Carrier screening for single gene disorders.
Rose, Nancy C; Wick, Myra
2018-04-01
Screening for genetic disorders began in 1963 with the initiation of newborn screening for phenylketonuria. Advances in molecular technology have made both newborn screening for newborns affected with serious disorders, and carrier screening of individuals at risk for offspring with genetic disorders, more complex and more widely available. Carrier screening today can be performed secondary to family history-based screening, ethnic-based screening, and expanded carrier screening (ECS). ECS is panel-based screening, which analyzes carrier status for hundreds of genetic disorders irrespective of patient race or ethnicity. In this article, we review the historical and current aspects of carrier screening for single gene disorders, including future research directions. Copyright © 2017 Elsevier Ltd. All rights reserved.
D'Andrea, Elvira; Marzuillo, Carolina; De Vito, Corrado; Di Marco, Marco; Pitini, Erica; Vacchio, Maria Rosaria; Villari, Paolo
2016-12-01
There is considerable evidence regarding the efficacy and effectiveness of BRCA genetic testing programs, but whether they represent good use of financial resources is not clear. Therefore, we aimed to identify the main health-care programs for BRCA testing and to evaluate their cost-effectiveness. We performed a systematic review of full economic evaluations of health-care programs involving BRCA testing. Nine economic evaluations were included, and four main categories of BRCA testing programs were identified: (i) population-based genetic screening of individuals without cancer, either comprehensive or targeted based on ancestry; (ii) family history (FH)-based genetic screening, i.e., testing individuals without cancer but with FH suggestive of BRCA mutation; (iii) familial mutation (FM)-based genetic screening, i.e., testing individuals without cancer but with known familial BRCA mutation; and (iv) cancer-based genetic screening, i.e., testing individuals with BRCA-related cancers. Currently BRCA1/2 population-based screening represents good value for the money among Ashkenazi Jews only. FH-based screening is potentially very cost-effective, although further studies that include costs of identifying high-risk women are needed. There is no evidence of cost-effectiveness for BRCA screening of all newly diagnosed cases of breast/ovarian cancers followed by cascade testing of relatives, but programs that include tools for identifying affected women at higher risk for inherited forms are promising. Cost-effectiveness is highly sensitive to the cost of BRCA1/2 testing.Genet Med 18 12, 1171-1180.
High-throughput, image-based screening of pooled genetic variant libraries
Emanuel, George; Moffitt, Jeffrey R.; Zhuang, Xiaowei
2018-01-01
Image-based, high-throughput screening of genetic perturbations will advance both biology and biotechnology. We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in numerous individual cells. We achieve genotyping by introducing barcoded genetic variants into cells and using massively multiplexed FISH to measure the barcodes. We demonstrated this method by screening mutants of the fluorescent protein YFAST, yielding brighter and more photostable YFAST variants. PMID:29083401
Measuring informed choice in population-based reproductive genetic screening: a systematic review
Ames, Alice Grace; Metcalfe, Sylvia Ann; Archibald, Alison Dalton; Duncan, Rony Emily; Emery, Jon
2015-01-01
Genetic screening and health-care guidelines recommend that programmes should facilitate informed choice. It is therefore important that accurate measures of informed choice are available to evaluate such programmes. This review synthesises and appraises measures used to evaluate informed choice in population-based genetic screening programmes for reproductive risk. Databases were searched for studies offering genetic screening for the purpose of establishing reproductive risk to an adult population sample, in which aspects of informed choice were measured. Studies were included if, at a minimum, measures of uptake of screening and knowledge were used. Searches identified 1462 citations and 76 studies were reviewed in full text; 34 studies met the inclusion criteria. Over 20 different measures of informed choice were used. Many measures lacked adequate validity and reliability data. This systematic review will inform future evaluation of informed choice in population genetic screening programmes. PMID:24848746
Population screening for genetic disorders in the 21st century: evidence, economics, and ethics.
Grosse, S D; Rogowski, W H; Ross, L F; Cornel, M C; Dondorp, W J; Khoury, M J
2010-01-01
Proposals for population screening for genetic diseases require careful scrutiny by decision makers because of the potential for harms and the need to demonstrate benefits commensurate with the opportunity cost of resources expended. We review current evidence-based processes used in the United States, the United Kingdom, and the Netherlands to assess genetic screening programs, including newborn screening programs, carrier screening, and organized cascade testing of relatives of patients with genetic syndromes. In particular, we address critical evidentiary, economic, and ethical issues that arise in the appraisal of screening tests offered to the population. Specific case studies include newborn screening for congenital adrenal hyperplasia and cystic fibrosis and adult screening for hereditary hemochromatosis. Organizations and countries often reach different conclusions about the suitability of screening tests for implementation on a population basis. Deciding when and how to introduce pilot screening programs is challenging. In certain cases, e.g., hereditary hemochromatosis, a consensus does not support general screening although cascade screening may be cost-effective. Genetic screening policies have often been determined by technological capability, advocacy, and medical opinion rather than through a rigorous evidence-based review process. Decision making should take into account principles of ethics and opportunity costs. Copyright 2009 S. Karger AG, Basel.
Wang, Lu-Yong; Fasulo, D
2006-01-01
Genome-wide association study for complex diseases will generate massive amount of single nucleotide polymorphisms (SNPs) data. Univariate statistical test (i.e. Fisher exact test) was used to single out non-associated SNPs. However, the disease-susceptible SNPs may have little marginal effects in population and are unlikely to retain after the univariate tests. Also, model-based methods are impractical for large-scale dataset. Moreover, genetic heterogeneity makes the traditional methods harder to identify the genetic causes of diseases. A more recent random forest method provides a more robust method for screening the SNPs in thousands scale. However, for more large-scale data, i.e., Affymetrix Human Mapping 100K GeneChip data, a faster screening method is required to screening SNPs in whole-genome large scale association analysis with genetic heterogeneity. We propose a boosting-based method for rapid screening in large-scale analysis of complex traits in the presence of genetic heterogeneity. It provides a relatively fast and fairly good tool for screening and limiting the candidate SNPs for further more complex computational modeling task.
Creation of a National, At-home Model for Ashkenazi Jewish Carrier Screening.
Grinzaid, Karen Arnovitz; Page, Patricia Zartman; Denton, Jessica Johnson; Ginsberg, Jessica
2015-06-01
Ethnicity-based carrier screening for the Ashkenazi Jewish population has been available and encouraged by advocacy and community groups since the early 1970's. Both the American College of Medical Genetics and the American Congress of Obstetricians and Gynecologists recommend carrier screening for this population (Obstetrics and Gynecology, 114(4), 950-953, 2009; Genetics in Medicine, 10(1), 55-56, 2008). While many physicians inquire about ethnic background and offer appropriate carrier screening, studies show that a gap remains in implementing recommendations (Genetic testing and molecular biomarkers, 2011). In addition, education and outreach efforts targeting Jewish communities have had limited success in reaching this at-risk population. Despite efforts by the medical and Jewish communities, many Jews of reproductive age are not aware of screening, and remain at risk for having children with preventable diseases. Reaching this population, preferably pre-conception, and facilitating access to screening is critically important. To address this need, genetic counselors at Emory University developed JScreen, a national Jewish genetic disease screening program. The program includes a national marketing and PR campaign, online education, at-home saliva-based screening, post-test genetic counseling via telephone or secure video conferencing, and referrals for face-to-face genetic counseling as needed. Our goals are to create a successful education and screening program for this population and to develop a model that could potentially be used for other at-risk populations.
Vendrell, Xavier; Bautista-Llácer, Rosa
2012-12-01
The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.
Incorporating genomics into breast and prostate cancer screening: assessing the implications
Chowdhury, Susmita; Dent, Tom; Pashayan, Nora; Hall, Alison; Lyratzopoulos, Georgios; Hallowell, Nina; Hall, Per; Pharoah, Paul; Burton, Hilary
2013-01-01
Individual risk prediction and stratification based on polygenic profiling may be useful in disease prevention. Risk-stratified population screening based on multiple factors including a polygenic risk profile has the potential to be more efficient than age-stratified screening. In this article, we summarize the implications of personalized screening for breast and prostate cancers. We report the opinions of multidisciplinary international experts who have explored the scientific, ethical, and logistical aspects of stratified screening. We have identified (i) the need to recognize the benefits and harms of personalized screening as compared with existing screening methods, (ii) that the use of genetic data highlights complex ethical issues including discrimination against high-risk individuals by insurers and employers and patient autonomy in relation to genetic testing of minors, (iii) the need for transparency and clear communication about risk scores, about harms and benefits, and about reasons for inclusion and exclusion from the risk-based screening process, and (iv) the need to develop new professional competences and to assess cost-effectiveness and acceptability of stratified screening programs before implementation. We conclude that health professionals and stakeholders need to consider the implications of incorporating genetic information in intervention strategies for health-care planning in the future. Genet Med 2013:15(6):423–432 PMID:23412607
Knowlton, Michelle N; Li, Tongbin; Ren, Yongliang; Bill, Brent R; Ellis, Lynda Bm; Ekker, Stephen C
2008-01-07
The zebrafish is a powerful model vertebrate amenable to high throughput in vivo genetic analyses. Examples include reverse genetic screens using morpholino knockdown, expression-based screening using enhancer trapping and forward genetic screening using transposon insertional mutagenesis. We have created a database to facilitate web-based distribution of data from such genetic studies. The MOrpholino DataBase is a MySQL relational database with an online, PHP interface. Multiple quality control levels allow differential access to data in raw and finished formats. MODBv1 includes sequence information relating to almost 800 morpholinos and their targets and phenotypic data regarding the dose effect of each morpholino (mortality, toxicity and defects). To improve the searchability of this database, we have incorporated a fixed-vocabulary defect ontology that allows for the organization of morpholino affects based on anatomical structure affected and defect produced. This also allows comparison between species utilizing Phenotypic Attribute Trait Ontology (PATO) designated terminology. MODB is also cross-linked with ZFIN, allowing full searches between the two databases. MODB offers users the ability to retrieve morpholino data by sequence of morpholino or target, name of target, anatomical structure affected and defect produced. MODB data can be used for functional genomic analysis of morpholino design to maximize efficacy and minimize toxicity. MODB also serves as a template for future sequence-based functional genetic screen databases, and it is currently being used as a model for the creation of a mutagenic insertional transposon database.
Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta
2008-04-22
Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.
Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan.
Chen, Ying-Erh; Kao, Sung-Shuo; Chung, Ren-Hua
2016-01-01
Patients with Lynch syndrome (LS) have a significantly increased risk of developing colorectal cancer (CRC) and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes) in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan's Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing strategies for LS in Taiwan. The results will be informative for the government when considering offering screening for LS in patients newly diagnosed with CRC.
Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling.
Wilson, R Douglas; De Bie, Isabelle; Armour, Christine M; Brown, Richard N; Campagnolo, Carla; Carroll, June C; Okun, Nan; Nelson, Tanya; Zwingerman, Rhonda; Audibert, Francois; Brock, Jo-Ann; Brown, Richard N; Campagnolo, Carla; Carroll, June C; De Bie, Isabelle; Johnson, Jo-Ann; Okun, Nan; Pastruck, Melanie; Vallée-Pouliot, Karine; Wilson, R Douglas; Zwingerman, Rhonda; Armour, Christine; Chitayat, David; De Bie, Isabelle; Fernandez, Sara; Kim, Raymond; Lavoie, Josee; Leonard, Norma; Nelson, Tanya; Taylor, Sherry; Van Allen, Margot; Van Karnebeek, Clara
2016-08-01
This guideline was written to update Canadian maternity care and reproductive healthcare providers on pre- and postconceptional reproductive carrier screening for women or couples who may be at risk of being carriers for autosomal recessive (AR), autosomal dominant (AD), or X-linked (XL) conditions, with risk of transmission to the fetus. Four previous SOGC- Canadian College of Medical Geneticists (CCMG) guidelines are updated and merged into the current document. All maternity care (most responsible health provider [MRHP]) and paediatric providers; maternity nursing; nurse practitioner; provincial maternity care administrator; medical student; and postgraduate resident year 1-7. Fertile, sexually active females and their fertile, sexually active male partners who are either planning a pregnancy or are pregnant (preferably in the first trimester of pregnancy, but any gestational age is acceptable). Women and their partners will be able to obtain appropriate genetic carrier screening information and possible diagnosis of AR, AD, or XL disorders (preferably pre-conception), thereby allowing an informed choice regarding genetic carrier screening and reproductive options (e.g., prenatal diagnosis, preimplantation genetic diagnosis, egg or sperm donation, or adoption). Informed reproductive decisions related to genetic carrier screening and reproductive outcomes based on family history, ethnic background, past obstetrical history, known carrier status, or genetic diagnosis. SOGC REPRODUCTIVE CARRIER SCREENING SUMMARY STATEMENT (2016): Pre-conception or prenatal education and counselling for reproductive carrier screening requires a discussion about testing within the three perinatal genetic carrier screening/diagnosis time periods, which include pre-conception, prenatal, and neonatal for conditions currently being screened for and diagnosed. This new information should be added to the standard reproductive carrier screening protocols that are already being utilized by the most responsible maternity provider through the informed consent process with the patient. (III-A; GRADE low/moderate) SOGC OVERVIEW OF RECOMMENDATIONS QUALITY AND GRADE: There was a strong observational/expert opinion (quality and grade) for the genetic carrier literature with randomized controlled trial evidence being available only for the invasive testing. Both the Canadian Task Force on Preventive Health Care quality and classification and the GRADE evidence quality and grade are provided. MEDLINE; PubMed; government neonatal screening websites; key words/common reproductive genetic carrier screened diseases/previous SOGC Guidelines/medical academic societies (Society of Maternal-Fetal Medicine [SMFM]; American College of Medical Genetics and Genomics; American College of Obstetricians and Gynecologists [ACOG]; CCMG; Royal College Obstetrics and Gynaecology [RCOG] [UK]; American Society of Human Genetics [ASHG]; International Society of Prenatal Diagnosis [ISPD])/provincial neonatal screening policies and programs; search terms (carrier screening, prenatal screening, neonatal genetic/metabolic screening, cystic fibrosis (CF), thalassemia, hemoglobinopathy, hemophilia, Fragile X syndrome (FXS), spinal muscular atrophy, Ashkenazi Jewish carrier screening, genetic carrier screening protocols, AR, AD, XL). 10 years (June 2005-September 2015); initial search dates June 30, 2015 and September 15, 2015; completed final search January 4, 2016. Validation of articles was completed by primary authors RD Wilson and I De Bie. Benefits are to provide an evidenced based reproductive genetic carrier screening update consensus based on international opinions and publications for the use of Canadian women, who are planning a pregnancy or who are pregnant and have been identified to be at risk (personal or male partner family or reproductive history) for the transmission of a clinically significant genetic condition to their offspring with associated morbidity and/or mortality. Harm may arise from having counselling and informed testing of the carrier status of the mother, their partner, or their fetus, as well as from declining to have this counselling and informed testing or from not having the opportunity for counselling and informed testing. Costs will ensue both from the provision of opportunities for counselling and testing, as well as when no such opportunities are offered or are declined and the birth of a child with a significant inherited condition and resulting morbidity/mortality occurs; these comprise not only the health care costs to the system but also the social/financial/psychological/emotional costs to the family. These recommendations are based on expert opinion and have not been subjected to a health economics assessment and local or provincial implementation will be required. This guideline is an update of four previous joint SOGC-CCMG Genetic Screening Guidelines dated 2002, 2006, 2008, and 2008 developed by the SOGC Genetic Committee in collaboration with the CCMG Prenatal Diagnosis Committee (now Clinical Practice Committee). 2016 CARRIER SCREENING RECOMMENDATIONS. Copyright © 2016 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.
Contribution of extended family history in assessment of risk for breast and colon cancer.
Solomon, Benjamin L; Whitman, Todd; Wood, Marie E
2016-09-01
Family history is important for identifying candidates for high risk cancer screening and referral for genetic counseling. We sought to determine the percentage of individuals who would be eligible for high risk cancer screening or genetic referral and testing if family history includes an extended (vs limited) family history. Family histories were obtained from 626 women at UVMMC associated mammography centers from 2001 to 2002. ACS guidelines were used to determine eligibility for high risk breast or colon cancer screening. Eligibility for referral for genetic counseling for hereditary breast and colon cancer was determined using the Referral Screening Tool and Amsterdam II screening criteria, respectively. All family histories were assessed for eligibility by a limited history (first degree relatives only) and extended history (first and second degree relatives). Four hundred ninety-nine histories were eligible for review. 18/282 (3.6 %) and 62/123 (12 %) individuals met criteria for high risk breast and colon cancer screening, respectively. 13/18 (72 %) in the high risk breast cancer screening group and 12/62 (19 %) in the high risk colon cancer screening group met criteria based upon an extended family history. 9/282 (1.8 %) and 31/123 (6.2 %) individuals met criteria for genetic counseling referral and testing for breast and colon cancer, respectively. 2/9 (22 %) of individuals in the genetic breast cancer screening group and 21/31 (68 %) individuals in the genetic colon cancer screening group met criteria based upon extended family history. This is one of the first studies to suggest that first degree family history alone is not adequate for identification of candidates for high risk screening and referral for genetic counseling for hereditary breast and colon cancer syndromes. A larger population is needed to further validate this data.
Functional genomics platform for pooled screening and mammalian genetic interaction maps
Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.
2014-01-01
Systematic genetic interaction maps in microorganisms are powerful tools for identifying functional relationships between genes and defining the function of uncharacterized genes. We have recently implemented this strategy in mammalian cells as a two-stage approach. First, genes of interest are robustly identified in a pooled genome-wide screen using complex shRNA libraries. Second, phenotypes for all pairwise combinations of hit genes are measured in a double-shRNA screen and used to construct a genetic interaction map. Our protocol allows for rapid pooled screening under various conditions without a requirement for robotics, in contrast to arrayed approaches. Each stage of the protocol can be implemented in ~2 weeks, with additional time for analysis and generation of reagents. We discuss considerations for screen design, and present complete experimental procedures as well as a full computational analysis suite for identification of hits in pooled screens and generation of genetic interaction maps. While the protocols outlined here were developed for our original shRNA-based approach, they can be applied more generally, including to CRISPR-based approaches. PMID:24992097
Steinbach, Rosemary J.; Allyse, Megan; Michie, Marsha; Liu, Emily Y.; Cho, Mildred K.
2016-01-01
Recently, new noninvasive prenatal genetic screening technologies for Down syndrome and other genetic conditions have become commercially available. Unique characteristics of these screening tests have reignited long-standing concerns about prenatal testing for intellectual and developmental disabilities. We conducted a web-based survey of a sample of the US public to examine how attitudes towards disability inform views of prenatal testing in the context of these rapidly advancing prenatal genetic screening technologies. Regardless of opinion toward disability, the majority of respondents supported both the availability of screening and the decision to continue a pregnancy positive for aneuploidy. Individuals rationalized their support with various conceptions of disability; complications of the expressivist argument and other concerns from the disability literature were manifested in many responses analyzed. PMID:26566970
Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta
2008-01-01
Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge. PMID:18430222
Conrad, E A; Fine, B; Hecht, B R; Pergament, E
1996-01-01
To determine how the screening practices of commercial semen banks vary from published guidelines, which factors influence cryobanks to exclude prospective semen donors for genetic reasons, and the current role of clinical geneticists/genetic counselors in evaluating prospective semen donors. The genetic screening of prospective donors by commercial semen banks was evaluated using written questionnaires completed by bank directors. Responses were analyzed to determine exclusion criteria, adherence to published guidelines, and contribution of genetic professionals. Semen banks were selected on the basis of membership in the American Association of Tissue Banks and commercial use of semen for artificial insemination by donor. Semen bank practices as reported by commercial semen bank directors. Of 37 eligible banks, 16 responded. All screen prospective donors by medical/family history and physical examination, 94% have upper age limits; 63% examine for minor physical defects; 56% routinely karyotype; 81% screen men of ethnic groups at risk for Tay Sachs disease, sickle cell disease and thalassemia; 19% screen all donors; 25% screen all donors for cystic fibrosis and 50% only screen if family history positive. Donor rejection was based on three criteria: mode of inheritance of familial disorder, severity of disease, and availability of carrier/confirmatory testing of donor genotype. Ten of 16 banks have no genetic professional on staff. Commercial semen banks primarily rely on family history as the major exclusion criterion in genetic screening of donors. Considerable differences exist among semen bank practices in accordance with guidelines published by national agencies. Genetic professionals have a minimal effect overall on evaluation of semen donors.
Pregnant Women's Perspectives on Expanded Carrier Screening.
Propst, Lauren; Connor, Gwendolyn; Hinton, Megan; Poorvu, Tabitha; Dungan, Jeffrey
2018-02-23
Expanded carrier screening (ECS) is a relatively new carrier screening option that assesses many conditions simultaneously, as opposed to traditional ethnicity-based carrier screening for a limited number of conditions. This study aimed to explore pregnant women's perspectives on ECS, including reasons for electing or declining and anxiety associated with this decision-making. A total of 80 pregnant women were surveyed from Northwestern Medicine's Clinical Genetics Division after presenting for aneuploidy screening. Of the 80 participants, 40 elected and 40 declined ECS. Trends regarding reasons for electing or declining ECS include ethnicity, desire for genetic risk information, lack of family history, perceived likelihood of being a carrier, and perceived impact on reproductive decisions. Individuals who declined ECS seemed to prefer ethnicity-based carrier screening and believed that ECS would increase their anxiety, whereas individuals who elected ECS seemed to prefer more screening and tended to believe that ECS would reduce their anxiety. These findings provide insight on decision-making with regard to ECS and can help guide interactions that genetic counselors and other healthcare providers have with patients, including assisting patients in the decision-making process.
Javan Amoli, Amir Hossein; Maserat, Elham; Safdari, Reza; Zali, Mohammad Reza
2015-01-01
Decision making modalities for screening for many cancer conditions and different stages have become increasingly complex. Computer-based risk assessment systems facilitate scheduling and decision making and support the delivery of cancer screening services. The aim of this article was to survey electronic risk assessment system as an appropriate tool for the prevention of cancer. A qualitative design was used involving 21 face-to-face interviews. Interviewing involved asking questions and getting answers from exclusive managers of cancer screening. Of the participants 6 were female and 15 were male, and ages ranged from 32 to 78 years. The study was based on a grounded theory approach and the tool was a semi- structured interview. Researchers studied 5 dimensions, comprising electronic guideline standards of colorectal cancer screening, work flow of clinical and genetic activities, pathways of colorectal cancer screening and functionality of computer based guidelines and barriers. Electronic guideline standards of colorectal cancer screening were described in the s3 categories of content standard, telecommunications and technical standards and nomenclature and classification standards. According to the participations' views, workflow and genetic pathways of colorectal cancer screening were identified. The study demonstrated an effective role of computer-guided consultation for screening management. Electronic based systems facilitate real-time decision making during a clinical interaction. Electronic pathways have been applied for clinical and genetic decision support, workflow management, update recommendation and resource estimates. A suitable technical and clinical infrastructure is an integral part of clinical practice guidline of screening. As a conclusion, it is recommended to consider the necessity of architecture assessment and also integration standards.
Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero
2011-03-24
High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.
Responsible implementation of expanded carrier screening
Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut
2016-01-01
This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105
ERIC Educational Resources Information Center
Griffith, Jennifer M.; Sorenson, James R.; Bowling, J. Michael; Jennings-Grant, Tracey
2005-01-01
The Enhancing Patient Prenatal Education study tested the feasibility and educational impact of an interactive program for patient prenatal genetic screening and testing education. Patients at two private practices and one public health clinic participated (N = 207). The program collected knowledge and measures of anxiety before and after use of…
Postdoctoral Fellow | Center for Cancer Research
The Genetics of Cancer Susceptibility Section in the Mouse Cancer Genetics Program at NCI is seeking a highly motivated postdoctoral researcher to identify novel genetic interactors of BRCA2 using CRISPR-based genetic screen in mouse embryonic stem cells and perform functional studies in mouse models.
Genetic screening of prospective parents and of workers: some scientific and social issues.
Hubbard, R; Henifin, M S
1985-01-01
Genetic screening programs are based on assumptions and values that reflect the history of racial and social eugenics in the United States and Europe. They stigmatize individuals by shifting the focus from social, economic, and political decisions that affect the health of prospective parents, newborns, and workers to "bad genes," that is, intrapersonal factors that are given the status of "causes" of disease. Prenatal screening, at best, can help the relatively few individuals who know that their future children are at risk for a particular inherited disease or disability; it has little positive value for the average person. Workplace genetic screening has not been shown to reduce occupational disease, but it has led to employment discrimination and has drawn attention away from controlling exposures to toxic chemicals in the workplace.
Livingstone, Mark; Larsson, Ola; Sukarieh, Rami; Pelletier, Jerry; Sonenberg, Nahum
2009-12-24
The signal transduction pathway wherein mTOR regulates cellular growth and proliferation is an active target for drug discovery. The search for new mTOR inhibitors has recently yielded a handful of promising compounds that hold therapeutic potential. This search has been limited by the lack of a high-throughput assay to monitor the phosphorylation of a direct rapamycin-sensitive mTOR substrate in cells. Here we describe a novel cell-based chemical genetic screen useful for efficiently monitoring mTOR signaling to 4E-BPs in response to stimuli. The screen is based on the nuclear accumulation of eIF4E, which occurs in a 4E-BP-dependent manner specifically upon inhibition of mTOR signaling. Using this assay in a small-scale screen, we have identified several compounds not previously known to inhibit mTOR signaling, demonstrating that this method can be adapted to larger screens. Copyright 2009 Elsevier Ltd. All rights reserved.
FRET and BRET-based biosensors in live cell compound screens.
Robinson, Katie Herbst; Yang, Jessica R; Zhang, Jin
2014-01-01
Live cell compound screening with genetically encoded fluorescence or bioluminescence-based biosensors offers a potentially powerful approach to identify novel regulators of a signaling event of interest. In particular, compound screening in living cells has the added benefit that the entire signaling network remains intact, and thus the screen is not just against a single molecule of interest but against any molecule within the signaling network that may modulate the distinct signaling event reported by the biosensor in use. Furthermore, only molecules that are cell permeable or act at cell surface receptors will be identified as "hits," thus reducing further optimization of the compound in terms of cell penetration. Here we discuss a detailed protocol for using genetically encoded biosensors in living cells in a 96-well format for the execution of high throughput compound screens and the identification of small molecules which modulate a signaling event of interest.
Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich
2013-10-30
Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.
A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators
Schreiter, Eric R.; Hasseman, Jeremy P.; Tsegaye, Getahun; Fosque, Benjamin F.; Behnam, Reza; Shields, Brenda C.; Ramirez, Melissa; Kimmel, Bruce E.; Kerr, Rex A.; Jayaraman, Vivek; Looger, Loren L.; Svoboda, Karel; Kim, Douglas S.
2013-01-01
Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude. PMID:24155972
A transposon-based genetic screen in mice identifies genes altered in colorectal cancer.
Starr, Timothy K; Allaei, Raha; Silverstein, Kevin A T; Staggs, Rodney A; Sarver, Aaron L; Bergemann, Tracy L; Gupta, Mihir; O'Sullivan, M Gerard; Matise, Ilze; Dupuy, Adam J; Collier, Lara S; Powers, Scott; Oberg, Ann L; Asmann, Yan W; Thibodeau, Stephen N; Tessarollo, Lino; Copeland, Neal G; Jenkins, Nancy A; Cormier, Robert T; Largaespada, David A
2009-03-27
Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.
Acevedo-Rocha, Carlos G; Agudo, Ruben; Reetz, Manfred T
2014-12-10
Directed evolution of stereoselective enzymes provides a means to generate useful biocatalysts for asymmetric transformations in organic chemistry and biotechnology. Almost all of the numerous examples reported in the literature utilize high-throughput screening systems based on suitable analytical techniques. Since the screening step is the bottleneck of the overall procedure, researchers have considered the use of genetic selection systems as an alternative to screening. In principle, selection would be the most elegant and efficient approach because it is based on growth advantage of host cells harboring stereoselective mutants, but devising such selection systems is very challenging. They must be designed so that the host organism profits from the presence of an enantioselective variant. Progress in this intriguing research area is summarized in this review, which also includes some examples of display systems designed for enantioselectivity as assayed by fluorescence-activated cell sorting (FACS). Although the combination of display systems and FACS is a powerful approach, we also envision innovative ideas combining metabolic engineering and genetic selection systems with protein directed evolution for the development of highly selective and efficient biocatalysts. Copyright © 2014 Elsevier B.V. All rights reserved.
Pre- and post-test genetic counseling for chromosomal and Mendelian disorders.
Fonda Allen, Jill; Stoll, Katie; Bernhardt, Barbara A
2016-02-01
Genetic carrier screening, prenatal screening for aneuploidy, and prenatal diagnostic testing have expanded dramatically over the past 2 decades. Driven in part by powerful market forces, new complex testing modalities have become available after limited clinical research. The responsibility for offering these tests lies primarily on the obstetrical care provider and has become more burdensome as the number of testing options expands. Genetic testing in pregnancy is optional, and decisions about undergoing tests, as well as follow-up testing, should be informed and based on individual patients' values and needs. Careful pre- and post-test counseling is central to supporting informed decision-making. This article explores three areas of technical expansion in genetic testing: expanded carrier screening, non-invasive prenatal screening for fetal aneuploidies using cell-free DNA, and diagnostic testing using fetal chromosomal microarray testing, and provides insights aimed at enabling the obstetrical practitioner to better support patients considering these tests. Copyright © 2016 Elsevier Inc. All rights reserved.
Identification of Patients at Risk for Hereditary Colorectal Cancer
Mishra, Nitin; Hall, Jason
2012-01-01
Diagnosis of hereditary colorectal cancer syndromes requires clinical suspicion and knowledge of such syndromes. Lynch syndrome is the most common cause of hereditary colorectal cancer. Other less common causes include familial adenomatous polyposis (FAP), Peutz-Jeghers syndrome (PJS), juvenile polyposis syndrome, and others. There have been a growing number of clinical and molecular tools used to screen and test at risk individuals. Screening tools include diagnostic clinical criteria, family history, genetic prediction models, and tumor testing. Patients who are high risk based on screening should be referred for genetic testing. PMID:23730221
Vegter, Stefan; Boersma, Cornelis; Rozenbaum, Mark; Wilffert, Bob; Navis, Gerjan; Postma, Maarten J
2008-01-01
The fields of pharmacogenetics and pharmacogenomics have become important practical tools to progress goals in medical and pharmaceutical research and development. As more screening tests are being developed, with some already used in clinical practice, consideration of cost-effectiveness implications is important. A systematic review was performed on the content of and adherence to pharmacoeconomic guidelines of recent pharmacoeconomic analyses performed in the field of pharmacogenetics and pharmacogenomics. Economic analyses of screening strategies for genetic variations, which were evidence-based and assumed to be associated with drug efficacy or safety, were included in the review. The 20 papers included cover a variety of healthcare issues, including screening tests on several cytochrome P450 (CYP) enzyme genes, thiopurine S-methyltransferase (TMPT) and angiotensin-converting enzyme (ACE) insertion deletion (ACE I/D) polymorphisms. Most economic analyses reported that genetic screening was cost effective and often even clearly dominated existing non-screening strategies. However, we found a lack of standardization regarding aspects such as the perspective of the analysis, factors included in the sensitivity analysis and the applied discount rates. In particular, an important limitation of several studies related to the failure to provide a sufficient evidence-based rationale for an association between genotype and phenotype. Future economic analyses should be conducted utilizing correct methods, with adherence to guidelines and including extensive sensitivity analyses. Most importantly, genetic screening strategies should be based on good evidence-based rationales. For these goals, we provide a list of recommendations for good pharmacoeconomic practice deemed useful in the fields of pharmacogenetics and pharmacogenomics, regardless of country and origin of the economic analysis.
Stockwell, B R; Haggarty, S J; Schreiber, S L
1999-02-01
Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.
Shao, Yunru; Liu, Shuling; Grinzaid, Karen
2015-04-01
Improvements in genetic testing technologies have led to the development of expanded carrier screening panels for the Ashkenazi Jewish population; however, there are major inconsistencies in current screening practices. A 2-year pilot program was launched in Atlanta in 2010 to promote and facilitate screening for 19 Jewish genetic diseases. We analyzed data from this program, including participant demographics and outreach efforts. This retrospective analysis is based on a de-identified dataset of 724 screenees. Data were obtained through medical chart review and questionnaires and included demographic information, screening results, response to outreach efforts, and follow-up behavior and preferences. We applied descriptive analysis, chi-square tests, and logistic regression to analyze the data and compare findings with published literature. The majority of participants indicated that they were not pregnant or did not have a partner who was pregnant were affiliated with Jewish organizations and reported 100 % AJ ancestry. Overall, carrier frequency was 1 in 3.9. Friends, rabbis, and family members were the most common influencers of the decision to receive screening. People who were older, had a history of pregnancy, and had been previously screened were more likely to educate others (all p < 0.05). Analysis of this 2-year program indicated that people who are ready to have children or expand their families are more likely to get screened and encourage others to be screened. The most effective outreach efforts targeted influencers who then encouraged screening in the target population. Educating influencers and increasing overall awareness were the most effective outreach strategies.
Ammann, Sandra; Lehmberg, Kai; Zur Stadt, Udo; Klemann, Christian; Bode, Sebastian F N; Speckmann, Carsten; Janka, Gritta; Wustrau, Katharina; Rakhmanov, Mirzokhid; Fuchs, Ilka; Hennies, Hans C; Ehl, Stephan
2017-11-01
We report our experience in using flow cytometry-based immunological screening prospectively as a decision tool for the use of genetic studies in the diagnostic approach to patients with hemophagocytic lymphohistiocytosis (HLH). We restricted genetic analysis largely to patients with abnormal immunological screening, but included whole exome sequencing (WES) for those with normal findings upon Sanger sequencing. Among 290 children with suspected HLH analyzed between 2010 and 2014 (including 17 affected, but asymptomatic siblings), 87/162 patients with "full" HLH and 79/111 patients with "incomplete/atypical" HLH had normal immunological screening results. In 10 patients, degranulation could not be tested. Among the 166 patients with normal screening, genetic analysis was not performed in 107 (all with uneventful follow-up), while 154 single gene tests by Sanger sequencing in the remaining 59 patients only identified a single atypical CHS patient. Flow cytometry correctly predicted all 29 patients with FHL-2, XLP1 or 2. Among 85 patients with defective NK degranulation (including 13 asymptomatic siblings), 70 were Sanger sequenced resulting in a genetic diagnosis in 55 (79%). Eight patients underwent WES, revealing mutations in two known and one unknown cytotoxicity genes and one metabolic disease. FHL3 was the most frequent genetic diagnosis. Immunological screening provided an excellent decision tool for the need and depth of genetic analysis of HLH patients and provided functionally relevant information for rapid patient classification, contributing to a significant reduction in the time from diagnosis to transplantation in recent years.
2012-04-06
Biochemical genetic testing and newborn screening are essential laboratory services for the screening, detection, diagnosis, and monitoring of inborn errors of metabolism or inherited metabolic disorders. Under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) regulations, laboratory testing is categorized on the basis of the level of testing complexity as either waived (i.e., from routine regulatory oversight) or nonwaived testing (which includes tests of moderate and high complexity). Laboratories that perform biochemical genetic testing are required by CLIA regulations to meet the general quality systems requirements for nonwaived testing and the personnel requirements for high-complexity testing. Laboratories that perform public health newborn screening are subject to the same CLIA regulations and applicable state requirements. As the number of inherited metabolic diseases that are included in state-based newborn screening programs continues to increase, ensuring the quality of performance and delivery of testing services remains a continuous challenge not only for public health laboratories and other newborn screening facilities but also for biochemical genetic testing laboratories. To help ensure the quality of laboratory testing, CDC collaborated with the Centers for Medicare & Medicaid Services, the Food and Drug Administration, the Health Resources and Services Administration, and the National Institutes of Health to develop guidelines for laboratories to meet CLIA requirements and apply additional quality assurance measures for these areas of genetic testing. This report provides recommendations for good laboratory practices that were developed based on recommendations from the Clinical Laboratory Improvement Advisory Committee, with additional input from the Secretary's Advisory Committee on Genetics, Health, and Society; the Secretary's Advisory Committee on Heritable Disorders in Newborns and Children; and representatives of newborn screening laboratories. The recommended practices address the benefits of using a quality management system approach, factors to consider before introducing new tests, establishment and verification of test performance specifications, the total laboratory testing process (which consists of the preanalytic, analytic, and postanalytic phases), confidentiality of patient information and test results, and personnel qualifications and responsibilities for laboratory testing for inherited metabolic diseases. These recommendations are intended for laboratories that perform biochemical genetic testing to improve the quality of laboratory services and for newborn screening laboratories to ensure the quality of laboratory practices for inherited metabolic disorders. These recommendations also are intended as a resource for medical and public health professionals who evaluate laboratory practices, for users of laboratory services to facilitate their collaboration with newborn screening systems and use of biochemical genetic tests, and for standard-setting organizations and professional societies in developing future laboratory quality standards and practice recommendations. This report complements Good Laboratory Practices for Molecular Genetic Testing for Heritable Diseases and Conditions (CDC. Good laboratory practices for molecular genetic testing for heritable diseases and conditions. MMWR 2009;58 [No. RR-6]) to provide guidance for ensuring and improving the quality of genetic laboratory services and public health outcomes. Future recommendations for additional areas of genetic testing will be considered on the basis of continued monitoring and evaluation of laboratory practices, technology advancements, and the development of laboratory standards and guidelines.
Establishment of apoptotic regulatory network for genetic markers of colorectal cancer.
Hao, Yibin; Shan, Guoyong; Nan, Kejun
2017-03-01
Our purpose is to screen out genetic markers applicable to early diagnosis for colorectal cancer and to establish apoptotic regulatory network model for colorectal cancer, thereby providing theoretical evidence and targeted therapy for early diagnosis of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers applied to early diagnosis of colorectal cancer were searched to perform comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to establish apoptotic regulatory network model based on screened genetic markers, and then verification experiment was conducted. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, p53, APC, DCC and PTEN, among which DCC shows highest diagnostic efficiency. GO analysis of genetic markers found that six genetic markers played role in biological process, molecular function and cellular component. It was indicated in apoptotic regulatory network built by KEGG analysis and verification experiment that WWOX could promote tumor cell apoptotic in colorectal cancer and elevate expression level of p53. The apoptotic regulatory model of colorectal cancer established in this study provides clinically theoretical evidence and targeted therapy for early diagnosis of colorectal cancer.
ERIC Educational Resources Information Center
Setty, Sumana; Kosinski-Collins, Melissa S.
2015-01-01
It has been noted that undergraduate project-based laboratories lead to increased interest in scientific research and student understanding of biological concepts. We created a novel, inquiry-based, multiweek genetics research project studying Ptpmeg, for the Introductory Biology Laboratory course at Brandeis University. Ptpmeg is a protein…
Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang
2018-01-01
Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.
A practical approach to screen for authorised and unauthorised genetically modified plants.
Waiblinger, Hans-Ulrich; Grohmann, Lutz; Mankertz, Joachim; Engelbert, Dirk; Pietsch, Klaus
2010-03-01
In routine analysis, screening methods based on real-time PCR are most commonly used for the detection of genetically modified (GM) plant material in food and feed. In this paper, it is shown that the combination of five DNA target sequences can be used as a universal screening approach for at least 81 GM plant events authorised or unauthorised for placing on the market and described in publicly available databases. Except for maize event LY038, soybean events DP-305423 and BPS-CV127-9 and cotton event 281-24-236 x 3006-210-23, at least one of the five genetic elements has been inserted in these GM plants and is targeted by this screening approach. For the detection of these sequences, fully validated real-time PCR methods have been selected. A screening table is presented that describes the presence or absence of the target sequences for most of the listed GM plants. These data have been verified either theoretically according to available databases or experimentally using available reference materials. The screening table will be updated regularly by a network of German enforcement laboratories.
National Newborn Screening and Genetics Resource Center
... GENERAL INFORMATION Conditions Screened by US Programs General Resources Genetics Birth Defects Hearing Screening FOR PROFESSIONALS ACT Sheets(ACMG) General Resources Newborn Screening Genetics Birth Defects FOR FAMILIES FAQs ...
Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection
Becker, Andrew E; Hernandez, Yasmin G; Frucht, Harold; Lucas, Aimee L
2014-01-01
Pancreatic cancer is the fourth most common cause of cancer-related deaths in the United States, with over 38000 deaths in 2013. The opportunity to detect pancreatic cancer while it is still curable is dependent on our ability to identify and screen high-risk populations before their symptoms arise. Risk factors for developing pancreatic cancer include multiple genetic syndromes as well as modifiable risk factors. Genetic conditions include hereditary breast and ovarian cancer syndrome, Lynch Syndrome, familial adenomatous polyposis, Peutz-Jeghers Syndrome, familial atypical multiple mole melanoma syndrome, hereditary pancreatitis, cystic fibrosis, and ataxia-telangiectasia; having a genetic predisposition can raise the risk of developing pancreatic cancer up to 132-fold over the general population. Modifiable risk factors, which include tobacco exposure, alcohol use, chronic pancreatitis, diet, obesity, diabetes mellitus, as well as certain abdominal surgeries and infections, have also been shown to increase the risk of pancreatic cancer development. Several large-volume centers have initiated such screening protocols, and consensus-based guidelines for screening high-risk groups have recently been published. The focus of this review will be both the genetic and modifiable risk factors implicated in pancreatic cancer, as well as a review of screening strategies and their diagnostic yields. PMID:25170203
Tian, Tongde; Chen, Chuanliang; Yang, Feng; Tang, Jingwen; Pei, Junwen; Shi, Bian; Zhang, Ning; Zhang, Jianhua
2017-03-01
The paper aimed to screen out genetic markers applicable to early diagnosis for colorectal cancer and establish apoptotic regulatory network model for colorectal cancer, and to analyze the current situation of traditional Chinese medicine (TCM) target, thereby providing theoretical evidence for early diagnosis and targeted therapy of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers that are applied to early diagnosis of colorectal cancer were searched and performed comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. KEGG analysis was employed to establish apoptotic regulatory network model based on screened genetic markers, and optimization was conducted on TCM targets. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, P53, APC, DCC and PTEN, among which DCC has the highest diagnostic efficiency. Apoptotic regulatory network was built by KEGG analysis. Currently, it was reported that TCM has regulatory function on gene locus in apoptotic regulatory network. The apoptotic regulatory model of colorectal cancer established in this study provides theoretical evidence for early diagnosis and TCM targeted therapy of colorectal cancer in clinic.
Levin, M
1999-01-01
Screening for genetic disorders, particularly Tay-Sachs Disease, has been traditionally welcome by the Jewish community. I review the history of genetic screening among Jews and the views from the Jewish tradition on the subject, and then discuss ethical challenges of screening and the impact of historical memories upon future acceptance of screening programs. Some rational principles to guide future design of genetic screening programs among Jews are proposed.
[Ethical aspects of prenatal screening for Down's syndrome].
Tóth, A; Szabó, J
2000-10-15
Trisomy 21, the chromosomal base of Down's syndrome, results in severe mental and physical handicap. Owing to the development of medical genetics reliable screening and diagnostic procedures for the detection of the disorder are available in Hungary. To achieve the goals of prenatal screening it is important to address the main ethical issues arising through the application of technical-professional skills. The core objective of prenatal screening for Down's syndrome is to give information about the genetic condition of the fetus in order to enhance the autonomy of the parents in family planning. Screening programs should respect the ethical requirements of the principles of "do no harm", beneficence and autonomy of the patients, which are the most important ethical norms of doctor-patient relationship. Regarding the social aspects of screening it is essential to claim that voluntary participation and nondirective genetic counselling can exclude eugenic purposes. Though introduction of prenatal tests does not imply the discrimination of the disabled, anxiety of handicapped people deserves more attention. Abortion of affected fetuses isn't among the objectives of prenatal genetic screening but patient's autonomy is supported in decisions concerning the future of the pregnancy. Social justice can be taken into consideration by providing the test to all women without respect to their social position, educational level or their age. An open debate about the issues of prenatal screening for Down's syndrome could promote the formation of a consensus between professionals and the public.
Koike-Yusa, Hiroko; Li, Yilong; Tan, E-Pien; Velasco-Herrera, Martin Del Castillo; Yusa, Kosuke
2014-03-01
Identification of genes influencing a phenotype of interest is frequently achieved through genetic screening by RNA interference (RNAi) or knockouts. However, RNAi may only achieve partial depletion of gene activity, and knockout-based screens are difficult in diploid mammalian cells. Here we took advantage of the efficiency and high throughput of genome editing based on type II, clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems to introduce genome-wide targeted mutations in mouse embryonic stem cells (ESCs). We designed 87,897 guide RNAs (gRNAs) targeting 19,150 mouse protein-coding genes and used a lentiviral vector to express these gRNAs in ESCs that constitutively express Cas9. Screening the resulting ESC mutant libraries for resistance to either Clostridium septicum alpha-toxin or 6-thioguanine identified 27 known and 4 previously unknown genes implicated in these phenotypes. Our results demonstrate the potential for efficient loss-of-function screening using the CRISPR-Cas9 system.
A universal array-based multiplexed test for cystic fibrosis carrier screening.
Amos, Jean A; Bridge-Cook, Philippa; Ponek, Victor; Jarvis, Michael R
2006-01-01
Cystic fibrosis is a multisystem autosomal recessive disorder with high carrier frequencies in caucasians and significant, but lower, carrier frequencies in other ethnicities. Based on technology that allows high detection of mutations in caucasians and significant detection in other ethnic groups, the American College of Medical Genetics (ACMG) and American College of Obstetricians and Gynecologists (ACOG) have recommended pan-ethnic cystic fibrosis carrier screening for all reproductive couples. This paper discusses carrier screening using the Tag-It multiplex mutation platform and the Cystic Fibrosis Mutation Detection Kit. The Tag-It cystic fibrosis assay is a multiplexed genotyping assay that detects a panel of 40 cystic fibrosis transmembrane conductance regulator mutations including the 23 mutations recommended by the ACMG and ACOG for population screening. A total of 16 additional mutations detected by the Tag-It cystic fibrosis assay may also be common. The assay method is described in detail, and its performance in a genetics reference laboratory performing high-volume cystic fibrosis carrier screening is assessed.
Avital, Itzhak; Langan, Russell C.; Summers, Thomas A.; Steele, Scott R.; Waldman, Scott A.; Backman, Vadim; Yee, Judy; Nissan, Aviram; Young, Patrick; Womeldorph, Craig; Mancusco, Paul; Mueller, Renee; Noto, Khristian; Grundfest, Warren; Bilchik, Anton J.; Protic, Mladjan; Daumer, Martin; Eberhardt, John; Man, Yan Gao; Brücher, Björn LDM; Stojadinovic, Alexander
2013-01-01
Colorectal cancer (CRC) is the third most common cause of cancer-related death in the United States (U.S.), with estimates of 143,460 new cases and 51,690 deaths for the year 2012. Numerous organizations have published guidelines for CRC screening; however, these numerical estimates of incidence and disease-specific mortality have remained stable from years prior. Technological, genetic profiling, molecular and surgical advances in our modern era should allow us to improve risk stratification of patients with CRC and identify those who may benefit from preventive measures, early aggressive treatment, alternative treatment strategies, and/or frequent surveillance for the early detection of disease recurrence. To better negotiate future economic constraints and enhance patient outcomes, ultimately, we propose to apply the principals of personalized and precise cancer care to risk-stratify patients for CRC screening (Precision Risk Stratification-Based Screening, PRSBS). We believe that genetic, molecular, ethnic and socioeconomic disparities impact oncological outcomes in general, those related to CRC, in particular. This document highlights evidence-based screening recommendations and risk stratification methods in response to our CRC working group private-public consensus meeting held in March 2012. Our aim was to address how we could improve CRC risk stratification-based screening, and to provide a vision for the future to achieving superior survival rates for patients diagnosed with CRC. PMID:23459409
Laing, Nigel G
2008-01-01
Currently a multiplicity of experimental approaches to therapy for genetic muscle diseases is being investigated. These include replacement of the missing gene, manipulation of the gene message, repair of the mutation, upregulation of an alternative gene and pharmacological interventions targeting a number of systems. A number of these approaches are in current clinical trials. There is considerable anticipation that perhaps more than one of the approaches will finally prove of clinical benefit, but there are many voices of caution. No matter which approaches might ultimately prove effective, there is a consensus that for most benefit to the patients it will be necessary to start treatment as early as possible. A consensus is also developing that the only way to do this is to implement population-based newborn screening to identify affected children shortly after birth. Population-based newborn screening is currently practised in very few places in the world and it brings with it implications for prevention rather than cure of genetic muscle diseases.
Van den Bulcke, Marc; Lievens, Antoon; Barbau-Piednoir, Elodie; MbongoloMbella, Guillaume; Roosens, Nancy; Sneyers, Myriam; Casi, Amaya Leunda
2010-03-01
The detection of genetically modified (GM) materials in food and feed products is a complex multi-step analytical process invoking screening, identification, and often quantification of the genetically modified organisms (GMO) present in a sample. "Combinatory qPCR SYBRGreen screening" (CoSYPS) is a matrix-based approach for determining the presence of GM plant materials in products. The CoSYPS decision-support system (DSS) interprets the analytical results of SYBRGREEN qPCR analysis based on four values: the C(t)- and T(m) values and the LOD and LOQ for each method. A theoretical explanation of the different concepts applied in CoSYPS analysis is given (GMO Universe, "Prime number tracing", matrix/combinatory approach) and documented using the RoundUp Ready soy GTS40-3-2 as an example. By applying a limited set of SYBRGREEN qPCR methods and through application of a newly developed "prime number"-based algorithm, the nature of subsets of corresponding GMO in a sample can be determined. Together, these analyses provide guidance for semi-quantitative estimation of GMO presence in a food and feed product.
Genetic screening and testing in an episode-based payment model: preserving patient autonomy.
Sutherland, Sharon; Farrell, Ruth M; Lockwood, Charles
2014-11-01
The State of Ohio is implementing an episode-based payment model for perinatal care. All costs of care will be tabulated for each live birth and assigned to the delivering provider, creating a three-tiered model for reimbursement for care. Providers will be reimbursed as usual for care that is average in cost and quality, while instituting rewards or penalties for those outside the expected range in either domain. There are few exclusions, and all methods of genetic screening and diagnostic testing are included in the episode cost calculation as proposed. Prenatal ultrasonography, genetic screening, and diagnostic testing are critical components of the delivery of high-quality, evidence-based prenatal care. These tests provide pregnant women with key information about the pregnancy, which, in turn, allows them to work closely with their health care provider to determine optimal prenatal care. The concepts of informed consent and decision-making, cornerstones of the ethical practice of medicine, are founded on the principles of autonomy and respect for persons. These principles recognize that patients' rights to make choices and take actions are based on their personal beliefs and values. Given the personal nature of such decisions, it is critical that patients have unbarred access to prenatal genetic tests if they elect to use them as part of their prenatal care. The proposed restructuring of reimbursement creates a clear conflict between patient autonomy and physician financial incentives.
Functional annotation of chemical libraries across diverse biological processes.
Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles
2017-09-01
Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.
ERIC Educational Resources Information Center
Blazer, Kathleen R.
2010-01-01
Individuals with a cancer-predisposing genetic trait have a lifetime risk to develop cancer approaching 100 percent, and cancer often strikes early in age, before standard recommended cancer screening begins. Identifying hereditary cancer predisposition through genetic cancer risk assessment (GCRA) allows for intensified measures to prevent…
High-throughput screens in mammalian cells using the CRISPR-Cas9 system.
Peng, Jingyu; Zhou, Yuexin; Zhu, Shiyou; Wei, Wensheng
2015-06-01
As a powerful genome-editing tool, the clustered regularly interspaced short palindromic repeats (CRISPR)-clustered regularly interspaced short palindromic repeats-associated protein 9 (Cas9) system has been quickly developed into a large-scale function-based screening strategy in mammalian cells. This new type of genetic library is constructed through the lentiviral delivery of single-guide RNA collections that direct Cas9 or inactive dead Cas9 fused with effectors to interrogate gene function or regulate gene transcription in targeted cells. Compared with RNA interference screening, the CRISPR-Cas9 system demonstrates much higher levels of effectiveness and reliability with respect to both loss-of-function and gain-of-function screening. Unlike the RNA interference strategy, a CRISPR-Cas9 library can target both protein-coding sequences and regulatory elements, including promoters, enhancers and elements transcribing microRNAs and long noncoding RNAs. This powerful genetic tool will undoubtedly accelerate the mechanistic discovery of various biological processes. In this mini review, we summarize the general procedure of CRISPR-Cas9 library mediated functional screening, system optimization strategies and applications of this new genetic toolkit. © 2015 FEBS.
O'Duibhir, Eoghan; Carragher, Neil O; Pollard, Steven M
2017-04-01
Patients diagnosed with glioblastoma (GBM) continue to face a bleak prognosis. It is critical that new effective therapeutic strategies are developed. GBM stem cells have molecular hallmarks of neural stem and progenitor cells and it is possible to propagate both non-transformed normal neural stem cells and GBM stem cells, in defined, feeder-free, adherent culture. These primary stem cell lines provide an experimental model that is ideally suited to cell-based drug discovery or genetic screens in order to identify tumour-specific vulnerabilities. For many solid tumours, including GBM, the genetic disruptions that drive tumour initiation and growth have now been catalogued. CRISPR/Cas-based genome editing technologies have recently emerged, transforming our ability to functionally annotate the human genome. Genome editing opens prospects for engineering precise genetic changes in normal and GBM-derived neural stem cells, which will provide more defined and reliable genetic models, with critical matched pairs of isogenic cell lines. Generation of more complex alleles such as knock in tags or fluorescent reporters is also now possible. These new cellular models can be deployed in cell-based phenotypic drug discovery (PDD). Here we discuss the convergence of these advanced technologies (iPS cells, neural stem cell culture, genome editing and high content phenotypic screening) and how they herald a new era in human cellular genetics that should have a major impact in accelerating glioblastoma drug discovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The utility of alpha-fetoprotein screening in Beckwith-Wiedemann syndrome.
Duffy, Kelly A; Deardorff, Matthew A; Kalish, Jennifer M
2017-03-01
Beckwith-Wiedemann syndrome (BWS) is one of the most common cancer predisposition disorders. As a result, BWS patients receive tumor screening as part of their clinical management. Until recently, this screening has been employed uniformly across all genetic and epigenetic causes of BWS, including the utilization of ultrasonography to detect abdominal tumors and alpha-fetoprotein (AFP) to detect hepatoblastoma. The advancements in our understanding of the genetics and epigenetics leading to BWS has evolved over time, and has led to the development of genotype/phenotype correlations. As tumor risk appears to correlate with genetic and epigenetic causes of BWS, several groups have proposed alterations to tumor screening protocols based on the etiology of BWS, with the elimination of AFP as a screening measure and the elimination of all screening measures in BWS patients with loss of methylation at the KCNQ1OT1:TSS-DMR 2 (IC2). There are many challenges to this suggestion, as IC2 patients may have additional factors that contribute to risk of hepatoblastoma including fetal growth patterns, relationship with assisted reproductive technologies, and the regulation of the IC2 locus. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wilkes, Michael S; Day, Frank C; Fancher, Tonya L; McDermott, Haley; Lehman, Erik; Bell, Robert A; Green, Michael J
2017-09-13
Screening and counseling for genetic conditions is an increasingly important part of primary care practice, particularly given the paucity of genetic counselors in the United States. However, primary care physicians (PCPs) often have an inadequate understanding of evidence-based screening; communication approaches that encourage shared decision-making; ethical, legal, and social implication (ELSI) issues related to screening for genetic mutations; and the basics of clinical genetics. This study explored whether an interactive, web-based genetics curriculum directed at PCPs in non-academic primary care settings was superior at changing practice knowledge, attitudes, and behaviors when compared to a traditional educational approach, particularly when discussing common genetic conditions. One hundred twenty one PCPs in California and Pennsylvania physician practices were randomized to either an Intervention Group (IG) or Control Group (CG). IG physicians completed a 6 h interactive web-based curriculum covering communication skills, basics of genetic testing, risk assessment, ELSI issues and practice behaviors. CG physicians were provided with a traditional approach to Continuing Medical Education (CME) (clinical review articles) offering equivalent information. PCPs in the Intervention Group showed greater increases in knowledge compared to the Control Group. Intervention PCPs were also more satisfied with the educational materials, and more confident in their genetics knowledge and skills compared to those receiving traditional CME materials. Intervention PCPs felt that the web-based curriculum covered medical management, genetics, and ELSI issues significantly better than did the Control Group, and in comparison with traditional curricula. The Intervention Group felt the online tools offered several advantages, and engaged in better shared decision making with standardized patients, however, there was no difference in behavior change between groups with regard to increases in ELSI discussions between PCPs and patients. While our intervention was deemed more enjoyable, demonstrated significant factual learning and retention, and increased shared decision making practices, there were few differences in behavior changes around ELSI discussions. Unfortunately, barriers to implementing behavior change in clinical genetics is not unique to our intervention. Perhaps the missing element is that busy physicians need systems-level support to engage in meaningful discussions around genetics issues. The next step in promoting active engagement between doctors and patients may be to put into place the tools needed for PCPs to easily access the materials they need at the point-of-care to engage in joint discussions around clinical genetics.
George, Rani; Kovak, Karen; Cox, Summer L
2015-06-01
Cascade genetic screening is a methodology for identifying and testing close blood relatives of individuals at increased risk for heritable conditions and follows a sequential process, minimizing testing costs and the number of family members who need to be tested. It offers considerable potential for cost savings and increased awareness of heritable conditions within families. CDC-classified Tier 1 genomic applications for hereditary breast and ovarian cancer syndrome (HBOC), Lynch Syndrome (LS), and familial hypercholesterolemia (FH) are recommended for clinical use and support the use of cascade genetic screening. Most individuals are unaware of their increased risk for heritable conditions such as HBOC, LS, and FH. Consistent implementation of cascade genetic screening could significantly increase awareness and prevention of heritable conditions. Limitations to effective implementation of cascade genetic screening include: insufficient genetic risk assessment and knowledge by a majority of healthcare providers without genetics credentials; a shortage of genetic specialists, especially in rural areas; a low rate of reimbursement for comprehensive genetic counseling services; and an individual focus on prevention by clinical guidelines and insurance coverage. The family-centric approach of cascade genetic screening improves prevention and early diagnosis of heritable diseases on a population health level. Cascade genetic screening could be better supported and augmented through changes in health policy.
Brown, Gary C; Brown, Melissa M; Lieske, Heidi B; Lieske, Philip A; Brown, Kathryn S
2015-01-01
There is a dearth of patient, preference-based cost-effectiveness analyses evaluating genetic testing for neovascular age-related macular degeneration (NVAMD). A Value-Based Medicine, 12-year, combined-eye model, cost-utility analysis evaluated genetic testing of Category 3 AMD patients at age 65 for progression to NVAMD. The benefit of genetic testing was predicated upon the fact that early-treatment ranibizumab therapy (baseline vision 20/40-20/80) for NVAMD confers greater patient value than late-treatment (baseline vision ≤20/160). Published genetic data and MARINA Study ranibizumab therapy data were utilized in the analysis. Patient value (quality-of-life gain) and financial value (2012 US real dollar) outcomes were discounted at 3 % annually. Genetic testing-enabled, early-treatment ranibizumab therapy per patient conferred mean 20/40 -1 vision, a 0.845 QALY gain and 14.1 % quality-of-life gain over sham therapy. Late-treatment ranibizumab therapy conferred mean 20/160 +2 vision, a 0.250 QALY gain and 4.2 % quality-of-life gain over sham therapy. The gain from early-treatment over late-treatment was 0.595 QALY (10.0 % quality-of-life gain). The per-patient cost for genetic testing/closer monitoring was $2205 per screened person, $2.082 billion for the 944,000 estimated new Category 3 AMD patients annually. Genetic testing/monitoring costs per early-treatment patient totaled $66,180. Costs per early-treatment patient included: genetic testing costs: $66,180 + direct non-ophthalmic medical costs: -$40,914 + caregiver costs: -$172,443 + employment costs: -$14,098 = a net societal cost saving of $160,582 per early treatment patient. When genetic screening facilitated an incremental 12,965 (8.0 %) of the 161,754, new annual NVAMD patients aged ≥65 in the US to undergo early-treatment ranibizumab therapy, each additional patient treated accrued an overall, net financial gain for society of $160,582. Genetic screening was cost-effective, using World Health Organization criteria, when it enabled an incremental 4.1 % (6634) of 161,754 annual NVAMD patients ≥65 years to receive early-treatment ranibizumab therapy. Genetic screening-enabled, early-treatment ranibizumab therapy for NVAMD is cost-effective if it enables an incremental 4.1 % of the annual US cohort of new-onset NVAMD patients ≥65 to undergo early-treatment with ranibizumab.
