From observational to dynamic genetics
Haworth, Claire M. A.; Davis, Oliver S. P.
2014-01-01
Twin and family studies have shown that most traits are at least moderately heritable. But what are the implications of finding genetic influence for the design of intervention and prevention programs? For complex traits, heritability does not mean immutability, and research has shown that genetic influences can change with age, context, and in response to behavioral and drug interventions. The most significant implications for intervention will come when we move from observational genetics to investigating dynamic genetics, including genetically sensitive interventions. Future interventions should be designed to overcome genetic risk and draw upon genetic strengths by changing the environment. PMID:24478793
Genetic Susceptibility to Lymphoma
Skibola, Christine F.; Curry, John D.; Nieters, Alexandra
2010-01-01
BACKGROUND Genetic susceptibility studies of lymphoma may serve to identify at risk populations and to elucidate important disease mechanisms. METHODS This review considered all studies published through October 2006 on the contribution of genetic polymorphisms in the risk of lymphoma. RESULTS Numerous studies implicate the role of genetic variants that promote B-cell survival and growth with increased risk of lymphoma. Several reports including a large pooled study by InterLymph, an international consortium of non-Hodgkin lymphoma (NHL) case-control studies, found positive associations between variant alleles in TNF -308G>A and IL10 -3575T>A genes and risk of diffuse large B-cell lymphoma. Four studies reported positive associations between a GSTT1 deletion and risk of Hodgkin and non-Hodgkin lymphoma. Genetic studies of folate-metabolizing genes implicate folate in NHL risk, but further studies that include folate and alcohol assessments are needed. Links between NHL and genes involved in energy regulation and hormone production and metabolism may provide insights into novel mechanisms implicating neuro- and endocrine-immune cross-talk with lymphomagenesis, but will need replication in larger populations. CONCLUSIONS Numerous studies suggest that common genetic variants with low penetrance influence lymphoma risk, though replication studies will be needed to eliminate false positive associations. PMID:17606447
Insight into the molecular genetics of myopia
Li, Jiali
2017-01-01
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia. PMID:29386878
Insight into the molecular genetics of myopia.
Li, Jiali; Zhang, Qingjiong
2017-01-01
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Ethical Issues of Predictive Genetic Testing for Diabetes
Haga, Susanne B.
2009-01-01
With the rising number of individuals affected with diabetes and the significant health care costs of treatment, the emphasis on prevention is key to controlling the health burden of this disease. Several genetic and genomic studies have identified genetic variants associated with increased risk to diabetes. As a result, commercial testing is available to predict an individual's genetic risk. Although the clinical benefits of testing have not yet been demonstrated, it is worth considering some of the ethical implications of testing for this common chronic disease. In this article, I discuss several issues that should be considered during the translation of predictive testing for diabetes, including familial implications, improvement of risk communication, implications for behavioral change and health outcomes, the Genetic Information Nondiscrimination Act, direct-to-consumer testing, and appropriate age of testing. PMID:20144329
Genetic Counseling: Implications for Community Counselors.
ERIC Educational Resources Information Center
Bodenhorn, Nancy; Lawson, Gerard
2003-01-01
Special issue of the "Journal of Health Psychology" (Vol. 7, No. 2, 2002) was reviewed. Articles covered a variety of qualitative studies conducted using an interpretive phenomenological analysis method to examine the interviews with people who had received genetic testing and counseling. Implications for the broader counseling field…
Stigmatization of carrier status: social implications of heterozygote genetic screening programs.
Kenen, R H; Schmidt, R M
1978-01-01
Possible latent psychological and social consequences ensuing from genetic screening programs need to be investigated during the planning phase of national genetic screening programs. The relatively few studies which have been performed to determine psychological, social, and economic consequences resulting from a genetic screening program are reviewed. Stigmatization of carrier-status, having major psychosocial implications in heterozygote genetic screening programs, is discussed and related to Erving Goffman's work in the area of stigmatization. Questions are raised regarding the relationship between such variables as religiosity and sex of the individual and acceptance of the status of newly identified carrier of a mutant gene. Severity of the deleterious gene and visibility of the carrier status are two important factors to consider in an estimation of potential stigma. Specific implications are discussed for four genetic diseases: Tay-Sachs, Sickle-Cell Anemia, Huntington's disease and Hemophilia. PMID:152585
Rocha, Leonardo de Souza; Falqueto, Aloisio; Dos Santos, Claudiney Biral; Grimaldi, Gabriel Júnior; Cupolillo, Elisa
2011-09-01
Lutzomyia longipalpis (Diptera: Psychodidae) is the principal vector of American visceral leishmaniasis. Several studies have indicated that the Lu. longipalpis population structure is complex. It has been suggested that genetic divergence caused by genetic drift, selection, or both may affect the vectorial capacity of Lu. longipalpis. However, it remains unclear whether genetic differences among Lu. longipalpis populations are directly implicated in the transmission features of visceral leishmaniasis. We evaluated the genetic composition and the patterns of genetic differentiation among Lu. longipalpis populations collected from regions with different patterns of transmission of visceral leishmaniasis by analyzing the sequence variation in the mitochondrial cytochrome b gene. Furthermore, we investigated the temporal distribution of haplotypes and compared our results with those obtained in a previous study. Our data indicate that there are differences in the haplotype composition and that there has been significant differentiation between the analyzed populations. Our results reveal that measures used to control visceral leishmaniasis might have influenced the genetic composition of the vector population. This finding raises important questions concerning the epidemiology of visceral leishmaniasis, because these differences in the genetic structures among populations of Lu. longipalpis may have implications with respect to their efficiency as vectors for visceral leishmaniasis.
Genetics of attention deficit hyperactivity disorder.
Faraone, Stephen V; Larsson, Henrik
2018-06-11
Decades of research show that genes play an vital role in the etiology of attention deficit hyperactivity disorder (ADHD) and its comorbidity with other disorders. Family, twin, and adoption studies show that ADHD runs in families. ADHD's high heritability of 74% motivated the search for ADHD susceptibility genes. Genetic linkage studies show that the effects of DNA risk variants on ADHD must, individually, be very small. Genome-wide association studies (GWAS) have implicated several genetic loci at the genome-wide level of statistical significance. These studies also show that about a third of ADHD's heritability is due to a polygenic component comprising many common variants each having small effects. From studies of copy number variants we have also learned that the rare insertions or deletions account for part of ADHD's heritability. These findings have implicated new biological pathways that may eventually have implications for treatment development.
Epistasis and Its Implications for Personal Genetics
Moore, Jason H.; Williams, Scott M.
2009-01-01
The widespread availability of high-throughput genotyping technology has opened the door to the era of personal genetics, which brings to consumers the promise of using genetic variations to predict individual susceptibility to common diseases. Despite easy access to commercial personal genetics services, our knowledge of the genetic architecture of common diseases is still very limited and has not yet fulfilled the promise of accurately predicting most people at risk. This is partly because of the complexity of the mapping relationship between genotype and phenotype that is a consequence of epistasis (gene-gene interaction) and other phenomena such as gene-environment interaction and locus heterogeneity. Unfortunately, these aspects of genetic architecture have not been addressed in most of the genetic association studies that provide the knowledge base for interpreting large-scale genetic association results. We provide here an introductory review of how epistasis can affect human health and disease and how it can be detected in population-based studies. We provide some thoughts on the implications of epistasis for personal genetics and some recommendations for improving personal genetics in light of this complexity. PMID:19733727
Epistasis and its implications for personal genetics.
Moore, Jason H; Williams, Scott M
2009-09-01
The widespread availability of high-throughput genotyping technology has opened the door to the era of personal genetics, which brings to consumers the promise of using genetic variations to predict individual susceptibility to common diseases. Despite easy access to commercial personal genetics services, our knowledge of the genetic architecture of common diseases is still very limited and has not yet fulfilled the promise of accurately predicting most people at risk. This is partly because of the complexity of the mapping relationship between genotype and phenotype that is a consequence of epistasis (gene-gene interaction) and other phenomena such as gene-environment interaction and locus heterogeneity. Unfortunately, these aspects of genetic architecture have not been addressed in most of the genetic association studies that provide the knowledge base for interpreting large-scale genetic association results. We provide here an introductory review of how epistasis can affect human health and disease and how it can be detected in population-based studies. We provide some thoughts on the implications of epistasis for personal genetics and some recommendations for improving personal genetics in light of this complexity.
A Developmental-Genetic Model of Alcoholism: Implications for Genetic Research.
ERIC Educational Resources Information Center
Devor, Eric J.
1994-01-01
Research for biological-genetic markers of alcoholism is discussed in context of a multifactorial, heterogeneous, developmental model. Suggested that strategies used in linkage and association studies will require modification. Also suggested several extant associations of genetic markers represent true secondary interactive phenomena that alter…
Campbell, Michael C.; Tishkoff, Sarah A.
2010-01-01
Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304
[Genetic tests in oncology: from identification of high risk groups to therapy].
Sgambato, Alessandro; Ripani, Maurizio; Romano Spica, Vincenzo
2010-01-01
The development of genetic epidemiology in oncology has made possible more frequent analysis of high risk groups, allowing the development of promising susceptibility indicators. The main public health implications include screening and new perspectives for pharmacogenetics and nutrigenomics. The study of genetic variants allows the evaluation of individual risk of developing a disease and has important implications in primary and secondary prevention programs. The analysis of somatic mutations present in tumour cells may contribute to selecting the optimal treatment on an individual basis and to reducing the occurrence of adverse effects of chemotherapy. The authors give a summary of the state of the art of this field and analyze the potential applications of genetic tests in oncology, from identification of high risk groups to defining individualized therapies with particular emphasis on implications for prevention.
Genetic background effects in quantitative genetics: gene-by-system interactions.
Sardi, Maria; Gasch, Audrey P
2018-04-11
Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.
Genetic testing and its implications: human genetics researchers grapple with ethical issues.
Rabino, Isaac
2003-01-01
To better understand ethical issues involved in the field of human genetics and promote debate within the scientific community, the author surveyed scientists who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. This study contributes systematic data on attitudes of scientific experts. The survey finds respondents are highly supportive of voluntary testing and the right to know one's genetic heritage. The majority consider in utero testing and consequent pregnancy termination acceptable for cases involving likelihood of serious disease but disapprove for genetic reasons they consider arbitrary, leaving a gray area of distinguishing between treatment of disorders and enhancement still to be resolved. While safeguarding patient confidentiality versus protecting at-risk third parties (kin, reproductive partners) presents a dilemma, preserving privacy from misuse by institutional third parties (employers, insurers) garners strong consensus for legislation against discrimination. Finally, a call is made for greater genetic literacy.
Ronald S., Jr. Zalesny
2006-01-01
Genetic and environmental factors affect the early rooting of Populus planted as unrooted hardwood cuttings. Populus genotypes of six genomic groups were tested in numerous studies for the quantitative genetics of rooting, along with effects of preplanting treatments and soil temperature. Genetics data (e.g. heritabilities,...
Genetic Testing and Its Implications: Human Genetics Researchers Grapple with Ethical Issues.
ERIC Educational Resources Information Center
Rabino, Isaac
2003-01-01
Contributes systematic data on the attitudes of scientific experts who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. Finds that they are highly supportive of voluntary testing and the right to know one's genetic heritage. Calls for greater genetic literacy. (Contains 87 references.) (Author/NB)
Ethical, Legal, Social, and Policy Implications of Behavioral Genetics
Berryessa, Colleen M.; Cho, Mildred K.
2015-01-01
The field of behavioral genetics has engendered a host of moral and social concerns virtually since its inception. The policy implications of a genetic basis for behaviors are widespread and extend beyond the clinic to the socially important realms of education, criminal justice, childbearing, and child rearing. The development of new techniques and analytic approaches, including whole-genome sequencing, noninvasive prenatal genetic testing, and optogenetics, has clearly changed the study of behavioral genetics. However, the social context of biomedical research has also changed profoundly over the past few decades, and in ways that are especially relevant to behavioral genetics. The ever-widening scope of behavioral genetics raises ethical, legal, social, and policy issues in the potential new applications to criminal justice, education, the military, and reproduction. These issues are especially critical to address because of their potentially disproportionate effects on vulnerable populations such as children, the unborn, and the incarcerated. PMID:23452225
I think, therefore I am: a twin study of attributional style in adolescents.
Lau, Jennifer Y F; Rijsdijk, Frühling; Eley, Thalia C
2006-07-01
Parenting factors may be important to the development of attributional style in adolescence, which in turn relates to depression symptoms. These relationships have mainly been considered in terms of social risk mechanisms, and little is known about the role of genetic influences. Self-reported measures of attributional style, depression symptoms and parental disciplinary styles were administered to over 1300 adolescent twin and sibling pairs. Model-fitting techniques were used to examine the role of genetic and environmental influences. Moderate genetic influences on attributional style were demonstrated, and furthermore, its association with depression reflected considerable genetic effects. Familial factors were implicated in the association between attributional style and punitive parenting, although genetic from shared environmental causes could not be distinguished. Our results demonstrate that attributional style is influenced by genetic, as well as social factors. Implications for aetiological pathways integrating cognitive, genetic and social factors on adolescent depression are discussed.
Genetics of pancreatic neuroendocrine tumors: implications for the clinic
Pea, Antonio; Hruban, Ralph H.; Wood, Laura D.
2016-01-01
Pancreatic neuroendocrine tumors (PanNETs) are a common and deadly neoplasm of the pancreas. Although the importance of genetic alterations in PanNETs has been known for many years, recent comprehensive sequencing studies have greatly expanded our knowledge of neuroendocrine tumorigenesis in the pancreas. These studies have identified specific cellular processes that are altered in PanNETs, highlighted alterations with prognostic implications, and pointed to pathways for targeted therapies. In this review, we will discuss the genetic alterations that play a key role in PanNET tumorigenesis, with a specific focus on those alterations with the potential to change the way patients with these neoplasms are diagnosed and treated. PMID:26413978
Germline genetic variants with implications for disease risk and therapeutic outcomes.
Pasternak, Amy L; Ward, Kristen M; Luzum, Jasmine A; Ellingrod, Vicki L; Hertz, Daniel L
2017-10-01
Genetic testing has multiple clinical applications including disease risk assessment, diagnosis, and pharmacogenomics. Pharmacogenomics can be utilized to predict whether a pharmacologic therapy will be effective or to identify patients at risk for treatment-related toxicity. Although genetic tests are typically ordered for a distinct clinical purpose, the genetic variants that are found may have additional implications for either disease or pharmacology. This review will address multiple examples of germline genetic variants that are informative for both disease and pharmacogenomics. The discussed relationships are diverse. Some of the agents are targeted for the disease-causing genetic variant, while others, although not targeted therapies, have implications for the disease they are used to treat. It is also possible that the disease implications of a genetic variant are unrelated to the pharmacogenomic implications. Some of these examples are considered clinically actionable pharmacogenes, with evidence-based, pharmacologic treatment recommendations, while others are still investigative as areas for additional research. It is important that clinicians are aware of both the disease and pharmacogenomic associations of these germline genetic variants to ensure patients are receiving comprehensive personalized care. Copyright © 2017 the American Physiological Society.
Gordon, Erynn S; Gordish Dressman, Heather A; Hoffman, Eric P
2005-10-01
Much of the vast diversity we see in animals and people is governed by genetic loci that have quantitative effects of phenotype (quantitative trait loci; QTLs). Here we review the current knowledge of the genetics of atrophy and hypertrophy in both animal husbandry (meat quantity and quality), and humans (muscle size and performance). The selective breeding of animals for meat has apparently led to a few genetic loci with strong effects, with different loci in different animals. In humans, muscle quantitative trait loci (QTLs) appear to be more complex, with few "major" loci identified to date, although this is likely to change in the near future. We describe how the same phenotypic traits we see as positive, greater lean muscle mass in cattle or a better exercise results in humans, can also have negative "side effects" given specific environmental challenges. We also discuss the strength and limitations of single nucleotide polymorphisms (SNP) association studies; what the reader should look for and expect in a published study. Lastly we discuss the ethical and societal implications of this genetic information. As more and more research into the genetic loci that dictate phenotypic traits become available, the ethical implications of testing for these loci become increasingly important. As a society, most accept testing for genetic diseases or susceptibility, but do we as easily accept testing to determine one's athletic potential to be an Olympic endurance runner, or quarterback on the high school football team.
Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.
Zhang-James, Yanli; Faraone, Stephen V
2016-07-01
Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Cancer heterogeneity: origins and implications for genetic association studies
Urbach, Davnah; Lupien, Mathieu; Karagas, Margaret R.; Moore, Jason H.
2012-01-01
Genetic association studies have become standard approaches to characterize the genetic and epigenetic variability associated with cancer development, including predispositions and mutations. However, the bewildering genetic and phenotypic heterogeneity inherent in cancer both magnifies the conceptual and methodological problems associated with these approaches and renders the translation of available genetic information into a knowledge that is both biologically sound and clinically relevant difficult. Here, we elaborate on the underlying causes of this complexity, illustrate why it represents a challenge for genetic association studies, and briefly discuss how it can be reconciled with the ultimate goal of identifying targetable disease pathways and successfully treating individual patients. PMID:22858414
C. Vásquez-Carrillo; V. Friesen; L. Hall; M.Z. Peery
2013-01-01
Conserving genetic variation is critical for maintaining the evolutionary potential and viability of a species. Genetic studies seeking to delineate conservation units, however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major histocompatibility complex (MHC) class II...
The ENCODE project: implications for psychiatric genetics.
Kavanagh, D H; Dwyer, S; O'Donovan, M C; Owen, M J
2013-05-01
The ENCyclopedia Of DNA Elements (ENCODE) project is a public research consortium that aims to identify all functional elements of the human genome sequence. The project comprised 1640 data sets, from 147 different cell type and the findings were released in a coordinated set of 34 publications across several journals. The ENCODE publications report that 80.4% of the human genome displays some functionality. These data have important implications for interpreting results from large-scale genetics studies. We reviewed some of the key findings from the ENCODE publications and discuss how they can influence or inform further investigations into the genetic factors contributing to neuropsychiatric disorders.
An update on the genetic architecture of hyperuricemia and gout.
Merriman, Tony R
2015-04-10
Genome-wide association studies that scan the genome for common genetic variants associated with phenotype have greatly advanced medical knowledge. Hyperuricemia is no exception, with 28 loci identified. However, genetic control of pathways determining gout in the presence of hyperuricemia is still poorly understood. Two important pathways determining hyperuricemia have been confirmed (renal and gut excretion of uric acid with glycolysis now firmly implicated). Major urate loci are SLC2A9 and ABCG2. Recent studies show that SLC2A9 is involved in renal and gut excretion of uric acid and is implicated in antioxidant defense. Although etiological variants at SLC2A9 are yet to be identified, it is clear that considerable genetic complexity exists at the SLC2A9 locus, with multiple statistically independent genetic variants and local epistatic interactions. The positions of implicated genetic variants within or near chromatin regions involved in transcriptional control suggest that this mechanism (rather than structural changes in SLC2A9) is important in regulating the activity of SLC2A9. ABCG2 is involved primarily in extra-renal uric acid under-excretion with the etiological variant influencing expression. At the other 26 loci, probable causal genes can be identified at three (PDZK1, SLC22A11, and INHBB) with strong candidates at a further 10 loci. Confirmation of the causal gene will require a combination of re-sequencing, trans-ancestral mapping, and correlation of genetic association data with expression data. As expected, the urate loci associate with gout, although inconsistent effect sizes for gout require investigation. Finally, there has been no genome-wide association study using clinically ascertained cases to investigate the causes of gout in the presence of hyperuricemia. In such a study, use of asymptomatic hyperurcemic controls would be expected to increase the ability to detect genetic associations with gout.
ERIC Educational Resources Information Center
Wood, Alexis C.; Neale, Michael C.
2010-01-01
Objective: To describe the utility of twin studies for attention-deficit/hyperactivity disorder (ADHD) research and demonstrate their potential for the identification of alternative phenotypes suitable for genomewide association, developmental risk assessment, treatment response, and intervention targets. Method: Brief descriptions of the classic…
Forensic genetics and ethical, legal and social implications beyond the clinic
Cho, Mildred K; Sankar, Pamela
2008-01-01
Data on human genetic variation help scientists to understand human origins, susceptibility to illness and genetic causes of disease. Destructive episodes in the history of genetic research make it crucial to consider the ethical and social implications of research in genomics, especially human genetic variation. The analysis of ethical, legal and social implications should be integrated into genetic research, with the participation of scientists who can anticipate and monitor the full range of possible applications of the research from the earliest stages. The design and implementation of research directs the ways in which its results can be used, and data and technology, rather than ethical considerations or social needs, drive the use of science in unintended ways. Here we examine forensic genetics and argue that all geneticists should anticipate the ethical and social issues associated with nonmedical applications of genetic variation research. PMID:15510102
"Be ready against cancer, now": direct-to-consumer advertising for genetic testing.
William-Jones, Bryn
2006-04-01
A recent addition to the debate about the benefits and harms of direct-to-consumer (DTC) advertising of medicines and pharmaceuticals is a growing critique of DTC marketing and sale of genetic tests. Academic and policy literatures exploring this issue have, however, tended to focus on the sale of genetic tests, paying rather less attention to the particular implications of advertising. The globalization of broadcast media and ever increasing access to the Internet mean that public exposure to advertising for medical technologies is a reality that national regulatory bodies will be hard pressed to constrain. Working through a case study detailing Myriad Genetics' 2002 pilot advertising campaign for their BRACAnalysis genetic susceptibility test for hereditary breast and ovarian cancer, this paper highlights some of the diverse and often overlooked and unregulated approaches to DTC advertising, and the associated social, ethical and policy implications.
Towards a Genetic Definition of Cancer-Associated Inflammation
Prendergast, George C.; Metz, Richard; Muller, Alexander J.
2010-01-01
Chronic inflammation drives the development of many cancers, but a genetic definition of what constitutes ‘cancer-associated’ inflammation has not been determined. Recently, a mouse genetic study revealed a critical role for the immune escape mediator indoleamine 2,3-dioxygenase (IDO) in supporting inflammatory skin carcinogenesis. IDO is generally regarded as being immunosuppressive; however, there was no discernable difference in generalized inflammatory processes in IDO-null mice under conditions where tumor development was significantly suppressed, implicating IDO as key to establishing the pathogenic state of ‘cancer-associated’ inflammation. Here we review recent findings and their potential implications to understanding the relationship between immune escape and inflammation in cancer. Briefly, we propose that genetic pathways of immune escape in cancer are synonymous with pathways that define ‘cancer-associated’ inflammation and that these processes may be identical rather than distinct, as generally presumed, in terms of their genetic definition. PMID:20228228
A Description of the Strategic Knowledge of Experts Solving Transmission Genetics Problems.
ERIC Educational Resources Information Center
Collins, Angelo
Descriptions of the problem-solving strategies of experts solving realistic, computer-generated transmission genetics problems are presented in this paper and implications for instruction are discussed. Seven experts were involved in the study. All of the experts had a doctoral degree and experience in both teaching and doing research in genetics.…
75 FR 5602 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... personal privacy. Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Ethical, Legal, and Social Implications of Human Genetics Study Section. Date: February 23, 2010. Time: 8:30 a.m. to 4... Conflict: Cancer Genetics and Others. Date: February 26, 2010. Time: 10:30 a.m. to 1:30 p.m. Agenda: To...
ERIC Educational Resources Information Center
Stowe, Matthew J.; Turnbull, H. Rutherford; Pence, Ray; Rack, Jennifer; Schrandt, Suzanne; Laub, Lesley
2007-01-01
This article reports concerns among disability community members that the implications of genetic research will be driven by mistaken beliefs about genetics and negative attitudes toward disability as identified in a qualitative study funded by the National Human Genome Research Institute. In addition to reporting the nature and the context of…
Not all my fault”: Genetics, stigma, and personal responsibility for women with eating disorders
Easter, Michele M.
2012-01-01
Medical researchers and clinicians increasingly understand and present eating disorders (anorexia and bulimia nervosa) as biologically-based psychiatric disorders, with genetic risk factors established by high heritability estimates in twin studies. But there has been no research on interpretation of genetic involvement by people with eating disorders, who may hold other views. Their interpretations are particularly important given the frequent presumption that biogenetic framing will reduce stigma, and recent findings that it exacerbates stigma for other mental illnesses. To identify implications of genetic framing in eating disorders, I conducted semi-structured interviews with 50 US women with a history of eating disorders (half recovered, half in treatment; interviewed 2008–9 in the USA). Interviews introduced the topic of genetics, but not stigma per se. Analysis followed the general principles of grounded theory to identify perceived implications of genetic involvement; those relevant to stigma are reported here. Most anticipated that genetic reframing would help reduce stigma from personal responsibility (i.e., blame and guilt for eating disorder as ongoing choice). A third articulated ways it could add stigma, including novel forms of stigma related to genetic essentialist effacing of social factors. Despite welcoming reductions in blame and guilt, half also worried genetic framing could hamper recovery, by encouraging fatalistic self-fulfilling prophecies and genetic excuses. This study is the first to elicit perceptions of genetic involvement by those with eating disorders, and contributes to an emerging literature on perceptions of psychiatric genetics by people with mental illness. PMID:22819736
Liu, Boyang; Garcia, Edwin A; Korbonits, Márta
2011-11-01
Ghrelin is a 28 amino acid peptide hormone that is produced both centrally and peripherally. Regulated by the ghrelin O-acyl transferase enzyme, ghrelin exerts its action through the growth hormone secretagogue receptor, and is implicated in a diverse range of physiological processes. These implications have placed the ghrelin signaling pathway at the center of a large number of candidate gene and genome-wide studies which aim to identify the genetic basis of human heterogeneity. In this review we summarize the available data on the genetic variability of ghrelin, its receptor and its regulatory enzyme, and their association with obesity, stature, type 2 diabetes, cardiovascular disease, eating disorders, and reward seeking behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
The social phenotype of Williams syndrome.
Järvinen, Anna; Korenberg, Julie R; Bellugi, Ursula
2013-06-01
Williams syndrome (WS) offers an exciting model for social neuroscience because its genetic basis is well-defined, and the unique phenotype reflects dimensions of prosocial behaviors. WS is associated with a strong drive to approach strangers, a gregarious personality, heightened social engagement yet difficult peer interactions, high nonsocial anxiety, unusual bias toward positive affect, and diminished sensitivity to fear. New neurobiological evidence points toward alterations in structure, function, and connectivity of the social brain (amygdala, fusiform face area, orbital-frontal regions). Recent genetic studies implicate gene networks in the WS region with the dysregulation of prosocial neuropeptides. The study of WS has implications for understanding human social development, and may provide insight for translating genetic and neuroendocrine evidence into treatments for disorders of social behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genetics and Common Disorders: Implications for Primary Care and Public Health Providers
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, Joseph D.; Greendale, Karen; Peay, Holly L.
We developed this program for primary care providers (PCPs) and public health professionals (PHPs) who are interested in increasing their understanding of the genetics of common chronic diseases and of the implications of genetics and genomics for their fields. The program differs from virtually all previous educational efforts in genetics for health professionals in that it focuses on the genetics of common chronic disease and on the broad principles that emerge when one views disease from the perspectives of variation and individuality, which are at the heart of thinking genetically. The CD-ROM introduces users to content that will improve theirmore » understanding of topics such as: • A framework for genetics and common disease; • Basic information on genetics, genomics, genetic medicine, and public health genetics, all in the context of common chronic disease; • The status of research on genetic contributions to specific common diseases, including a review of research methods; • Genetic/environmental interaction as the new “central dogma” of public health genetics; • The importance of taking and analyzing a family history; • The likely impact of potential gene discovery and genetic testing on genetic counseling and risk assessment and on the practices of PCPs and PHPs; • Stratification of populations into low-, moderate-, and high-risk categories; • The potential role of PCPs and PHPs in identifying high-risk individuals and families, in providing limited genetics services, and in referring to clinical genetics specialists; the potential for standard referral algorithms; • Implications of genetic insights for diagnosis and treatment; • Ethical, legal, and social issues that arise from genetic testing for common chronic diseases; and • Specific prevention strategies based on understanding of genetics and genetic/ environmental interactions. The interactive content – developed by experts in genetics, primary care, and public health – is organized around two case studies designed to appeal to primary care providers (thrombophilia) and public health professionals (development of a screening grogram for colorectal cancer). NCHPEG has distributed more than 0000 copies of the CD-ROM to NCHPEG member organizations and to other organizations and individuals in response to requests. The program also is available at www.nchpeg.org.« less
Principles in genetic risk assessment.
Baptista, Pedro Viana
2005-03-01
Risk assessment constitutes an essential component of genetic counseling and testing, and the genetic risk should be estimated as accurately as possible for individual and family decision making. All relevant information retrieved from population studies and pedigree and genetic testing enhances the accuracy of the assessment of an individual's genetic risk. This review will focus on the following general aspects implicated in risk assessment: the increasing genetic information regarding disease; complex traits versus Mendelian disorders; and the influence of the environment and disease susceptibility. The influence of these factors on risk assessment will be discussed.
Principles in genetic risk assessment
Baptista, Pedro Viana
2005-01-01
Risk assessment constitutes an essential component of genetic counseling and testing, and the genetic risk should be estimated as accurately as possible for individual and family decision making. All relevant information retrieved from population studies and pedigree and genetic testing enhances the accuracy of the assessment of an individual's genetic risk. This review will focus on the following general aspects implicated in risk assessment: the increasing genetic information regarding disease; complex traits versus Mendelian disorders; and the influence of the environment and disease susceptibility. The influence of these factors on risk assessment will be discussed. PMID:18360538
The structure of biodiversity – insights from molecular phylogeography
Hewitt, Godfrey M
2004-01-01
DNA techniques, analytical methods and palaeoclimatic studies are greatly advancing our knowledge of the global distribution of genetic diversity, and how it evolved. Such phylogeographic studies are reviewed from Arctic, Temperate and Tropical regions, seeking commonalities of cause in the resulting genetic patterns. The genetic diversity is differently patterned within and among regions and biomes, and is related to their histories of climatic changes. This has major implications for conservation science. PMID:15679920
ERIC Educational Resources Information Center
Durston, Sarah; Konrad, Kerstin
2007-01-01
This paper aims to illustrate how combining multiple approaches can inform us about the neurobiology of ADHD. Converging evidence from genetic, psychopharmacological and functional neuroimaging studies has implicated dopaminergic fronto-striatal circuitry in ADHD. However, while the observation of converging evidence from multiple vantage points…
GlobAl Distribution of GEnetic Traits (GADGET) web server: polygenic trait scores worldwide.
