discrete traits. These include the well-referenced case of self-incompatibility and recent evidence from species with nuclear-cytoplasmic gynodioecy, both of which exhibit trans-specific polymorphism, a hallmark of balancing selection. We also discuss and give examples of how spatial heterogeneity in particular, which is often thought unlikely to allow protected polymorphism, can maintain genetic variation in plants (which are rooted in place) as a result of microhabitat selection. Lastly, we discuss limitations of the protected polymorphism concept for quantitative traits, where selection can inflate the genetic variance without maintaining specific alleles indefinitely. We conclude that while discrete-morph variation provides the most unambiguous cases of protected polymorphism, they represent only a fraction of the balancing selection at work in plants. PMID:23952298
Bohra, Abhishek; Saxena, Rachit K; Gnanesh, B N; Saxena, Kulbhushan; Byregowda, M; Rathore, Abhishek; Kavikishor, P B; Cook, Douglas R; Varshney, Rajeev K
2012-10-01
Pigeonpea (Cajanus cajan L.) is an important food legume crop of rainfed agriculture. Owing to exposure of the crop to a number of biotic and abiotic stresses, the crop productivity has remained stagnant for almost last five decades at ca. 750 kg/ha. The availability of a cytoplasmic male sterility (CMS) system has facilitated the development and release of hybrids which are expected to enhance the productivity of pigeonpea. Recent advances in genomics and molecular breeding such as marker-assisted selection (MAS) offer the possibility to accelerate hybrid breeding. Molecular markers and genetic maps are pre-requisites for deploying MAS in breeding. However, in the case of pigeonpea, only one inter- and two intra-specific genetic maps are available so far. Here, four new intra-specific genetic maps comprising 59-140 simple sequence repeat (SSR) loci with map lengths ranging from 586.9 to 881.6 cM have been constructed. Using these four genetic maps together with two recently published intra-specific genetic maps, a consensus map was constructed, comprising of 339 SSR loci spanning a distance of 1,059 cM. Furthermore, quantitative trait loci (QTL) analysis for fertility restoration (Rf) conducted in three mapping populations identified four major QTLs explaining phenotypic variances up to 24 %. To the best of our knowledge, this is the first report on construction of a consensus genetic map in pigeonpea and on the identification of QTLs for fertility restoration. The developed consensus genetic map should serve as a reference for developing new genetic maps as well as correlating with the physical map in pigeonpea to be developed in near future. The availability of more informative markers in the bins harbouring QTLs for sterility mosaic disease (SMD) and Rf will facilitate the selection of the most suitable markers for genetic analysis and molecular breeding applications in pigeonpea.
The genome of the vervet (Chlorocebus aethiops sabaeus)
Warren, Wesley C.; Jasinska, Anna J.; García-Pérez, Raquel; Svardal, Hannes; Tomlinson, Chad; Rocchi, Mariano; Archidiacono, Nicoletta; Capozzi, Oronzo; Minx, Patrick; Montague, Michael J.; Kyung, Kim; Hillier, LaDeana W.; Kremitzki, Milinn; Graves, Tina; Chiang, Colby; Hughes, Jennifer; Tran, Nam; Huang, Yu; Ramensky, Vasily; Choi, Oi-wa; Jung, Yoon J.; Schmitt, Christopher A.; Juretic, Nikoleta; Wasserscheid, Jessica; Turner, Trudy R.; Wiseman, Roger W.; Tuscher, Jennifer J.; Karl, Julie A.; Schmitz, Jörn E.; Zahn, Roland; O'Connor, David H.; Redmond, Eugene; Nisbett, Alex; Jacquelin, Béatrice; Müller-Trutwin, Michaela C.; Brenchley, Jason M.; Dione, Michel; Antonio, Martin; Schroth, Gary P.; Kaplan, Jay R.; Jorgensen, Matthew J.; Thomas, Gregg W.C.; Hahn, Matthew W.; Raney, Brian J.; Aken, Bronwen; Nag, Rishi; Schmitz, Juergen; Churakov, Gennady; Noll, Angela; Stanyon, Roscoe; Webb, David; Thibaud-Nissen, Francoise; Nordborg, Magnus; Marques-Bonet, Tomas; Dewar, Ken; Weinstock, George M.; Wilson, Richard K.; Freimer, Nelson B.
2015-01-01
We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations. PMID:26377836
Kapplinger, Jamie D; Pundi, Krishna N; Larson, Nicholas B; Callis, Thomas E; Tester, David J; Bikker, Hennie; Wilde, Arthur A M; Ackerman, Michael J
2018-02-01
Pathogenic RYR2 variants account for ≈60% of clinically definite cases of catecholaminergic polymorphic ventricular tachycardia. However, the rate of rare benign RYR2 variants identified in the general population remains a challenge for genetic test interpretation. Therefore, we examined the results of the RYR2 genetic test among patients referred for commercial genetic testing and examined factors impacting variant interpretability. Frequency and location comparisons were made for RYR2 variants identified among 1355 total patients of varying clinical certainty and 60 706 Exome Aggregation Consortium controls. The impact of the clinical phenotype on the yield of RYR2 variants was examined. Six in silico tools were assessed using patient- and control-derived variants. A total of 18.2% (218/1200) of patients referred for commercial testing hosted rare RYR2 variants, statistically less than the 59% (46/78) yield among clinically definite cases, resulting in a much higher potential genetic false discovery rate among referrals considering the 3.2% background rate of rare, benign RYR2 variants. Exclusion of clearly putative pathogenic variants further complicates the interpretation of the next novel RYR2 variant. Exonic/topologic analyses revealed overrepresentation of patient variants in exons covering only one third of the protein. In silico tools largely failed to show evidence toward enhancement of variant interpretation. Current expert recommendations have resulted in increased use of RYR2 genetic testing in patients with questionable clinical phenotypes. Using the largest to date catecholaminergic polymorphic ventricular tachycardia patient versus control comparison, this study highlights important variables in the interpretation of variants to overcome the 3.2% background rate that confounds RYR2 variant interpretation. © 2018 American Heart Association, Inc.
Conditions for success of engineered underdominance gene drive systems.
Edgington, Matthew P; Alphey, Luke S
2017-10-07
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin
2017-07-01
Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.
Recent Patterns in Genetic Testing for Breast and Ovarian Cancer Risk in the U.S.
Han, Xuesong; Jemal, Ahmedin
2017-10-01
Mutations in BRCA genes are strongly associated with increased risk of breast and ovarian cancer, and it is recommended that women at high risk for these mutations be referred for genetic counseling and testing. The Affordable Care Act (ACA) provision implemented in 2010 eliminated cost sharing for BRCA genetic testing for privately insured women with family history of BRCA-related cancers. Using a nationally representative sample from the National Health Interview Survey, this study examined trends in genetic testing for breast and ovarian cancer risk from 2005 to 2015 among women by family history and insurance status. To assess the impact of the ACA provision, a difference-in-differences strategy was used to compare changes in genetic testing after ACA implementation between women with a family history of breast or ovarian cancer and those with a family history of other cancers, stratified by insurance type. Analyses were conducted in 2016. Genetic testing for breast and ovarian cancer risk increased among women with private or public insurance, but not among uninsured women. Among privately insured women, those with family history of breast or ovarian cancer experienced a net increase of 2.9 percentage points (p=0.001) over those with a family history of other cancers, but no significant difference was observed among women with public insurance, suggesting a positive effect of the ACA provision. This study underscores the continued need to improve access to care for all populations. Future work should monitor the impact of policy on genetic testing among the high-risk population. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Li, Shou-Li; Vasemägi, Anti; Ramula, Satu
2016-01-01
Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (Q(ST)) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F'(ST)), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. The study suggests that although genetic variation may facilitate plant invasions by increasing seedling establishment, it may not necessarily affect the long-term population growth rate. Therefore, established invasions may be able to grow equally well regardless of their genetic diversity. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[The Murcia Twin Registry. A resource for research on health-related behaviour].
Ordoñana, Juan R; Sánchez Romera, Juan F; Colodro-Conde, Lucía; Carrillo, Eduvigis; González-Javier, Francisca; Madrid-Valero, Juan J; Morosoli-García, José J; Pérez-Riquelme, Francisco; Martínez-Selva, José M
Genetically informative designs and, in particular, twin studies, are the most widely used methodology to analyse the relative contribution of genetic and environmental factors to inter-individual variability. These studies basically compare the degree of phenotypical similarity between monozygotic and dizygotic twin pairs. In addition to the traditional estimate of heritability, this kind of registry enables a wide variety of analyses which are unique due to the characteristics of the sample. The Murcia Twin Registry is population-based and focused on the analysis of health-related behaviour. The observed prevalence of health problems is comparable to that of other regional and national reference samples, which guarantees its representativeness. Overall, the characteristics of the Registry facilitate developing various types of research as well as genetically informative designs, and collaboration with different initiatives and consortia. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Haemonchus contortus: Genome Structure, Organization and Comparative Genomics.
Laing, R; Martinelli, A; Tracey, A; Holroyd, N; Gilleard, J S; Cotton, J A
2016-01-01
One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. Copyright © 2016 Elsevier Ltd. All rights reserved.
A massively parallel strategy for STR marker development, capture, and genotyping.
Kistler, Logan; Johnson, Stephen M; Irwin, Mitchell T; Louis, Edward E; Ratan, Aakrosh; Perry, George H
2017-09-06
Short tandem repeat (STR) variants are highly polymorphic markers that facilitate powerful population genetic analyses. STRs are especially valuable in conservation and ecological genetic research, yielding detailed information on population structure and short-term demographic fluctuations. Massively parallel sequencing has not previously been leveraged for scalable, efficient STR recovery. Here, we present a pipeline for developing STR markers directly from high-throughput shotgun sequencing data without a reference genome, and an approach for highly parallel target STR recovery. We employed our approach to capture a panel of 5000 STRs from a test group of diademed sifakas (Propithecus diadema, n = 3), endangered Malagasy rainforest lemurs, and we report extremely efficient recovery of targeted loci-97.3-99.6% of STRs characterized with ≥10x non-redundant sequence coverage. We then tested our STR capture strategy on P. diadema fecal DNA, and report robust initial results and suggestions for future implementations. In addition to STR targets, this approach also generates large, genome-wide single nucleotide polymorphism (SNP) panels from flanking regions. Our method provides a cost-effective and scalable solution for rapid recovery of large STR and SNP datasets in any species without needing a reference genome, and can be used even with suboptimal DNA more easily acquired in conservation and ecological studies. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
Insights into DDT Resistance from the Drosophila melanogaster Genetic Reference Panel.
Schmidt, Joshua M; Battlay, Paul; Gledhill-Smith, Rebecca S; Good, Robert T; Lumb, Chris; Fournier-Level, Alexandre; Robin, Charles
2017-11-01
Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster ; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737 , has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1 , shows compelling evidence of positive selection. Copyright © 2017 by the Genetics Society of America.
Genetics Home Reference: nonsyndromic hearing loss
... Centre for Genetics Education (Australia) Disease InfoSearch: Deafness Harvard Medical School Center for Hereditary Deafness Hereditary Hearing ... Available from http://www.ncbi.nlm.nih.gov/books/NBK1434/ Citation on ... Bulletins Genetics Home Reference Celebrates Its 15th Anniversary ...
Genetics Home Reference: congenital dyserythropoietic anemia
... E. Congenital dyserythropoietic anemia type I (CDA I): molecular genetics, clinical appearance, and prognosis based on long-term ... Konen O, Yaniv I, Delaunay J. Clinical and molecular variability in congenital dyserythropoietic anaemia type I. ... Bulletins Genetics Home Reference Celebrates Its ...
Genetics Home Reference: lactose intolerance
... or Free article on PubMed Central Järvelä IE. Molecular genetics of adult-type hypolactasia. Ann Med. 2005;37( ... Citation on PubMed Robayo-Torres CC, Nichols BL. Molecular differentiation of congenital lactase ... Bulletins Genetics Home Reference Celebrates Its ...