Choi, Su-Lim; Rha, Eugene; Lee, Sang Jun; Kim, Haseong; Kwon, Kilkoang; Jeong, Young-Su; Rhee, Young Ha; Song, Jae Jun; Kim, Hak-Sung; Lee, Seung-Goo
2014-03-21
Large-scale screening of enzyme libraries is essential for the development of cost-effective biological processes, which will be indispensable for the production of sustainable biobased chemicals. Here, we introduce a genetic circuit termed the Genetic Enzyme Screening System that is highly useful for high-throughput enzyme screening from diverse microbial metagenomes. The circuit consists of two AND logics. The first AND logic, the two inputs of which are the target enzyme and its substrate, is responsible for the accumulation of a phenol compound in cell. Then, the phenol compound and its inducible transcription factor, whose activation turns on the expression of a reporter gene, interact in the other logic gate. We confirmed that an individual cell harboring this genetic circuit can present approximately a 100-fold higher cellular fluorescence than the negative control and can be easily quantified by flow cytometry depending on the amounts of phenolic derivatives. The high sensitivity of the genetic circuit enables the rapid discovery of novel enzymes from metagenomic libraries, even for genes that show marginal activities in a host system. The crucial feature of this approach is that this single system can be used to screen a variety of enzymes that produce a phenol compound from respective synthetic phenyl-substrates, including cellulase, lipase, alkaline phosphatase, tyrosine phenol-lyase, and methyl parathion hydrolase. Consequently, the highly sensitive and quantitative nature of this genetic circuit along with flow cytometry techniques could provide a widely applicable toolkit for discovering and engineering novel enzymes at a single cell level.
Chow, J Fc; Yeung, W Sb; Lee, V Cy; Lau, E Yl; Ho, P C; Ng, E Hy
2017-04-01
Preimplantation genetic screening has been proposed to improve the in-vitro fertilisation outcome by screening for aneuploid embryos or blastocysts. This study aimed to report the outcome of 133 cycles of preimplantation genetic diagnosis and screening by array comparative genomic hybridisation. This study of case series was conducted in a tertiary assisted reproductive centre in Hong Kong. Patients who underwent preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening between 1 April 2012 and 30 June 2015 were included. They underwent in-vitro fertilisation and intracytoplasmic sperm injection. An embryo biopsy was performed on day-3 embryos and the blastomere was subject to array comparative genomic hybridisation. Embryos with normal copy numbers were replaced. The ongoing pregnancy rate, implantation rate, and miscarriage rate were studied. During the study period, 133 cycles of preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening were initiated in 94 patients. Overall, 112 cycles proceeded to embryo biopsy and 65 cycles had embryo transfer. The ongoing pregnancy rate per transfer cycle after preimplantation genetic screening was 50.0% and that after preimplantation genetic diagnosis was 34.9%. The implantation rates after preimplantation genetic screening and diagnosis were 45.7% and 41.1%, respectively and the miscarriage rates were 8.3% and 28.6%, respectively. There were 26 frozen-thawed embryo transfer cycles, in which vitrified and biopsied genetically transferrable embryos were replaced, resulting in an ongoing pregnancy rate of 36.4% in the screening group and 60.0% in the diagnosis group. The clinical outcomes of preimplantation genetic diagnosis and screening using comparative genomic hybridisation in our unit were comparable to those reported internationally. Genetically transferrable embryos replaced in a natural cycle may improve the ongoing pregnancy rate and implantation rate when compared with transfer in a stimulated cycle.
Lessons from monogenic causes of growth hormone deficiency.
Brue, Thierry; Saveanu, Alexandru; Jullien, Nicolas; Fauquier, Teddy; Castinetti, Frédéric; Enjalbert, Alain; Barlier, Anne; Reynaud, Rachel
2017-06-01
Through the multicentric international GENHYPOPIT network, 10 transcription factor genes involved in pituitary development have been screened in more than 1200 patients with constitutional hypopituitarism over the past two decades. The present report summarizes the main lessons learned from this phenotype-based genetic screening: (1) genetically determined hypopituitarism does not necessarily present during childhood; (2) constitutional hypopituitarism may be characterized by a pure endocrine phenotype or by various combinations of endocrine deficits and visceral malformations; (3) syndromic hypopituitarism may also be observed in patients with POU1F1 or PROP1 mutations; (4) in cases of idiopathic hypopituitarism, extensive genetic screening identifies gene alterations in a minority of patients; (5) functional studies are imperfect in determining the involvement of an allelic variant in a specific pituitary phenotype. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Evaluation of a population-based approach to familial colorectal cancer.
Parfrey, P S; Dicks, E; Parfrey, O; McNicholas, P J; Noseworthy, H; Woods, M O; Negriin, C; Green, J
2017-05-01
As Newfoundland has the highest rate of familial colorectal cancer (CRC) in the world, we started a population-based clinic to provide colonoscopic and Lynch syndrome (LS) screening recommendations to families of CRC patients based on family risk. Of 1091 incident patients 51% provided a family history. Seventy-two percent of families were at low or intermediate-low risk of CRC and colonoscopic screening recommendations were provided by letter. Twenty-eight percent were at high and intermediate-high risk and were referred to the genetic counsellor, but only 30% (N = 48) were interviewed by study end. Colonoscopy was recommended more frequently than every 5 years in 35% of families. Lower family risk was associated with older age of proband but the frequency of screening colonoscopy recommendations varied across all age groups, driven by variability in family history. Twenty-four percent had a high MMR predict score for a Lynch syndrome mutation, and 23% fulfilled the Provincial Program criteria for LS screening. A population-based approach in the provision of colonoscopic screening recommendations to families at risk of CRC was limited by the relatively low response rate. A family history first approach to the identification of LS families was inefficient. © 2016 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Role of genetic improvement in the Short Rotation Woody Crops Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, P.A.; Wright, L.L.
1986-01-01
A major effort in the Short Rotation Woody Crops Program (SRWCP) is species screening and genetic improvement of selected species. Of the 125 species initially evaluated for SRIC, 20 are being seriously considered with most of emphasis on 16 hardwood species. Range-wide seed collections of 12 species were provenance tested; these include Platanus occidentalis (sycamore), Alnus glutinosa (European black alder), and Robinia pseudoacacia (black locust). Based on the results of these tests, highly productive, site-specific seed sources are being chosen for several geographic regions. Three of these species re currently being bred for increased productivity in SRIC systems. Genetic improvementmore » is viewed as a tool for increasing productivity, having anticipated gains of 40 to 50%. The techniques of somaclonal screening and genetic engineering are being evaluated for their usefulness in the SRIC improvement program. Currently, salt-tolerant Atriplex canescens (four-wing saltbush) and herbicide-resistant Populus spp. are being sought via somaclonal screening. 35 refs., 4 figs., 3 tabs.« less
How does genetic risk information for Lynch syndrome translate to risk management behaviours?
Steel, Emma; Robbins, Andrew; Jenkins, Mark; Flander, Louisa; Gaff, Clara; Keogh, Louise
2017-01-01
There is limited research on why some individuals who have undergone predictive genetic testing for Lynch syndrome do not adhere to screening recommendations. This study aimed to explore qualitatively how Lynch syndrome non-carriers and carriers translate genetic risk information and advice to decisions about risk managment behaviours in the Australian healthcare system. Participants of the Australasian Colorectal Cancer Family Registry who had undergone predictive genetic testing for Lynch syndrome were interviewed on their risk management behaviours. Transcripts were analysed thematically using a comparative coding analysis. Thirty-three people were interviewed. Of the non-carriers ( n = 16), 2 reported having apparently unnecessary colonoscopies, and 6 were unsure about what population-based colorectal cancer screening entails. Of the carriers ( n = 17), 2 reported they had not had regular colonoscopies, and spoke about their discomfort with the screening process and a lack of faith in the procedure's ability to reduce their risk of developing colorectal cancer. Of the female carriers ( n = 9), 2 could not recall being informed about the associated risk of gynaecological cancers. Non-carriers and female carriers of Lynch syndrome could benefit from further clarity and advice about appropriate risk management options. For those carriers who did not adhere to colonoscopy screening, a lack of faith in both genetic test results and screening were evident. It is essential that consistent advice is offered to both carriers and non-carriers of Lynch syndrome.
Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie
2013-12-15
Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.
Racher, Hilary; Phelps, Ian G.; Toedt, Grischa; Kennedy, Julie; Wunderlich, Kirsten A.; Sorusch, Nasrin; Abdelhamed, Zakia A.; Natarajan, Subaashini; Herridge, Warren; van Reeuwijk, Jeroen; Horn, Nicola; Boldt, Karsten; Parry, David A.; Letteboer, Stef J.F.; Roosing, Susanne; Adams, Matthew; Bell, Sandra M.; Bond, Jacquelyn; Higgins, Julie; Morrison, Ewan E.; Tomlinson, Darren C.; Slaats, Gisela G.; van Dam, Teunis J. P.; Huang, Lijia; Kessler, Kristin; Giessl, Andreas; Logan, Clare V.; Boyle, Evan A.; Shendure, Jay; Anazi, Shamsa; Aldahmesh, Mohammed; Al Hazzaa, Selwa; Hegele, Robert A.; Ober, Carole; Frosk, Patrick; Mhanni, Aizeddin A.; Chodirker, Bernard N.; Chudley, Albert E.; Lamont, Ryan; Bernier, Francois P.; Beaulieu, Chandree L.; Gordon, Paul; Pon, Richard T.; Donahue, Clem; Barkovich, A. James; Wolf, Louis; Toomes, Carmel; Thiel, Christian T.; Boycott, Kym M.; McKibbin, Martin; Inglehearn, Chris F.; Stewart, Fiona; Omran, Heymut; Huynen, Martijn A.; Sergouniotis, Panagiotis I.; Alkuraya, Fowzan S.; Parboosingh, Jillian S.; Innes, A Micheil; Willoughby, Colin E.; Giles, Rachel H.; Webster, Andrew R.; Ueffing, Marius; Blacque, Oliver; Gleeson, Joseph G.; Wolfrum, Uwe; Beales, Philip L.; Gibson, Toby
2015-01-01
Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and three pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localise to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1/CEP90 and C21orf2/LRRC76 as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2-variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease. PMID:26167768
Simulation optimization of PSA-threshold based prostate cancer screening policies
Zhang, Jingyu; Denton, Brian T.; Shah, Nilay D.; Inman, Brant A.
2013-01-01
We describe a simulation optimization method to design PSA screening policies based on expected quality adjusted life years (QALYs). Our method integrates a simulation model in a genetic algorithm which uses a probabilistic method for selection of the best policy. We present computational results about the efficiency of our algorithm. The best policy generated by our algorithm is compared to previously recommended screening policies. Using the policies determined by our model, we present evidence that patients should be screened more aggressively but for a shorter length of time than previously published guidelines recommend. PMID:22302420
Colorectal Cancer Screening: Stool DNA and Other Noninvasive Modalities.
Bailey, James R; Aggarwal, Ashish; Imperiale, Thomas F
2016-03-01
Colorectal cancer screening dates to the discovery of precancerous adenomatous tissue. Screening modalities and guidelines directed at prevention and early detection have evolved and resulted in a significant decrease in the prevalence and mortality of colorectal cancer via direct visualization or using specific markers. Despite continued efforts and an overall reduction in deaths attributed to colorectal cancer over the last 25 years, colorectal cancer remains one of the most common causes of malignancy-associated deaths. In attempt to further reduce the prevalence of colorectal cancer and associated deaths, continued improvement in screening quality and adherence remains key. Noninvasive screening modalities are actively being explored. Identification of specific genetic alterations in the adenoma-cancer sequence allow for the study and development of noninvasive screening modalities beyond guaiac-based fecal occult blood testing which target specific alterations or a panel of alterations. The stool DNA test is the first noninvasive screening tool that targets both human hemoglobin and specific genetic alterations. In this review we discuss stool DNA and other commercially available noninvasive colorectal cancer screening modalities in addition to other targets which previously have been or are currently under study.
Benefits and Limitations of Prenatal Screening for Prader-Willi Syndrome
Butler, Merlin G.
2016-01-01
This review the status of genetic laboratory testing in Prader-Willi syndrome (PWS) due to different genetic subtypes, most often a paternally derived 15q11-q13 deletion, with benefits and limitations related to prenatal screening. Medical literature was searched for prenatal screening and genetic laboratory testing methods in use or under development and discussed in relationship to PWS. Genetic testing includes six established laboratory diagnostic approaches for PWS with direct application to prenatal screening. Ultrasonographic, obstetric and cytogenetic reports were summarized in relationship to the cause of Prader-Willi syndrome and identification of specific genetic subtypes including maternal disomy 15. Advances in genetic technology were described for diagnosing PWS specifically DNA methylation and high-resolution chromosomal SNP microarrays as current tools for genetic screening and incorporating next generation DNA sequencing for noninvasive prenatal testing (NIPT) using cell-free fetal DNA. Positive experiences are reported with NIPT for detection of numerical chromosomal problems (aneuploidies) but not for structural problems (microdeletions). These reports will be discussed along with future directions for genetic screening of PWS. In summary, this review describes and discusses the status of established and ongoing genetic testing options for PWS applicable in prenatal screening including NIPT and future directions for early diagnosis in Prader-Willi syndrome. PMID:27537837
Benefits and limitations of prenatal screening for Prader-Willi syndrome.
Butler, Merlin G
2017-01-01
This review summarizes the status of genetic laboratory testing in Prader-Willi syndrome (PWS) with different genetic subtypes, most often a paternally derived 15q11-q13 deletion and discusses benefits and limitations related to prenatal screening. Medical literature was searched for prenatal screening and genetic laboratory testing methods in use or under development and discussed in relationship to PWS. Genetic testing includes six established laboratory diagnostic approaches for PWS with direct application to prenatal screening. Ultrasonographic, obstetric and cytogenetic reports were summarized in relationship to the cause of PWS and identification of specific genetic subtypes including maternal disomy 15. Advances in genetic technology were described for diagnosing PWS specifically DNA methylation and high-resolution chromosomal SNP microarrays as current tools for genetic screening and incorporating next generation DNA sequencing for noninvasive prenatal testing (NIPT) using cell-free fetal DNA. Positive experiences are reported with NIPT for detection of numerical chromosomal problems (aneuploidies) but not for structural problems (microdeletions). These reports will be discussed along with future directions for genetic screening of PWS. In summary, this review describes and discusses the status of established and ongoing genetic testing options for PWS applicable in prenatal screening including NIPT and future directions for early diagnosis in PWS. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.
Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma.
Reznik, Robert; Hendifar, Andrew E; Tuli, Richard
2014-01-01
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided.
Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma
Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard
2014-01-01
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093
An economic evaluation of a genetic screening program for Tay-Sachs disease.
Nelson, W B; Swint, J M; Caskey, C T
1978-01-01
The resolution of policy questions relating to medical genetic screening programs will not be without considerable difficulty. Examples include such issues as the optimal degree of screening program expansion, the relative values of screening for different genetic diseases, the appropriate sources of program funding (public vs. private), and the relative value of funding expanded genetic screening programs vs. research directed toward elimination of genetic traits themselves. Information on the net impact of the relevant alternatives is greatly needed, and this need will increase if the National Genetics Act receives funding approval. We have provided what is hopefully a contribution toward this end. While our analysis pertains to a specific disease and a specific screening program for that disease, the methodology is readily generalizable to other genetic diseases, as well as programs of any size or structure. Hopefully, this will serve to stimulate further research efforts that we believe are needed for the objective consideration of resource allocation alternatives. PMID:418675
An economic evaluation of a genetic screening program for Tay-Sachs disease.
Nelson, W B; Swint, J M; Caskey, C T
1978-03-01
The resolution of policy questions relating to medical genetic screening programs will not be without considerable difficulty. Examples include such issues as the optimal degree of screening program expansion, the relative values of screening for different genetic diseases, the appropriate sources of program funding (public vs. private), and the relative value of funding expanded genetic screening programs vs. research directed toward elimination of genetic traits themselves. Information on the net impact of the relevant alternatives is greatly needed, and this need will increase if the National Genetics Act receives funding approval. We have provided what is hopefully a contribution toward this end. While our analysis pertains to a specific disease and a specific screening program for that disease, the methodology is readily generalizable to other genetic diseases, as well as programs of any size or structure. Hopefully, this will serve to stimulate further research efforts that we believe are needed for the objective consideration of resource allocation alternatives.
Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi
2013-01-01
A novel real-time polymerase chain reaction (PCR)-based quantitative screening method was developed for three genetically modified soybeans: RRS, A2704-12, and MON89788. The 35S promoter (P35S) of cauliflower mosaic virus is introduced into RRS and A2704-12 but not MON89788. We then designed a screening method comprised of the combination of the quantification of P35S and the event-specific quantification of MON89788. The conversion factor (Cf) required to convert the amount of a genetically modified organism (GMO) from a copy number ratio to a weight ratio was determined experimentally. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDR), respectively. The determined RSDR values for the method were less than 25% for both targets. We consider that the developed method would be suitable for the simple detection and approximate quantification of GMO.
Postema, Floor A M; Hopman, Saskia M J; de Borgie, Corianne A J M; Hammond, Peter; Hennekam, Raoul C; Merks, Johannes H M; Aalfs, Cora M; Anninga, Jakob K; Berger, Lieke PV; Bleeker, Fonnet E; de Bont, Eveline SJM; de Borgie, Corianne AJM; Dommering, Charlotte J; van Eijkelenburg, Natasha KA; Hammond, Peter; Hennekam, Raoul C; van den Heuvel-Eibrink, Marry M; Hopman, Saskia MJ; Jongmans, Marjolijn CJ; Kors, Wijnanda A; Letteboer, Tom GW; Loeffen, Jan LCM; Merks, Johannes HM; Olderode-Berends, Maran JW; Postema, Floor AM; Wagner, Anja
2017-01-01
Introduction Recognising a tumour predisposition syndrome (TPS) in patients with childhood cancer is of significant clinical relevance, as it affects treatment, prognosis and facilitates genetic counselling. Previous studies revealed that only half of the known TPSs are recognised during standard paediatric cancer care. In current medical practice it is impossible to refer every patient with childhood cancer to a clinical geneticist, due to limited capacity for routine genetic consultation. Therefore, we have developed a screening instrument to identify patients with childhood cancer with a high probability of having a TPS. The aim of this study is to validate the clinical screening instrument for TPS in patients with childhood cancer. Methods and analysis This study is a prospective nationwide cohort study including all newly diagnosed patients with childhood cancer in the Netherlands. The screening instrument consists of a checklist, two- and three-dimensional photographic series of the patient. 2 independent clinical geneticists will assess the content of the screening instrument. If a TPS is suspected based on the instrument data and thus further evaluation is indicated, the patient will be invited for full genetic consultation. A negative control group consists of 20% of the patients in whom a TPS is not suspected based on the instrument; they will be randomly invited for full genetic consultation. Primary outcome measurement will be sensitivity of the instrument. Ethics and dissemination The Medical Ethical Committee of the Academic Medical Centre stated that the Medical Research Involving Human Subjects Act does not apply to this study and that official approval of this study by the Committee was not required. The results will be offered for publication in peer-reviewed journals and presented at International Conferences on Oncology and Clinical Genetics. The clinical data gathered in this study will be available for all participating centres. Trial registration number NTR5605. PMID:28110285
Next-generation libraries for robust RNA interference-based genome-wide screens
Kampmann, Martin; Horlbeck, Max A.; Chen, Yuwen; Tsai, Jordan C.; Bassik, Michael C.; Gilbert, Luke A.; Villalta, Jacqueline E.; Kwon, S. Chul; Chang, Hyeshik; Kim, V. Narry; Weissman, Jonathan S.
2015-01-01
Genetic screening based on loss-of-function phenotypes is a powerful discovery tool in biology. Although the recent development of clustered regularly interspaced short palindromic repeats (CRISPR)-based screening approaches in mammalian cell culture has enormous potential, RNA interference (RNAi)-based screening remains the method of choice in several biological contexts. We previously demonstrated that ultracomplex pooled short-hairpin RNA (shRNA) libraries can largely overcome the problem of RNAi off-target effects in genome-wide screens. Here, we systematically optimize several aspects of our shRNA library, including the promoter and microRNA context for shRNA expression, selection of guide strands, and features relevant for postscreen sample preparation for deep sequencing. We present next-generation high-complexity libraries targeting human and mouse protein-coding genes, which we grouped into 12 sublibraries based on biological function. A pilot screen suggests that our next-generation RNAi library performs comparably to current CRISPR interference (CRISPRi)-based approaches and can yield complementary results with high sensitivity and high specificity. PMID:26080438
Fragment-based screening of the bromodomain of ATAD2
Harner, Mary J.; Chauder, Brian A.; Phan, Jason; ...
2014-10-14
Cellular and genetic evidence suggest that inhibition of ATAD2 could be a useful strategy to treat several types of cancer. To discover small-molecule inhibitors of the bromodomain of ATAD2, we used a fragment-based approach. As a result, fragment hits were identified using NMR spectroscopy, and ATAD2 was crystallized with three of the hits identified in the fragment screen.
High-Throughput, Motility-Based Sorter for Microswimmers such as C. elegans
Yuan, Jinzhou; Zhou, Jessie; Raizen, David M.; Bau, Haim H.
2015-01-01
Animal motility varies with genotype, disease, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method is implemented in a simple microfluidic device capable of sorting thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriches for known C. elegans motility mutants. Furthermore, using this device, we isolate low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates C. elegans sleep. By performing genetic complementation tests, we demonstrate that our motility-based sorting device efficiently isolates mutants for the same gene identified by tedious visual inspection of behavior on an agar surface. Therefore, our motility-based sorter is capable of performing high throughput gene discovery approaches to investigate fundamental biological processes. PMID:26008643
Studying circadian rhythm and sleep using genetic screens in Drosophila.
Axelrod, Sofia; Saez, Lino; Young, Michael W
2015-01-01
The power of Drosophila melanogaster as a model organism lies in its ability to be used for large-scale genetic screens with the capacity to uncover the genetic basis of biological processes. In particular, genetic screens for circadian behavior, which have been performed since 1971, allowed researchers to make groundbreaking discoveries on multiple levels: they discovered that there is a genetic basis for circadian behavior, they identified the so-called core clock genes that govern this process, and they started to paint a detailed picture of the molecular functions of these clock genes and their encoded proteins. Since the discovery that fruit flies sleep in 2000, researchers have successfully been using genetic screening to elucidate the many questions surrounding this basic animal behavior. In this chapter, we briefly recall the history of circadian rhythm and sleep screens and then move on to describe techniques currently employed for mutagenesis and genetic screening in the field. The emphasis lies on comparing the newer approaches of transgenic RNA interference (RNAi) to classical forms of mutagenesis, in particular in their application to circadian behavior and sleep. We discuss the different screening approaches in light of the literature and published and unpublished sleep and rhythm screens utilizing ethyl methanesulfonate mutagenesis and transgenic RNAi from our lab. © 2015 Elsevier Inc. All rights reserved.
Hall, Michael J
2010-05-01
Inherited mutations in 1 of 4 known mismatch repair genes (MLH1, MSH2, MSH6, PMS2) are associated with various cancer risks collectively referred to as Lynch syndrome. Roughly 3 of every 100 new colorectal cancers (CRCs) have an underlying Lynch mutation. Tumor-based screening for Lynch among all patients with newly diagnosed CRC could theoretically improve the ability to identify Lynch and prevent cancer among at-risk family members, but the patient-level and social implications of this approach must be carefully considered before adopting this strategy. Poorly addressed issues include the role/timing of informed consent for testing, access and cost barriers associated with genetic counseling and DNA testing, psychosocial burdens to the thousands of middle-aged and elderly patients with CRC coping with surgical and chemotherapy treatments and poor prognosis, the need for providers to warn third-party relatives of risk for Lynch syndrome, limited effectiveness of screening, and the cost burden to society when poor DNA testing uptake, test limitations, and modest screening compliance are considered. Diverse barriers to the success of a population-based Lynch screening program in the United States remain (e.g., clinical resource needs, financial limitations, clinical expertise gaps, educational deficits). Data supporting clinical efficacy (feasibility) and effectiveness (real-life performance) are critical before important policy changes are adopted, especially where issues of hereditary cancer risk and genetic privacy are involved.
De Spiegelaere, Ward; Philippé, Jan; Vervisch, Karen; Verhofstede, Chris; Malatinkova, Eva; Kiselinova, Maja; Trypsteen, Wim; Bonczkowski, Pawel; Vogelaers, Dirk; Callens, Steven; Ruelle, Jean; Kabeya, Kabamba; De Wit, Stephane; Van Acker, Petra; Van Sandt, Vicky; Emonds, Marie-Paule; Coucke, Paul; Sermijn, Erica; Vandekerckhove, Linos
2015-01-01
Abacavir is a nucleoside reverse transcriptase inhibitor used as part of combination antiretroviral therapy in HIV-1-infected patients. Because this drug can cause a hypersensitivity reaction that is correlated with the presence of the HLA-B*57:01 allotype, screening for the presence of HLA-B*57:01 is recommended before abacavir initiation. Different genetic assays have been developed for HLA-B*57:01 screening, each with specific sensitivity, turnaround time and assay costs. Here, a new real-time PCR (qPCR) based analysis is described and compared to sequence specific primer PCR with capillary electrophoresis (SSP PCR CE) on 149 patient-derived samples, using sequence specific oligonucleotide hybridization combined with high resolution SSP PCR as gold standard. In addition to these PCR based methods, a complementary approach was developed using flow cytometry with an HLA-B17 specific monoclonal antibody as a pre-screening assay to diminish the number of samples for genetic testing. All three assays had a maximum sensitivity of >99. However, differences in specificity were recorded, i.e. 84.3%, 97.2% and >99% for flow cytometry, qPCR and SSP PCR CE respectively. Our data indicate that the most specific and sensitive of the compared methods is the SSP PCR CE. Flow cytometry pre-screening can substantially decrease the number of genetic tests for HLA-B*57:01 typing in a clinical setting.
Eugster, Albert; Murmann, Petra; Kaenzig, Andre; Breitenmoser, Alda
2014-10-01
In routine analysis screening methods based on real-time PCR (polymerase chain reaction) are most commonly used for the detection of genetically modified (GM) plant material in food and feed. Screening tests are based on sequences frequently used for GM development, allowing the detection of a large number of GMOs (genetically modified organisms). Here, we describe the development and validation of a tetraplex real-time PCR screening assay comprising detection systems for the regulatory genes Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens nos terminator, Cauliflower Mosaic Virus 35S terminator and Figwort Mosaic Virus 34S promoter. Three of the four primer and probe combinations have already been published elsewhere, whereas primers and probe for the 35S terminator have been developed in-house. Adjustment of primer and probe concentrations revealed a high PCR sensitivity with insignificant physical cross-talk between the four detection channels. The sensitivity of each PCR-system is sufficient to detect a GMO concentration as low as 0.05% of the containing respective element. The specificity of the described tetraplex is high when tested on DNA from GM maize, soy, rapeseed and tomato. We also demonstrate the robustness of the system by inter-laboratory tests. In conclusion, this method provides a sensitive and reliable screening procedure for the detection of the most frequently used regulatory elements present in GM crops either authorised or unauthorised for food.
Prenatal diagnostic decision-making in adolescents.
Plaga, Stacey L; Demarco, Kristin; Shulman, Lee P
2005-04-01
We sought to evaluate the prenatal decision-making of pregnant adolescents identified at increased risk for identifiable fetal genetic abnormalities. A retrospective review of records of gravid women 19 years old or younger undergoing genetic counseling from 2001-2003 (inclusive) was undertaken. Hospital-based academic center. Thirty-seven women were identified; four cases did not meet inclusion criteria. None. Decision to undergo or forgo invasive prenatal testing. Of the 33 women included in this study, the average age was 17.6 years (range: 15-19). Eighteen were Latinas, eight were African-Americans, and seven were Caucasians. Sixteen women had positive maternal serum screening outcomes; nine women sought counseling because of personal/family histories of genetic abnormalities, seven sought counseling after fetal structural anomalies were detected by ultrasound, and one woman sought counseling because she and her partner were positive for Mendelian disorder screening (sickle cell disease). Sixteen of the women (48.5%) chose to undergo invasive testing (15 amniocenteses, one chorionic villus sampling) whereas 17 (51.5%) chose to forgo invasive testing. Adolescents offered invasive prenatal diagnosis will chose to undergo or forgo such testing based on diagnostic and personal criteria as do adult women. Nonetheless, unique adolescent issues may make the process by which information is obtained and communicated during counseling to be different from counseling provided to adults. The development of new genetic screening and diagnostic protocols has and will increase the number of pregnant adolescent women who will be offered genetic counseling during their pregnancies. Such an increase in numbers will place considerably more pressure on an already taxed genetic counseling system; accordingly, new counseling paradigms will need to be developed to provide service to an expanded patient population seeking information for an increasing number of genetic issues.
Resignifying the sickle cell gene: Narratives of genetic risk, impairment and repair.
Berghs, Maria; Dyson, Simon M; Atkin, Karl
2017-03-01
Connecting theoretical discussion with empirical qualitative work, this article examines how sickle cell became a site of public health intervention in terms of 'racialised' risks. Historically, sickle cell became socio-politically allied to ideas of repair, in terms of the state improving the health of a neglected ethnic minority population. Yet, we elucidate how partial improvements in care and education arose alongside preventative public health screening efforts. Using qualitative research based in the United Kingdom, we show how a focus on collective efforts of repair can lie in tension with how services and individuals understand and negotiate antenatal screening. We illustrate how screening for sickle cell disorder calls into question narrative identity, undoing paradigms in which ethnicity, disablement and genetic impairment become framed. Research participants noted that rather than 'choices', it is 'risks' and their negotiation that are a part of discourses of modernity and the new genetics. Furthermore, while biomedical paradigms are rationally and ethically (de)constructed by participants, this was never fully engaged with by professionals, contributing to overall perception of antenatal screening as disempowering and leading to disengagement.
Kim, Wooseong; Hendricks, Gabriel Lambert; Lee, Kiho; Mylonakis, Eleftherios
2017-06-01
The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.
Feng, Qiang-Nan; Zhang, Yan
2017-01-01
Subcellular targeting of vacuolar proteins depends on cellular machinery regulating vesicular trafficking. Plant-specific vacuolar trafficking routes have been reported. However, regulators mediating these processes are obscure. By combining a fluorescence imaging-based forward genetic approach and in vitro pollen germination system, we show an efficient protocol of identifying regulators of plant-specific vacuolar trafficking routes.
The art and design of genetic screens: maize
USDA-ARS?s Scientific Manuscript database
Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible...
Leo, Michael C; McMullen, Carmit; Wilfond, Benjamin S; Lynch, Frances L; Reiss, Jacob A; Gilmore, Marian J; Himes, Patricia; Kauffman, Tia L; Davis, James V; Jarvik, Gail P; Berg, Jonathan S; Harding, Cary; Kennedy, Kathleen A; Simpson, Dana Kostiner; Quigley, Denise I; Richards, C Sue; Rope, Alan F; Goddard, Katrina A B
2016-03-01
Advances in genome sequencing and gene discovery have created opportunities to efficiently assess more genetic conditions than ever before. Given the large number of conditions that can be screened, the implementation of expanded carrier screening using genome sequencing will require practical methods of simplifying decisions about the conditions for which patients want to be screened. One method to simplify decision making is to generate a taxonomy based on expert judgment. However, expert perceptions of condition attributes used to classify these conditions may differ from those used by patients. To understand whether expert and patient perceptions differ, we asked women who had received preconception genetic carrier screening in the last 3 years to fill out a survey to rate the attributes (predictability, controllability, visibility, and severity) of several autosomal recessive or X-linked genetic conditions. These conditions were classified into one of five taxonomy categories developed by subject experts (significantly shortened lifespan, serious medical problems, mild medical problems, unpredictable medical outcomes, and adult-onset conditions). A total of 193 women provided 739 usable ratings across 20 conditions. The mean ratings and correlations demonstrated that participants made distinctions across both attributes and categories. Aggregated mean attribute ratings across categories demonstrated logical consistency between the key features of each attribute and category, although participants perceived little difference between the mild and serious categories. This study provides empirical evidence for the validity of our proposed taxonomy, which will simplify patient decisions for results they would like to receive from preconception carrier screening via genome sequencing. © 2016 Wiley Periodicals, Inc.
Motherhood and Genetic Screening: A Personal Perspective
ERIC Educational Resources Information Center
Place, Fiona
2008-01-01
According to the medical profession the direction and scope of reproductive services such as IVF and pre-natal screening are based on solid evidence; the evidence indicates these are effective and safe services. Moreover, women want them. As a consequence these services are usually presented to the wider community in a positive light with images…
Stigmatization of carrier status: social implications of heterozygote genetic screening programs.
Kenen, R H; Schmidt, R M
1978-01-01
Possible latent psychological and social consequences ensuing from genetic screening programs need to be investigated during the planning phase of national genetic screening programs. The relatively few studies which have been performed to determine psychological, social, and economic consequences resulting from a genetic screening program are reviewed. Stigmatization of carrier-status, having major psychosocial implications in heterozygote genetic screening programs, is discussed and related to Erving Goffman's work in the area of stigmatization. Questions are raised regarding the relationship between such variables as religiosity and sex of the individual and acceptance of the status of newly identified carrier of a mutant gene. Severity of the deleterious gene and visibility of the carrier status are two important factors to consider in an estimation of potential stigma. Specific implications are discussed for four genetic diseases: Tay-Sachs, Sickle-Cell Anemia, Huntington's disease and Hemophilia. PMID:152585
Microfluidics for cell-based high throughput screening platforms - A review.
Du, Guansheng; Fang, Qun; den Toonder, Jaap M J
2016-01-15
In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.
Expert and Advocacy Group Consensus Findings on the Horizon of Public Health Genetic Testing
Modell, Stephen M.; Greendale, Karen; Citrin, Toby; Kardia, Sharon L. R.
2016-01-01
Description: Among the two leading causes of death in the United States, each responsible for one in every four deaths, heart disease costs Americans $300 billion, while cancer costs Americans $216 billion per year. They also rank among the top three causes of death in Europe and Asia. In 2012 the University of Michigan Center for Public Health and Community Genomics and Genetic Alliance, with the support of the Centers for Disease Control and Prevention Office of Public Health Genomics, hosted a conference in Atlanta, Georgia to consider related action strategies based on public health genomics. The aim of the conference was consensus building on recommendations to implement genetic screening for three major heritable contributors to these mortality and cost figures: hereditary breast and ovarian cancer (HBOC), familial hypercholesterolemia (FH), and Lynch syndrome (LS). Genetic applications for these three conditions are labeled with a “Tier 1” designation by the U.S. Centers for Disease Control and Prevention because they have been fully validated and clinical practice guidelines based on systematic review support them. Methodology: The conference followed a deliberative sequence starting with nationally recognized clinical and public health presenters for each condition, followed by a Patient and Community Perspectives Panel, working group sessions for each of the conditions, and a final plenary session. The 74 conference participants represented disease research and advocacy, public health, medicine and nursing, genetics, governmental health agencies, and industry. Participants drew on a public health framework interconnecting policy, clinical intervention, surveillance, and educational functions for their deliberations. Results: Participants emphasized the importance of collaboration between clinical, public health, and advocacy groups in implementing Tier 1 genetic screening. Advocacy groups could help with individual and institutional buy-in of Tier 1 programs. Groups differed on funding strategies, with alternative options such as large-scale federal funding and smaller scale, incremental funding solutions proposed. Piggybacking on existing federal breast and colorectal cancer control programs was suggested. Public health departments need to assess what information is now being collected by their state cancer registries. The groups advised that information on cascade screening of relatives be included in toolkits for use by states. Participants stressed incorporation of family history into health department breast cancer screening programs, and clinical HBOC data into state surveillance systems. The carrying out of universal LS screening of tumors in those with colorectal cancer was reviewed. Expansion of universal screening to include endometrial tumors was discussed, as was the application of guidelines recommending cholesterol screening of children 9–11 years old. States more advanced in terms of Tier 1 testing could serve as models and partners with other states launching screening and surveillance programs. A multidisciplinary team of screening program champions was suggested as a means of raising awareness among the consumer and health care communities. Participants offered multiple recommendations regarding use of electronic health records, including flagging of at-risk family members and utilization of state-level health information exchanges. The paper contains an update of policy developments and happenings for all three Tier 1 conditions, as well as identified gaps. Conclusions: Implementation of cascade screening of family members for HBOC and FH, and universal screening for LS in CRC tumors has reached a point of readiness within the U.S., with creative solutions at hand. Facilitating factors such as screening coverage through the Patient Protection and Affordable Care Act, and state health information exchanges can be tapped. Collaboration is needed between public health departments, health care systems, disease advocacy groups, and industry to fully realize Tier 1 genetic screening. State health department and disease networks currently engaged in Tier 1 screening can serve as models for the launch of new initiatives. PMID:27417602
Kauffman, Tia L; Wilfond, Benjamin S; Jarvik, Gail P; Leo, Michael C; Lynch, Frances L; Reiss, Jacob A; Richards, C Sue; McMullen, Carmit; Nickerson, Deborah; Dorschner, Michael O; Goddard, Katrina A B
2017-02-01
Population-based carrier screening is limited to well-studied or high-impact genetic conditions for which the benefits may outweigh the associated harms and costs. As the cost of genome sequencing declines and availability increases, the balance of risks and benefits may change for a much larger number of genetic conditions, including medically actionable additional findings. We designed an RCT to evaluate genomic clinical sequencing for women and partners considering a pregnancy. All results are placed into the medical record for use by healthcare providers. Through quantitative and qualitative measures, including baseline and post result disclosure surveys, post result disclosure interviews, 1-2year follow-up interviews, and team journaling, we are obtaining data about the clinical and personal utility of genomic carrier screening in this population. Key outcomes include the number of reportable carrier and additional findings, and the comparative cost, utilization, and psychosocial impacts of usual care vs. genomic carrier screening. As the study progresses, we will compare the costs of genome sequencing and usual care as well as the cost of screening, pattern of use of genetic or mental health counseling services, number of outpatient visits, and total healthcare costs. This project includes novel investigation into human reactions and responses from would-be parents who are learning information that could both affect a future pregnancy and their own health. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Cadet, E; Capron, D; Gallet, M; Omanga-Léké, M-L; Boutignon, H; Julier, C; Robson, K J H; Rochette, J
2005-05-01
Genetic testing can determine those at risk for hereditary haemochromatosis (HH) caused by HFE mutations before the onset of symptoms. However, there is no optimum screening strategy, mainly owing to the variable penetrance in those who are homozygous for the HFE Cys282Tyr (C282Y) mutation. The objective of this study was to identify the majority of individuals at serious risk of developing HFE haemochromatosis before they developed life threatening complications. We first estimated the therapeutic penetrance of the C282Y mutation in people living in la Somme, France, using genetic, demographic, biochemical, and follow up data. We examined the benefits of neonatal screening on the basis of increased risk to relatives of newborns carrying one or two copies of the C282Y mutation. Between 1999 and 2002, we screened 7038 newborns from two maternity hospitals in the north of France for the C282Y and His63Asp (H63D) mutations in the HFE gene, using bloodspots collected on Guthrie cards. Family studies and genetic counselling were undertaken, based on the results of the baby's genotype. In la Somme, we found that 24% of the adults homozygous for the C282Y mutation required at least 5 g iron to be removed to restore normal iron parameters (that is, the therapeutic penetrance). In the reverse cascade screening study, we identified 19 C282Y homozygotes (1/370), 491 heterozygotes (1/14) and 166 compound heterozygotes (1/42) in 7038 newborns tested. The reverse cascade screening strategy resulted in 80 adults being screened for both mutations. We identified 10 previously unknown C282Y homozygotes of whom six (four men and two women) required venesection. Acceptance of neonatal screening was high; parents understood the risks of having HH and the benefits of early detection, but a number of parents were reluctant to take the test themselves. Neonatal screening for HH is straightforward. Reverse cascade screening increased the efficiency of detecting affected adults with undiagnosed haemochromatosis. This strategy allows almost complete coverage for HH and could be a model for efficient screening for other late onset genetic diseases.
Nir, Oaz; Bakal, Chris; Perrimon, Norbert; Berger, Bonnie
2010-03-01
Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/inhibit downstream targets via post-translational modification. Computational techniques have been developed to perform signaling network inference using some high-throughput data sources, such as those generated from transcriptional and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational framework based on a classification model for identifying genetic interactions using high-dimensional single-cell morphological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy. Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen, which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic interactions and, using additional elementary knowledge of network structure, to infer signaling relations.
Hong, Robert A; Khan, Zia R; Valentin, Mona R; Badawi, Ramy A
2015-01-01
Recent efforts directed at potential litigation in Hawai‘i have resulted in a renewed interest for genetic screening for cytochrome P450 2C19 (CYP2C19) polymorphisms in patients treated with clopidogrel. Clopidogrel is an antiplatelet agent, frequently used in combination with aspirin, for the prevention of thrombotic complications with acute coronary syndrome and in patients undergoing percutaneous coronary interventions. Cytochrome P-450 (CYP) 2C19 is an enzyme involved in the bioactivation of clopidogrel from a pro-drug to an active inhibitor of platelet action. Patients of Asian and Pacific Island background have been reported to have an increase in CYP2C19 polymorphisms associated with loss-of-function of this enzyme when compared to other ethnicities. This has created an interest in genetic testing for CYP2C19 polymorphisms in Hawai‘i. Based upon our review of the current literature, we do not feel that there is support for the routine screening for CYP2C19 polymorphisms in patients being treated with clopidogrel; furthermore, the results of genetic testing may not be helpful in guiding therapeutic decisions. We recommend that decisions on the type of antiplatelet treatment be made based upon clinical evidence of potential differential outcomes associated with the use of these agents rather than on the basis of genetic testing. PMID:25628978
Simopoulos, A P
2009-01-01
Screening programs for genetic diseases and characteristics have multiplied in the last 50 years. 'Genetic Screening: Programs, Principles, and Research' is the report of the Committee for the Study of Inborn Errors of Metabolism (SIEM Committee) commissioned by the Division of Medical Sciences of the National Research Council at the National Academy of Sciences in Washington, DC, published in 1975. The report is considered a classic in the field worldwide, therefore it was thought appropriate 30 years later to present the Committee's modus operandi and bring the Committee's recommendations to the attention of those involved in genetics, including organizational, educational, legal, and research aspects of genetic screening. The Committee's report anticipated many of the legal, ethical, economic, social, medical, and policy aspects of genetic screening. The recommendations are current, and future committees should be familiar with them. In 1975 the Committee stated: 'As new screening tests are devised, they should be carefully reviewed. If the experimental rate of discovery of new genetic characteristics means an accelerating rate of appearance of new screening tests, now is the time to develop the medical and social apparatus to accommodate what later on may otherwise turn out to be unmanageable growth.' What a prophetic statement that was. If the Committee's recommendations had been implemented on time, there would be today a federal agency in existence, responsive and responsible to carry out the programs and support research on various aspects of genetic screening, including implementation of a federal law that protects consumers from discrimination by their employers and the insurance industry on the basis of genetic information. Copyright 2008 S. Karger AG, Basel.
USDA-ARS?s Scientific Manuscript database
Campylobacter is a foodborne pathogen which has a potential public health concern worldwide. Due to discriminatory problems encountered by conventional isolation of Campylobacter spp. and its genetic similarities, rapid molecular techniques for its genetic characterization are useful. In this study,...
ERIC Educational Resources Information Center
Ozer Keskin, Melike; Keskin Samanci, Nilay; Yaman, Hale
2013-01-01
Nowadays, there is a need in science education to consider scientific research and its applications alongside ethical consensus. Even though classroom debates of value issues have been demonstrated to significantly contribute to the raising of social consciousness and awareness, research shows that neither academics in higher education nor…
Halder, Vivek; Kombrink, Erich
2015-01-01
The use of biologically active small molecules to perturb biological functions holds enormous potential for investigating complex signaling networks. However, in contrast to animal systems, the search for and application of chemical tools for basic discovery in the plant sciences, generally referred to as “chemical genetics,” has only recently gained momentum. In addition to cultured cells, the well-characterized, small-sized model plant Arabidopsis thaliana is suitable for cultivation in microplates, which allows employing diverse cell- or phenotype-based chemical screens. In such screens, a chemical's bioactivity is typically assessed either through scoring its impact on morphological traits or quantifying molecular attributes such as enzyme or reporter activities. Here, we describe a facile forward chemical screening methodology for intact Arabidopsis seedlings harboring the β-glucuronidase (GUS) reporter by directly quantifying GUS activity in situ with 4-methylumbelliferyl-β-D-glucuronide (4-MUG) as substrate. The quantitative nature of this screening assay has an obvious advantage over the also convenient histochemical GUS staining method, as it allows application of statistical procedures and unbiased hit selection based on threshold values as well as distinction between compounds with strong or weak bioactivity. At the same time, the in situ bioassay is very convenient requiring less effort and time for sample handling in comparison to the conventional quantitative in vitro GUS assay using 4-MUG, as validated with several Arabidopsis lines harboring different GUS reporter constructs. To demonstrate that the developed assays is particularly suitable for large-scale screening projects, we performed a pilot screen for chemical activators or inhibitors of salicylic acid-mediated defense signaling using the Arabidopsis PR1p::GUS line. Importantly, the screening methodology provided here can be adopted for any inducible GUS reporter line. PMID:25688251
How lay people respond to messages about genetics, health, and race.
Condit, C; Bates, B
2005-08-01
There is a growing movement in medical genetics to develop, implement, and promote a model of race-based medicine. Although race-based medicine may become a widely disseminated standard of care, messages that advocate race-based selection for diagnosing, screening and prescribing drugs may exacerbate health disparities. These messages are present in clinical genetic counseling sessions, mass media, and everyday talk. Messages promoting linkages among genes, race, and health and messages emphasizing genetic causation may promote both general racism and genetically based racism. This mini-review examines research in three areas: studies that address the effects of these messages about genetics on levels of genetic determinism and genetic discrimination; studies that address the effects of these messages on attitudes about race; and, studies of the impacts of race-specific genetic messages on recipients. Following an integration of this research, this mini-review suggests that the current literature appears fragmented because of methodological and measurement issues and offers strategies for future research. Finally, the authors offer a path model to help organize future research examining the effects of messages about genetics on socioculturally based racism, genetically based racism, and unaccounted for racism. Research in this area is needed to understand and mitigate the negative attitudinal effects of messages that link genes, race, and health and/or emphasize genetic causation.
Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.
Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M
2016-08-18
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.
Novel gene function revealed by mouse mutagenesis screens for models of age-related disease
Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.
2016-01-01
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441
... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...
"Am I carrier?" The patient's lived experience of thrombophilia genetic screening and its outcome.
Graffigna, Guendalina; Leone, Daniela; Vegni, Elena
2014-01-01
How do patients with thrombophilia experience a physician's request to undergo a genetic test? How do they experience the test outcome? To answer these questions, we conducted an interpretative phenomenological analysis study, based on 10 in-depth interviews with patients who underwent genetic testing for thrombophilia in Italy, half with positive and half with negative results. The experience of undergoing genetic screening for thrombophilia plays an important role in reconfiguring patients' signification of their illness experience. A positive outcome becomes a cue to reorganize in a more adaptive way the illness meaning at the cognitive and emotive levels, whereas a negative outcome appears more distressing and confusing. As a clinical implication of the study, clinicians should consider communicating carefully with the patients regardless from the positive/negative test results and they should explore the patient's specific reaction and understanding of test result.
Online Education and e-Consent for GeneScreen, a Preventive Genomic Screening Study.
Cadigan, R Jean; Butterfield, Rita; Rini, Christine; Waltz, Margaret; Kuczynski, Kristine J; Muessig, Kristin; Goddard, Katrina A B; Henderson, Gail E
2017-01-01
Online study recruitment is increasingly popular, but we know little about the decision making that goes into joining studies in this manner. In GeneScreen, a genomic screening study that utilized online education and consent, we investigated participants' perceived ease when deciding to join and their understanding of key study features. Individuals were recruited via mailings that directed them to a website where they could learn more about GeneScreen, consent to participate, and complete a survey. Participants found it easy to decide to join GeneScreen and had a good understanding of study features. Multiple regression analyses revealed that ease of deciding to join was related to confidence in one's genetic self-efficacy, limited concerns about genetic screening, trust in and lack of frustration using the website, and the ability to spend a limited time on the website. Understanding of study features was related to using the Internet more frequently and attaining more information about GeneScreen conditions. The ease of deciding to join a genomic screening study and comprehension of its key features should be treated as different phenomena in research and practice. There is a need for a more nuanced understanding of how individuals respond to web-based consent information. © 2017 S. Karger AG, Basel.
The genetics underlying acquired long QT syndrome: impact for genetic screening
Itoh, Hideki; Crotti, Lia; Aiba, Takeshi; Spazzolini, Carla; Denjoy, Isabelle; Fressart, Véronique; Hayashi, Kenshi; Nakajima, Tadashi; Ohno, Seiko; Makiyama, Takeru; Wu, Jie; Hasegawa, Kanae; Mastantuono, Elisa; Dagradi, Federica; Pedrazzini, Matteo; Yamagishi, Masakazu; Berthet, Myriam; Murakami, Yoshitaka; Shimizu, Wataru; Guicheney, Pascale; Schwartz, Peter J.; Horie, Minoru
2016-01-01
Aims Acquired long QT syndrome (aLQTS) exhibits QT prolongation and Torsades de Pointes ventricular tachycardia triggered by drugs, hypokalaemia, or bradycardia. Sometimes, QTc remains prolonged despite elimination of triggers, suggesting the presence of an underlying genetic substrate. In aLQTS subjects, we assessed the prevalence of mutations in major LQTS genes and their probability of being carriers of a disease-causing genetic variant based on clinical factors. Methods and results We screened for the five major LQTS genes among 188 aLQTS probands (55 ± 20 years, 140 females) from Japan, France, and Italy. Based on control QTc (without triggers), subjects were designated ‘true aLQTS’ (QTc within normal limits) or ‘unmasked cLQTS’ (all others) and compared for QTc and genetics with 2379 members of 1010 genotyped congenital long QT syndrome (cLQTS) families. Cardiac symptoms were present in 86% of aLQTS subjects. Control QTc of aLQTS was 453 ± 39 ms, shorter than in cLQTS (478 ± 46 ms, P < 0.001) and longer than in non-carriers (406 ± 26 ms, P < 0.001). In 53 (28%) aLQTS subjects, 47 disease-causing mutations were identified. Compared with cLQTS, in ‘true aLQTS’, KCNQ1 mutations were much less frequent than KCNH2 (20% [95% CI 7–41%] vs. 64% [95% CI 43–82%], P < 0.01). A clinical score based on control QTc, age, and symptoms allowed identification of patients more likely to carry LQTS mutations. Conclusion A third of aLQTS patients carry cLQTS mutations, those on KCNH2 being more common. The probability of being a carrier of cLQTS disease-causing mutations can be predicted by simple clinical parameters, thus allowing possibly cost-effective genetic testing leading to cascade screening for identification of additional at-risk family members. PMID:26715165
The genetics underlying acquired long QT syndrome: impact for genetic screening.
Itoh, Hideki; Crotti, Lia; Aiba, Takeshi; Spazzolini, Carla; Denjoy, Isabelle; Fressart, Véronique; Hayashi, Kenshi; Nakajima, Tadashi; Ohno, Seiko; Makiyama, Takeru; Wu, Jie; Hasegawa, Kanae; Mastantuono, Elisa; Dagradi, Federica; Pedrazzini, Matteo; Yamagishi, Masakazu; Berthet, Myriam; Murakami, Yoshitaka; Shimizu, Wataru; Guicheney, Pascale; Schwartz, Peter J; Horie, Minoru
2016-05-07
Acquired long QT syndrome (aLQTS) exhibits QT prolongation and Torsades de Pointes ventricular tachycardia triggered by drugs, hypokalaemia, or bradycardia. Sometimes, QTc remains prolonged despite elimination of triggers, suggesting the presence of an underlying genetic substrate. In aLQTS subjects, we assessed the prevalence of mutations in major LQTS genes and their probability of being carriers of a disease-causing genetic variant based on clinical factors. We screened for the five major LQTS genes among 188 aLQTS probands (55 ± 20 years, 140 females) from Japan, France, and Italy. Based on control QTc (without triggers), subjects were designated 'true aLQTS' (QTc within normal limits) or 'unmasked cLQTS' (all others) and compared for QTc and genetics with 2379 members of 1010 genotyped congenital long QT syndrome (cLQTS) families. Cardiac symptoms were present in 86% of aLQTS subjects. Control QTc of aLQTS was 453 ± 39 ms, shorter than in cLQTS (478 ± 46 ms, P < 0.001) and longer than in non-carriers (406 ± 26 ms, P < 0.001). In 53 (28%) aLQTS subjects, 47 disease-causing mutations were identified. Compared with cLQTS, in 'true aLQTS', KCNQ1 mutations were much less frequent than KCNH2 (20% [95% CI 7-41%] vs. 64% [95% CI 43-82%], P < 0.01). A clinical score based on control QTc, age, and symptoms allowed identification of patients more likely to carry LQTS mutations. A third of aLQTS patients carry cLQTS mutations, those on KCNH2 being more common. The probability of being a carrier of cLQTS disease-causing mutations can be predicted by simple clinical parameters, thus allowing possibly cost-effective genetic testing leading to cascade screening for identification of additional at-risk family members. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
CRISPR genetic screens to discover host-virus interactions.
McDougall, William M; Perreira, Jill M; Reynolds, Erin C; Brass, Abraham L
2018-04-01
Viruses impose an immense burden on human health. With the goal of treating and preventing viral infections, researchers have carried out genetic screens to improve our understanding of viral dependencies and identify potential anti-viral strategies. The emergence of CRISPR genetic screening tools has facilitated this effort by enabling host-virus screens to be undertaken in a more versatile and fidelitous manner than previously possible. Here we review the growing number of CRISPR screens which continue to increase our understanding of host-virus interactions. Copyright © 2018 Elsevier B.V. All rights reserved.
McLaren, Christine E; Barton, James C; Adams, Paul C; Harris, Emily L; Acton, Ronald T; Press, Nancy; Reboussin, David M; McLaren, Gordon D; Sholinsky, Phyliss; Walker, Ann P; Gordeuk, Victor R; Leiendecker-Foster, Catherine; Dawkins, Fitzroy W; Eckfeldt, John H; Mellen, Beverly G; Speechley, Mark; Thomson, Elizabeth
2003-02-01
The HEIRS Study will evaluate the prevalence, genetic and environmental determinants, and potential clinical, personal, and societal impact of hemochromatosis and iron overload in a multiethnic, primary care-based sample of 100,000 adults over a 5-year period. Participants are recruited from 5 Field Centers. Laboratory testing and data management and analysis are performed in a Central Laboratory and Coordinating Center, respectively. Participants undergo testing for serum iron measures and common mutations of the hemochromatosis gene ( ) on chromosome 6p and answer questions on demographics, health, and genetic testing attitudes. Participants with elevated values of transferrin saturation and serum ferritin and/or C282Y homozygosity are invited to undergo a comprehensive clinical examination (CCE), as are frequency-matched control subjects. These examinations provide data on personal and family medical history, lifestyle characteristics, physical examination, genetic counseling, and assessment of ethical, legal, and social implications. Primary and secondary causes of iron overload will be distinguished by clinical criteria. Iron overload will be confirmed by quantification of iron stores. Recruiting family members of cases will permit DNA analysis for additional genetic factors that affect iron overload. Of the first 50,520 screened, 51% are white, 24% are African American, 11% are Asian, 11% are Hispanic, and 3% are of other, mixed, or unidentified race; 63% are female and 37% are male. Information from the HEIRS Study will inform policy regarding the feasibility, optimal approach, and potential individual and public health benefits and risks of primary care-based screening for iron overload and hemochromatosis.
Peer-reviewed, evidence-based summaries on topics including adult and pediatric cancer treatment, supportive and palliative care, screening, prevention, genetics, and complementary and alternative medicine. References to published literature are included.
Finding the needle in a haystack: identification of cases of Lynch syndrome with MLH1 epimutation.
Hitchins, Megan P
2016-07-01
Constitutional epimutation of the DNA mismatch repair gene, MLH1, represents a minor cause of Lynch syndrome. MLH1 epimutations are characterized by the soma-wide distribution of methylation of a single allele of the MLH1 promoter accompanied by constitutive allelic loss of transcription. 'Primary' MLH1 epimutations, considered pure epigenetic defects, tend to arise de novo in patients without a family history or any apparent genetic mutation. These demonstrate non-Mendelian inheritance. 'Secondary' MLH1 epimutations have a genetic basis and have been linked to non-coding genetic alterations in the vicinity of MLH1. These demonstrate autosomal dominant inheritance. Despite convincing evidence of their role in causing Lynch-type cancers, routine screening for MLH1 epimutations has not been widely adopted. Complicating factors may include: the need to perform additional methylation-based testing beyond the standard genetic screening for a germline mutation; the lack of a consensus algorithm for the selection of patients warranting MLH1 epimutation testing; overlapping molecular pathology features of MLH1 methylation and loss of MLH1 expression with more prevalent sporadic MSI cancers; the rarity of MLH1 epimutation; the variable inter-generational inheritance patterns; and the cost-effectiveness of screening. Nevertheless, a positive molecular diagnosis of MLH1 epimutation is clinically important because carriers have a high personal risk of developing metachronous Lynch-type cancers, and their relatives may also be at risk of carriage. Extending existing universal and clinic-based screening algorithms for Lynch syndrome to include an additional arm of selection criteria for cases warranting MLH1 epimutation testing could provide a cost-effective means of diagnosing these cases.
Takashima, Eizo; Williams, Marni; Eiglmeier, Karin; Pain, Adrien; Guelbeogo, Wamdaogo M.; Gneme, Awa; Brito-Fravallo, Emma; Holm, Inge; Lavazec, Catherine; Sagnon, N’Fale; Baxter, Richard H.; Riehle, Michelle M.; Vernick, Kenneth D.
2015-01-01
Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with broad specificity a rarity. PMID:26633695
A New Targeted CFTR Mutation Panel Based on Next-Generation Sequencing Technology.
Lucarelli, Marco; Porcaro, Luigi; Biffignandi, Alice; Costantino, Lucy; Giannone, Valentina; Alberti, Luisella; Bruno, Sabina Maria; Corbetta, Carlo; Torresani, Erminio; Colombo, Carla; Seia, Manuela
2017-09-01
Searching for mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) is a key step in the diagnosis of and neonatal and carrier screening for cystic fibrosis (CF), and it has implications for prognosis and personalized therapy. The large number of mutations and genetic and phenotypic variability make this search a complex task. Herein, we developed, validated, and tested a laboratory assay for an extended search for mutations in CFTR using a next-generation sequencing-based method, with a panel of 188 CFTR mutations customized for the Italian population. Overall, 1426 dried blood spots from neonatal screening, 402 genomic DNA samples from various origins, and 1138 genomic DNA samples from patients with CF were analyzed. The assay showed excellent analytical and diagnostic operative characteristics. We identified and experimentally validated 159 (of 188) CFTR mutations. The assay achieved detection rates of 95.0% and 95.6% in two large-scale case series of CF patients from central and northern Italy, respectively. These detection rates are among the highest reported so far with a genetic test for CF based on a mutation panel. This assay appears to be well suited for diagnostics, neonatal and carrier screening, and assisted reproduction, and it represents a considerable advantage in CF genetic counseling. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
2015-01-01
Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within activated macrophages. A previously reported genetic screen revealed that Mtb loses this ability when the mycobacterial acid resistance protease (marP) gene is disrupted. In the present study, a high throughput screen (HTS) of compounds against the protease domain of MarP identified benzoxazinones as inhibitors of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2′-methylphenyl)-4H-1,3-benzoxazin-4-one), acylated MarP and lowered Mtb’s pHIB and survival during incubation at pH 4.5. BO43 had similar effects on MarP-deficient Mtb, suggesting the existence of additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T, with Mycobacterium bovis variant bacille Calmette-Guérin (BCG) followed by click chemistry with azido-biotin identified both the MarP homologue and the high temperature requirement A1 (HtrA1) homologue, an essential protein. Thus, the chemical probe identified through a target-based screen not only reacted with its intended target in the intact cells but also implicated an additional enzyme that had eluded a genetic screen biased against essential genes. PMID:25457457
Tepper, Naama; Shlomi, Tomer
2011-01-21
Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).
Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library.
Kim, B S; Kim, S Y; Park, J; Park, W; Hwang, K Y; Yoon, Y J; Oh, W K; Kim, B Y; Ahn, J S
2007-05-01
Cytochrome P450 monooxygenases (CYPs) are useful catalysts for oxidation reactions. Self-sufficient CYPs harbour a reductive domain covalently connected to a P450 domain and are known for their robust catalytic activity with great potential as biocatalysts. In an effort to expand genetic sources of self-sufficient CYPs, we devised a sequence-based screening system to identify them in a soil metagenome. We constructed a soil metagenome library and performed sequence-based screening for self-sufficient CYP genes. A new CYP gene, syk181, was identified from the metagenome library. Phylogenetic analysis revealed that SYK181 formed a distinct phylogenic line with 46% amino-acid-sequence identity to CYP102A1 which has been extensively studied as a fatty acid hydroxylase. The heterologously expressed SYK181 showed significant hydroxylase activity towards naphthalene and phenanthrene as well as towards fatty acids. Sequence-based screening of metagenome libraries is expected to be a useful approach for searching self-sufficient CYP genes. The translated product of syk181 shows self-sufficient hydroxylase activity towards fatty acids and aromatic compounds. SYK181 is the first self-sufficient CYP obtained directly from a metagenome library. The genetic and biochemical information on SYK181 are expected to be helpful for engineering self-sufficient CYPs with broader catalytic activities towards various substrates, which would be useful for bioconversion of natural products and biodegradation of organic chemicals.