Chande, Aroon T; Wang, Lu; Rishishwar, Lavanya; Conley, Andrew B; Norris, Emily T; Valderrama-Aguirre, Augusto; Jordan, I King
2018-05-18
Human populations from around the world show striking phenotypic variation across a wide variety of traits. Genome-wide association studies (GWAS) are used to uncover genetic variants that influence the expression of heritable human traits; accordingly, population-specific distributions of GWAS-implicated variants may shed light on the genetic basis of human phenotypic diversity. With this in mind, we developed the GlobAl Distribution of GEnetic Traits web server (GADGET http://gadget.biosci.gatech.edu). The GADGET web server provides users with a dynamic visual platform for exploring the relationship between worldwide genetic diversity and the genetic architecture underlying numerous human phenotypes. GADGET integrates trait-implicated single nucleotide polymorphisms (SNPs) from GWAS, with population genetic data from the 1000 Genomes Project, to calculate genome-wide polygenic trait scores (PTS) for 818 phenotypes in 2504 individual genomes. Population-specific distributions of PTS are shown for 26 human populations across 5 continental population groups, with traits ordered based on the extent of variation observed among populations. Users of GADGET can also upload custom trait SNP sets to visualize global PTS distributions for their own traits of interest.
Bruce A. Kimball; G.R. Johnson; Dale L. Nolte; Doreen L. Griffin
1999-01-01
Silvicultural practices can influence black bear (Ursus americanus) foraging preferences for Douglas-fir (Pseudotsuga menziesii) cambial-zone vascular tissues, but little is known about the role of genetics. To study the impact of genetic selection, vascular tissue samples were collected from Douglas-fir trees in six half-sib families from five...
Zhihao Su; Borong Pan; Stewart C. Sanderson; Xiaojun Shi; Xiaolong Jiang
2015-01-01
The Chinese herb Fritillaria walujewii Regel is an important officinal species that is vulnerable because of over-harvesting. Here, we examined the geographic pattern of genetic variation across the species entire range, to study its evolution process and give implication needed for the conservation. Nine haplotypes were detected on the basis of three chloroplast...
Zhihao Su; Borong Pan; Stewart C. Sanderson; Xiaolong Jiang; Mingli Zhang
2015-01-01
Fritillaria pallidiflora is an endangered officinal herb distributed in the Tianshan Mountains of northwestern China. We examined its phylogeography to study evolutionary processes and suggest implications for conservation. Six haplotypes were detected based on three chloroplast non-coding spacers (psbA-trnH, rps16, and trnS-trnG); genetic variation mainly occurred...
ERIC Educational Resources Information Center
Plomin, Robert; Davis, Oliver S. P.
2009-01-01
Background: Much of what we thought we knew about genetics needs to be modified in light of recent discoveries. What are the implications of these advances for identifying genes responsible for the high heritability of many behavioural disorders and dimensions in childhood? Methods: Although quantitative genetics such as twin studies will continue…
Human neuroscience at National Institute on Drug Abuse: Implications for genetics research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, H.W.
It is becoming clear that there is a genetic component to drug abuse. Family studies, adoption studies, and critical twin studies have all pointed to some genetic vulnerability or risk factors for an individual to abuse psychoactive drugs depending on certain psychopathologies in the biological parents and/or parents` own drug use. The question for the next generation of research at the National Institute on Drug Abuse (NIDA) is to apply the rapidly developing technology in molecular genetics in an effort to determine the candidate genes contributing to the risk. 19 refs.
Regional surnames and genetic structure in Great Britain.
Kandt, Jens; Cheshire, James A; Longley, Paul A
2016-10-01
Following the increasing availability of DNA-sequenced data, the genetic structure of populations can now be inferred and studied in unprecedented detail. Across social science, this innovation is shaping new bio-social research agendas, attracting substantial investment in the collection of genetic, biological and social data for large population samples. Yet genetic samples are special because the precise populations that they represent are uncertain and ill-defined. Unlike most social surveys, a genetic sample's representativeness of the population cannot be established by conventional procedures of statistical inference, and the implications for population-wide generalisations about bio-social phenomena are little understood. In this paper, we seek to address these problems by linking surname data to a censored and geographically uneven sample of DNA scans, collected for the People of the British Isles study. Based on a combination of global and local spatial correspondence measures, we identify eight regions in Great Britain that are most likely to represent the geography of genetic structure of Great Britain's long-settled population. We discuss the implications of this regionalisation for bio-social investigations. We conclude that, as the often highly selective collection of DNA and biomarkers becomes a more common practice, geography is crucial to understanding variation in genetic information within diverse populations.
Psychological implications of living with familial adenomatous polyposis.
Claes, E; Renson, M; Delespesse, A; De Hoe, V; Haelterman, G; Kartheuser, A; Van Cutsem, E
2011-09-01
Psychosocial implications of living with FAP remain largely unexplored. This article reviews available literature on three topics: 1) Implications of living with FAP 2) genetic testing and reproductive decision-making and 3) family communication. Papers published until 2009 about psychosocial and behavioral issues in FAP were identified. Psychometric data indicate that FAP patients and at-risk relatives as a group do not exhibit clinical symptoms of mental health problems after clinical or genetic diagnosis. However, some subgroups revealed to be more vulnerable to distress. Also, concerns related to the disease and its consequences were reported. While interest in prenatal diagnosis or preimplantation genetic diagnosis seems to be high it is important to study actual uptake because this may reveal to be much lower. Family members are an important source of information and the few available data suggest that family communication is problematic. The findings described have several shortcomings. They were obtained from only a few studies often conducted using specific or mixed study groups, originating from the 90ties and mostly cross-sectional in nature. For clinical practice, it is important to have more research data on how FAP patients at different ages cope with the disease, on the impact of genetic testing on reproductive decision-making and on family communication. Results reported here need to be confirmed by additional research and new themes need to be explored.
"Not all my fault": genetics, stigma, and personal responsibility for women with eating disorders.
Easter, Michele M
2012-10-01
Medical researchers and clinicians increasingly understand and present eating disorders (anorexia and bulimia nervosa) as biologically-based psychiatric disorders, with genetic risk factors established by high heritability estimates in twin studies. But there has been no research on interpretation of genetic involvement by people with eating disorders, who may hold other views. Their interpretations are particularly important given the frequent presumption that biogenetic framing will reduce stigma, and recent findings that it exacerbates stigma for other mental illnesses. To identify implications of genetic framing in eating disorders, I conducted semi-structured interviews with 50 US women with a history of eating disorders (half recovered, half in treatment; interviewed 2008-9 in the USA). Interviews introduced the topic of genetics, but not stigma per se. Analysis followed the general principles of grounded theory to identify perceived implications of genetic involvement; those relevant to stigma are reported here. Most anticipated that genetic reframing would help reduce stigma from personal responsibility (i.e., blame and guilt for eating disorder as ongoing choice). A third articulated ways it could add stigma, including novel forms of stigma related to genetic-essentialist effacing of social factors. Despite welcoming reductions in blame and guilt, half also worried genetic framing could hamper recovery, by encouraging fatalistic self-fulfilling prophecies and genetic excuses. This study is the first to elicit perceptions of genetic involvement by those with eating disorders, and contributes to an emerging literature on perceptions of psychiatric genetics by people with mental illness. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Impact of Population Bottlenecks on Microbial Adaptation
NASA Astrophysics Data System (ADS)
LeClair, Joshua S.; Wahl, Lindi M.
2018-07-01
Population bottlenecks—sudden, severe reductions in population size—are ubiquitous in nature. Because of their critical implications for conservation genetics, the effects of population bottlenecks on the loss of genetic diversity have been well studied. Bottlenecks also have important implications for adaptation, however, and these effects have been addressed more recently, typically in microbial populations. In this short review, we survey both experimental and theoretical work describing the impact of population bottlenecks on microbial adaptation. Focusing on theoretical contributions, we highlight emerging insights and conclude with several open questions of interest in the field.
Taylor, S
2011-01-01
Community attitudes research regarding genetic issues is important when contemplating the potential value and utilisation of predictive testing for common diseases in mainstream health services. This article aims to report population-based attitudes and discuss their relevance to integrating genetic services in primary health contexts. Men's and women's attitudes were investigated via population-based omnibus telephone survey in Queensland, Australia. Randomly selected adults (n = 1,230) with a mean age of 48.8 years were interviewed regarding perceptions of genetic determinants of health; benefits of genetic testing that predict 'certain' versus 'probable' future illness; and concern, if any, regarding potential misuse of genetic test information. Most (75%) respondents believed genetic factors significantly influenced health status; 85% regarded genetic testing positively although attitudes varied with age. Risk-based information was less valued than certainty-based information, but women valued risk information significantly more highly than men. Respondents reported 'concern' (44%) and 'no concern' (47%) regarding potential misuse of genetic information. This study contributes important population-based data as most research has involved selected individuals closely impacted by genetic disorders. While community attitudes were positive regarding genetic testing, genetic literacy is important to establish. The nature of gender differences regarding risk perception merits further study and has policy and service implications. Community concern about potential genetic discrimination must be addressed if health benefits of testing are to be maximised. Larger questions remain in scientific, policy, service delivery, and professional practice domains before predictive testing for common disorders is efficacious in mainstream health care. Copyright © 2011 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Martin, Neilson C.; Levy, Florence; Pieka, Jan; Hay, David A.
2006-01-01
Attention Deficit Hyperactivity Disorder (ADHD) commonly co-occurs with Oppositional Defiant Disorder, Conduct Disorder and Reading Disability. Twin studies are an important approach to understanding and modelling potential causes of such comorbidity. Univariate and bivariate genetic models were fitted to maternal report data from 2040 families of…
Genetics of antipsychotic-induced weight gain: update and current perspectives.
Kao, Amy C C; Müller, Daniel J
2013-12-01
Antipsychotic medications are used to effectively treat various symptoms for different psychiatric conditions. Unfortunately, antipsychotic-induced weight gain (AIWG) is a common side effect that frequently results in obesity and secondary medical conditions. Twin and sibling studies have indicated that genetic factors are likely to be highly involved in AIWG. Over recent years, there has been considerable progress in this area, with several consistently replicated findings, as well as the identification of new genes and implicated pathways. Here, we will review the most recent genetic studies related to AIWG using the Medline database (PubMed) and Google Scholar. Among the steadiest findings associated with AIWG are serotonin 2C receptors (HTR2C) and leptin promoter gene variants, with more recent studies implicating MTHFR and, in particular, MC4R genes. Additional support was reported for the HRH1, BDNF, NPY, CNR1, GHRL, FTO and AMPK genes. Notably, some of the reported variants appear to have relatively large effect sizes. These findings have provided insights into the mechanisms involved in AIWG and will help to develop predictive genetic tests in the near future.
Hohman, Timothy J; Bush, William S; Jiang, Lan; Brown-Gentry, Kristin D; Torstenson, Eric S; Dudek, Scott M; Mukherjee, Shubhabrata; Naj, Adam; Kunkle, Brian W; Ritchie, Marylyn D; Martin, Eden R; Schellenberg, Gerard D; Mayeux, Richard; Farrer, Lindsay A; Pericak-Vance, Margaret A; Haines, Jonathan L; Thornton-Wells, Tricia A
2016-02-01
Late-onset Alzheimer disease (AD) has a complex genetic etiology, involving locus heterogeneity, polygenic inheritance, and gene-gene interactions; however, the investigation of interactions in recent genome-wide association studies has been limited. We used a biological knowledge-driven approach to evaluate gene-gene interactions for consistency across 13 data sets from the Alzheimer Disease Genetics Consortium. Fifteen single nucleotide polymorphism (SNP)-SNP pairs within 3 gene-gene combinations were identified: SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A. In addition, we extend a previously identified interaction from an endophenotype analysis between RYR3 × CACNA1C. Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an epigenetic analysis of AD. The observed interactions in this article highlight ways in which genotypic variation related to disease may depend on the genetic context in which it occurs. Further, our results highlight the utility of evaluating genetic interactions to explain additional variance in AD risk and identify novel molecular mechanisms of AD pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
My genes made me do it? The implications of behavioural genetics for responsibility and blame.
Levitt, Mairi; Manson, Neil
2007-03-01
The idea of individual responsibility for action is central to our conception of what it is to be a person. Behavioural genetic research may seem to call into question the idea of individual responsibility with possible implications for the criminal justice system. These implications will depend on the understandings of the various agencies and professional groups involved in responding to violent and anti-social behaviour, and, the result of negotiations between them over resulting practice. The paper considers two kinds of approaches to the question of responsibility and 'criminal genes' arising from a sociological and philosophical perspective respectively. One is to consider the social context and possible practical implications of research into 'criminal genes' which will later be examined through interviews and discussions with a range of experts including lawyers and social workers. A second and different kind of approach is to ask whether the findings of behavioural genetics ought to have implications for attributions of responsibility. Issues of genetic influence are central to both approaches.
Multiple rare variants in the etiology of autism spectrum disorders
Buxbaum, Joseph D.
2009-01-01
Recent studies in autism spectrum disorders (ASDs) support an important role for multiple rare variants in these conditions. This is a clinically important finding, as, with the demonstration that a significant proportion of ASDs are the result of rare, etiological genetic variants, it becomes possible to make use of genetic testing to supplement behavioral analyses for an earlier diagnosis. As it appears that earlier interventions in ASDs will produce better outcomes, the development of genetic testing to augment behaviorally based evaluations in ASDs holds promise for improved treatment. Furthermore, these rare variants involve synaptic and neuronal genes that implicate specific paihvi/ays, cells, and subcellular compartments in ASDs, which in turn will suggest novel therapeutic approaches in ASDs, Of particular recent interest are the synaptic cell adhesion and associated molecules, including neurexin 1, neuroligin 3 and 4, and SHANK3, which implicate glutamatergic synapse abnormalities in ASDs, In the current review we will overview the evidence for a genetic etiology for ASDs, and summarize recent genetic findings in these disorders. PMID:19432386
Luczak, Susan E; Khoddam, Rubin; Yu, Sheila; Wall, Tamara L; Schwartz, Anna; Sussman, Steve
2017-08-01
We conducted a review of the prevalence and co-occurrence of 12 types of addictions in US ethnic/racial groups and discuss the implications of the results for genetic research on addictions. We utilized MEDLINE and PsycINFO databases to review the literature on alcohol, tobacco, marijuana, illicit drugs, gambling, eating/food, internet, sex, love, exercise, work, and shopping. We present results for each addiction based on total US prevalence, prevalence within ethnic groups, and co-occurrence of addictions among ethnic groups when available. This review indicates very little research has examined the interrelationships of addictive behaviors among US ethnic groups. The studies that exist have focused nearly exclusively on comorbidity of substances and gambling behaviors. Overall findings suggest differences among US ethnic groups in prevalence of addictions and in prevalence of addiction among those who use substances or engage in gambling. Almost no ethnic group comparisons of other addictive behaviors including eating/food, internet, love, sex, exercise, work, and shopping were identified in the literature. Despite large-scale research efforts to examine alcohol and substance use disorders in the United States, few studies have been published that examine these addictive behaviors among ethnic groups, and even fewer examine co-occurrence and comorbidity with other addictions. Even with the limited studies, these findings have implications for genetic research on addictive behaviors. We include a discussion of these implications, including issues of population stratification, disaggregation, admixture, and the interplay between genetic and environmental factors in understanding the etiology and treatment of addictions. (Am J Addict 2017;26:424-436). © 2016 American Academy of Addiction Psychiatry.
Regulating genetic privacy in the online health information era.
Magnusson, Roger S
As the clinical implications of the genetic components of disease come to be better understood, there is likely to be a significant increase in the volume of genetic information held within clinical records. As patient health care records, in turn, come on-line as part of broader health information networks, there is likely to be considerable pressure in favour of special laws protecting genetic privacy. This paper reviews some of the privacy challenges posed by electronic health records, some government initiatives in this area, and notes the impact that developments in genetic testing will have upon the 'genetic content' of e-health records. Despite the sensitivity of genetic information, the paper argues against a policy of 'genetic exceptionalism', and its implications for genetic privacy laws.
NASA Astrophysics Data System (ADS)
Jiménez-Aleixandre, María Pilar
2014-02-01
In the last two decades science studies and science education research have shifted from an interest in products (of science or of learning), to an interest in processes and practices. The focus of this paper is on students' engagement in epistemic practices (Kelly in Teaching scientific inquiry: Recommendations for research and implementation. Sense Publishers, Rotterdam, pp 99-117, 2008), or on their practical epistemologies (Wickman in Sci Educ 88(3):325-344, 2004). In order to support these practices in genetics classrooms we need to take into account domain-specific features of the epistemology of genetics, in particular issues about determinism and underdetermination. I suggest that certain difficulties may be related to the specific nature of causality in genetics, and in particular to the correspondence between a given set of factors and a range of potential effects, rather than a single one. The paper seeks to bring together recent developments in the epistemology of biology and of genetics, on the one hand, with science education approaches about epistemic practices, on the other. The implications of these perspectives for current challenges in learning genetics are examined, focusing on students' engagement in epistemic practices, as argumentation, understood as using evidence to evaluate knowledge claims. Engaging in argumentation in genetics classrooms is intertwined with practices such as using genetics models to build explanations, or framing genetics issues in their social context. These challenges are illustrated with studies making part of our research program in the USC.
Intelligence: shared genetic basis between Mendelian disorders and a polygenic trait.
Franić, Sanja; Groen-Blokhuis, Maria M; Dolan, Conor V; Kattenberg, Mathijs V; Pool, René; Xiao, Xiangjun; Scheet, Paul A; Ehli, Erik A; Davies, Gareth E; van der Sluis, Sophie; Abdellaoui, Abdel; Hansell, Narelle K; Martin, Nicholas G; Hudziak, James J; van Beijsterveldt, Catherina E M; Swagerman, Suzanne C; Hulshoff Pol, Hilleke E; de Geus, Eco J C; Bartels, Meike; Ropers, H Hilger; Hottenga, Jouke-Jan; Boomsma, Dorret I
2015-10-01
Multiple inquiries into the genetic etiology of human traits indicated an overlap between genes underlying monogenic disorders (eg, skeletal growth defects) and those affecting continuous variability of related quantitative traits (eg, height). Extending the idea of a shared genetic basis between a Mendelian disorder and a classic polygenic trait, we performed an association study to examine the effect of 43 genes implicated in autosomal recessive cognitive disorders on intelligence in an unselected Dutch population (N=1316). Using both single-nucleotide polymorphism (SNP)- and gene-based association testing, we detected an association between intelligence and the genes of interest, with genes ELP2, TMEM135, PRMT10, and RGS7 showing the strongest associations. This is a demonstration of the relevance of genes implicated in monogenic disorders of intelligence to normal-range intelligence, and a corroboration of the utility of employing knowledge on monogenic disorders in identifying the genetic variability underlying complex traits.
USDA-ARS?s Scientific Manuscript database
Chromosomes and chromosome pairing are pivotal to all biological sciences. The study of chromosomes helps unravel several aspects of an organism. Although the foundation of genetics occurred with the formulation of the laws of heredity in 1865, long before the discovery of chromosomes, their subsequ...
ERIC Educational Resources Information Center
Lee, Steve S.
2011-01-01
Although genetic and environmental factors are separately implicated in the development of antisocial behavior (ASB), interactive models have emerged relatively recently, particularly those incorporating molecular genetic data. Using a large sample of male Caucasian adolescents and young adults from the National Longitudinal Study of Adolescent…
Mills, D. L.; Dai, L.; Fishman, I.; Yam, A.; Appelbaum, L. G.; Galaburda, A.; Bellugi, U.; Korenberg, J. R.
2014-01-01
In Williams Syndrome (WS), a known genetic deletion results in atypical brain function with strengths in face and language processing. We examined how genetic influences on brain activity change with development. In three studies, ERPs from large samples of children, adolescents, and adults with the full genetic deletion for WS were compared to typically developing controls, and two adults with partial deletions for WS. Studies 1 and 2 identified ERP markers of brain plasticity in WS across development. Study 3 suggested that in adults with partial deletions for WS, specific genes may be differentially implicated in face and language processing. PMID:24219698
Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies
2014-01-01
Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the ultimate aim of assisting in disease classification and prognosis. The data suggest that specific loci can act pleiotropically raising risk for epilepsy broadly, or can have effects limited to a specific epilepsy subtype. Future genetic analyses might benefit from both lumping (ie, grouping of epilepsy types together) or splitting (ie, analysis of specific clinical subtypes). Funding International League Against Epilepsy and multiple governmental and philanthropic agencies. PMID:25087078
Implications of Post-Natal Cortical Development for Creativity Research.
ERIC Educational Resources Information Center
Gordon, Marjory; Dacey, John
Man's long period of cerebral growth has important implications for education. The brain goes through major developmental changes after birth, and researchers have suggested that this growth process presents an opportunity for fostering the plasticity of genetically determined connections. Animal studies show that postnatal growth of the brain is…
Ormondroyd, E; Moynihan, C; Watson, M; Foster, C; Davolls, S; Ardern-Jones, A; Eeles, R
2007-08-01
When a gene mutation is identified in a research study following the death of the study participant, it is not clear whether such information should be made available to relatives. We report here an evaluation of the impact on relatives of being informed of study results that detected pathogenic BRCA2 mutations in a male relative, now deceased, who had early onset (under the age of 55) prostate cancer. The breast and ovarian cancer risk was unknown to the living relatives. Qualitative analysis of interviews with thirteen relatives indicated that those who had a higher risk perception, resulting from an awareness of cancer family history or experiential knowledge of cancer in their family, tended to adjust more easily to the results. All participants believed that genetics research results of clinical significance should be fed back to relatives. Those who were fully aware of the BRCA2 results and implications for themselves felt they had benefited from the information, irrespective of whether or not they had elected for genetic testing, because of the consequent availability of surveillance programs. Initial anxiety upon learning about the BRCA2 result was alleviated by genetic counselling. Factors influencing those who have not engaged with the information included scepticism related to the relative who attempted to inform them, young age and fear of cancer. Those who had not sought genetic counselling did not attempt further dissemination, and some were not undergoing regular screening. Implications for informed consent in genetics research programs, and the requirement for genetic counselling when research results are disclosed, are discussed.
Persky, Susan; Sanderson, Saskia C; Koehly, Laura M
2013-01-01
Social media, specifically online weight loss message board communities, may become an important conduit for information about genetics and body weight. This information has the capacity to influence individuals as it is naturally encountered online, or it could be strategically disseminated for public health purposes. However, little is known about how the public engages with information that they encounter related to genetic underpinnings of body weight, or how their interpretation of this information shapes health beliefs. The present study examined discussions about genetics and weight in message board communities devoted to discussion of weight loss. Fifty-four online discussions, comprising 505 individual posts from 3 weight-loss themed message boards, were coded using a closed-ended procedure. Individuals who discussed genetics and weight in online message board communities initiated these discussions mainly for personal reasons and primarily cited mass media-sourced information. Genetic causes of weight tended to be endorsed alongside behavioral causes. There was no association between cause endorsements and expressed frustration. These findings help elucidate the effects of naturally encountered information about genetics of weight. They may also have implications for the creation of online evidence-based tools to aid communication about genetic advances in ways that encourage positive dietary and physical activity behavior.
NASA Astrophysics Data System (ADS)
Baco-Taylor, A.
2006-12-01
Deep-sea precious corals (Gerardia sp., Corallium lauuense, and Corallium secundum) on the Islands and seamounts of the Hawaiian Archipelago have supported an extremely profitable fishery, yet little is known about the life history and dispersal of the exploited species. Recent studies indicate significant genetic structure between shallow-water coral populations, including several species capable of long distance dispersal. If significant genetic structure exists in seamount and Island populations of precious corals, this could suggest that the elimination (through overharvesting) of a bed of precious corals would result in loss of overall genetic diversity in the species. Here I discuss results based on microsatellite studies of the precious coral, Corallium secundum, from 11 sites in the Hawaiian Archipelago collected between 1998 and 2004, and compare the population genetic structure and dispersal capabilities of Corallium secundum to the results for Corallium lauuense. Microsatellite studies of Corallium lauuense indicated significant heterozygote deficiency in most populations, suggesting recruitment in most populations is from local sources with only occasional long-distance dispersal events. Also, two populations appear to be significantly isolated from other populations of Corallium lauuense and may be separate stocks. In contrast, Corallium secundum populations have little heterozygote deficiency and separate into 3 distinct regions. In addition to having fisheries management implications for these corals, the results of these studies also have implications for the management and protection of seamount fauna.
ERIC Educational Resources Information Center
Shields, Alexandra E.; Fortun, Michael; Hammonds, Evelynn M.; King, Patricia A.; Lerman, Caryn; Rapp, Rayna; Sullivan, Patrick F.
2005-01-01
The use of racial variables in genetic studies has become a matter of intense public debate, with implications for research design and translation into practice. Using research on smoking as a springboard, the authors examine the history of racial categories, current research practices, and arguments for and against using race variables in genetic…
Recent Progress in Alzheimer’s Disease Research, Part 2: Genetics and Epidemiology
Robinson, Morgan; Lee, Brenda Y.; Hane, Francis T.
2017-01-01
This is the second part of a three-part review series reviewing the most important advances in Alzheimer’s disease (AD) research since 2010. This review covers the latest research on genetics and epidemiology. Epidemiological and genetic studies are revealing important insights into the etiology of, and factors that contribute to AD, as well as areas of priority for research into mechanisms and interventions. The widespread adoption of genome wide association studies has provided compelling evidence of the genetic complexity of AD with genes associated with such diverse physiological function as immunity and lipid metabolism being implicated in AD pathogenesis. PMID:28211812
ERIC Educational Resources Information Center
Raine, Adrian; Dunkin, Jennifer J.
1990-01-01
Argues that an understanding of the genetic and psychophysiological basis of crime and antisocial behavior has important implications for counselors dealing with antisocial behavior. Contends that psychophysiological factors interact with social factors in producing antisocial behaviors. (Author/ABL)
Olesen, Angelina P; Mohd Nor, Siti Nurani; Amin, Latifah; Che Ngah, Anisah
2017-12-01
Pre-implantation genetic diagnosis (PGD) became well known in Malaysia after the birth of the first Malaysian 'designer baby', Yau Tak in 2004. Two years later, the Malaysian Medical Council implemented the first and only regulation on the use of Pre-implantation Genetic Diagnosis in this country. The birth of Yau Tak triggered a public outcry because PGD was used for non-medical sex selection thus, raising concerns about PGD and its implications for the society. This study aims to explore participants' perceptions of the future implications of PGD for the Malaysian society. We conducted in-depth interviews with 21 participants over a period of one year, using a semi-structured questionnaire. Findings reveal that responses varied substantially among the participants; there was a broad acceptance as well as rejection of PGD. Contentious ethical, legal and social issues of PGD were raised during the discussions, including intolerance to and discrimination against people with genetic disabilities; societal pressure and the 'slippery slope' of PGD were raised during the discussions. This study also highlights participants' legal standpoint, and major issues regarding PGD in relation to the accuracy of diagnosis. At the social policy level, considerations are given to access as well as the impact of this technology on families, women and physicians. Given these different perceptions of the use of PGD, and its implications and conflicts, policies and regulations of the use of PGD have to be dealt with on a case-by-case basis while taking into consideration of the risk-benefit balance, since its application will impact the lives of so many people in the society.
Kariuki, Silvia N.; Ghodke-Puranik, Yogita; Dorschner, Jessica M.; Chrabot, Beverly S.; Kelly, Jennifer A.; Tsao, Betty P.; Kimberly, Robert P.; Alarcón-Riquelme, Marta E.; Jacob, Chaim O.; Criswell, Lindsey A.; Sivils, Kathy L.; Langefeld, Carl D.; Harley, John B.; Skol, Andrew D.; Niewold, Timothy B.
2014-01-01
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon alpha (IFN-α) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. 40–50% of patients have high IFN-α, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs. low IFN-α in over 1550 SLE cases, including GWAS and replication cohorts. In meta-analysis, the top associations in European ancestry were PRKG1 rs7897633 (PMeta=2.75 × 10−8) and PNP rs1049564 (PMeta=1.24 × 10−7). We also found evidence for cross-ancestral background associations with the ANKRD44 and PLEKHF2 loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-α production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic subphenotypes becomes an attractive strategy for genetic discovery in complex disease. PMID:25338677
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schofield, Amy
The history and reasons for launching the Human Genome project and the current uses of genetic human material; Identifying and discussing the major issues stemming directly from genetic research and therapy-including genetic discrimination, medical/ person privacy, allocation of government resources and individual finances, and the effect on the way in which we perceive the value of human life; Discussing the sometimes hidden ethical, social and legislative implications of genetic research and therapy such as informed consent, screening and preservation of genetic materials, efficacy of medical procedures, the role of the government, and equal access to medical coverage.
A Genetic Epidemiological Mega Analysis of Smoking Initiation in Adolescents
Prom-Wormley, Elizabeth; Eaves, Lindon J.; Rhee, Soo Hyun; Hewitt, John K.; Young, Susan; Corley, Robin; McGue, Matt; Iacono, William G.; Legrand, Lisa; Samek, Diana R.; Murrelle, E. Lenn; Silberg, Judy L.; Miles, Donna R.; Schieken, Richard M.; Beunen, Gaston P.; Thomis, Martine; Rose, Richard J.; Dick, Danielle M.; Boomsma, Dorret I.; Bartels, Meike; Vink, Jacqueline M.; Lichtenstein, Paul; White, Victoria; Kaprio, Jaakko; Neale, Michael C.