Genetics Home Reference: carnitine palmitoyltransferase II deficiency
... Zierz S. Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol. 2005 Jan; ... K, Hermann T, Zierz S. Carnitine palmitoyltransferase II deficiency: molecular and biochemical analysis of 32 ... Bulletins Genetics Home Reference Celebrates Its ...
Fun, Axel; Leitner, Thomas; Vandekerckhove, Linos; Däumer, Martin; Thielen, Alexander; Buchholz, Bernd; Hoepelman, Andy I M; Gisolf, Elizabeth H; Schipper, Pauline J; Wensing, Annemarie M J; Nijhuis, Monique
2018-01-05
Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway emerged in each individual culture. The generation of a specific raltegravir resistant variant is not predisposed in the genetic background of the viral integrase CDS. Typically, in the early phases of therapy failure the sequence space is explored and multiple resistance pathways emerge and then compete for dominance which frequently results in a switch of the dominant population over time towards the fittest variant or even multiple variants of similar fitness that can coexist in the viral population.
Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population.
Ortego, Joaquín; Yannic, Glenn; Shafer, Aaron B A; Mainguy, Julien; Festa-Bianchet, Marco; Coltman, David W; Côté, Steeve D
2011-04-01
The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms. © 2011 Blackwell Publishing Ltd.
Paget's disease in patients of Asian descent in New Zealand.
Sankaran, Shyam; Naot, Dorit; Grey, Andrew; Cundy, Tim
2012-01-01
Paget's disease is considered to be uncommon in Asian people, but we have noted a recent increase in the number of Asian patients referred to our clinic, on a background of an apparently decreasing prevalence in the population of European descent. In this article, we report clinical and epidemiological features of patients of Asian descent with Paget's disease, referred between 1973 and 2010 to the Auckland Paget's disease clinic. No Asian patients were referred before 1993, but 14 have presented between 1993 and 2010, with a median of 8 years between arrival into New Zealand and time of diagnosis. The patients were predominantly of south Asian origin. None of the 8 patients tested carried a mutation in exon 8 of the sequestosome 1 (SQSTM1) gene. The number of new Paget's disease referrals expressed as a proportion of the potentially at-risk Asian population in the Auckland region (derived from census data) was 1/10(4) in 2006 to 2011. Amongst Europeans, the corresponding value decreased from 10/10(4) in 1986 to 1991 to 2/10(4) in 2006 to 2010. The increased number of people of Asian descent diagnosed with Paget's disease in the Auckland region has paralleled the increasing size of the local Asian population. The continuing decline of Paget's disease in the European population, in conjunction with the emergence of the disease in the Asian population, supports the view that an environmental determinant to the disease exists and that Asians are not genetically protected. It also implies that the apparent reduction in Paget's disease prevalence in western cities is unlikely to be explicable by the rising Asian population of these cities. Copyright © 2012 American Society for Bone and Mineral Research.
Evans, Joseph; Crisovan, Emily; Barry, Kerrie; ...
2015-10-01
Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between themore » populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Joseph; Crisovan, Emily; Barry, Kerrie
Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between themore » populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.« less
Genetic Bases of Stuttering: The State of the Art, 2011
Kraft, Shelly Jo; Yairi, Ehud
2011-01-01
Objective The literature on the genetics of stuttering is reviewed with special reference to the historical development from psychosocial explanations leading up to current biological research of gene identification. Summary A gradual progression has been made from the early crude methods of counting percentages of stuttering probands who have relatives who stutter to recent studies using entire genomes of DNA collected from each participant. Despite the shortcomings of some early studies, investigators have accumulated a substantial body of data showing a large presence of familial stuttering. This encouraged more refined research in the form of twin studies. Concordance rates among twins were sufficiently high to lend additional support to the genetic perspective of stuttering. More sophisticated aggregation studies and segregation analyses followed, producing data that matched recognized genetic models, providing the final ‘go ahead’ to proceed from the behavior/statistical genetics into the sphere of biological genetics. Recent linkage and association studies have begun to reveal contributing genes to the disorder. Conclusion No definitive findings have been made regarding which transmission model, chromosomes, genes, or sex factors are involved in the expression of stuttering in the population at large. Future research and clinical implications are discussed. PMID:22067705
Bink, Marco CAM; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe
2016-01-01
Background Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. Results The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. Conclusions This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program. PMID:27806077
Bartholomé, Jérôme; Bink, Marco Cam; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe
2016-01-01
Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.
Neutral theory, microbial practice: challenges in bacterial population genetics.
Rocha, Eduardo P C
2018-04-19
Kimura's outstanding contributions to population genetics included many elegant theoretical results on the vagaries of alleles in populations. Once polymorphism data showed extensive variation in natural populations, these results led naturally to the Neutral Theory. In this article, I'll depart from some of these results to focus on four major open problems in microbial population genetics with direct implications to the study of molecular evolution: the lack of neutral polymorphism, the modeling of genetic exchanges, the population genetics of ill-defined populations, and the difficulty of untangling selection and demography in the light of the previous issues. Whilst studies in population genetics usually focus on single nucleotide polymorphism and allelic recombination, ignoring even small indels, a large fraction of genetic diversification in Bacteria results from horizontal gene transfer. Ignoring this fact defeats the purpose of population genetics: to characterize the genetic variation in populations and their adaptive effects. I'll argue that, following on Kimura's life work, one may need to develop new approaches to study microbes that reproduce asexually but are able to engage in gene exchanges with very distantly related organisms in a context where random sampling is often unachievable, populations are ill-defined, genetic linkage is strong, and random drift is rare.
[Genetic differentiation of Isaria farinosa populations in Anhui Province of East China].
Sun, Zhao-Hong; Luan, Feng-Gang; Zhang, Da-Min; Chen, Ming-Jun; Wang, Bin; Li, Zeng-Zhi
2011-11-01
Isaria farinosa is an important entomopathogenic fungus. By using ISSR, this paper studied the genetic heterogeneity of six I. farinosa populations at different localities of Anhui Province, East China. A total of 98.5% polymorphic loci were amplified with ten polymorphic primers, but the polymorphism at population level varied greatly, within the range of 59.6%-93.2%. The genetic differentiation index (G(st)) between the populations based on Nei's genetic heterogenesis analysis was 0.3365, and the gene flow (N(m)) was 0.4931. The genetic differentiation between the populations was lower than that within the populations, suggesting that the genetic variation of I. farinosa mainly come from the interior of the populations. The UPGMA clustering based on the genetic similarities between the isolates revealed that the Xishan population was monophylectic, while the other five populations were polyphylectic, with the Yaoluoping population being the most heterogenic and the Langyashan population being the least heterogenic. No correlations were observed between the geographic distance and the genetic distance of the populations. According to the UPGMA clustering based on the genetic distance between the populations, the six populations were classified into three groups, and this classification was accorded with the clustering based on geographic environment, suggesting the effects of environmental heterogeneity on the population heterogeneity.
Bartsch, Detlef; Cuguen, Joel; Biancardi, Enrico; Sweet, Jeremy
2003-01-01
Gene flow via seed or pollen is a basic biological process in plant evolution. The ecological and genetic consequences of gene flow depend on the amount and direction of gene flow as well as on the fitness of hybrids. The assessment of potential risks of transgenic plants should take into account the fact that conventional crops can often cross with wild plants. The precautionary approach in risk management of genetically modified plants (GMPs) may make it necessary to monitor significant wild and weed populations that might be affected by transgene escape. Gene flow is hard to control in wind-pollinated plants like beet (Beta vulgaris). In addition, wild beet populations potentially can undergo evolutionary changes which might expand their geographical distribution. Unintended products of cultivated beets pollinated by wild beets are weed beets that bolt and flower during their first year of planting. Weed beets cause yield losses and can delay harvest. Wild beets are important plant genetic resources and the preservation of wild beet diversity in Europe has been considered in biosafety research. We present here the methodology and research approaches that can be used for monitoring the geographical distribution and diversity of Beta populations. It has recently been shown that a century of gene flow from Beta vulgaris ssp. vulgaris has not altered the genetic diversity of wild Beta vulgaris L. ssp. maritima (L.) Arcang. in the Italian sugar beet seed production area. Future research should focus on the potential evolution of transgenic wild beet populations in comparison to these baseline data. Two monitoring models are presented describing how endpoints can be measured: (1) "Pre-post" crop commercialization against today's baseline and (2) "Parallel" to crop commercialization against GMP free reference areas/ populations. Model 2 has the advantage of taking ongoing changes in genetic diversity and population dynamics into account. Model 1 is more applicable if gene flow is so strong that most areas/populations contain GMPs. Important traits that may change the ecology of populations are genes that confer tolerance to biotic and abiotic stress. An assessment of environmental effects can realistically only be based on endpoints and consequences of gene introgression, which may include economic values of biodiversity in littoral and other ecosystems containing wild beet. In general, there is still a great need to harmonize worldwide monitoring systems by the development of appropriate methods to evaluate the environmental impact of introgressed transgenes.
Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum
Rico, Y; Wagner, H H
2016-01-01
Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations. PMID:27381322
Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.
Rico, Y; Wagner, H H
2016-11-01
Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.
Martinez-Gonzalez, L J; Alvarez-Cubero, M J; Saiz, M; Alvarez, J C; Martinez-Labarga, C; Lorente, J A
2016-09-01
Currently, the Guatemalan population comprises genetically isolated groups due to geographic, linguistic and cultural factors. For example, Mayan groups within the Guatemala population have preserved their own language, culture and religion. These practices have limited genetic admixture and have maintained the genetic identity of Mayan populations. This study is designed to define the genetic structure of the Mayan-Guatemalan groups Kaqchiquel, K'iche', Mam and Q'eqchi' through autosomal short tandem repeat (STR) polymorphisms and to analyse the genetic relationships between them and with other Mayan groups. Fifteen STR polymorphisms were analysed in 200 unrelated donors belonging to the Kaqchiquel (n = 50), K'iche' (n = 50), Mam (n = 50) and Q'eqchi' (n = 50) groups living in Guatemala. Genetic distance, non-metric MDS and AMOVA were used to analyse the genetic relationships between population groups. Within the Mayan population, the STRs D18S51 and FGA were the most informative markers and TH01 was the least informative. AMOVA and genetic distance analyses showed that the Guatemalan-Native American populations are highly similar to Mayan populations living in Mexico. The Mayan populations from Guatemala and other Native American groups display high genetic homogeneity. Genetic relationships between these groups are more affected by cultural and linguistic factors than geographical and local flow. This study represents one of the first steps in understanding Mayan-Guatemalan populations, the associations between their sub-populations and differences in gene diversity with other populations. This article also demonstrates that the Mestizo population shares most of its ancestral genetic components with the Guatemala Mayan populations.