Shields, Beverley M; Shepherd, Maggie; Hudson, Michelle; McDonald, Timothy J; Colclough, Kevin; Peters, Jaime; Knight, Bridget; Hyde, Chris; Ellard, Sian; Pearson, Ewan R; Hattersley, Andrew T
2017-08-01
Monogenic diabetes, a young-onset form of diabetes, is often misdiagnosed as type 1 diabetes, resulting in unnecessary treatment with insulin. A screening approach for monogenic diabetes is needed to accurately select suitable patients for expensive diagnostic genetic testing. We used C-peptide and islet autoantibodies, highly sensitive and specific biomarkers for discriminating type 1 from non-type 1 diabetes, in a biomarker screening pathway for monogenic diabetes. We studied patients diagnosed at age 30 years or younger, currently younger than 50 years, in two U.K. regions with existing high detection of monogenic diabetes. The biomarker screening pathway comprised three stages: 1 ) assessment of endogenous insulin secretion using urinary C-peptide/creatinine ratio (UCPCR); 2 ) if UCPCR was ≥0.2 nmol/mmol, measurement of GAD and IA2 islet autoantibodies; and 3 ) if negative for both autoantibodies, molecular genetic diagnostic testing for 35 monogenic diabetes subtypes. A total of 1,407 patients participated (1,365 with no known genetic cause, 34 with monogenic diabetes, and 8 with cystic fibrosis-related diabetes). A total of 386 out of 1,365 (28%) patients had a UCPCR ≥0.2 nmol/mmol, and 216 out of 386 (56%) were negative for GAD and IA2 and underwent molecular genetic testing. Seventeen new cases of monogenic diabetes were diagnosed (8 common Maturity Onset Diabetes of the Young [Sanger sequencing] and 9 rarer causes [next-generation sequencing]) in addition to the 34 known cases (estimated prevalence of 3.6% [51/1,407] [95% CI 2.7-4.7%]). The positive predictive value was 20%, suggesting a 1-in-5 detection rate for the pathway. The negative predictive value was 99.9%. The biomarker screening pathway for monogenic diabetes is an effective, cheap, and easily implemented approach to systematically screening all young-onset patients. The minimum prevalence of monogenic diabetes is 3.6% of patients diagnosed at age 30 years or younger. © 2017 by the American Diabetes Association.
Canter, E F
1984-01-01
The emergence of genetic screening techniques will permit employers to exclude hypersusceptible individuals from potentially hazardous workplace environments. The denial of employment opportunities to these individuals, however, may constitute discrimination. This Note analyzes genetic screening cases with respect to currently available remedies contained in Title VII of the Civil Rights Act of 1964 and the Rehabilitation Act of 1973. The Note concludes that Title VII claims may succeed but only in limited circumstances and that Rehabilitation Act claims will encounter numerous obstacles to relief. Additionally, the Note discusses some of the implications of the use of genetic screening in the workplace.
The new genetics and informed consent: differentiating choice to preserve autonomy.
Bunnik, Eline M; de Jong, Antina; Nijsingh, Niels; de Wert, Guido M W R
2013-07-01
The advent of new genetic and genomic technologies may cause friction with the principle of respect for autonomy and demands a rethinking of traditional interpretations of the concept of informed consent. Technologies such as whole-genome sequencing and micro-array based analysis enable genome-wide testing for many heterogeneous abnormalities and predispositions simultaneously. This may challenge the feasibility of providing adequate pre-test information and achieving autonomous decision-making. At a symposium held at the 11th World Congress of Bioethics in June 2012 (Rotterdam), organized by the International Association of Bioethics, these challenges were presented for three different areas in which these so-called 'new genetics' technologies are increasingly being applied: newborn screening, prenatal screening strategies and commercial personal genome testing. In this article, we build upon the existing ethical framework for a responsible set-up of testing and screening offers and reinterpret some of its criteria in the light of the new genetics. As we will argue, the scope of a responsible testing or screening offer should align with the purpose(s) of testing and with the principle of respect for autonomy for all stakeholders involved, including (future) children. Informed consent is a prerequisite but requires a new approach. We present preliminary and general directions for an individualized or differentiated set-up of the testing offer and for the informed consent process. With this article we wish to contribute to the formation of new ideas on how to tackle the issues of autonomy and informed consent for (public) healthcare and direct-to-consumer applications of the new genetics. © 2013 John Wiley & Sons Ltd.
Screening for Pancreatic Cancer
Brand, Randall E.
2007-01-01
Despite improvements in the clinical and surgical management of pancreatic cancer, limited strides have been made in the early detection of this highly lethal malignancy. The majority of localized pancreatic tumors are asymptomatic, and the recognized presenting symptoms of pancreatic adenocarcinoma are often vague and heterogeneous in nature. These factors, coupled with the lack of a sensitive and noninvasive screening method, have made population-based screening for pancreatic cancer impossible. Nevertheless, at least two large institutions have performed multimodality-screening protocols for individuals with high risk of pancreatic cancer based on genetic predisposition and strong family history. Abnormalities noted during these screening protocols prompted further investigation or surgery that resulted in the discovery of benign, potentially malignant, and malignant pancreatic lesions. In addition to ductal epithelial pancreatic intraepithelial neoplasia, greater sensitivity has recently been achieved in the identification and characterization of precancerous mucinous pancreatic tumors. Advancements in proteomics and DNA microarray technology may confirm serum-based biomarkers that could be incorporated into future screening algorithms for pancreatic cancer. PMID:21960811
Chitty, Lyn S.; Lo, Y. M. Dennis
2015-01-01
The identification of cell-free fetal DNA (cffDNA) in maternal plasma in 1997 heralded the most significant change in obstetric care for decades, with the advent of safer screening and diagnosis based on analysis of maternal blood. Here, we describe how the technological advances offered by next-generation sequencing have allowed for the development of a highly sensitive screening test for aneuploidies as well as definitive prenatal molecular diagnosis for some monogenic disorders. PMID:26187875
Burton-Chase, Allison M.; Hovick, Shelly R.; Peterson, Susan K.; Marani, Salma K.; Vernon, Sally W.; Amos, Christopher I.; Frazier, Marsha L.; Lynch, Patrick M.; Gritz, Ellen R.
2013-01-01
Purpose This study examined colonoscopy adherence and attitudes towards colorectal cancer (CRC) screening in individuals who underwent Lynch syndrome genetic counseling and testing. Methods We evaluated changes in colonoscopy adherence and CRC screening attitudes in 78 cancer-unaffected relatives of Lynch syndrome mutation carriers before pre-test genetic counseling (baseline) and at 6 and 12 months post-disclosure of test results (52 mutation-negative, 26 mutation-positive). Results While both groups were similar at baseline, at 12 months post-disclosure, a greater number of mutation-positive individuals had had a colonoscopy compared with mutation-negative individuals. From baseline to 12 months post-disclosure, the mutation-positive group demonstrated an increase in mean scores on measures of colonoscopy commitment, self-efficacy, and perceived benefits of CRC screening, and a decrease in mean scores for perceived barriers to CRC screening. Mean scores on colonoscopy commitment decreased from baseline to 6 months in the mutation-negative group. Conclusion Adherence to risk-appropriate guidelines for CRC surveillance improved after genetic counseling and testing for Lynch syndrome. Mutation-positive individuals reported increasingly positive attitudes toward CRC screening after receiving genetic test results, potentially reinforcing longer term colonoscopy adherence. PMID:23414081
Genetic screens for mutations affecting development of Xenopus tropicalis.
Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B
2006-06-01
We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.
Fisher, L; Rowley, P T; Lipkin, M
1981-01-01
Providing adequate counseling of patients identified in genetic screening programs is a major responsibility and expense. Adults in a health maintenance organization, unselected for interest, were screened for beta-thalassemia trait as part of preventive health care. Counseling was provided by either a trained physician (conventional counseling) or by a videotape containing the same information followed by an opportunity to question a trained physician (programmed counseling). Immediately before and after counseling, knowledge of thalassemia, knowledge of genetics, and mood change were assessed by questionnaire. Comparable mood changes and similar learning about thalassemia and genetics occurred with both counseling methods. Thus, as judged by immediate effects on knowledge and mood, videotaped instruction can greatly reduce professional time required for genetic counseling and facilitate the incorporation of genetic screening into primary health care. PMID:7325162
An, Mahru C; O'Brien, Robert N; Zhang, Ningzhe; Patra, Biranchi N; De La Cruz, Michael; Ray, Animesh; Ellerby, Lisa M
2014-04-15
We have previously reported the genetic correction of Huntington's disease (HD) patient-derived induced pluripotent stem cells using traditional homologous recombination (HR) approaches. To extend this work, we have adopted a CRISPR-based genome editing approach to improve the efficiency of recombination in order to generate allelic isogenic HD models in human cells. Incorporation of a rapid antibody-based screening approach to measure recombination provides a powerful method to determine relative efficiency of genome editing for modeling polyglutamine diseases or understanding factors that modulate CRISPR/Cas9 HR.
Li, Shuang; Li, Mushan; Liu, Xiaojian; Yang, Yuanyuan; Wei, Yuda; Chen, Yanhao; Qiu, Yan; Zhou, Tingting; Feng, Zhuanghui; Ma, Danjun; Fang, Jing; Ying, Hao; Wang, Hui; Musunuru, Kiran; Shao, Zhen; Zhao, Yongxu; Ding, Qiurong
2018-05-24
Hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) offer a promising cell resource for disease modeling and transplantation. However, differentiated HLCs exhibit an immature phenotype and comprise a heterogeneous population. Thus, a better understanding of HLC differentiation will improve the likelihood of future application. Here, by taking advantage of CRISPR-Cas9-based genome-wide screening technology and a high-throughput hPSC screening platform with a reporter readout, we identified several potential genetic regulators of HLC differentiation. By using a chemical screening approach within our platform, we also identified compounds that can further promote HLC differentiation and preserve the characteristics of in vitro cultured primary hepatocytes. Remarkably, both screenings identified histone deacetylase 3 (HDAC3) as a key regulator in hepatic differentiation. Mechanistically, HDAC3 formed a complex with liver transcriptional factors, e.g., HNF4, and co-regulated the transcriptional program during hepatic differentiation. This study highlights a broadly useful approach for studying and optimizing hPSC differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang
2017-08-15
High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neisch, Amanda L.; Avery, Adam W.; Machame, James B.; Li, Min-gang; Hays, Thomas S.
2017-01-01
Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila. PMID:26794520
Developing Family Healthware, a family history screening tool to prevent common chronic diseases.
Yoon, Paula W; Scheuner, Maren T; Jorgensen, Cynthia; Khoury, Muin J
2009-01-01
Family health history reflects the effects of genetic, environmental, and behavioral factors and is an important risk factor for a variety of disorders including coronary heart disease, cancer, and diabetes. In 2004, the Centers for Disease Control and Prevention developed Family Healthware, a new interactive, Web-based tool that assesses familial risk for 6 diseases (coronary heart disease, stroke, diabetes, and colorectal, breast, and ovarian cancer) and provides a "prevention plan" with personalized recommendations for lifestyle changes and screening. The tool collects data on health behaviors, screening tests, and disease history of a person's first- and second-degree relatives. Algorithms in the software analyze the family history data and assess familial risk based on the number of relatives affected, their age at disease onset, their sex, how closely related the relatives are to each other and to the user, and the combinations of diseases in the family. A second set of algorithms uses the data on familial risk level, health behaviors, and screening to generate personalized prevention messages. Qualitative and quantitative formative research on lay understanding of family history and genetics helped shape the tool's content, labels, and messages. Lab-based usability testing helped refine messages and tool navigation. The tool is being evaluated by 3 academic centers by using a network of primary care practices to determine whether personalized prevention messages tailored to familial risk will motivate people at risk to change their lifestyles or screening behaviors.
Shieh, Yiwey; Eklund, Martin; Madlensky, Lisa; Sawyer, Sarah D; Thompson, Carlie K; Stover Fiscalini, Allison; Ziv, Elad; Van't Veer, Laura J; Esserman, Laura J; Tice, Jeffrey A
2017-01-01
Ongoing controversy over the optimal approach to breast cancer screening has led to discordant professional society recommendations, particularly in women age 40 to 49 years. One potential solution is risk-based screening, where decisions around the starting age, stopping age, frequency, and modality of screening are based on individual risk to maximize the early detection of aggressive cancers and minimize the harms of screening through optimal resource utilization. We present a novel approach to risk-based screening that integrates clinical risk factors, breast density, a polygenic risk score representing the cumulative effects of genetic variants, and sequencing for moderate- and high-penetrance germline mutations. We demonstrate how thresholds of absolute risk estimates generated by our prediction tools can be used to stratify women into different screening strategies (biennial mammography, annual mammography, annual mammography with adjunctive magnetic resonance imaging, defer screening at this time) while informing the starting age of screening for women age 40 to 49 years. Our risk thresholds and corresponding screening strategies are based on current evidence but need to be tested in clinical trials. The Women Informed to Screen Depending On Measures of risk (WISDOM) Study, a pragmatic, preference-tolerant randomized controlled trial of annual vs personalized screening, will study our proposed approach. WISDOM will evaluate the efficacy, safety, and acceptability of risk-based screening beginning in the fall of 2016. The adaptive design of this trial allows continued refinement of our risk thresholds as the trial progresses, and we discuss areas where we anticipate emerging evidence will impact our approach. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Quarterman, Josh; Kim, Soo Rin; Kim, Pan-Jun; Jin, Yong-Su
2015-01-20
In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest. Copyright © 2014 Elsevier B.V. All rights reserved.
Prostate Cancer—Health Professional Version
Prostate cancers are often adenocarcinomas. Prostatic intraepithelial neoplasia is often present in association with prostatic adenocarcinoma. Find evidence-based information on prostate cancer including treatment, causes and prevention, screening, research, genetics, and statistics.
An Inside Look at Genetic Counseling | NIH MedlinePlus the Magazine
... hoped they would learn more about their personal health risks. Why else do people seek genetic screening? There are many reasons why a person might have genetic testing or screening. One of the most common reasons ...
Li, Fang; Kang, Qianjin; Yao, Xiaoling; Li, Yanyan; Wei, Maolong; Cao, Yong; Lin, Shuangjun; Bai, Linquan; Ma, Wei; Deng, Zixin
2012-04-04
The seeds of Trewia nudiflora containing maytansine (an anticancer agent), was investigated to explore the endophytic actinomycetes diversity and screen for naphthoquinones producing strain. The seeds of Trewia nudiflora were sliced and plated on different selective media after surface sterilization. Clones that looked like actinomycetes were selected, and classified according to the 16S rRNA sequences. Isolated strains were screened for furanonaphthoquinone biosynthesis gene by PCR, and tested for antibacterial and antifungal activity using Staphyloccocusaureus, Pseudomon-asaeruginosa, Bacillus subtilis, Rhizoctoniasolani and Gibberellasaubinetii. LC-MS and NMR were used to determine the structure of candidate compounds. More than 100 endophytic bacteria were isolated. Among them 66 were streptomycetes. FNQ6 (polyketide synthase Type III) and FNQ21 (carboxymuconate cycloisomerase) were only detected in Streptomyces sp. HTZ 27. We got 5 mg pure furanonaphthoquinone (FNQI) from 1 liter Streptomyces sp. HTZ 27 agar fermentation medium. The use of chemical-genetics method increased the efficiency of screening for target compound producing bacteria.
We report the results of a DREAM challenge designed to predict relative genetic essentialities based on a novel dataset testing 98,000 shRNAs against 149 molecularly characterized cancer cell lines. We analyzed the results of over 3,000 submissions over a period of 4 months.
We report the results of a DREAM challenge designed to predict relative genetic essentialities based on a novel dataset testing 98,000 shRNAs against 149 molecularly characterized cancer cell lines. We analyzed the results of over 3,000 submissions over a period of 4 months.
Detection of genetically modified DNA in fresh and processed foods sold in Kuwait.
Al-Salameen, Fadila; Kumar, Vinod; Al-Aqeel, Hamed; Al-Hashash, Hanadi; Hejji, Ahmed Bin
2012-01-01
Developments in genetic engineering technology have led to an increase in number of food products that contain genetically engineered crops in the global market. However, due to lack of scientific studies, the presence of genetically modified organisms (GMOs) in the Kuwaiti food market is currently ambiguous. Foods both for human and animal consumption are being imported from countries that are known to produce GM food. Therefore, an attempt has been made to screen foods sold in the Kuwaiti market to detect GMOs in the food. For this purpose, samples collected from various markets in Kuwait have been screened by SYBR green-based real time polymerase chain reaction (RT-PCR) method. Further confirmation and GMO quantification was performed by TaqMan-based RT-PCR. Results indicated that a significant number of food commodities sold in Kuwait were tested positive for the presence of GMO. Interestingly, certain processed foods were tested positive for more than one transgenic events showing complex nature of GMOs in food samples. Results of this study clearly indicate the need for well-defined legislations and regulations on the marketing of approved GM food and its labeling to protect consumer's rights.
Newborn screening of metabolic disorders: recent progress and future developments.
Rinaldo, Piero; Lim, James S; Tortorelli, Silvia; Gavrilov, Dimitar; Matern, Dietrich
2008-01-01
Tandem mass spectrometry has been the main driver behind a significant expansion in newborn screening programs. The ability to detect more than 40 conditions by a single test underscores the need to better understand the clinical and laboratory characteristics of the conditions being tested, and the complexity of pattern recognition and differential diagnoses of one or more elevated markers. The panel of conditions recommended by the American College of Medical Genetics, including 20 primary conditions and 22 secondary targets that are detectable by tandem mass spectrometry has been adopted as the standard of care in the vast majority of US states. The evolution of newborn screening is far from being idle as a large number of infectious, genetic, and metabolic conditions are currently under investigation at variable stages of test development and clinical validation. In the US, a formal process with oversight by the Advisory Committee on Heritable Disorders and Genetic Diseases in Newborns and Children has been established for nomination and evidence-based review of new candidate conditions. If approved, these conditions could be added to the uniform panel and consequently pave the way to large scale implementation.
Butts, Arielle; DeJarnette, Christian; Peters, Tracy L.; Parker, Josie E.; Kerns, Morgan E.; Eberle, Karen E.; Kelly, Steve L.
2017-01-01
ABSTRACT Traditional approaches to drug discovery are frustratingly inefficient and have several key limitations that severely constrain our capacity to rapidly identify and develop novel experimental therapeutics. To address this, we have devised a second-generation target-based whole-cell screening assay based on the principles of competitive fitness, which can rapidly identify target-specific and physiologically active compounds. Briefly, strains expressing high, intermediate, and low levels of a preselected target protein are constructed, tagged with spectrally distinct fluorescent proteins (FPs), and pooled. The pooled strains are then grown in the presence of various small molecules, and the relative growth of each strain within the mixed culture is compared by measuring the intensity of the corresponding FP tags. Chemical-induced population shifts indicate that the bioactivity of a small molecule is dependent upon the target protein’s abundance and thus establish a specific functional interaction. Here, we describe the molecular tools required to apply this technique in the prevalent human fungal pathogen Candida albicans and validate the approach using two well-characterized drug targets—lanosterol demethylase and dihydrofolate reductase. However, our approach, which we have termed target abundance-based fitness screening (TAFiS), should be applicable to a wide array of molecular targets and in essentially any genetically tractable microbe. IMPORTANCE Conventional drug screening typically employs either target-based or cell-based approaches. The first group relies on biochemical assays to detect modulators of a purified target. However, hits frequently lack drug-like characteristics such as membrane permeability and target specificity. Cell-based screens identify compounds that induce a desired phenotype, but the target is unknown, which severely restricts further development and optimization. To address these issues, we have developed a second-generation target-based whole-cell screening approach that incorporates the principles of both chemical genetics and competitive fitness, which enables the identification of target-specific and physiologically active compounds from a single screen. We have chosen to validate this approach using the important human fungal pathogen Candida albicans with the intention of pursuing novel antifungal targets. However, this approach is broadly applicable and is expected to dramatically reduce the time and resources required to progress from screening hit to lead compound. PMID:28989971
Myositis-specific autoantibodies are specific for myositis compared to genetic muscle disease.
Mammen, Andrew L; Casciola-Rosen, Livia; Christopher-Stine, Lisa; Lloyd, Thomas E; Wagner, Kathryn R
2015-12-01
To determine the specificity of myositis-specific autoantibodies (MSAs) for autoimmune myopathy compared with inherited muscle diseases. Serum samples from 47 patients with genetically confirmed inherited muscle diseases were screened for the most common MSAs, including those recognizing TIF1γ, NXP2, Mi2, MDA5, Jo1, SRP, and HMGCR. We compared these results with the findings in a cohort of patients with dermatomyositis (DM) previously screened for anti-TIF1γ, -NXP2, -Mi2, -MDA5, and -Jo1. Overall, the presence of anti-TIF1γ, -NXP2, -Mi2, -MDA5, or -Jo1 was 96% specific and 67% sensitive for DM compared to patients with genetic muscle diseases. No patients with inherited muscle disease had anti-SRP or anti-HMGCR autoantibodies. Only 2 patients with genetic muscle disease had a MSA. One patient with anti-Mi2 autoantibodies had both genetically confirmed facioscapulohumeral dystrophy and dermatomyositis based on a typical skin rash and partial response to immunosuppressive medications. A second patient with anti-Jo-1 autoantibodies had both genetically defined limb-girdle muscular dystrophy type 2A (i.e., calpainopathy) and a systemic autoimmune process based on biopsy-confirmed lupus nephritis, sicca symptoms, and anti-Ro52 autoantibodies. The MSAs tested for in this study are highly specific for autoimmune muscle disease and are rarely, if ever, found in patients who only have genetic muscle disease. In patients with genetic muscle disease, the presence of a MSA should suggest the possibility of a coexisting autoimmune process.
Myositis-specific autoantibodies are specific for myositis compared to genetic muscle disease
Casciola-Rosen, Livia; Christopher-Stine, Lisa; Lloyd, Thomas E.; Wagner, Kathryn R.
2015-01-01
Objective: To determine the specificity of myositis-specific autoantibodies (MSAs) for autoimmune myopathy compared with inherited muscle diseases. Methods: Serum samples from 47 patients with genetically confirmed inherited muscle diseases were screened for the most common MSAs, including those recognizing TIF1γ, NXP2, Mi2, MDA5, Jo1, SRP, and HMGCR. We compared these results with the findings in a cohort of patients with dermatomyositis (DM) previously screened for anti-TIF1γ, -NXP2, -Mi2, -MDA5, and -Jo1. Results: Overall, the presence of anti-TIF1γ, -NXP2, -Mi2, -MDA5, or -Jo1 was 96% specific and 67% sensitive for DM compared to patients with genetic muscle diseases. No patients with inherited muscle disease had anti-SRP or anti-HMGCR autoantibodies. Only 2 patients with genetic muscle disease had a MSA. One patient with anti-Mi2 autoantibodies had both genetically confirmed facioscapulohumeral dystrophy and dermatomyositis based on a typical skin rash and partial response to immunosuppressive medications. A second patient with anti-Jo-1 autoantibodies had both genetically defined limb-girdle muscular dystrophy type 2A (i.e., calpainopathy) and a systemic autoimmune process based on biopsy-confirmed lupus nephritis, sicca symptoms, and anti-Ro52 autoantibodies. Conclusions: The MSAs tested for in this study are highly specific for autoimmune muscle disease and are rarely, if ever, found in patients who only have genetic muscle disease. In patients with genetic muscle disease, the presence of a MSA should suggest the possibility of a coexisting autoimmune process. PMID:26668818
Experiences among Women with Positive Prenatal Expanded Carrier Screening Results.
Rothwell, Erin; Johnson, Erin; Mathiesen, Amber; Golden, Kylie; Metcalf, Audrey; Rose, Nancy C; Botkin, Jeffrey R
2017-08-01
The offering and acceptance of expanded carrier screening is increasing among pregnant women including women without an increased risk based on race, ethnicity or family history. The chances of a positive screening test have been reported to be as high as 24 % when multiple conditions are screened. Yet, little is known about the way these tests are offered and how patients are affected by a positive test result. To explore this area of genetic testing, interviews (n = 17) were conducted among women who received positive expanded carrier results in the context of obstetric care. A content analysis was conducted on the transcript data from the interviews. Outcomes of this research suggest that educational interventions are needed to improve maternal understanding of positive carrier screening results. Most of the participants in this study confused the results with other prenatal screening test options. In addition, the way the results were discussed varied greatly, and influenced participants' thoughts about reproductive decisions that led to a range of emotional uncertainty. Our data suggests that genetic counseling improved participants' understanding of positive results. More research is needed to further understand if our results are consistent within a larger, more diverse sample, and to explore how to best provide education about expanded carrier screening.
Genome-scale CRISPR-Cas9 Knockout and Transcriptional Activation Screening
Joung, Julia; Konermann, Silvana; Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Platt, Randall J.; Brigham, Mark D.; Sanjana, Neville E.; Zhang, Feng
2017-01-01
Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified from the screen, we further describe strategies for confirming the screening phenotype as well as genetic perturbation through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9–15 weeks followed by 4–5 weeks of validation. PMID:28333914
Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
Joung, Julia; Konermann, Silvana; Gootenberg, Jonathan S; Abudayyeh, Omar O; Platt, Randall J; Brigham, Mark D; Sanjana, Neville E; Zhang, Feng
2017-04-01
Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified by the screen, we further describe strategies for confirming the screening phenotype, as well as genetic perturbation, through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9-15 weeks, followed by 4-5 weeks of validation.
Impact of preimplantation genetic screening on donor oocyte-recipient cycles in the United States.
Barad, David H; Darmon, Sarah K; Kushnir, Vitaly A; Albertini, David F; Gleicher, Norbert
2017-11-01
Our objective was to estimate the contribution of preimplantation genetic screening to in vitro fertilization pregnancy outcomes in donor oocyte-recipient cycles. This was a retrospective cross-sectional study of US national data from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System between 2005 and 2013. Society for Assisted Reproductive Technology Clinic Outcome Reporting relies on voluntarily annual reports by more than 90% of US in vitro fertilization centers. We evaluated pregnancy and live birth rates in donor oocyte-recipient cycles after the first embryo transfer with day 5/6 embryos. Statistical models, adjusted for patient and donor ages, number of embryos transferred, race, infertility diagnosis, and cycle year were created to compare live birth rates in 392 preimplantation genetic screening and 20,616 control cycles. Overall, pregnancy and live birth rates were significantly lower in preimplantation genetic screening cycles than in control cycles. Adjusted odds of live birth for preimplantation genetic screening cycles were reduced by 35% (odds ratio, 0.65, 95% confidence interval, 0.53-0.80; P < .001). Preimplantation genetic screening, as practiced in donor oocyte-recipient cycles over the past 9 years, has not been associated with improved odds of live birth or reduction in miscarriage rates. Copyright © 2017 Elsevier Inc. All rights reserved.
Marburg Virus Reverse Genetics Systems
Schmidt, Kristina Maria; Mühlberger, Elke
2016-01-01
The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems. PMID:27338448
Marburg Virus Reverse Genetics Systems.
Schmidt, Kristina Maria; Mühlberger, Elke
2016-06-22
The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.
Judaism, genetic screening and genetic therapy.
Rosner, F
1998-01-01
Genetic screening, gene therapy and other applications of genetic engineering are permissible in Judaism when used for the treatment, cure, or prevention of disease. Such genetic manipulation is not considered to be a violation of God's natural law, but a legitimate implementation of the biblical mandate to heal. If Tay-Sachs disease, diabetes, hemophilia, cystic fibrosis, Huntington's disease or other genetic diseases can be cured or prevented by "gene surgery," then it is certainly permitted in Jewish law. Genetic premarital screening is encouraged in Judaism for the purpose of discouraging at-risk marriages for a fatal illness such as Tay-Sachs disease. Neonatal screening for treatable conditions such as phenylketonuria is certainly desirable and perhaps required in Jewish law. Preimplantation screening and the implantation of only "healthy" zygotes into the mother's womb to prevent the birth of an affected child are probably sanctioned in Jewish law. Whether or not these assisted reproduction techniques may be used to choose the sex of one's offspring, to prevent the birth of a child with a sex-linked disease such as hemophilia, has not yet been ruled on by modern rabbinic decisions. Prenatal screening with the specific intent of aborting an affected fetus is not allowed according to most rabbinic authorities, although a minority view permits it "for great need." Not to have children if both parents are carriers of genetic diseases such as Tay-Sachs is not a Jewish option. Preimplantation screening is preferable. All screening test results must remain confidential. Judaism does not permit the alteration or manipulation of physical traits and characteristics such as height, eye and hair color, facial features and the like, when such change provides no useful benefit to mankind. On the other hand, it is permissible to clone organisms and microorganisms to facilitate the production of insulin, growth hormone, and other agents intended to benefit mankind and to cure and treat diseases.
Neuroblastoma—Health Professional Version
Neuroblastoma is a disease in which malignant cells form in the neuroblasts of the adrenal glands and paraspinal nerve tissue from the neck to the pelvis. Find evidence-based information on neuroblastoma treatment, screening, research, and genetics.
Automated Monitoring and Analysis of Social Behavior in Drosophila
Dankert, Heiko; Wang, Liming; Hoopfer, Eric D.; Anderson, David J.; Perona, Pietro
2009-01-01
We introduce a method based on machine vision for automatically measuring aggression and courtship in Drosophila melanogaster. The genetic and neural circuit bases of these innate social behaviors are poorly understood. High-throughput behavioral screening in this genetically tractable model organism is a potentially powerful approach, but it is currently very laborious. Our system monitors interacting pairs of flies, and computes their location, orientation and wing posture. These features are used for detecting behaviors exhibited during aggression and courtship. Among these, wing threat, lunging and tussling are specific to aggression; circling, wing extension (courtship “song”) and copulation are specific to courtship; locomotion and chasing are common to both. Ethograms may be constructed automatically from these measurements, saving considerable time and effort. This technology should enable large-scale screens for genes and neural circuits controlling courtship and aggression. PMID:19270697
Burton-Chase, A M; Hovick, S R; Peterson, S K; Marani, S K; Vernon, S W; Amos, C I; Frazier, M L; Lynch, P M; Gritz, E R
2013-03-01
The purpose of this study was to examine colonoscopy adherence and attitudes toward colorectal cancer (CRC) screening in individuals who underwent Lynch syndrome genetic counseling and testing. We evaluated changes in colonoscopy adherence and CRC screening attitudes in 78 cancer-unaffected relatives of Lynch syndrome mutation carriers before pre-test genetic counseling (baseline) and at 6 and 12 months post-disclosure of test results (52 mutation negative and 26 mutation positive). While both groups were similar at baseline, at 12 months post-disclosure, a greater number of mutation-positive individuals had had a colonoscopy compared with mutation-negative individuals. From baseline to 12 months post-disclosure, the mutation-positive group demonstrated an increase in mean scores on measures of colonoscopy commitment, self-efficacy, and perceived benefits of CRC screening, and a decrease in mean scores for perceived barriers to CRC screening. Mean scores on colonoscopy commitment decreased from baseline to 6 months in the mutation-negative group. To conclude, adherence to risk-appropriate guidelines for CRC surveillance improved after genetic counseling and testing for Lynch syndrome. Mutation-positive individuals reported increasingly positive attitudes toward CRC screening after receiving genetic test results, potentially reinforcing longer term colonoscopy adherence. © 2013 John Wiley & Sons A/S.
Block, Annette; Debode, Frédéric; Grohmann, Lutz; Hulin, Julie; Taverniers, Isabel; Kluga, Linda; Barbau-Piednoir, Elodie; Broeders, Sylvia; Huber, Ingrid; Van den Bulcke, Marc; Heinze, Petra; Berben, Gilbert; Busch, Ulrich; Roosens, Nancy; Janssen, Eric; Žel, Jana; Gruden, Kristina; Morisset, Dany
2013-08-22
Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs' molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms.
2013-01-01
Background Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs’ molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. Description The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. Conclusions The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms. PMID:23965170
Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2
Gabai-Kapara, Efrat; Lahad, Amnon; Kaufman, Bella; Friedman, Eitan; Segev, Shlomo; Renbaum, Paul; Beeri, Rachel; Gal, Moran; Grinshpun-Cohen, Julia; Djemal, Karen; Mandell, Jessica B.; Lee, Ming K.; Beller, Uziel; Catane, Raphael; King, Mary-Claire; Levy-Lahad, Ephrat
2014-01-01
In the Ashkenazi Jewish (AJ) population of Israel, 11% of breast cancer and 40% of ovarian cancer are due to three inherited founder mutations in the cancer predisposition genes BRCA1 and BRCA2. For carriers of these mutations, risk-reducing salpingo-oophorectomy significantly reduces morbidity and mortality. Population screening for these mutations among AJ women may be justifiable if accurate estimates of cancer risk for mutation carriers can be obtained. We therefore undertook to determine risks of breast and ovarian cancer for BRCA1 and BRCA2 mutation carriers ascertained irrespective of personal or family history of cancer. Families harboring mutations in BRCA1 or BRCA2 were ascertained by identifying mutation carriers among healthy AJ males recruited from health screening centers and outpatient clinics. Female relatives of the carriers were then enrolled and genotyped. Among the female relatives with BRCA1 or BRCA2 mutations, cumulative risk of developing either breast or ovarian cancer by age 60 and 80, respectively, were 0.60 (± 0.07) and 0.83 (± 0.07) for BRCA1 carriers and 0.33 (± 0.09) and 0.76 (± 0.13) for BRCA2 carriers. Risks were higher in recent vs. earlier birth cohorts (P = 0.006). High cancer risks in BRCA1 or BRCA2 mutation carriers identified through healthy males provide an evidence base for initiating a general screening program in the AJ population. General screening would identify many carriers who are not evaluated by genetic testing based on family history criteria. Such a program could serve as a model to investigate implementation and outcomes of population screening for genetic predisposition to cancer in other populations. PMID:25192939
Anagnostopoulos, Theodore; Pertesi, Maroulio; Konstantopoulou, Irene; Armaou, Sofia; Kamakari, Smaragda; Nasioulas, George; Athanasiou, Athanassios; Dobrovic, Alex; Young, Mary-Anne; Goldgar, David; Fountzilas, George; Yannoukakos, Drakoulis
2008-07-01
We have performed screening in 287 breast/ovarian cancer families in Greece which has revealed that approximately 12% (8/65) of all index patients-carriers of a deleterious mutation in BRCA1 and BRCA2 genes, contain the base substitution G to A at position 5331 of BRCA1 gene. This generates the amino acid change G1738R for which based on a combination of genetic, in silico and histopathological analysis there are strong suggestions that it is a causative mutation. In this paper, we present further evidence suggesting the pathogenicity of this variant. Forty breast/ovarian cancer patients were reported in 11 Greek families: the above eight living in Greece, two living in Australia and one in USA, all containing G1738R. Twenty of these patients were screened and were all found to be carriers of the same base substitution. In addition, we have detected the same base change in five breast/ovarian cancer patients after screening 475 unselected patient samples with no apparent family history. The mean age of onset for all the above patients was 39.4 and 53.6 years for breast and ovarian cancer cases, respectively. A multi-factorial likelihood model for classification of unclassified variants in BRCA1 and BRCA2 developed previously was applied on G1738R and the odds of it being a deleterious mutation was estimated to be 11470:1. In order to explain the prevalence of this mutation mainly in the Greek population, its genealogical history was examined. DNA samples were collected from 11 carrier families living in Greece, Australia and USA. Screening of eight intragenic SNPs, three intragenic and seven extragenic microsatellite markers and comparison with control individuals, suggested a common origin for the mutation while the time to its most recent common ancestor was estimated to be 11 generations (about 275 years assuming a generational interval of 25 years) with a 1-lod support interval of 4-24 generations (100-600 years). Considering the large degree of genetic heterogeneity in the Greek population, the identification of a frequent founder mutation greatly facilitates genetic screening.
High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.
Zhou, Yuexin; Zhu, Shiyou; Cai, Changzu; Yuan, Pengfei; Li, Chunmei; Huang, Yanyi; Wei, Wensheng
2014-05-22
Targeted genome editing technologies are powerful tools for studying biology and disease, and have a broad range of research applications. In contrast to the rapid development of toolkits to manipulate individual genes, large-scale screening methods based on the complete loss of gene expression are only now beginning to be developed. Here we report the development of a focused CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) lentiviral library in human cells and a method of gene identification based on functional screening and high-throughput sequencing analysis. Using knockout library screens, we successfully identified the host genes essential for the intoxication of cells by anthrax and diphtheria toxins, which were confirmed by functional validation. The broad application of this powerful genetic screening strategy will not only facilitate the rapid identification of genes important for bacterial toxicity but will also enable the discovery of genes that participate in other biological processes.
Yeast as a tool to identify anti-aging compounds
Zimmermann, Andreas; Hofer, Sebastian; Pendl, Tobias; Kainz, Katharina; Madeo, Frank; Carmona-Gutierrez, Didac
2018-01-01
Abstract In the search for interventions against aging and age-related diseases, biological screening platforms are indispensable tools to identify anti-aging compounds among large substance libraries. The budding yeast, Saccharomyces cerevisiae, has emerged as a powerful chemical and genetic screening platform, as it combines a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Given the amount of conserved genes and aging mechanisms between yeast and human, testing candidate anti-aging substances in yeast gene-deletion or overexpression collections, or de novo derived mutants, has proven highly successful in finding potential molecular targets. Yeast-based studies, for example, have led to the discovery of the polyphenol resveratrol and the natural polyamine spermidine as potential anti-aging agents. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery and target identification. PMID:29905792
Tavtigian, Sean V; Byrnes, Graham B; Goldgar, David E; Thomas, Alun
2008-11-01
Many individually rare missense substitutions are encountered during deep resequencing of candidate susceptibility genes and clinical mutation screening of known susceptibility genes. BRCA1 and BRCA2 are among the most resequenced of all genes, and clinical mutation screening of these genes provides an extensive data set for analysis of rare missense substitutions. Align-GVGD is a mathematically simple missense substitution analysis algorithm, based on the Grantham difference, which has already contributed to classification of missense substitutions in BRCA1, BRCA2, and CHEK2. However, the distribution of genetic risk as a function of Align-GVGD's output variables Grantham variation (GV) and Grantham deviation (GD) has not been well characterized. Here, we used data from the Myriad Genetic Laboratories database of nearly 70,000 full-sequence tests plus two risk estimates, one approximating the odds ratio and the other reflecting strength of selection, to display the distribution of risk in the GV-GD plane as a series of surfaces. We abstracted contours from the surfaces and used the contours to define a sequence of missense substitution grades ordered from greatest risk to least risk. The grades were validated internally using a third, personal and family history-based, measure of risk. The Align-GVGD grades defined here are applicable to both the genetic epidemiology problem of classifying rare missense substitutions observed in known susceptibility genes and the molecular epidemiology problem of analyzing rare missense substitutions observed during case-control mutation screening studies of candidate susceptibility genes. (c) 2008 Wiley-Liss, Inc.
Thyroid Cancer—Health Professional Version
There are four types of thyroid cancer. These are papillary, follicular, medullary, and anaplastic thyroid cancer. Papillary is the most common type of thyroid cancer. Find evidence-based information on thyroid cancer treatment, screening, research, genetics, and statistics.
Assessment of Genetic Screening in the Military
against the likelihood of saving lives of military recruits with undetected, potentially life- threatening genetic conditions. Largegenomic databases...The goal of this project was to undertake a cost-benefit analysis of genetic testing in military populations . We weighed the costs of genetictesting...of asymptomatic populations were used to analyze the effect that genetic screening for hypertrophic cardiomyopathy(HCM, the most common cause of sudden
Maruyama, Hiroki; Miyata, Kaori; Mikame, Mariko; Taguchi, Atsumi; Guili, Chu; Shimura, Masaru; Murayama, Kei; Inoue, Takeshi; Yamamoto, Saori; Sugimura, Koichiro; Tamita, Koichi; Kawasaki, Toshihiro; Kajihara, Jun; Onishi, Akifumi; Sugiyama, Hitoshi; Sakai, Teiko; Murata, Ichijiro; Oda, Takamasa; Toyoda, Shigeru; Hanawa, Kenichiro; Fujimura, Takeo; Ura, Shigehisa; Matsumura, Mimiko; Takano, Hideki; Yamashita, Satoshi; Matsukura, Gaku; Tazawa, Ryushi; Shiga, Tsuyoshi; Ebato, Mio; Satoh, Hiroshi; Ishii, Satoshi
2018-03-15
PurposePlasma globotriaosylsphingosine (lyso-Gb3) is a promising secondary screening biomarker for Fabry disease. Here, we examined its applicability as a primary screening biomarker for classic and late-onset Fabry disease in males and females.MethodsBetween 1 July 2014 and 31 December 2015, we screened 2,360 patients (1,324 males) referred from 169 Japanese specialty clinics (cardiology, nephrology, neurology, and pediatrics), based on clinical symptoms suggestive of Fabry disease. We used the plasma lyso-Gb3 concentration, α-galactosidase A (α-Gal A) activity, and analysis of the α-Gal A gene (GLA) for primary and secondary screens, respectively.ResultsOf 8 males with elevated lyso-Gb3 levels (≥2.0 ng ml -1 ) and low α-Gal A activity (≤4.0 nmol h -1 ml -1 ), 7 presented a GLA mutation (2 classic and 5 late-onset). Of 15 females with elevated lyso-Gb3, 7 displayed low α-Gal A activity (5 with GLA mutations; 4 classic and 1 late-onset) and 8 exhibited normal α-Gal A activity (1 with a classic GLA mutation and 3 with genetic variants of uncertain significance).ConclusionPlasma lyso-Gb3 is a potential primary screening biomarker for classic and late-onset Fabry disease probands.Genet Med advance online publication, 15 March 2018; doi:10.1038/gim.2018.31.
High-Throughput Fluorescence-Based Isolation of Live C. elegans Larvae
Fernandez, Anita G.; Bargmann, Bastiaan O. R.; Mis, Emily K.; Edgley, Mark. L.; Birnbaum, Kenneth D.; Piano, Fabio
2017-01-01
For the nematode Caenorhabditis elegans, automated selection of animals of specific genotypes from a mixed pool has become essential for genetic interaction or chemical screens. To date, such selection has been accomplished using specialized instruments. However, access to such dedicated equipment is not common. Here we describe live animal fluorescence-activated cell sorting (laFACS), a protocol for automatic selection of live L1 animals using a standard FACS. We show that a FACS can be used for the precise identification of GFP-expressing and non-GFP-expressing sub-populations and can accomplish high-speed sorting of live animals. We have routinely collected 100,000 or more homozygotes from a mixed starting population within two hours and with greater than ninety-nine percent purity. The sorted animals continue to develop normally, making this protocol ideally suited for the isolation of terminal mutants for use in genetic interaction or chemical genetic screens. PMID:22814389
Some legal aspects of genetic screening.
Abbing, H R
2003-01-01
Screening activities in health care are not always useful and sometimes harmful. The mere offer of a screening test puts the individual's autonomy under constraint. With genetic (predictive and risk assessment) tests, the right to free, informed consent and to protection of privacy and medical confidentiality is even more warranted. Screening evokes many questions from the perspective of the right to health care as well as (in particular with genetic screening) from the perspective of respect for individual human rights. Fear of liability puts pressure on professional restraint not to offer every screening test available. States have to take legislative measures for guaranteeing that only those screening activities become available that can significantly contribute to individual and public health. They also should consider additional rules for protecting individual rights where those that are generally accepted in the "ordinary" medical setting (the individual patient-doctor relationship), offer insufficient protection.
Atherton, Andrea M; Day-Salvatore, Debra
2017-07-01
An important part of the coordinated care by experienced health care teams for all Pompe disease patients, whether diagnosed through newborn screening (NBS), clinical diagnosis, or prenatal diagnosis, is genetic counseling. Genetic counseling helps families better understand medical recommendations and options presented by the patient's health care team so they can make informed decisions. In addition to providing important information about the inheritance and genetic risks, genetic counseling also provides information about Pompe disease and available treatments and resources and should be offered to families with an affected child and all adults diagnosed with Pompe disease. Although the need for genetic counseling after a positive newborn screen for Pompe disease is recognized, the role that genetic counseling plays for both families of affected patients and health care teams is not fully understood. Consistent best genetic counseling practices also are lacking. The guidance in this article in the "Newborn Screening, Diagnosis, and Treatment for Pompe Disease" supplement is derived from expert consensus from the Pompe Disease Newborn Screening Working Group. It is intended to help guide genetic counseling efforts and provide a clear understanding of the role for families or carriers of Pompe disease identified through NBS; explain special considerations (eg, diagnosis of late-onset Pompe disease before the appearance of symptoms) and the impact and implications associated with a diagnosis (eg, determination of genetic risk and carrier status and preconception counseling); and provide health care teams caring for patients with a framework for a standardized approach to genetic counseling for patients and at-risk family members. Copyright © 2017 by the American Academy of Pediatrics.
Long, Sarah; O'Leary, Peter; Lobo, Roanna; Dickinson, Jan E
2018-06-01
In order to explore the impact of potential new technologies in the area of prenatal screening, we conducted a baseline study using qualitative interviews to explore women's attitudes and knowledge regarding current and future prenatal screening technology and methods. Three cohorts were interviewed, including healthy women without children, healthy women with healthy children, and healthy women with children who have de novo genetic disorders. This study aimed to assess the baseline understanding and attitudes of women in Western Australia. Women from each cohort demonstrated adequate knowledge of the differences between screening and diagnostic tests, but were mostly unaware of the conditions for which screening is currently available except Down syndrome. Women who had children with de novo genetic conditions were generally aware of more genetic conditions than women with or without healthy children. Most women recognised the genetic basis for the conditions mentioned. Two thirds of women understood that Down syndrome is a chromosomal condition; just one third recognised that the phenotype is variable. Most women expressed a positive attitude towards Down syndrome. Social acceptance of children with Down syndrome was commonly mentioned as a concern. While the majority of women with children supported screening for Down syndrome, they emphasised that it must be an autonomous choice. General knowledge of genetic conditions illustrated that women are exposed to diverse conditions from lived experience as well as the media.
2013-10-09
have desirable traits. We aim to enlarge the E. coli genome using Lactobacillusplantarum genes to build cells tolerant to EtOH and BT. L. plantarum is...chemicals III. Approach Objective 1 & la: Integrated heterologous (L. plantarum ) DNA into the E. coli chromosome and selected for insertions that...developed in combination with genes identified from screening L. plantarum libraries. Additionally, we have screened heterologous libraries for
Epp, Elias; Walther, Andrea; Guylaine, Lépine; Leon, Zully; Mullick, Alaka; Raymond, Martine; Wendland, Jürgen; Whiteway, Malcolm
2014-01-01
Summary Candida albicans is a diploid fungal pathogen lacking a defined complete sexual cycle, and thus has been refractory to standard forward genetic analysis. Instead, transcription profiling and reverse genetic strategies based on Saccharomyces cerevisiae have typically been used to link genes to functions. To overcome restrictions inherent in such indirect approaches, we have investigated a forward genetic mutagenesis strategy based on the UAU1 technology. We screened 4700 random insertion mutants for defects in hyphal development and linked two new genes (ARP2 and VPS52) to hyphal growth. Deleting ARP2 abolished hyphal formation, generated round and swollen yeast phase cells, disrupted cortical actin patches and blocked virulence in mice. The mutants also showed a global lack of induction of hyphae-specific genes upon the yeast-to-hyphae switch. Surprisingly, both arp2Δ/Δ and arp2Δ/Δarp3Δ/Δ mutants were still able to endocytose FM4-64 and Lucifer Yellow, although as shown by time-lapse movies internalization of FM4-64 was somewhat delayed in mutant cells. Thus the non-essential role of the Arp2/3 complex discovered by forward genetic screening in C. albicans showed that uptake of membrane components from the plasma membrane to vacuolar structures is not dependent on this actin nucleating machinery. PMID:20141603
Palmero, Edenir Inêz; Alemar, Bárbara; Schüler-Faccini, Lavínia; Hainaut, Pierre; Moreira-Filho, Carlos Alberto; Ewald, Ingrid Petroni; Santos, Patricia Koehler Dos; Ribeiro, Patricia Lisbôa Izetti; Oliveira, Cristina Brinkmann de Netto; Calvez-Kelm, Florence Le; Tavtigian, Sean; Cossio, Silvia Liliana; Giugliani, Roberto; Caleffi, Maira; Ashton-Prolla, Patricia
2016-05-24
In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS) in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH) of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA). If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil.
Moderating Effects of Autism on Parent Views of Genetic Screening for Aggression
ERIC Educational Resources Information Center
May, Michael E.; Brandt, Rachel C.; Bohannan, Joseph K.
2012-01-01
Advances in gene-environment interaction research have revealed genes that are associated with aggression. However, little is known about parent perceptions of genetic screening for behavioral symptoms like aggression as opposed to diagnosing disabilities. These perceptions may influence future research endeavors involving genetic linkage studies…
Jaiswal, Alok; Peddinti, Gopal; Akimov, Yevhen; Wennerberg, Krister; Kuznetsov, Sergey; Tang, Jing; Aittokallio, Tero
2017-06-01
Genome-wide loss-of-function profiling is widely used for systematic identification of genetic dependencies in cancer cells; however, the poor reproducibility of RNA interference (RNAi) screens has been a major concern due to frequent off-target effects. Currently, a detailed understanding of the key factors contributing to the sub-optimal consistency is still a lacking, especially on how to improve the reliability of future RNAi screens by controlling for factors that determine their off-target propensity. We performed a systematic, quantitative analysis of the consistency between two genome-wide shRNA screens conducted on a compendium of cancer cell lines, and also compared several gene summarization methods for inferring gene essentiality from shRNA level data. We then devised novel concepts of seed essentiality and shRNA family, based on seed region sequences of shRNAs, to study in-depth the contribution of seed-mediated off-target effects to the consistency of the two screens. We further investigated two seed-sequence properties, seed pairing stability, and target abundance in terms of their capability to minimize the off-target effects in post-screening data analysis. Finally, we applied this novel methodology to identify genetic interactions and synthetic lethal partners of cancer drivers, and confirmed differential essentiality phenotypes by detailed CRISPR/Cas9 experiments. Using the novel concepts of seed essentiality and shRNA family, we demonstrate how genome-wide loss-of-function profiling of a common set of cancer cell lines can be actually made fairly reproducible when considering seed-mediated off-target effects. Importantly, by excluding shRNAs having higher propensity for off-target effects, based on their seed-sequence properties, one can remove noise from the genome-wide shRNA datasets. As a translational application case, we demonstrate enhanced reproducibility of genetic interaction partners of common cancer drivers, as well as identify novel synthetic lethal partners of a major oncogenic driver, PIK3CA, supported by a complementary CRISPR/Cas9 experiment. We provide practical guidelines for improved design and analysis of genome-wide loss-of-function profiling and demonstrate how this novel strategy can be applied towards improved mapping of genetic dependencies of cancer cells to aid development of targeted anticancer treatments.
Jonas, Susanna; Wild, Claudia; Schamberger, Chantal
2003-02-01
The aim of this health technology assessment was to analyse the current scientific and genetic counselling on predictive genetic testing for hereditary breast and colorectal cancer. Predictive genetic testing will be available for several common diseases in the future and questions related to financial issues and quality standards will be raised. This report is based on a systematic/nonsystematic literature search in several databases (e.g. EmBase, Medline, Cochrane Library) and on a specific health technology assessment report (CCOHTA) and review (American Gastroenterological Ass.), respectively. Laboratory test methods, early detection methods and the benefit from prophylactic interventions were analysed and social consequences interpreted. Breast and colorectal cancer are counted among the most frequently cancer diseases. Most of them are based on random accumulation of risk factors, 5-10% show a familial determination. A hereditary modified gene is responsible for the increased cancer risk. In these families, high tumour frequency, young age at diagnosis and multiple primary tumours are remarkable. GENETIC DIAGNOSIS: Sequence analysis is the gold standard. Denaturing high performance liquid chromatography is a quick alternative method. The identification of the responsible gene defect in an affected family member is important. If the test result is positive there is an uncertainty whether the disease will develop or not, when and in which degree, which is founded in the geno-/phenotype correlation. The individual risk estimation is based upon empirical evidence. The test results affect the whole family. Currently, primary prevention is possible for familial adenomatous polyposis (celecoxib, prophylactic colectomy) and for hereditary mamma carcinoma (prophylactic mastectomy). The so-called preventive medical check-ups are early detection examinations. The evidence about early detection methods for colorectal cancer is better than for breast cancer. Prophylactic mastectomy (PM) reduces the relative breast cancer risk by approximately 90%. The question is if PM has an impact on mortality. The acceptance of PM is culture-dependent. Colectomy can be used as a prophylactic (FAP) and therapeutic method. After surgery, the cancer risk remains high and so early detection examinations are still necessary. EVIDENCE-BASED STATEMENTS: The evidence is often fragmentary and of limited quality. For objective test result presentation information about sensitivity, specificity, positive predictive value, and number needed to screen and treat, respectively, are necessary. New identification of mutations and demand will lead to an increase of predictive genetic counselling and testing. There is a gap between predictive genetic diagnosis and prediction, prevention, early detection and surgical interventions. These circumstances require a basic strategy. Since predictive genetic diagnosis is a very sensitive issue it is important to deal with it carefully in order to avoid inappropriate hopes. Thus, media, experts and politicians need to consider opportunities and limitations in their daily decision-making processes.
Noguchi, Akio; Nakamura, Kosuke; Sakata, Kozue; Sato-Fukuda, Nozomi; Ishigaki, Takumi; Mano, Junichi; Takabatake, Reona; Kitta, Kazumi; Teshima, Reiko; Kondo, Kazunari; Nishimaki-Mogami, Tomoko
2016-04-19
A number of genetically modified (GM) maize events have been developed and approved worldwide for commercial cultivation. A screening method is needed to monitor GM maize approved for commercialization in countries that mandate the labeling of foods containing a specified threshold level of GM crops. In Japan, a screening method has been implemented to monitor approved GM maize since 2001. However, the screening method currently used in Japan is time-consuming and requires generation of a calibration curve and experimental conversion factor (C(f)) value. We developed a simple screening method that avoids the need for a calibration curve and C(f) value. In this method, ΔC(q) values between the target sequences and the endogenous gene are calculated using multiplex real-time PCR, and the ΔΔC(q) value between the analytical and control samples is used as the criterion for determining analytical samples in which the GM organism content is below the threshold level for labeling of GM crops. An interlaboratory study indicated that the method is applicable independently with at least two models of PCR instruments used in this study.
ERIC Educational Resources Information Center
Botoseneanu, Anda; Alexander, Jeffrey A.; Banaszak-Holl, Jane
2011-01-01
Genetic testing can advance cancer prevention if current screening behaviors improve. Increased prevalence of high-risk genotypes within specific religious groups, use of religious venues for recruiting to genetic screening, and ethical-religious considerations argue for exploring the role of religiosity in forming genetic testing decisions. This…
Bell, Robert A; McDermott, Haley; Fancher, Tonya L; Green, Michael J; Day, Frank C; Wilkes, Michael S
2015-03-01
Many primary care physicians (PCPs) are ill-equipped to provide screening and counseling for inherited breast cancer. To evaluate the outcomes of an interactive web-based genetics curriculum versus text curriculum for primary care physicians. Randomized two-group design. 121 California and Pennsylvania community physicians. Web-based interactive genetics curriculum, evaluated against a control group of physicians who studied genetics review articles. After education, physicians interacted with an announced standardized patient (SP) at risk for inherited breast cancer. Transcripts of visit discussions were coded for presence or absence of 69 topics relevant to inherited breast cancer. Across all physicians, history-taking, discussions of test result implications, and exploration of ethical and legal issues were incomplete. Approximately half of physicians offered a genetic counseling referral (54.6%), and fewer (43.8%) recommended testing. Intervention physicians were more likely than controls to explore genetic counseling benefits (78.3% versus 60.7%, P = 0.048), encourage genetic counseling before testing (38.3% versus 21.3%, P = 0.048), ask about a family history of prostate cancer (25.0% versus 6.6%, P = 0.006), and report that a positive result indicated an increased risk of prostate cancer for male relatives (20.0% versus 1.6%, P = 0.001). Intervention-group physicians were less likely than controls to ask about Ashkenazi heritage (13.3% versus 34.4%, P = 0.01) or to reply that they would get tested when asked, "What would you do?" (33.3% versus 54.1%, P = 0.03). Physicians infrequently performed key counseling behaviors, and this was true regardless of whether they had completed the web-based interactive training or read clinical reviews.
Colorectal Cancer—Health Professional Version
Colorectal cancer studies often consider colon and rectal cancer together. Worldwide, colorectal cancer is the third most common form of cancer. Find evidence-based information on colon and rectal cancer treatment, causes and prevention, screening, research, genetics, and statistics.
Potential of plant genetic systems for monitoring and screening mutagens
Nilan, R. A.
1978-01-01
Plants have too long been ignored as useful screening and monitoring systems of environmental mutagens. However, there are about a dozen reliable, some even unique, plant genetic systems that can increase the scope and effectiveness of chemical and physical mutagen screening and monitoring procedures. Some of these should be included in the Tier II tests. Moreover, plants are the only systems now in use as monitors of genetic effects caused by polluted atmosphere and water and by pesticides. There are several major advantages of the plant test systems which relate to their reproductive nature, easy culture and growth habits that should be considered in mutagen screening and monitoring. In addition to these advantages, the major plant test systems exhibit numerous genetic and chromosome changes for determining the effects of mutagens. Some of these have not yet been detected in other nonmammalian and mammalian test systems, but probably occur in the human organism. Plants have played major roles in various aspects of mutagenesis research, primarily in mutagen screening (detection and verification of mutagenic activity), mutagen monitoring, and determining mutagen effects and mechanisms of mutagen action. They have played lesser roles in quantification of mutagenic activity and understanding the nature of induced mutations. Mutagen monitoring with plants, especially in situ on land or in water, will help determine potential genetic hazards of air and water pollutants and protect the genetic purity of crop plants and the purity of the food supply. The Tradescantia stamen-hair system is used in a mobile laboratory for determining the genetic effects of industrial and automobile pollution in a number of sites in the U.S.A. The fern is employed for monitoring genetic effects of water pollution in the Eastern states. The maize pollen system and certain weeds have monitored genetic effects of pesticides. Several other systems that have considerable value and should be developed and more widely used in mutagen monitoring and screening, especially for in situ monitoring, are discussed. Emphasis is placed on pollen systems in which changes in pollen structure, chemistry, and chromosomes can be scored for monitoring; and screening systems which can record low levels of genetic effects as well as provide information on the nature of induced mutations. The value of plant systems for monitoring and screening mutagens can be improved by: greater knowledge of plant cell processes at the molecular and ultrastructural levels; relating these processes to mutagen effects and plant cell responses; improving current systems for increased sensitivity, ease of detecting genetic and chromosome changes, recording of data (including automation), and for extending the range of genetic and chromosome end points; and designing and developing new systems with the aid of previous and current botanical and genetic knowledge. PMID:367768
Konialis, Christopher P; Hagnefelt, Birgitta; Kazamia, Constantina; Karapanou, Sophia; Pangalos, Constantinos
2007-01-01
The implementation and evaluation of a proposed wide-scale prenatal screening strategy, based on DNA isolated from dried blood spots in the first trimester of pregnancy, for the early detection of pregnancies at risk for cystic fibrosis (CF). The screening was performed in conjunction with routine biochemical marker screening for Down's syndrome risk in the first trimester of pregnancy. DNA was isolated from 1,233 dried blood spots and analyzed for the presence of the CF transmembrane regulator DeltaF508 mutation. Women carriers were offered and accepted the option for additional full testing of their partners in order to assess the risk for the fetus. All 1,233 samples were successfully analyzed, identifying 23 DeltaF508 carriers, corresponding to a DeltaF508 carrier rate of approximately 1/55 (1.8%). All partners of the women carriers were further tested without revealing any need for further prenatal testing in this group. This study reveals the relatively high frequency of the DeltaF508 CF mutation in the Greek population. More importantly, we demonstrate that the proposed prenatal screening strategy, based on the ease and cost-effectiveness of the analysis for the detection of a single common mutation, can be considered as a feasible and practical approach for wide-scale prenatal screening for CF, following the sequential model. It is applied early on in pregnancy, allowing for the timely management of families at risk for the corresponding genetic disorders. Finally, it can easily be extended to include screening for other common genetic disorders in specific population groups.
High-Throughput, Motility-Based Sorter for Microswimmers and Gene Discovery Platform
NASA Astrophysics Data System (ADS)
Yuan, Jinzhou; Raizen, David; Bau, Haim
2015-11-01
Animal motility varies with genotype, disease progression, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method was implemented in a simple microfluidic device capable of sorting many thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriched for known C. elegans motility mutants. Furthermore, using this device, we isolated low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates sleep-like quiescence in C. elegans. Subsequent genomic sequencing led to the identification of a flp-13-suppressor gene. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.
High burden of genetic conditions diagnosed in a cardiac neurodevelopmental clinic.
Goldenberg, Paula C; Adler, Betsy J; Parrott, Ashley; Anixt, Julia; Mason, Karen; Phillips, Jannel; Cooper, David S; Ware, Stephanie M; Marino, Bradley S
2017-04-01
There is a known high prevalence of genetic and clinical syndrome diagnoses in the paediatric cardiac population. These disorders often have multisystem effects, which may have an important impact on neurodevelopmental outcomes. Taken together, these facts suggest that patients and families may benefit from consultation by genetic specialists in a cardiac neurodevelopmental clinic. This study assessed the burden of genetic disorders and utility of genetics evaluation in a cardiac neurodevelopmental clinic. A retrospective chart review was conducted of patients evaluated in a cardiac neurodevelopmental clinic from 6 December, 2011 to 16 April, 2013. All patients were seen by a cardiovascular geneticist with genetic counselling support. A total of 214 patients were included in this study; 64 of these patients had a pre-existing genetic or syndromic diagnosis. Following genetics evaluation, an additional 19 were given a new clinical or laboratory-confirmed genetic diagnosis including environmental such as teratogenic exposures, malformation associations, chromosomal disorders, and single-gene disorders. Genetic testing was recommended for 112 patients; radiological imaging to screen for congenital anomalies for 17 patients; subspecialist medical referrals for 73 patients; and non-genetic clinical laboratory testing for 14 patients. Syndrome-specific guidelines were available and followed for 25 patients with known diagnosis. American Academy of Pediatrics Red Book asplenia guideline recommendations were given for five heterotaxy patients, and family-based cardiac screening was recommended for 23 families affected by left ventricular outflow tract obstruction. Genetics involvement in a cardiac neurodevelopmental clinic is helpful in identifying new unifying diagnoses and providing syndrome-specific care, which may impact the patient's overall health status and neurodevelopmental outcome.