2017-01-01
Abstract Introduction: Previous studies in adolescents were not adequately powered to accurately disentangle genetic and environmental influences on smoking initiation (SI) across adolescence. Methods: Mega-analysis of pooled genetically informative data on SI was performed, with structural equation modeling, to test equality of prevalence and correlations across cultural backgrounds, and to estimate the significance and effect size of genetic and environmental effects according to the classical twin study, in adolescent male and female twins from same-sex and opposite-sex twin pairs (N = 19 313 pairs) between ages 10 and 19, with 76 358 longitudinal assessments between 1983 and 2007, from 11 population-based twin samples from the United States, Europe, and Australia. Results: Although prevalences differed between samples, twin correlations did not, suggesting similar etiology of SI across developed countries. The estimate of additive genetic contributions to liability of SI increased from approximately 15% to 45% from ages 13 to 19. Correspondingly, shared environmental factors accounted for a substantial proportion of variance in liability to SI at age 13 (70%) and gradually less by age 19 (40%). Conclusions: Both additive genetic and shared environmental factors significantly contribute to variance in SI throughout adolescence. The present study, the largest genetic epidemiological study on SI to date, found consistent results across 11 studies for the etiology of SI. Environmental factors, especially those shared by siblings in a family, primarily influence SI variance in early adolescence, while an increasing role of genetic factors is seen at later ages, which has important implications for prevention strategies. Implications: This is the first study to find evidence of genetic factors in liability to SI at ages as young as 12. It also shows the strongest evidence to date for decay of effects of the shared environment from early adolescence to young adulthood. We found remarkable consistency of twin correlations across studies reflecting similar etiology of liability to initiate smoking across different cultures and time periods. Thus familial factors strongly contribute to individual differences in who starts to smoke with a gradual increase in the impact of genetic factors and a corresponding decrease in that of the shared environment. PMID:27807125
Genetic risk variants as therapeutic targets for Crohn's disease.
Gabbani, Tommaso; Deiana, Simona; Marocchi, Margherita; Annese, Vito
2017-04-01
The pathogenesis of Inflammatory bowel diseases (IBD) is multifactorial, with interactions between genetic and environmental factors. Despite the existence of genetic factors being largely demonstrated by epidemiological data and several genetic studies, only a few findings have been useful in term of disease prediction, disease progression and targeting therapy. Areas covered: This review summarizes the results of genome-wide association studies in Crohn's disease, the role of epigenetics and the recent discovery by genetic studies of new pathogenetic pathways. Furthermore, it focuses on the importance of applying genetic data to clinical practice, and more specifically how to better target therapy and predict potential drug-related toxicity. Expert opinion: Some genetic markers identified in Crohn`s disease have allowed investigators to hypothesize about, and in some cases, prove the usefulness of new specific therapeutic agents. However, the heterogeneity and complexity of this disease has so far limited the daily clinical use of genetic information. Finally, the study of the implications of genetics on therapy, either to predict efficacy or avoid toxicity, is considered still to be in its infancy.
Insights into the genetics of gastroesophageal reflux disease (GERD) and GERD-related disorders.
Böhmer, A C; Schumacher, J
2017-02-01
Gastroesophageal reflux disease (GERD) is associated with obesity and hiatal hernia, and often precedes the development of Barrett's esophagus (BE) and esophageal adenocarcinoma (EA). Epidemiological studies show that the global prevalence of GERD is increasing. GERD is a multifactorial disease with a complex genetic architecture. Genome-wide association studies (GWAS) have provided initial insights into the genetic background of GERD. The present review summarizes current knowledge of the genetics of GERD and a possible genetic overlap between GERD and BE and EA. The review discusses genes and cellular pathways that have been implicated through GWAS, and provides an outlook on how future molecular research will enhance understanding of GERD pathophysiology. © 2017 John Wiley & Sons Ltd.
ANDRIESSEN, Karl; VIDETIC-PASKA, Alja
2015-01-01
Introduction Suicide is a multidimensional problem. Observations of family history of suicide suggest the existence of a genetic vulnerability to suicidal behaviour. Aim Starting with a historical perspective, the article reviews current knowledge of a genetic vulnerability to suicidal behaviour, distinct from the genetic vulnerability to psychiatric disorders, focused on clinical and population-based studies, and findings from recent molecular genetics association studies. Method The review includes peer-reviewed research articles and review papers from the professional literature in English language, retrieved from PubMed/Medline and PsycINFO. Results The research literature confirms a existence of a genetic vulnerability to suicidal behaviour. Even though the results of individual studies are difficult to compare, genetic influences could explain up to half of the variance of the occurrence of suicide. Conclusion Genetic vulnerability could be a distal risk factor for suicide, which helps us to understand the occurrence of suicide among vulnerable people. Ethical implications of such vulnerability are highlighted. PMID:27646732
Laegsgaard, M M; Stamp, A S; Hall, E O C; Mors, O
2010-12-01
Psychiatric genetic research raises hope regarding better treatment and prevention, but also regarding a possible de-stigmatizing effect of attributing mental illness to genetics. This study explores i) the impact on family relations of participating in a genetic study; ii) the impact of biogenetic attributions on perceptions of depression and stigma and iii) the perceived benefits and concerns regarding psychiatric genetic testing. Focus groups were conducted with 17 participants suffering from depression, with multiple cases of depression in the family, and previously participating in a genetic study. Participating in a genetic study caused more openness about depression in most families. A biogenetic explanation of depression was perceived as having the potential of diminishing self stigma. Testing of self and children was widely accepted, whereas prenatal testing raised concern. Persons suffering from depression may benefit from endorsing a biogenetic explanation, especially in relation to self-understanding and self-stigma. © 2010 John Wiley & Sons A/S.
ERIC Educational Resources Information Center
Statham, Helen; Ponder, Maggie; Richards, Martin; Hallowell, Nina; Raymond, Frances Lucy
2011-01-01
Many professionals working with individuals with intellectual disability are unconcerned with why someone has the impairment. Genetic aspects may be viewed as, at best irrelevant, but more often, potentially negative. However, where the intellectual disability may be inherited, there are implications for family members and the individual. The data…
ERIC Educational Resources Information Center
Veatch, Olivia J.; Pendergast, Julie S.; Allen, Melissa J.; Leu, Roberta M.; Johnson, Carl Hirschie; Elsea, Sarah H.; Malow, Beth A.
2015-01-01
Sleep disruption is common in individuals with autism spectrum disorder (ASD). Genes whose products regulate endogenous melatonin modify sleep patterns and have been implicated in ASD. Genetic factors likely contribute to comorbid expression of sleep disorders in ASD. We studied a clinically unique ASD subgroup, consisting solely of children with…
Cherlyn, Suat Ying Tan; Woon, Puay San; Liu, Jian Jun; Ong, Wei Yi; Tsai, Guo Chuan; Sim, Kang
2010-05-01
Schizophrenia (SZ) and bipolar disorder (BD) are debilitating neurobehavioural disorders likely influenced by genetic and non-genetic factors and which can be seen as complex disorders of synaptic neurotransmission. The glutamatergic and GABAergic neurotransmission systems have been implicated in both diseases and we have reviewed extensive literature over a decade for evidence to support the association of glutamate and GABA genes in SZ and BD. Candidate-gene based population and family association studies have implicated some ionotrophic glutamate receptor genes (GRIN1, GRIN2A, GRIN2B and GRIK3), metabotropic glutamate receptor genes (such as GRM3), the G72/G30 locus and GABAergic genes (e.g. GAD1 and GABRB2) in both illnesses to varying degrees, but further replication studies are needed to validate these results. There is at present no consensus on specific single nucleotide polymorphisms or haplotypes associated with the particular candidate gene loci in these illnesses. The genetic architecture of glutamate systems in bipolar disorder need to be better studied in view of recent data suggesting an overlap in the genetic aetiology of SZ and BD. There is a pressing need to integrate research platforms in genomics, epistatic models, proteomics, metabolomics, neuroimaging technology and translational studies in order to allow a more integrated understanding of glutamate and GABAergic signalling processes and aberrations in SZ and BD as well as their relationships with clinical presentations and treatment progress over time. (c) 2010 Elsevier Ltd. All rights reserved.
Mapping autism risk loci using genetic linkage and chromosomal rearrangements
Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie
2007-01-01
Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880
Ratna Priya, Rinki; Chew, Emily Y.; Swaroop, Anand
2012-01-01
Age-related macular degeneration (AMD) is a common cause of visual impairment in individuals over 55 years of age worldwide. The varying clinical phenotypes of AMD result from contributions of genetic, epigenetic and non-genetic (environmental) factors. Genetic studies of AMD have come of age as a direct result of tremendous gains from human genome project, genomewide association studies and identification of numerous susceptibility loci. These findings have implicated immune response, high-density lipoprotein cholesterol metabolism, extracellular matrix, and angiogenesis signaling pathways in disease pathophysiology. Here, we address how the wealth of genetic findings in AMD is expected to impact the practice of medicine, providing opportunities for improved risk assessment, molecular diagnosis, preventive and therapeutic intervention. We propose that the potential of using genetic variants for monitoring treatment response (pharmacogenetics) may usher a new era of personalized medicine in the clinical management of AMD. PMID:23009893
Clinical Perspectives on Lupus Genetics: Advances and Opportunities
James, Judith A.
2014-01-01
Synopsis In recent years, genome wide association studies have led to an explosion in the identification of regions containing confirmed genetic risk variants within complex human diseases, for example in systemic lupus erythematosus (SLE). Many of these strongest SLE genetic associations can be divided into groups based upon their potential roles in different processes implicated in lupus pathogenesis, including ubiquitination (a process of marking proteins for degradation), DNA degradation, innate immunity, cellular immunity (B cell, T cell, neutrophil, monocytes), lymphocyte development, and antigen presentation. Recent advances have also demonstrated several genetic associations with SLE subphenotypes and subcriteria, such as autoantibody production, lupus nephritis, serositis, and arthritis. Despite the broad range of lupus genetic studies to date, many areas for further exploration remain to move lupus genetic studies toward clinically informative endpoints, such as identifying individuals at the greatest risk of end-organ damage, early mortality or poor response to a specific therapeutic regimen. PMID:25034154
The human genome: a multifractal analysis
2011-01-01
Background Several studies have shown that genomes can be studied via a multifractal formalism. Recently, we used a multifractal approach to study the genetic information content of the Caenorhabditis elegans genome. Here we investigate the possibility that the human genome shows a similar behavior to that observed in the nematode. Results We report here multifractality in the human genome sequence. This behavior correlates strongly on the presence of Alu elements and to a lesser extent on CpG islands and (G+C) content. In contrast, no or low relationship was found for LINE, MIR, MER, LTRs elements and DNA regions poor in genetic information. Gene function, cluster of orthologous genes, metabolic pathways, and exons tended to increase their frequencies with ranges of multifractality and large gene families were located in genomic regions with varied multifractality. Additionally, a multifractal map and classification for human chromosomes are proposed. Conclusions Based on these findings, we propose a descriptive non-linear model for the structure of the human genome, with some biological implications. This model reveals 1) a multifractal regionalization where many regions coexist that are far from equilibrium and 2) this non-linear organization has significant molecular and medical genetic implications for understanding the role of Alu elements in genome stability and structure of the human genome. Given the role of Alu sequences in gene regulation, genetic diseases, human genetic diversity, adaptation and phylogenetic analyses, these quantifications are especially useful. PMID:21999602
Galvan, Antonella; Ioannidis, John P.A.; Dragani, Tommaso A.
2010-01-01
Genome-wide association studies (GWAS) using population-based designs have identified many genetic loci associated with risk of a range of complex diseases including cancer; however, each locus exerts a very small effect and most heritability remains unexplained. Family-based pedigree studies have also suggested tentative loci linked to increased cancer risk, often characterized by pedigree-specificity. However, a comparison between the results of population-and those of family-based studies shows little concordance. Explanations for this unidentified genetic ‘dark matter’ of cancer include phenotype ascertainment issues, limited power, gene-gene and gene-environment interactions, population heterogeneity, parent-of-origin-specific effects, rare and unexplored variants. Many of these reasons converge towards the concept of genetic heterogeneity that might implicate hundreds of genetic variants in regulating cancer risk. Dissecting the dark matter is a challenging task. Further insights can be gained from both population association and pedigree studies. PMID:20106545
Genetic factors of age-related macular degeneration
Tuo, Jingsheng; Bojanowski, Christine M.; Chan, Chi-Chao
2007-01-01
Age-related macular degeneration (AMD) is a leading cause of blindness in the United States and developed countries. Although the etiology and pathogenesis of AMD remain unknown, a complex interaction of genetic and environmental factors is thought to exist. The incidence and progression of all of the features of AMD are known to increase significantly with age. The tendency for familial aggregation and the findings of gene variation association studies implicate a significant genetic component in the development of AMD. This review summarizes in detail the AMD-related genes identified by studies on genetically engineered and spontaneously gene-mutated (naturally mutated) animals, AMD chromosomal loci identified by linkage studies, AMD-related genes identified through studies of monogenic degenerative retinal diseases, and AMD-related gene variation identified by association studies. PMID:15094132
Genetic basis of aboveground productivity in two native Populus species and their hybrids.
Lojewski, Nathan R; Fischer, Dylan G; Bailey, Joseph K; Schweitzer, Jennifer A; Whitham, Thomas G; Hart, Stephen C
2009-09-01
Demonstration of genetic control over riparian tree productivity has major implications for responses of riparian systems to shifting environmental conditions and effects of genetics on ecosystems in general. We used field studies and common gardens, applying both molecular and quantitative techniques, to compare plot-level tree aboveground net primary productivity (ANPP(tree)) and individual tree growth rate constants in relation to plant genetic identity in two naturally occurring Populus tree species and their hybrids. In field comparisons of four cross types (Populus fremontii S. Wats., Populus angustifolia James, F(1) hybrids and backcross hybrids) across 11 natural stands, productivity was greatest for P. fremontii trees, followed by hybrids and lowest in P. angustifolia. A similar pattern was observed in four common gardens across a 290 m elevation and 100 km environmental gradient. Despite a doubling in productivity across the common gardens, the relative differences among the cross types remained constant. Using clonal replicates in a common garden, we found ANPP(tree) to be a heritable plant trait (i.e., broad-sense heritability), such that plant genetic factors explained between 38% and 82% of the variation in ANPP(tree). Furthermore, analysis of the genetic composition among individual tree genotypes using restriction fragment length polymorphism molecular markers showed that genetically similar trees also exhibited similar ANPP(tree). These findings indicate strong genetic contributions to natural variation in ANPP with important ecological implications.
Genetics and human agency: comment on Dar-Nimrod and Heine (2011).
Turkheimer, Eric
2011-09-01
Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into account at all? I suggest that the genetics of behavior does have important implications for how we understand ourselves, the differences among us, and the ethical implications of our actions, but that the usual metric for these considerations, the heritability coefficient, is not the correct one. I propose an alternative. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia
2012-05-13
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
Anticipating the Ethical Challenges of Psychiatric Genetic Testing.
Appelbaum, Paul S; Benston, Shawna
2017-07-01
Genetic testing for mental illness is likely to become increasingly prevalent as the science behind it is refined. This article identifies anticipated ethical challenges for patients, psychiatrists, and genetic counselors and makes recommendations for addressing them. Many of the ethical challenges of psychiatric genetic testing are likely to stem from failures to comprehend the nature and implications of test results. Recent studies have identified gaps in the knowledge base of psychiatrists and genetic counselors, which limit their abilities to provide patients with appropriate education. A small number of studies have demonstrated the value of counseling in empowering patients to deal with relevant genetic information. Psychiatrists and other health professionals must be able to assist patients and families in making informed decisions about genetic testing and interpreting test results. Filling their knowledge gaps on these issues will be a critical step towards meeting these responsibilities.
Smeland, Olav B; Wang, Yunpeng; Frei, Oleksandr; Li, Wen; Hibar, Derrek P; Franke, Barbara; Bettella, Francesco; Witoelar, Aree; Djurovic, Srdjan; Chen, Chi-Hua; Thompson, Paul M; Dale, Anders M; Andreassen, Ole A
2018-06-06
Schizophrenia (SCZ) is associated with differences in subcortical brain volumes and intracranial volume (ICV). However, little is known about the underlying etiology of these brain alterations. Here, we explored whether brain structure volumes and SCZ share genetic risk factors. Using conditional false discovery rate (FDR) analysis, we integrated genome-wide association study (GWAS) data on SCZ (n = 82315) and GWAS data on 7 subcortical brain volumes and ICV (n = 11840). By conditioning the FDR on overlapping associations, this statistical approach increases power to discover genetic loci. To assess the credibility of our approach, we studied the identified loci in larger GWAS samples on ICV (n = 26577) and hippocampal volume (n = 26814). We observed polygenic overlap between SCZ and volumes of hippocampus, putamen, and ICV. Based on conjunctional FDR < 0.05, we identified 2 loci shared between SCZ and ICV implicating genes FOXO3 (rs10457180) and ITIH4 (rs4687658), 2 loci shared between SCZ and hippocampal volume implicating SLC4A10 (rs4664442) and SPATS2L (rs1653290), and 2 loci shared between SCZ and volume of putamen implicating DCC (rs4632195) and DLG2 (rs11233632). The loci shared between SCZ and hippocampal volume or ICV had not reached significance in the primary GWAS on brain phenotypes. Proving our point of increased power, 2 loci did reach genome-wide significance with ICV (rs10457180) and hippocampal volume (rs4664442) in the larger GWAS. Three of the 6 identified loci are novel for SCZ. Altogether, the findings provide new insights into the relationship between SCZ and brain structure volumes, suggesting that their genetic architectures are not independent.
Genetics and educational attainment
NASA Astrophysics Data System (ADS)
Cesarini, David; Visscher, Peter M.
2017-12-01
We explore how advances in our understanding of the genetics of complex traits such as educational attainment could constructively be leveraged to advance research on education and learning. We discuss concepts and misconceptions about genetic findings with regard to causes, consequences, and policy. Our main thesis is that educational attainment as a measure that varies between individuals in a population can be subject to exactly the same experimental biological designs as other outcomes, for example, those studied in epidemiology and medical sciences, and the same caveats about interpretation and implication apply.
Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment.
Cain, Jason E; Di Giovanni, Valeria; Smeeton, Joanna; Rosenblum, Norman D
2010-08-01
Renal hypoplasia, defined as abnormally small kidneys with normal morphology and reduced nephron number, is a common cause of pediatric renal failure and adult-onset disease. Genetic studies performed in humans and mutant mice have implicated a number of critical genes, in utero environmental factors and molecular mechanisms that regulate nephron endowment and kidney size. Here, we review current knowledge regarding the genetic contributions to renal hypoplasia with particular emphasis on the mechanisms that control nephron endowment in humans and mice.
The role of serotonergic system at the interface of aggression and suicide
Bortolato, Marco; Pivac, Nela; Seler, Dorotea Muck; Perkovic, Matea Nikolac; Pessia, Mauro; Di Giovanni, Giuseppe
2013-01-01
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the mulifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and find new effective therapies for these conditions. PMID:23333677
Genome-Wide Association Studies of Drug-Resistance Determinants.
Volkman, Sarah K; Herman, Jonathan; Lukens, Amanda K; Hartl, Daniel L
2017-03-01
Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance. Copyright © 2016. Published by Elsevier Ltd.
The genetic basis of panic and phobic anxiety disorders.
Smoller, Jordan W; Gardner-Schuster, Erica; Covino, Jennifer
2008-05-15
Panic disorder and phobic anxiety disorders are common disorders that are often chronic and disabling. Genetic epidemiologic studies have documented that these disorders are familial and moderately heritable. Linkage studies have implicated several chromosomal regions that may harbor susceptibility genes; however, candidate gene association studies have not established a role for any specific loci to date. Increasing evidence from family and genetic studies suggests that genes underlying these disorders overlap and transcend diagnostic boundaries. Heritable forms of anxious temperament, anxiety-related personality traits and neuroimaging assays of fear circuitry may represent intermediate phenotypes that predispose to panic and phobic disorders. The identification of specific susceptibility variants will likely require much larger sample sizes and the integration of insights from genetic analyses of animal models and intermediate phenotypes. Copyright 2008 Wiley-Liss, Inc.
Genetic Counseling as an Educational Process.
ERIC Educational Resources Information Center
Eddy, James M.; St. Pierre, Richard
Historically genetic counseling programs have not included strong educational components or sound educational foundations. This paper deals with some of the drawbacks of current genetic counseling programs and the implications for education in the genetic counseling process. The author adopts a broad definition of genetic counseling which…
Neumeister, Alexander; Young, Theresa; Stastny, Juergen
2004-08-01
Serotonin systems appear to play a key role in the pathophysiology of major depressive disorder. Consequently, ongoing research determines whether serotonin related genes account for the very robust differential behavioral and neural mechanisms that discriminate patients with depression from healthy controls. Serotonin type 1(A) receptors and the serotonin transporters are reduced in depression, and recent genetic research in animals and humans has implicated both in depression. Preclinical studies have utilized a variety of animal models that have been used to explain pathophysiological mechanisms in humans, although it is not clear at all whether these models constitute relevant models for depression in humans. However, data from preclinical studies can generate hypotheses that are tested in humans by combining genetic data with behavioral and physiological challenge paradigms and neuroimaging. These studies will enhance our understanding about combined influences from multiple interacting genes, as well as from environmental factors on brain circuits and their function, and about how these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders.
The Biology of the Glutamatergic System and Potential Role in Migraine
Gasparini, C. F.; Griffiths, L. R.
2013-01-01
Migraine is a common genetically linked neurovascular disorder. Approximately ∼12% of the Caucasian population are affected including 18% of adult women and 6% of adult men (1, 2). A notable female bias is observed in migraine prevalence studies with females affected ∼3 times more than males and is credited to differences in hormone levels arising from reproductive achievements. Migraine is extremely debilitating with wide-ranging socioeconomic impact significantly affecting people’s health and quality of life. A number of neurotransmitter systems have been implicated in migraine, the most studied include the serotonergic and dopaminergic systems. Extensive genetic research has been carried out to identify genetic variants that may alter the activity of a number of genes involved in synthesis and transport of neurotransmitters of these systems. The biology of the Glutamatergic system in migraine is the least studied however there is mounting evidence that its constituents could contribute to migraine. The discovery of antagonists that selectively block glutamate receptors has enabled studies on the physiologic role of glutamate, on one hand, and opened new perspectives pertaining to the potential therapeutic applications of glutamate receptor antagonists in diverse neurologic diseases. In this brief review, we discuss the biology of the Glutamatergic system in migraine outlining recent findings that support a role for altered Glutamatergic neurotransmission from biochemical and genetic studies in the manifestation of migraine and the implications of this on migraine treatment. PMID:23675283
Erranz, M Benjamín; Wilhelm, B Jan; Riquelme, V Raquel; Cruces, R Pablo
2015-01-01
Acute respiratory distress syndrome (ARDS) is the most severe form of respiratory failure. Theoretically, any acute lung condition can lead to ARDS, but only a small percentage of individuals actually develop the disease. On this basis, genetic factors have been implicated in the risk of developing ARDS. Based on the pathophysiology of this disease, many candidate genes have been evaluated as potential modifiers in patient, as well as in animal models, of ARDS. Recent experimental data and clinical studies suggest that variations of genes involved in key processes of tissue, cellular and molecular lung damage may influence susceptibility and prognosis of ARDS. However, the pathogenesis of pediatric ARDS is complex, and therefore, it can be expected that many genes might contribute. Genetic variations such as single nucleotide polymorphisms and copy-number variations are likely associated with susceptibility to ARDS in children with primary lung injury. Genome-wide association (GWA) studies can objectively examine these variations, and help identify important new genes and pathogenetic pathways for future analysis. This approach might also have diagnostic and therapeutic implications, such as predicting patient risk or developing a personalized therapeutic approach to this serious syndrome. Copyright © 2015. Publicado por Elsevier España, S.L.U.
Occupational and genetic risk factors for osteoarthritis: A review
Yucesoy, Berran; Charles, Luenda E.; Baker, Brent; Burchfiel, Cecil M.
2015-01-01
BACKGROUND Osteoarthritis (OA) is a multifactorial disease with strong genetic and occupational components. Although published studies have described several risk factors for OA, very few studies have investigated the occupational and genetic factors that contribute to this debilitating condition. OBJECTIVE To describe occupational and genetic factors that may contribute to the risk of developing (OA). METHODS A literature search was conducted in PubMed using the search terms osteoarthritis, occupation, work, and genetics. RESULTS Heavy physical work load was the most common occupational risk factor for OA in several anatomical locations. Other factors include kneeling and regular stair climbing, crawling, bending and whole body vibration, and repetitive movements. Numerous studies have also shown the influence of genetic variability in the pathogenesis of OA. Genetic variants of several groups of genes e.g., cartilage extracellular matrix structural genes and the genes related to bone density have been implicated in disease pathogenesis. CONCLUSION This review shows that occupational factors were extensively studied in knee OA unlike OA of other anatomical regions. Although genetic association studies performed to date identified a number of risk variants, some of these associations have not been consistently replicated across different studies and populations. Therefore, more research is needed. PMID:24004806
Schwartz, Joseph A; Beaver, Kevin M
2015-05-01
Academic achievement has been found to have a pervasive and substantial impact on a wide range of developmental outcomes and has also been implicated in the critical transition from adolescence into early adulthood. Previous research has revealed that self-reported grades tend to diverge from official transcript grade point average (GPA) scores, with students being more likely to report inflated scores. Making use of a sample of monozygotic twin (N = 282 pairs), dizygotic twin (N = 441 pairs), and full sibling (N = 1,757 pairs) pairs from the National Longitudinal Study of Adolescent Health (Add Health; 65 % White; 50 % male; mean age = 16.14), the current study is the first to investigate the role that genetic and environmental factors play in misreporting grade information. A comparison between self-reported GPA (mean score of 2.86) and official transcript GPA scores (mean score of 2.44) revealed that self-reported scores were approximately one-half letter grade greater than official scores. Liability threshold models revealed that additive genetic influences explained between 40 and 63 % of the variance in reporting inflated grades and correctly reporting GPA, with the remaining variance explained by the nonshared environment. Conversely, 100 % of the variance in reporting deflated grade information was explained by nonshared environmental influences. In an effort to identify specific nonshared environmental influences on reporting accuracy, multivariate models that adequately control for genetic influences were estimated and revealed that siblings with lower transcript GPA scores were significantly less likely to correctly report their GPA and significantly more likely to report inflated GPA scores. Additional analyses revealed that verbal IQ and self-control were not significantly associated with self-reported GPA accuracy after controlling for genetic influences. These findings indicate that previous studies that implicate verbal IQ and self-control as significant predictors of misreporting grade information may have been the result of model misspecification and genetic confounding. The findings from the current study indicate that genetic influences play a crucial role in the accuracy in which grade information is reported, but that nonshared environmental influences also play a significant role in specific circumstances. The theoretical and methodological implications of the results are discussed.
Tops, Sanne; Habel, Ute; Radke, Sina
2018-03-12
Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.
ERIC Educational Resources Information Center
van Berkel, Dymphie; Klinge, Ineke
1997-01-01
The views of Dutch women on the implications of the analysis of the human genome were studied by questionnaire and interview. Although a serious lack of knowledge about the topic was found, interviews produced a broad range of problematic issues. Attention to gender implications of gene technology is needed. (Author/EMK)
Beleza, Sandra; Campos, Joana; Lopes, Jailson; Araújo, Isabel Inês; Hoppfer Almada, Ana; Correia e Silva, António; Parra, Esteban J; Rocha, Jorge
2012-01-01
Recently admixed populations offer unique opportunities for studying human history and for elucidating the genetic basis of complex traits that differ in prevalence between human populations. Historical records, classical protein markers, and preliminary genetic data indicate that the Cape Verde islands in West Africa are highly admixed and primarily descended from European males and African females. However, little is known about the variation in admixture levels, admixture dynamics and genetic diversity across the islands, or about the potential of Cape Verde for admixture mapping studies. We have performed a detailed analysis of phenotypic and genetic variation in Cape Verde based on objective skin color measurements, socio-economic status (SES) evaluations and data for 50 autosomal, 34 X-chromosome, and 21 non-recombinant Y-chromosome (NRY) markers in 845 individuals from six islands of the archipelago. We find extensive genetic admixture between European and African ancestral populations (mean West African ancestry = 0.57, sd = 0.08), with individual African ancestry proportions varying considerably among the islands. African ancestry proportions calculated with X and Y-chromosome markers confirm that the pattern of admixture has been sex-biased. The high-resolution NRY-STRs reveal additional patterns of variation among the islands that are most consistent with differentiation after admixture. The differences in the autosomal admixture proportions are clearly evident in the skin color distribution across the islands (Pearson r = 0.54, P-value<2e-16). Despite this strong correlation, there are significant interactions between SES and skin color that are independent of the relationship between skin color and genetic ancestry. The observed distributions of admixture, genetic variation and skin color and the relationship of skin color with SES relate to historical and social events taking place during the settlement history of Cape Verde, and have implications for the design of association studies using this population.