Strickland, Dan; Norris, D Ryan
2015-01-01
The island rule refers to the tendency of small vertebrates to become larger when isolated on islands and the frequent dwarfing of large forms. It implies genetic control, and a necessary linkage, of size and body-mass differences between insular and mainland populations. To examine the island rule, we compared body size and mass of gray jays (Perisoreus canadensis) on Anticosti Island, Québec, located in the Gulf of St. Lawrence, with three mainland populations (2 in Québec and 1 in Ontario). Although gray jays on Anticosti Island were ca 10% heavier, they were not structurally larger, than the three mainland populations. This suggests that Anticosti jays are not necessarily genetically distinct from mainland gray jays and that they may have achieved their greater body masses solely through packing more mass onto mainland-sized body frames. As such, they may be the first-known example of a proposed, purely phenotypic initial step in the adherence to the island rule by an insular population. Greater jay body mass is probably advantageous in Anticosti's high-density, intensely competitive social environment that may have resulted from the island's lack of mammalian nest predators. PMID:26380697
Sobel Leonard, Ashley; McClain, Micah T; Smith, Gavin J D; Wentworth, David E; Halpin, Rebecca A; Lin, Xudong; Ransier, Amy; Stockwell, Timothy B; Das, Suman R; Gilbert, Anthony S; Lambkin-Williams, Robert; Ginsburg, Geoffrey S; Woods, Christopher W; Koelle, Katia
2016-12-15
Knowledge of influenza virus evolution at the point of transmission and at the intrahost level remains limited, particularly for human hosts. Here, we analyze a unique viral data set of next-generation sequencing (NGS) samples generated from a human influenza challenge study wherein 17 healthy subjects were inoculated with cell- and egg-passaged virus. Nasal wash samples collected from 7 of these subjects were successfully deep sequenced. From these, we characterized changes in the subjects' viral populations during infection and identified differences between the virus in these samples and the viral stock used to inoculate the subjects. We first calculated pairwise genetic distances between the subjects' nasal wash samples, the viral stock, and the influenza virus A/Wisconsin/67/2005 (H3N2) reference strain used to generate the stock virus. These distances revealed that considerable viral evolution occurred at various points in the human challenge study. Further quantitative analyses indicated that (i) the viral stock contained genetic variants that originated and likely were selected for during the passaging process, (ii) direct intranasal inoculation with the viral stock resulted in a selective bottleneck that reduced nonsynonymous genetic diversity in the viral hemagglutinin and nucleoprotein, and (iii) intrahost viral evolution continued over the course of infection. These intrahost evolutionary dynamics were dominated by purifying selection. Our findings indicate that rapid viral evolution can occur during acute influenza infection in otherwise healthy human hosts when the founding population size of the virus is large, as is the case with direct intranasal inoculation. Influenza viruses circulating among humans are known to rapidly evolve over time. However, little is known about how influenza virus evolves across single transmission events and over the course of a single infection. To address these issues, we analyze influenza virus sequences from a human challenge experiment that initiated infection with a cell- and egg-passaged viral stock, which appeared to have adapted during its preparation. We find that the subjects' viral populations differ genetically from the viral stock, with subjects' viral populations having lower representation of the amino-acid-changing variants that arose during viral preparation. We also find that most of the viral evolution occurring over single infections is characterized by further decreases in the frequencies of these amino-acid-changing variants and that only limited intrahost genetic diversification through new mutations is apparent. Our findings indicate that influenza virus populations can undergo rapid genetic changes during acute human infections. Copyright © 2016 Sobel Leonard et al.
Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress.
Medina, Matías H; Correa, Juan A; Barata, Carlos
2007-05-01
Polluting events can change community structure and ecosystem functioning. Selection of genetically inherited tolerance on exposed populations, here referred as micro-evolution due to pollution, has been recognized as one of the causes of these changes. However, there is a gap between studies addressing this process and those assessing effects at higher levels of biological organization. In this review we attempt to address these evolutionary considerations into the ecological risk assessment (ERA) of polluting events and to trigger the discussion about the consequences of this process for the ecosystem response to toxic stress. We provide clear evidence that pollution drives micro-evolutionary processes in several species. When this process occurs, populations inhabiting environments that become polluted may persist. However, due to the existence of ecological costs derived from the loss of genetic variability, negative pleiotropy with fitness traits and/or from physiological alterations, micro-evolution due to pollution may alter different properties of the affected populations. Despite the existence of empirical evidence showing that safety margins currently applied in the ERA process may account for pollution-induced genetic changes in tolerance, information regarding long-term ecological consequences at higher levels of biological organization due to ecological costs is not explicitly considered in these procedures. In relation to this, we present four testable hypotheses considering that micro-evolution due to pollution acts upon the variability of functional response traits of the exposed populations and generates changes on their functional effect traits, therefore, modifying the way species exploit their ecological niches and participate in the overall ecosystem functioning.
Lázaro-Nogal, Ana; Matesanz, Silvia; García-Fernández, Alfredo; Traveset, Anna; Valladares, Fernando
2017-09-01
The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species' distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation ( H E : 0.04-0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long-distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates ( F IS = 0.155-0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among-population differentiation highlight the conservation value of large populations throughout the species' range, particularly in light of climate change and direct human threats.
Sex ratio rather than population size affects genetic diversity in Antennaria dioica.
Rosche, C; Schrieber, K; Lachmuth, S; Durka, W; Hirsch, H; Wagner, V; Schleuning, M; Hensen, I
2018-03-09
Habitat fragmentation and small population size can lead to genetic erosion in threatened plant populations. Classical theory implies that dioecy can counteract genetic erosion as it decreases the magnitude of inbreeding and genetic drift due to obligate outcrossing. However, in small populations, sex ratios may be strongly male- or female-biased, leading to substantial reductions in effective population size. This may theoretically result in a unimodal relationship between sex ratios and genetic diversity; yet, empirical studies on this relationship are scarce. Using AFLP markers, we studied genetic diversity, structure and differentiation in 14 highly fragmented Antennaria dioica populations from the Central European lowlands. Our analyses focused on the relationship between sex ratio, population size and genetic diversity. Although most populations were small (mean: 35.5 patches), genetic diversity was moderately high. We found evidence for isolation-by-distance, but overall differentiation of the populations was rather weak. Females dominated 11 populations, which overall resulted in a slightly female-biased sex ratio (61.5%). There was no significant relationship between population size and genetic diversity. The proportion of females was not unimodally but positively linearly related to genetic diversity. The high genetic diversity and low genetic differentiation suggest that A. dioica has been widely distributed in the Central European lowlands in the past, while fragmentation occurred only in the last decades. Sex ratio has more immediate consequences on genetic diversity than population size. An increasing proportion of females can increase genetic diversity in dioecious plants, probably due to a higher amount of sexual reproduction. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Differential distribution of Y-chromosome haplotypes in Swiss and Southern European goat breeds.
Vidal, Oriol; Drögemüller, Cord; Obexer-Ruff, Gabriela; Reber, Irene; Jordana, Jordi; Martínez, Amparo; Bâlteanu, Valentin Adrian; Delgado, Juan Vicente; Eghbalsaied, Shahin; Landi, Vincenzo; Goyache, Felix; Traoré, Amadou; Pazzola, Michele; Vacca, Giuseppe Massimo; Badaoui, Bouabid; Pilla, Fabio; D'Andrea, Mariasilvia; Álvarez, Isabel; Capote, Juan; Sharaf, Abdoallah; Pons, Àgueda; Amills, Marcel
2017-11-23
The analysis of Y-chromosome variation has provided valuable clues about the paternal history of domestic animal populations. The main goal of the current work was to characterize Y-chromosome diversity in 31 goat populations from Central Eastern (Switzerland and Romania) and Southern Europe (Spain and Italy) as well as in reference populations from Africa and the Near East. Towards this end, we have genotyped seven single nucleotide polymorphisms (SNPs), mapping to the SRY, ZFY, AMELY and DDX3Y Y-linked loci, in 275 bucks from 31 populations. We have observed a low level of variability in the goat Y-chromosome, with just five haplotypes segregating in the whole set of populations. We have also found that Swiss bucks carry exclusively Y1 haplotypes (Y1A: 24%, Y1B1: 15%, Y1B2: 43% and Y1C: 18%), while in Italian and Spanish bucks Y2A is the most abundant haplotype (77%). Interestingly, in Carpathian goats from Romania the Y2A haplotype is also frequent (42%). The high Y-chromosome differentiation between Swiss and Italian/Spanish breeds might be due to the post-domestication spread of two different Near Eastern genetic stocks through the Danubian and Mediterranean corridors. Historical gene flow between Southern European and Northern African goats might have also contributed to generate such pattern of genetic differentiation.
Genetic quality and sexual selection: an integrated framework for good genes and compatible genes.
Neff, Bryan D; Pitcher, Trevor E
2005-01-01
Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward--females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term 'good gene' be used exclusively to refer to additive genetic variation in fitness, 'compatible gene' be used to refer to nonadditive genetic variation in fitness, and 'genetic quality' be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.
Koehl, Anthony J; Long, Jeffrey C
2018-02-01
We present a model that partitions Nei's minimum genetic distance between admixed populations into components of admixture and genetic drift. We applied this model to 17 admixed populations in the Americas to examine how admixture and drift have contributed to the patterns of genetic diversity. We analyzed 618 short tandem repeat loci in 949 individuals from 49 population samples. Thirty-two samples serve as proxies for continental ancestors. Seventeen samples represent admixed populations: (4) African-American and (13) Latin American. We partition genetic distance, and then calculate fixation indices and principal coordinates to interpret our results. A computer simulation confirms that our method correctly estimates drift and admixture components of genetic distance when the assumptions of the model are met. The partition of genetic distance shows that both admixture and genetic drift contribute to patterns of genetic diversity. The admixture component of genetic distance provides evidence for two distinct axes of continental ancestry. However, the genetic distances show that ancestry contributes to only one axis of genetic differentiation. The genetic distances among the 13 Latin American populations in this analysis show contributions from both differences in ancestry and differences in genetic drift. By contrast, the genetic distances among the four African American populations in this analysis owe mostly to genetic drift because these groups have similar fractions of European and African ancestry. The genetic structure of admixed populations in the Americas reflects more than admixture. We show that the history of serial founder effects constrains the impact of admixture on allele frequencies to a single dimension. Genetic drift in the admixed populations imposed a new level of genetic structure onto that created by admixture. © 2017 Wiley Periodicals, Inc.
Hermanns, M Iris; Grossmann, Vera; Spronk, Henri M H; Schulz, Andreas; Jünger, Claus; Laubert-Reh, Dagmar; Mazur, Johanna; Gori, Tommaso; Zeller, Tanja; Pfeiffer, Norbert; Beutel, Manfred; Blankenberg, Stefan; Münzel, Thomas; Lackner, Karl J; Ten Cate-Hoek, Arina J; Ten Cate, Hugo; Wild, Philipp S
2015-01-01
Elevated levels of c are associated with risk for both venous and arterial thromboembolism. However, no population-based study on the sex-specific distribution and reference ranges of plasma c and its cardiovascular determinants is available. c was analyzed in a randomly selected sample of 2533 males and 2440 females from the Gutenberg Health Study in Germany. Multivariable regression analyses for c were performed under adjustment for genetic determinants, cardiovascular risk factors and cardiovascular disease. Females (126.6% (95% CI: 125.2/128)) showed higher c levels than males (121.2% (119.8/122.7)). c levels increased with age in both sexes (ß per decade: 5.67% (4.22/7.13) male, 6.15% (4.72/7.57) female; p<0.001). Sex-specific reference limits and categories indicating the grade of deviation from the reference were calculated, and nomograms for c were created. c was approximately 25% higher in individuals with non-O blood type. Adjusted for sex and age, ABO-blood group accounted for 18.3% of c variation. In multivariable analysis, c was notably positively associated with diabetes mellitus, obesity, hypertension and dyslipidemia and negatively with current smoking. In a fully adjusted multivariable model, the strongest associations observed were of elevated c with diabetes and peripheral artery disease in both sexes and with obesity in males. Effects of SNPs in the vWF, STAB2 and SCARA5 gene were stronger in females than in males. The use of nomograms for valuation of c might be useful to identify high-risk cohorts for thromboembolism. Additionally, the prospective evaluation of c as a risk predictor becomes feasible. Copyright © 2015. Published by Elsevier Ireland Ltd.
Waterhouse, Matthew D.; Sloss, Brian L.; Isermann, Daniel A.