1999-09-01
nuclear phosphoprotein. J Biol Chem 271: skipping of fibrillin-1 gene in Marfan syndrome . Nat Genet 33693-33697 16:328-329 Concannon P, Gatti RA (1997...1989) ATFresno: a phenotype linking ataxia-tel- ilnikova OM, Lenoir GM (1998) A BRCA1 nonsense mu- angiectasia with the Nijmegen breakage syndrome ...effectors. Am J Hum Genet 62:269-277 tions and Ehlers-Danlos syndrome type IV. Am J Hum Genet Hull J, Shackleton S, Harris A (1994) The stop mutation 61:1276
Mathijssen, Inge B; Holtkamp, Kim C A; Ottenheim, Cecile P E; van Eeten-Nijman, Janneke M C; Lakeman, Phillis; Meijers-Heijboer, Hanne; van Maarle, Merel C; Henneman, Lidewij
2018-02-01
Technological developments have enabled carrier screening for multiple disorders. This study evaluated experiences with a preconception carrier screening offer for four recessive disorders in a Dutch founder population. Questionnaires were completed by 182 attendees pretesting and posttesting and by 137 non-attendees. Semistructured interviews were conducted with seven of the eight carrier couples. Attendees were mainly informed about the existence of screening by friends/colleagues (49%) and family members (44%). Familiarity with the genetic disorders was high. Knowledge after counseling increased (p < 0.001); however, still 9%, compared to 29% before counseling, wrongly mentioned an increased risk of having an affected child if both parents are carriers of different disorders. Most attendees (97%) recalled their test results correctly, but two couples reported being carrier of another disorder than reported. Overall, 63% felt worried while waiting for results but anxiety levels returned to normal afterwards. In all, 2/39 (5%) carriers felt less healthy. Screened individuals were very satisfied; they did not regret testing (97%) and would recommend testing to others (97%). The majority (94%) stated that couples should always have a pretest consultation, preferably by a genetic counselor rather than their general practitioner (83%). All carrier couples made reproductive decisions based on their results. Main reason for non-attendance was unawareness of the screening offer. With expanded carrier screening, adequately informing couples pretest and posttesting is of foremost importance. Close influencers (family/friends) can be used to raise awareness of a screening offer. Our findings provide lessons for the implementation of expanded carrier screening panels in other communities and other settings.
Adopted Individuals' Views on the Utility and Value of Expanded Carrier Screening.
Spencer, Sara; Ewing, Sarah; Calcagno, Kathryn; O'Neill, Suzanne
2018-03-30
Adoptees may not have family medical history and ethnicity information. Carrier screening assesses reproductive risk. Expanded carrier screening (ECS) screens for many genetic conditions regardless of a patient's knowledge of family history and ethnicity. This study aimed to better understand the opinions and attitudes of adopted individuals on the use of ECS in determining a patient's reproductive genetic risks. Specifically, the study assessed how adopted individuals feel that results of ECS may be useful to them and whether adoptees feel that meeting with a genetics professional in the process of undergoing ECS would be useful. Adult adoptees (N = 124) were recruited online. Their opinions on ECS were explored. The majority reported they had never been offered carrier screening (92%). The majority of adoptees wanted ECS (76%). Neither the amount of contact with biological relatives nor having medical knowledge about biological relatives was significantly associated with adoptees' desire to pursue ECS. There was a significant positive correlation between adoptees of higher education levels and the amount they would pay for ECS (p = 0.004). The majority of participants (95%) indicated a genetics professional would be helpful when undergoing ECS. The findings suggest this population may want ECS and support from genetics healthcare professionals. Advocacy for genetic counseling and testing for adoptees appears justifiable.
2013-01-01
Background Given that hearing loss occurs in 1 to 3 of 1,000 live births and approximately 90 to 95 percent of them are born into hearing families, it is of importance and necessity to get better understanding about the carrier rate and mutation spectrum of genes associated with hearing impairment in the general population. Methods 7,263 unrelated women of childbearing age with normal hearing and without family history of hearing loss were tested with allele-specific PCR-based universal array. Further genetic testing were provided to the spouses of the screened carriers. For those couples at risk, multiple choices were provided, including prenatal diagnosis. Results Among the 7,263 normal hearing participants, 303 subjects carried pathogenic mutations included in the screening chip, which made the carrier rate 4.17%. Of the 303 screened carriers, 282 harbored heterozygous mutated genes associated with autosomal recessive hearing loss, and 95 spouses took further genetic tests. 8 out of the 9 couples harbored deafness-causing mutations in the same gene received prenatal diagnosis. Conclusions Given that nearly 90 to 95 percent of deaf and hard-of-hearing babies are born into hearing families, better understanding about the carrier rate and mutation spectrum of genes associated with hearing impairment in the female population of childbearing age may be of importance in carrier screening and genetic counseling. PMID:23718755
Yin, Aihua; Liu, Chang; Zhang, Yan; Wu, Jing; Mai, Mingqin; Ding, Hongke; Yang, Jiexia; Zhang, Xiaozhuang
2013-05-29
Given that hearing loss occurs in 1 to 3 of 1,000 live births and approximately 90 to 95 percent of them are born into hearing families, it is of importance and necessity to get better understanding about the carrier rate and mutation spectrum of genes associated with hearing impairment in the general population. 7,263 unrelated women of childbearing age with normal hearing and without family history of hearing loss were tested with allele-specific PCR-based universal array. Further genetic testing were provided to the spouses of the screened carriers. For those couples at risk, multiple choices were provided, including prenatal diagnosis. Among the 7,263 normal hearing participants, 303 subjects carried pathogenic mutations included in the screening chip, which made the carrier rate 4.17%. Of the 303 screened carriers, 282 harbored heterozygous mutated genes associated with autosomal recessive hearing loss, and 95 spouses took further genetic tests. 8 out of the 9 couples harbored deafness-causing mutations in the same gene received prenatal diagnosis. Given that nearly 90 to 95 percent of deaf and hard-of-hearing babies are born into hearing families, better understanding about the carrier rate and mutation spectrum of genes associated with hearing impairment in the female population of childbearing age may be of importance in carrier screening and genetic counseling.
Genetics Evaluation Guidelines for the Etiologic Diagnosis of Congenital Hearing Loss
2002-01-01
The advent of hearing screening in newborns in many states has led to an increase in the use of genetic testing and related genetic services in the follow-up of infants with hearing loss. A significant proportion of those with congenital hearing loss have genetic etiologies underlying their hearing loss. To ensure that those identified with congenital hearing loss receive the genetic services appropriate to their conditions, the Maternal and Child Health Bureau of the Health Resources and Services Administration funded the American College of Medical Genetics to convene an expert panel to develop guidelines for the genetic evaluation of congential hearing loss. After a brief overview of the current knowledge of hearing loss, newborn screening, and newborn hearing screening, we provide an overview of genetic services and a guideline that describes how best to ensure that patients receive appropriate genetic services. The significant contribution of genetic factors to these conditions combined with the rapid evolution of knowledge about the genetics of these conditions overlaid with the inherently multidisciplinary nature of genetic services provides an example of a condition for which a well-integrated multidisciplinary approach to care is clearly needed. PMID:12180152
Cornel, Martina C; van El, Carla G
2017-01-01
More than 15 years after the publication of the sequence of the human genome, the resulting changes in health care have been modest. At the same time, some promising examples in genetic services become visible, which contribute to the prevention of chronic disease such as cancer. These are discussed to identify barriers and facilitating factors for the implementation of genetic services. Examples from oncogenetics illustrate a high risk of serious disease where prevention is possible, especially in relatives. Some 5% of breast cancers and colorectal cancers are attributable to an inherited predisposition. These cancers occur at a relatively young age. DNA testing of relatives of affected patients may facilitate primary and secondary prevention. Training of non-genetic health care workers and health technology assessment are needed, as is translational research in terms of bringing genomics to health care practice while monitoring and evaluating. Stratified screening programs could include cascade screening and risk assessment based on family history. New roles and responsibilities will emerge. A clear assessment of the values implied is needed allowing to balance the pros and cons of interventions to further the responsible innovation of genetic services.
Gunasekera, T S; Holland, R J; Gillings, M R; Briscoe, D A; Neethling, D C; Williams, K L; Nevalainen, K M
2000-09-01
Efficient selection of fungi for biological control of nematodes requires a series of screening assays. Assessment of genetic diversity in the candidate species maximizes the variety of the isolates tested and permits the assignment of a particular genotype with high nematophagous potential using a rapid novel assay. Molecular analyses also facilitate separation between isolates, allowing the identification of proprietary strains and trace biocontrol strains in the environment. The resistance of propagules to UV radiation is an important factor in the survival of a biocontrol agent. We have analyzed 15 strains of the nematophagous fungus Paecilomyces lilacinus using these principles. Arbitrarily primed DNA and allozyme assays were applied to place the isolates into genetic clusters, and demonstrated that some genetically related P. lilacinus strains exhibit widespread geographic distributions. When exposed to UV radiation, some weakly nematophagous strains were generally more susceptible than effective isolates. A microtitre tray-based assay used to screen the pathogenic activity of each isolate to Meloidogyne javanica egg masses revealed that the nematophagous ability varied between 37%-100%. However, there was no clear relationship between nematophagous ability and genetic clusters. Molecular characterizations revealed sufficient diversity to allow tracking of strains released into the environment.
Genetic screening in adolescents with steroid-resistant nephrotic syndrome.
Lipska, Beata S; Iatropoulos, Paraskevas; Maranta, Ramona; Caridi, Gianluca; Ozaltin, Fatih; Anarat, Ali; Balat, Ayse; Gellermann, Jutta; Trautmann, Agnes; Erdogan, Ozlem; Saeed, Bassam; Emre, Sevinc; Bogdanovic, Radovan; Azocar, Marta; Balasz-Chmielewska, Irena; Benetti, Elisa; Caliskan, Salim; Mir, Sevgi; Melk, Anette; Ertan, Pelin; Baskin, Esra; Jardim, Helena; Davitaia, Tinatin; Wasilewska, Anna; Drozdz, Dorota; Szczepanska, Maria; Jankauskiene, Augustina; Higuita, Lina Maria Serna; Ardissino, Gianluigi; Ozkaya, Ozan; Kuzma-Mroczkowska, Elzbieta; Soylemezoglu, Oguz; Ranchin, Bruno; Medynska, Anna; Tkaczyk, Marcin; Peco-Antic, Amira; Akil, Ipek; Jarmolinski, Tomasz; Firszt-Adamczyk, Agnieszka; Dusek, Jiri; Simonetti, Giacomo D; Gok, Faysal; Gheissari, Alaleh; Emma, Francesco; Krmar, Rafael T; Fischbach, Michel; Printza, Nikoleta; Simkova, Eva; Mele, Caterina; Ghiggeri, Gian Marco; Schaefer, Franz
2013-07-01
Genetic screening paradigms for congenital and infantile nephrotic syndrome are well established; however, screening in adolescents has received only minor attention. To help rectify this, we analyzed an unselected adolescent cohort of the international PodoNet registry to develop a rational screening approach based on 227 patients with nonsyndromic steroid-resistant nephrotic syndrome aged 10-20 years. Of these, 21% had a positive family history. Autosomal dominant cases were screened for WT1, TRPC6, ACTN4, and INF2 mutations. All other patients had the NPHS2 gene screened, and WT1 was tested in sporadic cases. In addition, 40 sporadic cases had the entire coding region of INF2 tested. Of the autosomal recessive and the sporadic cases, 13 and 6%, respectively, were found to have podocin-associated nephrotic syndrome, and 56% of them were compound heterozygous for the nonneutral p.R229Q polymorphism. Four percent of the sporadic and 10% of the autosomal dominant cases had a mutation in WT1. Pathogenic INF2 mutations were found in 20% of the dominant but none of the sporadic cases. In a large cohort of adolescents including both familial and sporadic disease, NPHS2 mutations explained about 7% and WT1 4% of cases, whereas INF2 proved relevant only in autosomal dominant familial disease. Thus, screening of the entire coding sequence of NPHS2 and exons 8-9 of WT1 appears to be the most rational and cost-effective screening approach in sporadic juvenile steroid-resistant nephrotic syndrome.
Early detection of pancreatic cancer
Ahuja, Nita
2015-01-01
Pancreatic adenocarcinoma is a low-incident but highly mortal disease. It accounts for only 3% of estimated new cancer cases each year but is currently the fourth common cause of cancer mortality. By 2030, it is expected to be the 2nd leading cause of cancer death. There is a clear need to diagnose and classify pancreatic cancer at earlier stages in order to give patients the best chance at a definitive cure through surgery. Three precursor lesions that distinctly lead to pancreatic adenocarcinoma have been identified, and we have increasing understanding the non-genetic and genetic risk factors for the disease. With increased understanding about the risk factors, the familial patters, and associated accumulation of genetic mutations involved in pancreatic cancer, we know that there are mutations that occur early in the development of pancreatic cancer and that improved genetic risk-based strategies in screening for pancreatic cancer may be possible and successful at saving or prolonging lives. The remaining challenge is that current standards for diagnosing pancreatic cancer remain too invasive and too costly for widespread screening for pancreatic cancer. Furthermore, the promises of noninvasive methods of detection such as blood, saliva, and stool remain underdeveloped or lack robust testing. However, significant progress has been made, and we are drawing closer to a strategy for the screening and early detection of pancreatic cancer. PMID:26361402
Reis, Tânia; Van Gilst, Marc R.; Hariharan, Iswar K.
2010-01-01
Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet. PMID:21085633
Arunachalam Palaniyandi, Sasikumar; Yang, Seung Hwan; Damodharan, Karthiyaini; Suh, Joo-Won
2013-12-01
Actinobacteria were isolated from the rhizosphere of yam plants from agricultural fields from Yeoju, South Korea and analyzed for their genetic and plant-beneficial functional diversity. A total of 29 highly occurring actinobacterial isolates from the yam rhizosphere were screened for various plant-beneficial traits such as antimicrobial activity on fungi and bacteria; biocontrol traits such as production of siderophore, protease, chitinase, endo-cellulase, and β-glucanase. The isolates were also screened for plant growth-promoting (PGP) traits such as auxin production, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and in vitro Arabidopsis growth promotion. 16S rDNA sequence-based phylogenetic analysis was carried out on the actinobacterial isolates to determine their genetic relatedness to known actinobacteria. BOX-PCR analysis revealed high genetic diversity among the isolates. Several isolates were identified to belong to the genus Streptomyces and a few to Kitasatospora. The actinobacterial strains exhibited high diversity in their functionality and were identified as novel and promising candidates for future development into biocontrol and PGP agents. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ESHRE Task Force on Ethics and Law 21: genetic screening of gamete donors: ethical issues.
Dondorp, W; De Wert, G; Pennings, G; Shenfield, F; Devroey, P; Tarlatzis, B; Barri, P; Diedrich, K; Eichenlaub-Ritter, U; Tüttelmann, F; Provoost, V
2014-07-01
This Task Force document explores the ethical issues involved in the debate about the scope of genetic screening of gamete donors. Calls for expanded donor screening arise against the background of both occasional findings of serious but rare genetic conditions in donors or donor offspring that were not detected through present screening procedures and the advent of new genomic technologies promising affordable testing of donors for a wide range of conditions. Ethical principles require that all stakeholders' interests are taken into account, including those of candidate donors. The message of the profession should be that avoiding all risks is impossible and that testing should remain proportional.
An in vivo multiplexed small molecule screening platform
Yang, Dian; Ogasawara, Daisuke; Dix, Melissa M.; Rogers, Zoë N.; Chuang, Chen-Hua; McFarland, Christopher D.; Chiou, Shin-Heng; Brown, J. Mark; Cravatt, Benjamin F.; Bogyo, Matthew; Winslow, Monte M.
2016-01-01
Phenotype-based small molecule screening is a powerful method to identify regulators of cellular function. However, such screens are generally performed in vitro using conditions that do not necessarily model complex physiological conditions or disease states. Here, we use molecular cell barcoding to enable direct in vivo phenotypic screening of libraries of small molecules. The multiplexed nature of this approach allows rapid in vivo analysis of hundreds to thousands of compounds. Using this platform, we screened >700 covalent inhibitors directed towards hydrolases for their effect on pancreatic cancer metastatic seeding. We identified multiple hits and confirmed the relevant target of one compound as the lipase ABHD6. Pharmacological and genetic studies confirmed the role of this enzyme as a regulator of metastatic fitness. Our results highlight the applicability of this multiplexed screening platform for investigating complex processes in vivo. PMID:27617390
Skin Cancer (Including Melanoma)—Health Professional Version
Basal cell carcinoma and squamous cell carcinoma are referred to as nonmelanoma skin cancers. Melanoma is a malignant tumor of melanocytes, which make the melanin. Find evidence-based information on skin cancer treatment, causes and prevention, screening, research, genetics, and statistics.
[Evaluation of the usefulness for neonatal mass screening in light of 35 years personal experience].
Bozkowa, K; Cabalska, B; Radomyska, B; Ołtarzewski, M; Lenartowska, I
1999-01-01
The results and the significance of neonatal mass-screening programmes for inborn errors of metabolism, conducted by the National Research Institute of Mother and Child (NRIMC), are discussed. As the first in Poland, in 1964, mass-screening for phenylketonuria (PKU) was introduced. The BIA-Guthrie test was used. Other Guthrie tests (GBIA) were applied in homocystinuria, tyrosinemia, histidinemia and leucinosis (Maple Syrup Urine Disease-MSUD). In the middle of the 60. the Beutler and Baluda test was introduced for galactosaemia, as well as the Efron urine test in infant screening for different inborn errors of metabolism. In the middle of the 70., neonatal mass-screening for cystic fibrosis (CF, mucoviscidosis) was started. Meconium tests and the sweat test with ion selective chloride electrode were used. Apart from inborn errors of metabolism, we also introduced a screening programme for neuroblastoma in which vaniline mandelic acid (VMA) in urine was estimated and for congenital hypothyroidism were TSH level was assessed. The results of screening are shown in the tables and in the figures. In our opinion the best clinical results are obtained with screening for congenital hypothyroidism and for PKU, since very early detection and treatment in these diseases prevents severe mental retardation. We therefore consider that both these screening programmes should be treated as obligatory examinations in all neonates. Taking into consideration the fact that there are different types of hyperhenylalaninemias, the principles of differential diagnosis are discussed. Molecular genetic investigations, carried out in the NRIMC Department of Genetics proved to be a very important procedure in the verification of diagnosis of different mutations. The authors also discuss the problem of dietary treatment duration in PKU. In our opinion the hypophenyloalanine diet regimen in girls, should not be discontinued during adolescence, since there is the problem of maternal PKU and the possibility of foetal damage. The results of our own investigations of maternal PKU are discussed. The significance of mass-screening for galactosemia is still under discussion. In our opinion, mass-screening for galactosemia is not useful and we have discontinued it. Selective screening has been started combined with molecular genetic studies in high risk families. In the future, we plan to prepare guidelines on the principles of diagnosis and treatment of galactosemia in children and women in the reproductive age. Mass-screening for cystic fibrosis is also still under discussion. The results of the early screening programmes were not satisfactory and the tests were discontinued. In 1998, after reorganisation of the whole system, CF screening, using tripsin-radioimmune assays, was started again. The new screening programme is combined with molecular genetic investigation of different mutations. It is still too early to assess the importance and success of this CF mass-screening programme. We decided to discontinue the screening for homocystinuria, histidinemia, tyrosinemia, leucinosis and for neuroblastoma, since these programmes did not comply with criteria of mass-screening. In 1997, major reorganisation of screening programmes for inborn errors of metabolism, at NRIMC, was undertaken. The Guthrie test for PKU was changed to a quantitative colorimetric method. The immuno-luminometric method is used for TSH estimation. The whole system is based on complete computer control of all the steps of screening, from blood sampling on filter paper until the final diagnosis. The advantages of this modern system of organisation of the screening programme are discussed.
Palmero, Edenir Inêz; Alemar, Bárbara; Schüler-Faccini, Lavínia; Hainaut, Pierre; Moreira-Filho, Carlos Alberto; Ewald, Ingrid Petroni; dos Santos, Patricia Koehler; Ribeiro, Patricia Lisbôa Izetti; de Oliveira, Cristina Brinkmann; Kelm, Florence Le Calvez; Tavtigian, Sean; Cossio, Silvia Liliana; Giugliani, Roberto; Caleffi, Maira; Ashton-Prolla, Patricia
2016-01-01
Abstract In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS) in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH) of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA). If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil. PMID:27223485
Genetics and bioethics: how our thinking has changed since 1969.
Walters, LeRoy
2012-02-01
In 1969, the field of human genetics was in its infancy. Amniocentesis was a new technique for prenatal diagnosis, and a newborn genetic screening program had been established in one state. There were also concerns about the potential hazards of genetic engineering. A research group at the Hastings Center and Paul Ramsey pioneered in the discussion of genetics and bioethics. Two principal techniques have emerged as being of enduring importance: human gene transfer research and genetic testing and screening. This essay tracks the development and use of these techniques and considers the ethical issues that they raise.
A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans
Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.
2018-01-01
Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088
Predictive genetic testing for complex diseases: a public health perspective
Marzuillo, C.; De Vito, C.; D’Andrea, E.; Rosso, A.
2014-01-01
From a public health perspective, systematic, evidence-based technology assessments and economic evaluations are needed to guide the incorporation of genomics into clinical and public health practice. However, scientific evidence on the effectiveness of predictive genetic tests is difficult to obtain. This review first highlights the similarities and differences between traditional screening tests and predictive genetic testing for complex diseases and goes on to describe frameworks for the evaluation of genetic testing that have been developed in recent years providing some evidence that currently genetic tests are not used in an appropriate way. Nevertheless, evidence-based recommendations are already available for some genomic applications that can reduce morbidity and mortality and many more are expected to emerge over the next decade. The time is now ripe for the introduction of a range of genetic tests into healthcare practice, but this will require the development of specific health policies, proper public health evaluations, organizational changes within the healthcare systems, capacity building among the healthcare workforce and the education of the public. PMID:24049051
Michael Frei, Dominik; Hodneland, Erlend; Rios-Mondragon, Ivan; Burtey, Anne; Neumann, Beate; Bulkescher, Jutta; Schölermann, Julia; Pepperkok, Rainer; Gerdes, Hans-Hermann; Kögel, Tanja
2015-01-01
Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT. PMID:26271723
Arranging marriage; negotiating risk: genetics and society in Qatar.
Kilshaw, Susie; Al Raisi, Tasneem; Alshaban, Fouad
2015-01-01
This paper considers how the globalized discourse of genetic risk in cousin marriage is shaped, informed and taken up in local moral worlds within the context of Qatar. This paper investigates the way Qataris are negotiating the discourse on genetics and risk. It is based on data from ongoing ethnographic research in Qatar and contributes to anthropological knowledge about this understudied country. Participants were ambivalent about genetic risks and often pointed to other theories of causation in relation to illness and disability. The discourse on genetic risk associated with marrying in the family was familiar, but for some participants the benefits of close marriage outweighed potential risks. Furthermore, the introduction of mandatory pre-marital screening gave participants confidence that risks were monitored and minimized.
Chen, Jianjun; Wang, Qiwei; Cabrera, Patricia E.; Zhong, Zilin; Sun, Wenmin; Jiao, Xiaodong; Chen, Yabin; Govindarajan, Gowthaman; Naeem, Muhammad Asif; Khan, Shaheen N.; Ali, Muhammad Hassaan; Assir, Muhammad Zaman; Rahman, Fawad Ur; Qazi, Zaheeruddin A.; Riazuddin, Sheikh; Akram, Javed; Riazuddin, S. Amer; Hejtmancik, J. Fielding
2017-01-01
Purpose To identify the genetic origins of autosomal recessive congenital cataracts (arCC) in the Pakistani population. Methods Based on the hypothesis that most arCC patients in consanguineous families in the Punjab areas of Pakistan should be homozygous for causative mutations, affected individuals were screened for homozygosity of nearby highly informative microsatellite markers and then screened for pathogenic mutations by DNA sequencing. A total of 83 unmapped consanguineous families were screened for mutations in 33 known candidate genes. Results Patients in 32 arCC families were homozygous for markers near at least 1 of the 33 known CC genes. Sequencing the included genes revealed homozygous cosegregating sequence changes in 10 families, 2 of which had the same variation. These included five missense, one nonsense, two frame shift, and one splice site mutations, eight of which were novel, in EPHA2, FOXE3, FYCO1, TDRD7, MIP, GALK1, and CRYBA4. Conclusions The above results confirm the usefulness of homozygosity mapping for identifying genetic defects underlying autosomal recessive disorders in consanguineous families. In our ongoing study of arCC in Pakistan, including 83 arCC families that underwent homozygosity mapping, 3 mapped using genome-wide linkage analysis in unpublished data, and 30 previously reported families, mutations were detected in approximately 37.1% (43/116) of all families studied, suggesting that additional genes might be responsible in the remaining families. The most commonly mutated gene was FYCO1 (14%), followed by CRYBB3 (5.2%), GALK1 (3.5%), and EPHA2 (2.6%). This provides the first comprehensive description of the genetic architecture of arCC in the Pakistani population. PMID:28418495
Cohen, Stacey A; Laurino, Mercy; Bowen, Deborah J; Upton, Melissa P; Pritchard, Colin; Hisama, Fuki; Jarvik, Gail; Fichera, Alessandro; Sjoding, Britta; Bennett, Robin L; Naylor, Lorraine; Jacobson, Angela; Burke, Wylie; Grady, William M
2016-02-01
Lynch syndrome confers a hereditary predisposition to colorectal and other cancers. Universal tumor screening (UTS) for Lynch syndrome is recommended by several professional societies, but the implementation can be complex. This article describes the evaluation, process development, and initiation of Lynch syndrome UTS at a tertiary referral cancer center. A multidisciplinary team developed the new process design. Issues in 5 themes were noted: timing, funding, second-opinion patients, result processing, and the role of genetics providers. A committee approach was used to examine each issue for process-improvement development. The issues related to testing were addressed individually for the successful implementation of UTS at the institutional level. In the conventional-care period, 9 of 30 cases (30%) received Lynch syndrome screening, and 4 cases were referred to medical genetics. During the 6 months following the implementation of UTS, 32 of 44 patients (73%) received Lynch syndrome screening. The 13 unscreened patients all had identified reasons for nonscreening (eg, financial limitations). Ten patients were referred to medical genetics, which identified no new cases of Lynch syndrome, but a low-risk adenomatous polyposis coli (APC) variant was detected in 1 individual. The implementation of effective Lynch syndrome UTS can feasibly alter practice at the institutional level. This experience with the assessment and management of issues relevant to the successful implementation of a new clinical care paradigm based on emerging technology has implications for the uptake of advances across molecular oncology into clinical practice, and this is highly relevant in the current era of rapidly evolving genomic technology. © 2015 American Cancer Society.
Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants.
Wilson-Sánchez, David; Rubio-Díaz, Silvia; Muñoz-Viana, Rafael; Pérez-Pérez, José Manuel; Jover-Gil, Sara; Ponce, María Rosa; Micol, José Luis
2014-09-01
The study and eventual manipulation of leaf development in plants requires a thorough understanding of the genetic basis of leaf organogenesis. Forward genetic screens have identified hundreds of Arabidopsis mutants with altered leaf development, but the genome has not yet been saturated. To identify genes required for leaf development we are screening the Arabidopsis Salk Unimutant collection. We have identified 608 lines that exhibit a leaf phenotype with full penetrance and almost constant expressivity and 98 additional lines with segregating mutant phenotypes. To allow indexing and integration with other mutants, the mutant phenotypes were described using a custom leaf phenotype ontology. We found that the indexed mutation is present in the annotated locus for 78% of the 553 mutants genotyped, and that in half of these the annotated T-DNA is responsible for the phenotype. To quickly map non-annotated T-DNA insertions, we developed a reliable, cost-effective and easy method based on whole-genome sequencing. To enable comprehensive access to our data, we implemented a public web application named PhenoLeaf (http://genetics.umh.es/phenoleaf) that allows researchers to query the results of our screen, including text and visual phenotype information. We demonstrated how this new resource can facilitate gene function discovery by identifying and characterizing At1g77600, which we found to be required for proximal-distal cell cycle-driven leaf growth, and At3g62870, which encodes a ribosomal protein needed for cell proliferation and chloroplast function. This collection provides a valuable tool for the study of leaf development, characterization of biomass feedstocks and examination of other traits in this fundamental photosynthetic organ. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Ethical issues in psychiatric genetics.
Appelbaum, Paul S
2004-11-01
As knowledge grows regarding the genetic bases of psychiatric disorders, a variety of ethical issues will need to be confronted. Current evidence suggests that the etiology of most psychiatric disorders rests on a combination of multiple genes and environmental factors. As tests for the genes involved become more easily available, pressures will arise to use them for prenatal testing, screening of children and adults, selection of potential adoptees, and pre-marital screening. Common problems that will need to be addressed include popular misunderstanding of the consequences of possessing an affected allele, impact of knowledge of one's genetic make-up on one's sense of self, and the discriminatory use of genetic information to deny persons access to insurance and employment. Although most states have some legislation aimed at preventing discrimination, the laws' coverage is spotty and federal rules are lacking. Physicians may find that newly available genetic information creates new duties for them, including warning third parties who may share the patient's genetic endowment. And genetics research itself has raised questions about when to disclose information to subjects and their family members about the genes that are being studied, and how to define the subjects of the research when information is collected about family members other than the proband. Knowledge of these dilemmas is a first step to resolving them, something that the medical profession will need to attend to in the near-term. Neglect will lead others to set the rules that will control medical practice, including the practice of psychiatry, in the new world of genetic medicine.
Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam
2016-07-01
Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections. © 2016 Society for Laboratory Automation and Screening.
Genetic testing in congenital heart disease: A clinical approach
Chaix, Marie A; Andelfinger, Gregor; Khairy, Paul
2016-01-01
Congenital heart disease (CHD) is the most common type of birth defect. Traditionally, a polygenic model defined by the interaction of multiple genes and environmental factors was hypothesized to account for different forms of CHD. It is now understood that the contribution of genetics to CHD extends beyond a single unified paradigm. For example, monogenic models and chromosomal abnormalities have been associated with various syndromic and non-syndromic forms of CHD. In such instances, genetic investigation and testing may potentially play an important role in clinical care. A family tree with a detailed phenotypic description serves as the initial screening tool to identify potentially inherited defects and to guide further genetic investigation. The selection of a genetic test is contingent upon the particular diagnostic hypothesis generated by clinical examination. Genetic investigation in CHD may carry the potential to improve prognosis by yielding valuable information with regards to personalized medical care, confidence in the clinical diagnosis, and/or targeted patient follow-up. Moreover, genetic assessment may serve as a tool to predict recurrence risk, define the pattern of inheritance within a family, and evaluate the need for further family screening. In some circumstances, prenatal or preimplantation genetic screening could identify fetuses or embryos at high risk for CHD. Although genetics may appear to constitute a highly specialized sector of cardiology, basic knowledge regarding inheritance patterns, recurrence risks, and available screening and diagnostic tools, including their strengths and limitations, could assist the treating physician in providing sound counsel. PMID:26981213
Romics, László; Kocsis, Judit; Ormándi, Katalin; Molnár, Béla Ákos
2016-07-01
Screening, prevention and treatment of familial breast cancer require a multidisciplinary approach. New guidelines were published in the United Kingdom for the management of familial breast cancer. The authors summarise these new guidelines and analyse the relevant practice in Hungary. Relevant guidelines of the National Institute for Health and Care Excellence and Familial Breast Cancer Report (NHS Scotland) are described. New guidelines will increase the number of genetic tests as well as genetic counselling. An increase in the number of breast magnetic resonance imaging is expected, too. Chemoprevention can be offered for individuals with medium risk and above. Promising trials are underway with platinum based chemotherapy and polyADP-ribose polimerase inhibitors for the systemic treatment of familial breast cancer. The increase in the number of genetic tests, counselling, and breast magnetic resonance imaging may have a significant impact on health care budget. These guidelines will change some aspects of the current management of familial breast cancer. Orv. Hetil., 2016, 157(28), 1117-1125.
Uterine Cancer—Health Professional Version
Most uterine cancers start in the endometrium, which is called endometrial cancer. Uterine sarcoma is a form of uterine cancer of the muscle and tissue that support the uterus. Find evidence-based information on uterine cancer treatment, causes and prevention, screening, research, genetics, and statistics.
A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila.
Pressman, Sigal; Reinke, Catherine A; Wang, Xiaohong; Carthew, Richard W
2012-04-01
A central goal of microRNA biology is to elucidate the genetic program of miRNA function and regulation. However, relatively few of the effectors that execute miRNA repression have been identified. Because such genes may function in many developmental processes, mutations in them are expected to be pleiotropic and thus are discarded in most standard genetic screens. Here, we describe a systematic screen designed to identify all Drosophila genes in ∼40% of the genome that function in the miRNA pathway. To identify potentially pleiotropic genes, the screen analyzed clones of homozygous mutant cells in heterozygous animals. We identified 45 mutations representing 24 genes, and we molecularly characterized 9 genes. These include 4 previously known genes that encode core components of the miRNA pathway, including Drosha, Pasha, Dicer-1, and Ago1. The rest are new genes that function through chromatin remodeling, signaling, and mRNA decapping. The results suggest genetic screens that use clonal analysis can elucidate the miRNA program and that ∼100 genes are required to execute the miRNA program.
Anasagasti, Ander; Barandika, Olatz; Irigoyen, Cristina; Benitez, Bruno A; Cooper, Breanna; Cruchaga, Carlos; López de Munain, Adolfo; Ruiz-Ederra, Javier
2013-11-01
Retinitis Pigmentosa (RP) involves a group of genetically determined retinal diseases caused by a large number of mutations that result in rod photoreceptor cell death followed by gradual death of cone cells. Most cases of RP are monogenic, with more than 80 associated genes identified so far. The high number of genes and variants involved in RP, among other factors, is making the molecular characterization of RP a real challenge for many patients. Although HRM has been used for the analysis of isolated variants or single RP genes, as far as we are concerned, this is the first study that uses HRM analysis for a high-throughput screening of several RP genes. Our main goal was to test the suitability of HRM analysis as a genetic screening technique in RP, and to compare its performance with two of the most widely used NGS platforms, Illumina and PGM-Ion Torrent technologies. RP patients (n = 96) were clinically diagnosed at the Ophthalmology Department of Donostia University Hospital, Spain. We analyzed a total of 16 RP genes that meet the following inclusion criteria: 1) size: genes with transcripts of less than 4 kb; 2) number of exons: genes with up to 22 exons; and 3) prevalence: genes reported to account for, at least, 0.4% of total RP cases worldwide. For comparison purposes, RHO gene was also sequenced with Illumina (GAII; Illumina), Ion semiconductor technologies (PGM; Life Technologies) and Sanger sequencing (ABI 3130xl platform; Applied Biosystems). Detected variants were confirmed in all cases by Sanger sequencing and tested for co-segregation in the family of affected probands. We identified a total of 65 genetic variants, 15 of which (23%) were novel, in 49 out of 96 patients. Among them, 14 (4 novel) are probable disease-causing genetic variants in 7 RP genes, affecting 15 patients. Our HRM analysis-based study, proved to be a cost-effective and rapid method that provides an accurate identification of genetic RP variants. This approach is effective for medium sized (<4 kb transcript) RP genes, which constitute over 80% of the total of known RP genes.
Anasagasti, Ander; Barandika, Olatz; Irigoyen, Cristina; Benitez, Bruno A; Cooper, Breanna; Cruchaga, Carlos; López de Munain, Adolfo; Ruiz-Ederra, Javier
2013-10-24
Retinitis Pigmentosa (RP) involves a group of genetically determined retinal diseases caused by a large number of mutations that result in rod photoreceptor cell death followed by gradual death of cone cells. Most cases of RP are monogenic, with more than 80 associated genes identified so far. The high number of genes and variants involved in RP, among other factors, is making the molecular characterization of RP a real challenge for many patients. Although HRM has been used for the analysis of isolated variants or single RP genes, as far as we are concerned, this is the first study that uses HRM analysis for a high-throughput screening of several RP genes. Our main goal was to test the suitability of HRM analysis as a genetic screening technique in RP, and to compare its performance with two of the most widely used NGS platforms, Illumina and PGM-Ion Torrent technologies. RP patients (n=96) were clinically diagnosed at the Ophthalmology Department of Donostia University Hospital, Spain. We analyzed a total of 16 RP genes that meet the following inclusion criteria: 1) size: genes with transcripts of less than 4 kb; 2) number of exons: genes with up to 22 exons; and 3) prevalence: genes reported to account for, at least, 0.4 % of total RP cases worldwide. For comparison purposes, RHO gene was also sequenced with Illumina (GAII; Illumina), Ion semiconductor technologies (PGM; Life Technologies) and Sanger sequencing (ABI 3130xl platform; Applied Biosystems). Detected variants were confirmed in all cases by Sanger sequencing and tested for co-segregation in the family of affected probands. We identified a total of 65 genetic variants, 15 of which (23%) were novel, in 49 out of 96 patients. Among them, 14 (4 novel) are probable disease-causing genetic variants in 7 RP genes, affecting 15 patients. Our HRM analysis-based study, proved to be a cost-effective and rapid method that provides an accurate identification of genetic RP variants. This approach is effective for medium sized (<4 kb transcript) RP genes, which constitute over 80% of the total of known RP genes. © 2013 Published by Elsevier Ltd.
Rispoli, Thaiane; Martins de Castro, Simone; Grandi, Tarciana; Prado, Mayara; Filippon, Letícia; Dornelles da Silva, Cláudia Maria; Vargas, José Eduardo; Rossetti, Lucia Maria Rosa
2018-05-03
Cystic fibrosis newborn screening was implemented in Brazil by the Public Health System in 2012. Because of cost, only 1 mutation was tested - p.Phe508del. We developed a robust low-cost genetic test for screening 11 CFTR gene mutations with potential use in developing countries. Copyright © 2018 Elsevier Inc. All rights reserved.
Laser desorption mass spectrometry for molecular diagnosis
NASA Astrophysics Data System (ADS)
Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Allman, S. L.; Tang, K.; Matteson, K. J.; Chang, L. Y.; Chung, C. N.; Martin, Steve; Haff, Lawrence
1996-04-01
Laser desorption mass spectrometry has been used for molecular diagnosis of cystic fibrosis. Both 3-base deletion and single-base point mutation have been successfully detected by clinical samples. This new detection method can possibly speed up the diagnosis by one order of magnitude in the future. It may become a new biotechnology technique for population screening of genetic disease.
Yang, Zhihong; Lin, James; Zhang, John; Fong, Wai Ieng; Li, Pei; Zhao, Rong; Liu, Xiaohong; Podevin, William; Kuang, Yanping; Liu, Jiaen
2015-06-23
Recent advances in next-generation sequencing (NGS) have provided new methods for preimplantation genetic screening (PGS) of human embryos from in vitro fertilization (IVF) cycles. However, there is still limited information about clinical applications of NGS in IVF and PGS (IVF-PGS) treatments. The present study aimed to investigate the effects of NGS screening on clinical pregnancy and implantation outcomes for PGS patients in comparison to array comparative genomic hybridization (aCGH) screening. This study was performed in two phases. Phase I study evaluated the accuracy of NGS for aneuploidy screening in comparison to aCGH. Whole-genome amplification (WGA) products (n = 164) derived from previous IVF-PGS cycles (n = 38) were retrospectively analyzed with NGS. The NGS results were then compared with those of aCGH. Phase II study further compared clinical pregnancy and implantation outcomes between NGS and aCGH for IVF-PGS patients. A total of 172 patients at mean age 35.2 ± 3.5 years were randomized into two groups: 1) NGS (Group A): patients (n = 86) had embryos screened with NGS and 2) aCGH (Group B): patients (n = 86) had embryos screened with aCGH. For both groups, blastocysts were vitrified after trophectoderm biopsy. One to two euploid blastocysts were thawed and transferred to individual patients primarily based on the PGS results. Ongoing pregnancy and implantation rates were compared between the two study groups. NGS detected all types of aneuploidies of human blastocysts accurately and provided a 100 % 24-chromosome diagnosis consistency with the highly validated aCGH method. Moreover, NGS screening identified euploid blastocysts for transfer and resulted in similarly high ongoing pregnancy rates for PGS patients compared to aCGH screening (74.7 % vs. 69.2 %, respectively, p >0.05). The observed implantation rates were also comparable between the NGS and aCGH groups (70.5 % vs. 66.2 %, respectively, p >0.05). While NGS screening has been recently introduced to assist IVF patients, this is the first randomized clinical study on the efficiency of NGS for preimplantation genetic screening in comparison to aCGH. With the observed high accuracy of 24-chromosome diagnosis and the resulting high ongoing pregnancy and implantation rates, NGS has demonstrated an efficient, robust high-throughput technology for PGS.
Middleton, Anna; Patch, Chris; Wiggins, Jennifer; Barnes, Kathy; Crawford, Gill; Benjamin, Caroline; Bruce, Anita
2014-08-01
The American College of Medical Genetics and Genomics released recommendations for reporting incidental findings (IFs) in clinical exome and genome sequencing. These suggest 'opportunistic genomic screening' should be available to both adults and children each time a sequence is done and would be undertaken without seeking preferences from the patient first. Should opportunistic genomic screening be implemented in the United Kingdom, the Association of Genetic Nurses and Counsellors (AGNC), which represents British and Irish genetic counsellors and nurses, feels strongly that the following must be considered (see article for complete list): (1) Following appropriate genetic counselling, patients should be allowed to consent to or opt out of opportunistic genomic screening. (2) If true IFs are discovered the AGNC are guided by the report from the Joint Committee on Medical Genetics about the sharing of genetic testing results. (3) Children should not be routinely tested for adult-onset conditions. (4) The formation of a list of variants should involve a representative from the AGNC as well as a patient support group. (5) The variants should be for serious or life-threatening conditions for which there are treatments or preventative strategies available. (6) There needs to be robust evidence that the benefits of opportunistic screening outweigh the potential harms. (7) The clinical validity and utility of variants should be known. (8) There must be a quality assurance framework that operates to International standards for laboratory testing. (9) Psychosocial research is urgently needed in this area to understand the impact on patients.
COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies
Aslam, Usman; Cheema, Hafiza M. N.; Ahmad, Sheraz; Khan, Iqrar A.; Malik, Waqas; Khan, Asif A.
2016-01-01
Cotton is cultivated worldwide for its white fiber, of which around 90% is tetraploid upland cotton (Gossypium hirsutum L.) carrying both A and D genome. Since centuries, yield increasing efforts for the cotton crop by conventional breeding approaches have caused an extensive erosion of natural genetic variability. Mutation based improvement strategies provide an effective way of creating new allelic variations. Targeting Induced Local Lesions IN Genomes (TILLING) provides a mutation based reverse genetic strategy to create and evaluate induced genetic variability at DNA level. Here, we report development and testing of TILLING populations of allotetraploid cotton (G. hirsutum) for functional genomic studies and mutation based enrichment of cotton genetic resources. Seed of two cotton cultivars “PB-899 and PB-900” were mutagenized with 0.3 and 0.2% (v/v) ethyl methanesulfonate, respectively. The phenotyping of M1 and M2 populations presented numerous mutants regarding the branching pattern, leaf morphology, disease resistance, photosynthetic lesions and flower sterility. Molecular screening for point mutations was performed by TILLING PCR aided CEL1 mismatch cleavage. To estimate the mutation frequency in the mutant genomes, five gene classes were TILLed in 8000 M2 plants of each var. “PB-899” and “PB-900.” These include actin (GhACT), Pectin Methyl Esterase (GhPME), sucrose synthase (GhSUS), resistance gene analog, and defense response gene (DRGs). The var. PB-899 was harboring 47% higher mutation induction rate than PB-900. The highest rate of mutation frequency was identified for NAC-TF5 (EU706348) of DRGs class, ranging from 1/58 kb in PB-899 to 1/105 kb in PB-900. The mutation screening assay revealed the presence of significant proportion of induced mutations in cotton TILLING populations such as 1/153 kb and 1/326 kb in var. “PB-899” and “PB-900,” respectively. The establishment of a cotton TILLING platform (COTIP) and data obtained from the resource TILLING population suggest its effectiveness in widening the genetic bases of cotton for improvement and utilizing it for subsequent reverse genetic studies of various genes. PMID:28082993
Hall, Alison Elizabeth; Chowdhury, Susmita; Pashayan, Nora; Hallowell, Nina; Pharoah, Paul; Burton, Hilary
2014-03-01
Increased knowledge of the gene-disease associations contributing to common cancer development raises the prospect of population stratification by genotype and other risk factors. Individual risk assessments could be used to target interventions such as screening, treatment and health education. Genotyping neonates, infants or young children as part of a systematic programme would improve coverage and uptake, and facilitate a screening package that maximises potential benefits and minimises harms including overdiagnosis. This paper explores the potential justifications and risks of genotyping children for genetic variants associated with common cancer development within a personalised screening programme. It identifies the ethical and legal principles that might guide population genotyping where the predictive value of the testing is modest and associated risks might arise in the future, and considers the standards required by population screening programme validity measures (such as the Wilson and Jungner criteria including cost-effectiveness and equitable access). These are distinguished from the normative principles underpinning predictive genetic testing of children for adult-onset diseases-namely, to make best-interests judgements and to preserve autonomy. While the case for population-based genotyping of neonates or young children has not yet been made, the justifications for this approach are likely to become increasingly compelling. A modified evaluative and normative framework should be developed, capturing elements from individualistic and population-based approaches. This should emphasise proper communication and genuine parental consent or informed choice, while recognising the challenges associated with making unsolicited approaches to an asymptomatic group. Such a framework would be strengthened by complementary empirical research.
Doddabelavangala Mruthyunjaya, Mahesh; Chapla, Aaron; Hesarghatta Shyamasunder, Asha; Varghese, Deny; Varshney, Manika; Paul, Johan; Inbakumari, Mercy; Christina, Flory; Varghese, Ron Thomas; Kuruvilla, Kurien Anil; V Paul, Thomas; Jose, Ruby; Regi, Annie; Lionel, Jessie; Jeyaseelan, L; Mathew, Jiji; Thomas, Nihal
2017-01-01
Pregnant women with diabetes may have underlying beta cell dysfunction due to mutations/rare variants in genes associated with Maturity Onset Diabetes of the Young (MODY). MODY gene screening would reveal those women genetically predisposed and previously unrecognized with a monogenic form of diabetes for further clinical management, family screening and genetic counselling. However, there are minimal data available on MODY gene variants in pregnant women with diabetes from India. In this study, utilizing the Next generation sequencing (NGS) based protocol fifty subjects were screened for variants in a panel of thirteen MODY genes. Of these subjects 18% (9/50) were positive for definite or likely pathogenic or uncertain MODY variants. The majority of these variants was identified in subjects with autosomal dominant family history, of whom five were in women with pre-GDM and four with overt-GDM. The identified variants included one patient with HNF1A Ser3Cys, two PDX1 Glu224Lys, His94Gln, two NEUROD1 Glu59Gln, Phe318Ser, one INS Gly44Arg, one GCK, one ABCC8 Arg620Cys and one BLK Val418Met variants. In addition, three of the seven offspring screened were positive for the identified variant. These identified variants were further confirmed by Sanger sequencing. In conclusion, these findings in pregnant women with diabetes, imply that a proportion of GDM patients with autosomal dominant family history may have MODY. Further NGS based comprehensive studies with larger samples are required to confirm these finding.
Hesarghatta Shyamasunder, Asha; Varghese, Deny; Varshney, Manika; Paul, Johan; Inbakumari, Mercy; Christina, Flory; Varghese, Ron Thomas; Kuruvilla, Kurien Anil; V. Paul, Thomas; Jose, Ruby; Regi, Annie; Lionel, Jessie; Jeyaseelan, L.; Mathew, Jiji; Thomas, Nihal
2017-01-01
Pregnant women with diabetes may have underlying beta cell dysfunction due to mutations/rare variants in genes associated with Maturity Onset Diabetes of the Young (MODY). MODY gene screening would reveal those women genetically predisposed and previously unrecognized with a monogenic form of diabetes for further clinical management, family screening and genetic counselling. However, there are minimal data available on MODY gene variants in pregnant women with diabetes from India. In this study, utilizing the Next generation sequencing (NGS) based protocol fifty subjects were screened for variants in a panel of thirteen MODY genes. Of these subjects 18% (9/50) were positive for definite or likely pathogenic or uncertain MODY variants. The majority of these variants was identified in subjects with autosomal dominant family history, of whom five were in women with pre-GDM and four with overt-GDM. The identified variants included one patient with HNF1A Ser3Cys, two PDX1 Glu224Lys, His94Gln, two NEUROD1 Glu59Gln, Phe318Ser, one INS Gly44Arg, one GCK, one ABCC8 Arg620Cys and one BLK Val418Met variants. In addition, three of the seven offspring screened were positive for the identified variant. These identified variants were further confirmed by Sanger sequencing. In conclusion, these findings in pregnant women with diabetes, imply that a proportion of GDM patients with autosomal dominant family history may have MODY. Further NGS based comprehensive studies with larger samples are required to confirm these finding PMID:28095440
Marks, D; Wonderling, D; Thorogood, M; Lambert, H; Humphries, S E; Neil, H A
2000-01-01
In the majority of people with familial hypercholesterolaemia (FH) the disorder is caused by a mutation of the low-density lipoprotein receptor gene that impairs its proper function, resulting in very high levels of plasma cholesterol. Such levels result in early and severe atherosclerosis, and hence substantial excess mortality from coronary heart disease. Most people with FH are undiagnosed or only diagnosed after their first coronary event, but early detection and treatment with hydroxymethylglutaryl-coenzyme (HMG CoA) reductase inhibitors (statins) can reduce morbidity and mortality. The prevalence of FH in the UK population is estimated to be 1 in 500, which means that approximately 110,000 people are affected. To evaluate whether screening for FH is appropriate. To determine which system of screening is most acceptable and cost-effective. To assess the deleterious psychosocial effects of genetic and clinical screening for an asymptomatic treatable inherited condition. To assess whether the risks of screening outweigh potential benefits. Relevant papers were identified through a search of the electronic databases. Additional papers referenced in the search material were identified and collected. Known researchers in the field were contacted and asked to supply information on unpublished or ongoing studies. INCLUSION/EXCLUSION CRITERIA: SCREENING AND TREATMENT: The review included studies of the mortality and morbidity associated with FH, the effectiveness and cost of treatment (ignoring pre-statin therapies in adults), and of the effectiveness or cost of possible screening strategies for FH. PSYCHOSOCIAL EFFECTS OF SCREENING: The search for papers on the psychological and social effects of screening for a treatable inherited condition was limited to the last 5 years because recent developments in genetic testing have changed the nature and implications of such screening tests. Papers focusing on genetic testing for FH and breast cancer were included. Papers relating to the risk of coronary heart disease with similarly modifiable outcome (non-FH) were also included. DATA EXTRACTION AND ASSESSMENT OF VALIDITY: A data assessment tool was designed to assess the quality and validity of the papers which reported primary data for the social and psychological effects of screening. Available guidelines for systematically reviewing papers concentrated on quantitative methods, and were of limited relevance. An algorithm was developed which could be used for both the qualitative and quantitative literature. MODELLING METHODS: A model was constructed to investigate the relative cost and effectiveness of various forms of population screening (universal or opportunistic) and case-finding screening (screening relatives of known FH cases). All strategies involved a two-stage process: first, identifying those people with cholesterol levels sufficiently elevated to be compatible with a diagnosis of FH, and then either making the diagnosis based on clinical signs and a family history of coronary disease or carrying out genetic tests. Cost-effectiveness has been measured in terms of incremental cost per year of life gained. MODELLING COST-EFFECTIVENESS: FH is a life-threatening condition with a long presymptomatic state. Diagnostic tests are reasonably reliable and acceptable, and treatment with statins substantially improves prognosis. Therefore, it is appropriate to consider systematic screening for this condition. Case finding amongst relatives of FH cases was the most cost-effective strategy, and universal systematic screening the least cost-effective. However, when targeted at young people (16 year olds) universal screening was also cost-effective. Screening patients admitted to hospital with premature myocardial infarction was also relatively cost-effective. Screening is least cost-effective in men aged over 35 years, because the gains in life expectancy are small. (ABSTRACT TRUNCA
Maxwell, Rochelle R; Cole, Peter D
2017-06-01
The aim of this review is to summarize the most recent and most robust pharmacogenetic predictors of treatment-related toxicity (TRT) in childhood acute lymphoblastic leukemia (ALL). Multiple studies have examined the toxicities of the primary chemotherapeutic agents used to treat childhood ALL in relation to host genetic factors. However, few results have been replicated independently, largely due to cohort differences in ancestry, chemotherapy treatment protocols, and definitions of toxicities. To date, there is only one widely accepted clinical guideline for dose modification based on gene status: thiopurine dosing based on TPMT genotype. Based on recent data, it is likely that this guideline will be modified to incorporate other gene variants, such as NUDT15. We highlight genetic variants that have been consistently associated with TRT across treatment groups, as well as those that best illustrate the underlying pathophysiology of TRT. In the coming decade, we expect that survivorship care will routinely specify screening recommendations based on genetics. Furthermore, clinical trials testing protective interventions may modify inclusion criteria based on genetically determined risk of specific TRTs.
Genetic and epigenetic markers in colorectal cancer screening: recent advances.
Singh, Manish Pratap; Rai, Sandhya; Suyal, Shradha; Singh, Sunil Kumar; Singh, Nand Kumar; Agarwal, Akash; Srivastava, Sameer
2017-07-01
Colorectal cancer (CRC) is a heterogenous disease which develops from benign intraepithelial lesions known as adenomas to malignant carcinomas. Acquired alterations in Wnt signaling, TGFβ, MAPK pathway genes and clonal propagation of altered cells are responsible for this transformation. Detection of adenomas or early stage cancer in asymptomatic patients and better prognostic and predictive markers is important for improving the clinical management of CRC. Area covered: In this review, the authors have evaluated the potential of genetic and epigenetic alterations as markers for early detection, prognosis and therapeutic predictive potential in the context of CRC. We have discussed molecular heterogeneity present in CRC and its correlation to prognosis and response to therapy. Expert commentary: Molecular marker based CRC screening methods still fail to gain trust of clinicians. Invasive screening methods, molecular heterogeneity, chemoresistance and low quality test samples are some key challenges which need to be addressed in the present context. New sequencing technologies and integrated omics data analysis of individual or population cohort results in GWAS. MPE studies following a GWAS could be future line of research to establish accurate correlations between CRC and its risk factors. This strategy would identify most reliable biomarkers for CRC screening and management.
Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L; Siminovitch, Katherine A; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Gupta, Namrata; Clemons, Paul A; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M
2013-05-01
Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(-9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(-9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA.
Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity.
Novel One-step Immunoassays to Quantify α-Synuclein
Bidinosti, Michael; Shimshek, Derya R.; Mollenhauer, Brit; Marcellin, David; Schweizer, Tatjana; Lotz, Gregor P.; Schlossmacher, Michael G.; Weiss, Andreas
2012-01-01
Familial Parkinson disease (PD) can result from α-synuclein gene multiplication, implicating the reduction of neuronal α-synuclein as a therapeutic target. Moreover, α-synuclein content in human cerebrospinal fluid (CSF) represents a PD biomarker candidate. However, capture-based assays for α-synuclein quantification in CSF (such as by ELISA) have shown discrepancies and have limited suitability for high-throughput screening. Here, we describe two sensitive, in-solution, time-resolved Förster's resonance energy transfer (TR-FRET)-based immunoassays for total and oligomeric α-synuclein quantification. CSF analysis showed strong concordance for total α-synuclein content between two TR-FRET assays and, in agreement with a previously characterized 36 h protocol-based ELISA, demonstrated lower α-synuclein levels in PD donors. Critically, the assay suitability for high-throughput screening of siRNA constructs and small molecules aimed at reducing endogenous α-synuclein levels was established and validated. In a small-scale proof of concept compound screen using 384 well plates, signals ranged from <30 to >120% of the mean of vehicle-treated cells for molecules known to lower and increase cellular α-synuclein, respectively. Furthermore, a reverse genetic screen of a kinase-directed siRNA library identified seven genes that modulated α-synuclein protein levels (five whose knockdown increased and two that decreased cellular α-synuclein protein). This provides critical new biological insight into cellular pathways regulating α-synuclein steady-state expression that may help guide further drug discovery efforts. Moreover, we describe an inherent limitation in current α-synuclein oligomer detection methodology, a finding that will direct improvement of future assay design. Our one-step TR-FRET-based platform for α-synuclein quantification provides a novel platform with superior performance parameters for the rapid screening of large biomarker cohorts and of compound and genetic libraries, both of which are essential to the development of PD therapies. PMID:22843695
Should we genetically test everyone for haemochromatosis?
Allen, K; Williamson, R
1999-04-01
The increasing availability of DNA-based diagnostic tests has raised issues about whether these should be applied to the population at large in order to identify, treat or prevent a range of diseases. DNA tests raise concerns in the community for several reasons. There is the possibility of stigmatisation and discrimination between those who test positive and those who don't. High-risk individuals may be identified for whom no proven effective intervention is possible, or conversely may test "positive" for a disease that does not eventuate. Controversy concerning prenatal diagnosis and termination of affected pregnancies may arise. Haemochromatosis, however, is a disease that is not only treatable but also preventable if those at high risk are identified presymptomatically. This paper will identify and discuss key issues regarding DNA-based population screening for haemochromatosis, and argue that population-based genetic screening for haemochromatosis should be supported when a number of contentious issues are addressed. In the context of a health system with limited resources haemochromatosis is the paradigm of a disorder where there is an ethical and clinical imperative to encourage presymptomatic DNA testing for all in ethnically relevant communities.
Recent advances in the molecular genetics of epilepsy.
Hildebrand, Michael S; Dahl, Hans-Henrik M; Damiano, John Anthony; Smith, Richard J H; Scheffer, Ingrid E; Berkovic, Samuel F
2013-05-01
Recent advances in molecular genetics have translated into the increasing utilisation of genetic testing in the routine clinical practice of neurologists. There has been a steady, incremental increase in understanding the genetic variation associated with epilepsies. Genetic testing in the epilepsies is not yet widely practiced, but the advent of new screening technologies promises to exponentially expand both knowledge and clinical utility. To maximise the value of this new genetic insight we need to rapidly extrapolate genetic findings to inform patients of their diagnosis, prognosis, recurrence risk and the clinical management options available for their specific genetic condition. Comprehensive, highly specific and sensitive genetic test results improve the management of patients by neurologists and clinical geneticists. Here we discuss the latest developments in clinical genetic testing for epilepsy and describe new molecular genetics platforms that will transform both genetic screening and novel gene discovery.
Ovarian, Fallopian Tube, and Primary Peritoneal Cancer—Health Professional Version
Ovarian epithelial, fallopian tube, and peritoneal cancers are diseases in which malignant cells form in the tissue covering the ovary, lining the fallopian tube, or peritoneum. Find evidence-based information on ovarian cancer treatment, causes and prevention, screening, research, genetics and statistics.
Drug Discovery in Fish, Flies, and Worms
Strange, Kevin
2016-01-01
Abstract Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies. PMID:28053067
Burnett, Leslie; Barlow-Stewart, Kris; Proos, Anné L; Aizenberg, Harry
2003-05-01
This article describes a generic model for access to samples and information in human genetic databases. The model utilises a "GeneTrustee", a third-party intermediary independent of the subjects and of the investigators or database custodians. The GeneTrustee model has been implemented successfully in various community genetics screening programs and has facilitated research access to genetic databases while protecting the privacy and confidentiality of research subjects. The GeneTrustee model could also be applied to various types of non-conventional genetic databases, including neonatal screening Guthrie card collections, and to forensic DNA samples.
Genetic technology: Promises and problems
NASA Technical Reports Server (NTRS)
Frankel, M. S.
1975-01-01
Issues concerning the use of genetic technology are discussed. Some areas discussed include treating genetic disease, prenatal diagnosis and selective abortion, screening for genetic disease, and genetic counseling. Policy issues stemming from these capabilities are considered.
Lemieux, George A; Keiser, Michael J; Sassano, Maria F; Laggner, Christian; Mayer, Fahima; Bainton, Roland J; Werb, Zena; Roth, Bryan L; Shoichet, Brian K; Ashrafi, Kaveh
2013-11-01
Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.
Gupte, Ankita; Baker, Emma K.; Wan, Soo-San; Stewart, Elizabeth; Loh, Amos; Shelat, Anang A.; Gould, Cathryn M.; Chalk, Alistair M.; Taylor, Scott; Lackovic, Kurt; Karlström, Åsa; Mutsaers, Anthony J.; Desai, Jayesh; Madhamshettiwar, Piyush B.; Zannettino, Andrew CW.; Burns, Chris; Huang, David CS.; Dyer, Michael A.; Simpson, Kaylene J.; Walkley, Carl R.