Beleza, Sandra; Campos, Joana; Lopes, Jailson; Araújo, Isabel Inês; Hoppfer Almada, Ana; e Silva, António Correia; Parra, Esteban J.; Rocha, Jorge
2012-01-01
Recently admixed populations offer unique opportunities for studying human history and for elucidating the genetic basis of complex traits that differ in prevalence between human populations. Historical records, classical protein markers, and preliminary genetic data indicate that the Cape Verde islands in West Africa are highly admixed and primarily descended from European males and African females. However, little is known about the variation in admixture levels, admixture dynamics and genetic diversity across the islands, or about the potential of Cape Verde for admixture mapping studies. We have performed a detailed analysis of phenotypic and genetic variation in Cape Verde based on objective skin color measurements, socio-economic status (SES) evaluations and data for 50 autosomal, 34 X-chromosome, and 21 non-recombinant Y-chromosome (NRY) markers in 845 individuals from six islands of the archipelago. We find extensive genetic admixture between European and African ancestral populations (mean West African ancestry = 0.57, sd = 0.08), with individual African ancestry proportions varying considerably among the islands. African ancestry proportions calculated with X and Y-chromosome markers confirm that the pattern of admixture has been sex-biased. The high-resolution NRY-STRs reveal additional patterns of variation among the islands that are most consistent with differentiation after admixture. The differences in the autosomal admixture proportions are clearly evident in the skin color distribution across the islands (Pearson r = 0.54, P-value<2e–16). Despite this strong correlation, there are significant interactions between SES and skin color that are independent of the relationship between skin color and genetic ancestry. The observed distributions of admixture, genetic variation and skin color and the relationship of skin color with SES relate to historical and social events taking place during the settlement history of Cape Verde, and have implications for the design of association studies using this population. PMID:23226471
Pathology, genetics and cytogenetics of Wilms' tumour.
Md Zin, Reena; Murch, Ashleigh; Charles, Adrian
2011-06-01
Wilms' tumour (WT) is an embryonal cancer of childhood and is thought to be derived from embryonic kidney precursor cells. The Knudson two hit model was initially thought to occur in WT, but findings emerging from genetic and cytogenetic studies in the past two decades have implicated several genetic events. Recent techniques in genetic analysis have improved our ability to characterise changes in genes involved in WT which include WT1, CTNNB1, IGF2 and WTX. These genetic events have not only provided insight into the pathobiology of this malignancy, but the recognition of these candidate genes may offer potential targets for novel therapies. In this review, we will provide an overview of the pathological, genetic and cytogenetic characteristics of WT.
The Genomic Revolution and Beliefs about Essential Racial Differences: A Backdoor to Eugenics?
Phelan, Jo C.; Link, Bruce G.; Feldman, Naumi M.
2014-01-01
Could the explosion of genetic research in recent decades affect our conceptions of race? In Backdoor to Eugenics, Duster argues that reports of specific racial differences in genetic bases of disease, in part because they are presented as objective facts whose social implications are not readily apparent, may heighten public belief in more pervasive racial differences. We tested this hypothesis with a multi-method study. A content analysis showed that news articles discussing racial differences in genetic bases of disease increased significantly between 1985 and 2008 and were significantly less likely than non–health-related articles about race and genetics to discuss social implications. A survey experiment conducted with a nationally representative sample of 559 adults found that a news-story vignette reporting a specific racial difference in genetic risk for heart attacks (the Backdoor Vignette) produced significantly greater belief in essential racial differences than did a vignette portraying race as a social construction or a no-vignette condition. The Backdoor Vignette produced beliefs in essential racial differences that were virtually identical to those produced by a vignette portraying race as a genetic reality. These results suggest that an unintended consequence of the genomic revolution may be the reinvigoration of age-old beliefs in essential racial differences. PMID:24855321
Genetic studies of Crohn's disease: Past, present and future
Liu, Jimmy Z.; Anderson, Carl A.
2014-01-01
The exact aetiology of Crohn's disease is unknown, though it is clear from early epidemiological studies that a combination of genetic and environmental risk factors contributes to an individual's disease susceptibility. Here, we review the history of gene-mapping studies of Crohn's disease, from the linkage-based studies that first implicated the NOD2 locus, through to modern-day genome-wide association studies that have discovered over 140 loci associated with Crohn's disease and yielded novel insights into the biological pathways underlying pathogenesis. We describe on-going and future gene-mapping studies that utilise next generation sequencing technology to pinpoint causal variants and identify rare genetic variation underlying Crohn's disease risk. We comment on the utility of genetic markers for predicting an individual's disease risk and discuss their potential for identifying novel drug targets and influencing disease management. Finally, we describe how these studies have shaped and continue to shape our understanding of the genetic architecture of Crohn's disease. PMID:24913378
Large-scale discovery of novel genetic causes of developmental disorders.
2015-03-12
Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders.
Advances in the molecular genetics of gliomas - implications for classification and therapy.
Reifenberger, Guido; Wirsching, Hans-Georg; Knobbe-Thomsen, Christiane B; Weller, Michael
2017-07-01
Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers - together with classic histological features - in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology.
Review of Current Conservation Genetic Analyses of Northeast Pacific Sharks.
Larson, Shawn E; Daly-Engel, Toby S; Phillips, Nicole M
Conservation genetics is an applied science that utilizes molecular tools to help solve problems in species conservation and management. It is an interdisciplinary specialty in which scientists apply the study of genetics in conjunction with traditional ecological fieldwork and other techniques to explore molecular variation, population boundaries, and evolutionary relationships with the goal of enabling resource managers to better protect biodiversity and identify unique populations. Several shark species in the northeast Pacific (NEP) have been studied using conservation genetics techniques, which are discussed here. The primary methods employed to study population genetics of sharks have historically been nuclear microsatellites and mitochondrial (mt) DNA. These markers have been used to assess genetic diversity, mating systems, parentage, relatedness, and genetically distinct populations to inform management decisions. Novel approaches in conservation genetics, including next-generation DNA and RNA sequencing, environmental DNA (eDNA), and epigenetics are just beginning to be applied to elasmobranch evolution, physiology, and ecology. Here, we review the methods and results of past studies, explore future directions for shark conservation genetics, and discuss the implications of molecular research and techniques for the long-term management of shark populations in the NEP. © 2017 Elsevier Ltd. All rights reserved.
Adin, A; Weber, J C; Sotelo Montes, C; Vidaurre, H; Vosman, B; Smulders, M J M
2004-05-01
Peach palm ( Bactris gasipaes Kunth) is cultivated for fruit and 'heart of palm', and is an important component of agroforestry systems in the Peruvian Amazon. In this study, AFLP was used to compare genetic diversity among domesticated populations along the Paranapura and Cuiparillo rivers, which are managed by indigenous and colonist farming communities, respectively. Gene diversity was 0.2629 for the populations in indigenous communities and 0.2534 in colonist communities. Genetic differentiation among populations ( G(st)) was 0.0377-0.0416 ( P<0.01) among populations along both rivers. There was no relation between genetic differentiation and the geographical location of populations along the rivers. Since natural seed dispersal by birds and rodents is thought to occur only across relatively short distances (100-200 m), it is likely that exchange of material by farmers and commercial traders is responsible for most of the 'long-distance' (over more than 20 km) gene flow among populations along the two rivers studied. This exchange of material may be important to counteract the effects of selection as well as genetic drift in small groups of trees in farmers' fields, much as in a metapopulation, and may account for the weak genetic differentiation between the two rivers ( G(st)=0.0249, P<0.01). A comparison with samples from other landraces in Peru and Brazil showed the existence of an isolation-by-distance structure up to 3,000 km, consistent with gene flow on a regional scale, likely mediated by trade in the Amazon Basin. Results are discussed with regard to practical implications for the management of genetic resources with farming communities.
Marital assortment for genetic similarity.
Eckman, Ronael E; Williams, Robert; Nagoshi, Craig
2002-10-01
The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.
Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease
Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.
2014-01-01
Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772
Variation in recombination rate may bias human genetic disease mapping studies.
Boyle, A Susannah; Noor, Mohamed A F
2004-11-01
The availability of the human genome sequence and variability information (as from the International HapMap project) will enhance our ability to map genetic disorders and choose targets for therapeutic intervention. However, several factors, such as regional variation in recombination rate, can bias conclusions from genetic mapping studies. Here, we examine the impact of regional variation in recombination rate across the human genome. Through computer simulations and literature surveys, we conclude that genetic disorders have been mapped to regions of low recombination more often than expected if such diseases were randomly distributed across the genome. This concentration in low recombination regions may be an artifact, and disorders appearing to be caused by a few genes of large effect may be polygenic. Future genetic mapping studies should be conscious of this potential complication by noting the regional recombination rate of regions implicated in diseases.
Neutral theory, microbial practice: challenges in bacterial population genetics.
Rocha, Eduardo P C
2018-04-19
Kimura's outstanding contributions to population genetics included many elegant theoretical results on the vagaries of alleles in populations. Once polymorphism data showed extensive variation in natural populations, these results led naturally to the Neutral Theory. In this article, I'll depart from some of these results to focus on four major open problems in microbial population genetics with direct implications to the study of molecular evolution: the lack of neutral polymorphism, the modeling of genetic exchanges, the population genetics of ill-defined populations, and the difficulty of untangling selection and demography in the light of the previous issues. Whilst studies in population genetics usually focus on single nucleotide polymorphism and allelic recombination, ignoring even small indels, a large fraction of genetic diversification in Bacteria results from horizontal gene transfer. Ignoring this fact defeats the purpose of population genetics: to characterize the genetic variation in populations and their adaptive effects. I'll argue that, following on Kimura's life work, one may need to develop new approaches to study microbes that reproduce asexually but are able to engage in gene exchanges with very distantly related organisms in a context where random sampling is often unachievable, populations are ill-defined, genetic linkage is strong, and random drift is rare.
Molecular-genetic correlates of infant attachment: A cautionary tale
Booth-Laforce, Cathryn; Belsky, Jay; Burt, Keith B.; Groh, Ashley M.
2014-01-01
This paper advises caution in relation to the increasing interest in molecular-genetic association studies in developmental psychology based on a set of empirical examples from the NICHD Study of Early Child Care and Youth Development (SECCYD) that highlight the fragility of effects reported in the literature on the molecular-genetic correlates of infant attachment. Specifically, this paper updates and provides three extensions to results reported in Luijk et al. (2011), which recently failed to replicate evidence from smaller-sample studies that a set of dopaminergic, serotonergic, and oxytonergic markers are significantly associated with infant attachment security or disorganization. First, we report here that the average effect of “usual suspect” polymorphisms on infant attachment security and disorganization in the SECCYD is approximately zero. Second, because Luijk et al. (2011) reported data based exclusively on the White infants in the SECCYD, this paper reveals that the average effect of polymorphisms featured in this literature is also of trivial magnitude in the non-White sub-sample (cf. Chen, Barth, Johnson, Gotlib, & Johnson, 2011). Third, this paper attempts, but fails, to replicate a recent finding by Raby et al. (2012) suggesting that, although molecular-genetic polymorphisms might not be implicated in security versus insecurity, the serotonin transporter gene contributes to variation in emotional distress during the Strange Situation Procedure. Implications for future research on the genetics of developmental phenotypes in general and attachment in particular are discussed, with a focus on statistical power and model-based theory testing. PMID:23421800
Evaluating online direct-to-consumer marketing of genetic tests: informed choices or buyers beware?
Geransar, Rose; Einsiedel, Edna
2008-03-01
Commercialization of genetic technologies is expanding the horizons for the marketing and sales of genetic tests direct-to-consumers (DTCs). This study assesses the information provision and access requirements that are in place for genetic tests that are being advertised DTC over the Internet. Sets of key words specific to DTC genetic testing were entered into popular Internet search engines to generate a list of 24 companies engaging in DTC advertising. Company requirements for physician mediation, genetic counseling arrangements, and information provision were coded to develop categories for quantitative analysis within each variable. Results showed that companies offering risk assessment and diagnostic testing were most likely to require that testing be mediated by a clinician, and to recommend physician-arranged counseling. Companies offering enhancement testing were less likely to require physician mediation of services and more likely to provide long-distance genetic counseling. DTC advertisements often provided information on disease etiology; this was most common in the case of multifactorial diseases. The majority of companies cited outside sources to support the validity of claims about clinical utility of the tests being advertised; companies offering risk assessment tests most frequently cited all information sources. DTC advertising for genetic tests that lack independent professional oversight raises troubling questions about appropriate use and interpretation of these tests by consumers and carries implications for the standards of patient care. These implications are discussed in the context of a public healthcare system.
ERIC Educational Resources Information Center
Mays, Marilyn Elaine, Ed.
Presented at a 1996 conference on the implications of the Human Genome Project for community and technical colleges, the 30 papers included in this monograph describe methods for incorporating genetics studies into the two-year college curriculum. Among the papers provided are: (1) "Facing the Unknown: The Ethical Challenges of…
ERIC Educational Resources Information Center
Bergman, Lars R.
2015-01-01
Molenaar's (2015) article concerns Developmental Systems Theory (DST) in relation to behavior genetics and he presents implications of DST for empirical research, especially the need for subject-specific studies. In this commentary, the article is discussed from a broader developmental science perspective, particularly regarded through the lens of…
John F. Stewart; Rodney E. Will; Barbara S. Crane; C. Dana Nelson
2016-01-01
Shortleaf pine (Pinus echinata Mill.) is an important commercial timber resource and forest ecosystem component in the southeastern USA. The species occurs in mainly drier sites as an early- to mid-successional species, is fireadapted, and it plays an important role in the fire ecology of the region. However, shortleaf pine genetics are not well-studied, especially in...
Process and metaphors in the evolutionary paradigm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, M.; Fox, S
1988-01-01
Presents thinking on the processes and interpretation of biological evolution, emphasizing the study of biological processes as they occur in living organisms and their communities, rather than through mechanical or statistical models. Contributors explore processes and metaphors in evolution, the origin of the genetic code, new genetic mechanisms and their implications for the formation of new species, panbiogeography, the active role of behavior in evolution, sociobiology, and more.
NASA Astrophysics Data System (ADS)
Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste
2015-08-01
Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational features of a reasoning task may influence how students apply content knowledge as they generate and support arguments. Understanding how students apply content knowledge to reason about authentic and complex issues is important for considering instructional practices that best support student thinking and reasoning. In this conceptual report, we present a tri-part model for genetics literacy that embodies the relationships between content knowledge use, argumentation quality, and the role of situational features in reasoning to support genetics literacy. Using illustrative examples from an interview study with early career undergraduate students majoring in the biological sciences and late career undergraduate students majoring in genetics, we provide insights into undergraduate student reasoning about complex genetics issues and discuss implications for teaching and learning. We further discuss the need for research about how the tri-part model of genetics literacy can be used to explore students' thinking and reasoning abilities in genetics.
Canter, E F
1984-01-01
The emergence of genetic screening techniques will permit employers to exclude hypersusceptible individuals from potentially hazardous workplace environments. The denial of employment opportunities to these individuals, however, may constitute discrimination. This Note analyzes genetic screening cases with respect to currently available remedies contained in Title VII of the Civil Rights Act of 1964 and the Rehabilitation Act of 1973. The Note concludes that Title VII claims may succeed but only in limited circumstances and that Rehabilitation Act claims will encounter numerous obstacles to relief. Additionally, the Note discusses some of the implications of the use of genetic screening in the workplace.
Cancer Genetics Risk Assessment and Counseling (PDQ®)—Health Professional Version
Cancer genetics risk assessment and genetic counseling includes family history, psychosocial assessments, and education on hereditary cancer syndromes, testing, and risk. Get more information including the ethical, legal, and social implications of genetic testing in this summary for clinicians.
Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M
2012-01-01
Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.
Abdulkadir, Mohamed; Londono, Douglas; Gordon, Derek; Fernandez, Thomas V; Brown, Lawrence W; Cheon, Keun-Ah; Coffey, Barbara J; Elzerman, Lonneke; Fremer, Carolin; Fründt, Odette; Garcia-Delgar, Blanca; Gilbert, Donald L; Grice, Dorothy E; Hedderly, Tammy; Heyman, Isobel; Hong, Hyun Ju; Huyser, Chaim; Ibanez-Gomez, Laura; Jakubovski, Ewgeni; Kim, Young Key; Kim, Young Shin; Koh, Yun-Joo; Kook, Sodahm; Kuperman, Samuel; Leventhal, Bennett; Ludolph, Andrea G; Madruga-Garrido, Marcos; Maras, Athanasios; Mir, Pablo; Morer, Astrid; Müller-Vahl, Kirsten; Münchau, Alexander; Murphy, Tara L; Plessen, Kerstin J; Roessner, Veit; Shin, Eun-Young; Song, Dong-Ho; Song, Jungeun; Tübing, Jennifer; van den Ban, Els; Visscher, Frank; Wanderer, Sina; Woods, Martin; Zinner, Samuel H; King, Robert A; Tischfield, Jay A; Heiman, Gary A; Hoekstra, Pieter J; Dietrich, Andrea
2018-04-01
Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412 families (some probands were siblings). We assessed 75 single nucleotide polymorphisms (SNPs) in 465 parent-child trios; 117 additional SNPs in 211 trios; and 4 additional SNPs in 254 trios. We performed SNP and gene-based transmission disequilibrium tests and compared nominally significant SNP results with those from a large independent case-control cohort. After quality control 71 SNPs were available in 371 trios; 112 SNPs in 179 trios; and 3 SNPs in 192 trios. 17 were candidate SNPs implicated in TS and 2 were implicated in obsessive-compulsive disorder (OCD) or autism spectrum disorder (ASD); 142 were tagging SNPs from eight monoamine neurotransmitter-related genes (including dopamine and serotonin); 10 were top SNPs from TS GWAS; and 13 top SNPs from attention-deficit/hyperactivity disorder, OCD, or ASD GWAS. None of the SNPs or genes reached significance after adjustment for multiple testing. We observed nominal significance for the candidate SNPs rs3744161 (TBCD) and rs4565946 (TPH2) and for five tagging SNPs; none of these showed significance in the independent cohort. Also, SLC1A1 in our gene-based analysis and two TS GWAS SNPs showed nominal significance, rs11603305 (intergenic) and rs621942 (PICALM). We found no convincing support for previously implicated genetic polymorphisms. Targeted re-sequencing should fully appreciate the relevance of candidate genes.
Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua
2013-03-28
Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.
Online health communication about human genetics: perceptions and preferences of internet users.
Bernhardt, Jay M; McClain, Jacqueline; Parrott, Roxanne L
2004-12-01
Unprecedented advancements in human genetics research necessitate keeping the public abreast of new information, applications, and implications and the Internet represents an important method of communicating with the public. Our research used cross-sectional self-report survey data collected from a diverse convenience sample of 780 Internet users in two states. Multivariate regression analysis explored the relationships between experiences, perceptions, and preferences for online health and genetics communication. Online health information seeking was associated with previous genetic information seeking, comfort with online genetic communication, perceived risk for genetic abnormality, being female, and having more education. Comfort with online genetics communication was associated with a preference for online genetic information, previous online health and off-line genetics information seeking, having a healthy lifestyle, believing in the positive impact of human genetics research, and being female. Perceiving online health information to be accurate was associated with preferring the Internet for genetics communication, being older, less educated, and perceiving Internet use as anonymous. Preferring online genetics communication to other communication channels was associated with perceiving online health information as accurate, being comfortable receiving online genetics information, having lower intrinsic religiosity, and being male. The implications of findings for Web-based health message design are discussed.
Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A
2018-03-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.
Gray, Alan; Neyton, Lucile P. A.; Barrett, Jeffrey; Stahl, Eli A.; Tenesa, Albert; Andersson, Robin; Brown, J. Ben; Faulkner, Geoffrey J.; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Kawaji, Hideya; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A.; Hacohen, Nir; Freeman, Thomas C.; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Hume, David A.
2018-01-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits. PMID:29494619
The genetic basis of music ability
Tan, Yi Ting; McPherson, Gary E.; Peretz, Isabelle; Berkovic, Samuel F.; Wilson, Sarah J.
2014-01-01
Music is an integral part of the cultural heritage of all known human societies, with the capacity for music perception and production present in most people. Researchers generally agree that both genetic and environmental factors contribute to the broader realization of music ability, with the degree of music aptitude varying, not only from individual to individual, but across various components of music ability within the same individual. While environmental factors influencing music development and expertise have been well investigated in the psychological and music literature, the interrogation of possible genetic influences has not progressed at the same rate. Recent advances in genetic research offer fertile ground for exploring the genetic basis of music ability. This paper begins with a brief overview of behavioral and molecular genetic approaches commonly used in human genetic analyses, and then critically reviews the key findings of genetic investigations of the components of music ability. Some promising and converging findings have emerged, with several loci on chromosome 4 implicated in singing and music perception, and certain loci on chromosome 8q implicated in absolute pitch and music perception. The gene AVPR1A on chromosome 12q has also been implicated in music perception, music memory, and music listening, whereas SLC6A4 on chromosome 17q has been associated with music memory and choir participation. Replication of these results in alternate populations and with larger samples is warranted to confirm the findings. Through increased research efforts, a clearer picture of the genetic mechanisms underpinning music ability will hopefully emerge. PMID:25018744
Bodare, Sofia; Tsuda, Yoshiaki; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Lascoux, Martin
2013-09-01
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species' evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (F IS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.
Bodare, Sofia; Tsuda, Yoshiaki; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Lascoux, Martin
2013-01-01
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies. PMID:24223264
The Tricentennial People: Human Applications of the New Genetics.
ERIC Educational Resources Information Center
Neumann, Marguerite, Ed.
This symposium focused on the social, political, and ethical implications of the current trends in genetic research. Four papers are presented here along with transcripts of the accompanying discussions. The topics include: (1) genetics and the biological basis of the human condition; (2) the pros and cons of genetic counseling; (3) genetics and…
Experimental game theory and behavior genetics.
Cesarini, David; Dawes, Christopher T; Johannesson, Magnus; Lichtenstein, Paul; Wallace, Björn
2009-06-01
We summarize the findings from a research program studying the heritability of behavior in a number of widely used economic games, including trust, dictator, and ultimatum games. Results from the standard behavior genetic variance decomposition suggest that strategies and fundamental economic preference parameters are moderately heritable, with estimates ranging from 18 to 42%. In addition, we also report new evidence on so-called "hyperfair" preferences in the ultimatum game. We discuss the implications of our findings with special reference to current efforts that seek to understand the molecular genetic architecture of complex social behaviors.
Two genetic markers closely linked to adult polycystic kidney disease on chromosome 16.
Reeders, S T; Breuning, M H; Corney, G; Jeremiah, S J; Meera Khan, P; Davies, K E; Hopkinson, D A; Pearson, P L; Weatherall, D J
1986-01-01
The genetic locus for autosomal dominant adult polycystic kidney disease was recently assigned to chromosome 16 by the finding of genetic linkage to the alpha globin gene cluster. Further study showed that the phosphoglycolate phosphatase locus is also closely linked to both the locus for adult polycystic kidney disease and the alpha globin gene cluster. These findings have important implications for the prenatal and presymptomatic diagnosis of adult polycystic kidney disease and for a better understanding of its pathogenesis. Images FIG 1 PMID:3008903
[Genetics of sudden unexplained death].
Campuzano, Oscar; Allegue, Catarina; Brugada, Ramon
2014-03-20
Sudden unexplained death is defined by death without a conclusive diagnosis after autopsy and it is responsible for a large percentage of sudden deaths. The progressive interaction between genetics and forensics in post-mortem studies has identified inheritable alterations responsible for pathologies associated with arrhythmic sudden death. The genetic diagnosis of the deceased enables the undertaking of preventive measures in family members, many of them asymptomatic but at risk. The implications of this multidisciplinary translational medical approach are complex, requiring the dedication of a specialized team. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Implications of genome-wide association studies in cancer therapeutics.
Patel, Jai N; McLeod, Howard L; Innocenti, Federico
2013-09-01
Genome wide association studies (GWAS) provide an agnostic approach to identifying potential genetic variants associated with disease susceptibility, prognosis of survival and/or predictive of drug response. Although these techniques are costly and interpretation of study results is challenging, they do allow for a more unbiased interrogation of the entire genome, resulting in the discovery of novel genes and understanding of novel biological associations. This review will focus on the implications of GWAS in cancer therapy, in particular germ-line mutations, including findings from major GWAS which have identified predictive genetic loci for clinical outcome and/or toxicity. Lessons and challenges in cancer GWAS are also discussed, including the need for functional analysis and replication, as well as future perspectives for biological and clinical utility. Given the large heterogeneity in response to cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response and ultimately treatment individualization will be indispensable. © 2013 The British Pharmacological Society.
2014-01-01
Background African Americans have been treated as a representative population for African ancestry for many purposes, including pharmacogenomic studies. However, the contribution of European ancestry is expected to result in considerable differences in the genetic architecture of African American individuals compared with an African genome. In particular, the genetic admixture influences the genomic diversity of drug metabolism-related genes, and may cause high heterogeneity of drug responses in admixed populations such as African Americans. Results The genomic ancestry information of African-American (ASW) samples was obtained from data of the 1000 Genomes Project, and local ancestral components were also extracted for 32 core genes and 252 extended genes, which are associated with drug absorption, distribution, metabolism, and excretion (ADME) genes. As expected, the global genetic diversity pattern in ASW was determined by the contributions of its putative ancestral source populations, and the whole profiles of ADME genes in ASW are much closer to those in YRI than in CEU. However, we observed much higher diversity in some functionally important ADME genes in ASW than either CEU or YRI, which could be a result of either genetic drift or natural selection, and we identified some signatures of the latter. We analyzed the clinically relevant polymorphic alleles and haplotypes, and found that 28 functional mutations (including 3 missense, 3 splice, and 22 regulator sites) exhibited significantly higher differentiation between the three populations. Conclusions Analysis of the genetic diversity of ADME genes showed differentiation between admixed population and its ancestral source populations. In particular, the different genetic diversity between ASW and YRI indicated that the ethnic differences in pharmacogenomic studies are broadly existed despite that African ancestry is dominant in Africans Americans. This study should advance our understanding of the genetic basis of the drug response heterogeneity between populations, especially in the case of population admixture, and have significant implications for evaluating potential inter-population heterogeneity in drug treatment effects. PMID:24884825
A Brighter Side of the New Genetics
ERIC Educational Resources Information Center
Glowienka, Emerine
1975-01-01
Discusses the positive side of genetic technology advances and the implications for human beings, both from a sociological viewpoint and the point of view of a social philosopher. Genetic engineering, technology and counseling are discussed. (BR)
Observations on the Study of Crime Causation
ERIC Educational Resources Information Center
Gibbons, Don C.
1971-01-01
Although both genetic and situational factors are implicated in criminality, the thesis here is that the latter may well be more important and more frequently encountered than many criminologists have acknowledged to date. (JB)
Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia
2013-01-01
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228
Hepburn, Susan L.; Moody, Eric J.
2015-01-01
Assessing symptoms of autism in persons with known genetic syndromes associated with intellectual and/or developmental disability is a complex clinical endeavor. We suggest that a developmental approach to evaluation is essential to reliably teasing apart global impairments from autism-specific symptomology. In this chapter, we discuss our assumptions about autism spectrum disorders, the process of conducting a family-focused, comprehensive evaluation with behaviorally complex children and some implications for intervention in persons with co-occurring autism and known genetic syndromes. PMID:26269783
Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E
2016-01-01
Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhihao Su; Bryce A. Richardson; Li Zhuo; Xiaolong Jiang
2017-01-01
Population genetic studies provide a foundation for conservation planning, especially for endangered species. Three chloroplast SSRs (mtrnSf-trnGr, mtrnL2-trnF, and mtrnL5-trnL3) and the internal transcribed spacer were used to examine the population structure of Helianthemum in northwestern China. A total of 15 populations of the genus were collected. Nine chloroplast...
Genetic heterogeneity of diffuse large B-cell lymphoma.
Zhang, Jenny; Grubor, Vladimir; Love, Cassandra L; Banerjee, Anjishnu; Richards, Kristy L; Mieczkowski, Piotr A; Dunphy, Cherie; Choi, William; Au, Wing Yan; Srivastava, Gopesh; Lugar, Patricia L; Rizzieri, David A; Lagoo, Anand S; Bernal-Mizrachi, Leon; Mann, Karen P; Flowers, Christopher; Naresh, Kikkeri; Evens, Andrew; Gordon, Leo I; Czader, Magdalena; Gill, Javed I; Hsi, Eric D; Liu, Qingquan; Fan, Alice; Walsh, Katherine; Jima, Dereje; Smith, Lisa L; Johnson, Amy J; Byrd, John C; Luftig, Micah A; Ni, Ting; Zhu, Jun; Chadburn, Amy; Levy, Shawn; Dunson, David; Dave, Sandeep S
2013-01-22
Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.
Primary care professionals' perceptions of using a short family history questionnaire.
Ahmed, Shenaz; Hayward, Judith; Ahmed, Mushtaq
2016-12-01
Improving access for relatives at-risk of genetic conditions by building referral systems from primary care to genetic services is well recognised. This study aimed to explore primary care professionals' (PCPs) views about using a short, seven-item family history questionnaire (S-FHQ) as an intervention for identifying at-risk relatives of patients with a genetic condition in routine primary care for referral to genetic services. This qualitative study was conducted in the UK in 2013-14. Focus groups were held with 21 PCPs. The normalisation process theory (NPT) was used during analysis as the theoretical lens for exploring potential implementation and sustainability of the intervention. In principle, participants were supportive of the S-FHQ. They initially expressed enthusiasm for the S-FHQ and identified benefits of its use. However, in discussions about its use in practice, they raised concerns about their expertise to deliver the intervention, implications for their workload, potential duplication with existing roles and services in secondary care, the ethical implications of its use in routine care and its acceptability to patients. This study shows why even a short family history questionnaire, as an intervention for identifying at-risk relatives, is unlikely to be implemented by primary care professionals. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Immunological implications of pregnancy-induced microchimerism
Kinder, Jeremy M.; Stelzer, Ina A.; Arck, Petra C.; Way, Sing Sing
2017-01-01
Immunological identity is traditionally defined by genetically encoded antigens, with equal maternal and paternal contributions as a result of Mendelian inheritance. However, vertically transferred maternal cells also persist in individuals at very low levels throughout postnatal development. Reciprocally, mothers are seeded during pregnancy with genetically foreign fetal cells that persist long after parturition. Recent findings suggest that these microchimeric cells expressing noninherited familially relevant antigenic traits are not accidental souvenirs of pregnancy, but are purposefully retained within mothers and their offspring to promote genetic fitness by improving the outcome of future pregnancies. Here, we discuss the immunological implications, benefits and potential consequences of individuals being constitutively chimeric with a biologically active ‘microchiome’ of genetically foreign cells. PMID:28480895
Genetics/genomics education for nongenetic health professionals: a systematic literature review.