2014-01-01
The maintenance of genetic integrity is an important goal of fisheries management, yet little is known regarding the effects of management actions (e.g., stocking, harvest regulations) on the genetic diversity of many important fish species. Furthermore, relationships between population characteristics and genetic diversity remain poorly understood. We examined relationships among population demographics (abundance, recruitment, sex ratio, and mean age of the breeding population), stocking intensity, and genetic characteristics (heterozygosity, effective number of alleles, allelic richness, Wright's inbreeding coefficient, effective population size [Ne], mean d2 [a measure of inbreeding], mean relatedness, and pairwise population ΦST estimates) for 15 populations of Walleye Sander vitreus in northern Wisconsin. We also tested for potential demographic and genetic influences on Walleye body condition and early growth. Combinations of demographic variables explained 47.1–79.8% of the variation in genetic diversity. Skewed sex ratios contributed to a reduction in Ne and subsequent increases in genetic drift and relatedness among individuals within populations; these factors were correlated to reductions in allelic richness and early growth rate. Levels of inbreeding were negatively related to both age-0 abundance and mean age, suggesting Ne was influenced by recruitment and generational overlap. A negative relationship between the effective number of alleles and body condition suggests stocking affected underlying genetic diversity of recipient populations and the overall productivity of the population. These relationships may result from poor performance of stocked fish, outbreeding depression, or density-dependent factors. An isolation-by-distance pattern of genetic diversity was apparent in nonstocked populations, but was disrupted in stocked populations, suggesting that stocking affected genetic structure. Overall, demographic factors were related to genetic diversity and stocking appeared to alter allelic frequencies and the genetic structure of Walleye populations in Wisconsin, possibly resulting in disruption of local adaptation.
Urlacher, Samuel S; Blackwell, Aaron D; Liebert, Melissa A; Madimenos, Felicia C; Cepon-Robins, Tara J; Gildner, Theresa E; Snodgrass, J Josh; Sugiyama, Lawrence S
2016-01-01
Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Mixed-longitudinal measures of height, weight, and body mass index (BMI) were collected from Shuar participants (n = 2,463; age: 0-29 years). Centile growth curves and tables were created for each anthropometric variable of interest using Generalized Additive Models for Location, Scale, and Shape (GAMLSS). Pseudo-velocity and Lambda-Mu-Sigma curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with United States Center for Disease Control and Prevention and multinational World Health Organization growth references. The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. © 2015 Wiley Periodicals, Inc.
High-Resolution Maps of Mouse Reference Populations
Simecek, Petr; Forejt, Jiri; Williams, Robert W.; Shiroishi, Toshihiko; Takada, Toyoyuki; Lu, Lu; Johnson, Thomas E.; Bennett, Beth; Deschepper, Christian F.; Scott-Boyer, Marie-Pier; Pardo-Manuel de Villena, Fernando; Churchill, Gary A.
2017-01-01
Genetic reference panels are widely used to map complex, quantitative traits in model organisms. We have generated new high-resolution genetic maps of 259 mouse inbred strains from recombinant inbred strain panels (C57BL/6J × DBA/2J, ILS/IbgTejJ × ISS/IbgTejJ, and C57BL/6J × A/J) and chromosome substitution strain panels (C57BL/6J-Chr#, C57BL/6J-Chr#
High-Resolution Maps of Mouse Reference Populations.
Simecek, Petr; Forejt, Jiri; Williams, Robert W; Shiroishi, Toshihiko; Takada, Toyoyuki; Lu, Lu; Johnson, Thomas E; Bennett, Beth; Deschepper, Christian F; Scott-Boyer, Marie-Pier; Pardo-Manuel de Villena, Fernando; Churchill, Gary A
2017-10-05
Genetic reference panels are widely used to map complex, quantitative traits in model organisms. We have generated new high-resolution genetic maps of 259 mouse inbred strains from recombinant inbred strain panels (C57BL/6J × DBA/2J, ILS/IbgTejJ × ISS/IbgTejJ, and C57BL/6J × A/J) and chromosome substitution strain panels (C57BL/6J-Chr#, C57BL/6J-Chr#
Toledo, Rodrigo A; Sekiya, Tomoko; Longuini, Viviane C; Coutinho, Flavia L; Lourenço, Delmar M; Toledo, Sergio P A
2012-01-01
The finished version of the human genome sequence was completed in 2003, and this event initiated a revolution in medical practice, which is usually referred to as the age of genomic or personalized medicine. Genomic medicine aims to be predictive, personalized, preventive, and also participative (4Ps). It offers a new approach to several pathological conditions, although its impact so far has been more evident in mendelian diseases. This article briefly reviews the potential advantages of this approach, and also some issues that may arise in the attempt to apply the accumulated knowledge from genomic medicine to clinical practice in emerging countries. The advantages of applying genomic medicine into clinical practice are obvious, enabling prediction, prevention, and early diagnosis and treatment of several genetic disorders. However, there are also some issues, such as those related to: (a) the need for approval of a law equivalent to the Genetic Information Nondiscrimination Act, which was approved in 2008 in the USA; (b) the need for private and public funding for genetics and genomics; (c) the need for development of innovative healthcare systems that may substantially cut costs (e.g. costs of periodic medical followup); (d) the need for new graduate and postgraduate curricula in which genomic medicine is emphasized; and (e) the need to adequately inform the population and possible consumers of genetic testing, with reference to the basic aspects of genomic medicine.
Toledo, Rodrigo A.; Sekiya, Tomoko; Longuini, Viviane C.; L. Coutinho, Flavia; Lourenço, Delmar M.; Toledo, Sergio P. A.
2012-01-01
The finished version of the human genome sequence was completed in 2003, and this event initiated a revolution in medical practice, which is usually referred to as the age of genomic or personalized medicine. Genomic medicine aims to be predictive, personalized, preventive, and also participative (4Ps). It offers a new approach to several pathological conditions, although its impact so far has been more evident in mendelian diseases. This article briefly reviews the potential advantages of this approach, and also some issues that may arise in the attempt to apply the accumulated knowledge from genomic medicine to clinical practice in emerging countries. The advantages of applying genomic medicine into clinical practice are obvious, enabling prediction, prevention, and early diagnosis and treatment of several genetic disorders. However, there are also some issues, such as those related to: (a) the need for approval of a law equivalent to the Genetic Information Nondiscrimination Act, which was approved in 2008 in the USA; (b) the need for private and public funding for genetics and genomics; (c) the need for development of innovative healthcare systems that may substantially cut costs (e.g. costs of periodic medical follow-up); (d) the need for new graduate and postgraduate curricula in which genomic medicine is emphasized; and (e) the need to adequately inform the population and possible consumers of genetic testing, with reference to the basic aspects of genomic medicine. PMID:22584698
Waits, Lisette P.; Adams, Jennifer R.; Seals, Christopher L.; Steury, Todd D.
2017-01-01
One of the major concerns in conservation today is the loss of genetic diversity which is a frequent consequence of population isolation and small population sizes. Fragmentation of populations and persecution of carnivores has posed a substantial threat to the persistence of free ranging carnivores in North America since the arrival of European settlers. Black bears have seen significant reductions in range size from their historic extent, which is most pronounced in the southeastern United States and even more starkly in Alabama where until recently bears were reduced to a single geographically isolated population in the Mobile River Basin. Recently a second population has naturally re-established itself in northeastern Alabama. We sought to determine size, genetic diversity and genetic connectivity for these two populations in relation to other regional populations. Both populations of black bears in Alabama had small population sizes and had moderate to low genetic diversity, but showed different levels of connectivity to surrounding populations of bears. The Mobile River Basin population had a small population size at only 86 individuals (76–124, 95% C.I.), the lowest genetic diversity of compared populations (richness = 2.33, Ho and He = 0.33), and showed near complete genetic isolation from surrounding populations across multiple tests. The newly recolonizing population in northeastern Alabama had a small but growing population doubling in 3 years (34 individuals 26–43, 95% C.I.), relatively moderate genetic diversity compared to surrounding populations (richness = 3.32, Ho = 0.53, He = 0.65), and showed a high level of genetic connectivity with surrounding populations. PMID:29117263
Genetic Diversity in Introduced Populations with an Allee Effect
Wittmann, Meike J.; Gabriel, Wilfried; Metzler, Dirk
2014-01-01
A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations. PMID:25009147
Foo, Yong-Lin; Chow, Julie Chi; Lai, Ming-Chi; Tsai, Wen-Hui; Tung, Li-Chen; Kuo, Mei-Chin; Lin, Shio-Jean
2015-08-01
This review article aims to introduce the screening and referral network of genetic evaluation for children with developmental delay in Taiwan. For these children, integrated systems provide services from the medical, educational, and social welfare sectors. All cities and counties in Taiwan have established a network for screening, detection, referral, evaluation, and intervention services. Increased awareness improves early detection and intervention. There remains a gap between supply and demand, especially with regard to financial resources and professional manpower. Genetic etiology has a major role in prenatal causes of developmental delay. A summary of reports on some related genetic disorders in the Taiwanese population is included in this review. Genetic diagnosis allows counseling with regard to recurrence risk and prevention. Networking with neonatal screening, laboratory diagnosis, genetic counseling, and orphan drugs logistics systems can provide effective treatment for patients. In Taiwan, several laboratories provide genetic tests for clinical diagnosis. Accessibility to advanced expensive tests such as gene chips or whole exome sequencing is limited because of funding problems; however, the service system in Taiwan can still operate in a relatively cost-effective manner. This experience in Taiwan may serve as a reference for other countries. Copyright © 2014. Published by Elsevier B.V.
Patterns of Genetic Variation across Altitude in Three Plant Species of Semi-Dry Grasslands
Hahn, Thomas; Kettle, Chris J.; Ghazoul, Jaboury; Frei, Esther R.; Matter, Philippe; Pluess, Andrea R.
2012-01-01
Background Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes. Methodology/Principal Findings In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms) and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes. Conclusions/Significance Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic) gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for migration under climate change. PMID:22870236
Wei, Lin; Wu, Xian-Jin
2012-01-01
Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included. PMID:22942696
Wei, Lin; Wu, Xian-Jin
2012-01-01
Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included.
Integrating genomic selection into dairy cattle breeding programmes: a review.
Bouquet, A; Juga, J
2013-05-01
Extensive genetic progress has been achieved in dairy cattle populations on many traits of economic importance because of efficient breeding programmes. Success of these programmes has relied on progeny testing of the best young males to accurately assess their genetic merit and hence their potential for breeding. Over the last few years, the integration of dense genomic information into statistical tools used to make selection decisions, commonly referred to as genomic selection, has enabled gains in predicting accuracy of breeding values for young animals without own performance. The possibility to select animals at an early stage allows defining new breeding strategies aimed at boosting genetic progress while reducing costs. The first objective of this article was to review methods used to model and optimize breeding schemes integrating genomic selection and to discuss their relative advantages and limitations. The second objective was to summarize the main results and perspectives on the use of genomic selection in practical breeding schemes, on the basis of the example of dairy cattle populations. Two main designs of breeding programmes integrating genomic selection were studied in dairy cattle. Genomic selection can be used either for pre-selecting males to be progeny tested or for selecting males to be used as active sires in the population. The first option produces moderate genetic gains without changing the structure of breeding programmes. The second option leads to large genetic gains, up to double those of conventional schemes because of a major reduction in the mean generation interval, but it requires greater changes in breeding programme structure. The literature suggests that genomic selection becomes more attractive when it is coupled with embryo transfer technologies to further increase selection intensity on the dam-to-sire pathway. The use of genomic information also offers new opportunities to improve preservation of genetic variation. However, recent simulation studies have shown that putting constraints on genomic inbreeding rates for defining optimal contributions of breeding animals could significantly reduce achievable genetic gain. Finally, the article summarizes the potential of genomic selection to include new traits in the breeding goal to meet societal demands regarding animal health and environmental efficiency in animal production.
Gentile, N; Mañas, F; Bosch, B; Peralta, L; Gorla, N; Aiassa, D
2012-06-01
This paper aims to evaluate the genotoxic effect of agrochemicals in rural workers occupationally exposed by the micronucleus assay in peripheral blood lymphocytes and to promote the development of health and environmental preventive and protective practices. A total of 30 blood samples from 20 individuals occupationally exposed to different agrochemicals and 10 unexposed persons, who formed the reference group, were analyzed. We found statistically significant differences (p < 0.0005, Student's t Test) in the frequency of micronuclei between the two groups (7.20 ± 1.55 and 15.15 ± 5.10 CBMN for reference and exposed groups respectively). The analysis of age showed a positive correlation (Pearson Correlation Test) with the frequency of micronuclei in exposed population (p < 0.05; r(2) = 0.47), in contrast with smoking habits and years of exposure. Micronucleus assay allows an early detection of populations at higher risk of having genetic damage, allowing us to implement strategies of intervention for the purpose of contributing to reduce that risk.