2015-01-01
Purpose Osteosarcoma (OS) is the most common cancer of bone occurring mostly in teenagers. Despite rapid advances in our knowledge of the genetics and cell biology of OS, significant improvements in patient survival have not been observed. The identification of effective therapeutics has been largely empirically based. The identification of new therapies and therapeutic targets are urgently needed to enable improved outcomes for OS patients. Experimental Design We have used genetically engineered murine models of human OS in a systematic, genome wide screen to identify new candidate therapeutic targets. We performed a genome wide siRNA screen, with or without doxorubicin. In parallel a screen of therapeutically relevant small molecules was conducted on primary murine and primary human OS derived cell cultures. All results were validated across independent cell cultures and across human and mouse OS. Results The results from the genetic and chemical screens significantly overlapped, with a profound enrichment of pathways regulated by PI3K and mTOR pathways. Drugs that concurrently target both PI3K and mTOR were effective at inducing apoptosis in primary OS cell cultures in vitro in both human and mouse OS, while specific PI3K or mTOR inhibitors were not effective. The results were confirmed with siRNA and small molecule approaches. Rationale combinations of specific PI3K and mTOR inhibitors could recapitulate the effect on OS cell cultures. Conclusions The approaches described here have identified dual inhibition of the PI3K/mTOR pathway as a sensitive, druggable target in OS and provide rationale for translational studies with these agents. PMID:25862761
Agatisa, Patricia K; Mercer, Mary Beth; Coleridge, Marissa; Farrell, Ruth M
2018-06-27
The expansion of cell-free fetal DNA (cfDNA) screening for a larger and diverse set of genetic variants, in addition for use among the low-risk obstetric population, presents important clinical challenges for all healthcare providers involved in the delivery of prenatal care. It is unclear how to leverage the different members of the healthcare team to respond to these challenges. We conducted interviews with 25 prenatal genetic counselors to understand their experience with the continued expansion of cfDNA screening. Participants supported the use of cfDNA screening for the common autosomal aneuploidies, but noted some reservations for its use to identify fetal sex and microdeletions. Participants reported several barriers to ensuring that patients have the information and support to make informed decisions about using cfDNA to screen for these different conditions. This was seen as a dual-sided problem, and necessitated additional education interventions that addressed patients seeking cfDNA screening, and obstetricians who introduce the concepts of genetic risk and cfDNA to patients. In addition, participants noted that they have a professional responsibility to educate obstetricians about cfDNA so they can be prepared to be gatekeepers of counseling and education about this screening option for use among the general obstetric population.
Genetic screens in human cells using the CRISPR-Cas9 system.
Wang, Tim; Wei, Jenny J; Sabatini, David M; Lander, Eric S
2014-01-03
The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.
Austin, Jehannine
2015-12-01
Encouraging individuals at risk for common complex disease like heart disease, cancer, and diabetes to adopt lifestyle changes (e.g., smoking cessation, exercise, proper nutrition, increased screening) could be powerful public health tools to decrease the enormous personal and economic burden of these conditions. Theoretically, genetic risk information appears to be a compelling tool that could be used to provoke at-risk individuals to adopt these lifestyle changes. Unfortunately, however, numerous studies now have shown that providing individuals with genetic test-based risk information has little to no impact on their behavior. In this article (a commentary not a systematic review), the failed trials in which genetic information has been used as a tool to induce behavior change will be critically examined in order to identify new and potentially more effective ways forward. © 2015 Wiley Periodicals, Inc.
Cordblood-Based High-Throughput Screening for Deafness Gene of 646 Newborns in Jinan Area of China
Li, Shou-Xia; Chen, Ding-Li; Zhao, Su-Bin; Guo, Li-Li; Feng, Hai-Qin; Zhang, Xiao-Fang; Ping, Li-Li; Yang, Zhi-Ming; Sun, Cai-Xia
2015-01-01
Objectives Infants with slight/mild or late-onset hearing impairment might be missed in universal newborn hearing screening (UNHS). We identified the mutation hot spot of common deaf gene in the newborns in Jinan area population by screening the mutation spot with neonate cord blood, in order to make clear whether the neonate cord blood for screening is feasible. Methods Six hundred and forty-six newborns were subjected to both UNHS and genetic screening for deafness by using neonate cord blood. The newborn genetic screening targeted four deafness-associated genes, which were commonly found in the Chinese population including gap junction beta-2 protein (GJB2), gap junction beta-3 protein (GJB3), solute carrier family 26 member 4 (SLC26A4), and mtDNA 12S rRNA. The most common 20 spot mutations in 4 deaf genes were detected by MassARRAY iPLEX platform and mitochondrial 12S rRNA A1555G and C1494T mutations were sequenced using Sanger sequencing. Results Among the 646 newborns, 635 cases passed the UNHS and the other 11 cases (1.7%) did not. Of the 11 failures, two cases were found to carry homozygous GJB2 p.R143W pathogenic mutation, one case was found to have heterozygous GJB2 235delC mutation, and another one case carried heterozygous GJB3 p.R180X pathogenic mutation. Six hundred and thirty-five babies passed the newborn hearing screening, in which 25 babies were identified to carry pathogenic mutations, including 12 heterozygotes (1.9%) for GJB2 235delC, eight heterozygotes (1.3%) for SLC26A4 IVS7-2A>G, one heterozygote (0.2%) for p.R409H, two homozygotes (0.3%) for m.1494C>T, and two homozygotes (0.3%) for m.1555A>G. Conclusion Newborn genetic screening through the umbilical cord blood for common deafness-associated mutations may identify carriers sensitive to aminoglycoside antibiotic, and can effectively prevent or delay hearing loss occurs. PMID:26330914
Universal screening of both endometrial and colon cancers increases the detection of Lynch syndrome.
Adar, Tomer; Rodgers, Linda H; Shannon, Kristen M; Yoshida, Makoto; Ma, Tianle; Mattia, Anthony; Lauwers, Gregory Y; Iafrate, Anthony J; Hartford, Nicole M; Oliva, Esther; Chung, Daniel C
2018-05-11
Lynch syndrome (LS) is the most common hereditary cause of colorectal cancer (CRC) and endometrial cancer (EC). Screening of all CRCs for LS is currently recommended, but screening of ECs is inconsistent. The objective of this study was to determine the added value of screening both CRC and EC tumors in the same population. A prospective, immunohistochemistry (IHC)-based screening program for all patients with newly diagnosed CRCs and ECs was initiated in 2011 and 2013, respectively, at 2 centers (primary and tertiary). Genetic testing was recommended for those who had tumors with absent mutS homolog 2 (MSH2), MSH6, or postmeiotoic segregation increased 2 (PMS2) expression and for those who had tumors with absent mutL homolog 1 (MLH1) expression and no v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutation or MLH1 promoter methylation. Amsterdam II criteria, revised Bethesda criteria, and scores from prediction models for gene mutations (the PREMM 1,2,6 and PREMM 5 prediction models) were ascertained in patients with LS. In total, 1290 patients with CRC and 484 with EC were screened for LS, and genetic testing was recommended for 137 patients (10.6%) and 32 patients (6.6%), respectively (P = .01). LS was identified in 16 patients (1.2%) with CRC and in 8 patients (1.7%) with EC. Among patients for whom genetic testing was recommended, the LS diagnosis rate was higher among those with EC (25.0% vs 11.7%, P = .052). The Amsterdam II criteria, revised Bethesda criteria, and both PREMM calculators would have missed 62.5%, 50.0%, and 12.5% of the identified patients with LS, respectively. Expanding a universal screening program for LS to include patients who had EC identified 50% more patients with LS, and many of these patients would have been missed by risk assessment tools (including PREMM 5 ). Universal screening programs for LS should include both CRC and EC. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.
On being an individual, or: the man in the red hat.
Scriver, C R
If health is a state of equilibrium between intrinsic (genetic) functions and extrinsic (environmental) factors, then disease can be defined as a state of disequilibrium. Medicine has traditionally emphasized extrinsic factors in the origin of human diseases; medical genetics is concerned with the intrinsic factors (mutations) that either yield disease in the universal environment or constitute states of risk for individuals in particular (or universal) enviroments. Genetic screening is a process that defines specific risks for particular individuals. Screening is an ineffective activity if there is no participation by clients. Newborn (and homozygote) screening, on the basis of an experience involving 35 million infants, is usually considered as a 'successful' enterprise. But adult screening, usually for heterozygosity, is quantitatively a much more important activity in its execution, judging from current experience. Comprehension of risk and perceived importance of biological individuality by potential participants and advocates are part of the problem. A major revision in the education of medical personnel and citizens is indicated if medical genetics is to achieve its goals.
Kim, Hyun-Joong; Ryu, Ji-Oh; Song, Ji-Yeon; Kim, Hae-Yeong
2017-07-01
In the detection of Shigella species using molecular biological methods, previously known genetic markers for Shigella species were not sufficient to discriminate between Shigella species and diarrheagenic Escherichia coli. The purposes of this study were to screen for genetic markers of the Shigella genus and four Shigella species through comparative genomics and develop a multiplex polymerase chain reaction (PCR) for the detection of shigellae and Shigella species. A total of seven genomic DNA sequences from Shigella species were subjected to comparative genomics for the screening of genetic markers of shigellae and each Shigella species. The primer sets were designed from the screened genetic markers and evaluated using PCR with genomic DNAs from Shigella and other bacterial strains in Enterobacteriaceae. A novel Shigella quintuplex PCR, designed for the detection of Shigella genus, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, was developed from the evaluated primer sets, and its performance was demonstrated with specifically amplified results from each Shigella species. This Shigella multiplex PCR is the first to be reported with novel genetic markers developed through comparative genomics and may be a useful tool for the accurate detection of the Shigella genus and species from closely related bacteria in clinical microbiology and food safety.
Bansback, Nick; Sizto, Sonia; Guh, Daphne; Anis, Aslam H
2012-10-01
Numerous websites offer direct-to-consumer (DTC) genetic testing, yet it is unknown how individuals will react to genetic risk profiles online. The objective of this study was to determine the feasibility of using a web-based survey and conjoint methods to elicit individuals' interpretations of genetic risk profiles by their anticipated worry/anxiousness and health-seeking behaviors. A web-based survey was developed using conjoint methods. Each survey presented 12 hypothetical genetic risk profiles describing genetic test results for four diseases. Test results were characterized by the type of disease (eight diseases), individual risk (five levels), and research confidence (three levels). After each profile, four questions were asked regarding anticipated worry and health-seeking behaviors. Probabilities of response outcomes based on attribute levels were estimated from logistic regression models, adjusting for covariates. Overall, 319 participants (69%) completed 3828 unique genetic risk profiles. Across all profiles, most participants anticipated making doctor's appointments (63%), lifestyle changes (57%), and accessing screening (57%); 40% anticipated feeling more worried and anxious. Higher levels of disease risk were significantly associated with affirmative responses. Conjoint methods may be used to elicit reactions to genetic information online. Preliminary results suggest that genetic information may increase worry/anxiousness and health-seeking behaviors among consumers of DTC tests. Further research is planned to determine the appropriateness of these affects and behaviors.
Ostergren, Jenny E; Dingel, Molly J; McCormick, Jennifer B; Koenig, Barbara A
2015-01-01
The cost of addiction in the United States, in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Because the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. The authors conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the United States and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. The authors raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. This analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research.
Ostergren, Jenny E.; Dingel, Molly J.; McCormick, Jennifer B.; Koenig, Barbara A.
2015-01-01
The cost of addiction in the U.S., in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Since the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. We conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the U.S., and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. We raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. Our analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research. PMID:25806781
Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.
Ng, I-Son; Tan, Shih-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu
2017-10-01
Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN, and ZFN) used in editing the genomes of nuclear, mitochondria, and chloroplast of microalgae are thoroughly surveyed. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zill, Oliver A.; Scannell, Devin R.; Kuei, Jeffrey; Sadhu, Meru; Rine, Jasper
2012-01-01
The genetic bases for species-specific traits are widely sought, but reliable experimental methods with which to identify functionally divergent genes are lacking. In the Saccharomyces genus, interspecies complementation tests can be used to evaluate functional conservation and divergence of biological pathways or networks. Silent information regulator (SIR) proteins in S. bayanus provide an ideal test case for this approach because they show remarkable divergence in sequence and paralog number from those found in the closely related S. cerevisiae. We identified genes required for silencing in S. bayanus using a genetic screen for silencing-defective mutants. Complementation tests in interspecies hybrids identified an evolutionarily conserved Sir-protein-based silencing machinery, as defined by two interspecies complementation groups (SIR2 and SIR3). However, recessive mutations in S. bayanus SIR4 isolated from this screen could not be complemented by S. cerevisiae SIR4, revealing species-specific functional divergence in the Sir4 protein despite conservation of the overall function of the Sir2/3/4 complex. A cladistic complementation series localized the occurrence of functional changes in SIR4 to the S. cerevisiae and S. paradoxus branches of the Saccharomyces phylogeny. Most of this functional divergence mapped to sequence changes in the Sir4 PAD. Finally, a hemizygosity modifier screen in the interspecies hybrids identified additional genes involved in S. bayanus silencing. Thus, interspecies complementation tests can be used to identify (1) mutations in genetically underexplored organisms, (2) loci that have functionally diverged between species, and (3) evolutionary events of functional consequence within a genus. PMID:22923378
A Pedagogical Model for Ethical Inquiry into Socioscientific Issues in Science
ERIC Educational Resources Information Center
Saunders, Kathryn J.; Rennie, Leonie J.
2013-01-01
Internationally there is concern that many science teachers do not address socioscientific issues (SSI) in their classrooms, particularly those that are controversial. However with increasingly complex, science-based dilemmas being presented to society, such as cloning, genetic screening, alternative fuels, reproductive technologies and…
The social dynamics of genetic testing: the case of Fragile-X.
Nelkin, D
1996-12-01
This article considers a program to screen school children for Fragile-X Syndrome as a way to explore several features of the growing practice of genetic testing in American society. These include the common practice of predictive testing in nonclinical settings; the economic, entrepreneurial, and policy interests that are driving the development of genetic screening programs; and the public support for genetic testing even when there are no effective therapeutic interventions. Drawing from research on popular images of genetics, I argue that cultural beliefs and expectations, widely conveyed through popular narratives, are encouraging the search for diagnostic information and enhancing the appeal of genetic explanations for a growing range of conditions.
Clinical applications of preimplantation genetic testing.
Brezina, Paul R; Kutteh, William H
2015-02-19
Genetic diagnostic technologies are rapidly changing the way medicine is practiced. Preimplantation genetic testing is a well established application of genetic testing within the context of in vitro fertilization cycles. It involves obtaining a cell(s) from a developing embryo in culture, which is then subjected to genetic diagnostic analysis; the resulting information is used to guide which embryos are transferred into the uterus. The potential applications and use of this technology have increased in recent years. Experts agree that preimplantation genetic diagnosis is clinically appropriate for many known genetic disorders. However, some applications of such testing, such as preimplantation genetic screening for aneuploidy, remain controversial. Clinical data suggest that preimplantation genetic screening may be useful, but further studies are needed to quantify the size of the effect and who would benefit most. © BMJ Publishing Group Ltd 2015.
Cost-effectiveness analysis of carrier and prenatal genetic testing for X-linked hemophilia.
Tsai, Meng-Che; Cheng, Chao-Neng; Wang, Ru-Jay; Chen, Kow-Tong; Kuo, Mei-Chin; Lin, Shio-Jean
2015-08-01
Hemophilia involves a lifelong burden from the perspective of the patient and the entire healthcare system. Advances in genetic testing provide valuable information to hemophilia-affected families for family planning. The aim of this study was to analyze the cost-effectiveness of carrier and prenatal genetic testing in the health-economic framework in Taiwan. A questionnaire was developed to assess the attitudes towards genetic testing for hemophilia. We modeled clinical outcomes of the proposed testing scheme by using the decision tree method. Incremental cost-effectiveness analysis was conducted, based on data from the National Health Insurance (NHI) database and a questionnaire survey. From the NHI database, 1111 hemophilic patients were identified and required an average medical expenditure of approximately New Taiwan (NT) $2.1 million per patient-year in 2009. By using the decision tree model, we estimated that 26 potential carriers need to be tested to prevent one case of hemophilia. At a screening rate of 79%, carrier and prenatal genetic testing would cost NT $85.9 million, which would be offset by an incremental saving of NT $203 million per year by preventing 96 cases of hemophilia. Assuming that the life expectancy for hemophilic patients is 70 years, genetic testing could further save NT $14.2 billion. Higher screening rates would increase the savings for healthcare resources. Carrier and prenatal genetic testing for hemophilia is a cost-effective investment in healthcare allocation. A case management system should be integrated in the current practice to facilitate patient care (e.g., collecting family pedigrees and providing genetic counseling). Copyright © 2013. Published by Elsevier B.V.
Hereditary arrhythmias and cardiomyopathies: decision-making about genetic testing.
Louis, Clauden; Calamaro, Emily; Vinocur, Jeffrey M
2018-01-01
The modern field of clinical genetics has advanced beyond the traditional teachings familiar to most practicing cardiologists. Increased understanding of the roles of genetic testing may improve uptake and appropriateness of use. Clinical genetics has become integral to the management of patients with hereditary arrhythmia and cardiomyopathy diagnoses. Depending on the condition, genetic testing may be useful for diagnosis, prognosis, treatment, family screening, and reproductive planning. However, genetic testing is a powerful tool with potential for underuse, overuse, and misuse. In the absence of a substantial body of literature on how these guidelines are applied in clinical practice, we use a case-based approach to highlight key lessons and pitfalls. Importantly, in many scenarios genetic testing has become the standard of care supported by numerous class I recommendations; genetic counselors can improve accessibility to and appropriate use and application of testing. Optimal management of hereditary arrhythmias and cardiomyopathies incorporates genetic testing, applied as per consensus guidelines, with involvement of a multidisciplinary team.
Genetic Testing in Clinical Settings.
Franceschini, Nora; Frick, Amber; Kopp, Jeffrey B
2018-04-11
Genetic testing is used for screening, diagnosis, and prognosis of diseases consistent with a genetic cause and to guide drug therapy to improve drug efficacy and avoid adverse effects (pharmacogenomics). This In Practice review aims to inform about DNA-related genetic test availability, interpretation, and recommended clinical actions based on results using evidence from clinical guidelines, when available. We discuss challenges that limit the widespread use of genetic information in the clinical care setting, including a small number of actionable genetic variants with strong evidence of clinical validity and utility, and the need for improving the health literacy of health care providers and the public, including for direct-to-consumer tests. Ethical, legal, and social issues and incidental findings also need to be addressed. Because our understanding of genetic factors associated with disease and drug response is rapidly increasing and new genetic tests are being developed that could be adopted by clinicians in the short term, we also provide extensive resources for information and education on genetic testing. Copyright © 2018 National Kidney Foundation, Inc. All rights reserved.
Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.
Grohmann, Lutz; Brünen-Nieweler, Claudia; Nemeth, Anne; Waiblinger, Hans-Ulrich
2009-10-14
Polymerase Chain Reaction (PCR)-based screening methods targeting genetic elements commonly used in genetically modified (GM) plants are important tools for the detection of GM materials in food, feed, and seed samples. To expand and harmonize the screening capability of enforcement laboratories, the German Federal Office of Consumer Protection and Food Safety conducted collaborative trials for interlaboratory validation of real-time PCR methods for detection of the phosphinothricin acetyltransferase (bar) gene from Streptomyces hygroscopicus and a construct containing the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens sp. strain CP4 (ctp2-cp4epsps), respectively. To assess the limit of detection, precision, and accuracy of the methods, laboratories had to analyze two sets of 18 coded genomic DNA samples of events LLRice62 and MS8 with the bar method and NK603 and GT73 with the ctp2-cp4epsps method at analyte levels of 0, 0.02, and 0.1% GM content, respectively. In addition, standard DNAs were provided to the laboratories to generate calibration curves for copy number quantification of the bar and ctp2-cp4epsps target sequences present in the test samples. The study design and the results obtained are discussed with respect to the difficult issue of developing general guidelines and concepts for the collaborative trial validation of qualitative PCR screening methods.
Validation of Version 3.0 of the Breast Cancer Genetics Referral Screening Tool (B-RST™).
Bellcross, Cecelia; Hermstad, April; Tallo, Christine; Stanislaw, Christine
2018-05-08
Despite increased awareness of hereditary breast and ovarian cancer among clinicians and the public, many BRCA1/2 mutation carriers remain unaware of their risk status. The Breast Cancer Genetics Referral Screening Tool (B-RST™) was created and validated to easily identify individuals at increased risk for hereditary breast and ovarian cancer for referral to cancer genetics services. The purpose of this study was to revise B-RST™ to maximize sensitivity against BRCA1/2 mutation status. We analyzed pedigrees of 277 individuals who had undergone BRCA1/2 testing to determine modifications to the B-RST™ 2.0 algorithm that would maximize sensitivity for mutations, while maintaining simplicity. We used McNemar's chi-square test to compare validation measures between the revised version (3.0) and the 2.0 version. Algorithmic changes made to B-RST™ 2.0 increased the sensitivity against BRCA1/2 mutation analysis from 71.1 to 94.0% (P < 0.0001). While specificity decreased, all screen-positive individuals were appropriate for cancer genetics referral, the primary purpose of the tool. Despite calls for BRCA1/2 population screening, there remains a critical need to identify those most at risk who should receive cancer genetics services. B-RST™ version 3.0 demonstrates high sensitivity for BRCA1/2 mutations, yet remains a simple and quick screening tool for at-risk individuals.
Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview.
Grabundzija, Ivana; Izsvák, Zsuzsanna; Ivics, Zoltán
2011-01-01
Novel genetic tools and mutagenesis strategies based on the Sleeping Beauty (SB) transposable element are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of its inherent capacity to insert into DNA, the SB transposon can be developed into powerful tools for chromosomal manipulations. Mutagenesis screens based on SB have numerous advantages including high throughput and easy identification of mutated alleles. Forward genetic approaches based on insertional mutagenesis by engineered SB transposons have the advantage of providing insight into genetic networks and pathways based on phenotype. Indeed, the SB transposon has become a highly instrumental tool to induce tumors in experimental animals in a tissue-specific -manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with SB transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models.
Isolation of New Gravitropic Mutants under Hypergravity Conditions.
Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T
2016-01-01
Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 ( eal1 ) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene ( enhancer of eal1 ) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis .
Isolation of New Gravitropic Mutants under Hypergravity Conditions
Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T.
2016-01-01
Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 (eal1) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis. PMID:27746791
A CRISPR-Based Toolbox for Studying T Cell Signal Transduction
Chi, Shen; Weiss, Arthur; Wang, Haopeng
2016-01-01
CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens. PMID:27057542
Adapting CRISPR/Cas9 for functional genomics screens.
Malina, Abba; Katigbak, Alexandra; Cencic, Regina; Maïga, Rayelle Itoua; Robert, Francis; Miura, Hisashi; Pelletier, Jerry
2014-01-01
The use of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) for targeted genome editing has been widely adopted and is considered a "game changing" technology. The ease and rapidity by which this approach can be used to modify endogenous loci in a wide spectrum of cell types and organisms makes it a powerful tool for customizable genetic modifications as well as for large-scale functional genomics. The development of retrovirus-based expression platforms to simultaneously deliver the Cas9 nuclease and single guide (sg) RNAs provides unique opportunities by which to ensure stable and reproducible expression of the editing tools and a broad cell targeting spectrum, while remaining compatible with in vivo genetic screens. Here, we describe methods and highlight considerations for designing and generating sgRNA libraries in all-in-one retroviral vectors for such applications.
Korngiebel, Diane M; West, Kathleen M; Burke, Wylie
2018-04-01
Test results for genetic conditions, such as Lynch Syndrome (LS), have traditionally been returned by genetic counselors or other providers who can explain results implications and provide psychosocial support. Returning genetic results through an Electronic Health Record's patient portal may increase the efficiency of returning results and could activate patient follow-up; however, stakeholder input is necessary to determine acceptability and appropriate implementation for LS. Twenty interviews were conducted with clinicians from six specialties involved in LS screening that represent a range of settings. Data were analyzed using directed content analysis and thematic analysis across content categories. Participants felt that patient portals could supplement personal calls, but the potential sensitive nature of LS screening results indicated the need for caution. Others felt that LS results could be returned through portals if there were clear explanations of the result, reputable additional information available within the portal, urging follow up confirmatory testing, and a referral to a genetics specialist. Patient portals were seen as helpful for prompting patient follow-up and providing resources to notify at-risk family members. There is potential for patient portals to return LS screening and other genetic results, however we raise several issues to resolve before implementation is warranted.
Gene-nutrient interaction markedly influences yeast chronological lifespan.
Smith, Daniel L; Maharrey, Crystal H; Carey, Christopher R; White, Richard A; Hartman, John L
2016-12-15
Research into the genetic mechanisms of aging has expanded rapidly over the past two decades. This has in part been the result of the use of model organisms (particularly yeast, worms and flies) and high-throughput technologies, combined with a growing interest in aging research. Despite this progress, widespread consensus regarding the pathways that are fundamental to the modulation of cellular aging and lifespan for all organisms has been limited due to discrepancies between different studies. We have compared results from published genome-wide, chronological lifespan (CLS) screens of individual gene deletion strains in Saccharomyces cerevisiae in order to identify gene deletion strains with consistent influences on longevity as possible indicators of fundamental aging processes from this single-celled, eukaryotic model organism. Three previous reports have described genetic modifiers of chronological aging in the budding yeast (S. cerevisiae) using the yeast gene deletion strain collection. We performed a comparison among the data sets using correlation and decile distribution analysis to describe concordance between screens and identify strains that consistently increased or decreased CLS. We used gene enrichment analysis in an effort to understand the biology underlying genes identified in multiple studies. We attempted to replicate the different experimental conditions employed by the screens to identify potential sources of variability in CLS worth further investigating. Among 3209 strains present in all three screens, nine deletions strains were in common in the longest-lived decile (2.80%) and thirteen were in common in the shortest-lived decile (4.05%) of all three screens. Similarly, pairwise overlap between screens was low. When the same comparison was extended to three deciles to include more mutants studied in common between the three screens, enrichment of cellular processes based on gene ontology analysis in the long-lived strains remained very limited. To test the hypothesis that different parental strain auxotrophic requirements or media formulations employed by the respective genome-wide screens might contribute to the lack of concordance, different CLS assay conditions were assessed in combination with strains having different ploidy and auxotrophic requirements (all relevant to differences in the way the three genome-wide CLS screens were performed). This limited but systematic analysis of CLS with respect to auxotrophy, ploidy, and media revealed several instances of gene-nutrient interaction. There is surprisingly little overlap between the results of three independently performed genome-wide screens of CLS in S. cerevisiae. However, differences in strain genetic background (ploidy and specific auxotrophic requirements) were present, as well as different media and experimental conditions (e.g., aeration and pooled vs. individual culturing), which, along with stochastic effects such as genetic drift or selection of secondary mutations that suppress the loss of function from gene deletion, could in theory account for some of the lack of consensus between results. Considering the lack of overlap in CLS phenotypes among the set of genes reported by all three screens, and the results of a CLS experiment that systematically tested (incorporating extensive controls) for interactions between variables existing between the screens, we propose that discrepancies can be reconciled through deeper understanding of the influence of cell intrinsic factors such as auxotrophic requirements ploidy status, extrinsic factors such as media composition and aeration, as well as interactions that may occur between them, for example as a result of different pooling vs. individually aging cultures. Such factors may have a more significant impact on CLS outcomes than previously realized. Future studies that systematically account for these contextual factors, and can thus clarify the interactions between genetic and nutrient factors that alter CLS phenotypes, should aid more complete understanding of the underlying biology so that genetic principles of CLS in yeast can be extrapolated to differential cellular aging observed in animal models. Copyright © 2016 Elsevier Inc. All rights reserved.
Gene-Nutrient Interaction Markedly Influences Yeast Chronological Lifespan
Smith, Daniel L.; Maharrey, Crystal H.; Carey, Christopher R.; White, Richard A.; Hartman, John L.
2016-01-01
Purpose Research into the genetic mechanisms of aging has expanded rapidly over the past two decades. This has in part been the result of the use of model organisms (particularly yeast, worms and flies) and high-throughput technologies, combined with a growing interest in aging research. Despite this progress, widespread consensus regarding the pathways that are fundamental to the modulation of cellular aging and lifespan for all organisms has been limited due to discrepancies between different studies. We have compared results from published genome-wide, chronological lifespan (CLS) screens of individual gene deletion strains in S. cerevisiae in order to identify gene deletion strains with consistent influences on longevity as possible indicators of fundamental aging processes from this single-celled, eukaryotic model organism. Methods Three previous reports have described genetic modifiers of chronological aging in the budding yeast (S. cerevisiae) using the yeast gene deletion strain collection. We performed a comparison among the data sets using correlation and decile distribution analysis to describe concordance between screens and identify strains that consistently increased or decreased CLS. We used gene enrichment analysis in an effort to understand the biology underlying genes identified in multiple studies. We attempted to replicate the different experimental conditions employed by the screens to identify potential sources of variability in CLS worth further investigating. Results Among 3209 strains present in all three screens, nine (2.80%) deletions strains were in common in the longest-lived decile and thirteen (4.05%) were in common in the shortest-lived decile for all three screens. Similarly, pairwise overlap between screens was low. When the same comparison was extended to three deciles to include more mutants studied in common between the three screens, enrichment of cellular processes based on gene ontology analysis in the long-lived strains remained very limited. To test the hypothesis that different parental strain auxotrophic requirements or media formulations employed by the respective genome-wide screens might contribute to the lack of concordance, different CLS assay conditions were assessed in combination with strains having different ploidy and auxotrophic requirements (all relevant to differences in the way the three genome-wide CLS screens were performed). This limited but systematic analysis of CLS with respect to auxotrophy, ploidy, and media revealed several instances of gene × nutrient interaction. Conclusions There is surprisingly little overlap between the results of three independently performed genome-wide screens of CLS in S. cerevisiae. However, differences in strain genetic background (ploidy and specific auxotrophic requirements) were present, as well as different media and experimental conditions (e.g., aeration and pooled vs. individual culturing), which, along with stochastic effects such as genetic drift or selection of secondary mutations that suppress the loss of function from gene deletion, could in theory account for some of the lack of consensus between results. Considering the lack of overlap in CLS phenotypes among the set of genes reported by all three screens, and the results of a CLS experiment that systematically tested (incorporating extensive controls) for interactions between variables existing between the screens, we propose that discrepancies can be reconciled through deeper understanding of the influence of cell intrinsic factors such as auxotrophic requirements ploidy status, extrinsic factors such as media composition and aeration, as well as interactions that may occur between them, for example as a result of different pooling vs. individually aging cultures. Such factors may have a more significant impact on CLS outcomes than previously realized. Future studies that systematically account for these contextual factors, and can thus clarify the interactions between genetic and nutrient factors that alter CLS phenotypes, should aid more complete understanding of the underlying biology so that genetic principles of CLS in yeast can be extrapolated to differential cellular aging observed in animal models. PMID:27125759
Meredith, Stephanie; Kaposy, Christopher; Miller, Victoria J; Allyse, Megan; Chandrasekharan, Subhashini; Michie, Marsha
2016-08-01
The 'Stakeholder Perspectives on Noninvasive Prenatal Genetic Screening' Symposium was held in conjunction with the 2015 annual meeting of the International Society for Prenatal Diagnosis. During the day-long meeting, a panel of patient advocacy group (PAG) representatives discussed concerns and challenges raised by prenatal cell-free DNA (cfDNA) screening, which has resulted in larger demands upon PAGs from concerned patients receiving prenatal cfDNA screening results. Prominent concerns included confusion about the accuracy of cfDNA screening and a lack of patient education resources about genetic conditions included in cfDNA screens. Some of the challenges faced by PAGs included funding limitations, lack of consistently implemented standards of care and oversight, diverse perspectives among PAGs and questions about neutrality, and lack of access to training and genetic counselors. PAG representatives also put forward suggestions for addressing these challenges, including improving educational and PAG funding and increasing collaboration between PAGs and the medical community. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.
CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening.
Köferle, Anna; Worf, Karolina; Breunig, Christopher; Baumann, Valentin; Herrero, Javier; Wiesbeck, Maximilian; Hutter, Lukas H; Götz, Magdalena; Fuchs, Christiane; Beck, Stephan; Stricker, Stefan H
2016-11-14
The bacterial CRISPR system is fast becoming the most popular genetic and epigenetic engineering tool due to its universal applicability and adaptability. The desire to deploy CRISPR-based methods in a large variety of species and contexts has created an urgent need for the development of easy, time- and cost-effective methods enabling large-scale screening approaches. Here we describe CORALINA (comprehensive gRNA library generation through controlled nuclease activity), a method for the generation of comprehensive gRNA libraries for CRISPR-based screens. CORALINA gRNA libraries can be derived from any source of DNA without the need of complex oligonucleotide synthesis. We show the utility of CORALINA for human and mouse genomic DNA, its reproducibility in covering the most relevant genomic features including regulatory, coding and non-coding sequences and confirm the functionality of CORALINA generated gRNAs. The simplicity and cost-effectiveness make CORALINA suitable for any experimental system. The unprecedented sequence complexities obtainable with CORALINA libraries are a necessary pre-requisite for less biased large scale genomic and epigenomic screens.
Diagnostic guidelines for newborns who screen positive in newborn screening.
Kronn, David; Mofidi, Shideh; Braverman, Nancy; Harris, Katharine
2010-12-01
Recent expansion of the newborn screening panels has presented an interesting challenge to specialty care centers, especially the clinical genetics community. Some of the conditions in the core and secondary newborn screening panels have extremely variable clinical presentations; others are so rare that only a handful of newborns have been diagnosed with them to date (Region 4 Collaborative MS/MS project-http://region4genetics.org/msms_data_project/data_project_home.aspx). Definition of some disorders is problematic-does continued abnormality of the screening analyte constitute diagnosis or is further testing necessary? A work group of the New York Mid-Atlantic Consortium for Genetic and Newborn Screening Services (region 2), one of seven regional collaboratives funded by the Federal Health Resources and Services Administration and administered by the Maternal and Child Health Bureau (U22MC03956), has developed guidelines for the confirmation of diagnosis of the conditions in the newborn screening panels for use by the specialty care centers. The diagnostic guidelines are a work in progress and are being reviewed and revised regularly as our understanding of the newborn screened disorders improves. The aim is to make it a relevant guide for specialty care physicians and other healthcare professionals in the diagnostic workup of these patients.
Manchanda, Ranjit; Legood, Rosa; Burnell, Matthew; McGuire, Alistair; Raikou, Maria; Loggenberg, Kelly; Wardle, Jane; Sanderson, Saskia; Gessler, Sue; Side, Lucy; Balogun, Nyala; Desai, Rakshit; Kumar, Ajith; Dorkins, Huw; Wallis, Yvonne; Chapman, Cyril; Taylor, Rohan; Jacobs, Chris; Tomlinson, Ian; Beller, Uziel; Menon, Usha
2015-01-01
Background: Population-based testing for BRCA1/2 mutations detects the high proportion of carriers not identified by cancer family history (FH)–based testing. We compared the cost-effectiveness of population-based BRCA testing with the standard FH-based approach in Ashkenazi Jewish (AJ) women. Methods: A decision-analytic model was developed to compare lifetime costs and effects amongst AJ women in the UK of BRCA founder-mutation testing amongst: 1) all women in the population age 30 years or older and 2) just those with a strong FH (≥10% mutation risk). The model assumes that BRCA carriers are offered risk-reducing salpingo-oophorectomy and annual MRI/mammography screening or risk-reducing mastectomy. Model probabilities utilize the Genetic Cancer Prediction through Population Screening trial/published literature to estimate total costs, effects in terms of quality-adjusted life-years (QALYs), cancer incidence, incremental cost-effectiveness ratio (ICER), and population impact. Costs are reported at 2010 prices. Costs/outcomes were discounted at 3.5%. We used deterministic/probabilistic sensitivity analysis (PSA) to evaluate model uncertainty. Results: Compared with FH-based testing, population-screening saved 0.090 more life-years and 0.101 more QALYs resulting in 33 days’ gain in life expectancy. Population screening was found to be cost saving with a baseline-discounted ICER of -£2079/QALY. Population-based screening lowered ovarian and breast cancer incidence by 0.34% and 0.62%. Assuming 71% testing uptake, this leads to 276 fewer ovarian and 508 fewer breast cancer cases. Overall, reduction in treatment costs led to a discounted cost savings of £3.7 million. Deterministic sensitivity analysis and 94% of simulations on PSA (threshold £20000) indicated that population screening is cost-effective, compared with current NHS policy. Conclusion: Population-based screening for BRCA mutations is highly cost-effective compared with an FH-based approach in AJ women age 30 years and older. PMID:25435542
Code of Federal Regulations, 2014 CFR
2014-07-01
... that provides a reward to employees who complete a health risk assessment regarding current health... collection of genetic information.) (iii) Health-contingent wellness programs. A health-contingent wellness... individuals for specified medical conditions or risk factors (including biometric screening such as testing...
USDA-ARS?s Scientific Manuscript database
One hundred and forty-seven primer pairs originally designed to amplify microsatellites, also known as simple sequence repeats (SSR), in black walnut (Juglans nigra L.) were screened for utility in persian walnut (J. regia L.). Based on scorability and number of informative polymorphisms, the best 1...
Breast Cancer—Health Professional Version
The most common type of breast cancer is ductal carcinoma, which begins in the cells of the ducts. Breast cancer can also begin in the cells of a lobule and in other tissues of the breast. Find evidence-based information on breast cancer treatment, causes and prevention, genetics, screening, research, and statistics.
Moderating effects of autism on parent views of genetic screening for aggression.
May, Michael E; Brandt, Rachel C; Bohannan, Joseph K
2012-10-01
Advances in gene-environment interaction research have revealed genes that are associated with aggression. However, little is known about parent perceptions of genetic screening for behavioral symptoms like aggression as opposed to diagnosing disabilities. These perceptions may influence future research endeavors involving genetic linkage studies to behavior, including proactive approaches for parents to avoid events leading to aggression. The purpose of this study was to solicit the perspectives of parents who have children with autism about screening for genes associated with aggression, compared to responses from those who have children without disabilities and those planning to have children. Parents of children with autism were more likely to support screening and the use of the results to seek treatment if necessary. Results are discussed in the context of surveillance screening and systematic early intervention for behavioral symptoms related to autism. The results may provide insight for clincians, researchers, policymakers, and advocacy groups related to diagnosing and treating aggression in people with autism.
Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.
2015-01-01
Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress. PMID:22283708
Making Sense of Your Genes: A Guide to Genetic Counseling
... to think about genetic counseling and perhaps genetic testing. A cancer genetic counselor will evaluate your family health history and talk about risks for inherited cancer, as well as screening and ...
The role of religious values in decisions about genetics and the public's health.
Modell, Stephen M; Citrin, Toby; King, Susan B; Kardia, Sharon L R
2014-06-01
The latest health care legislation, which promotes prevention and health screening, ultimately depends for its success on recognition of people's values concerning the technologies being employed, not just the interventions' technical virtues. Values concerning the deterministic nature of a condition and what groups should be targeted rest on a sense of what is morally, often religiously right in a given health circumstance. This paper looks at a number of leading-edge case examples--breast cancer genetic screening and family decision-making, and newborn screening and biobanks--in examining how the choices made at the individual, family, and societal levels rest on faith in a higher source of efficacy and moral perspectives on the measures that can be taken. Qualitative responses expressing people's attitudes toward these technologies underscore the importance of considering faith-based values in individual decisions and collective policies on their use. These examples are considered in the context of the historic interplay between science and religion and recent definitions and models of health which incorporate physical, emotional, and social elements, and most importantly, are expanding to incorporate the religious and spiritual values domains.
Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall
2018-05-23
Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Cagnon, Caroline; Mirabella, Boris; Nguyen, Hoa Mai; Beyly-Adriano, Audrey; Bouvet, Séverine; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua
2013-12-02
Oils produced by microalgae are precursors to biodiesel. To achieve a profitable production of biodiesel from microalgae, identification of factors governing oil synthesis and turnover is desirable. The green microalga Chlamydomonas reinhardtii is amenable to genetic analyses and has recently emerged as a model to study oil metabolism. However, a detailed method to isolate various types of oil mutants that is adapted to Chlamydomonas has not been reported. We describe here a forward genetic approach to isolate mutants altered in oil synthesis and turnover from C. reinhardtii. It consists of a three-step screening procedure: a primary screen by flow cytometry of Nile red stained transformants grown in 96-deep-well plates under three sequential conditions (presence of nitrogen, then absence of nitrogen, followed by oil remobilization); a confirmation step using Nile red stained biological triplicates; and a validation step consisting of the quantification by thin layer chromatography of oil content of selected strains. Thirty-one mutants were isolated by screening 1,800 transformants generated by random insertional mutagenesis (1.7%). Five showed increased oil accumulation under the nitrogen-replete condition and 13 had altered oil content under nitrogen-depletion. All mutants were affected in oil remobilization. This study demonstrates that various types of oil mutants can be isolated in Chlamydomonas based on the method set-up here, including mutants accumulating oil under optimal biomass growth. The strategy conceived and the protocol set-up should be applicable to other microalgal species such as Nannochloropsis and Chlorella, thus serving as a useful tool in Chlamydomonas oil research and algal biotechnology.
Carrier screening for cystic fibrosis.
Dungan, Jeffrey S
2010-03-01
Cystic fibrosis is the first genetic disorder for which universal screening of preconceptional or prenatal patients became a component of standard prenatal care. The molecular genetics and mutation profile of the CFTR gene are complex, with a wide range of phenotypic consequences. Carrier screening can facilitate risk assessment for prospective parents to have an affected offspring, although there remains a small residual risk for carrying a mutation even with a negative screening result. There are ethnic differences with respect to disease incidence and effectiveness of carrier testing, which may complicate counseling. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Rochette, Claire; Baumstarck, Karine; Canoni-Zattara, Hélène; Abdullah, Ahmad Esmaeel; Figarella-Branger, Dominique; Pertuit, Morgane; Barlier, Anne; Castinetti, Frédéric; Pacak, Karel; Metellus, Philippe; Taïeb, David
2018-05-15
Von Hippel-Lindau (VHL) syndrome is a hereditary cancer syndrome characterized by a high risk of developing benign and malignant tumors, including central nervous system hemangioblastomas (CNS HBs). For an early diagnosis of VHL, before the occurrence of cancers (especially renal cell carcinoma), it is of huge importance to initiate VHL genetic testing in at-risk patients. The aim of the study was to assess the psychological impact of VHL genetic testing in patients previously diagnosed with a CNS HB. From 1999 until 2015, 55 patients underwent surgery for CNS HBs. Eleven patients were already screened for VHL mutations and 3 patients deceased before the start of the study. From the remaining 42 patients, 24 were accepted to be enrolled in the study. Assessment of psychological impact of VHL genetic testing was performed by measuring anxiety levels, mood disorders, quality of life, and psychological consequences of genetic screening. Twenty-one of the enrolled 24 patients underwent VHL genetic testing and 12 patients came back for the communication of positive genetic results. The baseline psychological status did not differ between these 2 groups. Patients who attended the visit of communication of genetic results had similar anxiety levels compared to those who had not. Furthermore, they also experienced an improvement in the level of anxiety and two QoL dimension scores compared to their baseline status. In summary, there is no evidence of a negative psychosocial impact of VHL genetic testing in patients with a previous history of CNS HB. We, therefore, recommend the recall of patients who have not been previously screened.
A two-layered classifier based on the radial basis function for the screening of thalassaemia.
Masala, G L; Golosio, B; Cutzu, R; Pola, R
2013-11-01
The thalassaemias are blood disorders with hereditary transmission. Their distribution is global, with particular incidence in areas affected by malaria. Their diagnosis is mainly based on haematologic and genetic analyses. The aim of this study was to differentiate between persons with the thalassaemia trait and normal subjects by inspecting characteristics of haemochromocytometric data. The paper proposes an original method that is useful in screening activity for thalassaemia classification. A complete working system with a friendly graphical user interface is presented. A unique feature of the presented work is the adoption of a two-layered classification system based on Radial basis function, which improves the performance of the system. © 2013 Elsevier Ltd. All rights reserved.
Levin, Theodore R; Corley, Douglas A; Jensen, Christopher D; Marks, Amy R; Zhao, Wei K; Zebrowski, Alexis M; Quinn, Virginia P; Browne, Lawrence W; Taylor, William R; Ahlquist, David A; Lidgard, Graham P; Berger, Barry M
2017-03-01
Fecal immunochemical test (FIT) screening detects most asymptomatic colorectal cancers. Combining FIT screening with stool-based genetic biomarkers increases sensitivity for cancer, but whether DNA biomarkers (biomarkers) differ for cancers detected versus missed by FIT screening has not been evaluated in a community-based population. To evaluate tissue biomarkers among Kaiser Permanente Northern California patients diagnosed with colorectal cancer within 2 years after FIT screening. FIT-negative and FIT-positive colorectal cancer patients 50-77 years of age were matched on age, sex, and cancer stage. Adequate DNA was isolated from paraffin-embedded specimens in 210 FIT-negative and 211 FIT-positive patients. Quantitative allele-specific real-time target and signal amplification assays were performed for 7 K-ras mutations and 10 aberrantly methylated DNA biomarkers (NDRG4, BMP3, SFMBT2_895, SFMBT2_896, SFMBT2_897, CHST2_7890, PDGFD, VAV3, DTX1, CHST2_7889). One or more biomarkers were found in 414 of 421 CRCs (98.3%). Biomarker expression was not associated with FIT status, with the exception of higher SFMBT2_897 expression in FIT-negative (194 of 210; 92.4%) than in FIT-positive cancers (180 of 211; 85.3%; p = 0.02). There were no consistent differences in biomarker expression by FIT status within age, sex, stage, and cancer location subgroups. The biomarkers of a currently in-use multi-target stool DNA test (K-ras, NDRG4, and BMP3) and eight newly characterized methylated biomarkers were commonly expressed in tumor tissue specimens, independent of FIT result. Additional study using stool-based testing with these new biomarkers will allow assessment of sensitivity, specificity, and clinical utility.
Mishra, Sudhanshu; Singh, Sujeet Kumar; Munjal, Ashok Kumar; Aspi, Jouni; Goyal, Surendra Prakash
2014-01-03
In India, six landscapes and source populations that are important for long-term conservation of Bengal tigers (Panthera tigris tigris) have been identified. Except for a few studies, nothing is known regarding the genetic structure and extent of gene flow among most of the tiger populations across India as the majority of them are small, fragmented and isolated. Thus, individual-based relationships are required to understand the species ecology and biology for planning effective conservation and genetics-based individual identification has been widely used. But this needs screening and describing characteristics of microsatellite loci from DNA from good-quality sources so that the required number of loci can be selected and the genotyping error rate minimized. In the studies so far conducted on the Bengal tiger, a very small number of loci (n = 35) have been tested with high-quality source of DNA, and information on locus-specific characteristics is lacking. The use of such characteristics has been strongly recommended in the literature to minimize the error rate and by the International Society for Forensic Genetics (ISFG) for forensic purposes. Therefore, we describe for the first time locus-specific genetic and genotyping profile characteristics, crucial for population genetic studies, using high-quality source of DNA of the Bengal tiger. We screened 39 heterologous microsatellite loci (Sumatran tiger, domestic cat, Asiatic lion and snow leopard) in captive individuals (n = 8), of which 21 loci are being reported for the first time in the Bengal tiger, providing an additional choice for selection. The mean relatedness coefficient (R = -0.143) indicates that the selected tigers were unrelated. Thirty-four loci were polymorphic, with the number of alleles ranging from 2 to 7 per locus, and the remaining five loci were monomorphic. Based on the PIC values (> 0.500), and other characteristics, we suggest that 16 loci (3 to 7 alleles) be used for genetic and forensic study purposes. The probabilities of matching genotypes of unrelated individuals (3.692 × 10(-19)) and siblings (4.003 × 10(-6)) are within the values needed for undertaking studies in population genetics, relatedness, sociobiology and forensics.
Integrating functional genomics to accelerate mechanistic personalized medicine.
Tyner, Jeffrey W
2017-03-01
The advent of deep sequencing technologies has resulted in the deciphering of tremendous amounts of genetic information. These data have led to major discoveries, and many anecdotes now exist of individual patients whose clinical outcomes have benefited from novel, genetically guided therapeutic strategies. However, the majority of genetic events in cancer are currently undrugged, leading to a biological gap between understanding of tumor genetic etiology and translation to improved clinical approaches. Functional screening has made tremendous strides in recent years with the development of new experimental approaches to studying ex vivo and in vivo drug sensitivity. Numerous discoveries and anecdotes also exist for translation of functional screening into novel clinical strategies; however, the current clinical application of functional screening remains largely confined to small clinical trials at specific academic centers. The intersection between genomic and functional approaches represents an ideal modality to accelerate our understanding of drug sensitivities as they relate to specific genetic events and further understand the full mechanisms underlying drug sensitivity patterns.
Systematic genetic screening in a prospective group of Danish patients with pheochromocytoma
Hansen, Morten Steen Svarer; Jacobsen, Niels; Frederiksen, Anja Lisbeth; Lund, Lars; Andersen, Marianne Skovsager; Glintborg, Dorte
2017-01-01
Recent guidelines recommend consideration of genetic screening in all newly diagnosed patients with pheochromocytoma. Patients diagnosed with pheochromocytoma in the Region of Southern Denmark during 2006–2013 without previously recognized monogenetic etiology were offered genetic screening for mutations in the VHL, RET, SDHB, SDHC, and SDHD genes. A total of 41 patients were included, and genetic data were available in 35. In four of the 35 patients, a pathogenic variant was identified prior to the diagnosis of pheochromocytoma (von Hippel–Lindau disease, n=2; neurofibromatosis type 1, n=2). The patients carrying a genetic mutation were all younger than 45 years at time of diagnosis of pheochromocytoma, two patients presented with bilateral tumors, and one patient had a positive family history of pheochromocytoma. Genetic screening of the remaining 31 patients did not identify any mutations. The sporadic cases had a median age of 58 years (range 33–80 years). Three of 31 sporadic cases (ages 60, 69, and 76 years at time of diagnosis) presented with bilateral adrenal tumors, one patient had multiple adrenal tumors in both adrenal glands, and no patients had a positive family history of pheochromocytoma. Of the 31 patients, 24 (68.6%) were diagnosed with pheochromocytoma due to evaluation of an adrenal incidentaloma. In conclusion, monogenetic etiology was identified in four of 35 (11.4%) patients diagnosed with pheochromocytoma. PMID:28721348
Chen, Jun; Vestergaard, Mike; Jensen, Thomas Glasdam; Shen, Jing; Dufva, Martin; Solem, Christian; Jensen, Peter Ruhdal
2017-05-30
Efficient screening technologies aim to reduce both the time and the cost required for identifying rare mutants possessing a phenotype of interest in a mutagenized population. In this study, we combined a mild mutagenesis strategy with high-throughput screening based on microfluidic droplet technology to identify Lactococcus lactis variants secreting vitamin B 2 (riboflavin). Initially, we used a roseoflavin-resistant mutant of L. lactis strain MG1363, JC017, which secreted low levels of riboflavin. By using fluorescence-activated droplet sorting, several mutants that secreted riboflavin more efficiently than JC017 were readily isolated from the mutagenesis library. The screening was highly efficient, and candidates with as few as 1.6 mutations per million base pairs (Mbp) were isolated. The genetic characterization revealed that riboflavin production was triggered by mutations inhibiting purine biosynthesis, which is surprising since the purine nucleotide GTP is a riboflavin precursor. Purine starvation in the mutants induced overexpression of the riboflavin biosynthesis cluster ribABGH When the purine starvation was relieved by purine supplementation in the growth medium, the outcome was an immediate downregulation of the riboflavin biosynthesis cluster and a reduction in riboflavin production. Finally, by applying the new isolates in milk fermentation, the riboflavin content of milk (0.99 mg/liter) was improved to 2.81 mg/liter, compared with 0.66 mg/liter and 1.51 mg/liter by using the wild-type strain and the original roseoflavin-resistant mutant JC017, respectively. The results obtained demonstrate how powerful classical mutagenesis can be when combined with droplet-based microfluidic screening technology for obtaining microorganisms with useful attributes. IMPORTANCE The food industry prefers to use classical approaches, e.g., random mutagenesis followed by screening, to improve microorganisms used in food production, as the use of recombinant DNA technologies is still not widely accepted. Although modern automated screening platforms are widely accessible, screening remains as a bottleneck in strain development, especially when a mild mutagenesis approach is applied to reduce the chance of accumulating unintended mutations, which may cause unwanted phenotypic changes. Here, we incorporate a droplet-based high-throughput screening method into the strain development process and readily capture L. lactis variants with more efficient vitamin secretion from low-error-rate mutagenesis libraries. This study shows that useful mutants showing strong phenotypes but without extensive mutations can be identified with efficient screening technologies. It is therefore possible to avoid accumulating detrimental mutations while enriching beneficial ones through iterative mutagenesis screening. Due to the low mutation rates, the genetic determinants are also readily identified. Copyright © 2017 Chen et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.
Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less
Bancroft, Elizabeth K; Page, Elizabeth C; Castro, Elena; Lilja, Hans; Vickers, Andrew; Sjoberg, Daniel; Assel, Melissa; Foster, Christopher S; Mitchell, Gillian; Drew, Kate; Mæhle, Lovise; Axcrona, Karol; Evans, D Gareth; Bulman, Barbara; Eccles, Diana; McBride, Donna; van Asperen, Christi; Vasen, Hans; Kiemeney, Lambertus A; Ringelberg, Janneke; Cybulski, Cezary; Wokolorczyk, Dominika; Selkirk, Christina; Hulick, Peter J; Bojesen, Anders; Skytte, Anne-Bine; Lam, Jimmy; Taylor, Louise; Oldenburg, Rogier; Cremers, Ruben; Verhaegh, Gerald; van Zelst-Stams, Wendy A; Oosterwijk, Jan C; Blanco, Ignacio; Salinas, Monica; Cook, Jackie; Rosario, Derek J; Buys, Saundra; Conner, Tom; Ausems, Margreet G; Ong, Kai-ren; Hoffman, Jonathan; Domchek, Susan; Powers, Jacquelyn; Teixeira, Manuel R; Maia, Sofia; Foulkes, William D; Taherian, Nassim; Ruijs, Marielle; Helderman-van den Enden, Apollonia T; Izatt, Louise; Davidson, Rosemarie; Adank, Muriel A; Walker, Lisa; Schmutzler, Rita; Tucker, Kathy; Kirk, Judy; Hodgson, Shirley; Harris, Marion; Douglas, Fiona; Lindeman, Geoffrey J; Zgajnar, Janez; Tischkowitz, Marc; Clowes, Virginia E; Susman, Rachel; Ramón y Cajal, Teresa; Patcher, Nicholas; Gadea, Neus; Spigelman, Allan; van Os, Theo; Liljegren, Annelie; Side, Lucy; Brewer, Carole; Brady, Angela F; Donaldson, Alan; Stefansdottir, Vigdis; Friedman, Eitan; Chen-Shtoyerman, Rakefet; Amor, David J; Copakova, Lucia; Barwell, Julian; Giri, Veda N; Murthy, Vedang; Nicolai, Nicola; Teo, Soo-Hwang; Greenhalgh, Lynn; Strom, Sara; Henderson, Alex; McGrath, John; Gallagher, David; Aaronson, Neil; Ardern-Jones, Audrey; Bangma, Chris; Dearnaley, David; Costello, Philandra; Eyfjord, Jorunn; Rothwell, Jeanette; Falconer, Alison; Gronberg, Henrik; Hamdy, Freddie C; Johannsson, Oskar; Khoo, Vincent; Kote-Jarai, Zsofia; Lubinski, Jan; Axcrona, Ulrika; Melia, Jane; McKinley, Joanne; Mitra, Anita V; Moynihan, Clare; Rennert, Gad; Suri, Mohnish; Wilson, Penny; Killick, Emma; Moss, Sue; Eeles, Rosalind A
2014-09-01
Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in BRCA1/2 mutation carriers and controls) is an international consortium of 62 centres in 20 countries evaluating the use of targeted PCa screening in men with BRCA1/2 mutations. To report the first year's screening results for all men at enrollment in the study. We recruited men aged 40-69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrollment, and those men with PSA >3 ng/ml were offered prostate biopsy. PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types. We recruited 2481 men (791 BRCA1 carriers, 531 BRCA1 controls; 731 BRCA2 carriers, 428 BRCA2 controls). A total of 199 men (8%) presented with PSA >3.0 ng/ml, 162 biopsies were performed, and 59 PCas were diagnosed (18 BRCA1 carriers, 10 BRCA1 controls; 24 BRCA2 carriers, 7 BRCA2 controls); 66% of the tumours were classified as intermediate- or high-risk disease. The positive predictive value (PPV) for biopsy using a PSA threshold of 3.0 ng/ml in BRCA2 mutation carriers was 48%-double the PPV reported in population screening studies. A significant difference in detecting intermediate- or high-risk disease was observed in BRCA2 carriers. Ninety-five percent of the men were white, thus the results cannot be generalised to all ethnic groups. The IMPACT screening network will be useful for targeted PCa screening studies in men with germline genetic risk variants as they are discovered. These preliminary results support the use of targeted PSA screening based on BRCA genotype and show that this screening yields a high proportion of aggressive disease. In this report, we demonstrate that germline genetic markers can be used to identify men at higher risk of prostate cancer. Targeting screening at these men resulted in the identification of tumours that were more likely to require treatment. Copyright © 2014 European Association of Urology. All rights reserved.
... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...
... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...
A permutation-based non-parametric analysis of CRISPR screen data.
Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua
2017-07-19
Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .
Attitude towards Pre-Marital Genetic Screening among Students of Osun State Polytechnics in Nigeria
ERIC Educational Resources Information Center
Odelola, J. O.; Adisa, O.; Akintaro, O. A.
2013-01-01
This study investigated the attitude towards pre-marital genetic screening among students of Osun State Polytechnics. Descriptive survey design was used for the study. The instrument for data collection was self developed and structured questionnaire in four-point likert scale format. Descriptive statistics of frequency count and percentages were…
Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K
2015-01-01
Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Model-Free Conditional Independence Feature Screening For Ultrahigh Dimensional Data.
Wang, Luheng; Liu, Jingyuan; Li, Yong; Li, Runze
2017-03-01
Feature screening plays an important role in ultrahigh dimensional data analysis. This paper is concerned with conditional feature screening when one is interested in detecting the association between the response and ultrahigh dimensional predictors (e.g., genetic makers) given a low-dimensional exposure variable (such as clinical variables or environmental variables). To this end, we first propose a new index to measure conditional independence, and further develop a conditional screening procedure based on the newly proposed index. We systematically study the theoretical property of the proposed procedure and establish the sure screening and ranking consistency properties under some very mild conditions. The newly proposed screening procedure enjoys some appealing properties. (a) It is model-free in that its implementation does not require a specification on the model structure; (b) it is robust to heavy-tailed distributions or outliers in both directions of response and predictors; and (c) it can deal with both feature screening and the conditional screening in a unified way. We study the finite sample performance of the proposed procedure by Monte Carlo simulations and further illustrate the proposed method through two real data examples.
Nehnevajova, Erika; Herzig, Rolf; Federer, Guido; Erismann, Karl-Hans; Schwitzguébel, Jean-Paul
2005-01-01
Sunflower can be used for the remediation of metal-contaminated soils. Its high biomass production makes this plant species interestingfor phytoextraction and using sunflower oil for a technical purpose may improve the economic balance of phytoremediation. The aim of the present field study was to screen 15 commercial cultivars of Helianthus annuus L. grown on metal-contaminated soil, to find out the variety with the highest metal extraction, which can be further improved by mutation or in vitro breeding procedures. Two different fertilizers (ammonium sulphate and ammonium nitrate) were also used to enhance the bioavailability of metals in soil Highly significant differences were observed within tested varieties for metal accumulation and extraction efficiency. Furthermore, ammonium nitrate increased cadmium extraction, whereas ammonium sulphate enhanced zinc and lead uptake in most tested cultivars. In this field-based sunflower screening, we found enhanced cumulative Cd, Zn, and Pb extraction efficiency by a factor 4.4 for Salut cultivar. We therefore emphasize that prior to any classical breeding or genetic engineering enhancing metal uptake potential, a careful screening of various genotypes should be done to select the cultivar with the naturally highest metal uptake and to start the genetic improvement with the best available plant material.
Arlia-Ciommo, Anthony; Svistkova, Veronika; Mohtashami, Sadaf; Titorenko, Vladimir I.
2016-01-01
A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast. PMID:26636650
Screening large-scale association study data: exploiting interactions using random forests.
Lunetta, Kathryn L; Hayward, L Brooke; Segal, Jonathan; Van Eerdewegh, Paul
2004-12-10
Genome-wide association studies for complex diseases will produce genotypes on hundreds of thousands of single nucleotide polymorphisms (SNPs). A logical first approach to dealing with massive numbers of SNPs is to use some test to screen the SNPs, retaining only those that meet some criterion for further study. For example, SNPs can be ranked by p-value, and those with the lowest p-values retained. When SNPs have large interaction effects but small marginal effects in a population, they are unlikely to be retained when univariate tests are used for screening. However, model-based screens that pre-specify interactions are impractical for data sets with thousands of SNPs. Random forest analysis is an alternative method that produces a single measure of importance for each predictor variable that takes into account interactions among variables without requiring model specification. Interactions increase the importance for the individual interacting variables, making them more likely to be given high importance relative to other variables. We test the performance of random forests as a screening procedure to identify small numbers of risk-associated SNPs from among large numbers of unassociated SNPs using complex disease models with up to 32 loci, incorporating both genetic heterogeneity and multi-locus interaction. Keeping other factors constant, if risk SNPs interact, the random forest importance measure significantly outperforms the Fisher Exact test as a screening tool. As the number of interacting SNPs increases, the improvement in performance of random forest analysis relative to Fisher Exact test for screening also increases. Random forests perform similarly to the univariate Fisher Exact test as a screening tool when SNPs in the analysis do not interact. In the context of large-scale genetic association studies where unknown interactions exist among true risk-associated SNPs or SNPs and environmental covariates, screening SNPs using random forest analyses can significantly reduce the number of SNPs that need to be retained for further study compared to standard univariate screening methods.