Talwar, Divya; Tseng, Tung-Sung; Foster, Margaret; Xu, Lei; Chen, Lei-Shih
2017-07-01
The completion of the Human Genome Project has enhanced avenues for disease prevention, diagnosis, and management. Owing to the shortage of genetic professionals, genetics/genomics training has been provided to nongenetic health professionals for years to establish their genomic competencies. We conducted a systematic literature review to summarize and evaluate the existing genetics/genomics education programs for nongenetic health professionals. Five electronic databases were searched from January 1990 to June 2016. Forty-four studies met our inclusion criteria. There was a growing publication trend. Program participants were mainly physicians and nurses. The curricula, which were most commonly provided face to face, included basic genetics; applied genetics/genomics; ethical, legal, and social implications of genetics/genomics; and/or genomic competencies/recommendations in particular professional fields. Only one-third of the curricula were theory-based. The majority of studies adopted a pre-/post-test design and lacked follow-up data collection. Nearly all studies reported participants' improvements in one or more of the following areas: knowledge, attitudes, skills, intention, self-efficacy, comfort level, and practice. However, most studies did not report participants' age, ethnicity, years of clinical practice, data validity, and data reliability. Many genetics/genomics education programs for nongenetic health professionals exist. Nevertheless, enhancement in methodological quality is needed to strengthen education initiatives.Genet Med advance online publication 20 October 2016.
Ethical and social implications of genetic testing for communication disorders.
Arnos, Kathleen S
2008-01-01
Advances in genetics and genomics have quickly led to clinical applications to human health which have far-reaching consequences at the individual and societal levels. These new technologies have allowed a better understanding of the genetic factors involved in a wide range of disorders. During the past decade, incredible progress has been made in the identification of genes involved in the normal process of hearing. The resulting clinical applications have presented consumers with new information and choices. Many of the same gene identification techniques are increasingly being applied to the investigation of complex disorders of speech and language. In parallel with gene identification, studies of the legal, ethical and psychosocial impacts of the clinical application of these advances and their influence on specific behaviors of individuals with communication disorders are paramount, but often lag behind. These studies will help to ensure that new technologies are introduced into clinical practice in a responsible manner. As a result of this activity, the participant will be able to (1) explain the differences between Mendelian and complex forms of inheritance and why these differences complicate the ethical impact of genetic testing, (2) explain how publicly funded genome research through the Human Genome Project, the International HapMap Project and others have examined the ethical, legal and social implications of genome research, (3) list some of the ethical complexities of prenatal, newborn and predictive testing for various genetic disorders and (4) discuss the importance of evidence-based practice to the development of public policy for the introduction and clinical use of genetic tests.
Ethical and social implications of genetic testing for communication disorders
Arnos, Kathleen S.
2013-01-01
Advances in genetics and genomics have quickly led to clinical applications to human health which have far-reaching consequences at the individual and societal levels. These new technologies have allowed a better understanding of the genetic factors involved in a wide range of disorders. During the past decade, incredible progress has been made in the identification of genes involved in the normal process of hearing. The resulting clinical applications have presented consumers with new information and choices. Many of the same gene identification techniques are increasingly being applied to the investigation of complex disorders of speech and language. In parallel with gene identification, studies of the legal, ethical and psychosocial impacts of the clinical application of these advances and their influence on specific behaviors of individuals with communication disorders are paramount, but often lag behind. These studies will help to ensure that new technologies are introduced into clinical practice in a responsible manner. Learning outcomes As a result of this activity, the participant will be able to (1) explain the differences between Mendelian and complex forms of inheritance and why these differences complicate the ethical impact of genetic testing, (2) explain how publicly funded genome research through the Human Genome Project, the International HapMap Project and others have examined the ethical, legal and social implications of genome research, (3) list some of the ethical complexities of prenatal, newborn and predictive testing for various genetic disorders and (4) discuss the importance of evidence-based practice to the development of public policy for the introduction and clinical use of genetic tests. PMID:18452941
Abdul-Wajid, Sarah; Veeman, Michael T; Chiba, Shota; Turner, Thomas L; Smith, William C
2014-05-01
Studies in tunicates such as Ciona have revealed new insights into the evolutionary origins of chordate development. Ciona populations are characterized by high levels of natural genetic variation, between 1 and 5%. This variation has provided abundant material for forward genetic studies. In the current study, we make use of deep sequencing and homozygosity mapping to map spontaneous mutations in outbred populations. With this method we have mapped two spontaneous developmental mutants. In Ciona intestinalis we mapped a short-tail mutation with strong phenotypic similarity to a previously identified mutant in the related species Ciona savignyi. Our bioinformatic approach mapped the mutation to a narrow interval containing a single mutated gene, α-laminin3,4,5, which is the gene previously implicated in C. savignyi. In addition, we mapped a novel genetic mutation disrupting neural tube closure in C. savignyi to a T-type Ca(2+) channel gene. The high efficiency and unprecedented mapping resolution of our study is a powerful advantage for developmental genetics in Ciona, and may find application in other outbred species.
Genetic Aspects of Alzheimer Disease
Williamson, Jennifer; Goldman, Jill; Marder, Karen S.
2011-01-01
Background Alzheimer disease (AD) is a genetically complex disorder. Mutations in 3 genes, presenilin 1, amyloid precursor protein, and presenilin 2, lead to early-onset familial AD in rare families with onset of disease occurring prior to age 65. Specific polymorphisms in apolipoprotein E are associated with the more common, late-onset AD occurring after age 65. In this review, we discuss current advances in AD genetics, the implications of the known AD genes, presenilin 1, presenilin 2, amyloid precursor protein, and apolipoprotein E, and other possible genes on the clinical diagnosis, treatment, and genetic counseling of patients and families with early- and late-onset AD. Review Summary In addition to the mutations in 4 known genes associated with AD, mutations in other genes may be implicated in the pathogenesis of the disease. Most recently, 2 different research groups have reported genetic association between 2 genes, sortilin-related receptor and GAB2, and AD. These associations have not changed the diagnostic and medical management of AD. Conclusions New research in the genetics of AD have implicated novel genes as having a role in the disease, but these findings have not been replicated nor have specific disease causing mutations been identified. To date, clinical genetic testing is limited to familial early-onset disease for symptomatic individuals and asymptomatic relatives and, although not recommended, amyloid precursor protein apolipoprotein E testing as an adjunct to diagnosis of symptomatic individuals. PMID:19276785
Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior
Shorter, John; Couch, Charlene; Huang, Wen; Carbone, Mary Anna; Peiffer, Jason; Anholt, Robert R. H.; Mackay, Trudy F. C.
2015-01-01
Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics. PMID:26100892
Ethics and Neuropsychiatric Genetics: A Review of Major Issues
Hoge, Steven K.; Appelbaum, Paul S.
2012-01-01
Advances in neuropsychiatric genetics hold great hopes for improved prevention, diagnosis, and treatment. However, the power of genetic testing to identify individuals at increased risk for disorders and to convey information about relatives creates a set of complex ethical issues. Public attitudes are inevitably affected by the shadow of eugenics, with its history of distorting scientific findings to serve socio-political ends. Nonetheless, the growing availability of genetic tests means that more patients will seek genetic information, and physicians must manage the process of informed consent to allow meaningful decisions. Patients should be helped to understand the often-limited predictive power of current knowledge, potential psychological impact, risks of stigma and discrimination, and possible implications for family members. Decisions for predictive testing of children raise additional concerns, including distortions of family dynamics and negative effects on children’s self-image; testing is best deferred until adulthood unless preventive interventions exist. Pharmacogenomic testing, part of personalized medicine, may bring collateral susceptibility information for which patients should be prepared. The implications of genetic findings for families raise the question of whether physicians have duties to inform family members of implications for their health. Finally, participation in research in neuropsychiatric genetics evokes a broad range of ethical concerns, including the contentious issue of the extent to which results should be returned to individual subjects. As genetic science becomes more widely applied, the public will become more sophisticated and will be likely to demand a greater role in determining social policy on these issues. PMID:22272758
Bradley, A N
1999-06-01
Cancer is an immense medical problem and as a cause of mortality it is second only to cardiovascular disease. Much of the current understanding of cancer is owed to epidemiologists who have discovered a number of causative factors implicated in its development. These causative factors can be divided into genetic, chemical, physical, viral, radiation, immune and hormonal factors. Further advances in understanding have been made over the past decade from contributions made by the field of molecular biology. From investigation and examination of the molecular processes involved in the development of cancer it is becoming increasingly clear that changes in the genetic material of the cell nuclei are the final common pathway to cancer, whatever the initial aetiology. This article will attempt to elucidate the contribution of molecular genetics to the understanding of the likely mechanisms of carcinogenesis, the management of cancer, potential future applications and directions and the implications for nurses arising from this relatively new and evolving field of knowledge.
Porter, LF; Black, GCM
2014-01-01
Porter L.F., Black G.C.M. Personalized ophthalmology. Clin Genet 2014: 86: 1–11. © 2014 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd., 2014 Ophthalmology has been an early adopter of personalized medicine. Drawing on genomic advances to improve molecular diagnosis, such as next-generation sequencing, and basic and translational research to develop novel therapies, application of genetic technologies in ophthalmology now heralds development of gene replacement therapies for some inherited monogenic eye diseases. It also promises to alter prediction, diagnosis and management of the complex disease age-related macular degeneration. Personalized ophthalmology is underpinned by an understanding of the molecular basis of eye disease. Two important areas of focus are required for adoption of personalized approaches: disease stratification and individualization. Disease stratification relies on phenotypic and genetic assessment leading to molecular diagnosis; individualization encompasses all aspects of patient management from optimized genetic counseling and conventional therapies to trials of novel DNA-based therapies. This review discusses the clinical implications of these twin strategies. Advantages and implications of genetic testing for patients with inherited eye diseases, choice of molecular diagnostic modality, drivers for adoption of personalized ophthalmology, service planning implications, ethical considerations and future challenges are considered. Indeed, whilst many difficulties remain, personalized ophthalmology truly has the potential to revolutionize the specialty. PMID:24665880
Genes and gene networks implicated in aggression related behaviour.
Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans
2014-10-01
Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.
Zhang, H; Ji, W L; Li, M; Zhou, L Y
2015-10-14
Comprehensive research of genetic variation is crucial in designing conservation strategies for endangered and threatened species. Sinowilsonia henryi Hemsi. is a tertiary relic with a limited geographical distribution in the central and western areas of China. It is endangered because of climate change and habitat fragmentation over the last thousands of years. In this study, amplified fragment length polymorphism markers were utilized to estimate genetic diversity and genetic structure in and among S. henryi. In this study, Nei's genetic diversity and Shannon's information index were found to be 0.192 and 0.325 respectively, indicating a moderate-to-high genetic diversity in species. According to analysis of molecular variation results, 32% of the genetic variation was shown to be partitioned among populations, demonstrating a relatively high genetic divergence; this was supported by principal coordinate analysis and unweighted pair-group method with arithmetic average analysis. Moreover, the Mantel test showed that there was no significant correlation between genetic and geographical distances. The above results can be explained by the effects of habitat fragmentation, history traits, and gene drift. Based on the results, several implications were indicated and suggestions proposed for preservation strategies for this species.
Brown, H M; Waszczuk, M A; Zavos, H M S; Trzaskowski, M; Gregory, A M; Eley, T C
2014-12-01
The classification of anxiety and depressive disorders has long been debated and has important clinical implications. The present study combined a genetically sensitive design and multiple time points to investigate cognitive content specificity in anxiety and depressive disorder symptoms across anxiety sensitivity dimensions, a cognitive distortion implicated in both disorders. Phenotypic and genetic correlations between anxiety sensitivity dimensions, anxiety and depressive disorder symptoms were examined at five waves of data collection within childhood, adolescence and early adulthood in two representative twin studies (n pairs = 300 and 1372). The physical concerns dimension of anxiety sensitivity (fear of bodily symptoms) was significantly associated with anxiety but not depression at all waves. Genetic influences on physical concerns overlapped substantially more with anxiety than depression. Conversely, mental concerns (worry regarding cognitive control) were phenotypically more strongly associated with depression than anxiety. Social concerns (fear of publicly observable symptoms of anxiety) were associated with both anxiety and depression in adolescence. Genetic influences on mental and social concerns were shared to a similar extent with both anxiety and depression. Phenotypic patterns of cognitive specificity and broader genetic associations between anxiety sensitivity dimensions, anxiety and depressive disorder symptoms were similar at all waves. Both disorder-specific and shared cognitive concerns were identified, suggesting it is appropriate to classify anxiety and depression as distinct but related disorders and confirming the clinical perspective that cognitive therapy is most likely to benefit by targeting cognitive concerns relating specifically to the individual's presenting symptoms across development.
An Exome Sequencing Study to Assess the Role of Rare Genetic Variation in Pulmonary Fibrosis.
Petrovski, Slavé; Todd, Jamie L; Durheim, Michael T; Wang, Quanli; Chien, Jason W; Kelly, Fran L; Frankel, Courtney; Mebane, Caroline M; Ren, Zhong; Bridgers, Joshua; Urban, Thomas J; Malone, Colin D; Finlen Copeland, Ashley; Brinkley, Christie; Allen, Andrew S; O'Riordan, Thomas; McHutchison, John G; Palmer, Scott M; Goldstein, David B
2017-07-01
Idiopathic pulmonary fibrosis (IPF) is an increasingly recognized, often fatal lung disease of unknown etiology. The aim of this study was to use whole-exome sequencing to improve understanding of the genetic architecture of pulmonary fibrosis. We performed a case-control exome-wide collapsing analysis including 262 unrelated individuals with pulmonary fibrosis clinically classified as IPF according to American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association guidelines (81.3%), usual interstitial pneumonia secondary to autoimmune conditions (11.5%), or fibrosing nonspecific interstitial pneumonia (7.2%). The majority (87%) of case subjects reported no family history of pulmonary fibrosis. We searched 18,668 protein-coding genes for an excess of rare deleterious genetic variation using whole-exome sequence data from 262 case subjects with pulmonary fibrosis and 4,141 control subjects drawn from among a set of individuals of European ancestry. Comparing genetic variation across 18,668 protein-coding genes, we found a study-wide significant (P < 4.5 × 10 -7 ) case enrichment of qualifying variants in TERT, RTEL1, and PARN. A model qualifying ultrarare, deleterious, nonsynonymous variants implicated TERT and RTEL1, and a model specifically qualifying loss-of-function variants implicated RTEL1 and PARN. A subanalysis of 186 case subjects with sporadic IPF confirmed TERT, RTEL1, and PARN as study-wide significant contributors to sporadic IPF. Collectively, 11.3% of case subjects with sporadic IPF carried a qualifying variant in one of these three genes compared with the 0.3% carrier rate observed among control subjects (odds ratio, 47.7; 95% confidence interval, 21.5-111.6; P = 5.5 × 10 -22 ). We identified TERT, RTEL1, and PARN-three telomere-related genes previously implicated in familial pulmonary fibrosis-as significant contributors to sporadic IPF. These results support the idea that telomere dysfunction is involved in IPF pathogenesis.
Genetics and Early Detection in Idiopathic Pulmonary Fibrosis
Putman, Rachel K.; Rosas, Ivan O.
2014-01-01
Genetic studies hold promise in helping to identify patients with early idiopathic pulmonary fibrosis (IPF). Recent studies using chest computed tomograms (CTs) in smokers and in the general population have demonstrated that imaging abnormalities suggestive of an early stage of pulmonary fibrosis are not uncommon and are associated with respiratory symptoms, physical examination abnormalities, and physiologic decrements expected, but less severe than those noted in patients with IPF. Similarly, recent genetic studies have demonstrated strong and replicable associations between a common promoter polymorphism in the mucin 5B gene (MUC5B) and both IPF and the presence of abnormal imaging findings in the general population. Despite these findings, it is important to note that the definition of early-stage IPF remains unclear, limited data exist to definitively connect abnormal imaging findings to IPF, and genetic studies assessing early-stage pulmonary fibrosis remain in their infancy. In this perspective we provide updated information on interstitial lung abnormalities and their connection to IPF. We summarize information on the genetics of pulmonary fibrosis by focusing on the recent genetic findings of MUC5B. Finally, we discuss the implications of these findings and suggest a roadmap for the use of genetics in the detection of early IPF. PMID:24547893
Llewellyn, Clare H; Fildes, Alison
2017-03-01
There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment.
Learning Abilities and Disabilities: Generalist Genes, Specialist Environments.
Kovas, Yulia; Plomin, Robert
2007-10-01
Twin studies comparing identical and fraternal twins consistently show substantial genetic influence on individual differences in learning abilities such as reading and mathematics, as well as in other cognitive abilities such as spatial ability and memory. Multivariate genetic research has shown that the same set of genes is largely responsible for genetic influence on these diverse cognitive areas. We call these "generalist genes." What differentiates these abilities is largely the environment, especially nonshared environments that make children growing up in the same family different from one another. These multivariate genetic findings of generalist genes and specialist environments have far-reaching implications for diagnosis and treatment of learning disabilities and for understanding the brain mechanisms that mediate these effects.
Genetics and the Placebo Effect: the Placebome
Hall, Kathryn T.; Loscalzo, Joseph; Kaptchuk, Ted J.
2015-01-01
Placebos are indispensable controls in randomized clinical trials (RCTs), and placebo responses significantly contribute to routine clinical outcomes. Recent neurophysiological studies reveal neurotransmitter pathways that mediate placebo effects. Evidence that genetic variations in these pathways can modify placebo effects raises the possibility of using genetic screening to identify placebo responders and thereby increase RCT efficacy and improve therapeutic care. Furthermore, the possibility of interaction between placebo and drug molecular pathways warrants consideration in RCT design. The study of genomic effects on placebo response, “the placebome”, is in its infancy. Here, we review evidence from placebo studies and RCTs to identify putative genes in the placebome, examine evidence for placebo-drug interactions, and discuss implications for RCTs and clinical care. PMID:25883069
Comparative mRNA analysis of behavioral and genetic mouse models of aggression.
Malki, Karim; Tosto, Maria G; Pain, Oliver; Sluyter, Frans; Mineur, Yann S; Crusio, Wim E; de Boer, Sietse; Sandnabba, Kenneth N; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C; Asherson, Philip
2016-04-01
Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors. © 2016 Wiley Periodicals, Inc.
Penn, Claire; Watermeyer, Jennifer; MacDonald, Carol; Moabelo, Colleen
2010-02-01
With its diverse cultural and linguistic profile, South Africa provides a unique context to explore contextual influences on the process of genetic counseling. Prior research suggests intergenerational differences regarding models of causation which influence treatment-seeking paths. This pilot study therefore aimed to explore South African traditional beliefs regarding common childhood genetic disorders. Three focus groups were conducted with fifteen grandmothers from different cultural backgrounds in an urban community. Questions pertained to the role of the grandmother, traditional beliefs regarding causes of genetic disorders, explanations of heredity, and prevention and management of genetic disorders. Results indicate a variety of cultural explanations for causes of childhood genetic disorders. These causes can be classified into categories related to lifestyle, behavior, social issues, culture, religion, genetic, and familial causes. Prevention and treatment issues are also highlighted. These findings have implications for genetic counseling practice, which needs to include a greater focus on cultural issues.
The genetics of addiction—a translational perspective
Agrawal, A; Verweij, K J H; Gillespie, N A; Heath, A C; Lessov-Schlaggar, C N; Martin, N G; Nelson, E C; Slutske, W S; Whitfield, J B; Lynskey, M T
2012-01-01
Addictions are serious and common psychiatric disorders, and are among the leading contributors to preventable death. This selective review outlines and highlights the need for a multi-method translational approach to genetic studies of these important conditions, including both licit (alcohol, nicotine) and illicit (cannabis, cocaine, opiates) drug addictions and the behavioral addiction of disordered gambling. First, we review existing knowledge from twin studies that indicates both the substantial heritability of substance-specific addictions and the genetic overlap across addiction to different substances. Next, we discuss the limited number of candidate genes which have shown consistent replication, and the implications of emerging genomewide association findings for the genetic architecture of addictions. Finally, we review the utility of extensions to existing methods such as novel phenotyping, including the use of endophenotypes, biomarkers and neuroimaging outcomes; emerging methods for identifying alternative sources of genetic variation and accompanying statistical methodologies to interpret them; the role of gene–environment interplay; and importantly, the potential role of genetic variation in suggesting new alternatives for treatment of addictions. PMID:22806211
Porter, L F; Black, G C M
2014-07-01
Ophthalmology has been an early adopter of personalized medicine. Drawing on genomic advances to improve molecular diagnosis, such as next-generation sequencing, and basic and translational research to develop novel therapies, application of genetic technologies in ophthalmology now heralds development of gene replacement therapies for some inherited monogenic eye diseases. It also promises to alter prediction, diagnosis and management of the complex disease age-related macular degeneration. Personalized ophthalmology is underpinned by an understanding of the molecular basis of eye disease. Two important areas of focus are required for adoption of personalized approaches: disease stratification and individualization. Disease stratification relies on phenotypic and genetic assessment leading to molecular diagnosis; individualization encompasses all aspects of patient management from optimized genetic counseling and conventional therapies to trials of novel DNA-based therapies. This review discusses the clinical implications of these twin strategies. Advantages and implications of genetic testing for patients with inherited eye diseases, choice of molecular diagnostic modality, drivers for adoption of personalized ophthalmology, service planning implications, ethical considerations and future challenges are considered. Indeed, whilst many difficulties remain, personalized ophthalmology truly has the potential to revolutionize the specialty. © 2014 The Authors. Clinical Genetics published by JohnWiley & Sons A/S. Published by John Wiley & Sons Ltd.
Student Problem Solving in High School Genetics.
ERIC Educational Resources Information Center
Stewart, James
1983-01-01
Describes set of specific steps (procedural knowledge) used when solving monohybrid/dihybrid cross problems and extent to which students could justify execution of each step in terms of their conceptual knowledge of genetics and meiosis. Implications for genetics instruction are discussed. (JN)
Introduction to Focus Issue: Genetic Interactions
NASA Astrophysics Data System (ADS)
Segrè, Daniel; Marx, Christopher J.
2010-06-01
The perturbation of a gene in an organism's genome often causes changes in the organism's observable properties or phenotypes. It is not obvious a priori whether the simultaneous perturbation of two genes produces a phenotypic change that is easily predictable from the changes caused by individual perturbations. In fact, this is often not the case: the nonlinearity and interdependence between genetic variants in determining phenotypes, also known as epistasis, is a prevalent phenomenon in biological systems. This focus issue presents recent developments in the study of epistasis and genetic interactions, emphasizing the broad implications of this phenomenon in evolutionary biology, functional genomics, and human diseases.
ERIC Educational Resources Information Center
Kaut, Kevin P.
2006-01-01
The field of genetics and the process of testing for genetic disorders have advanced considerably over the past half century, ushering in significant improvements in certain areas of medical diagnosis and disease prediction. However, genetic discoveries are accompanied by many social, emotional, and psychological implications, and counseling…
Priya, Rinki Ratna; Chew, Emily Y; Swaroop, Anand
2012-12-01
Age-related macular degeneration (AMD) is a common cause of visual impairment in individuals >55 years of age worldwide. The varying clinical phenotypes of AMD result from contributions of genetic, epigenetic, and nongenetic (environmental) factors. Genetic studies of AMD have come of age as a direct result of tremendous gains from the human genome project, genome-wide association studies, and identification of numerous susceptibility loci. These findings have implicated immune response, high-density lipoprotein cholesterol metabolism, extracellular matrix, and angiogenesis signaling pathways in disease pathophysiology. Herein, we address how the wealth of genetic findings in AMD is expected to impact the practice of medicine, providing opportunities for improved risk assessment, molecular diagnosis, preventive, and therapeutic intervention. We propose that the potential of using genetic variants for monitoring treatment response (pharmacogenetics) may usher in a new era of personalized medicine in the clinical management of AMD. Proprietary or commercial disclosures may be found after the references. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Genetics of autism spectrum disorders.
Kumar, Ravinesh A; Christian, Susan L
2009-05-01
Autism spectrum disorders (ASDs) are a clinically complex group of childhood disorders that have firm evidence of an underlying genetic etiology. Many techniques have been used to characterize the genetic bases of ASDs. Linkage studies have identified several replicated susceptibility loci, including 2q24-2q31, 7q, and 17q11-17q21. Association studies and mutation analysis of candidate genes have implicated the synaptic genes NRXN1, NLGN3, NLGN4, SHANK3, and CNTNAP2 in ASDs. Traditional cytogenetic approaches highlight the high frequency of large chromosomal abnormalities (3%-7% of patients), including the most frequently observed maternal 15q11-13 duplications (1%-3% of patients). Newly developed techniques include high-resolution DNA microarray technologies, which have discovered formerly undetectable submicroscopic copy number variants, and genomewide association studies, which allow simultaneous detection of multiple genes associated with ASDs. Although great progress has been made in autism genetics, the molecular bases of most ASDs remains enigmatic.
An update on canine cardiomyopathies - is it all in the genes?
Dutton, E; López-Alvarez, J
2018-04-17
Dilated cardiomyopathy is the second most common cardiac disease in dogs and causes considerable morbidity and mortality. Primary dilated cardiomyopathy is suspected to be familial, and genetic loci have been associated with the disease in a number of breeds. Because it is an adult-onset disease, usually with late onset, testing breeding dogs and bitches before breeding for a genetic mutation that could lead to dilated cardiomyopathy would be helpful to prevent disease. There is growing evidence that the genetic basis may be multigenic rather than monogenic in the majority of studied breeds. This review article describes the known genetic aspects of canine dilated cardiomyopathy and the implications of genetic tests on heart testing and the future of veterinary cardiology. © 2018 British Small Animal Veterinary Association.
Van Den Akker, Olga B A
2005-12-01
For women opting to use surrogacy to overcome subfertility, a choice can be made to have a genetically related or unrelated baby. Similarly, women opting to become surrogate mothers also have to choose to gestate and relinquish a genetically related or unrelated baby. This study explored the cognitions behind the initial choices made and determined the strength of those cognitions six months post-delivery of the surrogate baby. Surrogate and Intended mothers (N=81) undergoing Artificial Insemination (AI, genetic) or Embryo Transfer (ET, gestational) were studied separately (four groups) at the start of their surrogate arrangement and those with a positive outcome (n=34) were re-interviewed at six months post-relinquishment. There were significant differences between surrogate and intended mothers in their confidence about the arrangement. Beliefs about the importance of a genetic link were predictors of ET arrangements. Responses were consistent over a one and a half-year study period. The ethical and clinical implications of the results are discussed in relation to appropriate self-selection and confidence with the surrogate process and the importance of genetic offspring.
Wang, Ian J; Bradburd, Gideon S
2014-12-01
The interactions between organisms and their environments can shape distributions of spatial genetic variation, resulting in patterns of isolation by environment (IBE) in which genetic and environmental distances are positively correlated, independent of geographic distance. IBE represents one of the most important patterns that results from the ways in which landscape heterogeneity influences gene flow and population connectivity, but it has only recently been examined in studies of ecological and landscape genetics. Nevertheless, the study of IBE presents valuable opportunities to investigate how spatial heterogeneity in ecological processes, agents of selection and environmental variables contributes to genetic divergence in nature. New and increasingly sophisticated studies of IBE in natural systems are poised to make significant contributions to our understanding of the role of ecology in genetic divergence and of modes of differentiation both within and between species. Here, we describe the underlying ecological processes that can generate patterns of IBE, examine its implications for a wide variety of disciplines and outline several areas of future research that can answer pressing questions about the ecological basis of genetic diversity. © 2014 John Wiley & Sons Ltd.
Environment, genes, and experience: lessons from behavior genetics.
Barsky, Philipp I
2010-11-01
The article reviews the theoretical analysis of the problems inherent in studying the environment within behavior genetics across several periods in the development of environmental studies in behavior genetics and proposes some possible alternatives to traditional approaches to studying the environment in behavior genetics. The first period (from the end of the 1920s to the end of the 1970s), when the environment was not actually studied, is called pre-environmental; during this time, the basic principles and theoretical models of understanding environmental effects in behavior genetics were developed. The second period is characterized by the development of studies on environmental influences within the traditional behavior genetics paradigm; several approaches to studying the environment emerged in behavior genetics during this period, from the beginning of the 1980s until today. At the present time, the field is undergoing paradigmatic changes, concerned with methodology, theory, and mathematical models of genotype-environment interplay; this might be the beginning of a third period of development of environmental studies in behavior genetics. In another part, the methodological problems related to environmental studies in behavior genetics are discussed. Although the methodology used in differential psychology is applicable for assessment of differences between individuals, it is insufficient to explain the sources of these differences. In addition, we stress that psychoanalytic studies of twins and their experiences, initiated in the 1930s and continued episodically until the 1980s, could bring an interesting methodology and contribute to the explanation of puzzling findings from environmental studies of behavior genetics. Finally, we will conclude with implications from the results of environmental studies in behavior genetics, including methodological issues. Copyright © 2010 Elsevier Ltd. All rights reserved.