Tsai, Hsin Y; Robledo, Diego; Lowe, Natalie R; Bekaert, Michael; Taggart, John B; Bron, James E; Houston, Ross D
2016-07-07
High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species' genome. Genomic resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the 'ssalar01' high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research. Copyright © 2016 Tsai et al.
Spatial and population genetic structure of microsatellites in white pine
Paula E. Marquardt; Bryan K. Epperson
2004-01-01
We evaluated the population genetic structure of seven microsatellite loci for old growth and second growth populations of eastern white pine (Pinus strobus). From each population, located within Hartwick Pines State Park, Grayling, Michigan, USA, 120-122 contiguous trees were sampled for genetic analysis. Within each population, genetic diversity...
Cabana, Graciela S; Lewis, Cecil M; Tito, Raúl Y; Covey, R Alan; Cáceres, Angela M; Cruz, Augusto F De La; Durand, Diana; Housman, Genevieve; Hulsey, Brannon I; Iannacone, Gian Carlo; López, Paul W; Martínez, Rolando; Medina, Ángel; Dávila, Olimpio Ortega; Pinto, Karla Paloma Osorio; Santillán, Susan I Polo; Domínguez, Percy Rojas; Rubel, Meagan; Smith, Heather F; Smith, Silvia E; Massa, Verónica Rubín de Celis; Lizárraga, Beatriz; Stone, Anne C
2014-01-01
Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.
Pediatric Genomic Data Inventory (PGDI) Overview
About Pediatric cancer is a genetic disease that can largely differ from similar malignancies in an adult population. To fuel new discoveries and treatments specific to pediatric oncologies, the NCI Office of Cancer Genomics has developed a dynamic resource known as the Pediatric Genomic Data Inventory to allow investigators to more easily locate genomic datasets. This resource lists known ongoing and completed sequencing projects of pediatric cancer cohorts from the United States and other countries, along with some basic details and reference metadata.
Cousseau, L; Husemann, M; Foppen, R; Vangestel, C; Lens, L
2016-01-01
Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. PMID:27273323
Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.
2008-01-01
Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.
The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster.
Zhou, Shanshan; Morozova, Tatiana V; Hussain, Yasmeen N; Luoma, Sarah E; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F C; Anholt, Robert R H
2016-07-01
Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environ Health Perspect 124:1062-1070; http://dx.doi.org/10.1289/ehp.1510513.
Ripke, Stephan; van den Berg, Leonard; Buchbinder, Susan; Carrington, Mary; Cossarizza, Andrea; Dalmau, Judith; Deeks, Steven G.; Delaneau, Olivier; De Luca, Andrea; Goedert, James J.; Haas, David; Herbeck, Joshua T.; Kathiresan, Sekar; Kirk, Gregory D.; Lambotte, Olivier; Luo, Ma; Mallal, Simon; van Manen, Daniëlle; Martinez-Picado, Javier; Meyer, Laurence; Miro, José M.; Mullins, James I.; Obel, Niels; O'Brien, Stephen J.; Pereyra, Florencia; Plummer, Francis A.; Poli, Guido; Qi, Ying; Rucart, Pierre; Sandhu, Manj S.; Shea, Patrick R.; Schuitemaker, Hanneke; Theodorou, Ioannis; Vannberg, Fredrik; Veldink, Jan; Walker, Bruce D.; Weintrob, Amy; Winkler, Cheryl A.; Wolinsky, Steven; Telenti, Amalio; Goldstein, David B.; de Bakker, Paul I. W.; Zagury, Jean-François; Fellay, Jacques
2013-01-01
Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10−11). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size. PMID:23935489
Huff, David D.; Miller, Loren M.; Vondracek, Bruce C.
2010-01-01
Reintroductions are a common approach for preserving intraspecific biodiversity in fragmented landscapes. However, they may exacerbate the reduction in genetic diversity initially caused by population fragmentation because the effective population size of reintroduced populations is often smaller and reintroduced populations also tend to be more geographically isolated than native populations. Mixing genetically divergent sources for reintroduction purposes is a practice intended to increase genetic diversity. We documented the outcome of reintroductions from three mixed sources on the ancestral composition and genetic variation of a North American fish, the slimy sculpin (Cottus cognatus). We used microsatellite markers to evaluate allelic richness and heterozygosity in the reintroduced populations relative to computer simulated expectations. Sculpins in reintroduced populations exhibited higher levels of heterozygosity and allelic richness than any single source, but only slightly higher than the single most genetically diverse source population. Simulations intended to mimic an ideal scenario for maximizing genetic variation in the reintroduced populations also predicted increases, but they were only moderately greater than the most variable source population. We found that a single source contributed more than the other two sources at most reintroduction sites. We urge caution when choosing whether to mix source populations in reintroduction programs. Genetic characteristics of candidate source populations should be evaluated prior to reintroduction if feasible. When combined with knowledge of the degree of genetic distinction among sources, simulations may allow the genetic diversity benefits of mixing populations to be weighed against the risks of outbreeding depression in reintroduced and nearby populations.
Huff, D.D.; Miller, L.M.; Vondracek, B.
2010-01-01
Reintroductions are a common approach for preserving intraspecific biodiversity in fragmented landscapes. However, they may exacerbate the reduction in genetic diversity initially caused by population fragmentation because the effective population size of reintroduced populations is often smaller and reintroduced populations also tend to be more geographically isolated than native populations. Mixing genetically divergent sources for reintroduction purposes is a practice intended to increase genetic diversity. We documented the outcome of reintroductions from three mixed sources on the ancestral composition and genetic variation of a North American fish, the slimy sculpin (Cottus cognatus). We used microsatellite markers to evaluate allelic richness and heterozygosity in the reintroduced populations relative to computer simulated expectations. Sculpins in reintroduced populations exhibited higher levels of heterozygosity and allelic richness than any single source, but only slightly higher than the single most genetically diverse source population. Simulations intended to mimic an ideal scenario for maximizing genetic variation in the reintroduced populations also predicted increases, but they were only moderately greater than the most variable source population. We found that a single source contributed more than the other two sources at most reintroduction sites. We urge caution when choosing whether to mix source populations in reintroduction programs. Genetic characteristics of candidate source populations should be evaluated prior to reintroduction if feasible. When combined with knowledge of the degree of genetic distinction among sources, simulations may allow the genetic diversity benefits of mixing populations to be weighed against the risks of outbreeding depression in reintroduced and nearby populations. ?? 2010 US Government.
Using the Drosophila Melanogaster Genetics Reference Panel to Identify Toxicity Pathways for Toluene
Mechanistic information is needed to link effects of chemicals at molecular targets in high throughput screening assays to adverse outcomes in whole organisms. This study was designed to use the Drosophila Genetic Reference Panel (DGRP), a set of genetically well...
Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E; Tiscar, Pedro A; Viñegla, Benjamin; Linares, Juan C; Gómez-Gómez, Lourdes; Ahrazem, Oussama
2012-01-01
Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei's genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei's genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups-Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco-while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.
Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E.; Tiscar, Pedro A.; Viñegla, Benjamin; Linares, Juan C.; Gómez-Gómez, Lourdes; Ahrazem, Oussama
2012-01-01
Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei’s genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei’s genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups—Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco—while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra. PMID:22754321
Genetic analysis of Mexican Criollo cattle populations.
Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A
2008-10-01
The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.
Kalman, Lisa V; Datta, Vivekananda; Williams, Mickey; Zook, Justin M; Salit, Marc L; Han, Jin Yeong
2016-11-01
Characterized reference materials (RMs) are needed for clinical laboratory test development and validation, quality control procedures, and proficiency testing to assure their quality. In this article, we review the development and characterization of RMs for clinical molecular genetic tests. We describe various types of RMs and how to access and utilize them, especially focusing on the Genetic Testing Reference Materials Coordination Program (Get-RM) and the Genome in a Bottle (GIAB) Consortium. This review also reinforces the need for collaborative efforts in the clinical genetic testing community to develop additional RMs.
Lu, Yue; Yan, Caiwang; Du, Jiangbo; Ji, Yong; Gao, Yong; Zhu, Xun; Yu, Fei; Huang, Tongtong; Dai, Juncheng; Ma, Hongxia; Jiang, Yue; Chen, Jiaping; Shen, Hongbing; Jin, Guangfu; Yin, Yongmei; Hu, Zhibin
2017-03-01
Telomeres are essential for maintaining chromosomal stability and are crucial in tumor progression. Previous studies have explored the associations between telomere length and cancer prognosis, but the findings are inconclusive. Genome-wide association studies have identified several genetic variants associated with telomere length in Caucasians. However, the roles of telomere length and related genetic variants on esophageal squamous cell carcinoma (ESCC) prognosis are largely unknown. Therefore, we conducted a case-cohort study with 431 ESCC patients to assess the associations between relative telomere length (RTL), eight known telomere length related variants and the overall survival of ESCC in Chinese population. We found that as compared with the reference group, patients in the fifth (the longest) quintile had a significantly better prognosis [(adjusted hazard ratio (HR) = 0.58, 95% confidence interval (CI) = 0.34-0.98, P = 0.041]. Furthermore, A allele of rs2736108 was significantly associated with both the increased RTL (P = 0.048) and the better prognosis of ESCC (adjusted HR = 0.55, 95%CI = 0.38-0.79, P = 1.31 × 10 -3 ). Mediation analysis indicated that the effect of rs2736108 on ESCC prognosis was partly explained by RTL (1.99%). Stepwise Cox proportional hazard analysis suggested that rs2736108 played an important protective role in ESCC prognosis (HR = 0.57, 95%CI = 0.40-0.81, P = 1.97 × 10 - 3 ). Our findings provide evidence that prolonged telomere length is a protective factor for ESCC patients' survival and the known telomere length related genetic variant rs2736108 can contribute to the prognosis of ESCC as well in Chinese population. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lanzaro, G C; Alexander, B; Mutebi, J P; Montoya-Lerma, J; Warburg, A
1998-01-01
Genetic diversity among three field populations of Lutzomyia longipalpis in Colombia was studied using isozyme analysis. Study sites were as much as 598 km apart and included populations separated by the eastern Cordillera of the Andes. Genetic variability among populations, estimated by heterozygosity, was within values typical for insects in general (8.1%). Heterozygosity for field populations were compared with a laboratory colony from Colombia (Melgar colony) and were only slightly lower. These results suggest that establishment and long term maintenance of the Melgar colony has had little effect on the level of isozyme variability it carries. Genetic divergences between populations was evaluated using estimates of genetic distance. Genetic divergence among the three field populations was low (D = 0.021), suggesting they represent local populations within a single species. Genetic distance between field populations and the Melgar colony was also low (D = 0.016), suggesting that this colony population does not depart significantly from natural populations. Finally, comparisons were made between Colombian populations and colonies from Brazil and Costa Rica. Genetic distance values were high between Colombian and both Brazil and Costa Rica colony populations (D = 0.199 and 0.098 respectively) providing additional support for our earlier report that populations from the three countries represent distinct species.
Life-history and habitat features influence the within-river genetic structure of Atlantic salmon.