Down’s syndrome screening is unethical: views of today’s research ethics committees
Reynolds, T M
2003-01-01
Background: Screening for Down’s syndrome forms part of routine obstetric practice. Ethical considerations relating to genetic screening form a major part of the workload of research ethics committees. This study investigated the attitudes of research ethics committee members to several conditions varying in clinical severity and prognosis, including Down’s syndrome. Methods: The members of 40 randomly chosen research ethics committees were surveyed. A simple questionnaire comprising 19 clinical scenarios based around four “clinical” conditions was designed to review conditions that were potentially embarrassing, affecting life span but not mental ability, premature death, and intellectual impairment with a risk of neonatal cardiac defects (Down’s syndrome). Screening tests with different degrees of effectiveness were described and the diagnostic test descriptions ranged from having no risk to an unaffected fetus to causing spontaneous abortion of two normal fetuses for each affected fetus identified. Replies were graded on a scale of 1 to 5. Results: Seventy seven replies were received from 28 different research ethics committees. Screening was supported for treatment of a life threatening condition (95% in favour) but screening for conditions of a slight increase in premature death (14% in favour) or cosmetic features (10% in favour) were considered unethical. Views were ambiguous (49% in favour) about conditions involving significant shortening of lifespan. Down’s syndrome screening was considered more ethical when described as a serious condition (56% in favour) than when the clinical features were described (44% in favour). Once increased rates of spontaneous abortion on confirmatory testing were added, 79% (21% in favour) and 86% (14% in favour) stated that screening was unethical (for “serious” and “clinical features” descriptions, respectively). Conclusions: Down’s syndrome screening raises ethical concerns about genetic testing in general that need to be dealt with before the introduction of any prenatal screening test. PMID:12663637
Newborn Screening: MedlinePlus Health Topic
... deficiency (National Library of Medicine) Genetics Home Reference: glutaric acidemia type I (National Library of Medicine) Genetics Home Reference: glutaric acidemia type II (National Library of Medicine) Genetics ...
ERIC Educational Resources Information Center
Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste
2015-01-01
Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational…
A genetic screen of the mutations in the Korean patients with early-onset Alzheimer’s disease
An, Seong Soo; Park, Sun Ah; Bagyinszky, Eva; Bae, Sun Oh; Kim, Yoon-Jeong; Im, Ji Young; Park, Kyung Won; Park, Kee Hyung; Kim, Eun-Joo; Jeong, Jee Hyang; Kim, Jong Hun; Han, Hyun Jeong; Choi, Seong Hye; Kim, SangYun
2016-01-01
Early-onset Alzheimer’s disease (EOAD) has distinct clinical characteristics in comparison to late-onset Alzheimer’s disease (LOAD). The genetic contribution is suggested to be more potent in EOAD. However, the frequency of causative mutations in EOAD could be variable depending on studies. Moreover, no mutation screening study has been performed yet employing large population in Korea. Previously, we reported that the rate of family history of dementia in EOAD patients was 18.7% in a nationwide hospital-based cohort study, the Clinical Research Center for Dementia of South Korea (CREDOS) study. This rate is much lower than in other countries and is even comparable to the frequency of LOAD patients in our country. To understand the genetic characteristics of EOAD in Korea, we screened the common Alzheimer’s disease (AD) mutations in the consecutive EOAD subjects from the CREDOS study from April 2012 to February 2014. We checked the sequence of APP (exons 16–17), PSEN1 (exons 3–12), and PSEN2 (exons 3–12) genes. We identified different causative or probable pathogenic AD mutations, PSEN1 T116I, PSEN1 L226F, and PSEN2 V214L, employing 24 EOAD subjects with a family history and 80 without a family history of dementia. PSEN1 T116I case demonstrated autosomal dominant trait of inheritance, with at least 11 affected individuals over 2 generations. However, there was no family history of dementia within first-degree relation in PSEN1 L226F and PSEN2 V214L cases. Approximately, 55.7% of the EOAD subjects had APOE ε4 allele, while none of the mutation-carrying subjects had the allele. The frequency of genetic mutation in this study is lower compared to the studies from other countries. The study design that was based on nationwide cohort, which minimizes selection bias, is thought to be one of the contributors to the lower frequency of genetic mutation. However, the possibility of the greater likeliness of earlier onset of sporadic AD in Korea cannot be excluded. We suggest early AD onset and not carrying APOE ε4 allele are more reliable factors for predicting an induced genetic mutation than the presence of the family history in Korean EOAD population. PMID:28008242
Carrier screening in the era of expanding genetic technology.
Arjunan, Aishwarya; Litwack, Karen; Collins, Nick; Charrow, Joel
2016-12-01
The Center for Jewish Genetics provides genetic education and carrier screening to individuals of Jewish descent. Carrier screening has traditionally been performed by targeted mutation analysis for founder mutations with an enzyme assay for Tay-Sachs carrier detection. The development of next-generation sequencing (NGS) allows for higher detection rates regardless of ethnicity. Here, we explore differences in carrier detection rates between genotyping and NGS in a primarily Jewish population. Peripheral blood samples or saliva samples were obtained from 506 individuals. All samples were analyzed by sequencing, targeted genotyping, triplet-repeat detection, and copy-number analysis; the analyses were carried out at Counsyl. Of 506 individuals screened, 288 were identified as carriers of at least 1 condition and 8 couples were carriers for the same disorder. A total of 434 pathogenic variants were identified. Three hundred twelve variants would have been detected via genotyping alone. Although no additional mutations were detected by NGS in diseases routinely screened for in the Ashkenazi Jewish population, 26.5% of carrier results and 2 carrier couples would have been missed without NGS in the larger panel. In a primarily Jewish population, NGS reveals a larger number of pathogenic variants and provides individuals with valuable information for family planning.Genet Med 18 12, 1214-1217.
El Malti, Rajae; Liu, Hui; Doray, Bérénice; Thauvin, Christel; Maltret, Alice; Dauphin, Claire; Gonçalves-Rocha, Miguel; Teboul, Michel; Blanchet, Patricia; Roume, Joëlle; Gronier, Céline; Ducreux, Corinne; Veyrier, Magali; Marçon, François; Acar, Philippe; Lusson, Jean-René; Levy, Marilyne; Beyler, Constance; Vigneron, Jacqueline; Cordier-Alex, Marie-Pierre; Heitz, François; Sanlaville, Damien; Bonnet, Damien; Bouvagnet, Patrice
2016-01-01
The etiology of congenital heart defect (CHD) combines environmental and genetic factors. So far, there were studies reporting on the screening of a single gene on unselected CHD or on familial cases selected for specific CHD types. Our goal was to systematically screen a proband of familial cases of CHD on a set of genetic tests to evaluate the prevalence of disease-causing variant identification. A systematic screening of GATA4, NKX2-5, ZIC3 and Multiplex ligation-dependent probe amplification (MLPA) P311 Kit was setup on the proband of 154 families with at least two cases of non-syndromic CHD. Additionally, ELN screening was performed on families with supravalvular arterial stenosis. Twenty-two variants were found, but segregation analysis confirmed unambiguously the causality of 16 variants: GATA4 (1 ×), NKX2-5 (6 ×), ZIC3 (3 ×), MLPA (2 ×) and ELN (4 ×). Therefore, this approach was able to identify the causal variant in 10.4% of familial CHD cases. This study demonstrated the existence of a de novo variant even in familial CHD cases and the impact of CHD variants on adult cardiac condition even in the absence of CHD. This study showed that the systematic screening of genetic factors is useful in familial CHD cases with up to 10.4% elucidated cases. When successful, it drastically improved genetic counseling by discovering unaffected variant carriers who are at risk of transmitting their variant and are also exposed to develop cardiac complications during adulthood thus prompting long-term cardiac follow-up. This study provides an important baseline at dawning of the next-generation sequencing era. PMID:26014430
Lynch Syndrome: A Primer for Urologists and Panel Recommendations.
Mork, Maureen; Hubosky, Scott G; Rouprêt, Morgan; Margulis, Vitaly; Raman, Jay; Lotan, Yair; O'Brien, Timothy; You, Nancy; Shariat, Shahrokh F; Matin, Surena F
2015-07-01
Lynch syndrome, also known as hereditary nonpolyposis colorectal cancer, is a common genetic disease. The predisposition of patients with Lynch syndrome to urological cancer, particularly upper tract urothelial carcinoma, is underappreciated. Urologists may be involved in several aspects of care involving Lynch syndrome, including identifying undiagnosed patients, surveillance of those with established Lynch syndrome or screening family members, in addition to treating patients with Lynch syndrome in whom upper tract urothelial carcinoma develops. We sought to increase awareness in the urological community about Lynch syndrome and provide some guidance where little currently exists. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement we reviewed the available published literature and guidelines from 1998 to 2014 on Lynch syndrome and its association with upper tract urothelial carcinoma. Recommendations based on the literature and the consensus of expert opinion are provided. No randomized or prospective study has been done to evaluate Lynch syndrome in the setting of urological cancer. All data were based on retrospective studies. Lynch syndrome is an autosomal dominant genetic disease caused by germline mutations in 4 mismatch repair genes, leading to the accumulation of DNA errors in microsatellite regions. Upper tract urothelial carcinoma develops in up to 28% of patients with known Lynch syndrome. The diagnosis of Lynch syndrome is established by clinical criteria, tumor tissue testing and genetic evaluation. Urologists should suspect Lynch syndrome when a patient with upper tract urothelial carcinoma presents before age 60 years or meets the 3-2-1 rule. Screening patients with Lynch syndrome for upper tract urothelial carcinoma presents a particular challenge. While no ideal screening test exists, at a minimum routine urinalysis is recommended using the American Urological Association guideline of 3 or more red blood cells per high power field as a trigger for further assessment. Upper tract urothelial carcinoma associated with Lynch syndrome presents at a younger age than sporadic upper tract urothelial carcinoma. It shows a higher proportion of ureteral cancer with a female preponderance and a possible predisposition to bilaterality. Lynch syndrome is a common genetic disease that is an underappreciated cause of upper tract urothelial carcinoma and possibly other urological cancers. Optimal screening for upper tract urothelial carcinoma in this population is unclear. Further study is needed to identify the best screening test and interval of testing. Urologists should consider routine tissue testing of de novo upper tract urothelial carcinoma tissue in individuals at risk. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Coulon, A.; Fitzpatrick, J.W.; Bowman, R.; Stith, B.M.; Makarewich, C.A.; Stenzler, L.M.; Lovette, I.J.
2008-01-01
The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations.
Sinnott, Jennifer A; Cai, Fiona; Yu, Sheng; Hejblum, Boris P; Hong, Chuan; Kohane, Isaac S; Liao, Katherine P
2018-05-17
Standard approaches for large scale phenotypic screens using electronic health record (EHR) data apply thresholds, such as ≥2 diagnosis codes, to define subjects as having a phenotype. However, the variation in the accuracy of diagnosis codes can impair the power of such screens. Our objective was to develop and evaluate an approach which converts diagnosis codes into a probability of a phenotype (PheProb). We hypothesized that this alternate approach for defining phenotypes would improve power for genetic association studies. The PheProb approach employs unsupervised clustering to separate patients into 2 groups based on diagnosis codes. Subjects are assigned a probability of having the phenotype based on the number of diagnosis codes. This approach was developed using simulated EHR data and tested in a real world EHR cohort. In the latter, we tested the association between low density lipoprotein cholesterol (LDL-C) genetic risk alleles known for association with hyperlipidemia and hyperlipidemia codes (ICD-9 272.x). PheProb and thresholding approaches were compared. Among n = 1462 subjects in the real world EHR cohort, the threshold-based p-values for association between the genetic risk score (GRS) and hyperlipidemia were 0.126 (≥1 code), 0.123 (≥2 codes), and 0.142 (≥3 codes). The PheProb approach produced the expected significant association between the GRS and hyperlipidemia: p = .001. PheProb improves statistical power for association studies relative to standard thresholding approaches by leveraging information about the phenotype in the billing code counts. The PheProb approach has direct applications where efficient approaches are required, such as in Phenome-Wide Association Studies.
Aleksandrova, N V; Shubina, E S; Ekimov, A N; Kodyleva, T A; Mukosey, I S; Makarova, N P; Kulakova, E V; Levkov, L A; Barkov, I Yu; Trofimov, D Yu; Sukhikh, G T
2017-01-01
Aneuploidies as quantitative chromosome abnormalities are a main cause of failed development of morphologically normal embryos, implantation failures, and early reproductive losses. Preimplantation genetic screening (PGS) allows a preselection of embryos with a normal karyotype, thus increasing the implantation rate and reducing the frequency of early pregnancy loss after IVF. Modern PGS technologies are based on a genome-wide analysis of the embryo. The first pilot study in Russia was performed to assess the possibility of using semiconductor new-generation sequencing (NGS) as a PGS method. NGS data were collected for 38 biopsied embryos and compared with the data from array comparative genomic hybridization (array-CGH). The concordance between the NGS and array-CGH data was 94.8%. Two samples showed the karyotype 47,XXY by array-CGH and a normal karyotype by NGS. The discrepancies may be explained by loss of efficiency of array-CGH amplicon labeling.
Sandoval, Imelda T; Manos, Elizabeth J; Van Wagoner, Ryan M; Delacruz, Richard Glenn C; Edes, Kornelia; Winge, Dennis R; Ireland, Chris M; Jones, David A
2013-06-20
A major hurdle in using complex systems for drug screening is the difficulty of defining the mechanistic targets of small molecules. The zebrafish provides an excellent model system for juxtaposing developmental phenotypes with mechanism discovery using organism genetics. We carried out a phenotype-based screen of uncharacterized small molecules in zebrafish that produced a variety of chemically induced phenotypes with potential genetic parallels. Specifically, kalihinol F caused an undulated notochord, defects in pigment formation, hematopoiesis, and neural development. These phenotypes were strikingly similar to the zebrafish mutant, calamity, an established model of copper deficiency. Further studies into the mechanism of action of kalihinol F revealed a copper-chelating activity. Our data support this mechanism of action for kalihinol F and the utility of zebrafish as an effective system for identifying therapeutic and target pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cost sharing and hereditary cancer risk: predictors of willingness-to-pay for genetic testing.
Matro, Jennifer M; Ruth, Karen J; Wong, Yu-Ning; McCully, Katen C; Rybak, Christina M; Meropol, Neal J; Hall, Michael J
2014-12-01
Increasing use of predictive genetic testing to gauge hereditary cancer risk has been paralleled by rising cost-sharing practices. Little is known about how demographic and psychosocial factors may influence individuals' willingness-to-pay for genetic testing. The Gastrointestinal Tumor Risk Assessment Program Registry includes individuals presenting for genetic risk assessment based on personal/family cancer history. Participants complete a baseline survey assessing cancer history and psychosocial items. Willingness-to-pay items include intention for: genetic testing only if paid by insurance; testing with self-pay; and amount willing-to-pay ($25-$2,000). Multivariable models examined predictors of willingness-to-pay out-of-pocket (versus only if paid by insurance) and willingness-to-pay a smaller versus larger sum (≤$200 vs. ≥$500). All statistical tests are two-sided (α = 0.05). Of 385 evaluable participants, a minority (42%) had a personal cancer history, while 56% had ≥1 first-degree relative with colorectal cancer. Overall, 21.3% were willing to have testing only if paid by insurance, and 78.7% were willing-to-pay. Predictors of willingness-to-pay were: 1) concern for positive result; 2) confidence to control cancer risk; 3) fewer perceived barriers to colorectal cancer screening; 4) benefit of testing to guide screening (all p < 0.05). Subjects willing-to-pay a higher amount were male, more educated, had greater cancer worry, fewer relatives with colorectal cancer, and more positive attitudes toward genetic testing (all p < 0.05). Individuals seeking risk assessment are willing-to-pay out-of-pocket for genetic testing, and anticipate benefits to reducing cancer risk. Identifying factors associated with willingness-to-pay for genetic services is increasingly important as testing is integrated into routine cancer care.
Cost sharing and hereditary cancer risk: Predictors of willingness-to-pay for genetic testing
Matro, Jennifer M.; Ruth, Karen J.; Wong, Yu-Ning; McCully, Katen C.; Rybak, Christina M.; Meropol, Neal J.; Hall, Michael J.
2015-01-01
Increasing use of predictive genetic testing to gauge hereditary cancer risk has been paralleled by rising cost-sharing practices. Little is known about how demographic and psychosocial factors may influence individuals’ willingness-to-pay for genetic testing. The Gastrointestinal Tumor Risk Assessment Program Registry includes individuals presenting for genetic risk assessment based on personal/family cancer history. Participants complete a baseline survey assessing cancer history and psychosocial items. Willingness-to-pay items include intention for: genetic testing only if paid by insurance; testing with self-pay; and amount willing-to-pay ($25–$2000). Multivariable models examined predictors of willingness-to-pay out-of-pocket (versus only if paid by insurance) and willingness-to-pay a smaller versus larger sum (≤200 vs. ≥$500). All statistical tests are two-sided (α=0.05). Of 385 evaluable participants, a minority (42%) had a personal cancer history, while 56% had ≥1 first-degree relative with colorectal cancer. Overall, 21.3% were willing to have testing only if paid by insurance, and 78.7% were willing-to-pay. Predictors of willingness-to-pay were: 1) concern for positive result; 2) confidence to control cancer risk; 3) fewer perceived barriers to colorectal cancer screening; 4) benefit of testing to guide screening (all p<0.05). Subjects willing-to-pay a higher amount were male, more educated, had greater cancer worry, fewer relatives with colorectal cancer, and more positive attitudes toward genetic testing (all p<0.05). Individuals seeking risk assessment are willing-to-pay out-of-pocket for genetic testing, and anticipate benefits to reducing cancer risk. Identifying factors associated with willingness-to-pay for genetic services is increasingly important as testing is integrated into routine cancer care. PMID:24794065
Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth
2010-01-01
Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.
Lawson, Caitlin E; Attard, Thomas M; Dai, Hongying; Septer, Seth
2017-06-01
Familial adenomatous polyposis (FAP) is a cancer predisposition syndrome that causes early-onset polyposis and is associated with an increased risk for hepatoblastoma. There is currently a lack of consensus on when to order APC (adenomatous polyposis coli) gene testing or implement surveillance for hepatoblastoma. An online questionnaire was completed by 62 genetic counselors to capture their current practices regarding these questions. Extracolonic findings associated with FAP that were most likely to prompt APC testing in an otherwise asymptomatic 10 year-old child with a negative family history were multiple desmoid tumors, congenital hypertrophy of the retinal pigment epithelium (CHRPE), jaw osteomas, and hepatoblastoma. For hepatoblastoma screening, the majority did recommend this in children less than age five years with known APC mutations. An interval of every 3-6 months was most commonly suggested; however, responses extended to screening on a less than annual basis. These results highlight the need for further investigation into why some genetic counselors do not recommend APC testing in young at-risk children and what factors influence views about the ideal age and indication for APC testing. Studies of these issues would help to define the best clinical practice model for genetic testing and hepatoblastoma screening in pediatric patients with FAP.
... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...
Miller, A M; Savinelli, E A; Couture, S M; Hannigan, G M; Han, Z; Selden, R F; Treco, D A
1993-01-01
Recombination walking is based on the genetic selection of specific human clones from a yeast artificial chromosome (YAC) library by homologous recombination. The desired clone is selected from a pooled (unordered) YAC library, eliminating labor-intensive steps typically used in organizing and maintaining ordered YAC libraries. Recombination walking represents an efficient approach to library screening and is well suited for chromosome-walking approaches to the isolation of genes associated with common diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8367472
Genomics of mucoepidermoid and adenoid cystic carcinomas.
Yan, Kenneth; Yesensky, Jessica; Hasina, Rifat; Agrawal, Nishant
2018-02-01
To report on the current state of the literature on the genetics of mucoepidermoid and adenoid cystic carcinomas of the salivary glands with a focus on genomic screens and recently discovered genetic translocations. A PubMed based literature review was performed to query for genetics related basic science and preclinical studies about mucoepidermoid and adenoid cystic carcinomas of the salivary glands. Genetic translocations between CRTC1 and MAML2 in mucoepidermoid carcinoma and between MYB and NFIB in adenoid cystic carcinoma have been recently discovered and have therapeutic implications. Key signaling pathways such as the EGFR pathway in mucoepidermoid carcinoma and the Notch pathway, chromatin regulation, and c-kit mediated epithelial-mesenchymal transitions in adenoid cystic carcinoma have recently been elucidated, pointing to possible therapeutic targets in both cancers.
Genomics of mucoepidermoid and adenoid cystic carcinomas
Yan, Kenneth; Yesensky, Jessica; Hasina, Rifat
2018-01-01
Objective To report on the current state of the literature on the genetics of mucoepidermoid and adenoid cystic carcinomas of the salivary glands with a focus on genomic screens and recently discovered genetic translocations. Methods A PubMed based literature review was performed to query for genetics related basic science and preclinical studies about mucoepidermoid and adenoid cystic carcinomas of the salivary glands. Results and conclusions Genetic translocations between CRTC1 and MAML2 in mucoepidermoid carcinoma and between MYB and NFIB in adenoid cystic carcinoma have been recently discovered and have therapeutic implications. Key signaling pathways such as the EGFR pathway in mucoepidermoid carcinoma and the Notch pathway, chromatin regulation, and c‐kit mediated epithelial‐mesenchymal transitions in adenoid cystic carcinoma have recently been elucidated, pointing to possible therapeutic targets in both cancers. PMID:29492469
Polygenic susceptibility to testicular cancer: implications for personalised health care.
Litchfield, Kevin; Mitchell, Jonathan S; Shipley, Janet; Huddart, Robert; Rajpert-De Meyts, Ewa; Skakkebæk, Niels E; Houlston, Richard S; Turnbull, Clare
2015-11-17
The increasing incidence of testicular germ cell tumour (TGCT) combined with its strong heritable basis suggests that stratified screening for the early detection of TGCT may be clinically useful. We modelled the efficiency of such a personalised screening approach, based on genetic risk profiling in combination with other diagnostic tools. We compared the number of cases potentially detectable in the population under a number of screening models. The polygenic risk scoring (PRS) model was assumed to have a log-normal relative risk distribution across the 19 currently known TGCT susceptibility variants. The diagnostic performance of testicular biopsy and non-invasive semen analysis was also assessed, within a simulated combined screening programme. The area under the curve for the TGCT PRS model was 0.72 with individuals in the top 1% of the PRS having a nine-fold increased TGCT risk compared with the population median. Results from population-screening simulations only achieved a maximal positive predictive value (PPV) of 60%, highlighting broader clinical factors that challenge such strategies, not least the rare nature of TGCT. In terms of future improvements, heritability estimates suggest that a significant number of additional genetic risk factors for TGCT remain to be discovered, identification of which would potentially yield improvement of the PPV to 80-90%. While personalised screening models may offer enhanced TGCT risk discrimination, presently the case for population-level testing is not compelling. However, future advances, such as more routine generation of whole genome data is likely to alter the landscape. More targeted screening programs may plausibly then offer clinical benefit, particularly given the significant survivorship issues associated with the successful treatment of TGCT.
Looking at genes in the workplace.
Holden, C
1982-07-23
The Office of Technology Assessment recently testified at a congressional hearing that many corporations are considering genetic screening of employees. Biochemical genetic screening of "susceptible" workers is aimed at identifying individuals unsuitable for specific jobs, and cytogenic monitoring involves the testing of groups of workers for chromosome aberrations that might occur as a result of exposure to chemicals. The apparent surge of interest in such testing requires that several legal, ethical, and policy issues be addressed, including the potential for discrimination, the misuse of screening as an alternative to cleaning up the workplace, the predictive capability of the tests, and the necessity for the development of guidelines for screening programs.
[Ethical aspects of disclosing information on prenatal screening for Down's syndrome].
Tóth, Adél; Szabó, János
2005-02-06
Giving detailed information on prenatal screening for Down's syndrome is considered as paramount since this medical procedure intends to enhance the patient's self-governance in reproductive issues. Not only the respect for autonomy, but also the increased maternal anxiety and the reproductive decisions following the positive test result demand from the genetic professional to offer the test through genetic counselling. The counsellor's awareness about the expectations of pregnant women and the clarification of her own attitude concerning the screening can contribute to the effectiveness of counselling. The content of information embraces the technical aspects of screening and its consequences, like the description of Down's syndrome, the method of screening, the way of risk assessment, the detection rate, the false positive and false negative test results, the diagnostic procedures, and the termination of pregnancy. Written information leaflets should be completed by personal communication as the combination of these two forms has proved to be the most useful. The process of consultation is influenced by the communication skill of the genetic professional and the information seeking activity of the patient, so doctors should be trained to communicate better and patients should be encouraged to get more information about the screening.
Colorectal Cancer in Iran: Molecular Epidemiology and Screening Strategies
Dolatkhah, Roya; Somi, Mohammad Hossein; Bonyadi, Mortaza Jabbarpour; Asvadi Kermani, Iraj; Farassati, Faris; Dastgiri, Saeed
2015-01-01
Purpose. The increasing incidence of colorectal cancer (CRC) in the past three decades in Iran has made it a major public health burden. This study aimed to report its epidemiologic features, molecular genetic aspects, survival, heredity, and screening pattern in Iran. Methods. A comprehensive literature review was conducted to identify the relevant published articles. We used medical subject headings, including colorectal cancer, molecular genetics, KRAS and BRAF mutations, screening, survival, epidemiologic study, and Iran. Results. Age standardized incidence rate of Iranian CRCs was 11.6 and 10.5 for men and women, respectively. Overall five-year survival rate was 41%, and the proportion of CRC among the younger age group was higher than that of western countries. Depending on ethnicity, geographical region, dietary, and genetic predisposition, mutation genes were considerably diverse and distinct among CRCs across Iran. The high occurrence of CRC in records of relatives of CRC patients showed that family history of CRC was more common among young CRCs. Conclusion. Appropriate screening strategies for CRC which is amenable to early detection through screening, especially in relatives of CRCs, should be considered as the first step in CRC screening programs. PMID:25685149
C.D. Nelson; Thomas L. Kubisiak; M. Stine; W.L. Nance
1994-01-01
Eight megagametophyte DNA samples from a single longleaf pine (Pinus palustris Mill.) tree were used to screen 576 oligonucleotide primers for random amplified polymorphic DNA (RAPD) fragments. Primers amplifying repeatable polymorphic fragments were further characterized within a sample of 72 megagametophytes from the same tree. Fragments...
Gille, Johan J. P.; Floor, Karijn; Kerkhoven, Lianne; Ameziane, Najim; Joenje, Hans; de Winter, Johan P.
2012-01-01
Fanconi anemia (FA) is a rare inherited disease characterized by developmental defects, short stature, bone marrow failure, and a high risk of malignancies. FA is heterogeneous: 15 genetic subtypes have been distinguished so far. A clinical diagnosis of FA needs to be confirmed by testing cells for sensitivity to cross-linking agents in a chromosomal breakage test. As a second step, DNA testing can be employed to elucidate the genetic subtype of the patient and to identify the familial mutations. This knowledge allows preimplantation genetic diagnosis (PGD) and enables prenatal DNA testing in future pregnancies. Although simultaneous testing of all FA genes by next generation sequencing will be possible in the near future, this technique will not be available immediately for all laboratories. In addition, in populations with strong founder mutations, a limited test using Sanger sequencing and MLPA will be a cost-effective alternative. We describe a strategy and optimized conditions for the screening of FANCA, FANCB, FANCC, FANCE, FANCF, and FANCG and present the results obtained in a cohort of 54 patients referred to our diagnostic service since 2008. In addition, the follow up with respect to genetic counseling and carrier screening in the families is discussed. PMID:22778927
Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A
2016-06-01
Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3' end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. Copyright © 2016 Larson et al.
Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A.
2016-01-01
Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. PMID:27172183
Genomic Analyses of Patients With Unexplained Early-Onset Scoliosis.
Gao, Xiaochong; Gotway, Garrett; Rathjen, Karl; Johnston, Charles; Sparagana, Steven; Wise, Carol A
2014-09-01
To test for rare genetic mutations, a cohort of patients with unexplained early-onset scoliosis (EOS) was screened using high-density microarray genotyping. A cohort of patients with adolescent idiopathic scoliosis (AIS) was similarly screened and the results were compared. Patients with scoliosis in infancy or early childhood (EOS) are at high risk for progressive deformity and associated problems including respiratory compromise. Early-onset scoliosis is frequently associated with genetic disorders but many patients present with nonspecific clinical features and without an associated diagnosis. The authors hypothesized that EOS in these patients may be caused by rare genetic mutations detectable by next-generation genomic methods. The researchers identified 24 patients with unexplained EOS from pediatric orthopedic clinics. They genotyped them, along with 39 connecting family members, using the Illumina OmniExpress-12, version 1.0 beadchip. Resulting genotypes were analyzed for chromosomal changes, specifically copy number variation and absence of heterozygosity. They screened 482 adolescent idiopathic scoliosis (AIS) patients and 744 healthy controls, who were similarly genotyped with the same beadchip, for chromosomal changes identified in the EOS cohort. Copy number variation and absence of heterozygosity analyses revealed a genetic diagnosis of chromosome 15q24 microdeletion syndrome in 1 patient and maternal uniparental disomy of chromosome 14 in a second one. Prior genetic testing and clinical evaluations had been negative in both cases. A large novel chromosome 10 deletion was likely causal in a third EOS patient. These mutations identified in the EOS patients were absent in AIS patients and controls, and thus were not associated with AIS or found in asymptomatic individuals. These data underscore the usefulness of updated genetic evaluations including high-density microarray-based genotyping and other next-generation methods in patients with unexplained EOS, even when prior genetic studies were negative. These data also suggest the intriguing possibility that other mutations detectable by whole genome sequencing, as well as epigenetic effects, await discovery in the EOS population. Copyright © 2014 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Genetics of pancreatic cancer and implications for therapy.
Bhosale, Priya; Cox, Veronica; Faria, Silvana; Javadi, Sanaz; Viswanathan, Chitra; Koay, Eugene; Tamm, Eric
2018-02-01
Pancreatic cancer is a highly lethal disease with a dismal 5-year prognosis. Knowledge of its genetics may help in identifying new methods for patient screening, and cancer treatment. In this review, we will describe the most common mutations responsible for the genesis of pancreatic cancer and their impact on screening, patterns of disease progression, and therapy.
Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.
2013-01-01
A major challenge of the postgenomic era is to understand how human genes function together in normal and disease states. In microorganisms, high-density genetic interaction (GI) maps are a powerful tool to elucidate gene functions and pathways. We have developed an integrated methodology based on pooled shRNA screening in mammalian cells for genome-wide identification of genes with relevant phenotypes and systematic mapping of all GIs among them. We recently demonstrated the potential of this approach in an application to pathways controlling the susceptibility of human cells to the toxin ricin. Here we present the complete quantitative framework underlying our strategy, including experimental design, derivation of quantitative phenotypes from pooled screens, robust identification of hit genes using ultra-complex shRNA libraries, parallel measurement of tens of thousands of GIs from a single double-shRNA experiment, and construction of GI maps. We describe the general applicability of our strategy. Our pooled approach enables rapid screening of the same shRNA library in different cell lines and under different conditions to determine a range of different phenotypes. We illustrate this strategy here for single- and double-shRNA libraries. We compare the roles of genes for susceptibility to ricin and Shiga toxin in different human cell lines and reveal both toxin-specific and cell line-specific pathways. We also present GI maps based on growth and ricin-resistance phenotypes, and we demonstrate how such a comparative GI mapping strategy enables functional dissection of physical complexes and context-dependent pathways. PMID:23739767
Kim, Heon Seok; Lee, Kyungjin; Bae, Sangsu; Park, Jeongbin; Lee, Chong-Kyo; Kim, Meehyein; Kim, Eunji; Kim, Minju; Kim, Seokjoong; Kim, Chonsaeng; Kim, Jin-Soo
2017-06-23
Several groups have used genome-wide libraries of lentiviruses encoding small guide RNAs (sgRNAs) for genetic screens. In most cases, sgRNA expression cassettes are integrated into cells by using lentiviruses, and target genes are statistically estimated by the readout of sgRNA sequences after targeted sequencing. We present a new virus-free method for human gene knockout screens using a genome-wide library of CRISPR/Cas9 sgRNAs based on plasmids and target gene identification via whole-genome sequencing (WGS) confirmation of authentic mutations rather than statistical estimation through targeted amplicon sequencing. We used 30,840 pairs of individually synthesized oligonucleotides to construct the genome-scale sgRNA library, collectively targeting 10,280 human genes ( i.e. three sgRNAs per gene). These plasmid libraries were co-transfected with a Cas9-expression plasmid into human cells, which were then treated with cytotoxic drugs or viruses. Only cells lacking key factors essential for cytotoxic drug metabolism or viral infection were able to survive. Genomic DNA isolated from cells that survived these challenges was subjected to WGS to directly identify CRISPR/Cas9-mediated causal mutations essential for cell survival. With this approach, we were able to identify known and novel genes essential for viral infection in human cells. We propose that genome-wide sgRNA screens based on plasmids coupled with WGS are powerful tools for forward genetics studies and drug target discovery. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Genetic tools for the investigation of Roseobacter clade bacteria
2009-01-01
Background The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools. Results Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T. Conclusion A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria. PMID:20021642
Neuroimaging in psychiatric pharmacogenetics research: the promise and pitfalls.
Falcone, Mary; Smith, Ryan M; Chenoweth, Meghan J; Bhattacharjee, Abesh Kumar; Kelsoe, John R; Tyndale, Rachel F; Lerman, Caryn
2013-11-01
The integration of research on neuroimaging and pharmacogenetics holds promise for improving treatment for neuropsychiatric conditions. Neuroimaging may provide a more sensitive early measure of treatment response in genetically defined patient groups, and could facilitate development of novel therapies based on an improved understanding of pathogenic mechanisms underlying pharmacogenetic associations. This review summarizes progress in efforts to incorporate neuroimaging into genetics and treatment research on major psychiatric disorders, such as schizophrenia, major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, and addiction. Methodological challenges include: performing genetic analyses in small study populations used in imaging studies; inclusion of patients with psychiatric comorbidities; and the extensive variability across studies in neuroimaging protocols, neurobehavioral task probes, and analytic strategies. Moreover, few studies use pharmacogenetic designs that permit testing of genotype × drug effects. As a result of these limitations, few findings have been fully replicated. Future studies that pre-screen participants for genetic variants selected a priori based on drug metabolism and targets have the greatest potential to advance the science and practice of psychiatric treatment.
Planes, Serge; Lemer, Sarah
2011-01-01
Studying the movement of individuals in the wild has always been a challenge in ecology. However, estimating such movement is essential in life sciences as it is the base-line for evaluating connectivity, a major component in developing management and conservation plans. Furthermore, movement, or migration, is an essential parameter in population genetics, as it directly affects genetic differentiation. The development of highly variable markers has allowed genetic discrimination between individuals within populations and at larger scales, and the availability of high-throughput technologies means that many samples and hence many individuals can be screened. These advances mean that we can now use genetic identification for tracking individuals, and hence follow both survival and reproductive output through the life cycle. The paper by Morrissey & Ferguson (2011, this issue) is a demonstration of this new capability, as authors were able to infer the movement of salmonid fish initially captured as juveniles, and later as reproductively mature adults.
What's New with Newborn Screening
ERIC Educational Resources Information Center
Exceptional Parent, 2008
2008-01-01
Newborn screening is the process of testing and screening newborns shortly after birth for certain, potentially dangerous, conditions and/or impairments--conditions that include everything from inborn errors of metabolism and other genetic disorders to hearing impairment. Early detection through newborn screening is paramount, often allowing the…
Genomics education in nursing in the United States.
Calzone, Kathleen A; Jenkins, Jean
2011-01-01
Discovery of the genetics/genomics underpinnings of health, risk for disease, sickness, and treatment response have the prospects of improving recognition and management of at risk individuals; improving screening, prognostics, and therapeutic decision-making; expanding targeted therapies; and improving the accuracy of medication dosing and selection based on drug metabolism genetic variation. Thus, genetics/genomics science, information, and technologies influence the entire health care continuum and are fundamental to the nursing profession. Translating the benefits of genetics and genomics into health care requires that nurses are knowledgeable about and able to integrate this information and technology into their practice. This chapter explores the development of essential nursing competences in genetics and genomics and outcome indicators. Included is an overview of projects aimed at measuring and/or supporting adoption and integration of such competencies. Included as well is an update reviewing current evidence of the state of genomics nursing education in the United States and recommendations for next steps.
AGO Austria recommendation on screening and diagnosis of Lynch syndrome (LS).
Zeimet, Alain G; Mori, Harald; Petru, Edgar; Polterauer, Stephan; Reinthaller, Alexander; Schauer, Christian; Scholl-Firon, Tonja; Singer, Christian; Wimmer, Katharina; Zschocke, Johannes; Marth, Christian
2017-07-01
This manuscript reports the consensus recommendations on screening and diagnosis of Lynch syndrome (LS) in patients with endometrial or ovarian cancer as well as on possible preventive measures in effectively LS-diagnosed women. The recommendations are issued by the Austrian Arbeitsgemeinschaft für Gynäkologische Onkologie (AGO) of the Österreichischen Gesellschaft für Gynäkologie und Geburtshilfe (OEGGG) after consultation of the most recent and relevant literature and following deliberation by the Genetic Task-Force convoked May, 2015 by the AGO Council. The Austrian AGO recommends immunohistochemical tissue screening for type-I and type-II endometrial cancers in all patients below the age of 70 years, and for all endometrioid and clear-cell ovarian cancers independently of the patient's age. If needed immunohistochemistry should be complemented by tissue MLH1 promotor hypermethylation testing and/or microsatellite instability (MSI) analysis. The diagnosis LS requires confirmation through identification of a germline mutation by a molecular genetic examination in the mismatch repair genes using the patient's blood. This should be performed without preceding tissue screening when in LS-associated cancer patients the family history fulfills the Amsterdam II or the revised Bethesda criteria. In LS-diagnosed women, the age for prophylactic surgery should be set flexibly based on an informed consent. Regarding the monitoring of these women, chemo-preventive measures as well as screening procedures either to avoid or to early detect LS-related tumors are discussed with a special light on their specific limitations.
Cragun, Deborah; DeBate, Rita D.; Vadaparampil, Susan T.; Baldwin, Julie; Hampel, Heather; Pal, Tuya
2014-01-01
Purpose Universal tumor screening (UTS) for all colorectal cancer (CRC) patients can improve the identification of Lynch syndrome, the most common cause of hereditary CRC. This multiple-case study explored how variability in UTS procedures influence patient follow-through (PF) with germline testing after a screen-positive result. Methods Data were obtained through web-based surveys and telephone interviews with institutional informants. Institutions were categorized as Low-PF (≤10% underwent germline testing), Medium-PF (11–40%), or High-PF (>40%). To identify implementation procedures (i.e., conditions) unique High-PF institutions, qualitative comparative analysis was performed. Results Twenty-one informants from fifteen institutions completed surveys and/or interviews. Conditions present among all five High-PF institutions included: 1) disclosure of screen-positive results to patients by genetic counselors (GCs); and 2) GCs either facilitate physician referrals to genetics or eliminated the need for referrals. Although both of these High-PF conditions were present among two Medium-PF institutions, automatic reflex testing was lacking and difficulty contacting screen-positive patients was a barrier. The three remaining Medium-PF and five Low-PF institutions lacked High-PF conditions. Conclusion Methods for streamlining UTS procedures, incorporating a high level of involvement of GCs in results tracking and communication, and reducing barriers to patient contact are reviewed within a broader discussion on maximizing the effectiveness and public health impact of UTS. PMID:24651603
McDonough, Janet; Goudsouzian, Lara K; Papaj, Agllai; Maceli, Ashley R; Klepac-Ceraj, Vanja; Peterson, Celeste N
2017-09-01
Course-based undergraduate research experiences (CUREs) have been shown to increase student retention and learning in the biological sciences. Most CURES cover only one aspect of gene regulation, such as transcriptional control. Here we present a new inquiry-based lab that engages understanding of gene expression from multiple perspectives. Students carry out a forward genetic screen to identify regulators of the stationary phase master regulator RpoS in the model organism Escherichia coli and then use a series of reporter fusions to determine if the regulation is at the level of transcription or the post-transcription level. This easy-to-implement course has been run both as a 9-week long project and a condensed 5-6 week version in three different schools and types of courses. A majority of the genes found in the screen are novel, thus giving students the opportunity to contribute to original findings to the field. Assessments of this CURE show student gains in learning in many knowledge areas. In addition, attitudinal surveys suggest the students are enthusiastic about the screen and their learning about gene regulation. In summary, this lab would be an appropriate addition to an intermediate or advanced level Molecular Biology, Genetics, or Microbiology curriculum. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):449-458, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Ethical issues in pediatric genetic testing and screening.
Botkin, Jeffrey R
2016-12-01
Developments in genetic test technologies enable a detailed analysis of the genomes of individuals across the range of human development from embryos to adults with increased precision and lower cost. These powerful technologies raise a number of ethical issues in pediatrics, primarily because of the frequent lack of clinical utility of genetic information, the generation of secondary results and questions over the proper scope of parental authority for testing. Several professional organizations in the fields of genetics and pediatrics have published new guidance on the ethical, legal, and policy issues relevant to genetic testing in children. The roles of predictive testing for adult-onset conditions, the management of secondary findings and the role of informed consent for newborn screening remain controversial. However, research and experience are not demonstrating serious adverse psychosocial impacts from genetic testing and screening in children. The use of these technologies is expanding with the notion that the personal utility of test results, rather than clinical utility, may be sufficient to justify testing. The use of microarray and genome sequencing technologies is expanding in the care of children. More deference to parental decision-making is evolving in contexts wherein information and counseling can be made readily available.
Foo, Yong-Lin; Chow, Julie Chi; Lai, Ming-Chi; Tsai, Wen-Hui; Tung, Li-Chen; Kuo, Mei-Chin; Lin, Shio-Jean
2015-08-01
This review article aims to introduce the screening and referral network of genetic evaluation for children with developmental delay in Taiwan. For these children, integrated systems provide services from the medical, educational, and social welfare sectors. All cities and counties in Taiwan have established a network for screening, detection, referral, evaluation, and intervention services. Increased awareness improves early detection and intervention. There remains a gap between supply and demand, especially with regard to financial resources and professional manpower. Genetic etiology has a major role in prenatal causes of developmental delay. A summary of reports on some related genetic disorders in the Taiwanese population is included in this review. Genetic diagnosis allows counseling with regard to recurrence risk and prevention. Networking with neonatal screening, laboratory diagnosis, genetic counseling, and orphan drugs logistics systems can provide effective treatment for patients. In Taiwan, several laboratories provide genetic tests for clinical diagnosis. Accessibility to advanced expensive tests such as gene chips or whole exome sequencing is limited because of funding problems; however, the service system in Taiwan can still operate in a relatively cost-effective manner. This experience in Taiwan may serve as a reference for other countries. Copyright © 2014. Published by Elsevier B.V.
Dey, Arup; Wall, Daniel
2014-12-01
Upon physical contact with sibling cells, myxobacteria transiently fuse their outer membranes (OMs) and exchange OM proteins and lipids. From previous work, TraA and TraB were identified to be essential factors for OM exchange (OME) in donor and recipient cells. To define the genetic complexity of OME, we carried out a comprehensive forward genetic screen. The screen was based on the observation that Myxococcus xanthus nonmotile cells, by a Tra-dependent mechanism, block swarm expansion of motile cells when mixed. Thus, mutants defective in OME or a downstream responsive pathway were readily identified as escape flares from mixed inocula seeded on agar. This screen was surprisingly powerful, as we found >50 mutants defective in OME. Importantly, all of the mutations mapped to the traAB operon, suggesting that there may be few, if any, proteins besides TraA and TraB directly required for OME. We also found a second and phenotypically different class of mutants that exhibited wild-type OME but were defective in a responsive pathway. This pathway is postulated to control inner membrane homeostasis by covalently attaching amino acids to phospholipids. The identified proteins are homologous to the Staphylococcus aureus MprF protein, which is involved in membrane adaptation and antibiotic resistance. Interestingly, we also found that a small number of nonmotile cells were sufficient to block the swarming behavior of a large gliding-proficient population. This result suggests that an OME-derived signal could be amplified from a few nonmotile producers to act on many responder cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duster, T.
The proliferation of genetic screening and testing is requiring increasing numbers of Americans to integrate genetic knowledge and interventions into their family life and personal experience. This study examines the social processes that occur as families at risk for two of the most common autosomal recessive diseases, sickle cell disease (SC) and cystic fibrosis (CF), encounter genetic testing. Each of these diseases is found primarily in a different ethnic/racial group (CF in Americans of North European descent and SC in Americans of West African descent). This has permitted them to have a certain additional lens on the role of culturemore » in integrating genetic testing into family life and reproductive planning. A third type of genetic disorder, the thalassemias was added to the sample in order to extent the comparative frame and to include other ethnic and racial groups.« less
Harper, J C; Aittomäki, K; Borry, P; Cornel, M C; de Wert, G; Dondorp, W; Geraedts, J; Gianaroli, L; Ketterson, K; Liebaers, I; Lundin, K; Mertes, H; Morris, M; Pennings, G; Sermon, K; Spits, C; Soini, S; van Montfoort, A P A; Veiga, A; Vermeesch, J R; Viville, S; Macek, M
2018-01-01
Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.
Genetic Issues in Mental Retardation, 1996-1997.
ERIC Educational Resources Information Center
Genetic Issues in Mental Retardation, 1996
1996-01-01
This document consists of the first six issues of a newsletter, which discusses current knowledge about and concerns related to genetics and mental retardation. The second issue addresses the problem of genetic discrimination. The third issue considers genetic testing, screening, and counseling. The fourth issue addresses genetic privacy issues.…
Genetic Testing in Pancreatic Ductal Adenocarcinoma: Implications for Prevention and Treatment.
Peters, Mary Linton B; Tseng, Jennifer F; Miksad, Rebecca A
2016-07-01
This article reviews the progress to date and future directions for investigation of germline and somatic genetic testing to inform pancreatic adenocarcinoma (PDAC) treatment, screening, and prevention strategies. We searched PubMed to identify recent articles regarding genetic testing in pancreatic cancer, including both germline and somatic testing, and recent genome-wide association studies. References were specifically hand searched as relevant. Guidelines for testing and screening high-risk individuals were included. We searched clinicaltrials.gov to review the current landscape of active clinical trials. Approximately 10% of PDACs are associated with an identified germline mutation. Although germline mutations may inform treatment options and identify high-risk individuals for screening in other cancers, the data on PDAC are only now emerging. For example, poly adenosine diphosphate ribose polymerase (PARP) inhibitors are under investigation for BRCA-associated PDAC. Somatic mutations have also been identified in PDAC. However, current data are limited regarding treatment for potential PDAC somatic driver mutations. Although erlotinib is used in PDAC, its use is not targeted based on a tumor marker. Many tyrosine kinase inhibitors targeted toward potential driver mutations and critical pathways are in development, including BRAF/MEK, ALK, and CDK4/6. A consensus on screening strategies for individuals at high risk for PDAC is still evolving because of the relatively low prevalence of the disease, the relative invasiveness of endoscopic procedures often used as part of screening, and the lack of a clear survival benefit. Pancreatic cancer has been slower to move toward genomic testing, partially because of a lower prevalence of mutations and partially because of a limited effect of results on treatment choices outside a clinical trial. This is an area of active investigation, and we anticipate that there will be both preventive and therapeutic implications of driver mutations in the coming decade. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
Current and future role of genetic screening in gynecologic malignancies.
Ring, Kari L; Garcia, Christine; Thomas, Martha H; Modesitt, Susan C
2017-11-01
The world of hereditary cancers has seen exponential growth in recent years. While hereditary breast and ovarian cancer and Lynch syndrome account for the majority of mutations encountered by gynecologists, newly identified deleterious genetic mutations continue to be unearthed with their associated risks of malignancies. However, these advances in genetic cancer predispositions then force practitioners and their patients to confront the uncertainties of these less commonly identified mutations and the fact that there is limited evidence to guide them in expected cancer risk and appropriate risk-reduction strategies. Given the speed of information, it is imperative to involve cancer genetics experts when counseling these patients. In addition, coordination of screening and care in conjunction with specialty high-risk clinics, if available, allows for patients to have centralized management for multiple cancer risks under the guidance of physicians with experience counseling these patients. The objective of this review is to present the current literature regarding genetic mutations associated with gynecologic malignancies as well to propose screening and risk-reduction options for these high-risk patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Tan, Kaeling; Roberts, Anthony J.; Chonofsky, Mark; Egan, Martin J.; Reck-Peterson, Samara L.
2014-01-01
The timely delivery of membranous organelles and macromolecules to specific locations within the majority of eukaryotic cells depends on microtubule-based transport. Here we describe a screening method to identify mutations that have a critical effect on intracellular transport and its regulation using mutagenesis, multicolor-fluorescence microscopy, and multiplex genome sequencing. This screen exploits the filamentous fungus Aspergillus nidulans, which has many of the advantages of yeast molecular genetics but uses long-range microtubule-based transport in a manner more similar to metazoan cells. Using this method, we identified seven mutants that represent novel alleles of components of the intracellular transport machinery: specifically, kinesin-1, cytoplasmic dynein, and the dynein regulators Lis1 and dynactin. The two dynein mutations identified in our screen map to dynein's AAA+ catalytic core. Single-molecule studies reveal that both mutations reduce dynein's velocity in vitro. In vivo these mutants severely impair the distribution and velocity of endosomes, a known dynein cargo. In contrast, another dynein cargo, the nucleus, is positioned normally in these mutants. These results reveal that different dynein functions have distinct stringencies for motor performance. PMID:24403603
GenomeRNAi: a database for cell-based RNAi phenotypes.
Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael
2007-01-01
RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at http://rnai.dkfz.de.
GenomeRNAi: a database for cell-based RNAi phenotypes
Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael
2007-01-01
RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at PMID:17135194
Alvin, A; Kalaitzis, J A; Sasia, B; Neilan, B A
2016-05-01
To initiate a genetic and bioactivity-based screening programme of culturable endophytes to identify micro-organisms capable of producing bioactive polyketides and peptides. Fungal endophytes were isolated from flowers, leaves and roots of Rhoeo spathacea, revealing a community consisting of Colletotrichum sp., Fusarium sp., Guignardia sp., Phomopsis sp., Phoma sp. and Microdochium sp. Genetic screening showed that all isolates had polyketide synthase (PKS) genes and most had nonribosomal peptide synthetase (NRPS) genes. Ethyl acetate extracts of the fungal isolates exhibited antiproliferative activity against at least one of the seven bacterial and mycobacterial test strains. Nuclear Magnetic Resonance -guided fractionation of the crude extract from a Fusarium sp. strain which exhibited strong antiproliferative activity against Mycobacterium tuberculosis resulted in the isolation of the polyketide javanicin. This compound was active against Myco. tuberculosis (MIC = 25 μg ml(-1)) and Mycobacterium phlei (MIC = 50 μg ml(-1)). The medicinal plant R. spathacea hosts a variety of fungal endophytes capable of producing antibacterial and antimycobacterial compounds. There is a positive correlation between the presence of PKS and/or NRPS encoding genes in endophytes and the bioactivity of their respective organic extracts. This is the first report on the fungal endophytic diversity of R. spathacea, and the isolation of an antimycobacterial compound from the plant which has been traditionally used for the treatment of tuberculosis symptoms. © 2016 The Society for Applied Microbiology.
Potter, B K; Avard, D; Entwistle, V; Kennedy, C; Chakraborty, P; McGuire, M; Wilson, B J
2009-01-01
Prenatal/preconceptional and newborn screening programs have been a focus of recent policy debates that have included attention to ethical, legal, and social issues (ELSIs). In parallel, there has been an ongoing discussion about whether and how ELSIs may be addressed in health technology assessment (HTA). We conducted a knowledge synthesis study to explore both guidance and current practice regarding the consideration of ELSIs in HTA for prenatal/preconceptional and newborn screening. As the concluding activity for this project, we held a Canadian workshop to discuss the issues with a diverse group of stakeholders. Based on key workshop themes integrated with our study results, we suggest that population-based genetic screening programs may present particular types of ELSIs and that a public health ethics perspective is potentially highly relevant when considering them. We also suggest that approaches to addressing ELSIs in HTA for prenatal/preconceptional and newborn screening may need to be flexible enough to respond to diversity in HTA organizations, cultural values, stakeholder communities, and contextual factors. Finally, we highlight a need for transparency in the way that HTA producers move from evidence to conclusions and the ways in which screening policy decisions are made. Copyright © 2008 S. Karger AG, Basel.
Potter, B.K.; Avard, D.; Entwistle, V.; Kennedy, C.; Chakraborty, P.; McGuire, M.; Wilson, B.J.
2008-01-01
Prenatal/preconceptional and newborn screening programs have been a focus of recent policy debates that have included attention to ethical, legal, and social issues (ELSIs). In parallel, there has been an ongoing discussion about whether and how ELSIs may be addressed in health technology assessment (HTA). We conducted a knowledge synthesis study to explore both guidance and current practice regarding the consideration of ELSIs in HTA for prenatal/preconceptional and newborn screening. As the concluding activity for this project, we held a Canadian workshop to discuss the issues with a diverse group of stakeholders. Based on key workshop themes integrated with our study results, we suggest that population-based genetic screening programs may present particular types of ELSIs and that a public health ethics perspective is potentially highly relevant when considering them. We also suggest that approaches to addressing ELSIs in HTA for prenatal/preconceptional and newborn screening may need to be flexible enough to respond to diversity in HTA organizations, cultural values, stakeholder communities, and contextual factors. Finally, we highlight a need for transparency in the way that HTA producers move from evidence to conclusions and the ways in which screening policy decisions are made. PMID:19023190
Genetic counseling and cascade genetic testing in Lynch syndrome.
Hampel, Heather
2016-07-01
Lynch syndrome is the most common cause of inherited colorectal and endometrial cancers. Individuals with Lynch syndrome have a 10-80 % lifetime risk for colorectal cancer and a 15-60 % lifetime risk for endometrial cancer. Both cancers are preventable through chemoprevention, intensive cancer surveillance, and risk-reducing surgery options. Efforts to identify as many individuals with Lynch syndrome as possible will prevent cancers and save lives. This includes the traditional cancer genetic counseling model whereby individuals with and without cancer are evaluated for a possible Lynch syndrome diagnosis based on their personal and family history of colon polyps and cancers. It also includes universal tumor screening for Lynch syndrome whereby all individuals with colorectal or endometrial cancer are screened for tumor features of Lynch syndrome at the time of diagnosis. Those with tumors suspicious for Lynch syndrome are referred for cancer genetic counseling regardless of their family history of cancer. This two approaches must be maximized to attain high patient reach. Finally, and perhaps most importantly, cascade testing among the at-risk relatives of those diagnosed with Lynch syndrome is critically important to maximize the diagnosis of individuals with Lynch syndrome. In fact, the cost-effectiveness of universal tumor screening for Lynch syndrome relies entirely on counseling and testing as many at-risk individuals as possible since young unaffected individuals stand to benefit the most from an early diagnosis of Lynch syndrome. This approach must be optimized to achieve high family reach. It will take a concerted effort from patients, clinicians and public health officials to improve current approaches to the diagnosis of Lynch syndrome and the prevention and treatment of Lynch syndrome-associated cancer but these lessons can be applied to other conditions as the ultimate example of personalized medicine.
Genetic Testing in the Workplace: A Caste System for Workers?
ERIC Educational Resources Information Center
Samuels, Sheldon W.
1999-01-01
"Authorized" genetic testing may be obtained from employees with coercion or threat. Unless protections are put in place, employers and health insurers will use genetic screening to hire and fire. (JOW)
Armstrong, Katrina; Kim, Jane J; Halm, Ethan A; Ballard, Rachel M; Schnall, Mitchell D
2016-05-01
Multiple advisory groups now recommend that high-risk smokers be screened for lung cancer by low-dose computed tomography. Given that the development of lung cancer screening programs will face many of the same issues that have challenged other cancer screening programs, the National Cancer Institute-funded Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) consortium was used to identify lessons learned from the implementation of breast, cervical, and colorectal cancer screening that should inform the introduction of lung cancer screening. These lessons include the importance of developing systems for identifying and recruiting eligible individuals in primary care, ensuring that screening centers are qualified and performance is monitored, creating clear communication standards for reporting screening results to referring physicians and patients, ensuring follow-up is available for individuals with abnormal test results, avoiding overscreening, remembering primary prevention, and leveraging advances in cancer genetics and immunology. Overall, this experience emphasizes that effective cancer screening is a multistep activity that requires robust strategies to initiate, report, follow up, and track each step as well as a dynamic and ongoing oversight process to revise current screening practices as new evidence regarding screening is created, new screening technologies are developed, new biological markers are identified, and new approaches to health care delivery are disseminated. Cancer 2016;122:1338-1342. © 2016 American Cancer Society. © 2016 American Cancer Society.
Putting a New Filter On Cancer Screening.
Huff, Charlotte
2016-10-01
Experts are rethinking routine cancer screening. Genetic tests could be the answer. They may add upfront expense, but might eventually lead to savings by winnowing out unnecessary screening. Concern about false positives helps push this movement along.
Personalized assessment and management of women at risk for breast cancer in North America.
Pruthi, Sandhya; Heisey, Ruth; Bevers, Therese
2015-03-01
Many women at increased risk for breast cancer would benefit from referral for genetic testing, enhanced screening, preventive therapy or risk-reducing surgery. We present a visual model and a step-wise approach to assist with a personalized risk stratification and management of these women. We present current recommendations with respect to lifestyle behaviors and mammographic screening, and we review the current evidence regarding enhanced screening and risk-reducing therapies. We discuss the usefulness of three risk-assessment tools in determining whether a woman qualifies for genetic testing, enhanced screening or preventive therapy and present four cases to demonstrate the usefulness of this approach in the clinical setting.
Cost-Effectiveness of Old and New Technologies for Aneuploidy Screening.
Sinkey, Rachel G; Odibo, Anthony O
2016-06-01
Cost-effectiveness analyses allow assessment of whether marginal gains from new technology are worth increased costs. Several studies have examined cost-effectiveness of Down syndrome (DS) screening and found it to be cost-effective. Noninvasive prenatal screening also appears to be cost-effective among high-risk women with respect to DS screening, but not for the general population. Chromosomal microarray (CMA) is a genetic sequencing method superior to but more expensive than karyotype. In light of CMAs greater ability to detect genetic abnormalities, it is cost-effective when used for prenatal diagnosis of an anomalous fetus. This article covers methodology and salient issues of cost-effectiveness. Copyright © 2016 Elsevier Inc. All rights reserved.
Zwaveling-Soonawala, Nitash; van Beijsterveldt, Catharina E M; Mesfum, Ertirea T; Wiedijk, Brenda; Oomen, Petra; Finken, Martijn J J; Boomsma, Dorret I; van Trotsenburg, A S Paul
2015-06-01
The interindividual variability in thyroid hormone function parameters is much larger than the intraindividual variability, suggesting an individual set point for these parameters. There is evidence to suggest that environmental factors are more important than genetic factors in the determination of this individual set point. This study aimed to quantify the effect of genetic factors and (fetal) environment on the early postnatal blood T4 concentration. This was a classical twin study comparing the resemblance of neonatal screening blood T4 concentrations in 1264 mono- and 2566 dizygotic twin pairs retrieved from the population-based Netherlands Twin Register. Maximum-likelihood estimates of variance explained by genetic and environmental influences were obtained by structural equation modeling in data from full-term and preterm twin pairs. In full-term infants, genetic factors explained 40%/31% of the variance in standardized T4 scores in boys/girls, and shared environment, 27%/22%. The remaining variance of 33%/47% was due to environmental factors not shared by twins. For preterm infants, genetic factors explained 34%/0% of the variance in boys/girls, shared environment 31%/57%, and unique environment 35%/43%. In very preterm twins, no significant contribution of genetic factors was observed. Environment explains a large proportion of the resemblance of the postnatal blood T4 concentration in twin pairs. Because we analyzed neonatal screening results, the fetal environment is the most likely candidate for these environmental influences. Genetic influences on the T4 set point diminished with declining gestational age, especially in girls. This may be due to major environmental influences such as immaturity and nonthyroidal illness in very preterm infants.
Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi
2008-07-23
A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.
Transposons As Tools for Functional Genomics in Vertebrate Models.
Kawakami, Koichi; Largaespada, David A; Ivics, Zoltán
2017-11-01
Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yu-Wai-Man, Patrick; Shankar, Suma P.; Biousse, Valérie; Miller, Neil R.; Bean, Lora J.H.; Coffee, Bradford; Hegde, Madhuri; Newman, Nancy J.