Shuster, Michèle
2011-01-01
In recognition of the entry into the era of personalized medicine, a new set of genetics and genomics competencies for nurses was introduced in 2006. Since then, there have been a number of reports about the critical importance of these competencies for nursing practices and about the challenges of addressing these competencies in the preservice (basic science) nursing curriculum. At least one suggestion has been made to infuse genetics and genomics throughout the basic science curriculum for prenursing students. Based on this call and a review of the competencies, this study sought to assess the impact of incorporation of genetics and genomics content into a prenursing microbiology course. Broadly, two areas that address the competencies were incorporated into the course: 1) the biological basis and implications of genetic diversity and 2) the technological aspects of assessing genetic diversity in bacteria and viruses. These areas address how genetics and genomics contribute to healthcare, including diagnostics and selection of treatment. Analysis of learning gains suggests that genetics and genomics content can be learned as effectively as microbiology content in this setting. Future studies are needed to explore the most effective ways to introduce genetics and genomics technology into the prenursing curriculum. PMID:21633070
The differential diagnosis of the short-limbed dwarfs presenting at birth.
Mukherji, R N; Moss, P D
1977-04-01
Attention is drawn to the fact that in a number of types of short-limbed dwarfism a precise diagnosis can be made in the neonatal period. Examples are given and the prognostic and genetic implications are discussed. It is important to be able to advise parents of the likely outlook for the infant and of the genetic implication. Early diagnosis is therefore not merely an academic exercise.
Philopatry: A return to origins
Pearce, John M.
2007-01-01
The potential danger of applying philopatry to non-natal and nonbreeding conditions is that it creates the expectation of certain outcomes, such as low dispersal rates, population genetic differentiation, and unique population segments, when such conditions may not exist. Given that most avian species do not molt, winter, or have migratory stopovers where they breed, I propose that the term “philopatry” and its genetic expectations be used only in relation to natal philopatry and not extended to (1) breeding- site fidelity of individuals whose natal areas are unknown and (2) nonbreeding areas where site- faithful behavior is observed. I believe this correctly distinguishes natal philopatry as a specific type of site fidelity with its own implications for population genetics and dynamics. Thus, philopatry should be viewed as synonymous and interchangeable with the terms “natal-site fidelity” and “natal philopatry,” and the term “breeding-site fidelity” should replace “breeding philopatry,” because it reflects the unknown natal origins of birds captured as adults. Although the broader condition of site fidelity may have implications for fitness, mate pairing, and population delineation—as examined in several studies (Robertson and Cooke 1999, Merom et al. 2000, Iverson et al. 2004, Mehl et al. 2004)—future investigations of site fidelity should be pursued without automatically invoking the term “philopatry” and assuming that the genetic and demographic connotations of natal philopatry also apply. In contrast to philopatry, the probability of fidelity (F) and dispersal (1 − F) are estimable parameters (Burnham 1993, Kendall and Nichols 2004), and the demographic and genetic consequences of site fidelity, regardless of where it occurs, can serve as hypotheses for testing with multiple data types (e.g., Arsenault et al. 2005). Such data mergers should enhance our understanding of the demographic, behavioral, and genetic implications of natal philopatry and site fidelity.
Genetic Bases of Stuttering: The State of the Art, 2011
Kraft, Shelly Jo; Yairi, Ehud
2011-01-01
Objective The literature on the genetics of stuttering is reviewed with special reference to the historical development from psychosocial explanations leading up to current biological research of gene identification. Summary A gradual progression has been made from the early crude methods of counting percentages of stuttering probands who have relatives who stutter to recent studies using entire genomes of DNA collected from each participant. Despite the shortcomings of some early studies, investigators have accumulated a substantial body of data showing a large presence of familial stuttering. This encouraged more refined research in the form of twin studies. Concordance rates among twins were sufficiently high to lend additional support to the genetic perspective of stuttering. More sophisticated aggregation studies and segregation analyses followed, producing data that matched recognized genetic models, providing the final ‘go ahead’ to proceed from the behavior/statistical genetics into the sphere of biological genetics. Recent linkage and association studies have begun to reveal contributing genes to the disorder. Conclusion No definitive findings have been made regarding which transmission model, chromosomes, genes, or sex factors are involved in the expression of stuttering in the population at large. Future research and clinical implications are discussed. PMID:22067705
Anderson, Heidi; Davison, Stephen; Hughes, Angela M.; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M.; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Forman, Oliver P.; Fretwell, Neale; Cole, Cynthia A.; Lohi, Hannes
2018-01-01
Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare. PMID:29708978
Donner, Jonas; Anderson, Heidi; Davison, Stephen; Hughes, Angela M; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Kaukonen, Maria; Forman, Oliver P; Fretwell, Neale; Cole, Cynthia A; Lohi, Hannes
2018-04-01
Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare.
When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes
Althari, Sara; Gloyn, Anna L.
2015-01-01
The genomics revolution has raised more questions than it has provided answers. Big data from large population-scale resequencing studies are increasingly deconstructing classic notions of Mendelian disease genetics, which support a simplistic correlation between mutational severity and phenotypic outcome. The boundaries are being blurred as the body of evidence showing monogenic disease-causing alleles in healthy genomes, and in the genomes of individu-als with increased common complex disease risk, continues to grow. In this review, we focus on the newly emerging challenges which pertain to the interpretation of sequence variants in genes implicated in the pathogenesis of maturity-onset diabetes of the young (MODY), a presumed mono-genic form of diabetes characterized by Mendelian inheritance. These challenges highlight the complexities surrounding the assignments of pathogenicity, in particular to rare protein-alerting variants, and bring to the forefront some profound clinical diagnostic implications. As MODY is both genetically and clinically heterogeneous, an accurate molecular diagnosis and cautious extrapolation of sequence data are critical to effective disease management and treatment. The biological and translational value of sequence information can only be attained by adopting a multitude of confirmatory analyses, which interrogate variant implication in disease from every possible angle. Indeed, studies which have effectively detected rare damaging variants in known MODY genes in normoglycemic individuals question the existence of a sin-gle gene mutation scenario: does monogenic diabetes exist when the genetic culprits of MODY have been systematical-ly identified in individuals without MODY? PMID:27111119
Genetic Relatedness among Nontypeable Pneumococci Implicated in Sporadic Cases of Conjunctivitis
Barker, Jason H.; Musher, Daniel M.; Silberman, Ronald; Phan, Hoang M.; Watson, David A.
1999-01-01
Nontypeable Streptococcus pneumoniae is a common cause of epidemic conjunctivitis. A previous molecular fingerprinting study identified a clone of nontypeable pneumococcus that was responsible for a recent outbreak of conjunctivitis. In the present study, we examined the extent to which pneumococci that cause sporadic cases of conjunctivitis are related to this epidemic strain. Using arbitrarily primed BOX-PCR, we have determined that, of 10 nontypeable pneumococci causing sporadic conjunctivitis, 5 were clonal and closely related to a previous outbreak strain, whereas 5 others were genetically diverse. PMID:10565927
The human genome project: Prospects and implications for clinical medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, E.D.; Waterston, R.H.
1991-10-09
The recently initiated human genome project is a large international effort to elucidate the genetic architecture of the genomes of man and several model organisms. The initial phases of this endeavor involve the establishment of rough blueprints (maps) of the genetic landscape of these genomes, with the long-term goal of determining their precise nucleotide sequences and identifying the genes. The knowledge gained by these studies will provide a vital tool for the study of many biologic processes and will have a profound impact on clinical medicine.
Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses.
Bertram, Lars; Tanzi, Rudolph E
2008-10-01
The genetic underpinnings of Alzheimer's disease (AD) remain largely elusive despite early successes in identifying three genes that cause early-onset familial AD (those that encode amyloid precursor protein (APP) and the presenilins (PSEN1 and PSEN2)), and one genetic risk factor for late-onset AD (the gene that encodes apolipoprotein E (APOE)). A large number of studies that aimed to help uncover the remaining disease-related loci have been published in recent decades, collectively proposing or refuting the involvement of over 500 different gene candidates. Systematic meta-analyses of these studies currently highlight more than 20 loci that have modest but significant effects on AD risk. This Review discusses the putative pathogenetic roles and common biochemical pathways of some of the most genetically and biologically compelling of these potential AD risk factors.
Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes.
Flannick, Jason; Johansson, Stefan; Njølstad, Pål R
2016-07-01
Insights into the genetic basis of type 2 diabetes mellitus (T2DM) have been difficult to discern, despite substantial research. More is known about rare forms of diabetes mellitus, several of which share clinical and genetic features with the common form of T2DM. In this Review, we discuss the extent to which the study of rare and low-frequency mutations in large populations has begun to bridge the gap between rare and common forms of diabetes mellitus. We hypothesize that the perceived division between these diseases might be due, in part, to the historical ascertainment bias of genetic studies, rather than a clear distinction between disease pathophysiologies. We also discuss possible implications of a new model for the genetic basis of diabetes mellitus subtypes, where the boundary between subtypes becomes blurred.
Conrad, Melissa D.; Gorman, Andrew W.; Schillinger, Julia A.; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E.; Carlton, Jane M.
2012-01-01
Background Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Methodology/Principal Findings Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Conclusions/Significance Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease. PMID:22479659
Genetic fatalism and social policy: the implications of behavior genetics research.
Alper, J. S.; Beckwith, J.
1993-01-01
Recent advances in molecular genetics methods have provided new means of determining the genetic bases of human behavioral traits. The impetus for the use of these approaches for specific behaviors depends, in large part, on previous familial studies on inheritance of such traits. In the past, a finding of a genetic basis for a trait was often accompanied with the idea that that trait is unchangeable. We discuss the definition of "genetic trait" and heritability and examine the relationship between these concepts and the malleability of traits for both molecular and nonmolecular approaches to behavioral genetics. We argue that the malleability of traits is as much a social and political question as it is a biological one and that whether or not a trait is genetic has little relevance to questions concerning determinism, free will, and individual responsibility for actions. We conclude by noting that "scientific objectivity" should not be used to conceal the social perspectives that underlie proposals regarding social change. PMID:7716971
Greenberg, Marisa; Smith, Rachel A
2016-01-01
Genetic test results reveal not only personal information about a person's likelihood of certain medical conditions but also information about the person's genetic relatives. Given the familial nature of genetic information, one's obligation to protect family members may be a motive for disclosing genetic test results, but this claim has not been methodically tested. Existing models of disclosure decision making presume self-interested motives, such as seeking social support, instead of other-interested motives, like familial obligation. This study investigated young adults' (N = 173) motives to share a genetic-based health condition, alpha-1 antitrypsin deficiency, after reading a hypothetical vignette. Results show that social support and familial obligation were both reported as motives for disclosure. In fact, some participants reported familial obligation as their primary motivator for disclosure. Finally, stronger familial obligation predicted increased likelihood of disclosing hypothetical genetic test results. Implications of these results were discussed in reference to theories of disclosure decision-making models and the practice of genetic disclosures.
Axilbund, J E; Hamby, L A; Thompson, D B; Olsen, S J; Griffin, C A
2005-06-01
Cancer genetic counselors use a variety of teaching modalities for patient education. This survey of cancer genetic counselors assessed their use of educational videos and their recommendations for content of future videos. Thirty percent of respondents use videos for patient education. Cited benefits included reinforcement of information for clients and increased counselor efficiency. Of the 70% who do not use videos, predominant barriers included the perceived lack of an appropriate video, lack of space and/or equipment, and concern that videos are impersonal. Most respondents desired a video that is representative of the genetic counseling session, but emphasized the importance of using broad information. Content considered critical included the pros and cons of genetic testing, associated psychosocial implications, and genetic discrimination. The results of this exploratory study provide data relevant for the development of a cancer genetics video for patient education, and suggestions are made based on aspects of information processing and communication theories.
ERIC Educational Resources Information Center
Fredericks, Marcel; Odiet, Jeff A.; Miller, Steven I.; Fredericks, Janet
2004-01-01
In this research, we have demonstrated that a new subdiscipline in the field of Medical Sociology is urgently needed to integrate, interpret, and synthesize the interrelationships and implications of genetic discoveries, treatments, and prognoses upon societal behavior. That subdiscipline in our view is "Genetic Sociology."We applied the…
Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Samuel E. Nijensohn
2008-01-01
Healthy forests provide many of the essential ecosystem services upon which all life depends. Genetic diversity is an essential component of long-term forest health because it provides a basis for adaptation and resilience to environmental stress and change. In addition to natural processes, numerous anthropogenic factors deplete forest genetic resources. Genetic...
Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis
2011-01-01
Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs. PMID:21994791
Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis
2011-08-01
Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.
Silva, Claudia; Vinuesa, Pablo; Eguiarte, Luis E.; Martínez-Romero, Esperanza; Souza, Valeria
2003-01-01
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed. PMID:12571008
The conservation of genetic diversity has emerged as one of the central issues in conservation biology. Although researchers in the areas of evolutionary biology, population management, and conservation biology routinely investigate genetic variability in natural populations, onl...
2011-01-01
Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. Conclusions Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models. PMID:21791118
Ortega, Victor E.; Meyers, Deborah A.
2014-01-01
Pharmacogenetics is being used to develop personalized therapies specific to individuals from different ethnic or racial groups. Pharmacogenetic studies to date have been primarily performed in trial cohorts consisting of non-Hispanic whites of European descent. A “bottleneck” or collapse of genetic diversity associated with the first human colonization of Europe during the Upper Paleolithic period, followed by the recent mixing of African, European, and Native American ancestries has resulted in different ethnic groups with varying degrees of genetic diversity. Differences in genetic ancestry may introduce genetic variation which has the potential to alter the therapeutic efficacy of commonly used asthma therapies, for example β2-adrenergic receptor agonists (beta agonists). Pharmacogenetic studies of admixed ethnic groups have been limited to small candidate gene association studies of which the best example is the gene coding for the receptor target of beta agonist therapy, ADRB2. Large consortium-based sequencing studies are using next-generation whole-genome sequencing to provide a diverse genome map of different admixed populations which can be used for future pharmacogenetic studies. These studies will include candidate gene studies, genome-wide association studies, and whole-genome admixture-based approaches which account for ancestral genetic structure, complex haplotypes, gene-gene interactions, and rare variants to detect and replicate novel pharmacogenetic loci. PMID:24369795
Simons, Ronald L.; Lei, Man Kit; Beach, Steven R.H.; Brody, Gene H.; Philibert, Robert A.; Gibbons, Frederick X.
2011-01-01
Although G×E studies are typically based on the assumption that some individuals possess genetic variants that enhance their vulnerability to environmental adversity, the differential susceptibility perspective posits that these individuals are simply more susceptible to environmental influence than others. An important implication of this model is that those persons most vulnerable to adverse social environments are the same ones who reap the most benefit from environmental support. The present study tested several implications of this proposition. Using longitudinal data from a sample of several hundred African Americans, we found that relatively common variants of the dopamine receptor gene and the serotonin transporter gene interact with social environmental conditions to predict aggression in a manner consonant with differential susceptibility. When the social environment was adverse, individuals with these genetic variants manifested more aggression than other genotypes, whereas when the environment was supportive they demonstrated less aggression than other genotypes. Further, we found that these genetic variants interact with environmental conditions to foster various cognitive schemas and emotions in a manner consistent with differential susceptibility and that a latent construct formed by these schemas and emotions mediated the effect of gene by environment interaction on aggression. PMID:22199399
Pathways to childhood depressive symptoms: the role of social, cognitive, and genetic risk factors.
Lau, Jennifer Y F; Rijsdijk, Frühling; Gregory, Alice M; McGuffin, Peter; Eley, Thalia C
2007-11-01
Childhood depressive conditions have been explored from multiple theoretical approaches but with few empirical attempts to address the interrelationships among these different domains and their combined effects. In the present study, the authors examined different pathways through which social, cognitive, and genetic risk factors may be expressed to influence depressive symptoms in 300 pairs of child twins from a longitudinal study. Path analysis supported several indirect routes. First, risks associated with living in a step- or single-parent family and punitive parenting did not directly influence depressive outcome but were instead mediated through maternal depressive symptoms and child negative attributional style. Second, the effects of negative attributional style on depressive outcome were greatly exacerbated in the presence of precipitating negative life events. Third, independent of these social and cognitive risk mechanisms, modest genetic effects were also implicated in symptoms, with some indication that these risks are expressed through exposure to negative stressors. Together, these routes accounted for approximately 13% of total phenotypic variance in depressive symptoms. Theoretical and analytical implications of these results are discussed in the context of several design-related caveats. (c) 2007 APA.
Marceau, Kristine; Knopik, Valerie S.; Neiderhiser, Jenae M.; Lichtenstein, Paul; Spotts, Erica L.; Ganiban, Jody M.; Reiss, David
2015-01-01
In the present study we examined how genotype-environment correlation processes differ as a function of adolescent age. We tested whether adolescent age moderates genetic and environmental influences on positivity and negativity in mother-adolescent and father-adolescent relationships using parallel samples of twin parents from the Twin and Offspring Study in Sweden and twin/sibling adolescents from the Nonshared Environment in Adolescent Development Study. We inferred differences in the role of passive and non-passive genotype-environment correlation based on biometric moderation findings. Findings indicated that non-passive rGE played a stronger role for positivity in mother- and father- adolescent relationships in families with older adolescents than families with younger adolescents, and that passive rGE played a stronger role for positivity in the mother-adolescent relationship in families with younger adolescents than in families with older adolescents. Implications of these findings for the timing and targeting of interventions on family relationships are discussed. PMID:25924807
Wilbe, M; Andersson, G
2012-01-01
Major histocompatibility complex (MHC) class II genes are important genetic risk factors for development of immune-mediated diseases in mammals. Recently, the dog (Canis lupus familiaris) has emerged as a useful model organism to identify critical MHC class II genotypes that contribute to development of these diseases. Therefore, a study aimed to evaluate a potential genetic association between the dog leukocyte antigen (DLA) class II region and an immune-mediated disease complex in dogs of the Nova Scotia duck tolling retriever breed was performed. We show that DLA is one of several genetic risk factors for this disease complex and that homozygosity of the risk haplotype is disadvantageous. Importantly, the disease is complex and has many genetic risk factors and therefore we cannot provide recommendations for breeders exclusively on the basis of genetic testing for DLA class II genotype. © 2012 Blackwell Verlag GmbH.
Recent advances in epilepsy genetics.
Orsini, Alessandro; Zara, Federico; Striano, Pasquale
2018-02-22
In last few years there has been rapid increase in the knowledge of epilepsy genetics. Nowadays, it is estimated that genetic epilepsies include over than 30% of all epilepsy syndromes. Several genetic tests are now available for diagnostic purposes in clinical practice. In particular, next-generation sequencing has proven to be effective in revealing gene mutations causing epilepsies in up to a third of the patients. This has lead also to functional studies that have given insight into disease pathophysiology and consequently to the identification of potential therapeutic targets opening the way of precision medicine for epilepsy patients. This minireview is focused on the most recent advances in genetics of epilepsies. We will also overview the modern genomic technologies and illustrate the diagnostic pathways in patients with genetic epilepsies. Finally, the potential implications for a personalized treatment (precision medicine) are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Insights into the genetic foundations of human communication.
Graham, Sarah A; Deriziotis, Pelagia; Fisher, Simon E
2015-03-01
The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.
Alcalá, Raúl E; Domínguez, César A
2012-06-01
Most species of Pinguicula present a montane distribution with populations located at high altitudes. In this context, we proposed that populations of Pinguicula species could be genetically differentiated even at a local scale. This study supported that prediction, as a RAPD-based analysis of molecular variance revealed a high degree of genetic structure (Φ (st) = 0.157, P = 0.001) and low gene flow (Nm = 1.0) among four central populations of Pinguicula moranensis in Mexico, with a maximum geographic separation of about 140 km. The four populations also exhibited high levels of genetic diversity (mean Nei's genetic diversity = 0.3716; % polymorphism = 95.45%). The evolutionary implications of the genetic structure found in P. moranensis for other species in the genus are discussed in the context of the naturally fragmented distribution and a set of life history traits shared by most Pinguicula species that could promote geographic isolation and limited gene flow.
Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD).
Alatzoglou, Kyriaki S; Dattani, Mehul T
2012-01-01
Isolated growth hormone deficiency (IGHD) may be congenital, often due to genetic mutations, or acquired as a result of other factors such as cranial irradiation. The commonest genes implicated in its genetic etiology are those encoding growth hormone (GH1) and the receptor for GH-releasing hormone (GHRHR). Rarely, IGHD may be caused by mutations in transcription factors (HESX1, SOX3, OTX2) or be the first presentation before the development of other pituitary hormone deficiencies. IGHD has been classified in four genetic forms (type IA, IB, II and III). Despite the increasing number of genes implicated in the etiology of IGHD, mutations in known genes account only for a small percentage of cases; therefore, other as yet unidentified factors may be implicated in its etiology. Although there is no strict genotype/phenotype correlation in patients with IGHD, there are some emerging patterns that may guide us towards a genetic diagnosis of the condition. There is increasing understanding that the phenotype of patients with IGHD is highly variable and sometimes even evolving, dictating the need for long term follow-up in these cases.
Plucker, Jonathan A; Shelton, Amy L
2015-01-01
Current technology has dramatically increased the prevalence of studies to establish the genetic correlates of a wide variety of human characteristics, including not only the physical attributes that determine what we look like and the risk of physiological disease but also the psychological and cognitive characteristics that often define who we are as individuals. Perhaps one of the most deeply personal and often controversial characteristics is the concept of general intelligence, known in the psychological literature as "g." As with the genetic study of any complex trait, the first step in studying the genetics of g is to carefully define the characteristic of interest. For g, this entails establishing what intelligence means and providing a clear operational definition for how it will be measured. In this paper, we provide a brief historical and theoretical overview of the construct of general intelligence, describe its relationship to the contemporary measurement of intelligence, and discuss these concepts in light of the challenges associated with defining g as a characteristic in the study of genetics. © 2015 The Hastings Center.
Piciocchi, Cinzia; Ducato, Rossana; Martinelli, Lucia; Perra, Silvia; Tomasi, Marta; Zuddas, Carla; Mascalzoni, Deborah
2018-04-01
This paper outlines some of the challenges faced by regulation of genetic biobanking, using case studies coming from the Italian legal system. The governance of genetic resources in the context of genetic biobanks in Italy is discussed, as an example of the stratification of different inputs and rules: EU law, national law, orders made by authorities and soft law, which need to be integrated with ethical principles, technological strategies and solutions. After providing an overview of the Italian legal regulation of genetic data processing, it considers the fate of genetic material and IP rights in the event of a biobank's insolvency. To this end, it analyses two case studies: a controversial bankruptcy case which occurred in Sardinia, one of the first examples of private and public partnership biobanks. Another case study considered is the Chris project: an example of partnership between a research institute in Bolzano and the South Tyrolean Health System. Both cases seem to point in the same direction, suggesting expediency of promoting and improving public-private partnerships to manage biological tissues and biotrust to conciliate patent law and public interest.
Genetic structure of a unique admixed population: implications for medical research.
Patterson, Nick; Petersen, Desiree C; van der Ross, Richard E; Sudoyo, Herawati; Glashoff, Richard H; Marzuki, Sangkot; Reich, David; Hayes, Vanessa M
2010-02-01
STATEMENT: In naming population groups, we think a chief aim is to use terms that the group members use themselves, or find familiar and comfortable. The terms used in this manuscript to describe populations are as historically correct as possible and are chosen so as not to offend any population group. Two of the authors (DCP and REvdR) belong to the Coloured population, with one of the authors (REvdR) having contributed extensively to current literature on the history of the Coloured people of South Africa and served as Vice-President of the South African Institute of Race Relations. According to the 2001 South African census (http://www.statssa.gov.za/census01/HTML/CInBrief/CIB2001.pdf), "Statistics South Africa continues to classify people by population group, in order to monitor progress in moving away from the apartheid-based discrimination of the past. However, membership of a population group is now based on self-perception and self-classification, not on a legal definition. Five options were provided on the questionnaire, Black African, Coloured, Indian or Asian, White and Other. Responses in the category 'Other' were very few and were therefore imputed". We have elected to use the term Bushmen rather than San to refer to the hunter-gatherer people of Southern Africa. Although they have no collective name for themselves, this decision was based on the term Bushmen (or Bossiesman) being the more familiar to the communities themselves, while the term San is the more accepted academic classification. Understanding human genetic structure has fundamental implications for understanding the evolution and impact of human diseases. In this study, we describe the complex genetic substructure of a unique and recently admixed population arising approximately 350 years ago as a direct result of European settlement in South Africa. Analysis was performed using over 900 000 genome-wide single nucleotide polymorphisms in 20 unrelated ancestry-informative marker selected Coloured individuals and made comparisons with historically predicted founder populations. We show that there is substantial genetic contribution from at least four distinct population groups: Europeans, South Asians, Indonesians and a population genetically close to the isiXhosa sub-Saharan Bantu. This is in good accord with the historical record. We briefly examine the implications of determining the genetic diversity of this population, not only for furthering understanding of human evolution out of Africa, but also for genome-wide association studies using admixture mapping. In conclusion, we define the genetic structure of a uniquely admixed population that holds great potential to advance genetic-based medical research.
Learning Abilities and Disabilities: Generalist Genes, Specialist Environments
Kovas, Yulia; Plomin, Robert
2007-01-01
Twin studies comparing identical and fraternal twins consistently show substantial genetic influence on individual differences in learning abilities such as reading and mathematics, as well as in other cognitive abilities such as spatial ability and memory. Multivariate genetic research has shown that the same set of genes is largely responsible for genetic influence on these diverse cognitive areas. We call these “generalist genes.” What differentiates these abilities is largely the environment, especially nonshared environments that make children growing up in the same family different from one another. These multivariate genetic findings of generalist genes and specialist environments have far-reaching implications for diagnosis and treatment of learning disabilities and for understanding the brain mechanisms that mediate these effects. PMID:20351764
The genetic implication of scoliosis in osteogenesis imperfecta: a review
Liu, Gang; Chen, Jia; Zhou, Yangzhong; Zuo, Yuzhi; Liu, Sen; Chen, Weisheng
2017-01-01
Osteogenesis imperfecta (OI) is a kind of heritable connective tissue disorder, including blue sclerae, hearing loss, skeletal dysplasia causing bone fragility and deformities. It is typically caused by collagen related gene mutations, which could lead to bone formation abnormalities. Scoliosis is one of the most common and severe spinal phenotype which has been reported in approximately 26–74.5% of all OI patients. Recent breakthroughs have suggested that OI can be divided into more than 16 types based on genetic mutations with different degrees of scoliosis. In this review, we summarize the etiology of scoliosis in OI, especially the genetic studies of different types. We aim to provide a systematic review of the genetic etiology and clinical suggestions of scoliosis in OI. PMID:29354746
Christopher, Micaela E.; Hulslander, Jacqueline; Byrne, Brian; Samuelsson, Stefan; Keenan, Janice M.; Pennington, Bruce; DeFries, John C.; Wadsworth, Sally J.; Willcutt, Erik; Olson, Richard K.
2012-01-01
We explored the etiology of individual differences in reading development from post-kindergarten to post-4th grade by analyzing data from 487 twin pairs tested in Colorado. Data from three reading measures and one spelling measure were fit to biometric latent growth curve models, allowing us to extend previous behavioral genetic studies of the etiology of early reading development at specific time points. We found primarily genetic influences on individual differences at post-1st grade for all measures. Genetic influences on variance in growth rates were also found, with evidence of small, nonsignificant, shared environmental influences for two measures. We discuss our results, including their implications for educational policy. PMID:24489459
Musunuru, Kiran; Bernstein, Daniel; Cole, F Sessions; Khokha, Mustafa K; Lee, Frank S; Lin, Shin; McDonald, Thomas V; Moskowitz, Ivan P; Quertermous, Thomas; Sankaran, Vijay G; Schwartz, David A; Silverman, Edwin K; Zhou, Xiaobo; Hasan, Ahmed A K; Luo, Xiao-Zhong James
2018-04-01
The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research. © 2018 American Heart Association, Inc.
Simmons, M Abigail; Brueckner, Martina
2017-10-01
This review has two purposes: to provide an updated review of the genetic causes of congenital heart disease (CHD) and the clinical implications of these genetic mutations, and to provide a clinical algorithm for clinicians considering a genetics evaluation of a CHD patient. A large portion of congenital heart disease is thought to have a significant genetic contribution, and at this time a genetic cause can be identified in approximately 35% of patients. Through the advances made possible by next generation sequencing, many of the comorbidities that are frequently seen in patients with genetic congenital heart disease patients can be attributed to the genetic mutation that caused the congenital heart disease. These comorbidities are both cardiac and noncardiac and include: neurodevelopmental disability, pulmonary disease, heart failure, renal dysfunction, arrhythmia and an increased risk of malignancy. Identification of the genetic cause of congenital heart disease helps reduce patient morbidity and mortality by improving preventive and early intervention therapies to address these comorbidities. Through an understanding of the clinical implications of the genetic underpinning of congenital heart disease, clinicians can provide care tailored to an individual patient and continue to improve the outcomes of congenital heart disease patients.
Richmond-Rakerd, Leah S.
2014-01-01
The ethical implications for psychological practice of genetic testing are largely unexplored. Predictive testing can have a significant impact on health and well-being, and increasing numbers of individuals with knowledge of their risk for various disorders are likely to present for psychotherapy. In addition, more people will struggle with the decision of whether to obtain information regarding their genetic material. Psychologists will need to have the appropriate knowledge and clinical skills to effectively counsel this population. This article highlights the relevant ethical issues surrounding psychological treatment of individuals pursuing or considering undergoing genetic testing. These issues are extended to psychologists working in research, education, and policy domains. Recommendations for graduate training programs to facilitate current and future practitioner competence are also discussed. PMID:24707160
Nutrigenomics in cardiovascular disease: implications for the future.