Vähä, Juha-Pekka; Erkinaro, Jaakko; Niemelä, Eero; Primmer, Craig R
2007-07-01
Defining populations and identifying ecological and life-history characteristics affecting genetic structure is important for understanding species biology and hence, for managing threatened or endangered species or populations. In this study, populations of the world's largest indigenous Atlantic salmon (Salmo salar) stock were first inferred using model-based clustering methods, following which life-history and habitat variables best predicting the genetic diversity of populations were identified. This study revealed that natal homing of Atlantic salmon within the Teno River system is accurate at least to the tributary level. Generally, defining populations by main tributaries was observed to be a reasonable approach in this large river system, whereas in the mainstem of the river, the number of inferred populations was fewer than the number of distinct sampling sites. Mainstem and headwater populations were genetically more diverse and less diverged, while each tributary fostered a distinct population with high genetic differentiation and lower genetic diversity. Population structure and variation in genetic diversity among populations were poorly explained by geographical distance. In contrast, age-structure, as estimated by the proportion of multisea-winter spawners, was the most predictive variable in explaining the variation in the genetic diversity of the populations. This observation, being in agreement with theoretical predictions, emphasizes the essence of large multisea-winter females in maintaining the genetic diversity of populations. In addition, the unique genetic diversity of populations, as estimated by private allele richness, was affected by the ease of accessibility of a site, with more difficult to access sites having lower unique genetic diversity. Our results show that despite this species' high capacity for migration, tributaries foster relatively closed populations with little gene flow which will be important to consider when developing management strategies for the system.
Groom, Rosemary J.; Khuzwayo, Joy; Jansen van Vuuren, Bettine
2018-01-01
The rapid decline of the African lion (Panthera leo) has raised conservation concerns. In the Savé Valley Conservancy (SVC), in the Lowveld of Zimbabwe, lions were presumably reduced to approximately 5 to 10 individuals. After ten lions were reintroduced in 2005, the population has recovered to over 200 lions in 2016. Although the increase of lions in the SVC seems promising, a question remains whether the population is genetically viable, considering their small founding population. In this study, we document the genetic diversity in the SVC lion population using both mitochondrial and nuclear genetic markers, and compare our results to literature from other lion populations across Africa. We also tested whether genetic diversity is spatially structured between lion populations residing on several reserves in the Lowveld of Zimbabwe. A total of 42 lions were genotyped successfully for 11 microsatellite loci. We confirmed that the loss of allelic richness (probably resulting from genetic drift and small number of founders) has resulted in low genetic diversity and inbreeding. The SVC lion population was also found to be genetically differentiated from surrounding population, as a result of genetic drift and restricted natural dispersal due to anthropogenic barriers. From a conservation perspective, it is important to avoid further loss of genetic variability in the SVC lion population and maintain evolutionary potential required for future survival. Genetic restoration through the introduction of unrelated individuals is recommended, as this will increase genetic heterozygosity and improve survival and reproductive fitness in populations. PMID:29415031
Tensen, Laura; Groom, Rosemary J; Khuzwayo, Joy; Jansen van Vuuren, Bettine
2018-01-01
The rapid decline of the African lion (Panthera leo) has raised conservation concerns. In the Savé Valley Conservancy (SVC), in the Lowveld of Zimbabwe, lions were presumably reduced to approximately 5 to 10 individuals. After ten lions were reintroduced in 2005, the population has recovered to over 200 lions in 2016. Although the increase of lions in the SVC seems promising, a question remains whether the population is genetically viable, considering their small founding population. In this study, we document the genetic diversity in the SVC lion population using both mitochondrial and nuclear genetic markers, and compare our results to literature from other lion populations across Africa. We also tested whether genetic diversity is spatially structured between lion populations residing on several reserves in the Lowveld of Zimbabwe. A total of 42 lions were genotyped successfully for 11 microsatellite loci. We confirmed that the loss of allelic richness (probably resulting from genetic drift and small number of founders) has resulted in low genetic diversity and inbreeding. The SVC lion population was also found to be genetically differentiated from surrounding population, as a result of genetic drift and restricted natural dispersal due to anthropogenic barriers. From a conservation perspective, it is important to avoid further loss of genetic variability in the SVC lion population and maintain evolutionary potential required for future survival. Genetic restoration through the introduction of unrelated individuals is recommended, as this will increase genetic heterozygosity and improve survival and reproductive fitness in populations.
2014-01-01
Background Cycas simplicipinna (T. Smitinand) K. Hill. (Cycadaceae) is an endangered species in China. There were seven populations and 118 individuals that we could collect were genotyped in this study. Here, we assessed the genetic diversity, genetic structure and demographic history of this species. Results Analyses of data of DNA sequences (two maternally inherited intergenic spacers of chloroplast, cpDNA and one biparentally inherited internal transcribed spacer region ITS4-ITS5, nrDNA) and sixteen microsatellite loci (SSR) were conducted in the species. Of the 118 samples, 86 individuals from the seven populations were used for DNA sequencing and 115 individuals from six populations were used for the microsatellite study. We found high genetic diversity at the species level, low genetic diversity within each of the seven populations and high genetic differentiation among the populations. There was a clear genetic structure within populations of C. simplicipinna. A demographic history inferred from DNA sequencing data indicates that C. simplicipinna experienced a recent population contraction without retreating to a common refugium during the last glacial period. The results derived from SSR data also showed that C. simplicipinna underwent past effective population contraction, likely during the Pleistocene. Conclusions Some genetic features of C. simplicipinna such as having high genetic differentiation among the populations, a clear genetic structure and a recent population contraction could provide guidelines for protecting this endangered species from extinction. Furthermore, the genetic features with population dynamics of the species in our study would help provide insights and guidelines for protecting other endangered species effectively. PMID:25016306
Conservation genetics of managed ungulate populations
Scribner, Kim T.
1993-01-01
Natural populations of many species are increasingly impacted by human activities. Perturbations are particularly pronunced for large ungulates due in part to sport and commercial harvest, to reductions and fragmentation of native habitat, and as the result of reintroductions. These perturbations affect population size, sex and age composition, and population breeding structure, and as a consequence affect the levels and partitioning of genetic variation. Three case histories highlighting long-term ecological genetic research on mule deer Odocoileus hemionus (Rafinesque, 1817), white-tailed deer O. virginianus (Zimmermann, 1780), and Alpine ibex Capra i. ibex Linnaeus, 1758 are presented. Joint examinations of population ecological and genetic data from several populations of each species reveal: (1) that populations are not in genetic equilibrium, but that allele frequencies and heterozygosity change dramatically over time and among cohorts produced in successive years, (2) populations are genetically structured over short and large geographic distances reflecting local breeding structure and patterns of gene flow, respectively; however, this structure is quite dynamic over time, due in part to population exploitation, and (3) restocking programs are often undertaken with small numbers of founding individuals resulting in dramatic declines in levels of genetic variability and increasing levels of genetic differentiation among populations due to genetic drift. Genetic characteristics have and will continue to provide valuable indirect sources of information relating enviromental and human perturbations to changes in population processes.
Koelling, V A; Hamrick, J L; Mauricio, R
2011-01-01
Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations. PMID:20485327
A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure
Luoma, Sarah E.; St. Armour, Genevieve E.; Thakkar, Esha
2017-01-01
The genetic factors that give rise to variation in susceptibility to environmental toxins remain largely unexplored. Studies on genetic variation in susceptibility to environmental toxins are challenging in human populations, due to the variety of clinical symptoms and difficulty in determining which symptoms causally result from toxic exposure; uncontrolled environments, often with exposure to multiple toxicants; and difficulty in relating phenotypic effect size to toxic dose, especially when symptoms become manifest with a substantial time lag. Drosophila melanogaster is a powerful model that enables genome-wide studies for the identification of allelic variants that contribute to variation in susceptibility to environmental toxins, since the genetic background, environmental rearing conditions and toxic exposure can be precisely controlled. Here, we used extreme QTL mapping in an outbred population derived from the D. melanogaster Genetic Reference Panel to identify alleles associated with resistance to lead and/or cadmium, two ubiquitous environmental toxins that present serious health risks. We identified single nucleotide polymorphisms (SNPs) associated with variation in resistance to both heavy metals as well as SNPs associated with resistance specific to each of them. The effects of these SNPs were largely sex-specific. We applied mutational and RNAi analyses to 33 candidate genes and functionally validated 28 of them. We constructed networks of candidate genes as blueprints for orthologous networks of human genes. The latter not only provided functional contexts for known human targets of heavy metal toxicity, but also implicated novel candidate susceptibility genes. These studies validate Drosophila as a translational toxicogenomics gene discovery system. PMID:28732062
Ruza, Elena; Sotillo, Elena; Sierrasesúmaga, Luis; Azcona, Cristina; Patiño-García, Ana
2003-10-01
The authors' objectives were to compare height at diagnosis of children with bone tumors with that of Spanish reference children; to analyze the frequency of the genotypes for the polymorphisms of the vitamin D receptor (VDR), estrogen receptor (ER), and collagen Ialpha1 (COLIalpha1) genes in patients and in healthy controls; and to test the relationship between the genetic markers and height. Height and weight at diagnosis were measured in 58 osteosarcoma and 36 Ewing sarcoma patients and compared with standards published for Spanish reference children according to sex and age. For the molecular analysis, genetic polymorphisms of the VDR (Fok I, Apa I, and TaqI), ER (Pvu II and XbaI), and COLIalpha1 (Msc I) genes were characterized in 72 osteosarcoma and 53 Ewing sarcomas and in a group of 143 healthy matched children. Osteosarcoma and Ewing sarcoma patients were significantly taller than Spanish reference children. Osteosarcoma patients showed a significantly higher frequency of the Ff genotype for the Fok I polymorphism (VDR gene) than the control group. The odds ratio for this genotype was 1.78, with an increased relative risk of 78% for heterozygous Ff carriers. Among Ewing sarcoma patients, this same genotype was significantly associated with lower height than homozygotes (FF or ff). Children with bone cancer are significantly taller than the reference population, which may be influenced by the genotype for the Fok I polymorphism of the VDR gene.
Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.
Shumbusho, F; Raoul, J; Astruc, J M; Palhiere, I; Elsen, J M
2013-08-01
In conventional small ruminant breeding programs, only pedigree and phenotype records are used to make selection decisions but prospects of including genomic information are now under consideration. The objective of this study was to assess the potential benefits of genomic selection on the genetic gain in French sheep and goat breeding designs of today. Traditional and genomic scenarios were modeled with deterministic methods for 3 breeding programs. The models included decisional variables related to male selection candidates, progeny testing capacity, and economic weights that were optimized to maximize annual genetic gain (AGG) of i) a meat sheep breeding program that improved a meat trait of heritability (h(2)) = 0.30 and a maternal trait of h(2) = 0.09 and ii) dairy sheep and goat breeding programs that improved a milk trait of h(2) = 0.30. Values of ±0.20 of genetic correlation between meat and maternal traits were considered to study their effects on AGG. The Bulmer effect was accounted for and the results presented here are the averages of AGG after 10 generations of selection. Results showed that current traditional breeding programs provide an AGG of 0.095 genetic standard deviation (σa) for meat and 0.061 σa for maternal trait in meat breed and 0.147 σa and 0.120 σa in sheep and goat dairy breeds, respectively. By optimizing decisional variables, the AGG with traditional selection methods increased to 0.139 σa for meat and 0.096 σa for maternal traits in meat breeding programs and to 0.174 σa and 0.183 σa in dairy sheep and goat breeding programs, respectively. With a medium-sized reference population (nref) of 2,000 individuals, the best genomic scenarios gave an AGG that was 17.9% greater than with traditional selection methods with optimized values of decisional variables for combined meat and maternal traits in meat sheep, 51.7% in dairy sheep, and 26.2% in dairy goats. The superiority of genomic schemes increased with the size of the reference population and genomic selection gave the best results when nref > 1,000 individuals for dairy breeds and nref > 2,000 individuals for meat breed. Genetic correlation between meat and maternal traits had a large impact on the genetic gain of both traits. Changes in AGG due to correlation were greatest for low heritable maternal traits. As a general rule, AGG was increased both by optimizing selection designs and including genomic information.
Phylogenomics of Colombian Helicobacter pylori isolates.