2010-01-01
Purpose Autosomal-dominant optic atrophy (DOA) is one of the most common inherited optic neuropathies, and it is genetically heterogeneous, with mutations in both OPA1 and OPA3 known to cause disease. About 60% of cases harbor OPA1 mutations, whereas OPA3 mutations have only been reported in two pedigrees with DOA and premature cataracts. The aim of this study was to determine the yield of OPA1 and OPA3 screening in a cohort of presumed DOA cases referred to a tertiary diagnostic laboratory. Design Retrospective case series. Participants One hundred and eighty-eight probands with bilateral optic atrophy referred for molecular genetic investigations at a tertiary diagnostic facility: 38 patients with an autosomal-dominant pattern of inheritance and 150 sporadic cases. Methods OPA1 and OPA3 genetic testing was initially performed using PCR-based sequencing methods. The presence of large-scale OPA1 and OPA3 genomic rearrangements was further assessed with a targeted comparative genomic hybridization (CGH) microarray platform. The three primary Leber hereditary optic neuropathy (LHON) mutations, m.3460G>A, m.11778G>A, and m.14484T>C, were also screened in all patients. Main Outcome Measures The proportion of patients with OPA1 and OPA3 pathogenic mutations. The clinical profile observed in molecularly confirmed DOA cases. Results We found 21 different OPA1 mutations in 27 of the 188 (14.4%) probands screened. The mutations included six novel pathogenic variants and the first reported OPA1 initiation codon mutation at c.1A>T. An OPA1 missense mutation, c.239A>G (p.Y80C), was identified in an 11-year-old African-American girl with optic atrophy and peripheral sensori-motor neuropathy in her lower limbs. The OPA1 detection rate was significantly higher among individuals with a positive family history of visual failure (50.0%) compared with sporadic cases (5.3%). The primary LHON screen was negative in our patient cohort, and additional molecular investigations did not reveal any large-scale OPA1 rearrangements or OPA3 genetic defects. The mean baseline visual acuity for our OPA1-positive group was 0.48 logarithm of the minimum angle of resolution (LogMAR) (Mean Snellen equivalent = 20/61, range = 20/20–20/400, 95% confidence interval = 20/52–20/71), and visual deterioration occurred in 54.2% of patients during follow-up. Conclusions OPA1 mutations are the most common genetic defects identified in patients with suspected DOA, whereas OPA3 mutations are very rare in isolated optic atrophy cases. PMID:21036400
From what should we protect future generations: germ-line therapy or genetic screening?
Mallia, Pierre; ten Have, Henk
2003-01-01
This paper discusses the issue of whether we have responsibilities to future generations with respect to genetic screening, including for purposes of selective abortion or discard. Future generations have been discussed at length among scholars. The concept of 'Guardian for Future Generations' is tackled and its main criticisms discussed. Whilst germ-line cures, it is argued, can only affect family trees, genetic screening and testing can have wider implications. If asking how this may affect future generations is a legitimate question and since we indeed make retrospective moral judgements, it would be wise to consider that future generations will make the same retrospective judgements on us. Moreover such technologies affect present embryos to which we indeed can be considered to have an obligation.
Doitsidou, Maria; Jarriault, Sophie; Poole, Richard J.
2016-01-01
The use of next-generation sequencing (NGS) has revolutionized the way phenotypic traits are assigned to genes. In this review, we describe NGS-based methods for mapping a mutation and identifying its molecular identity, with an emphasis on applications in Caenorhabditis elegans. In addition to an overview of the general principles and concepts, we discuss the main methods, provide practical and conceptual pointers, and guide the reader in the types of bioinformatics analyses that are required. Owing to the speed and the plummeting costs of NGS-based methods, mapping and cloning a mutation of interest has become straightforward, quick, and relatively easy. Removing this bottleneck previously associated with forward genetic screens has significantly advanced the use of genetics to probe fundamental biological processes in an unbiased manner. PMID:27729495
Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling
Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat
2016-01-01
The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937
A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans.
O'Connell, K F; Leys, C M; White, J G
1998-01-01
A novel screen to isolate conditional cell-division mutants in Caenorhabditis elegans has been developed. The screen is based on the phenotypes associated with existing cell-division mutations: some disrupt postembryonic divisions and affect formation of the gonad and ventral nerve cord-resulting in sterile, uncoordinated animals-while others affect embryonic divisions and result in lethality. We obtained 19 conditional mutants that displayed these phenotypes when shifted to the restrictive temperature at the appropriate developmental stage. Eighteen of these mutations have been mapped; 17 proved to be single alleles of newly identified genes, while 1 proved to be an allele of a previously identified gene. Genetic tests on the embryonic lethal phenotypes indicated that for 13 genes, embryogenesis required maternal expression, while for 6, zygotic expression could suffice. In all cases, maternal expression of wild-type activity was found to be largely sufficient for embryogenesis. Cytological analysis revealed that 10 mutants possessed embryonic cell-division defects, including failure to properly segregate DNA, failure to assemble a mitotic spindle, late cytokinesis defects, prolonged cell cycles, and improperly oriented mitotic spindles. We conclude that this approach can be used to identify mutations that affect various aspects of the cell-division cycle. PMID:9649522
Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals.
Wang, Raymond Y; Bodamer, Olaf A; Watson, Michael S; Wilcox, William R
2011-05-01
To develop educational guidelines for the diagnostic confirmation and management of individuals identified by newborn screening, family-based testing after proband identification, or carrier testing in at-risk populations, and subsequent prenatal or postnatal testing of those who are presymptomatic for a lysosomal storage disease. Review of English language literature and discussions in a consensus development panel comprised an international group of experts in the clinical and laboratory diagnosis, treatment and management, newborn screening, and genetic aspects of lysosomal storage diseases. Although clinical trial and longitudinal data were used when available, the evidence in the literature is limited and consequently the recommendations must be considered as expert opinion. Guidelines were developed for Fabry, Gaucher, and Niemann-Pick A/B diseases, glycogen storage type II (Pompe disease), globoid cell leukodystrophy (Krabbe disease), metachromatic leukodystrophy, and mucopolysaccharidoses types I, II, and VI. These guidelines serve as an educational resource for confirmatory testing and subsequent clinical management of presymptomatic individuals suspected to have a lysosomal storage disease; they also help to define a research agenda for longitudinal studies such as the American College of Medical Genetics/National Institutes of Health Newborn Screening Translational Research Network.
A genome-wide survey of transgenerational genetic effects in autism.
Tsang, Kathryn M; Croen, Lisa A; Torres, Anthony R; Kharrazi, Martin; Delorenze, Gerald N; Windham, Gayle C; Yoshida, Cathleen K; Zerbo, Ousseny; Weiss, Lauren A
2013-01-01
Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10(-4)) that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.
TXNIP links redox circuitry to glucose control.
Muoio, Deborah M
2007-06-01
Thioredoxin-interacting protein (TXNIP) binds and inhibits the reducing activity of thioredoxin. A new study (Parikh et al., 2007) implicates this redox rheostat as a negative regulator of peripheral glucose metabolism in humans. Investigators combined human physiology, genomic screening, and cell-based genetic studies to highlight TNXIP as a potential culprit in the pathogenesis of type 2 diabetes.
Sucar, Sofia; Moore, Ginger L.; Ard, Melissa E.; Ring, Brian C.
2016-01-01
The mangrove killifish, Kryptolebias marmoratus, is unique among vertebrates due to its self-fertilizing mode of reproduction involving an ovotestis. As a result, it constitutes a simplistic and desirable vertebrate model for developmental genetics as it is easily maintained, reaches sexual maturity in about 100 days, and provides a manageable number of relatively clear embryos. After the establishment and characterization of an initial mutagenesis pilot screen using N-ethyl-N-nitrosourea, a three-generation genetic screen was performed to confirm zygotic mutant allele heritability and simultaneously score for homozygous recessive mutant sterile F2 fish. From a total of 307 F2 fish screened, 10 were found to be 1° males, 16 were sterile, 92 wild-type, and the remaining 189, carriers of zygotic recessive alleles. These carriers produced 25% progeny exhibiting several zygotic phenotypes similar to those previously described in zebrafish and in the aforementioned pilot screen, as expected. Interestingly, new phenotypes such as golden yolk, no trunk, and short tail were observed. The siblings of sterile F2 mutants were used to produce an F3 generation in order to confirm familial sterility. Out of the 284 F3 fish belonging to 10 previously identified sterile families, 12 were found to be 1° males, 69 were wild-type, 83 sterile, and 120 were classified as */+ (either wild-type or carriers) with undefined genotypes. This screen provides proof of principle that K. marmoratus is a powerful vertebrate model for developmental genetics and can be used to identify mutations affecting fertility. PMID:26801648
Variation in Women's Understanding of Prenatal Testing.
Bryant, Allison S; Norton, Mary E; Nakagawa, Sanae; Bishop, Judith T; Pena, Sherri; Gregorich, Steven E; Kuppermann, Miriam
2015-06-01
To investigate women's understanding of prenatal testing options and of their own experience with screening, diagnostic genetic testing, or both. This was a secondary analysis of data from a randomized controlled trial of enhanced information and values clarification regarding prenatal genetic testing in the absence of financial barriers to testing. Women in the third trimester of pregnancy were asked whether they had discussed prenatal genetic testing with their health care providers, whether they understood this testing was optional, and whether they had undergone testing during their pregnancy. Multivariable logistic regression models were fit to determine independent predictors of these outcomes. Data were available from 710 study participants. Discussions about screening tests were reported by 654 participants (92%); only 412 (58%) reported discussing diagnostic testing. That screening and diagnostic testing were optional was evident to approximately two thirds of women (n=470 and 455, respectively). Recall of actual tests undergone was correct for 626 (88%) for screening and for 700 (99%) for diagnostic testing. Racial, ethnic and socioeconomic variation existed in the understanding of whether screening and diagnostic tests were optional and in the correct recall of whether screening had been undertaken in the current pregnancy. In the usual care group, women receiving care in low-income settings were less likely to recall being offered diagnostic testing (adjusted odds ratio 0.23 [0.14-0.39]). Disparities exist in women's recall of prenatal genetic testing discussions and their understanding of their own experience. Interventions that explain testing options to women and help clarify their preferences may help to eliminate these differences.
Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics
ERIC Educational Resources Information Center
Freidenreich, Hava Bresler; Duncan, Ravit Golan; Shea, Nicole
2011-01-01
Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc.…
Bancroft, Elizabeth K.; Page, Elizabeth C.; Castro, Elena; Lilja, Hans; Vickers, Andrew; Sjoberg, Daniel; Assel, Melissa; Foster, Christopher S.; Mitchell, Gillian; Drew, Kate; Mæhle, Lovise; Axcrona, Karol; Evans, D. Gareth; Bulman, Barbara; Eccles, Diana; McBride, Donna; van Asperen, Christi; Vasen, Hans; Kiemeney, Lambertus A.; Ringelberg, Janneke; Cybulski, Cezary; Wokolorczyk, Dominika; Selkirk, Christina; Hulick, Peter J.; Bojesen, Anders; Skytte, Anne-Bine; Lam, Jimmy; Taylor, Louise; Oldenburg, Rogier; Cremers, Ruben; Verhaegh, Gerald; van Zelst-Stams, Wendy A.; Oosterwijk, Jan C.; Blanco, Ignacio; Salinas, Monica; Cook, Jackie; Rosario, Derek J.; Buys, Saundra; Conner, Tom; Ausems, Margreet G.; Ong, Kai-ren; Hoffman, Jonathan; Domchek, Susan; Powers, Jacquelyn; Teixeira, Manuel R.; Maia, Sofia; Foulkes, William D.; Taherian, Nassim; Ruijs, Marielle; den Enden, Apollonia T. Helderman-van; Izatt, Louise; Davidson, Rosemarie; Adank, Muriel A.; Walker, Lisa; Schmutzler, Rita; Tucker, Kathy; Kirk, Judy; Hodgson, Shirley; Harris, Marion; Douglas, Fiona; Lindeman, Geoffrey J.; Zgajnar, Janez; Tischkowitz, Marc; Clowes, Virginia E.; Susman, Rachel; Ramón y Cajal, Teresa; Patcher, Nicholas; Gadea, Neus; Spigelman, Allan; van Os, Theo; Liljegren, Annelie; Side, Lucy; Brewer, Carole; Brady, Angela F.; Donaldson, Alan; Stefansdottir, Vigdis; Friedman, Eitan; Chen-Shtoyerman, Rakefet; Amor, David J.; Copakova, Lucia; Barwell, Julian; Giri, Veda N.; Murthy, Vedang; Nicolai, Nicola; Teo, Soo-Hwang; Greenhalgh, Lynn; Strom, Sara; Henderson, Alex; McGrath, John; Gallagher, David; Aaronson, Neil; Ardern-Jones, Audrey; Bangma, Chris; Dearnaley, David; Costello, Philandra; Eyfjord, Jorunn; Rothwell, Jeanette; Falconer, Alison; Gronberg, Henrik; Hamdy, Freddie C.; Johannsson, Oskar; Khoo, Vincent; Kote-Jarai, Zsofia; Lubinski, Jan; Axcrona, Ulrika; Melia, Jane; McKinley, Joanne; Mitra, Anita V.; Moynihan, Clare; Rennert, Gad; Suri, Mohnish; Wilson, Penny; Killick, Emma; Moss, Sue; Eeles, Rosalind A.
2014-01-01
Background Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in BRCA1/2 mutation carriers and controls) is an international consortium of 62 centres in 20 countries evaluating the use of targeted PCa screening in men with BRCA1/2 mutations. Objective To report the first year's screening results for all men at enrolment in the study. Design, setting and participants We recruited men aged 40–69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrolment, and those men with PSA >3 ng/ml were offered prostate biopsy. Outcome measurements and statistical analysis PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types. Results and limitations We recruited 2481 men (791 BRCA1 carriers, 531 BRCA1 controls; 731 BRCA2 carriers, 428 BRCA2 controls). A total of 199 men (8%) presented with PSA >3.0 ng/ml, 162 biopsies were performed, and 59 PCas were diagnosed (18 BRCA1 carriers, 10 BRCA1 controls; 24 BRCA2 carriers, 7 BRCA2 controls); 66% of the tumours were classified as intermediate- or high-risk disease. The positive predictive value (PPV) for biopsy using a PSA threshold of 3.0 ng/ml in BRCA2 mutation carriers was 48%—double the PPV reported in population screening studies. A significant difference in detecting intermediate- or high-risk disease was observed in BRCA2 carriers. Ninety-five percent of the men were white, thus the results cannot be generalised to all ethnic groups. Conclusions The IMPACT screening network will be useful for targeted PCa screening studies in men with germline genetic risk variants as they are discovered. These preliminary results support the use of targeted PSA screening based on BRCA genotype and show that this screening yields a high proportion of aggressive disease. Patient summary In this report, we demonstrate that germline genetic markers can be used to identify men at higher risk of prostate cancer. Targeting screening at these men resulted in the identification of tumours that were more likely to require treatment. PMID:24484606
Rogowski, W H; Grosse, S D; Meyer, E; John, J; Palmer, S
2012-05-01
Public decision makers face demands to invest in applied research in order to accelerate the adoption of new genetic tests. However, such an investment is profitable only if the results gained from further investigations have a significant impact on health care practice. An upper limit for the value of additional information aimed at improving the basis for reimbursement decisions is given by the expected value of perfect information (EVPI). This study illustrates the significance of the concept of EVPI on the basis of a probabilistic cost-effectiveness model of screening for hereditary hemochromatosis among German men. In the present example, population-based screening can barely be recommended at threshold values of 50,000 or 100,000 Euro per life year gained and also the value of additional research which might cause this decision to be overturned is small: At the mentioned threshold values, the EVPI in the German public health care system was ca. 500,000 and 2,200,000 Euro, respectively. An analysis of EVPI by individual parameters or groups of parameters shows that additional research about adherence to preventive phlebotomy could potentially provide the highest benefit. The potential value of further research also depends on methodological assumptions regarding the decision maker's time horizon as well as on scenarios with an impact on the number of affected patients and the cost-effectiveness of screening.
Newborn Screening for Lysosomal Storage Disorders: Views of Genetic Healthcare Providers.
Lisi, Emily C; McCandless, Shawn E
2016-04-01
Lysosomal storage diseases (LSDs), lysosomal enzyme deficiencies causing multi-system organ damage, have come to the forefront in newborn screening (NBS) initiatives due to new screening technologies and emerging treatments. We developed a qualitative discussion tool to explore opinions of genetic healthcare providers (HCPs) regarding population-based NBS for MPS types 1 and 2, Pompe, Gaucher, Fabry, and Krabbe diseases. Thirty-eight telephone interviews conducted by a single researcher were analyzed and coded for thematic trends. Six major themes emerged: 1) treatment availability and efficacy is crucial; 2) early age of disease onset is important; 3) ambiguity regarding prognosis is undesirable; 4) parents' ability to make reproductive decisions is seen by some as a benefit of NBS; 5) paucity of resources for follow-up exists; and 6) the decision-making process for adding conditions to mandated NBS is concerning to HCPs. Among the LSDs discussed, Pompe was considered most appropriate, and Krabbe least appropriate, for NBS. MPS1 and MPS2 were overall considered favorably for screening, but MPS1 ranked higher, due to a perception of better efficacy of therapeutic options. Fabry and Gaucher diseases were viewed less favorably due to later age of onset. The themes identified in this study must be addressed by decision-makers in expanding NBS for LSDs and may be applied to many diseases being considered for NBS in the future.
Identification of JAK/STAT pathway regulators—Insights from RNAi screens
Müller, Patrick; Boutros, Michael; Zeidler, Martin P.
2008-01-01
While many core JAK/STAT pathway components have been discovered in Drosophila via classical genetic approaches, the identification of pathway regulators has been more challenging. Recently two cell-based RNAi screens for JAK/STAT pathway regulators have been undertaken using libraries of double-stranded RNAs targeting a large proportion of the predicted Drosophila transcriptome. While both screens identified multiple regulators, only relatively few loci are common to both data sets. Here we compare the two screens and discuss these differences. Although many factors are likely to be contributory, differences in the assay design are of key importance. Low levels of stimulation favouring the identification of negative pathway regulators and high levels of stimulation favouring the identification of positively acting factors. Ultimately, the results from both screens are likely to be largely complementary and have identified a range of novel candidate regulators of JAK/STAT pathway activity as a starting point for new research directions in the future. PMID:18586112
Inequities in genetic testing for hereditary breast cancer: implications for public health practice.
Sayani, Ambreen
2018-05-20
The Ontario Breast Screening Program for women with a genetic predisposition to breast cancer is one of the first international models of a government-funded public health service that offers systematic genetic screening to women at a high risk of breast cancer. However, since the implementation of the program in 2011, enrolment rates have been lower than anticipated. Whilst there may be several reasons for this to happen, it does call into consideration the 'inverse equity law', whereby the more advantaged in society are the first to participate and benefit from universal health services. An outcome of this phenomenon is an increase in the health divide between those that are at a social advantage versus those that are not. Using an intersectionality lens, this paper explores the role of the social determinants of health and social identity in creating possible barriers in the access to genetic screening for hereditary breast cancer, and the implications for public health practice in recognising and ameliorating these differences.
Monfort, Asun; Di Minin, Giulio; Postlmayr, Andreas; Freimann, Remo; Arieti, Fabiana; Thore, Stéphane; Wutz, Anton
2015-01-01
Summary In mammals, the noncoding Xist RNA triggers transcriptional silencing of one of the two X chromosomes in female cells. Here, we report a genetic screen for silencing factors in X chromosome inactivation using haploid mouse embryonic stem cells (ESCs) that carry an engineered selectable reporter system. This system was able to identify several candidate factors that are genetically required for chromosomal repression by Xist. Among the list of candidates, we identify the RNA-binding protein Spen, the homolog of split ends. Independent validation through gene deletion in ESCs confirms that Spen is required for gene repression by Xist. However, Spen is not required for Xist RNA localization and the recruitment of chromatin modifications, including Polycomb protein Ezh2. The identification of Spen opens avenues for further investigation into the gene-silencing pathway of Xist and shows the usefulness of haploid ESCs for genetic screening of epigenetic pathways. PMID:26190100
Age and perceived risks and benefits of preventive genomic screening.
Waltz, Margaret; Cadigan, R Jean; Prince, Anya E R; Skinner, Debra; Henderson, Gail E
2017-12-07
PurposeAs genome sequencing moves from research to clinical practice, sequencing technologies focused on "medically actionable" targets are being promoted for preventive screening despite the dearth of systematic evidence of risks and benefits and of criteria for selection of screening subjects. This study investigates researchers' and research participants' perceptions of these issues within the context of a preventive genomic screening study, GeneScreen.MethodsWe recorded researcher deliberations regarding age eligibility criteria and the risks and benefits of screening, and conducted interviews with 50 GeneScreen participants about their motivations for joining and their perceptions of risks and benefits.ResultsResearchers made assumptions about who would want and benefit from screening based on age. After discussion, researchers opted not to have an upper age limit for enrollment. Participants of all ages perceived similar benefits, including prevention, treatment, and cascade testing, and similar risks, such as insurance discrimination and worry.ConclusionWhile clinical benefits of preventive genomic screening for older adults are debatable, our respondents perceived a range of benefits of screening in both clinical and research settings. Researchers and clinicians should carefully consider decisions about whether to exclude older adults and whether to provide information about benefits and risks across age groups.GENETICS in MEDICINE advance online publication, 7 December 2017; doi:10.1038/gim.2017.206.
Baker, Nicholas E.; Li, Ke; Quiquand, Manon; Ruggiero, Robert; Wang, Lan-Hsin
2014-01-01
The eye has been one of the most intensively studied organs in Drosophila. The wealth of knowledge about its development, as well as the reagents that have been developed, and the fact that the eye is dispensable for survival, also make the eye suitable for genetic interaction studies and genetic screens. This chapter provides a brief overview of the methods developed to image and probe eye development at multiple developmental stages, including live imaging, immunostaining of fixed tissues, in situ hybridizations, and scanning electron microscopy and color photography of adult eyes. Also summarized are genetic approaches that can be performed in the eye, including mosaic analysis and conditional mutation, gene misexpression and knockdown, and forward genetic and modifier screens. PMID:24784530
Nemati, Shahram; Teimourian, Shahram
2017-01-01
Inflammatory bowel disease (IBD) is the consequence of an aberrant hemostasis of the immune cells at the gut mucosal border. Based on clinical manifestation, laboratory tests, radiological studies, endoscopic and histological features, this disease is divided into three main types including Crohn’s disease (CD), Ulcerative colitis (UC), and IBDunclassified (IBD-U). IBD is frequently presented in adults, but about 20% of IBD cases are diagnosed during childhood called pediatric IBD (PIBD). Some patients in the latter group emerge the first symptoms during infancy or under 5 years of age named infantile and very early onset IBD (VEO-IBD), respectively. These subtypes make a small fraction of PIBD, but they have exclusive phenotypic and genetic characteristics such that they are accompanied by severe disease course and resistance to conventional therapy. In this context, understanding the underlying molecular pathology opens a promising field for individualized and effective treatment. Here, we describe current hypotheses on IBD pathophysiology then explain the new idea about genetic screening technology as a good potential approach to identify the causal variants early in the disease manifestation, which is especially important for the fast and accurate treatment of VEO-IBD. PMID:28638582
Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J
2014-04-01
The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.
Aung, Hsu Mon; Huangteerakul, Chananya; Panvongsa, Wittaya; Jensen, Amornrat N; Chairoungdua, Arthit; Sukrong, Suchada; Jensen, Laran T
2018-09-15
Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF). Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Din, Neena; Bird, Terry H.; Berleman, James E.
2007-01-01
In this article, the authors present a laboratory activity that relies on the use of a very versatile bacterial system to introduce the concept of how mutagenesis can be used for molecular and genetic analysis of living organisms. They have used the techniques of random mutagenesis and selection/screening to obtain strains of the organism "R.…
Evolutionary transgenomics: prospects and challenges.
Correa, Raul; Baum, David A
2015-01-01
Many advances in our understanding of the genetic basis of species differences have arisen from transformation experiments, which allow us to study the effect of genes from one species (the donor) when placed in the genetic background of another species (the recipient). Such interspecies transformation experiments are usually focused on candidate genes - genes that, based on work in model systems, are suspected to be responsible for certain phenotypic differences between the donor and recipient species. We suggest that the high efficiency of transformation in a few plant species, most notably Arabidopsis thaliana, combined with the small size of typical plant genes and their cis-regulatory regions allow implementation of a screening strategy that does not depend upon a priori candidate gene identification. This approach, transgenomics, entails moving many large genomic inserts of a donor species into the wild type background of a recipient species and then screening for dominant phenotypic effects. As a proof of concept, we recently conducted a transgenomic screen that analyzed more than 1100 random, large genomic inserts of the Alabama gladecress Leavenworthia alabamica for dominant phenotypic effects in the A. thaliana background. This screen identified one insert that shortens fruit and decreases A. thaliana fertility. In this paper we discuss the principles of transgenomic screens and suggest methods to help minimize the frequencies of false positive and false negative results. We argue that, because transgenomics avoids committing in advance to candidate genes it has the potential to help us identify truly novel genes or cryptic functions of known genes. Given the valuable knowledge that is likely to be gained, we believe the time is ripe for the plant evolutionary community to invest in transgenomic screens, at least in the mustard family Brassicaceae where many species are amenable to efficient transformation.
DISSECTING THE GENETICS OF HUMAN HIGH MYOPIA: A MOLECULAR BIOLOGIC APPROACH
Young, Terri L
2004-01-01
ABSTRACT Purpose Despite the plethora of experimental myopia animal studies that demonstrate biochemical factor changes in various eye tissues, and limited human studies utilizing pharmacologic agents to thwart axial elongation, we have little knowledge of the basic physiology that drives myopic development. Identifying the implicated genes for myopia susceptibility will provide a fundamental molecular understanding of how myopia occurs and may lead to directed physiologic (ie, pharmacologic, gene therapy) interventions. The purpose of this proposal is to describe the results of positional candidate gene screening of selected genes within the autosomal dominant high-grade myopia-2 locus (MYP2) on chromosome 18p11.31. Methods A physical map of a contracted MYP2 interval was compiled, and gene expression studies in ocular tissues using complementary DNA library screens, microarray matches, and reverse-transcription techniques aided in prioritizing gene selection for screening. The TGIF, EMLIN-2, MLCB, and CLUL1 genes were screened in DNA samples from unrelated controls and in high-myopia affected and unaffected family members from the original seven MYP2 pedigrees. All candidate genes were screened by direct base pair sequence analysis. Results Consistent segregation of a gene sequence alteration (polymorphism) with myopia was not demonstrated in any of the seven families. Novel single nucleotide polymorphisms were found. Conclusion The positional candidate genes TGIF, EMLIN-2, MLCB, and CLUL1 are not associated with MYP2-linked high-grade myopia. Base change polymorphisms discovered with base sequence screening of these genes were submitted to an Internet database. Other genes that also map within the interval are currently undergoing mutation screening. PMID:15747770
Joseph, G; Kaplan, C; Luce, J; Lee, R; Stewart, S; Guerra, C; Pasick, R
2012-01-01
Identification of low-income women with the rare but serious risk of hereditary cancer and their referral to appropriate services presents an important public health challenge. We report the results of formative research to reach thousands of women for efficient identification of those at high risk and expedient access to free genetic services. External validity is maximized by emphasizing intervention fit with the two end-user organizations who must connect to make this possible. This study phase informed the design of a subsequent randomized controlled trial. We conducted a randomized controlled pilot study (n = 38) to compare two intervention models for feasibility and impact. The main outcome was receipt of genetic counseling during a two-month intervention period. Model 1 was based on the usual outcall protocol of an academic hospital genetic risk program, and Model 2 drew on the screening and referral procedures of a statewide toll-free phone line through which large numbers of high-risk women can be identified. In Model 1, the risk program proactively calls patients to schedule genetic counseling; for Model 2, women are notified of their eligibility for counseling and make the call themselves. We also developed and pretested a family history screener for administration by phone to identify women appropriate for genetic counseling. There was no statistically significant difference in receipt of genetic counseling between women randomized to Model 1 (3/18) compared with Model 2 (3/20) during the intervention period. However, when unresponsive women in Model 2 were called after 2 months, 7 more obtained counseling; 4 women from Model 1 were also counseled after the intervention. Thus, the intervention model that closely aligned with the risk program's outcall to high-risk women was found to be feasible and brought more low-income women to free genetic counseling. Our screener was easy to administer by phone and appeared to identify high-risk callers effectively. The model and screener are now in use in the main trial to test the effectiveness of this screening and referral intervention. A validation analysis of the screener is also underway. Identification of intervention strategies and tools, and their systematic comparison for impact and efficiency in the context where they will ultimately be used are critical elements of practice-based research. Copyright © 2012 S. Karger AG, Basel.
Genetics Home Reference: argininosuccinic aciduria
... Aciduria MalaCards: argininosuccinic aciduria Orphanet: Argininosuccinic aciduria Screening, Technology and Research in Genetics Vanderbilt Children's Hospital (PDF) Virginia Department of Health (PDF) Patient ...
Novel droplet platforms for the detection of disease biomarkers.
Zec, Helena; Shin, Dong Jin; Wang, Tza-Huei
2014-09-01
Personalized medicine - healthcare based on individual genetic variation - has the potential to transform the way healthcare is delivered to patients. The promise of personalized medicine has been predicated on the predictive and diagnostic power of genomic and proteomic biomarkers. Biomarker screening may help improve health outcomes, for example, by identifying individuals' susceptibility to diseases and predicting how patients will respond to drugs. Microfluidic droplet technology offers an exciting opportunity to revolutionize the accessibility of personalized medicine. A framework for the role of droplet microfluidics in biomarker detection can be based on two main themes. Emulsion-based microdroplet platforms can provide new ways to measure and detect biomolecules. In addition, microdroplet platforms facilitate high-throughput screening of biomarkers. Meanwhile, surface-based droplet platforms provide an opportunity to develop miniaturized diagnostic systems. These platforms may function as portable benchtop environments that dramatically shorten the transition of a benchtop assay into a point-of-care format.
Pfundt, Rolph; del Rosario, Marisol; Vissers, Lisenka E.L.M.; Kwint, Michael P.; Janssen, Irene M.; de Leeuw, Nicole; Yntema, Helger G.; Nelen, Marcel R.; Lugtenberg, Dorien; Kamsteeg, Erik-Jan; Wieskamp, Nienke; Stegmann, Alexander P.A.; Stevens, Servi J.C.; Rodenburg, Richard J.T.; Simons, Annet; Mensenkamp, Arjen R.; Rinne, Tuula; Gilissen, Christian; Scheffer, Hans; Veltman, Joris A.; Hehir-Kwa, Jayne Y.
2017-01-01
Purpose: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10–20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. Methods: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. Results: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to –5.8% per disorder). Conclusions: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics. Genet Med advance online publication 27 October 2016 PMID:28574513
Meisel, Susanne F; Freeman, Maddie; Waller, Jo; Fraser, Lindsay; Gessler, Sue; Jacobs, Ian; Kalsi, Jatinderpal; Manchanda, Ranjit; Rahman, Belinda; Side, Lucy; Wardle, Jane; Lanceley, Anne; Sanderson, Saskia C
2017-11-16
Risk stratification using genetic and other types of personal information could improve current best available approaches to ovarian cancer risk reduction, improving identification of women at increased risk of ovarian cancer and reducing unnecessary interventions for women at lower risk. Amounts of information given to women may influence key informed decision-related outcomes, e.g. knowledge. The primary aim of this study was to compare informed decision-related outcomes between women given one of two versions (gist vs. extended) of a decision aid about stratified ovarian cancer risk-management. This was an experimental survey study comparing the effects of brief (gist) information with lengthier, more detailed (extended) information on cognitions relevant to informed decision-making about participating in risk-stratified ovarian cancer screening. Women with no personal history of ovarian cancer were recruited through an online survey company and randomised to view the gist (n = 512) or extended (n = 519) version of a website-based decision aid and completed an online survey. Primary outcomes were knowledge and intentions. Secondary outcomes included attitudes (values) and decisional conflict. There were no significant differences between the gist and extended conditions in knowledge about ovarian cancer (time*group interaction: F = 0.20, p = 0.66) or intention to participate in ovarian cancer screening based on genetic risk assessment (t(1029) = 0.43, p = 0.67). There were also no between-groups differences in secondary outcomes. In the sample overall (n = 1031), knowledge about ovarian cancer increased from before to after exposure to the decision aid (from 5.71 to 6.77 out of a possible 10: t = 19.04, p < 0.001), and 74% of participants said that they would participate in ovarian cancer screening based on genetic risk assessment. No differences in knowledge or intentions were found between women who viewed the gist version and women who viewed the extended version of a decision aid about risk-stratified ovarian cancer screening. Knowledge increased for women in both decision aid groups. Further research is needed to determine the ideal volume and type of content for decision aids about stratified ovarian cancer risk-management. This study was registered with the ISRCTN registry; registration number: ISRCTN48627877 .
2010-05-01
Screening in Diabetes : Candidate Gene Analysis for Diabetic Retinopathy PRINCIPAL INVESTIGATOR: Robert A. Vigersky, COL MC CONTRACTING ORGANIZATION... Diabetes Institute of the Walter Reed Health Care System Genetic Screening in Diabetes : Candidate Gene Analysis for Diabetic Retinopathy 5c. PROGRAM... diabetic neuropathy, and diabetic retinopathy . This was an observational study in which the investigators obtained DNA samples from the blood of
Too Many Referrals of Low-risk Women for BRCA1/2 Genetic Services by Family Physicians
White, Della Brown; Bonham, Vence L.; Jenkins, Jean; Stevens, Nancy; McBride, Colleen M.
2009-01-01
Increasing availability and public awareness of BRCA1/2 genetic testing will increase women’s self-referrals to genetic services. The objective of this study was to examine whether patient characteristics influence family physicians’ (FPs’) referral decisions when a patient requests BRCA1/2 genetic testing. FPs (n = 284) completed a web-based survey in 2006 to assess their attitudes and practices related to using genetics in their clinical practice. Using a 2×2×2 factorial design we tested the effects of a hypothetical patient’s race, level of worry and insurance status on FPs’ decisions to refer her for BRCA1/2 testing. The patient was not appropriate for referral based on USPSTF guidelines. No patient characteristics were associated with FPs’ referral decisions. Although referral was not indicated, only 8% did not refer to genetic services, 92% referred for genetic services, and 50% referred to genetic counseling. FPs regarded it unlikely that the patient carried a mutation. However, 65% of FPs believed if they refused to refer for genetic services it would harm their relationship with the patient. Despite scarce and costly genetic services FPs were likely to inappropriately refer a low-risk patient who requested BRCA1/2 testing. The implications of this inappropriate referral on women’s screening behavior, genetic services, and health care costs are unknown. Clinicians and patients could benefit from education about appropriate use of genetic services so that both are more comfortable with a decision against referral. PMID:18990739
Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I
2012-06-01
Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Current challenges and future perspectives of plant and agricultural biotechnology.
Moshelion, Menachem; Altman, Arie
2015-06-01
Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Koenen, Karestan C; DeVivo, Immaculata; Rich-Edwards, Janet; Smoller, Jordan W; Wright, Rosalind J; Purcell, Shaun M
2009-01-01
Background One in nine American women will meet criteria for the diagnosis of posttraumatic stress disorder (PTSD) in their lifetime. Although twin studies suggest genetic influences account for substantial variance in PTSD risk, little progress has been made in identifying variants in specific genes that influence liability to this common, debilitating disorder. Methods and design We are using the unique resource of the Nurses Health Study II, a prospective epidemiologic cohort of 68,518 women, to conduct what promises to be the largest candidate gene association study of PTSD to date. The entire cohort will be screened for trauma exposure and PTSD; 3,000 women will be selected for PTSD diagnostic interviews based on the screening data. Our nested case-control study will genotype1000 women who developed PTSD following a history of trauma exposure; 1000 controls will be selected from women who experienced similar traumas but did not develop PTSD. The primary aim of this study is to detect genetic variants that predict the development of PTSD following trauma. We posit inherited vulnerability to PTSD is mediated by genetic variation in three specific neurobiological systems whose alterations are implicated in PTSD etiology: the hypothalamic-pituitary-adrenal axis, the locus coeruleus/noradrenergic system, and the limbic-frontal neuro-circuitry of fear. The secondary, exploratory aim of this study is to dissect genetic influences on PTSD in the broader genetic and environmental context for the candidate genes that show significant association with PTSD in detection analyses. This will involve: conducting conditional tests to identify the causal genetic variant among multiple correlated signals; testing whether the effect of PTSD genetic risk variants is moderated by age of first trauma, trauma type, and trauma severity; and exploring gene-gene interactions using a novel gene-based statistical approach. Discussion Identification of liability genes for PTSD would represent a major advance in understanding the pathophysiology of the disorder. Such understanding could advance the development of new pharmacological agents for PTSD treatment and prevention. Moreover, the addition of PTSD assessment data will make the NHSII cohort an unparalleled resource for future genetic studies of PTSD as well as provide the unique opportunity for the prospective examination of PTSD-disease associations. PMID:19480706
Genetics Home Reference: 21-hydroxylase deficiency
... Urinary Tract Defects Orphanet: Congenital adrenal hyperplasia Screening, Technology, and Research in Genetics (PDF) Vanderbilt Childrens Hospital: Congenital Adrenal Hyperplasia (PDF) Virginia Department of ...
Phenylketonuria Genetic Screening Simulation
ERIC Educational Resources Information Center
Erickson, Patti
2012-01-01
After agreeing to host over 200 students on a daylong genetics field trip, the author needed an easy-to-prepare genetics experiment to accompany the DNA-necklace and gel-electrophoresis activities already planned. One of the student's mothers is a pediatric physician at the local hospital, and she suggested exploring genetic-disease screening…
[Genetics of congenital heart diseases].
Bonnet, Damien
2017-06-01
Developmental genetics of congenital heart diseases has evolved from analysis of serial slices in embryos towards molecular genetics of cardiac morphogenesis with a dynamic view of cardiac development. Genetics of congenital heart diseases has also changed from formal genetic analysis of familial recurrences or population-based analysis to screening for mutations in candidates genes identified in animal models. Close cooperation between molecular embryologists, pathologists involved in heart development and pediatric cardiologists is crucial for further increase of knowledge in the field of cardiac morphogenesis and genetics of cardiac defects. The genetic model for congenital heart disease has to be revised to favor a polygenic origin rather than a monogenic one. The main mechanism is altered genic dosage that can account for heart diseases in chromosomal anomalies as well as in point mutations in syndromic and isolated congenital heart diseases. The use of big data grouping information from cardiac development, interactions between genes and proteins, epigenetic factors such as chromatin remodeling or DNA methylation is the current source for improving our knowledge in the field and to give clues for future therapies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Reeves, Ashley; Trepanier, Angela
2016-02-01
Multiplex genetic carrier screening is increasingly being integrated into reproductive care. Obtaining informed consent becomes more challenging as the number of screened conditions increases. Implementing a model of generic informed consent may facilitate informed decision-making. Current Wayne State University students and staff were invited to complete a web-based survey by blast email solicitation. Participants were asked to determine which of two generic informed consent scenarios they preferred: a brief versus a detailed consent. They were asked to rank the importance of different informational components in making an informed decision and to provide demographic information. Comparisons between informational preferences, demographic variables and scenario preferences were made. Six hundred ninety three participants completed the survey. When evaluating these generic consents, the majority preferred the more detailed consent (74.5%), and agreed that it provided enough information to make an informed decision (89.5%). Those who thought it would be more important to know the severity of the conditions being screened (p = .002) and range of symptoms (p = .000) were more likely to prefer the more detailed consent. There were no significant associations between scenario preferences and demographic variables. A generic consent was perceived to provide sufficient information for informed decision making regarding multiplex carrier screening with most preferring a more detailed version of the consent. Individual attitudes rather than demographic variables influenced preferences regarding the amount of information that should be included in the generic consent. The findings have implications for how clinicians approach providing tailored informed consent.
Arsham, Andrew M; Neufeld, Thomas P
2009-06-29
The highly conserved autophagy-lysosome pathway is the primary mechanism for breakdown and recycling of macromolecular and organellar cargo in the eukaryotic cell. Autophagy has recently been implicated in protection against cancer, neurodegeneration, and infection, and interest is increasing in additional roles of autophagy in human health, disease, and aging. To search for novel cytoprotective features of this pathway, we carried out a genetic mosaic screen for mutations causing increased lysosomal and/or autophagic activity in the Drosophila melanogaster larval fat body. By combining Drosophila genetics with live-cell imaging of the fluorescent dye LysoTracker Red and fixed-cell imaging of autophagy-specific fluorescent protein markers, the screen was designed to identify essential metazoan genes whose disruption causes increased flux through the autophagy-lysosome pathway. The screen identified a large number of genes associated with the protein synthesis and ER-secretory pathways (e.g. aminoacyl tRNA synthetases, Oligosaccharyl transferase, Sec61alpha), and with mitochondrial function and dynamics (e.g. Rieske iron-sulfur protein, Dynamin-related protein 1). We also observed that increased lysosomal and autophagic activity were consistently associated with decreased cell size. Our work demonstrates that disruption of the synthesis, transport, folding, or glycosylation of ER-targeted proteins at any of multiple steps leads to autophagy induction. In addition to illuminating cytoprotective features of autophagy in response to cellular damage, this screen establishes a genetic methodology for investigating cell biological phenotypes in live cells, in the context of viable wild type organisms.
Hens, Kristien; Dondorp, Wybo J; Geraedts, Joep P M; de Wert, Guido M
2013-05-01
What do scientists in the field of preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS) consider to be the future direction of comprehensive embryo testing? Although there are many biological and technical limitations, as well as uncertainties regarding the meaning of genetic variation, comprehensive embryo testing will impact the IVF/PGD practice and a timely ethical reflection is needed. Comprehensive testing using microarrays is currently being introduced in the context of PGD and PGS, and it is to be expected that whole-genome sequencing will also follow. Current ethical and empirical sociological research on embryo testing focuses on PGD as it is practiced now. However, empirical research and systematic reflection regarding the impact of comprehensive techniques for embryo testing is missing. In order to understand the potential of this technology and to be able to adequately foresee its implications, we held an expert panel with seven pioneers in PGD. We conducted an expert panel in October 2011 with seven PGD pioneers from Belgium, The Netherlands, Germany and the UK. Participants expected the use of comprehensive techniques in the context of PGD. However, the introduction of these techniques in embryo testing requires timely ethical reflection as it involves a shift from choosing an embryo without a particular genetic disease (i.e. PGD) or most likely to result in a successful pregnancy (i.e. PGS) to choosing the best embryo based on a much wider set of criteria. Such ethical reflection should take account of current technical and biological limitations and also of current uncertainties with regard to the meaning of genetic variance. However, ethicists should also not be afraid to look into the future. There was a general agreement that embryo testing will be increasingly preceded by comprehensive preconception screening, thus enabling smart combinations of genetic testing. The group was composed of seven participants from four Western Europe countries. As willingness to participate in this study may be connected with expectations regarding the pace and direction of future developments, selection bias cannot be excluded. The introduction of comprehensive screening techniques in embryo testing calls for further ethical reflection that is grounded in empirical work. Specifically, there is a need for studies querying the opinions of infertile couples undergoing IVF/PGS regarding the desirability of embryo screening beyond aneuploidy. This research was supported by the CSG, Centre for Society and Life Sciences (project number: 70.1.074). The authors declare no conflict of interest. N/A.
Fattori, Fabiana; Maggi, Lorenzo; Bruno, Claudio; Cassandrini, Denise; Codemo, Valentina; Catteruccia, Michela; Tasca, Giorgio; Berardinelli, Angela; Magri, Francesca; Pane, Marika; Rubegni, Anna; Santoro, Lucio; Ruggiero, Lucia; Fiorini, Patrizio; Pini, Antonella; Mongini, Tiziana; Messina, Sonia; Brisca, Giacomo; Colombo, Irene; Astrea, Guja; Fiorillo, Chiara; Bragato, Cinzia; Moroni, Isabella; Pegoraro, Elena; D'Apice, Maria Rosaria; Alfei, Enrico; Mora, Marina; Morandi, Lucia; Donati, Alice; Evilä, Anni; Vihola, Anna; Udd, Bjarne; Bernansconi, Pia; Mercuri, Eugenio; Santorelli, Filippo Maria; Bertini, Enrico; D'Amico, Adele
2015-07-01
Centronuclear myopathies (CNMs) are a group of clinically and genetically heterogeneous muscle disorders. To date, mutation in 7 different genes has been reported to cause CNMs but 30 % of cases still remain genetically undefined. Genetic investigations are often expensive and time consuming. Clinical and morphological clues are needed to facilitate genetic tests and to choose the best approach for genetic screening. We aimed to describe genotype-phenotype correlation in an Italian cohort of patients affected by CNMs, to define the relative frequencies of its defined genetic forms and to draw a diagnostic algorithm to address genetic investigations. We recruited patients with CNMs from all the Italian tertiary neuromuscular centers following clinical and histological criteria. All selected patients were screened for the four 'canonical' genes related to CNMs: MTM1, DNM2, RYR1 and BIN1. Pathogenetic mutations were found in 38 of the 54 screened patients (70 %), mostly in patients with congenital onset (25 of 30 patients, 83 %): 15 in MTM1, 6 in DNM2, 3 in RYR1 and one in TTN. Among the 13 patients with a childhood-adolescence onset, mutations were found in 6 patients (46 %), all in DNM2. In the group of the 11 patients with adult onset, mutations were identified in 7 patients (63 %), again in DNM2, confirming that variants in this gene are relatively more common in late-onset phenotypes. The present study provides the relative molecular frequency of centronuclear myopathy and of its genetically defined forms in Italy and also proposes a diagnostic algorithm to be used in clinical practice to address genetic investigations.
Haire, Timothy C.; Bell, Cody; Cutshaw, Kirstin; Swiger, Brendan; Winkelmann, Kurt; Palmer, Andrew G.
2018-01-01
Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii. We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism. PMID:29623083
Haire, Timothy C; Bell, Cody; Cutshaw, Kirstin; Swiger, Brendan; Winkelmann, Kurt; Palmer, Andrew G
2018-01-01
Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii . We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism.
2013-01-01
Background Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. Results We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. Conclusion A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification. PMID:23638724
Pandey, Neeraj; Sachan, Annapurna; Chen, Qi; Ruebling-Jass, Kristin; Bhalla, Ritu; Panguluri, Kiran Kumar; Rouviere, Pierre E; Cheng, Qiong
2013-05-02
Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification.
Quantitative trait loci mapping of the mouse plasma proteome (pQTL).
Holdt, Lesca M; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel
2013-02-01
A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F(2) intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins.
Quantitative Trait Loci Mapping of the Mouse Plasma Proteome (pQTL)
Holdt, Lesca M.; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel
2013-01-01
A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F2 intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins. PMID:23172855
Bührer-Landolt, Rosmarie; Graffeo, Rossella; Horváth, Henrik Csaba; Kurzeder, Christian; Rabaglio, Manuela; Scharfe, Michael; Urech, Corinne; Erlanger, Tobias E; Probst-Hensch, Nicole
2017-01-01
Background Breast, colorectal, ovarian, and endometrial cancers constitute approximately 30% of newly diagnosed cancer cases in Switzerland, affecting more than 12,000 individuals annually. Hundreds of these patients are likely to carry germline pathogenic variants associated with hereditary breast ovarian cancer (HBOC) or Lynch syndrome (LS). Genetic services (counseling and testing) for hereditary susceptibility to cancer can prevent many cancer diagnoses and deaths through early identification and risk management. Objective Cascade screening is the systematic identification and testing of relatives of a known mutation carrier. It determines whether asymptomatic relatives also carry the known variant, needing management options to reduce future harmful outcomes. Specific aims of the CASCADE study are to (1) survey index cases with HBOC or LS from clinic-based genetic testing records and determine their current cancer status and surveillance practices, needs for coordination of medical care, psychosocial needs, patient-provider and patient-family communication, quality of life, and willingness to serve as advocates for cancer genetic services to blood relatives, (2) survey first- and second-degree relatives and first-cousins identified from pedigrees or family history records of HBOC and LS index cases and determine their current cancer and mutation status, cancer surveillance practices, needs for coordination of medical care, barriers and facilitators to using cancer genetic services, psychosocial needs, patient-provider and patient-family communication, quality of life, and willingness to participate in a study designed to increase use of cancer genetic services, and (3) explore the influence of patient-provider communication about genetic cancer risk on patient-family communication and the acceptability of a family-based communication, coping, and decision support intervention with focus group(s) of mutation carriers and relatives. Methods CASCADE is a longitudinal study using surveys (online or paper/pencil) and focus groups, designed to elicit factors that enhance cascade genetic testing for HBOC and LS in Switzerland. Repeated observations are the optimal way for assessing these outcomes. Focus groups will examine barriers in patient-provider and patient-family communication, and the acceptability of a family-based communication, coping, and decision-support intervention. The survey will be developed in English, translated into three languages (German, French, and Italian), and back-translated into English, except for scales with validated versions in these languages. Results Descriptive analyses will include calculating means, standard deviations, frequencies, and percentages of variables and participant descriptors. Bivariate analyses (Pearson correlations, chi-square test for differences in proportions, and t test for differences in means) will assess associations between demographics and clinical characteristics. Regression analyses will incorporate generalized estimating equations for pairing index cases with their relatives and explore whether predictors are in direct, mediating, or moderating relationship to an outcome. Focus group data will be transcribed verbatim and analyzed for common themes. Conclusions Robust evidence from basic science and descriptive population-based studies in Switzerland support the necessity of cascade screening for genetic predisposition to HBOC and LS. CASCADE is designed to address translation of this knowledge into public health interventions. Trial Registration ClinicalTrials.gov NCT03124212; https://clinicaltrials.gov/ct2/show/NCT03124212 (Archived by WebCite at http://www.webcitation.org/6tKZnNDBt) PMID:28931501
Ossareh-Nazari, Batool; Katsiarimpa, Anthi; Merlet, Jorge; Pintard, Lionel
2016-01-01
Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint. PMID:27543292
Breuer, Christian; Lucas, Martin; Schütze, Frank-Walter; Claus, Peter
2007-01-01
A multi-criteria optimisation procedure based on genetic algorithms is carried out in search of advanced heterogeneous catalysts for total oxidation. Simple but flexible software routines have been created to be applied within a search space of more then 150,000 individuals. The general catalyst design includes mono-, bi- and trimetallic compositions assembled out of 49 different metals and depleted on an Al2O3 support in up to nine amount levels. As an efficient tool for high-throughput screening and perfectly matched to the requirements of heterogeneous gas phase catalysis - especially for applications technically run in honeycomb structures - the multi-channel monolith reactor is implemented to evaluate the catalyst performances. Out of a multi-component feed-gas, the conversion rates of carbon monoxide (CO) and a model hydrocarbon (HC) are monitored in parallel. In combination with further restrictions to preparation and pre-treatment a primary screening can be conducted, promising to provide results close to technically applied catalysts. Presented are the resulting performances of the optimisation process for the first catalyst generations and the prospect of its auto-adaptation to specified optimisation goals.
Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A
2016-01-01
Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939
In vivo insertion pool sequencing identifies virulence factors in a complex fungal–host interaction
Uhse, Simon; Pflug, Florian G.; Stirnberg, Alexandra; Ehrlinger, Klaus; von Haeseler, Arndt
2018-01-01
Large-scale insertional mutagenesis screens can be powerful genome-wide tools if they are streamlined with efficient downstream analysis, which is a serious bottleneck in complex biological systems. A major impediment to the success of next-generation sequencing (NGS)-based screens for virulence factors is that the genetic material of pathogens is often underrepresented within the eukaryotic host, making detection extremely challenging. We therefore established insertion Pool-Sequencing (iPool-Seq) on maize infected with the biotrophic fungus U. maydis. iPool-Seq features tagmentation, unique molecular barcodes, and affinity purification of pathogen insertion mutant DNA from in vivo-infected tissues. In a proof of concept using iPool-Seq, we identified 28 virulence factors, including 23 that were previously uncharacterized, from an initial pool of 195 candidate effector mutants. Because of its sensitivity and quantitative nature, iPool-Seq can be applied to any insertional mutagenesis library and is especially suitable for genetically complex setups like pooled infections of eukaryotic hosts. PMID:29684023
Abruzzi, Katharine; Denome, Sylvia; Olsen, Jens Raabjerg; Assenholt, Jannie; Haaning, Line Lindegaard; Jensen, Torben Heick; Rosbash, Michael
2007-01-01
Genetic screens in Saccharomyces cerevisiae provide novel information about interacting genes and pathways. We screened for high-copy-number suppressors of a strain with the gene encoding the nuclear exosome component Rrp6p deleted, with either a traditional plate screen for suppressors of rrp6Δ temperature sensitivity or a novel microarray enhancer/suppressor screening (MES) strategy. MES combines DNA microarray technology with high-copy-number plasmid expression in liquid media. The plate screen and MES identified overlapping, but also different, suppressor genes. Only MES identified the novel mRNP protein Nab6p and the tRNA transporter Los1p, which could not have been identified in a traditional plate screen; both genes are toxic when overexpressed in rrp6Δ strains at 37°C. Nab6p binds poly(A)+ RNA, and the functions of Nab6p and Los1p suggest that mRNA metabolism and/or protein synthesis are growth rate limiting in rrp6Δ strains. Microarray analyses of gene expression in rrp6Δ strains and a number of suppressor strains support this hypothesis. PMID:17101774
Rios-Romenets, S; Giraldo-Chica, M; López, H; Piedrahita, F; Ramos, C; Acosta-Baena, N; Muñoz, C; Ospina, P; Tobón, C; Cho, W; Ward, M; Langbaum, J B; Tariot, P N; Reiman, E M; Lopera, F
2018-01-01
The Alzheimer's Prevention Initiative (API) Autosomal Dominant Alzheimer's Disease (ADAD) trial evaluates the anti-amyloid-β antibody crenezumab in cognitively unimpaired persons who, based on genetic background and age, are at high imminent risk of clinical progression, and provides a powerful test of the amyloid hypothesis. The Neurosciences Group of Antioquia implemented a pre-screening process with the goals of decreasing screen failures and identifying participants most likely to adhere to trial requirements of the API ADAD trial in cognitively unimpaired members of Presenilin1 E280A mutation kindreds. The pre-screening failure rate was 48.2%: the primary reason was expected inability to comply with the protocol, chiefly due to work requirements. More carriers compared to non-carriers, and more males compared to females, failed pre-screening. Carriers with illiteracy or learning/comprehension difficulties failed pre-screening more than non-carriers. With the Colombian API Registry and our prescreening efforts, we randomized 169 30-60 year-old cognitively unimpaired carriers and 83 non-carriers who agreed to participate in the trial for at least 60 months. Our findings suggest multiple benefits of implementing a pre-screening process for enrolling prevention trials in ADAD.
NASA Astrophysics Data System (ADS)
Liu, Robin H.; Longiaru, Mathew
2009-05-01
DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.
Musunuru, Kiran; Bernstein, Daniel; Cole, F Sessions; Khokha, Mustafa K; Lee, Frank S; Lin, Shin; McDonald, Thomas V; Moskowitz, Ivan P; Quertermous, Thomas; Sankaran, Vijay G; Schwartz, David A; Silverman, Edwin K; Zhou, Xiaobo; Hasan, Ahmed A K; Luo, Xiao-Zhong James
2018-04-01
The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research. © 2018 American Heart Association, Inc.
Genetically Validated Drug Targets in Leishmania: Current Knowledge and Future Prospects.
Jones, Nathaniel G; Catta-Preta, Carolina M C; Lima, Ana Paula C A; Mottram, Jeremy C
2018-04-13
There has been a very limited number of high-throughput screening campaigns carried out with Leishmania drug targets. In part, this is due to the small number of suitable target genes that have been shown by genetic or chemical methods to be essential for the parasite. In this perspective, we discuss the state of genetic target validation in the field of Leishmania research and review the 200 Leishmania genes and 36 Trypanosoma cruzi genes for which gene deletion attempts have been made since the first published case in 1990. We define a quality score for the different genetic deletion techniques that can be used to identify potential drug targets. We also discuss how the advances in genome-scale gene disruption techniques have been used to assist target-based and phenotypic-based drug development in other parasitic protozoa and why Leishmania has lacked a similar approach so far. The prospects for this scale of work are considered in the context of the application of CRISPR/Cas9 gene editing as a useful tool in Leishmania.
Welling, Matthew T.; Shapter, Tim; Rose, Terry J.; Liu, Lei; Stanger, Rhia; King, Graham J.
2016-01-01
Cannabis is a predominantly diecious phenotypically diverse domesticated genus with few if any extant natural populations. International narcotics conventions and associated legislation have constrained the establishment, characterization, and use of Cannabis genetic resource collections. This has resulted in the underutilization of genepool variability in cultivar development and has limited the inclusion of secondary genepools associated with genetic improvement strategies of the Green Revolution. The structured screening of ex situ germplasm and the exploitation of locally-adapted intraspecific traits is expected to facilitate the genetic improvement of Cannabis. However, limited attempts have been made to establish the full extent of genetic resources available for pre-breeding. We present a thorough critical review of Cannabis ex situ genetic resources, and discuss recommendations for conservation, pre-breeding characterization, and genetic analysis that will underpin future cultivar development. We consider East Asian germplasm to be a priority for conservation based on the prolonged historical cultivation of Cannabis in this region over a range of latitudes, along with the apparent high levels of genetic diversity and relatively low representation in published genetic resource collections. Seed cryopreservation could improve conservation by reducing hybridization and genetic drift that may occur during Cannabis germplasm regeneration. Given the unique legal status of Cannabis, we propose the establishment of a global virtual core collection based on the collation of consistent and comprehensive provenance meta-data and the adoption of high-throughput DNA sequencing technologies. This would enable representative core collections to be used for systematic phenotyping, and so underpin breeding strategies for the genetic improvement of Cannabis. PMID:27524992
Welling, Matthew T; Shapter, Tim; Rose, Terry J; Liu, Lei; Stanger, Rhia; King, Graham J
2016-01-01
Cannabis is a predominantly diecious phenotypically diverse domesticated genus with few if any extant natural populations. International narcotics conventions and associated legislation have constrained the establishment, characterization, and use of Cannabis genetic resource collections. This has resulted in the underutilization of genepool variability in cultivar development and has limited the inclusion of secondary genepools associated with genetic improvement strategies of the Green Revolution. The structured screening of ex situ germplasm and the exploitation of locally-adapted intraspecific traits is expected to facilitate the genetic improvement of Cannabis. However, limited attempts have been made to establish the full extent of genetic resources available for pre-breeding. We present a thorough critical review of Cannabis ex situ genetic resources, and discuss recommendations for conservation, pre-breeding characterization, and genetic analysis that will underpin future cultivar development. We consider East Asian germplasm to be a priority for conservation based on the prolonged historical cultivation of Cannabis in this region over a range of latitudes, along with the apparent high levels of genetic diversity and relatively low representation in published genetic resource collections. Seed cryopreservation could improve conservation by reducing hybridization and genetic drift that may occur during Cannabis germplasm regeneration. Given the unique legal status of Cannabis, we propose the establishment of a global virtual core collection based on the collation of consistent and comprehensive provenance meta-data and the adoption of high-throughput DNA sequencing technologies. This would enable representative core collections to be used for systematic phenotyping, and so underpin breeding strategies for the genetic improvement of Cannabis.
Bazopoulou, Daphne; Chaudhury, Amrita R; Pantazis, Alexandros; Chronis, Nikos
2017-08-24
Discovery of molecular targets or compounds that alter neuronal function can lead to therapeutic advances that ameliorate age-related neurodegenerative pathologies. Currently, there is a lack of in vivo screening technologies for the discovery of compounds that affect the age-dependent neuronal physiology. Here, we present a high-throughput, microfluidic-based assay for automated manipulation and on-chip monitoring and analysis of stimulus-evoked calcium responses of intact C. elegans at various life stages. First, we successfully applied our technology to quantify the effects of aging and age-related genetic and chemical factors in the calcium transients of the ASH sensory neuron. We then performed a large-scale screen of a library of 107 FDA-approved compounds to identify hits that prevented the age-dependent functional deterioration of ASH. The robust performance of our assay makes it a valuable tool for future high-throughput applications based on in vivo functional imaging.
Studying parents and grandparents to assess genetic contributions to early-onset disease.
Weinberg, Clarice R
2003-02-01
Suppose DNA is available from affected individuals, their parents, and their grandparents. Particularly for early-onset diseases, maternally mediated genetic effects can play a role, because the mother determines the prenatal environment. The proposed maximum-likelihood approach for the detection of apparent transmission distortion treats the triad consisting of the affected individual and his or her two parents as the outcome, conditioning on grandparental mating types. Under a null model in which the allele under study does not confer susceptibility, either through linkage or directly, and when there are no maternally mediated genetic effects, conditional probabilities for specific triads are easily derived. A log-linear model permits a likelihood-ratio test (LRT) and allows the estimation of relative penetrances. The proposed approach is robust against genetic population stratification. Missing-data methods permit the inclusion of incomplete families, even if the missing person is the affected grandchild, as is the case when an induced abortion has followed the detection of a malformation. When screening multiple markers, one can begin by genotyping only the grandparents and the affected grandchildren. LRTs based on conditioning on grandparental mating types (i.e., ignoring the parents) have asymptotic relative efficiencies that are typically >150% (per family), compared with tests based on parents. A test for asymmetry in the number of copies carried by maternal versus paternal grandparents yields an LRT specific to maternal effects. One can then genotype the parents for only the genes that passed the initial screen. Conditioning on both the grandparents' and the affected grandchild's genotypes, a third log-linear model captures the remaining information, in an independent LRT for maternal effects.
Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches
Kavitha, Muthu Subash; Ganesh Kumar, Pugalendhi; Park, Soon-Yong; Huh, Kyung-Hoe; Heo, Min-Suk; Kurita, Takio; Asano, Akira; An, Seo-Yong
2016-01-01
Objectives: This study proposed a new automated screening system based on a hybrid genetic swarm fuzzy (GSF) classifier using digital dental panoramic radiographs to diagnose females with a low bone mineral density (BMD) or osteoporosis. Methods: The geometrical attributes of both the mandibular cortical bone and trabecular bone were acquired using previously developed software. Designing an automated system for osteoporosis screening involved partitioning of the input attributes to generate an initial membership function (MF) and a rule set (RS), classification using a fuzzy inference system and optimization of the generated MF and RS using the genetic swarm algorithm. Fivefold cross-validation (5-FCV) was used to estimate the classification accuracy of the hybrid GSF classifier. The performance of the hybrid GSF classifier has been further compared with that of individual genetic algorithm and particle swarm optimization fuzzy classifiers. Results: Proposed hybrid GSF classifier in identifying low BMD or osteoporosis at the lumbar spine and femoral neck BMD was evaluated. The sensitivity, specificity and accuracy of the hybrid GSF with optimized MF and RS in identifying females with a low BMD were 95.3%, 94.7% and 96.01%, respectively, at the lumbar spine and 99.1%, 98.4% and 98.9%, respectively, at the femoral neck BMD. The diagnostic performance of the proposed system with femoral neck BMD was 0.986 with a confidence interval of 0.942–0.998. The highest mean accuracy using 5-FCV was 97.9% with femoral neck BMD. Conclusions: The combination of high accuracy along with its interpretation ability makes this proposed automatic system using hybrid GSF classifier capable of identifying a large proportion of undetected low BMD or osteoporosis at its early stage. PMID:27186991
Rhodes, Shannon L; Fitzmaurice, Arthur G; Cockburn, Myles; Bronstein, Jeff M; Sinsheimer, Janet S; Ritz, Beate
2013-10-01
Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10 µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures. © 2013 Published by Elsevier Inc.
Screening for Usher Syndrome: A Hands-On Guide for School Nurses.
ERIC Educational Resources Information Center
Houghton, Joan; Coonts, Teresa; Jordan, Beth; Schafer, Jacqueline, Ed.
This manual was written specifically to help school nurses conduct screenings for Usher syndrome, a genetic condition that involves deafness or hearing loss and the progressive loss of vision. It provides information on the step-by-step process of how to conduct a screening, the actual forms needed for a screening, and resources for referring…
Shanmugam, V; Sharma, Vivek; Ananthapadmanaban
2008-01-01
Twenty-eight isolates of Trichoderma belonging to four different species were screened in vitro for their antagonistic ability against Fusarium oxysporum f.sp. dianthi causing carnation wilt. Three different levels of antagonism observed in dual plate assay were further confirmed by cell-free culture filtrate experiments. Isolates showing class I level of antagonism produced maximum lytic enzymes, chitinases and beta-1,3-glucanases. Genetic variability of 25 selected isolates was assessed by random amplified polymorphic DNA technique and the amplified products were correlated for their level of antagonism. Unweighed pair-group method with arithmetical averages cluster analysis revealed prominent inter-and intraspecific genetic variation among the isolates. Based on their genetic relationship, the isolates were mainly distributed into 3 major groups representing T. atroviride, T. pseudokoningii and T. harzianum, with 20-35% interspecific dissimilarity. However, the polymorphism shown by the isolates did not correlate to their level of antagonism.
Kropatsch, Regina; Melis, Claudia; Stronen, Astrid V; Jensen, Henrik; Epplen, Joerg T
2015-01-01
The Norwegian Lundehund breed of dog has undergone a severe loss of genetic diversity as a result of inbreeding and epizootics of canine distemper. As a consequence, the breed is extremely homogeneous and accurate sex identification is not always possible by standard screening of X-chromosomal loci. To improve our genetic understanding of the breed we genotyped 17 individuals using a genome-wide array of 170 000 single nucleotide polymorphisms (SNPs). Standard analyses based on expected homozygosity of X-chromosomal loci failed in assigning individuals to the correct sex, as determined initially by physical examination and confirmed with the Y-chromosomal marker, amelogenin. This demonstrates that identification of sex using standard SNP assays can be erroneous in highly inbred individuals. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Reynolds, Matthew; Langridge, Peter
2016-06-01
Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
An overview of the role of genotyping in the diagnosis of the primary hyperoxalurias.
Rumsby, Gill
2005-11-01
The aim of this paper is to give an overview of our current state of knowledge with respect to genotyping for the primary hyperoxalurias and the role of molecular genetics alongside the more traditional biochemical and enzymatic tests for the diagnosis and prognosis of these disorders. The published literature was reviewed to establish the frequency of different mutations and thus the value of testing for a limited number of these mutations in patients with clinical suspicion of primary hyperoxaluria (PH). This approach was compared with whole gene sequencing of the AGXT and GRHPR genes. A limited genetic screen can provide a first line test for PH1 and PH2 in symptomatic patients and can provide a full diagnosis in approximately a third of cases. Molecular genetic analysis is essential for carrier testing and prenatal diagnosis. The value of molecular genetics in prognosis requires a wider evidence base.
Network-assisted target identification for haploinsufficiency and homozygous profiling screens
Wang, Sheng
2017-01-01
Chemical genomic screens have recently emerged as a systematic approach to drug discovery on a genome-wide scale. Drug target identification and elucidation of the mechanism of action (MoA) of hits from these noisy high-throughput screens remain difficult. Here, we present GIT (Genetic Interaction Network-Assisted Target Identification), a network analysis method for drug target identification in haploinsufficiency profiling (HIP) and homozygous profiling (HOP) screens. With the drug-induced phenotypic fitness defect of the deletion of a gene, GIT also incorporates the fitness defects of the gene’s neighbors in the genetic interaction network. On three genome-scale yeast chemical genomic screens, GIT substantially outperforms previous scoring methods on target identification on HIP and HOP assays, respectively. Finally, we showed that by combining HIP and HOP assays, GIT further boosts target identification and reveals potential drug’s mechanism of action. PMID:28574983
Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G.; Garraway, Levi A.; Struhl, Kevin
2015-01-01
Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment. PMID:25902495
Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G; Garraway, Levi A; Struhl, Kevin
2015-05-05
Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment.
Current Screening Procedures for the Usher Syndrome at Residential Schools for the Deaf.
ERIC Educational Resources Information Center
Day, Creagh Walker
1982-01-01
The results indicated that 53 percent of the schools that responded are screening students for Usher syndrome. One-half of the schools with screening programs offered some support services: personal counseling, genetic counseling, curricular modifications, and vocational counseling. (Author)
Anderson, Heidi; Davison, Stephen; Hughes, Angela M.; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M.; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Forman, Oliver P.; Fretwell, Neale; Cole, Cynthia A.; Lohi, Hannes
2018-01-01
Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare. PMID:29708978
Donner, Jonas; Anderson, Heidi; Davison, Stephen; Hughes, Angela M; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Kaukonen, Maria; Forman, Oliver P; Fretwell, Neale; Cole, Cynthia A; Lohi, Hannes
2018-04-01
Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare.
Laboratory Assays in Evaluation of Lynch Syndrome in Patients with Endometrial Carcinoma.
Djordjevic, Bojana; Broaddus, Russell R
2016-06-01
This article reviews the main tissue testing modalities for Lynch Syndrome in the pathology laboratory, such as immunohistochemistry and PCR based analyses, and discusses their routine application, interpretation pitfalls, and troubleshooting of common technical performance issues. Discrepancies between laboratory and genetic testing may arise, and are examined in the context of the complexity of molecular abnormalities associated with Lynch Syndrome. The merits of targeted versus universal screening in a changing healthcare climate are addressed. In the absence of comprehensive screening programs, specific tumor topography and histological features that may prompt pathologist-initiated molecular tumor testing are outlined. Copyright © 2016 Elsevier Inc. All rights reserved.
Shanmuganathan, Meera; Britz-McKibbin, Philip
2012-10-02
Pharmacological chaperones (PCs) are small molecules that stabilize and promote protein folding. Enzyme inhibition is widely used for PC selection; however, it does not accurately reflect chaperone activity. We introduce a functional assay for characterization of PCs based on their capacity to restore enzyme activity that is abolished upon chemical denaturation. Dose-dependent activity curves were performed as a function of urea to assess the chaperone potency of various ligands to β-glucocerebrosidase as a model system. Restoration of enzyme activity upon denaturation allows direct screening of PCs for treatment of genetic disorders associated with protein deficiency, such as Gaucher disease.
Genetics Home Reference: hyperprolinemia
... Hyperprolinemia type 1 Orphanet: Hyperprolinemia type 2 Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases National Organization for ...
Utility of Genetic Testing in Elite Volleyball Players with Aortic Root Dilation.
Herrick, Nicole; Davis, Christopher; Vargas, Lisa; Dietz, Hal; Grossfeld, Paul
2017-07-01
Basketball and volleyball attract individuals with a characteristic biophysical profile, mimicking features of Marfan syndrome. Consequently, identification of these abnormalities can be lifesaving. To determine how physical examination, echocardiography, and genetic screening can identify elite volleyball players with a previously undiagnosed aortopathy. We have performed cardiac screening on 90 US Volleyball National Team members and identified four individuals with dilated sinuses of Valsalva. This case series reports on three individuals who underwent a comprehensive genetics evaluation, including gene sequencing. Cardiac screening combined with genetic testing can identify previously undiagnosed tall athletes with an aortopathy, in the absence of noncardiac findings of a connective tissue disorder. Subject 1 had a revised Ghent systems (RGS) score of 2 and a normal aortopathy gene panel. Subject 2 had a RGS score of 1 and genetic testing revealed a de novo disease causing mutation in the gene encoding fibrillin-1 (FBN1). Subject 3 had an RGS score of 4.0 and had a normal aortopathy gene panel. Despite variable clinical features of Marfan syndrome, dilated sinuses of Valsalva were found in 4.9% of the athletes. A disease-causing mutation in the FBN1 gene was identified in subject 2, who had the lowest RGS but the largest aortic root measurement. Subjects 1 and 3, with the highest RGS, had a normal aortopathy gene panel. Our findings provide further evidence suggesting that a cardiac evaluation, including a screening echocardiogram, should be performed on all elite tall adult athletes independent of other physical findings. Genetic testing should be considered for athletes with dilated sinuses of Valsalva (male, >4.2 cm; female, >3.4 cm), regardless of other extracardiac findings.
Muntinghe, Friso L H; Vegter, Stefan; Verduijn, Marion; Boeschoten, Elisabeth W; Dekker, Friedo W; Navis, Gerjan; Postma, Maarten
2011-07-01
Randomized clinical trials are expensive and time consuming. Therefore, strategies are needed to prioritise tracks for drug development. Genetic association studies may provide such a strategy by considering the differences between genotypes as a proxy for a natural, lifelong, randomized at conception, clinical trial. Previously an association with better survival was found in dialysis patients with systemic inflammation carrying a deletion variant of the CC-chemokine receptor 5 (CCR5). We hypothesized that in an analogous manner, pharmacological CCR5 blockade could protect against inflammation-driven mortality and estimated if such a treatment would be cost-effective. A genetic screen and treat strategy was modelled using a decision-analytic Markov model, in which patients were screened for the CCR5 deletion 32 polymorphism and those with the wild type and systemic inflammation were treated with pharmacological CCR5 blockers. Kidney transplantation and mortality rates were calculated using patient level data. Extensive sensitivity analyses were performed. The cost-effectiveness of the genetic screen and treat strategy was &OV0556;18 557 per life year gained and &OV0556;21 896 per quality-adjusted life years gained. Concordance between the genetic association and pharmacological effectiveness was a main driver of cost-effectiveness. Sensitivity analyses showed that even a modest effectiveness of pharmacological CCR5 blockade would result in a treatment strategy that is good value for money. Pharmacological blockade of the CCR5 receptor in inflamed dialysis patients can be incorporated in a potentially cost-effective screen and treat programme. These findings provide formal rationale for clinical studies. This study illustrates the potential of genetic association studies for drug development, as a source of Mendelian randomized evidence from an observational setting.
Li, Ming; Ohi, Kazutaka; Chen, Chunhui; He, Qinghua; Liu, Jie-Wei; Chen, Chuansheng; Luo, Xiong-Jian; Dong, Qi; Hashimoto, Ryota; Su, Bing
2014-12-01
Hippocampal volume is a key brain structure for learning ability and memory process, and hippocampal atrophy is a recognized biological marker of Alzheimer's disease. However, the genetic bases of hippocampal volume are still unclear although it is a heritable trait. Genome-wide association studies (GWASs) on hippocampal volume have implicated several significantly associated genetic variants in Europeans. Here, to test the contributions of these GWASs identified genetic variants to hippocampal volume in different ethnic populations, we screened the GWAS-identified candidate single-nucleotide polymorphisms in 3 independent healthy Asian brain imaging samples (a total of 990 subjects). The results showed that none of these single-nucleotide polymorphisms were associated with hippocampal volume in either individual or combined Asian samples. The replication results suggested a complexity of genetic architecture for hippocampal volume and potential genetic heterogeneity between different ethnic populations. Copyright © 2014 Elsevier Inc. All rights reserved.
Gao, Yang; Hassett, Daniel J.; Choi, Seokheun
2017-01-01
Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure) screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i) a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii) water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria. PMID:28798914
Sun, Zhengwen; Wang, Xingfen; Liu, Zhengwen; Gu, Qishen; Zhang, Yan; Li, Zhikun; Ke, Huifeng; Yang, Jun; Wu, Jinhua; Wu, Liqiang; Zhang, Guiyin; Zhang, Caiying; Ma, Zhiying
2017-08-01
Genetic improvement of fibre quality is one of the main breeding goals for the upland cotton, Gossypium hirsutum, but there are difficulties with precise selection of traits. Therefore, it is important to improve the understanding of the genetic basis of phenotypic variation. In this study, we conducted phenotyping and genetic variation analyses of 719 diverse accessions of upland cotton based on multiple environment tests and a recently developed Cotton 63K Illumina Infinium SNP array and performed a genome-wide association study (GWAS) of fibre quality traits. A total of 10 511 polymorphic SNPs distributed in 26 chromosomes were screened across the cotton germplasms, and forty-six significant SNPs associated with five fibre quality traits were detected. These significant SNPs were scattered over 15 chromosomes and were involved in 612 unique candidate genes, many related to polysaccharide biosynthesis, signal transduction and protein translocation. Two major haplotypes for fibre length and strength were identified on chromosomes Dt11 and At07. Furthermore, by combining GWAS and transcriptome analysis, we identified 163 and 120 fibre developmental genes related to length and strength, respectively, of which a number of novel genes and 19 promising genes were screened. These results provide new insight into the genetic basis of fibre quality in G. hirsutum and provide candidate SNPs and genes to accelerate the improvement of upland cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
A Genetic Interaction Screen for Breast Cancer Progression Driver Genes
2013-06-01
analysis of genetic alterations in human breast cancers has revealed that individual tumors accumulate mutations in approximately ninety different genes ...cancer. We performed a screen to test the roles of seventy breast cancer mutated genes in mouse mammary tumorigenesis using the MMTV-PyVT mouse breast...cancer model and piggyBac insertional mutation strains. We found that insertional mutations in 23 genes altered the onset of tumor formation and four
Chidley, Christopher; Trauger, Sunia A; Birsoy, Kıvanç; O'Shea, Erin K
2016-07-12
Phenotypic screens allow the identification of small molecules with promising anticancer activity, but the difficulty in characterizing the mechanism of action of these compounds in human cells often undermines their value as drug leads. Here, we used a loss-of-function genetic screen in human haploid KBM7 cells to discover the mechanism of action of the anticancer natural product ophiobolin A (OPA). We found that genetic inactivation of de novo synthesis of phosphatidylethanolamine (PE) mitigates OPA cytotoxicity by reducing cellular PE levels. OPA reacts with the ethanolamine head group of PE in human cells to form pyrrole-containing covalent cytotoxic adducts and these adducts lead to lipid bilayer destabilization. Our characterization of this unusual cytotoxicity mechanism, made possible by unbiased genetic screening in human cells, suggests that the selective antitumor activity displayed by OPA may be due to altered membrane PE levels in cancer cells.
A rapid screening with direct sequencing from blood samples for the diagnosis of Leigh syndrome.
Shimbo, Hiroko; Takagi, Mariko; Okuda, Mitsuko; Tsuyusaki, Yu; Takano, Kyoko; Iai, Mizue; Yamashita, Sumimasa; Murayama, Kei; Ohtake, Akira; Goto, Yu-Ichi; Aida, Noriko; Osaka, Hitoshi
2014-01-01
Large numbers of genes are responsible for Leigh syndrome (LS), making genetic confirmation of LS difficult. We screened our patients with LS using a limited set of 21 primers encompassing the frequently reported gene for the respiratory chain complexes I (ND1-ND6, and ND4L), IV(SURF1), and V(ATP6) and the pyruvate dehydrogenase E1α-subunit. Of 18 LS patients, we identified mutations in 11 patients, including 7 in mDNA (two with ATP6), 4 in nuclear (three with SURF1). Overall, we identified mutations in 61% of LS patients (11/18 individuals) in this cohort. Sanger sequencing with our limited set of primers allowed us a rapid genetic confirmation of more than half of the LS patients and it appears to be efficient as a primary genetic screening in this cohort.
Genetics Home Reference: hypermethioninemia
... Psychomotor retardation due to S-adenosylhomocysteine hydrolase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (1 link) Children Living with Inherited Metabolic Diseases Scientific Articles on ...
Stanley, Sarah A; Hung, Deborah T
2009-12-16
Loss-of-function genetic screens have facilitated great strides in our understanding of the biology of model organisms but have not been possible in diploid human cells. A recent report by Brummelkamp's group in Science describes the use of insertional mutagenesis to generate loss-of-function alleles in a largely haploid human cell line and demonstrates the versatility of this method in screens designed to investigate the host/pathogen interaction. This approach has strengths that are complementary to existing strategies and will facilitate progress toward a systems-level understanding of infectious disease and ultimately the development of new therapeutics.
Ferreira, Tatiana Dela-Sávia; Freire, Adriana Sousa; Silveira-Lacerda, Elisângela de Paula; García-Zapata, Marco Túlio Antônio
2012-01-01
Background: The high frequency of hemoglobinopathies in Brazil constitutes a public health problem and thus educational and preventive measures are necessary to reduce the incidence. Genetic guidance, a modality of genetic counseling, and family screening are measures that can assist in reproductive decisions and mitigate clinical, psychological and social problems of families with these disorders. Objetive: The objective of the current study was to evaluate the effectiveness of educational and preventive measures for hemoglobinopathies using genetic guidance and laboratory screening of families. Methods: The diagnoses of patients with hemoglobinopathies were confirmed and then the level of knowledge about their disease was evaluated and genetic guidance was provided. Three months later, the level of assimilated information of these patients was evaluated. In addition, laboratory diagnosis of family members was carried out. Results: Diagnosis of sickle cell anemia was confirmed for most patients. Moreover, the majority of the patients who had a low level of knowledge before genetic guidance (68.8%) demonstrated a higher level of assimilated information after the process (81.8%). Almost 70% of the family members had hemoglobin changes and some had hemoglobinopathies(2.6%). They were duly informed about the results of the examinations, which made it possible to investigate further. Conclusion: Genetic guidance and family screening were effective preventive and educational measures that improved the quality of life of patients, preventing complications and sequels and allowed the referral of those who may transmit altered genes for clinical diagnosis and to genetic counseling services. PMID:23125541
Saxena, Shailaja Gada; Desai, Kundanbala; Shewale, Lata; Ranjan, Prabhat
2014-01-01
CONTEXT: There is a high incidence of numerical chromosomal aberration in couples with repeated in vitro fertilization (IVF) failure, advanced maternal age, repeated unexplained abortions, severe male factor infertility and unexplained infertility. Pre-implantation genetic screening (PGS), a variant of pre-implantation genetic diagnosis, screens numerical chromosomal aberrations in couples with normal karyotype, experiencing poor reproductive outcome. The present study includes the results of the initial pilot study on 9 couples who underwent 10 PGS cycles. AIM: The aim of the present study was to evaluate the beneficial effects of PGS in couples with poor reproductive outcome. SETTINGS AND DESIGN: Data of initial 9 couples who underwent 10 PGS for various indications was evaluated. SUBJECTS AND METHODS: Blastomere biopsy was performed on cleavage stage embryos and subjected to two round fluorescence in situ hybridization (FISH) testing for chromosomes 13, 18, 21, X and Y as a two-step procedure. RESULTS: Six of the 9 couples (10 PGS cycles) conceived, including a twin pregnancy in a couple with male factor infertility, singleton pregnancies in a couple with secondary infertility, in three couples with adverse obstetric outcome in earlier pregnancies and in one couple with repeated IVF failure. CONCLUSION: In the absence of availability of array-comparative genomic hybridization in diagnostic clinical scenario for PGS and promising results with FISH based PGS as evident from the current pilot study, it is imperative to offer the best available services in the present scenario for better pregnancy outcome for patients. PMID:24829527
Wilson, R Douglas
2017-10-11
To inform reproductive and other health care providers about genetic and fetal risk information to consider during a woman/couples' pre-conception evaluation, including considerations for genetic risk assessment, genetic screening, or testing to allow for improved counselling and informed choice. This genetic information can be used for patient education, planning, and possible pre-conception and/or prenatal testing. This information may allow improved risk assessment for pre-conception counselling for individual patients and their families. PubMed or Medline and the Cochrane Database were searched in May 2017 using appropriate key words ("pre-conception," "genetic disease," "maternal," "family history," "genetic," "health risk," "genetic health surveillance," "prenatal screening," "prenatal diagnosis," "birth defects," and "teratogen"). Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, and national and international medical specialty societies. The benefits for the patient and her family include an increased understanding of relevant genetic risk pre-conception and in early pregnancy, and better pregnancy outcomes as a result of use of the information. The harm includes potential increased anxiety or psychological stress associated with the possibility of identifying genetic risks. The evidence obtained was peer-reviewed by the Genetics Committee of The Society of Obstetricians and Gynaecologists of Canada. Consideration for Care Statements For this review article, the Consideration for Care Statements use the GRADE strength and quality as it is comparable for the clinician and the patient/public user. [GRADE from the Canadian Task Force on Preventive Health Care (www.canadiantaskforce.ca). For clinicians, Strong = The recommendation would apply to most individuals. Formal discussion aids are not likely to be needed to help individuals make decisions consistent with their values and preferences. For patients/public, Strong = We believe most people in this situation would want the recommended course of actions and only a small number would not. Quality of evidence (High, Moderate, Low) based on the confidence that the true effect lies close to that of the estimate of the effect.] Conclusion Pre-conception planning is presently underutilized by both patients and providers. Pre-conception genetic assessment is only a part of the counselling, education, and health management change that can improve perinatal and maternal morbidity and mortality. A published literature review on pre-conception genetic counselling identified mainly clinical cohort studies, surveys, and expert opinion with no RCTs. There is strong support for pre-conception counselling and moderate quality based on the understanding that most individuals would support and use pre-conception counselling when choice, timing, and ease of access is considered. Copyright © 2017 Society of Obstetricians and Gynaecologists of Canada. Published by Elsevier Inc. All rights reserved.
Richardson, Marty; Kirkham, Jamie; Dwan, Kerry; Sloan, Derek; Davies, Geraint; Jorgensen, Andrea
2017-07-13
Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta-analyses stratified by ethnicity. Our review and meta-analysis will update and add to the existing research in this field. By not restricting the scope of the review to a specific drug, genetic variant, or toxicity outcome, we hope to synthesise data for associations between genetic variants and anti-tuberculosis drug-related toxicity outcomes that have previously not been summarised in systematic reviews, and consequently, add to the knowledge base of the pharmacogenetics of anti-tuberculosis drugs. PROSPERO CRD42017068448.
Ostergren, Jenny E; Gornick, Michele C; Carere, Deanna Alexis; Kalia, Sarah S; Uhlmann, Wendy R; Ruffin, Mack T; Mountain, Joanna L; Green, Robert C; Roberts, J Scott
2015-01-01
To assess customer comprehension of health-related personal genomic testing (PGT) results. We presented sample reports of genetic results and examined responses to comprehension questions in 1,030 PGT customers (mean age: 46.7 years; 59.9% female; 79.0% college graduates; 14.9% non-White; 4.7% of Hispanic/Latino ethnicity). Sample reports presented a genetic risk for Alzheimer's disease and type 2 diabetes, carrier screening summary results for >30 conditions, results for phenylketonuria and cystic fibrosis, and drug response results for a statin drug. Logistic regression was used to identify correlates of participant comprehension. Participants exhibited high overall comprehension (mean score: 79.1% correct). The highest comprehension (range: 81.1-97.4% correct) was observed in the statin drug response and carrier screening summary results, and lower comprehension (range: 63.6-74.8% correct) on specific carrier screening results. Higher levels of numeracy, genetic knowledge, and education were significantly associated with greater comprehension. Older age (≥ 60 years) was associated with lower comprehension scores. Most customers accurately interpreted the health implications of PGT results; however, comprehension varied by demographic characteristics, numeracy and genetic knowledge, and types and format of the genetic information presented. Results suggest a need to tailor the presentation of PGT results by test type and customer characteristics. © 2015 S. Karger AG, Basel.
Ostergren, Jenny E.; Gornick, Michele C.; Carere, Deanna Alexis; Kalia, Sarah S.; Uhlmann, Wendy R.; Ruffin, Mack T.; Mountain, Joanna L.; Green, Robert C.; Roberts, J. Scott
2016-01-01
Aim To assess customer comprehension of health-related personal genomic testing (PGT) results. Methods We presented sample reports of genetic results and examined responses to comprehension questions in 1,030 PGT customers (mean age: 46.7 years; 59.9% female; 79.0% college graduates; 14.9% non-White; 4.7% of Hispanic/Latino ethnicity). Sample reports presented a genetic risk for Alzheimer’s disease and type 2 diabetes, carrier screening summary results for >30 conditions, results for phenylketonuria and cystic fibrosis, and drug response results for a statin drug. Logistic regression was used to identify correlates of participant comprehension. Results Participants exhibited high overall comprehension (mean score: 79.1% correct). The highest comprehension (range: 81.1–97.4% correct) was observed in the statin drug response and carrier screening summary results, and lower comprehension (range: 63.6–74.8% correct) on specific carrier screening results. Higher levels of numeracy, genetic knowledge, and education were significantly associated with greater comprehension. Older age (≥ 60 years) was associated with lower comprehension scores. Conclusions Most customers accurately interpreted the health implications of PGT results; however, comprehension varied by demographic characteristics, numeracy and genetic knowledge, and types and format of the genetic information presented. Results suggest a need to tailor the presentation of PGT results by test type and customer characteristics. PMID:26087778
Powerful workhorses for antimicrobial peptide expression and characterization.
Li, Chun; Blencke, Hans-Matti; Paulsen, Victoria; Haug, Tor; Stensvåg, Klara
2010-01-01
Discovery of antimicrobial peptides (AMP) is to a large extent based on screening of fractions of natural samples in bacterial growth inhibition assays. However, the use of bacteria is not limited to screening for antimicrobial substances. In later steps, bioengineered "bugs" can be applied to both production and characterization of AMPs. Here we describe the idea to use genetically modified Escherichia coli strains for both these purposes. This approach allowed us to investigate SpStrongylocins 1 and 2 from the purple sea urchin Strongylocentrotus purpuratus only based on sequence information from a cDNA library and without previous direct isolation or chemical synthesis of these peptides. The recombinant peptides are proved active against all bacterial strains tested. An assay based on a recombinant E. coli sensor strain expressing insect luciferase, revealed that SpStrongylocins are not interfering with membrane integrity and are therefore likely to have intracellular targets. © 2010 Landes Bioscience
Values of molecular markers in the differential diagnosis of thyroid abnormalities.
Tennakoon, T M P B; Rushdhi, M; Ranasinghe, A D C U; Dassanayake, R S
2017-06-01
Thyroid cancer (TC), follicular adenoma (FA) and Hashimoto's thyroiditis (HT) are three of the most frequently reported abnormalities that affect the thyroid gland. A frequent co-occurrence along with similar histopathological features is observed between TC and FA as well as between TC and HT. The conventional diagnostic methods such as histochemical analysis present complications in differential diagnosis when these abnormalities occur simultaneously. Hence, the authors recognize novel methods based on screening genetic defects of thyroid abnormalities as viable diagnostic and prognostic methods that could complement the conventional methods. We have extensively reviewed the existing literature on TC, FA and HT and also on three genes, namely braf, nras and ret/ptc, that could be used to differentially diagnose the three abnormalities. Emphasis was also given to the screening methods available to detect the said molecular markers. It can be conferred from the analysis of the available data that the utilization of braf, nras and ret/ptc as markers for the therapeutic evaluation of FA and HT is debatable. However, molecular screening for braf, nras and ret/ptc mutations proves to be a conclusive method that could be employed to differentially diagnose TC from HT and FA in the instance of a suspected co-occurrence. Thyroid cancer patients can be highly benefited from the screening for the said genetic markers, especially the braf gene due to its diagnostic value as well as due to the availability of personalized medicine targeted specifically for braf mutants.
Detection of Methylated Circulating DNA as Noninvasive Biomarkers for Breast Cancer Diagnosis
Cheuk, Isabella Wai Yin; Shin, Vivian Yvonne
2017-01-01
Internationally, breast cancer is the most common female cancer, and is induced by a combination of environmental, genetic, and epigenetic risk factors. Despite the advancement of imaging techniques, invasive sampling of breast epithelial cells is the only definitive diagnostic procedure for patients with breast cancer. To date, molecular biomarkers with high sensitivity and specificity for the screening and early detection of breast cancer are lacking. Recent evidence suggests that the detection of methylated circulating cell-free DNA in the peripheral blood of patients with cancer may be a promising quantitative and noninvasive method for cancer diagnosis. Methylation detection based on a multi-gene panel, rather than on the methylation status of a single gene, may be used to increase the sensitivity and specificity of breast cancer screening. In this review, the results of 14 relevant studies, investigating the efficacy of cell-free DNA methylation screening for breast cancer diagnosis, have been summarized. The genetic risk factors for breast cancer, the methods used for breast cancer detection, and the techniques and limitations related to the detection of cell-free DNA methylation status, have also been reviewed and discussed. From this review, we conclude that the analysis of peripheral blood or other samples to detect differentially methylated cell-free DNA is a promising technique for use in clinical settings, and may improve the sensitivity of screening for both, early detection and disease relapse, and thus improve the future prognosis of patients with breast cancer. PMID:28382090
Audrézet, Marie Pierre; Munck, Anne; Scotet, Virginie; Claustres, Mireille; Roussey, Michel; Delmas, Dominique; Férec, Claude; Desgeorges, Marie
2015-02-01
Newborn screening (NBS) for cystic fibrosis (CF) was implemented throughout France in 2002. It involves a four-tiered procedure: immunoreactive trypsin (IRT)/DNA/IRT/sweat test [corrected] was implemented throughout France in 2002. The aim of this study was to assess the performance of molecular CFTR gene analysis from the French NBS cohort, to evaluate CF incidence, mutation detection rate, and allelic heterogeneity. During the 8-year period, 5,947,148 newborns were screened for cystic fibrosis. The data were collected by the Association Française pour le Dépistage et la Prévention des Handicaps de l'Enfant. The mutations identified were classified into four groups based on their potential for causing disease, and a diagnostic algorithm was proposed. Combining the genetic and sweat test results, 1,160 neonates were diagnosed as having cystic fibrosis. The corresponding incidence, including both the meconium ileus (MI) and false-negative cases, was calculated at 1 in 4,726 live births. The CF30 kit, completed with a comprehensive CFTR gene analysis, provides an excellent detection rate of 99.77% for the mutated alleles, enabling the identification of a complete genotype in 99.55% of affected neonates. With more than 200 different mutations characterized, we confirmed the French allelic heterogeneity. The very good sensitivity, specificity, and positive predictive value obtained suggest that the four-tiered IRT/DNA/IRT/sweat test procedure may provide an effective strategy for newborn screening for cystic fibrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorde, L.B.; Carey, J.C.; White, R.L.
This book on the subject of medical genetics is a textbook aimed at a very broad audience: principally, medical students, nursing students, graduate, and undergraduate students. The book is actually a primer of general genetics as applied to humans and provides a well-balanced introduction to the scientific and clinical basis of human genetics. The twelve chapters include: Introduction, Basic Cell Biology, Genetic Variation, Autosomal Dominant and Recessive Inheritance, Sex-linked and Mitochondrial Inheritance, Clinical Cytogenetics, Gene Mapping, Immunogenetics, Cancer Genetics, Multifactorial Inheritance and Common Disease, Genetic Screening, Genetic Diagnosis and Gene Therapy, and Clinical Genetics and Genetic Counseling.
JP-HHT phenotype in Danish patients with SMAD4 mutations.
Jelsig, A M; Tørring, P M; Kjeldsen, A D; Qvist, N; Bojesen, A; Jensen, U B; Andersen, M K; Gerdes, A M; Brusgaard, K; Ousager, L B
2016-07-01
Patients with germline mutations in SMAD4 can present symptoms of both juvenile polyposis syndrome (JPS) and hereditary hemorrhagic telangiectasia (HHT): the JP-HHT syndrome. The complete phenotypic picture of this syndrome is only just emerging. We describe the clinical characteristics of 14 patients with SMAD4-mutations. The study was a retrospective, register-based study. SMAD4 mutations carriers were identified through the Danish HHT-registry, the genetic laboratories - and the genetic departments in Denmark. The medical files from relevant departments were reviewed and symptoms of HHT, JPS, aortopathy and family history were noted. We detected 14 patients with SMAD4 mutations. All patients had polyps removed and 11 of 14 fulfilled the diagnostic criteria for JPS. Eight patients were screened for HHT-symptoms and seven of these fulfilled the Curaçao criteria. One patient had aortic root dilation. Our findings support that SMAD4 mutations carriers have symptoms of both HHT and JPS and that the frequency of PAVM and gastric involvement with polyps is higher than in patients with HHT or JPS not caused by a SMAD4 mutation. Out of eight patients screened for aortopathy, one had aortic root dilatation, highlighting the need for additional screening for aortopathy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chloroplast 2010: A Database for Large-Scale Phenotypic Screening of Arabidopsis Mutants1[W][OA
Lu, Yan; Savage, Linda J.; Larson, Matthew D.; Wilkerson, Curtis G.; Last, Robert L.
2011-01-01
Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics projects. We describe a modular database and laboratory information management system that was implemented in support of the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more than 5,000 mutants (http://bioinfo.bch.msu.edu/2010_LIMS; www.plastid.msu.edu). The software and laboratory work environment were designed to minimize operator error and detect systematic process errors. The database uses Ruby on Rails and Flash technologies to present complex quantitative and qualitative data and pedigree information in a flexible user interface. Examples are presented where the database was used to find opportunities for process changes that improved data quality. We also describe the use of the data-analysis tools to discover mutants defective in enzymes of leucine catabolism (heteromeric mitochondrial 3-methylcrotonyl-coenzyme A carboxylase [At1g03090 and At4g34030] and putative hydroxymethylglutaryl-coenzyme A lyase [At2g26800]) based upon a syndrome of pleiotropic seed amino acid phenotypes that resembles previously described isovaleryl coenzyme A dehydrogenase (At3g45300) mutants. In vitro assay results support the computational annotation of At2g26800 as hydroxymethylglutaryl-coenzyme A lyase. PMID:21224340
Dinon, Andréia Z; Prins, Theo W; van Dijk, Jeroen P; Arisi, Ana Carolina M; Scholtens, Ingrid M J; Kok, Esther J
2011-05-01
Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples.
Lombardo, Fabrizio; Ghani, Yasmeen; Kafatos, Fotis C.; Christophides, George K.
2013-01-01
Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca2+ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens. PMID:23382679
Pathway-based discovery of genetic interactions in breast cancer
Xu, Zack Z.; Boone, Charles; Lange, Carol A.
2017-01-01
Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314
Dual genetic selection of synthetic riboswitches in Escherichia coli.
Nomura, Yoko; Yokobayashi, Yohei
2014-01-01
This chapter describes a genetic selection strategy to engineer synthetic riboswitches that can chemically regulate gene expression in Escherichia coli. Riboswitch libraries are constructed by randomizing the nucleotides that potentially comprise an expression platform and fused to the hybrid selection/screening marker tetA-gfpuv. Iterative ON and OFF selections are performed under appropriate conditions that favor the survival or the growth of the cells harboring the desired riboswitches. After the selection, rapid screening of individual riboswitch clones is performed by measuring GFPuv fluorescence without subcloning. This optimized dual genetic selection strategy can be used to rapidly develop synthetic riboswitches without detailed computational design or structural knowledge.
Lennon, Anne Marie; Wolfgang, Christopher L.; Canto, Marcia Irene; Klein, Alison P.; Herman, Joseph M.; Goggins, Michael; Fishman, Elliot K.; Kamel, Ihab; Weiss, Matthew J.; Diaz, Luis A.; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Hruban, Ralph H.
2014-01-01
Pancreatic cancer is the deadliest of all solid malignancies. Early detection offers the best hope for a cure, but characteristics of this disease such as the lack of early clinical symptoms, make the early detection difficult. Recent genetic mapping of the molecular evolution of pancreatic cancer suggests that a large window of opportunity exists for the early detection of pancreatic neoplasia, and developments in cancer genetics offer new, potentially highly specific, approaches for screening for curable pancreatic neoplasia. We review the challenges of screening for early pancreatic neoplasia, as well as opportunities presented by incorporating molecular genetics into these efforts. PMID:24924775
Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G
2006-09-01
An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.
Genetic Landscape of Auditory Dysfunction.
Bowl, Michael R; Brown, S D M
2018-05-02
Over the past 25 years, human and mouse genetics research together has identified several hundred genes essential for mammalian hearing, leading to a greater understanding of the molecular mechanisms underlying auditory function. However, from the number of still as yet uncloned human deafness loci and the findings of large-scale mouse mutant screens, it is clear we are still far from identifying all of the genes critical for auditory function. In particular, while we have made great progress in understanding the genetic bases of congenital and early-onset hearing loss, we have only just begun to elaborate upon the genetic landscape of age-related hearing loss. With an aging population and a growing literature suggesting links between age-related hearing loss and neuropsychiatric conditions, such as dementia and depression, understanding the genetics and subsequently the molecular mechanisms underlying this very prevalent condition is of paramount importance. Increased knowledge of genes and molecular pathways required for hearing will ultimately provide the foundation upon which novel therapeutic approaches can be built. Here we discuss the current status of deafness genetics research and the ongoing efforts being undertaken for discovery of novel genes essential for hearing.
Anesthesia and euthanasia in zebrafish.
Matthews, Monte; Varga, Zoltán M
2012-01-01
Because of the relative ease of embryonic manipulation and observation, the ability to produce a great number of genetic mutations, efficient screening methods, and the continued advance of molecular genetic tools, such as the progress in sequencing and mapping of the zebrafish genome, the use of zebrafish (Danio rerio) as a biomedical model organism continues to expand. However, studies involving zebrafish husbandry and veterinary care struggle to keep pace with scientific progress. This article outlines some of the current, acceptable methods for providing anesthesia and euthanasia and provides some examples of how performance-based approaches can be used to advance the relatively limited number of anesthetic and euthanizing techniques available for zebrafish.
Preserving Employee Privacy in Wellness.
Terry, Paul E
2017-07-01
The proposed "Preserving Employee Wellness Programs Act" states that the collection of information about the manifested disease or disorder of a family member shall not be considered an unlawful acquisition of genetic information. The bill recognizes employee privacy protections that are already in place and includes specific language relating to nondiscrimination based on illness. Why did legislation expressly intending to "preserve wellness programs" generate such antipathy about wellness among journalists? This article argues that those who are committed to preserving employee wellness must be equally committed to preserving employee privacy. Related to this, we should better parse between discussions and rules about commonplace health screenings versus much less common genetic testing.
Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland
2014-01-01
The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.
In this study RNA interference (RNAi) screens were performed on 285 cell lines and combined with 216 lines previously screened, which were then analyzed together with DEMETER to discover genetic dependencies across the entire pool of cell lines. Read the abstract
Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao
2018-05-01
As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.
A Systematic Review on the Existing Screening Pathways for Lynch Syndrome Identification.
Tognetto, Alessia; Michelazzo, Maria Benedetta; Calabró, Giovanna Elisa; Unim, Brigid; Di Marco, Marco; Ricciardi, Walter; Pastorino, Roberta; Boccia, Stefania
2017-01-01
Lynch syndrome (LS) is the most common hereditary colon cancer syndrome, accounting for 3-5% of colorectal cancer (CRC) cases, and it is associated with the development of other cancers. Early detection of individuals with LS is relevant, since they can take advantage of life-saving intensive care surveillance. The debate regarding the best screening policy, however, is far from being concluded. This prompted us to conduct a systematic review of the existing screening pathways for LS. We performed a systematic search of MEDLINE, ISI Web of Science, and SCOPUS online databases for the existing screening pathways for LS. The eligibility criteria for inclusion in this review required that the studies evaluated a structured and permanent screening pathway for the identification of LS carriers. The effectiveness of the pathways was analyzed in terms of LS detection rate. We identified five eligible studies. All the LS screening pathways started from CRC cases, of which three followed a universal screening approach. Concerning the laboratory procedures, the pathways used immunohistochemistry and/or microsatellite instability testing. If the responses of the tests indicated a risk for LS, the genetic counseling, performed by a geneticist or a genetic counselor, was mandatory to undergo DNA genetic testing. The overall LS detection rate ranged from 0 to 5.2%. This systematic review reported different existing pathways for the identification of LS patients. Although current clinical guidelines suggest to test all the CRC cases to identify LS cases, the actual implementation of pathways for LS identification has not been realized. Large-scale screening programs for LS have the potential to reduce morbidity and mortality for CRC, but coordinated efforts in educating all key stakeholders and addressing public needs are still required.
Genetics Home Reference: carnitine-acylcarnitine translocase deficiency
... translocase deficiency Orphanet: Carnitine-acylcarnitine translocase deficiency Screening, Technology, and Research in Genetics Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases (CLIMB) FOD (Fatty ...
Genetics Home Reference: N-acetylglutamate synthase deficiency
... Hyperammonemia due to N-acetylglutamate synthase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (4 links) Children Living with Inherited Metabolic Diseases National Organization for ...
Jun-Jun Liu; Arezoo Zamany; Richard Sniezko
2012-01-01
Western white pine (Pinus monticola Douglas ex D. Don) is an important forest species in North America. Forest genetics programs have been breeding for durable genetic resistance against white pine blister rust (WPBR) caused by Cronartium ribicola in the past few decades. As various genetic resistance resources are screened and...
Berenschot, Amanda S; Quecini, Vera
2014-01-01
Flower color and plant architecture are important commercially valuable features for ornamental petunias (Petunia x hybrida Vilm.). Photoperception and light signaling are the major environmental factors controlling anthocyanin and chlorophyll biosynthesis and shade-avoidance responses in higher plants. The genetic regulators of these processes were investigated in petunia by in silico analyses and the sequence information was used to devise a reverse genetics approach to probe mutant populations. Petunia orthologs of photoreceptor, light-signaling components and anthocyanin metabolism genes were identified and investigated for functional conservation by phylogenetic and protein motif analyses. The expression profiles of photoreceptor gene families and of transcription factors regulating anthocyanin biosynthesis were obtained by bioinformatic tools. Two mutant populations, generated by an alkalyting agent and by gamma irradiation, were screened using a phenotype-independent, sequence-based method by high-throughput PCR-based assay. The strategy allowed the identification of novel mutant alleles for anthocyanin biosynthesis (CHALCONE SYNTHASE) and regulation (PH4), and for light signaling (CONSTANS) genes.
Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang
2015-01-05
The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.
Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang
2015-01-01
The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930
Fang, Wei-Jia; Mou, Hai-Bo; Jin, Da-Zhi; Zheng, Yu-Long; Zhao, Peng; Mao, Chen-Yu; Peng, Ling; Huang, Ming-Zhu; Xu, Nong
2012-05-01
S-1 is an oral antitumor agent that contains tegafur, which is converted to fluorouracil (5-FU) in the human body. Cytochrome P450 2A6 (CYP2A6) is the principal enzyme responsible for bioconversion of tegafur to 5-FU. A number of CYP2A6 polymorphisms have been associated with variations in enzyme activity in several ethnic populations. The CYP2A6*4C allele leads to deletion of the entire CYP2A6 gene, and is the main finding in patients with reduced CYP2A6 enzymatic activity. Thus, the aim of our study was to evaluate the allele frequencies of CYP2A6 polymorphisms in a population with cancer of the digestive system. We developed a simple screening method, which combined TA cloning and direct-sequencing, to detect CYP2A6 genetic polymorphisms in Chinese patients with cancers of the digestive system. A total of 77 patients with various types of digestive system cancers were screened for CYP2A6 genetic polymorphisms. The allele frequencies of CYP2A6*1A, CYP2A6*1B and CYP2A6*4C in the 77 patients screened were 62, 42 and 13%, respectively. Frequencies of the homozygous genotypes for CYP2A6*1A and CYP2A6*4C were 27 and 12%, respectively. As expected, patients that were determined to be homozygous for CYP2A6*4C exhibited the characteristic chemotherapy efficacy and toxicity profiles. The TA cloning-based direct sequencing method facilitated allele frequency and genotyping determination for CYP2A6*1A, 1B and 4C of cancer patients. The findings indicated that the population carries a high frequency of the CYP2A6*4C homozygous genotype. Thus, the reduced efficacy of standard chemotherapy dosage in Chinese cancer patients may be explained by the lack of CYP2A6-mediated S-1 bioconversion to 5-FU.
Nossek, Christel A.; Greenberg, L. Jacquie; Ramesar, Rajkumar S.
2012-01-01
Purpose Based on the previous indications of founder ATP-binding cassette sub-family A member 4 gene (ABCA4) mutations in a South African subpopulation, the purpose was to devise a mechanism for identifying common disease-causing mutations in subjects with ABCA4-associated retinopathies (AARs). Facilitating patient access to this data and determining the frequencies of the mutations in the South African population would enhance the current molecular diagnostic service offered. Methods The majority of subjects in this study were of Caucasian ancestry and affected with Stargardt macular dystrophy. The initial cohort consisted of DNA samples from 181 patients, and was screened using the ABCR400 chip. An assay was then designed to screen a secondary cohort of 72 patients for seven of the most commonly occurring ABCA4 mutations in this population. A total of 269 control individuals were also screened for the seven ABCA4 mutations. Results Microarray screening results from a cohort of 181 patients affected with AARs revealed that seven ABCA4 mutations (p.Arg152*, c.768G>T, p.Arg602Trp, p.Gly863Ala, p.Cys1490Tyr, c.5461–10T>C, and p.Leu2027Phe) occurred at a relatively high frequency. The newly designed genetic assay identified two of the seven disease-associated mutations in 28/72 patients in a secondary patient cohort. In the control cohort, 12/269 individuals were found to be heterozygotes, resulting in an estimated background frequency of these mutations in this particular population of 4.46 per 100 individuals. Conclusions The relatively high detection rate of seven ABCA4 mutations in the primary patient cohort led to the design and subsequent utility of a multiplex assay. This assay can be used as a viable screening tool and to reduce costs and laboratory time. The estimated background frequency of the seven ABCA4 mutations, together with the improved diagnostic service, could be used by counselors to facilitate clinical and genetic management of South African families with AARs. PMID:22328824
Firnhaber, Christopher; Hammarlund, Marc
2013-11-01
Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism.
Schneider, Jennifer L; Goddard, Katrina A B; Davis, James; Wilfond, Benjamin; Kauffman, Tia L; Reiss, Jacob A; Gilmore, Marian; Himes, Patricia; Lynch, Frances L; Leo, Michael C; McMullen, Carmit
2016-02-01
As genome sequencing technology advances, research is needed to guide decision-making about what results can or should be offered to patients in different clinical settings. We conducted three focus groups with individuals who had prior preconception genetic testing experience to explore perceived advantages and disadvantages of genome sequencing for preconception carrier screening, compared to usual care. Using a discussion guide, a trained qualitative moderator facilitated the audio-recorded focus groups. Sixteen individuals participated. Thematic analysis of transcripts started with a grounded approach and subsequently focused on participants' perceptions of the value of genetic information. Analysis uncovered two orientations toward genomic preconception carrier screening: "certain" individuals desiring all possible screening information; and "hesitant" individuals who were more cautious about its value. Participants revealed valuable information about barriers to screening: fear/anxiety about results; concerns about the method of returning results; concerns about screening necessity; and concerns about partner participation. All participants recommended offering choice to patients to enhance the value of screening and reduce barriers. Overall, two groups of likely users of genome sequencing for preconception carrier screening demonstrated different perceptions of the advantages or disadvantages of screening, suggesting tailored approaches to education, consent, and counseling may be warranted with each group.
Katz, L H; Burton-Chase, A M; Advani, S; Fellman, B; Polivka, K M; Yuan, Y; Lynch, P M; Peterson, S K
2016-03-01
Cancer screening recommendations for patients with Lynch-like syndrome (LLS) are not well defined. We evaluated adherence to Lynch syndrome (LS) screening recommendations, cancer risk perceptions, and communication within the families among colorectal cancer (CRC) survivors with LLS. Thirty-four participants with LLS completed a questionnaire about risk perception, adherence to LS screening recommendations, and communication with relatives. Clinical data were obtained from medical records. Most participants (76%) believed they should undergo colonoscopy every 1-2 years. Only 41% correctly interpreted their genetic tests as uninformative negative or as variant of unknown significance for LS. Less than half had had an upper gastrointestinal endoscopy for screening purpose. Among female participants, 86% had been screened for endometrial cancer (EC) and 71% for ovarian cancer. Most participants had informed relatives about the CRC diagnosis and advised them to undergo CRC screening, but only 50% advised female relatives to be screened for EC and only one-third advised relatives to have genetic counseling. Most CRC survivors with LLS follow the same cancer screening recommended for LS patients but do not understand the meaning of LLS. Greater care must be devoted to communicating the implications of nondiagnostic germline mutation testing among patients with LLS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Katz, Lior H.; Burton-Chase, Allison M.; Advani, Shailesh; Fellman, Bryan; Polivka, Katrina M.; Yuan, Ying; Lynch, Patrick M.; Peterson, Susan K.
2016-01-01
Background Cancer screening recommendations for patients with Lynch-like syndrome (LLS) are not well defined. We evaluated adherence to Lynch syndrome (LS) screening recommendations, cancer risk perceptions, and communication within the families among colorectal cancer (CRC) survivors with LLS. Methods Thirty-four participants with LLS completed a questionnaire about risk perception, adherence to LS screening recommendations, and communication with relatives. Clinical data were obtained from medical records. Results Most participants (76%) believed they should undergo colonoscopy every 1-2 years. Only 41% correctly interpreted their genetic tests as uninformative negative or as variant of unknown significance for LS. Less than half had had an upper GI endoscopy for screening purpose. Among female participants, 86% had been screened for endometrial cancer and 71% for ovarian cancer. Most participants had informed relatives about the CRC diagnosis and advised them to undergo CRC screening, but only 50% advised female relatives to be screened for endometrial cancer and only one-third advised relatives to have genetic counseling. Conclusions Most CRC survivors with LLS follow the same cancer screening recommended for LS patients but do not understand the meaning of LLS. Greater care must be devoted to communicating the implications of non-diagnostic germline mutation testing among patients with LLS. PMID:26272410
CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
Xue, Hui-Ying; Ji, Li-Juan; Gao, Ai-Mei; Liu, Ping; He, Jing-Dong; Lu, Xiao-Jie
2016-02-01
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) systems have emerged as versatile and convenient (epi)genome editing tools and have become an important player in medical genetic research. CRISPR-Cas9 and its variants such as catalytically inactivated Cas9 (dead Cas9, dCas9) and scaffold-incorporating single guide sgRNA (scRNA) have been applied in various genomic screen studies. CRISPR screens enable high-throughput interrogation of gene functions in health and diseases. Compared with conventional RNAi screens, CRISPR screens incur less off-target effects and are more versatile in that they can be used in multiple formats such as knockout, knockdown and activation screens, and can target coding and non-coding regions throughout the genome. This powerful screen platform holds the potential of revolutionising functional genomic studies in the near future. Herein, we introduce the mechanisms of (epi)genome editing mediated by CRISPR-Cas9 and its variants, introduce the procedures and applications of CRISPR screen in functional genomics, compare it with conventional screen tools and at last discuss current challenges and opportunities and propose future directions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Blacket, Mark J; Malipatil, Mali B; Semeraro, Linda; Gillespie, Peter S; Dominiak, Bernie C
2017-04-01
Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long-term quarantine and population reduction control measures in the major horticulture production areas of southeastern Australia, at the species southern range limit. Previous studies have employed microsatellite markers to estimate gene flow between populations across this region. In this study, we used an independent genetic marker, mitochondrial DNA (mtDNA) sequences, to screen genetic variation in established and adjacent outbreak populations in southeastern Australia. During the study period, favorable environmental conditions resulted in multiple outbreaks, which appeared genetically distinctive and relatively geographically localized, implying minimal dispersal between simultaneous outbreaks. Populations in established regions were found to occur over much larger areas. Screening mtDNA (female) lineages proved to be an effective alternative genetic tool to assist in understanding fruit fly population dynamics and provide another possible molecular method that could now be employed for better understanding of the ecology and evolution of this and other pest species.
Ethical issues in genetic counselling with special reference to haemoglobinopathies.
Muthuswamy, Vasantha
2011-10-01
Genetic counselling is provided in places where genetic tests are carried out. The process involves pre-test counselling as well as post-test counselling to enable the individuals to face the situation and take appropriate decisions with the right frame of mind. Major ethical principles which govern the attitudes and actions of counsellors include: respect for patient autonomy, non-maleficence, beneficence, or taking action to help benefit others and prevent harm, both physical and mental, and justice, which requires that services be distributed fairly to those in need. Other moral issues include veracity, the duty to disclose information or to be truthful, and respect for patient confidentiality. Nondirective counselling, a hallmark of this profession, is in accordance with the principle of individual autonomy. High prevalence of haemoglobinopathies with availability of good and sensitive carrier detection tests and prenatal diagnostic techniques makes these good candidates for population screening of carriers along with genetic counselling for primary prevention of the disease. Screening of the extended family members of the affected child, high risk communities and general population screening including antenatal women are the main target groups for planning a Haemoglobinopathy control programme. A critical mass of trained genetic counsellors who have understanding of the ethical issues and its appropriate handling with the required sensitivity is needed in India.
Poon, Kok Siong; Sng, Andrew Anjian; Ho, Cindy Weili; Koay, Evelyn Siew-Chuan
2015-01-01
Loss-of-function mutations in the phosphate regulating gene with homologies to endopeptidases on the X-chromosome (PHEX) have been causally associated with X-linked hypophosphatemic rickets (XLHR). The early diagnosis of XLHR in infants is challenging when it is based solely on clinical features and biochemical findings. We report a 7-month-old boy with a family history of hypophosphatemic rickets., who demonstrated early clinical evidence of rickets, although serial biochemical findings could not definitively confirm rickets. A sequencing assay targeting the PHEX gene was first performed on the mother’s DNA to screen for mutations in the 5′UTR, 22 coding exons, and the exon-intron junctions. Targeted mutation analysis and mRNA studies were subsequently performed on the boys’ DNA to investigate the pathogenicity of the identified mutation. Genetic screening of the PHEX gene revealed a novel mutation, c.1080-2A>C, at the splice acceptor site in intron 9. The detection of an aberrant mRNA transcript with skipped (loss of) exon 10 establishes its pathogenicity and confirms the diagnosis of XLHR in this infant. Genetic testing of the PHEX gene resulted in early diagnosis of XLHR, thus enabling initiation of therapy and prevention of progressive rachitic changes in the infant. PMID:26904698
Colon cancer screening: which non-invasive filter tests?
Pox, Christian
2011-01-01
The following non-invasive stool tests for colorectal cancer (CRC) screening exist: guaiac or immunochemical fecal occult blood testing (FOBT), genetic stool tests and the M2-PK. Currently the most widely used tests are guaiac-based (gFOBT). Several randomized controlled trials have shown that gFOBT are able to achieve a reduction in CRC-related mortality. This reduction is achieved by detecting asymptomatic cancers at an early stage with a better prognosis. However, gFOBT have a low sensitivity for colorectal adenomas and are thus unlikely to be able to reduce the incidence of CRC. Furthermore, gFOBT are not specific for human blood and can be influenced by external factors. Immunochemical tests (iFOBT) only detect human blood in the stool. In two recent randomized studies from the Netherlands comparing guaiac and immunochemical tests in the asymptomatic population, iFOBT were found to detect more cancers than gFOBT. Furthermore, iFOBT were able to detect more advanced adenomas thus having the potential to be able to reduce the incidence of CRC as well as CRC-related mortality. In the recently released European CRC screening guidelines, iFOBT are considered the screening test of choice. Several questions remain however. It is currently unknown what the optimal cut-off value for an iFOBT to be considered positive should be and what the number of stool samples is that are required. Genetic stool tests detect mutations in stool that can be found in CRC. The original test testing for 21 genetic changes was found to be superior to gFOBT for the detection of cancers. However, the sensitivity was moderate (51.6%) and the sensitivity for advanced adenomas was low. In the meantime the test has been modified improving DNA extraction and reducing the number of mutations tested for as well as including a methylation marker. The efficacy of the modified test in the screening population is unknown. M2-PK is an isomer of the enzyme pyruvate kinase that is involved in glycolysis. Studies have found a good sensitivity for cancers, a low sensitivity for advanced adenomas with a specificity of around 80%. Further studies in the screening population are required. Copyright © 2011 S. Karger AG, Basel.
Using the Drosophila Melanogaster Genetics Reference Panel to Identify Toxicity Pathways for Toluene
Mechanistic information is needed to link effects of chemicals at molecular targets in high throughput screening assays to adverse outcomes in whole organisms. This study was designed to use the Drosophila Genetic Reference Panel (DGRP), a set of genetically well...
Nonprofit Groups Offer Genetic Testing for Jewish Students
ERIC Educational Resources Information Center
Supiano, Beckie
2008-01-01
This article describes how nonprofit organizations like Hillel are offering free genetic testing for Jewish college students. A growing number of colleges, including Pittsburgh, Brandeis University, and Columbia University are offering students free or reduced-cost screenings for diseases common to Jewish population. Genetic diseases common to…
Data and animal management software for large-scale phenotype screening.
Ching, Keith A; Cooke, Michael P; Tarantino, Lisa M; Lapp, Hilmar
2006-04-01
The mouse N-ethyl-N-nitrosourea (ENU) mutagenesis program at the Genomics Institute of the Novartis Research Foundation (GNF) uses MouseTRACS to analyze phenotype screens and manage animal husbandry. MouseTRACS is a Web-based laboratory informatics system that electronically records and organizes mouse colony operations, prints cage cards, tracks inventory, manages requests, and reports Institutional Animal Care and Use Committee (IACUC) protocol usage. For efficient phenotype screening, MouseTRACS identifies mutants, visualizes data, and maps mutations. It displays and integrates phenotype and genotype data using likelihood odds ratio (LOD) plots of genetic linkage between genotype and phenotype. More detailed mapping intervals show individual single nucleotide polymorphism (SNP) markers in the context of phenotype. In addition, dynamically generated pedigree diagrams and inventory reports linked to screening results summarize the inheritance pattern and the degree of penetrance. MouseTRACS displays screening data in tables and uses standard charts such as box plots, histograms, scatter plots, and customized charts looking at clustered mice or cross pedigree comparisons. In summary, MouseTRACS enables the efficient screening, analysis, and management of thousands of animals to find mutant mice and identify novel gene functions. MouseTRACS is available under an open source license at http://www.mousetracs.sourceforge.net.
Semiautomated TaqMan PCR screening of GMO labelled samples for (unauthorised) GMOs.
Scholtens, Ingrid M J; Molenaar, Bonnie; van Hoof, Richard A; Zaaijer, Stephanie; Prins, Theo W; Kok, Esther J
2017-06-01
In most countries, systems are in place to analyse food products for the potential presence of genetically modified organisms (GMOs), to enforce labelling requirements and to screen for the potential presence of unauthorised GMOs. With the growing number of GMOs on the world market, a larger diversity of methods is required for informative analyses. In this paper, the specificity of an extended screening set consisting of 32 screening methods to identify different crop species (endogenous genes) and GMO elements was verified against 59 different GMO reference materials. In addition, a cost- and time-efficient strategy for DNA isolation, screening and identification is presented. A module for semiautomated analysis of the screening results and planning of subsequent event-specific tests for identification has been developed. The Excel-based module contains information on the experimentally verified specificity of the element methods and of the EU authorisation status of the GMO events. If a detected GMO element cannot be explained by any of the events as identified in the same sample, this may indicate the presence of an unknown unauthorised GMO that may not yet have been assessed for its safety for humans, animals or the environment.
Genetics Home Reference: homocystinuria
... reductase deficiency Orphanet: Homocystinuria without methylmalonic aciduria Screening, Technology, and Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (6 links) Children Living with Inherited Metabolic Diseases (CLIMB) (UK) CLIMB: ...
Genetics Home Reference: isobutyryl-CoA dehydrogenase deficiency
... dehydrogenase deficiency Orphanet: Isobutyryl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (3 links) Children's Cardiomyopathy Foundation CLIMB (Children Living with Inherited Metabolic ...