Engler, Mary B
2009-12-01
Cardiovascular disease (CVD), the leading cause of morbidity and mortality worldwide, is a complex multifactorial disease which is influenced by environmental and genetic factors. There is substantial evidence on the relationship between diet and CVD risk. An understanding of how genetic variation interacts with the diet to influence CVD risk is a rapidly evolving area of research. Since diet is the mainstay of risk factor modification, it is important to consider potential genetic influences on CVD risk. Nutrigenomics is the study of the interaction between diet and an individual's genetic makeup. Single nucleotide polymorphisms are the key factors in human genetic variation and provide a molecular basis for phenotypic differences between individuals. Whole genome and candidate gene association studies are two main approaches used in cardiovascular genetics to identify disease-causing genes. Recent nutrigenomics studies show the influence of genotype on the responsiveness to dietary factors or nutrients that may reduce CVD risk. Nutrigenomics research is expected to provide the scientific evidence for genotype-based personalized nutrition to promote health and prevent chronic disease, including CVD. It is imperative that healthcare providers, including cardiovascular nurses, are trained in genetics to foster delivery of competent genetic- and genomic-focused care and to facilitate incorporation of this new knowledge into current clinical practice, education, and research.
The Importance of Behavioural Genetics for Developmental Science
ERIC Educational Resources Information Center
Pike, Alison
2012-01-01
Many topics of interest to developmental scientists are informed by behavioural genetic findings and their implications. First, behavioural genetic theory and methods will be briefly outlined. Next, findings will be illustrated by considering two disparate areas--general cognitive ability (IQ), and children's self-conceptions. These topics have…
Untapped genetic variability in Herefords: implications for climate change
USDA-ARS?s Scientific Manuscript database
Global climate change (CC) has the potential to significantly alter US cattle productivity. As a result, the creation of genetic resources for a specific environment may be necessary, given that genetic-environmental interactions are present and may become more important. Molecular evaluation of a s...
2011-01-01
Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica) in Asturias (Spain), using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus), roe deer (Capreolus capreolus) and red fox (Vulpes vulpes). Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite) among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species. PMID:21794141
Implicit Messages:A Review of "Bias in Mental Testing."
ERIC Educational Resources Information Center
Scarr, Sandra
1981-01-01
Reviews Arthur Jensen's "Bias in Mental Testing" in terms of its implications for racial genetic inferiority, and offers alternate explanations for racial differences in testing based on data from studies on Black socialization and cultural differences in child rearing. (CM)
Duffy, Anne; Lewitzka, Ute; Doucette, Sarah; Andreazza, Ana; Grof, Paul
2012-05-01
The study aims to provide a selective review of the literature pertaining to the hypothalamic-pituitary-adrenal (HPA) axis and immune abnormalities as informative biological indicators of vulnerability in bipolar disorder (BD). We summarize key findings relating to HPA axis and immunological abnormalities in bipolar patients and their high-risk offspring. Findings derive from a review of selected original papers published in the literature, and supplemented by papers identified through bibliography review. Neurobiological findings are discussed in the context of emergent BD in those at genetic risk and synthesized into a neurodevelopmental model of illness onset and progression. BD is associated with a number of genetic and possibly epigenetic abnormalities associated with neurotransmitter, hormonal and immunologically mediated neurobiological pathways. Data from clinical and high-risk studies implicate HPA axis and immune system abnormalities, which may represent inherited vulnerabilities important for the transition to illness onset. Post-mortem and clinical studies implicate intracellular signal transduction processes and disturbance in energy metabolism associated with established BD. Specifically, long-standing maladaptive alterations such as changes in neuronal systems may be mediated through changes in intracellular signalling pathways, oxidative stress, cellular energy metabolism and apoptosis associated with substantial burden of illness. Prospective longitudinal studies of endophenotypes and biomarkers such as HPA axis and immune abnormalities in high-risk offspring will be helpful to understand genetically mediated biological pathways associated with illness onset and progression. A clinical staging model describing emergent illness in those at genetic risk should facilitate this line of investigation. © 2011 Blackwell Publishing Asia Pty Ltd.
ERIC Educational Resources Information Center
Chattopadhyay, Ansuman
2005-01-01
Since the work of Watson and Crick in the mid-1950s, the science of genetics has become increasingly molecular. The development of recombinant DNA technologies by the agricultural and pharmaceutical industries led to the introduction of genetically modified organisms (GMOs). By the end of the twentieth century, reports of animal cloning and recent…
Jill A. Hamilton; Raphaël Royauté; Jessica W. Wright; Paul Hodgskiss; F. Thomas Ledig
2017-01-01
Rare species present a challenge under changing environmental conditions as the genetic consequences of rarity may limit species ability to adapt to environmental change. To evaluate the evolutionary potential of a rare species, we assessed variation in traits important to plant fitness using multigenerational common garden experiments. Torrey pine, ...
Christophersen, Ingrid E.; Rienstra, Michiel; Roselli, Carolina; Yin, Xiaoyan; Geelhoed, Bastiaan; Barnard, John; Lin, Honghuang; Arking, Dan E.; Smith, Albert V.; Albert, Christine M.; Chaffin, Mark; Tucker, Nathan R.; Li, Molong; Klarin, Derek; Bihlmeyer, Nathan A; Low, Siew-Kee; Weeke, Peter E.; Müller-Nurasyid, Martina; Smith, J. Gustav; Brody, Jennifer A.; Niemeijer, Maartje N.; Dörr, Marcus; Trompet, Stella; Huffman, Jennifer; Gustafsson, Stefan; Schurman, Claudia; Kleber, Marcus E.; Lyytikäinen, Leo-Pekka; Seppälä, Ilkka; Malik, Rainer; Horimoto, Andrea R. V. R.; Perez, Marco; Sinisalo, Juha; Aeschbacher, Stefanie; Thériault, Sébastien; Yao, Jie; Radmanesh, Farid; Weiss, Stefan; Teumer, Alexander; Choi, Seung Hoan; Weng, Lu-Chen; Clauss, Sebastian; Deo, Rajat; Rader, Daniel J.; Shah, Svati; Sun, Albert; Hopewell, Jemma C.; Debette, Stephanie; Chauhan, Ganesh; Yang, Qiong; Worrall, Bradford B.; Paré, Guillaume; Kamatani, Yoichiro; Hagemeijer, Yanick P.; Verweij, Niek; Siland, Joylene E.; Kubo, Michiaki; Smith, Jonathan D.; Van Wagoner, David R.; Bis, Joshua C.; Perz, Siegfried; Psaty, Bruce M.; Ridker, Paul M.; Magnani, Jared W.; Harris, Tamara B.; Launer, Lenore J.; Shoemaker, M. Benjamin; Padmanabhan, Sandosh; Haessler, Jeffrey; Bartz, Traci M.; Waldenberger, Melanie; Lichtner, Peter; Arendt, Marina; Krieger, Jose E.; Kähönen, Mika; Risch, Lorenz; Mansur, Alfredo J.; Peters, Annette; Smith, Blair H.; Lind, Lars; Scott, Stuart A.; Lu, Yingchang; Bottinger, Erwin B.; Hernesniemi, Jussi; Lindgren, Cecilia M.; Wong, Jorge; Huang, Jie; Eskola, Markku; Morris, Andrew P.; Ford, Ian; Reiner, Alex P.; Delgado, Graciela; Chen, Lin Y.; Chen, Yii-Der Ida; Sandhu, Roopinder K.; Li, Man; Boerwinkle, Eric; Eisele, Lewin; Lannfelt, Lars; Rost, Natalia; Anderson, Christopher D.; Taylor, Kent D.; Campbell, Archie; Magnusson, Patrik K.; Porteous, David; Hocking, Lynne J.; Vlachopoulou, Efthymia; Pedersen, Nancy L.; Nikus, Kjell; Orho-Melander, Marju; Hamsten, Anders; Heeringa, Jan; Denny, Joshua C.; Kriebel, Jennifer; Darbar, Dawood; Newton-Cheh, Christopher; Shaffer, Christian; Macfarlane, Peter W.; Heilmann, Stefanie; Almgren, Peter; Huang, Paul L.; Sotoodehnia, Nona; Soliman, Elsayed Z.; Uitterlinden, Andre G.; Hofman, Albert; Franco, Oscar H.; Völker, Uwe; Jöckel, Karl-Heinz; Sinner, Moritz F.; Lin, Henry J.; Guo, Xiuqing; Dichgans, Martin; Ingelsson, Erik; Kooperberg, Charles; Melander, Olle; Loos, Ruth J. F.; Laurikka, Jari; Conen, David; Rosand, Jonathan; van der Harst, Pim; Lokki, Marja-Liisa; Kathiresan, Sekar; Pereira, Alexandre; Jukema, J. Wouter; Hayward, Caroline; Rotter, Jerome I.; März, Winfried; Lehtimäki, Terho; Stricker, Bruno H.; Chung, Mina K.; Felix, Stephan B.; Gudnason, Vilmundur; Alonso, Alvaro; Roden, Dan M.; Kääb, Stefan; Chasman, Daniel I.; Heckbert, Susan R.; Benjamin, Emelia J.; Tanaka, Toshihiro; Lunetta, Kathryn L.; Lubitz, Steven A.; Ellinor, Patrick T.
2017-01-01
Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death.1,2 Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups.3–7 To further define the genetic basis of atrial fibrillation, we performed large-scale, multi-racial meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 18,398 individuals with atrial fibrillation and 91,536 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,806 cases and 132,612 referents. We identified 12 novel genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate new potential targets for drug discovery.8 PMID:28416818
Buades-Rotger, Macià; Gallardo-Pujol, David
2014-01-01
Hereditary factors are increasingly attracting the interest of behavioral scientists and practitioners. Our aim in the present article is to introduce some state-of-the-art topics in behavioral genetics, as well as selected findings in the field, in order to illustrate how genetic makeup can modulate the impact of environmental factors. We focus on the most-studied polymorphism to date for antisocial responses to adversity: the monoamine oxidase A gene. Advances, caveats, and promises of current research are reviewed. We also discuss implications for the use of genetic information in applied settings. PMID:25114607
van Osch, L; van Schooneveld, M; Bleekerwagemakers, E M
1990-12-01
The golden tapetal reflex in the ocular fundus is considered pathognomonic of the carrier state in some families with X-linked retinitis pigmentosa (XRP). Reports concerning affected males with this characteristic reflex are scarce. A six-year-old boy with XRP having a tapetal reflex is described. Recently the tapetal reflex has drawn attention in linkage studies. XRP is probably genetically heterogeneous and has at least two genetic forms. The finding of a tapetal reflex in one or more female carriers in a family with XRP may be helpful in differentiating between these two genetic forms.
Roadhouse, C; Shuman, C; Anstey, K; Sappleton, K; Chitayat, D; Ignagni, E
2018-06-16
Genetic counselors adopt seemingly contradictory roles: advocating for individuals with genetic conditions while offering prenatal diagnosis and the option of selective termination to prevent the birth of a child with a disability. This duality contributes to the tension between the disability and clinical genetics communities. Varying opinions exist amongst the disability community: some value genetic services while others are opposed. However, there is limited research exploring the opinions of individuals with a disability regarding issues related to reproduction and genetic services in the context of personal experience. This exploratory qualitative study involved interviews with seven women and three men who self-identify as having a disability. We sought to gain their perspectives on experiences with disability, thoughts about reproduction and parenting, and perceptions of genetic services. Transcripts of the interviews were analyzed thematically using qualitative content analysis. Data analysis showed that societal views of disability affected the lived experience and impacted reproductive decision-making for those with a disability. It also showed differing interest in genetic services. Concerns about the perceived collective implications of genetic services were also raised. These findings contribute to the understanding of the disability perspective toward reproductive decision-making and genetic services. A further goal is to promote a meaningful dialogue between the genetics and disability communities, with the potential to enhance the genetic and reproductive care provided to individuals with disabilities.
2011-01-01
Background Available evidence suggests that improvements in genetics education are needed to prepare primary care providers for the impact of ongoing rapid advances in genomics. Postgraduate (physician training) and master (midwifery training) programmes in primary care and public health are failing to meet these perceived educational needs. The aim of this study was to explore the role of genetics in primary care (i.e. family medicine and midwifery care) and the need for education in this area as perceived by primary care providers, patient advocacy groups and clinical genetics professionals. Methods Forty-four participants took part in three types of focus groups: mono-disciplinary groups of general practitioners and midwives, respectively and multidisciplinary groups composed of a diverse set of experts. The focus group sessions were audio-taped, transcribed verbatim and analysed using content analysis. Recurrent themes were identified. Results Four themes emerged regarding the educational needs and the role of genetics in primary care: (1) genetics knowledge, (2) family history, (3) ethical dilemmas and psychosocial effects in relation to genetics and (4) insight into the organisation and role of clinical genetics services. These themes reflect a shift in the role of genetics in primary care with implications for education. Although all focus group participants acknowledged the importance of genetics education, general practitioners felt this need more urgently than midwives and more strongly emphasized their perceived knowledge deficiencies. Conclusion The responsibilities of primary care providers with regard to genetics require further study. The results of this study will help to develop effective genetics education strategies to improve primary care providers' competencies in this area. More research into the educational priorities in genetics is needed to design courses that are suitable for postgraduate and master programmes for general practitioners and midwives. PMID:21329524
Rarity and genetic diversity in Indo–Pacific Acropora corals
Richards, Zoe T; Oppen, Madeleine J H
2012-01-01
Among various potential consequences of rarity is genetic erosion. Neutral genetic theory predicts that rare species will have lower genetic diversity than common species. To examine the association between genetic diversity and rarity, variation at eight DNA microsatellite markers was documented for 14 Acropora species that display different patterns of distribution and abundance in the Indo–Pacific Ocean. Our results show that the relationship between rarity and genetic diversity is not a positive linear association because, contrary to expectations, some rare species are genetically diverse and some populations of common species are genetically depleted. Our data suggest that inbreeding is the most likely mechanism of genetic depletion in both rare and common corals, and that hybridization is the most likely explanation for higher than expected levels of genetic diversity in rare species. A significant hypothesis generated from our study with direct conservation implications is that as a group, Acropora corals have lower genetic diversity at neutral microsatellite loci than may be expected from their taxonomic diversity, and this may suggest a heightened susceptibility to environmental change. This hypothesis requires validation based on genetic diversity estimates derived from a large portion of the genome. PMID:22957189
Genetic Essentialism, Neuroessentialism, and Stigma: Commentary on Dar-Nimrod and Heine (2011)
ERIC Educational Resources Information Center
Haslam, Nick
2011-01-01
Dar-Nimrod and Heine (2011) presented a masterfully broad review of the implications of genetic essentialism for understandings of human diversity. This commentary clarifies the reasons that essentialist thinking has problematic social consequences and links genetic forms of essentialism to those invoking neural essences. The mounting evidence…
Psychiatric genetic research at the National Institute of Mental Health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, K.; Mullican, C.; Maestri, N.
For some time it has been known through the results of family, twin, and adoption studies that hereditary appears to play a significant casual role in many mental disorders, including schizophrenia, bipolar disorder, and other mood disorders, Alzheimer`s Disease, panic disorder, obsessive compulsive disorder, autism, dyslexia, and Tourette`s syndrome. The precise patterns of inheritance of these complex disorders have not been determined, nor have the relevant genes been localized or cloned. Because the genetics are complex and because there is also clearly an environmental contribution to behavior, we expect the analysis of the genetics of mental illness to be arduousmore » and not quickly resolved. There are several compelling reasons to continue to focus our attention on uncovering the genetic factors for severe mental illness. Prominent among these are the implications for better treatment of mental disorders. The National Institute of Mental Health supports a wide range of studies on psychiatric genetic research. 16 refs.« less
Li, Ming; Ohi, Kazutaka; Chen, Chunhui; He, Qinghua; Liu, Jie-Wei; Chen, Chuansheng; Luo, Xiong-Jian; Dong, Qi; Hashimoto, Ryota; Su, Bing
2014-12-01
Hippocampal volume is a key brain structure for learning ability and memory process, and hippocampal atrophy is a recognized biological marker of Alzheimer's disease. However, the genetic bases of hippocampal volume are still unclear although it is a heritable trait. Genome-wide association studies (GWASs) on hippocampal volume have implicated several significantly associated genetic variants in Europeans. Here, to test the contributions of these GWASs identified genetic variants to hippocampal volume in different ethnic populations, we screened the GWAS-identified candidate single-nucleotide polymorphisms in 3 independent healthy Asian brain imaging samples (a total of 990 subjects). The results showed that none of these single-nucleotide polymorphisms were associated with hippocampal volume in either individual or combined Asian samples. The replication results suggested a complexity of genetic architecture for hippocampal volume and potential genetic heterogeneity between different ethnic populations. Copyright © 2014 Elsevier Inc. All rights reserved.
The neurogenetics of alternative splicing
Vuong, Celine K.; Black, Douglas L.; Zheng, Sika
2016-01-01
Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain. PMID:27094079
Pardo, Luba M; Piras, Giovanna; Asproni, Rosanna; van der Gaag, Kristiaan J; Gabbas, Attilio; Ruiz-Linares, Andres; de Knijff, Peter; Monne, Maria; Rizzu, Patrizia; Heutink, Peter
2012-09-01
Sardinia has been used for genetic studies because of its historical isolation, genetic homogeneity and increased prevalence of certain rare diseases. Controversy remains concerning the genetic substructure and the extent of genetic homogeneity, which has implications for the design of genome-wide association studies (GWAS). We revisited this issue by examining the genetic make-up of a sample from North-East Sardinia using a dense set of autosomal, Y chromosome and mitochondrial markers to assess the potential of the sample for GWAS and fine mapping studies. We genotyped individuals for 500K single-nucleotide polymorphisms, Y chromosome markers and sequenced the mitochondrial hypervariable (HVI-HVII) regions. We identified major haplogroups and compared these with other populations. We estimated linkage disequilibrium (LD) and haplotype diversity across autosomal markers, and compared these with other populations. Our results show that within Sardinia there is no major population substructure and thus it can be considered a genetically homogenous population. We did not find substantial differences in the extent of LD in Sardinians compared with other populations. However, we showed that at least 9% of genomic regions in Sardinians differed in LD structure, which is helpful for identifying functional variants using fine mapping. We concluded that Sardinia is a powerful setting for genetic studies including GWAS and other mapping approaches.
[Implications in primary health care of medical genetics and genomic in type 2 diabetes mellitus].
Ramirez-Garcia, Sergio Alberto; Cabrera-Pivaral, Carlos E; Huacuja-Ruiz, Luis; Flores-Alvarado, Luis Javier; Pérez-García, Guillermo; González-Rico, José Luis; López-Velázquez, Alma; Topete-González, Luz Rosalba; Rosales-Góme, Roberto Carlos; Candelario-Mejía, Gerardo; Villa-Ruano, Nemesio
2013-01-01
Type 2 diabetes mellitus is a complex disease and a global health problem. Therefore, the first level of health care should handle the approaches of medical genetics and genomics to reduce its incidence. The aim is to present perspectives analyzed by our group in two areas of genetics and its clinical application. Emphasis is placed on the coexistence of several genetic forms clinically detectable in patients with diabetes, missing heritability associated with low penetrance, and epigenomics mechanism. It is discussed the effect of genetic variation associated with resistance to insulin, beta-cell dysfunction, shaft incretin, and other points of interest, such as thrifty genotype hypothesis, conformational disease, genetically unknown foods, phenocopies as clinically silent hypercortisolism, molecular phytopharmacology in the clinical management. Finally, the result was displayed in the Mexican population from genetic studies and new findings of clinical importance, such as involvement of melatonin and effect of variations in the number of copies in a genomic region.
Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns
Draheim, Hope M.; Baird, Patricia; Haig, Susan M.
2012-01-01
The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.
Gustavson, Daniel E; Miyake, Akira; Hewitt, John K; Friedman, Naomi P
2014-06-01
Previous research has revealed a moderate and positive correlation between procrastination and impulsivity. However, little is known about why these two constructs are related. In the present study, we used behavior-genetics methodology to test three predictions derived from an evolutionary account that postulates that procrastination arose as a by-product of impulsivity: (a) Procrastination is heritable, (b) the two traits share considerable genetic variation, and (c) goal-management ability is an important component of this shared variation. These predictions were confirmed. First, both procrastination and impulsivity were moderately heritable (46% and 49%, respectively). Second, although the two traits were separable at the phenotypic level (r = .65), they were not separable at the genetic level (r genetic = 1.0). Finally, variation in goal-management ability accounted for much of this shared genetic variation. These results suggest that procrastination and impulsivity are linked primarily through genetic influences on the ability to use high-priority goals to effectively regulate actions. © The Author(s) 2014.
Sunny, Armando; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Mendoza-Martínez, Germán David; Martínez-Gómez, Daniel
2015-12-01
It is necessary to determine genetic diversity of fragmented populations in highly modified landscapes to understand how populations respond to land-use change. This information will help guide future conservation and management strategies. We conducted a population genetic study on an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified landscape near the Toluca metropolitan area, in order to provide crucial information for the conservation of this species. There was medium levels of genetic diversity, with a few alleles and genotypes. We identified three genetically differentiated clusters, likely as a result of different habitat cover type. We also found evidence of an ancestral genetic bottleneck and medium values of effective population size. Inbreeding coefficients were low and there was a moderate gene flow. Our results can be used as a basis for future research and C. triseriatus conservation efforts, particularly considering that the Trans-Mexican Volcanic Belt is heavily impacted by destructive land-use practices.
Ethics in prevention science involving genetic testing.
Fisher, Celia B; Harrington McCarthy, Erika L
2013-06-01
The Human Genome Project and rapid technological advances in genomics have begun to enrich prevention science's contributions to understanding the role of genetic factors in the etiology, onset and escalation of mental disorders, allowing for more precise descriptions of the interplay between genetic and non-genetic influences. Understanding of ethical challenges associated with the integration of genetic data into prevention science has not kept pace with the rapid increase in the collection and storage of genetic data and dissemination of research results. This article discusses ethical issues associated with (1) decisions to withhold or disclose personal genetic information to participants; (2) implications of recruitment and data collection methods that may reveal genetic information of family members; and the (3) nature and timing of informed consent. These issues are presented within the contexts of adult and pediatric research, longitudinal studies, and use of biobanks for storage of genetic materials. Recommendations for research ethics decision-making are provided. The article concludes with a section on justice and research burdens and the unique ethical responsibilities of prevention scientists to ensure the new genomic science protects the informational rights of participants, their families and communities.
Visual analysis of geocoded twin data puts nature and nurture on the map.
Davis, O S P; Haworth, C M A; Lewis, C M; Plomin, R
2012-09-01
Twin studies allow us to estimate the relative contributions of nature and nurture to human phenotypes by comparing the resemblance of identical and fraternal twins. Variation in complex traits is a balance of genetic and environmental influences; these influences are typically estimated at a population level. However, what if the balance of nature and nurture varies depending on where we grow up? Here we use statistical and visual analysis of geocoded data from over 6700 families to show that genetic and environmental contributions to 45 childhood cognitive and behavioral phenotypes vary geographically in the United Kingdom. This has implications for detecting environmental exposures that may interact with the genetic influences on complex traits, and for the statistical power of samples recruited for genetic association studies. More broadly, our experience demonstrates the potential for collaborative exploratory visualization to act as a lingua franca for large-scale interdisciplinary research.
"Am I carrier?" The patient's lived experience of thrombophilia genetic screening and its outcome.
Graffigna, Guendalina; Leone, Daniela; Vegni, Elena
2014-01-01
How do patients with thrombophilia experience a physician's request to undergo a genetic test? How do they experience the test outcome? To answer these questions, we conducted an interpretative phenomenological analysis study, based on 10 in-depth interviews with patients who underwent genetic testing for thrombophilia in Italy, half with positive and half with negative results. The experience of undergoing genetic screening for thrombophilia plays an important role in reconfiguring patients' signification of their illness experience. A positive outcome becomes a cue to reorganize in a more adaptive way the illness meaning at the cognitive and emotive levels, whereas a negative outcome appears more distressing and confusing. As a clinical implication of the study, clinicians should consider communicating carefully with the patients regardless from the positive/negative test results and they should explore the patient's specific reaction and understanding of test result.
Breaking barriers in the genomics and pharmacogenetics of drug addiction
Ho, MK; Goldman, D; Heinz, A; Kaprio, J; Kreek, MJ; Li, MD; Munafò, MR; Tyndale, RF
2013-01-01
Drug addictions remain a substantial health issue, with limited treatment options currently available. Despite considerable advances in the understanding of our genetic architecture, the genetic underpinning of complex disorders remains elusive. Numerous candidate genes have been implicated in the etiology and response to treatment for different addictions based on our current understanding of the neurobiology. Genome-wide association studies have also provided novel targets. However, replication of these studies is often lacking which complicates interpretation; this will improve as issues such as phenotypic characterization, the apparent “missing heritability”, the identification of functional variants, and possible gene-environment interactions are addressed. In addition, there is growing evidence that genetic information can be useful for refining the choice of addiction treatment. As genetic testing becomes more common in the practice of medicine, a variety of ethical and practical challenges, some of which are unique to drug addiction, will also need to be considered. PMID:20981002
Fine-scale genetic structure arises during range expansion of an invasive gecko.
Short, Kristen Harfmann; Petren, Kenneth
2011-01-01
Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts.
FUNCTIONAL IMPLICATION OF MAJOR HISTOCOMPATIBILITY (MH) VARIATION USING AN ESTUARINE FISH POPULATION
Recently, there has been a dramatic expansion of studies of major histocompatibility complex (MHC) variation aimed at discovering functional differences in immunity across wild populations of diverse vertebrate species. Some species with relatively low genetic diversity or under ...
Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans
Baker, Christi; Antonovics, Janis
2012-01-01
Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology. PMID:22242158
The genetics of celiac disease: A comprehensive review of clinical implications.
Dieli-Crimi, Romina; Cénit, M Carmen; Núñez, Concepción
2015-11-01
Celiac disease (CD) is a complex immune-related disease with a very strong genetic component. Multiple genetic findings over the last decade have added to the already known MHC influence numerous genetic variants associated to CD susceptibility. Currently, it is well-established that 6 MHC and 39 non-MHC loci, including a higher number of independent genetic variants, are associated to disease risk. Moreover, additional regions have been recently implicated in the disease, which would increase the number of involved loci. Together, the firmly described genetic variants account for roughly 31% of CD heritability, being 25% explained by the MHC influence. These new variants represent markers of disease risk and turn the identification of the causal genes and the causal variants inside the associated loci, as well as their precise biological role on the disease, into a major challenge in CD research. Numerous studies have been developed with this aim showing the high impact of risk variants on gene expression. These studies also indicate a central role of CD4(+) T cells in CD pathogenesis and point to B cells as important players, which is in accordance with the key steps highlighted by the immunological models of pathogenesis. We comprehensively summarize the current knowledge about the genetic architecture of CD, characterized by multiple low-risk variants located within diverse loci which are most likely affecting genes with immune-related functions. These findings are leading to a better understanding of CD pathogenesis and helping in the design of new treatments. The repertoire of potential drug targets for CD has largely broadened last years, bringing us closer to get alternative or complementary treatments to the life-long gluten-free diet, the only effective treatment so far. Epigenetics and microbiota are emerging as potent factors modulating disease risk and putatively affecting disease manifestation, which are also being explored as therapeutic targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Implications of segment mismatch for influenza A virus evolution
White, Maria C.; Lowen, Anice C.
2018-01-01
Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity. PMID:29244017
Privacy, the individual and genetic information: a Buddhist perspective.
Hongladarom, Soraj
2009-09-01
Bioinformatics is a new field of study whose ethical implications involve a combination of bioethics, computer ethics and information ethics. This paper is an attempt to view some of these implications from the perspective of Buddhism. Privacy is a central concern in both computer/information ethics and bioethics, and with information technology being increasingly utilized to process biological and genetic data, the issue has become even more pronounced. Traditionally, privacy presupposes the individual self but as Buddhism does away with the ultimate conception of an individual self, it has to find a way to analyse and justify privacy that does not presuppose such a self. It does this through a pragmatic conception that does not depend on a positing of the substantial self, which is then found to be unnecessary for an effective protection of privacy. As it may be possible one day to link genetic data to individuals, the Buddhist conception perhaps offers a more flexible approach, as what is considered to be integral to an individual person is not fixed in objectivity but depends on convention.
Dardiotis, Efthimios; Xiromerisiou, Georgia; Hadjichristodoulou, Christos; Tsatsakis, Aristidis M; Wilks, Martin F; Hadjigeorgiou, Georgios M
2013-05-10
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra. Several genetic and environmental factors have been implicated in the pathogenesis of PD. Single risk factors are likely to exert relatively minor effects, whereas their interaction may prove to be sufficient to cause PD. In the present review we summarize current knowledge from human genetic association studies regarding the interaction between gene polymorphisms and pesticide exposure in the risk of PD. A number of genetic association studies have investigated joint effects between genes and pesticides on PD risk. They have provided some evidence that genetic susceptibility either in metabolism, elimination and transport of pesticides or in the extent of mitochondrial dysfunction, oxidative stress and neuronal loss may predispose individuals to PD if they have been exposed to pesticides. These findings confirm the importance of considering pesticide-gene interactions in future studies in order to gain a better understanding of the pathogenic mechanisms of PD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The complexity of personality: advantages of a genetically sensitive multi-group design.
Hahn, Elisabeth; Spinath, Frank M; Siedler, Thomas; Wagner, Gert G; Schupp, Jürgen; Kandler, Christian
2012-03-01
Findings from many behavioral genetic studies utilizing the classical twin design suggest that genetic and non-shared environmental effects play a significant role in human personality traits. This study focuses on the methodological advantages of extending the sampling frame to include multiple dyads of relatives. We investigated the sensitivity of heritability estimates to the inclusion of sibling pairs, mother-child pairs and grandparent-grandchild pairs from the German Socio-Economic Panel Study in addition to a classical German twin sample consisting of monozygotic- and dizygotic twins. The resulting dataset contained 1.308 pairs, including 202 monozygotic and 147 dizygotic twin pairs, along with 419 sibling pairs, 438 mother-child dyads, and 102 grandparent-child dyads. This genetically sensitive multi-group design allowed the simultaneous testing of additive and non-additive genetic, common and specific environmental effects, including cultural transmission and twin-specific environmental influences. Using manifest and latent modeling of phenotypes (i.e., controlling for measurement error), we compare results from the extended sample with those from the twin sample alone and discuss implications for future research.