Gutiérrez-Escobar, Andrés Julián; Trujillo, Esperanza; Acevedo, Orlando; Bravo, María Mercedes
2017-01-01
During the Spanish colonisation of South America, African slaves and Europeans arrived in the continent with their corresponding load of pathogens, including Helicobacter pylori . Colombian strains have been clustered with the hpEurope population and with the hspWestAfrica subpopulation in multilocus sequence typing (MLST) studies. However, ancestry studies have revealed the presence of population components specific to H. pylori in Colombia. The aim of this study was to perform a thorough phylogenomic analysis to describe the evolution of the Colombian urban H. pylori isolates. A total of 115 genomes of H. pylori were sequenced with Illumina technology from H. pylori isolates obtained in Colombia in a region of high risk for gastric cancer. The genomes were assembled, annotated and underwent phylogenomic analysis with 36 reference strains. Additionally, population differentiation analyses were performed for two bacterial genes. The phylogenetic tree revealed clustering of the Colombian strains with hspWestAfrica and hpEurope, along with three clades formed exclusively by Colombian strains, suggesting the presence of independent evolutionary lines for Colombia. Additionally, the nucleotide diversity of horB and vacA genes from Colombian isolates was lower than in the reference strains and showed a significant genetic differentiation supporting the hypothesis of independent clades with recent evolution. The presence of specific lineages suggest the existence of an hspColombia subtype that emerged from a small and relatively isolated ancestral population that accompanied crossbreeding of human population in Colombia.
Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M
2017-06-01
Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.
Wood, Corlett W; Donald, Hannah M; Formica, Vincent A; Brodie, Edmund D
2013-01-01
In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well-studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B. cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource-associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B. cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource-associated population genetic structure. PMID:23789061
Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu
2016-12-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.
Yadav, Anupama; Dhole, Kaustubh
2016-01-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852
Figueredo, Carmen Julia; Casas, Alejandro; González-Rodríguez, Antonio; Nassar, Jafet M.; Colunga-GarcíaMarín, Patricia; Rocha-Ramírez, Víctor
2015-01-01
Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19–30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73–35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour gene flow and the maintenance of high levels of variation within all populations. The slight differentiation associated with management indicates that domestication is in an incipient stage. PMID:26433707
Fantoni, Anais; Arena, Christophe; Corrias, Laura; Salez, Nicolas; de Lamballerie, Xavier Nicolas; Amoros, Jean Pierre; Blanchon, Thierry; Varesi, Laurent; Falchi, Alessandra
2014-04-01
The 2011-2012 and 2012-2013 post-pandemic influenza outbreaks were characterized by variability in the A(H3N2) influenza viruses, resulting in low to moderate vaccine effectiveness (VE). The aim of this study was to investigate the molecular evolution and vaccine strain match of the A(H3N2) influenza viruses, having been circulated throughout the population of the French Corsica Island in 2011-2012 and again in 2012-2013. Clinical samples from 31 patients with confirmed A(H3N2) influenza viruses were collected by general practitioners (GPs) over these two consecutive seasons. An analysis of genetic distance and antigenic drift was conducted. Based on a hemagglutinin (HA) aminoacid sequence analysis, the Corsican A(H3N2) viruses fell into the A/Victoria/208/2009 genetic clade, group 3. All influenza viruses were characterized by at least four fixed amino acid mutations which were: N145S (epitope A); Q156H and V186G (epitope B) Y219S (epitope D), with respect to the A/Perth/16/2009 (reference vaccine strain for the 2011-2012) and the A/Victoria/361/2011 (reference vaccine strain for the 2012-2013). Using the p(epitope) model, the percentages of the perfect match VE estimated against circulated strains declined within and between seasons, with estimations of <50%. Overall, these results seem to indicate an antigenic drift of the A(H3N2) influenza viruses which were circulated in Corsica. These findings highlight the importance of the continuous and careful surveillance of genetic changes in the HA domain during seasonal influenza epidemics, in order to provide information on newly emerging genetic variants. © 2013 Wiley Periodicals, Inc.
Marancik, David; Gao, Guangtu; Paneru, Bam; Ma, Hao; Hernandez, Alvaro G.; Salem, Mohamed; Yao, Jianbo; Palti, Yniv; Wiens, Gregory D.
2014-01-01
Genetic improvement for enhanced disease resistance in fish is an increasingly utilized approach to mitigate endemic infectious disease in aquaculture. In domesticated salmonid populations, large phenotypic variation in disease resistance has been identified but the genetic basis for altered responsiveness remains unclear. We previously reported three generations of selection and phenotypic validation of a bacterial cold water disease (BCWD) resistant line of rainbow trout, designated ARS-Fp-R. This line has higher survival after infection by either standardized laboratory challenge or natural challenge as compared to two reference lines, designated ARS-Fp-C (control) and ARS-Fp-S (susceptible). In this study, we utilized 1.1 g fry from the three genetic lines and performed RNA-seq to measure transcript abundance from the whole body of naive and Flavobacterium psychrophilum infected fish at day 1 (early time-point) and at day 5 post-challenge (onset of mortality). Sequences from 24 libraries were mapped onto the rainbow trout genome reference transcriptome of 46,585 predicted protein coding mRNAs that included 2633 putative immune-relevant gene transcripts. A total of 1884 genes (4.0% genome) exhibited differential transcript abundance between infected and mock-challenged fish (FDR < 0.05) that included chemokines, complement components, tnf receptor superfamily members, interleukins, nod-like receptor family members, and genes involved in metabolism and wound healing. The largest number of differentially expressed genes occurred on day 5 post-infection between naive and challenged ARS-Fp-S line fish correlating with high bacterial load. After excluding the effect of infection, we identified 21 differentially expressed genes between the three genetic lines. In summary, these data indicate global transcriptome differences between genetic lines of naive animals as well as differentially regulated transcriptional responses to infection. PMID:25620978
Degen, Bernd; Blanc-Jolivet, Céline; Stierand, Katrin; Gillet, Elizabeth
2017-03-01
During the past decade, the use of DNA for forensic applications has been extensively implemented for plant and animal species, as well as in humans. Tracing back the geographical origin of an individual usually requires genetic assignment analysis. These approaches are based on reference samples that are grouped into populations or other aggregates and intend to identify the most likely group of origin. Often this grouping does not have a biological but rather a historical or political justification, such as "country of origin". In this paper, we present a new nearest neighbour approach to individual assignment or classification within a given but potentially imperfect grouping of reference samples. This method, which is based on the genetic distance between individuals, functions better in many cases than commonly used methods. We demonstrate the operation of our assignment method using two data sets. One set is simulated for a large number of trees distributed in a 120km by 120km landscape with individual genotypes at 150 SNPs, and the other set comprises experimental data of 1221 individuals of the African tropical tree species Entandrophragma cylindricum (Sapelli) genotyped at 61 SNPs. Judging by the level of correct self-assignment, our approach outperformed the commonly used frequency and Bayesian approaches by 15% for the simulated data set and by 5-7% for the Sapelli data set. Our new approach is less sensitive to overlapping sources of genetic differentiation, such as genetic differences among closely-related species, phylogeographic lineages and isolation by distance, and thus operates better even for suboptimal grouping of individuals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Restoration over time and sustainability of Schinus terebinthifolius Raddi.
Álvares-Carvalho, S V; Silva-Mann, R; Gois, I B; Melo, M F V; Oliveira, A S; Ferreira, R A; Gomes, L J
2017-05-31
The success of recovery programs on degraded areas is dependent on the genetic material to be used, which should present heterozygosity and genetic diversity in native and recovered populations. This study was carried out to evaluate the model efficiency to enable the recovery of a degraded area of the Lower São Francisco, Sergipe, Brazil. The target species for this study was Schinus terebinthifolius Raddi. Three populations were analyzed, the recovered area, seed-tree source population, and native tree population border established to the recovered area. The random amplified polymorphic DNA (RAPD) markers were used for diversity analysis. Genetic structure was estimated to evaluate the level of genetic variability existent in each population. There was no correlation between the spatial distribution and the genetic distances for all trees of the recovered area. The heterozygosity present in the recovered population was higher than the native tree population. The seed-tree source population presents genetic bottlenecks. Three clusters were suggested (ΔK = 3) with non-genetic structure. High intra-population genetic variability and inter-population differentiation are present. However, gene flow may also introduce potentially adaptive alleles in the populations of the recovered area, and the native population is necessary to ensure the sustainability and maintenance of the populations by allelic exchange.
GENETICS AND POPULATION-LEVEL RISK ASSESSMENT
Genetic variation defines population structure and provides the mechanism for populations to adapt to novel stressors. Despite its fundamental importance in understanding populations, genetic information has been included rarely in models of population dynamics (endangered speci...
Yousseif, Ahmed; Pucci, Andrea; Santini, Ferruccio; Karra, Efthimia; Querci, Giorgia; Pelosini, Caterina; McCarthy, Mark I.; Lindgren, Cecilia M.; Batterham, Rachel L.
2013-01-01
The prevalence of severe obesity, defined as body mass index (BMI) ≥35.0 kg/m2, is rising rapidly. Given the disproportionately high health burden and healthcare costs associated with this condition, understanding the underlying aetiology, including predisposing genetic factors, is a biomedical research priority. Previous studies have suggested that severe obesity represents an extreme tail of the population BMI variation, reflecting shared genetic factors operating across the spectrum. Here, we sought to determine whether a panel of 32 known common obesity-susceptibility variants contribute to severe obesity in patients (n = 1,003, mean BMI 48.4±8.1 kg/m2) attending bariatric surgery clinics in two European centres. We examined the effects of these 32 common variants on obesity risk and BMI, both as individual markers and in combination as a genetic risk score, in a comparison with normal-weight controls (n = 1,809, BMI 18.0–24.9 kg/m2); an approach which, to our knowledge, has not been previously undertaken in the setting of a bariatric clinic. We found strong associations with severe obesity for SNP rs9939609 within the FTO gene (P = 9.3×10−8) and SNP rs2815752 near the NEGR1 gene (P = 3.6×10−4), and directionally consistent nominal associations (P<0.05) for 12 other SNPs. The genetic risk score associated with severe obesity (P = 8.3×10−11) but, within the bariatric cohort, this score did not associate with BMI itself (P = 0.264). Our results show significant effects of individual BMI-associated common variants within a relatively small sample size of bariatric patients. Furthermore, the burden of such low-penetrant risk alleles contributes to severe obesity in this population. Our findings support that severe obesity observed in bariatric patients represents an extreme tail of the population BMI variation. Moreover, future genetic studies focused on bariatric patients may provide valuable insights into the pathogenesis of obesity at a population level. PMID:23950990
Calcium requirements for Asian children and adolescents.
Lee, Warren Tak Keung; Jiang, Ji
2008-01-01
Calcium is important for bone health. Over the last 15 years, reference calcium intakes in Western countries have been revised upwards for maximizing bone mass at skeletal maturity and for prevention of osteoporotic fractures. Some of these reference figures have also been adopted for use in Asian countries. However, the scientific data based on for revising reference calcium intakes in the West was largely based on Caucasians. Limited human studies relating to calcium requirements and bone mineralization have been conducted in Asians in Asia. In children and adolescents, a trial has confirmed no effects of calcium supplementation on bone gains in adolescent girls after 7 years. A meta-analysis has also revealed that calcium supplementation has little beneficial effects on bone gain. Given that genetic factors, hormonal status, body size, bone structure, diets, physical activity, vitamin D status and adaptation could modify calcium retention and bone integrity, these factors need to be considered collectively to promote bone health in Asian populations. Furthermore, studies to identify indigenous foods rich in calcium and high in bioavailability are needed to widen sources of dietary calcium. Ethnic differences in calcium retention, hormonal status, bone structure, bone mineral accretion and peak bone mass are evident among Asians, Caucasians and Blacks in USA. Hence, reference calcium intakes for Asians are likely to be unique and different from those of Caucasians. More research has to be conducted in Asian populations in order to develop appropriate reference calcium intakes for the region.
NASA Astrophysics Data System (ADS)
Kopps, Anna M.; Palsbøll, Per J.
2016-02-01
The assessment of the status of endangered species or populations typically draw generously on the plethora of population genetic software available to detect population genetic structuring. However, despite the many available analytical approaches, population genetic inference methods [of neutral genetic variation] essentially capture three basic processes; migration, random genetic drift and mutation. Consequently, different analytical approaches essentially capture the same basic process, and should yield consistent results.
Moonesinghe, Ramal; Ioannidis, John P A; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J
2012-08-01
Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene-environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal.
Moonesinghe, Ramal; Ioannidis, John PA; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J
2012-01-01
Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene–environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal. PMID:22333905
Stepanov, Vadim; Vagaitseva, Ksenyia; Kharkov, Vladimir; Cherednichenko, Anastasia; Bocharova, Anna; Berezina, Galina; Svyatova, Gulnara
2016-01-01
X chromosome genetic markers are widely used in basic population genetic research as well as in forensic genetics. In this paper we analyze the genetic diversity of 62 X chromosome SNPs in 4 populations using multiplex genotyping based on multi-locus PCR and MALDI-TOF mass spectrometry, and report forensic and population genetic features of the panel of X-linked SNPs (XSNPid). Studied populations represent Siberian (Buryat and Khakas), North Asian (Khanty) and Central Asian (Kazakh) native people. Khanty, Khakas and Kazakh population demonstrate average gene diversity over 0.45. Only East Siberian Buryat population is characterized by lower average heterozygosity (0.436). AMOVA analysis of genetic structure reveals a relatively low but significant level of genetic differentiation in a group of 4 population studied (FST=0.023, p=0.0000). The XSNPid panel provides a very high discriminating power in each population. The combined probability of discrimination in females (PDf) for XSNPid panel ranged between populations from 0.99999999999999999999999982 in Khakas to 0.9999999999999999999999963 in Buryats. The combined discriminating power in males (PDm) varies from 0.999999999999999792 to 0.9999999999999999819. The developed multiplex set of X chromosome SNPs can be a useful tool for population genetic studies and for forensic identity and kinship testing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Identifying artificial selection signals in the chicken genome.
Ma, Yunlong; Gu, Lantao; Yang, Liubin; Sun, Chenghao; Xie, Shengsong; Fang, Chengchi; Gong, Yangzhang; Li, Shijun
2018-01-01
Identifying the signals of artificial selection can contribute to further shaping economically important traits. Here, a chicken 600k SNP-array was employed to detect the signals of artificial selection using 331 individuals from 9 breeds, including Jingfen (JF), Jinghong (JH), Araucanas (AR), White Leghorn (WL), Pekin-Bantam (PB), Shamo (SH), Gallus-Gallus-Spadiceus (GA), Rheinlander (RH) and Vorwerkhuhn (VO). Per the population genetic structure, 9 breeds were combined into 5 breed-pools, and a 'two-step' strategy was used to reveal the signals of artificial selection. GA, which has little artificial selection, was defined as the reference population, and a total of 204, 155, 305 and 323 potential artificial selection signals were identified in AR_VO, PB, RH_WL and JH_JF, respectively. We also found signals derived from standing and de-novo genetic variations have contributed to adaptive evolution during artificial selection. Further enrichment analysis suggests that the genomic regions of artificial selection signals harbour genes, including THSR, PTHLH and PMCH, responsible for economic traits, such as fertility, growth and immunization. Overall, this study found a series of genes that contribute to the improvement of chicken breeds and revealed the genetic mechanisms of adaptive evolution, which can be used as fundamental information in future chicken functional genomics study.
2009-01-01
In 2004, a population-based cohort (the Núcleo Mama Porto Alegre - NMPOA Cohort) was started in Porto Alegre, southern Brazil and within that cohort, a hereditary breast cancer study was initiated, aiming to determine the prevalence of hereditary breast cancer phenotypes and evaluate acceptance of a genetic cancer risk assessment (GCRA) program. Women from that cohort who reported a positive family history of cancer were referred to GCRA. Of the 9218 women enrolled, 1286 (13.9%) reported a family history of cancer. Of the 902 women who attended GCRA, 55 (8%) had an estimated lifetime risk of breast cancer ≥ 20% and 214 (23.7%) had pedigrees suggestive of a breast cancer predisposition syndrome; an unexpectedly high number of these fulfilled criteria for Li-Fraumeni-like syndrome (122 families, 66.7%). The overall prevalence of a hereditary breast cancer phenotype was 6.2% (95%CI: 5.67-6.65). These findings identified a problem of significant magnitude in the region and indicate that genetic cancer risk evaluation should be undertaken in a considerable proportion of the women from this community. The large proportion of women who attended GCRA (72.3%) indicates that the program was well-accepted by the community, regardless of the potential cultural, economic and social barriers. PMID:21637504
Münzbergová, Zuzana; Šurinová, Maria; Husáková, Iveta; Brabec, Jiří
2018-04-26
Assessing genetic diversity within populations of rare species and understanding its determinants are crucial for effective species protection. While a lot is known about the relationships between genetic diversity, fitness, and current population size, very few studies explored the effects of past population size. Knowledge of past population size may, however, improve our ability to predict future population fates. We studied Gentianella praecox subsp. bohemica, a biennial species with extensive seed bank. We tested the effect of current, past minimal and maximal population size, and harmonic mean of population sizes within the last 15 years on genetic diversity and fitness. Maximum population size over the last 15 years was the best predictor of expected heterozygosity of the populations and was significantly related to current population size and management. Plant fitness was significantly related to current as well as maximum population size and expected heterozygosity. The results suggested that information on past population size may improve our understanding of contemporary genetic diversity across populations. They demonstrated that despite the strong fluctuations in population size, large reductions in population size do not result in immediate loss of genetic diversity and reduction of fitness within the populations. This is likely due to the seed bank of the species serving as reservoir of the genetic diversity of the populations. From a conservation point of view, this suggests that the restoration of small populations of short-lived species with permanent seed bank is possible as these populations may still be genetically diverse.
Geographic structure of European anchovy: A nuclear-DNA study
NASA Astrophysics Data System (ADS)
Bouchenak-Khelladi, Yanis; Durand, Jean-Dominique; Magoulas, Antonios; Borsa, Philippe
2008-08-01
Atlantic-Mediterranean anchovies were genetically characterized at two polymorphic nuclear loci (intron 6 of two creatine-kinase genes) and compared to reference Engraulis albidus and E. encrasicolus samples from the northern Western Mediterranean to provide new insights into their geographic structure. Northeastern Atlantic anchovy, represented by one sample from the Canary archipelago and one sample from the Alboran Sea, were genetically distinct from Mediterranean E. encrasicolus (Weir and Cockerham's ^θ = 0.027-0.311), indicating geographic isolation from either side of the Almería-Oran oceanographic front. Generally smaller genetic differences were evident among anchovy populations from different sub-basins in the Mediterranean ( ^θ = - 0.019-0.116), the genetic differences between Black Sea and Ionian Sea/Aegean Sea anchovies being the strongest ( ^θ = 0.002-0.116). There was no evidence of the presence of E. albidus in our samples outside Camargue (northern shore of the Western Mediterranean). However, a sample from the southern Western Mediterranean appeared to be genetically intermediate between E. albidus and Mediterranean E. encrasicolus, indicating possible hybridization. Anchovy from the Benguela current system off southern Africa possessed allele frequencies characteristic of E. albidus at one locus and Northeastern Atlantic anchovy at the other locus, suggesting past introgression.
Genetic Architectures of Quantitative Variation in RNA Editing Pathways
Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.
2016-01-01
RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740
Deep whole-genome sequencing of 100 southeast Asian Malays.
Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying
2013-01-10
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps.
Garud, Nandita R; Messer, Philipp W; Buzbas, Erkan O; Petrov, Dmitri A
2015-02-01
Adaptation from standing genetic variation or recurrent de novo mutation in large populations should commonly generate soft rather than hard selective sweeps. In contrast to a hard selective sweep, in which a single adaptive haplotype rises to high population frequency, in a soft selective sweep multiple adaptive haplotypes sweep through the population simultaneously, producing distinct patterns of genetic variation in the vicinity of the adaptive site. Current statistical methods were expressly designed to detect hard sweeps and most lack power to detect soft sweeps. This is particularly unfortunate for the study of adaptation in species such as Drosophila melanogaster, where all three confirmed cases of recent adaptation resulted in soft selective sweeps and where there is evidence that the effective population size relevant for recent and strong adaptation is large enough to generate soft sweeps even when adaptation requires mutation at a specific single site at a locus. Here, we develop a statistical test based on a measure of haplotype homozygosity (H12) that is capable of detecting both hard and soft sweeps with similar power. We use H12 to identify multiple genomic regions that have undergone recent and strong adaptation in a large population sample of fully sequenced Drosophila melanogaster strains from the Drosophila Genetic Reference Panel (DGRP). Visual inspection of the top 50 candidates reveals that in all cases multiple haplotypes are present at high frequencies, consistent with signatures of soft sweeps. We further develop a second haplotype homozygosity statistic (H2/H1) that, in combination with H12, is capable of differentiating hard from soft sweeps. Surprisingly, we find that the H12 and H2/H1 values for all top 50 peaks are much more easily generated by soft rather than hard sweeps. We discuss the implications of these results for the study of adaptation in Drosophila and in species with large census population sizes.
NASA Astrophysics Data System (ADS)
Nakajima, Yuichi; Nishikawa, Akira; Iguchi, Akira; Nagata, Tomofumi; Uyeno, Daisuke; Sakai, Kazuhiko; Mitarai, Satoshi
2017-06-01
The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064-0.116 (all P = 0.001), pairwise G''ST = 0.107-0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.
Ivanović, Žarko; Perović, Tatjana; Popović, Tatjana; Blagojević, Jovana; Trkulja, Nenad; Hrnčić, Snježana
2017-02-01
Citrus blast caused by bacterium Pseudomonas syringae is a very important disease of citrus occuring in many areas of the world, but with few data about genetic structure of the pathogen involved. Considering the above fact, this study reports genetic characterization of 43 P. syringae isolates obtained from plant tissue displaying citrus blast symptoms on mandarin ( Citrus reticulata ) in Montenegro, using multilocus sequence analysis of gyrB , rpoD , and gap1 gene sequences. Gene sequences from a collection of 54 reference pathotype strains of P. syringae from the Plant Associated and Environmental Microbes Database (PAMDB) was used to establish a genetic relationship with our isolates obtained from mandarin. Phylogenetic analyses of gyrB , rpoD , and gap1 gene sequences showed that P. syringae pv. syringae causes citrus blast in mandarin in Montenegro, and belongs to genomospecies 1. Genetic homogeneity of isolates suggested that the Montenegrian population might be clonal which indicates a possible common source of infection. These findings may assist in further epidemiological studies of this pathogen and for determining mandarin breeding strategies for P. syringae control.
Ivanović, Žarko; Perović, Tatjana; Popović, Tatjana; Blagojević, Jovana; Trkulja, Nenad; Hrnčić, Snježana
2017-01-01
Citrus blast caused by bacterium Pseudomonas syringae is a very important disease of citrus occuring in many areas of the world, but with few data about genetic structure of the pathogen involved. Considering the above fact, this study reports genetic characterization of 43 P. syringae isolates obtained from plant tissue displaying citrus blast symptoms on mandarin (Citrus reticulata) in Montenegro, using multilocus sequence analysis of gyrB, rpoD, and gap1 gene sequences. Gene sequences from a collection of 54 reference pathotype strains of P. syringae from the Plant Associated and Environmental Microbes Database (PAMDB) was used to establish a genetic relationship with our isolates obtained from mandarin. Phylogenetic analyses of gyrB, rpoD, and gap1 gene sequences showed that P. syringae pv. syringae causes citrus blast in mandarin in Montenegro, and belongs to genomospecies 1. Genetic homogeneity of isolates suggested that the Montenegrian population might be clonal which indicates a possible common source of infection. These findings may assist in further epidemiological studies of this pathogen and for determining mandarin breeding strategies for P. syringae control. PMID:28167885
sGD: software for estimating spatially explicit indices of genetic diversity.
Shirk, A J; Cushman, S A
2011-09-01
Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans. © 2011 Blackwell Publishing Ltd.