ERIC Educational Resources Information Center
Calahorro, Fernando; Alejandre, Encarna; Anaya, Nuria; Guijarro, Teresa; Sanz, Yolanza; Romero, Auxiliadora; Tienda, Pilar; Burgos, Rafael; Gay, Eudoxia; Sanchez, Vicente; Ruiz-Rubio, Manuel
2009-01-01
Twin studies have shown a strong genetic component for autism. Neurotransmitters, such as serotonin and catecholamines, have been suggested to play a role in the disease since they have an essential function in synaptogenesis and brain development. In this preliminary study, polymorphism of genes implicated in the serotonergic and dopaminergic…
Genetics of Tinnitus: Still in its Infancy
Vona, Barbara; Nanda, Indrajit; Shehata-Dieler, Wafaa; Haaf, Thomas
2017-01-01
Tinnitus is the perception of a phantom sound that affects between 10 and 15% of the general population. Despite this considerable prevalence, treatments for tinnitus are presently lacking. Tinnitus exhibits a diverse array of recognized risk factors and extreme clinical heterogeneity. Furthermore, it can involve an unknown number of auditory and non-auditory networks and molecular pathways. This complex combination has hampered advancements in the field. The identification of specific genetic factors has been at the forefront of several research investigations in the past decade. Nine studies have examined genes in a case-control association approach. Recently, a genome-wide association study has highlighted several potentially significant pathways that are implicated in tinnitus. Two twin studies have calculated a moderate heritability for tinnitus and disclosed a greater concordance rate in monozygotic twins compared to dizygotic twins. Despite the more recent data alluding to genetic factors in tinnitus, a strong association with any specific genetic locus is lacking and a genetic study with sufficient statistical power has yet to be designed. Future research endeavors must overcome the many inherent limitations in previous study designs. This review summarizes the previously embarked upon tinnitus genetic investigations and summarizes the hurdles that have been encountered. The identification of candidate genes responsible for tinnitus may afford gene based diagnostic approaches, effective therapy development, and personalized therapeutic intervention. PMID:28533738
Chemical characteristics and volatile profile of genetically modified peanut cultivars.
Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly
2008-10-01
Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics.
Adaptation of human skin color in various populations.
Deng, Lian; Xu, Shuhua
2018-01-01
Skin color is a well-recognized adaptive trait and has been studied extensively in humans. Understanding the genetic basis of adaptation of skin color in various populations has many implications in human evolution and medicine. Impressive progress has been made recently to identify genes associated with skin color variation in a wide range of geographical and temporal populations. In this review, we discuss what is currently known about the genetics of skin color variation. We enumerated several cases of skin color adaptation in global modern humans and archaic hominins, and illustrated why, when, and how skin color adaptation occurred in different populations. Finally, we provided a summary of the candidate loci associated with pigmentation, which could be a valuable reference for further evolutionary and medical studies. Previous studies generally indicated a complex genetic mechanism underlying the skin color variation, expanding our understanding of the role of population demographic history and natural selection in shaping genetic and phenotypic diversity in humans. Future work is needed to dissect the genetic architecture of skin color adaptation in numerous ethnic minority groups around the world, which remains relatively obscure compared with that of major continental groups, and to unravel the exact genetic basis of skin color adaptation.
Giudicessi, John R; Ackerman, Michael J
2013-01-01
In this review, we summarize the basic principles governing rare variant interpretation in the heritable cardiac arrhythmia syndromes, focusing on recent advances that have led to disease-specific approaches to the interpretation of positive genetic testing results. Elucidation of the genetic substrates underlying heritable cardiac arrhythmia syndromes has unearthed new arrhythmogenic mechanisms and given rise to a number of clinically meaningful genotype-phenotype correlations. As such, genetic testing for these disorders now carries important diagnostic, prognostic, and therapeutic implications. Recent large-scale systematic studies designed to explore the background genetic 'noise' rate associated with these genetic tests have provided important insights and enhanced how positive genetic testing results are interpreted for these potentially lethal, yet highly treatable, cardiovascular disorders. Clinically available genetic tests for heritable cardiac arrhythmia syndromes allow the identification of potentially at-risk family members and contribute to the risk-stratification and selection of therapeutic interventions in affected individuals. The systematic evaluation of the 'signal-to-noise' ratio associated with these genetic tests has proven critical and essential to assessing the probability that a given variant represents a rare pathogenic mutation or an equally rare, yet innocuous, genetic bystander.
Parenting and Child "DRD4" Genotype Interact to Predict Children's Early Emerging Effortful Control
ERIC Educational Resources Information Center
Smith, Heather J.; Sheikh, Haroon I.; Dyson, Margaret W.; Olino, Thomas M.; Laptook, Rebecca S.; Durbin, C. Emily; Hayden, Elizabeth P.; Singh, Shiva M.; Klein, Daniel N.
2012-01-01
Effortful control (EC), or the trait-like capacity to regulate dominant responses, has important implications for children's development. Although genetic factors and parenting likely influence EC, few studies have examined whether they interact to predict its development. This study examined whether the "DRD4" exon III variable number tandem…
Kevin M. Potter; Valerie D. Hipkins; Mary F. Mahalovich; Robert E. Means
2013-01-01
Premise of the study: Ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic...
Population structure and inbreeding from pedigree analysis of purebred dogs.
Calboli, Federico C F; Sampson, Jeff; Fretwell, Neale; Balding, David J
2008-05-01
Dogs are of increasing interest as models for human diseases, and many canine population-association studies are beginning to emerge. The choice of breeds for such studies should be informed by a knowledge of factors such as inbreeding, genetic diversity, and population structure, which are likely to depend on breed-specific selective breeding patterns. To address the lack of such studies we have exploited one of the world's most extensive resources for canine population-genetics studies: the United Kingdom (UK) Kennel Club registration database. We chose 10 representative breeds and analyzed their pedigrees since electronic records were established around 1970, corresponding to about eight generations before present. We find extremely inbred dogs in each breed except the greyhound and estimate an inbreeding effective population size between 40 and 80 for all but 2 breeds. For all but 3 breeds, >90% of unique genetic variants are lost over six generations, indicating a dramatic effect of breeding patterns on genetic diversity. We introduce a novel index Psi for measuring population structure directly from the pedigree and use it to identify subpopulations in several breeds. As well as informing the design of canine population genetics studies, our results have implications for breeding practices to enhance canine welfare.
Ji, Hong-Fang; Zhuang, Qi-Shuai; Shen, Liang
2016-04-05
Our study investigated the shared genetic etiology underlying type 2 diabetes (T2D) and major depressive disorder (MDD) by analyzing large-scale genome wide association studies statistics. A total of 496 shared SNPs associated with both T2D and MDD were identified at p-value ≤ 1.0E-07. Functional enrichment analysis showed that the enriched pathways pertained to immune responses (Fc gamma R-mediated phagocytosis, T cell and B cell receptors signaling), cell signaling (MAPK, Wnt signaling), lipid metabolism, and cancer associated pathways. The findings will have potential implications for future interventional studies of the two diseases.
Rietschel, Liz; Streit, Fabian; Zhu, Gu; McAloney, Kerrie; Frank, Josef; Couvy-Duchesne, Baptiste; Witt, Stephanie H; Binz, Tina M; McGrath, John; Hickie, Ian B; Hansell, Narelle K; Wright, Margaret J; Gillespie, Nathan A; Forstner, Andreas J; Schulze, Thomas G; Wüst, Stefan; Nöthen, Markus M; Baumgartner, Markus R; Walker, Brian R; Crawford, Andrew A; Colodro-Conde, Lucía; Medland, Sarah E; Martin, Nicholas G; Rietschel, Marcella
2017-11-10
Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables.
Environmental confounding in gene-environment interaction studies.
Vanderweele, Tyler J; Ko, Yi-An; Mukherjee, Bhramar
2013-07-01
We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are correlated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When environmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest. Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without controlling for the environmental confounder is nonzero, then there is gene-environment interaction either between the genetic factor and the environmental factor of interest or between the genetic factor and the unmeasured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and discuss the implications of these results for the conduct of gene-environment interaction studies.
Harold, Gordon T.; Leve, Leslie D.; Elam, Kit K.; Thapar, Anita; Neiderhiser, Jenae M.; Natsuaki, Misaki N.; Shaw, Daniel S.; Reiss, David
2013-01-01
The relationship between interparental conflict, hostile parenting, and children's externalizing problems is well established. Few studies, however, have examined the pattern of association underlying this constellation of family and child level variables while controlling for the possible confounding presence of passive genotype–environment correlation. Using the attributes of 2 genetically sensitive research designs, the present study examined associations among interparental conflict, parent-to-child hostility, and children's externalizing problems among genetically related and genetically unrelated mother–child and father–child groupings. Analyses were conducted separately by parent gender, thereby allowing examination of the relative role of the mother–child and father–child relationships on children's behavioral outcomes. Path analyses revealed that for both genetically related and genetically unrelated parents and children, indirect associations were apparent from interparental conflict to child externalizing problems through mother-to-child and father-to-child hostility. Associations between interparental conflict and parent-to-child hostility across genetically related and genetically unrelated parent–child groupings were significantly stronger for fathers compared to mothers. Results are discussed with respect to the role of passive genotype–environment correlation as a possible confounding influence in interpreting research findings from previous studies conducted in this area. Implications for intervention programs focusing on family process influences on child externalizing problems are also considered. PMID:23421830
Genetic basis of male sexual behavior.
Emmons, Scott W; Lipton, Jonathan
2003-01-01
Male sexual behavior is increasingly the focus of genetic study in a variety of animals. Genetic analysis in the soil roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster has lead to identification of genes and circuits that govern behaviors ranging from motivation and mate-searching to courtship and copulation. Some worm and fly genes have counterparts with related functions in higher animals and many more such correspondences can be expected. Analysis of mutations in mammals can potentially lead to insights into such issues as monogamous versus promiscuous sexual behavior and sexual orientation. Genetic analysis of sexual behavior has implications for understanding how the nervous system generates and controls a complex behavior. It can also help us to gain an appreciation of how behavior is encoded by genes and their regulatory sequences. Copyright 2003 Wiley Periodicals, Inc.
Translation of Nutritional Genomics into Nutrition Practice: The Next Step.
Murgia, Chiara; Adamski, Melissa M
2017-04-06
Genetics is an important piece of every individual health puzzle. The completion of the Human Genome Project sequence has deeply changed the research of life sciences including nutrition. The analysis of the genome is already part of clinical care in oncology, pharmacology, infectious disease and, rare and undiagnosed diseases. The implications of genetic variations in shaping individual nutritional requirements have been recognised and conclusively proven, yet routine use of genetic information in nutrition and dietetics practice is still far from being implemented. This article sets out the path that needs to be taken to build a framework to translate gene-nutrient interaction studies into best-practice guidelines, providing tools that health professionals can use to understand whether genetic variation affects nutritional requirements in their daily clinical practice.
Genomics of mucoepidermoid and adenoid cystic carcinomas.
Yan, Kenneth; Yesensky, Jessica; Hasina, Rifat; Agrawal, Nishant
2018-02-01
To report on the current state of the literature on the genetics of mucoepidermoid and adenoid cystic carcinomas of the salivary glands with a focus on genomic screens and recently discovered genetic translocations. A PubMed based literature review was performed to query for genetics related basic science and preclinical studies about mucoepidermoid and adenoid cystic carcinomas of the salivary glands. Genetic translocations between CRTC1 and MAML2 in mucoepidermoid carcinoma and between MYB and NFIB in adenoid cystic carcinoma have been recently discovered and have therapeutic implications. Key signaling pathways such as the EGFR pathway in mucoepidermoid carcinoma and the Notch pathway, chromatin regulation, and c-kit mediated epithelial-mesenchymal transitions in adenoid cystic carcinoma have recently been elucidated, pointing to possible therapeutic targets in both cancers.
Genomics of mucoepidermoid and adenoid cystic carcinomas
Yan, Kenneth; Yesensky, Jessica; Hasina, Rifat
2018-01-01
Objective To report on the current state of the literature on the genetics of mucoepidermoid and adenoid cystic carcinomas of the salivary glands with a focus on genomic screens and recently discovered genetic translocations. Methods A PubMed based literature review was performed to query for genetics related basic science and preclinical studies about mucoepidermoid and adenoid cystic carcinomas of the salivary glands. Results and conclusions Genetic translocations between CRTC1 and MAML2 in mucoepidermoid carcinoma and between MYB and NFIB in adenoid cystic carcinoma have been recently discovered and have therapeutic implications. Key signaling pathways such as the EGFR pathway in mucoepidermoid carcinoma and the Notch pathway, chromatin regulation, and c‐kit mediated epithelial‐mesenchymal transitions in adenoid cystic carcinoma have recently been elucidated, pointing to possible therapeutic targets in both cancers. PMID:29492469
Translation of Nutritional Genomics into Nutrition Practice: The Next Step
Murgia, Chiara; Adamski, Melissa M.
2017-01-01
Genetics is an important piece of every individual health puzzle. The completion of the Human Genome Project sequence has deeply changed the research of life sciences including nutrition. The analysis of the genome is already part of clinical care in oncology, pharmacology, infectious disease and, rare and undiagnosed diseases. The implications of genetic variations in shaping individual nutritional requirements have been recognised and conclusively proven, yet routine use of genetic information in nutrition and dietetics practice is still far from being implemented. This article sets out the path that needs to be taken to build a framework to translate gene–nutrient interaction studies into best-practice guidelines, providing tools that health professionals can use to understand whether genetic variation affects nutritional requirements in their daily clinical practice. PMID:28383492
Binder, Elisabeth B.
2017-01-01
ABSTRACT Epidemiological studies indicate a combined contribution of genetic and environmental factors, mainly exposure to adverse life events, in the risk for psychiatric disease. Understanding how adverse life events interact with genetic predisposition on the molecular level to shape risk and resilience to psychiatric disorders may yield important insight into disease mechanism. Using the example of the molecular mechanisms of interaction of functional genetic variants within the stress-regulating gene FKBP5 and early adversity, it is delineated how this interaction could contribute to transdiagnostic disease risk via a combined genetic and epigenetic disinhibition of FKBP5 transcription. This knowledge may now allow to develop biomarkers for a transdiagnostic subset of psychiatric patients and to personalize treatment. PMID:29372006
Genetics and Deafness: Implications for Education and Life Care of Deaf Students
ERIC Educational Resources Information Center
Schein, Jerome D.; Miller, Maurice H.
2008-01-01
The severity of deafness can obscure the presence of other disabilities that may accompany genetic anomalies, such as occur in Alport and Usher syndromes. Recent advances in genetics have heightened attention to various disabilities and dysfunctions that may coexist with deafness. Failure to recognize these additional disabilities when they occur…
The Puzzle of Inheritance: Genetics and the Methods of Science.
ERIC Educational Resources Information Center
Cutter, Mary Ann G.; Drexler, Edward; Friedman, B. Ellen; McCullough, Laurence B.; McInerney, Joseph D.; Murray, Jeffrey C.; Rossiter, Belinda; Zola, John
This instructional module contains a description of the Human Genome Project (HGP). A discussion of issues in the philosophy of science and some of the ethical, legal, and social implications of research in genetics, and a survey of fundamental genetics concepts and of new, nontraditional concepts of inheritance are also included. Six…
USDA-ARS?s Scientific Manuscript database
Genetic differentiation among 10 populations of boll weevil, Anthonomus grandis grandis, sampled in 2009, in Texas and Mexico, was determined using ten microsatellite loci. In addition, temporal changes in genetic composition were examined in the eight populations for which samples were available fr...
Biosynthesis and molecular genetics of polyketides in marine dinoflagellates.
Kellmann, Ralf; Stüken, Anke; Orr, Russell J S; Svendsen, Helene M; Jakobsen, Kjetill S
2010-03-31
Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided.
Genes, Economics, and Happiness *
De Neve, Jan-Emmanuel; Christakis, Nicholas A.; Fowler, James H.; Frey, Bruno S.
2012-01-01
We explore the influence of genetic variation on subjective well-being by employing a twin design and genetic association study. In a nationally-representative twin sample, we first show that about 33% of the variation in life satisfaction is explained by genetic variation. Although previous studies have shown that baseline happiness is significantly heritable, little research has considered molecular genetic associations with subjective well-being. We study the relationship between a functional polymorphism on the serotonin transporter gene (5-HTTLPR) and life satisfaction. We initially find that individuals with the longer, transcriptionally more efficient variant of this genotype report greater life satisfaction (n=2,545, p=0.012). However, our replication attempts on independent samples produce mixed results indicating that more work needs to be done to better understand the relationship between this genotype and subjective well-being. This work has implications for how economists think about the determinants of utility, and the extent to which exogenous shocks might affect individual well-being. PMID:24349601
Recent Advances in the Genetics of Vocal Learning
Condro, Michael C.; White, Stephanie A.
2015-01-01
Language is a complex communicative behavior unique to humans, and its genetic basis is poorly understood. Genes associated with human speech and language disorders provide some insights, originating with the FOXP2 transcription factor, a mutation in which is the source of an inherited form of developmental verbal dyspraxia. Subsequently, targets of FOXP2 regulation have been associated with speech and language disorders, along with other genes. Here, we review these recent findings that implicate genetic factors in human speech. Due to the exclusivity of language to humans, no single animal model is sufficient to study the complete behavioral effects of these genes. Fortunately, some animals possess subcomponents of language. One such subcomponent is vocal learning, which though rare in the animal kingdom, is shared with songbirds. We therefore discuss how songbird studies have contributed to the current understanding of genetic factors that impact human speech, and support the continued use of this animal model for such studies in the future. PMID:26052371
Biosynthesis and Molecular Genetics of Polyketides in Marine Dinoflagellates
Kellmann, Ralf; Stüken, Anke; Orr, Russell J. S.; Svendsen, Helene M.; Jakobsen, Kjetill S.
2010-01-01
Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided. PMID:20479965
Progress in Cytogenetics: Implications for Child Psychopathology
ERIC Educational Resources Information Center
Hoffman, Ellen J.; State, Matthew W.
2010-01-01
Objective: This review considers the impact of chromosomal studies on the understanding of childhood neuropsychiatric syndromes, highlighting key discoveries, advances in technology, and new challenges faced by clinicians trying to interpret recent findings. Method: We review the literature on the genetics of child psychiatric disorders, including…
O'Malley, Maureen A
2018-06-01
Since the 1940s, microbiologists, biochemists and population geneticists have experimented with the genetic mechanisms of microorganisms in order to investigate evolutionary processes. These evolutionary studies of bacteria and other microorganisms gained some recognition from the standard-bearers of the modern synthesis of evolutionary biology, especially Theodosius Dobzhansky and Ledyard Stebbins. A further period of post-synthesis bacterial evolutionary research occurred between the 1950s and 1980s. These experimental analyses focused on the evolution of population and genetic structure, the adaptive gain of new functions, and the evolutionary consequences of competition dynamics. This large body of research aimed to make evolutionary theory testable and predictive, by giving it mechanistic underpinnings. Although evolutionary microbiologists promoted bacterial experiments as methodologically advantageous and a source of general insight into evolution, they also acknowledged the biological differences of bacteria. My historical overview concludes with reflections on what bacterial evolutionary research achieved in this period, and its implications for the still-developing modern synthesis.
Marceau, Kristine; Knopik, Valerie S; Neiderhiser, Jenae M; Lichtenstein, Paul; Spotts, Erica L; Ganiban, Jody M; Reiss, David
2016-02-01
We examined how genotype-environment correlation processes differ as a function of adolescent age. We tested whether adolescent age moderates genetic and environmental influences on positivity and negativity in mother-adolescent and father-adolescent relationships using parallel samples of twin parents from the Twin and Offspring Study in Sweden and twin/sibling adolescents from the Nonshared Environment in Adolescent Development Study. We inferred differences in the role of passive and nonpassive genotype-environment correlation based on biometric moderation findings. The findings indicated that nonpassive gene-environment correlation played a stronger role for positivity in mother- and father-adolescent relationships in families with older adolescents than in families with younger adolescents, and that passive gene-environment correlation played a stronger role for positivity in the mother-adolescent relationship in families with younger adolescents than in families with older adolescents. Implications of these findings for the timing and targeting of interventions on family relationships are discussed.
Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity
Gilbert, James; Man, Heng-Ye
2017-01-01
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. Highlights Autism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States.ASDs are highly heterogeneous in their genetic basis.ASDs share common features at the cellular and molecular levels in the brain.Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function. PMID:29209173
Hartley, Catherine A; Casey, B J
2013-11-01
Anxiety disorders are the most common psychiatric disorders, affecting as many as 10% of youth, with diagnoses peaking during adolescence. A core component of these disorders is an unremitting fear in the absence of present threat. One of the most commonly used therapies to treat these disorders is exposure-based cognitive behavioral therapy that identifies the source of the fear and anxiety and then desensitizes the individual to it. This treatment builds on basic principles of fear-extinction learning. A number of patients improve with this therapy, but 40-50% do not. This paper provides an overview of recent empirical studies employing both human imaging and cross-species behavioral genetics to examine how fear regulation varies across individuals and across development, especially during adolescence. These studies have important implications for understanding who may be at risk for anxiety disorders and for whom and when during development exposure-based therapies may be most effective. © 2013 New York Academy of Sciences.
Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops
NASA Astrophysics Data System (ADS)
Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin
2017-04-01
A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.
Piga, Matteo; Mathieu, Alessandro
2014-01-01
It is recognised that the genetic profiles that give rise to chronic inflammatory diseases, under the influence of environmental agents, might have been implicated in the host defence mechanism against lethal infections in the past. Behçet's disease (BD) is an immune-mediated inflammatory disease, expressed as vasculitis, triggered by environmental factors in genetically susceptible individuals. We carried out a review of published data to draw up an evolutionary adaptation model, as Author's perspective, for genetic susceptibility factors and inflammatory immune response involved in BD pathogenesis. Two lethal infectious agents, Plasmodium Falciparum and Yersinia Pestis, are proposed as the putative driving forces that favoured the fixing of the major genetic susceptibility factors to BD, thus determining its geoepidemiology. Further studies are needed to confirm the validity of this evolutionary model which includes and integrates the key insights of previous hypotheses.
Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops
NASA Astrophysics Data System (ADS)
Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin
2018-06-01
A large-scale cross-sectional study ( N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.
Nycum, Gillian; Avard, Denise; Knoppers, Bartha M
2009-01-01
What factors influence intrafamilial communication of hereditary breast and ovarian cancer (HBOC) genetic risk information? Such information can have health implications for individuals who undergo genetic testing, but it can also have implications for their blood relatives. This literature review adopts an ecological model to summarize factors at the individual, familial, and community levels, as well as cross cutting factors relating to the complexity of HBOC genetic information and responsibilities that this information can give rise to. These factors are complex and may result in conflicting senses of responsibility. Faced with the task of communicating HBOC genetic information, the response may be to attempt to balance the potential negative impact of the information on the well-being of the informee (eg, can s/he handle this information?) against the potential health benefit that the knowledge could result in. This balancing represents an effort to reconcile conflicting approaches to protecting family members, and is a moral dilemma. This review sheds light on the factors that contribute to resolve this dilemma. PMID:19319160
Greenberg, Marisa; Smith, Rachel A.
2016-01-01
Genetic test results reveal not only personal information about a person’s likelihood of certain medical conditions but also information about their genetic relatives (Annas, Glantz, & Roche, 1995). Given the familial nature of genetic information, one’s obligation to protect family members may be a motive for disclosing genetic test results, but this claim has not been methodically tested. Existing models of disclosure decision-making presume self-interested motives, such as seeking social support, instead of other-interested motives, like familial obligation. This study investigated young adults’ (N = 173) motives to share a genetic-based health condition, alpha-1 antitrypsin deficiency, after reading a hypothetical vignette. Results show that social support and familial obligation were both reported as motives for disclosure. In fact, some participants reported familial obligation as their primary motivator for disclosure. Finally, stronger familial obligation predicted increased likelihood of disclosing hypothetical genetic test results. Implications of these results were discussed in reference to theories of disclosure decision-making models and the practice of genetic disclosures. PMID:26507777
NASA Astrophysics Data System (ADS)
Sanfiorenzo, A. R.; Waits, L.; Finegan, B.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Hormel, L.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Sibelet, N.
2016-12-01
Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non-traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we examine the coupled social and ecological implications of agricultural intensification Guided by frameworks from political economy, landscape ecology and landscape genetics we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology and genetics analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which increase the genetic structure and reduce the genetic diversity of Symphonia globulifera a forest understory tree species. To offset the effects of agricultural intensification on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of agricultural intensification in a tropical landscape, and offers recommendations for improvement relevant not only to our study region but to the many other tropical landscapes currently undergoing non-traditional agricultural export driven agricultural intensification.
Electrophysiological Endophenotypes for Schizophrenia
Owens, Emily; Bachman, Peter; Glahn, David C; Bearden, Carrie E
2016-01-01
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABA-ergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating datasets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype. PMID:26954597
From Viruses to Russian Roulette to Dance: A Rhetorical Critique and Creation of Genetic Metaphors
Gronnvoll, Marita; Landau, Jamie
2010-01-01
This essay critiques and creates metaphoric genetic rhetoric by examining metaphors for genes used by representatives of the lay American public. We assess these metaphors with a new rhetorical orientation that we developed by building onto work by Robert Ivie and social scientific qualitative studies of audiences. Specifically, our analysis reveals three themes of genetic metaphors, with the first two appearing most frequently: 1) genes as a disease or problem 2) genes as fire or bomb, and 3) genes as gambling. We not only discuss the problems and untapped potential of these metaphors, but also we suggest metaphorically understanding genes interacting with the environment as a dance or a band. This essay has implications for rhetorical criticism, science studies, and public health. PMID:20625448
Martin, Joanna; Tilling, Kate; Hubbard, Leon; Stergiakouli, Evie; Thapar, Anita; Davey Smith, George; O'Donovan, Michael C; Zammit, Stanley
2016-06-15
Progress has recently been made in understanding the genetic basis of schizophrenia and other psychiatric disorders. Longitudinal studies are complicated by participant dropout, which could be related to the presence of psychiatric problems and associated genetic risk. We tested whether common genetic variants implicated in schizophrenia were associated with study nonparticipation among 7,867 children and 7,850 mothers from the Avon Longitudinal Study of Parents and Children (ALSPAC; 1991-2007), a longitudinal population cohort study. Higher polygenic risk scores for schizophrenia were consistently associated with noncompletion of questionnaires by study mothers and children and nonattendance at data collection throughout childhood and adolescence (ages 1-15 years). These associations persisted after adjustment for other potential correlates of nonparticipation. Results suggest that persons at higher genetic risk for schizophrenia are likely to be underrepresented in cohort studies, which will underestimate risk of this and related psychiatric, cognitive, and behavioral phenotypes in the population. Statistical power to detect associations with these phenotypes will be reduced, while analyses of schizophrenia-related phenotypes as outcomes may be biased by the nonrandom missingness of these phenotypes, even if multiple imputation is used. Similarly, in complete-case analyses, collider bias may affect associations between genetic risk and other factors associated with missingness. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
Tordjman, S; Cohen, D; Anderson, G M; Botbol, M; Canitano, R; Coulon, N; Roubertoux, P L
2018-06-01
Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism. Copyright © 2018. Published by Elsevier Ltd.
G.R. Johnson
1997-01-01
Type B genetic correlations were used to examine the relation among geographic differences between sites and their site-to-site genetic (Type B) correlations. Examination of six local breeding zones in Oregon indicated that breeding zones were, for the most part, not too large because few environmental variables were correlated with Type B genetic correlations. The...
Legal implications of genetics and crime research.
Denno, D W
1996-01-01
Two controversial topics dominate discussions of the legal implications of genetics and crime research; (1) the viability and politics of such research, which has sparked fervent debate in the USA; and (2) the current status of new or atypical criminal law defences, which would include a genetic-defect defence to criminal behaviour. This chapter begins by examining the scientifically discredited XYY chromosome syndrome defence, the major genetic-defect defence that defendants have attempted, albeit unsuccessfully. It then focuses on attorneys' efforts to test for evidence of genetic abnormality in the recent and highly publicized case involving convicted murderer Stephen Mobley, whose family history reveals four generations of violent, aggressive and behaviourally disordered men and women. Mobley is currently appealing his death sentence before the Georgia Supreme Court on the basis that the trial court denied his request both to have genetic testing performed and to have such testing allowed as evidence into court. This chapter concludes by emphasizing that the question is not whether genetic evidence will ever be admitted into court, but when and under what kinds of circumstances. No doubt, genetic evidence, and comparable kinds of biological evidence, will have a major impact on juries when such evidence is more fully accepted by the legal and scientific communities.
A Preliminary Genome-Wide Association Study of Pain-Related Fear: Implications for Orofacial Pain.
Randall, Cameron L; Wright, Casey D; Chernus, Jonathan M; McNeil, Daniel W; Feingold, Eleanor; Crout, Richard J; Neiswanger, Katherine; Weyant, Robert J; Shaffer, John R; Marazita, Mary L
2017-01-01
Acute and chronic orofacial pain can significantly impact overall health and functioning. Associations between fear of pain and the experience of orofacial pain are well-documented, and environmental, behavioral, and cognitive components of fear of pain have been elucidated. Little is known, however, regarding the specific genes contributing to fear of pain. A genome-wide association study (GWAS; N = 990) was performed to identify plausible genes that may predispose individuals to various levels of fear of pain. The total score and three subscales (fear of minor, severe, and medical/dental pain) of the Fear of Pain Questionnaire-9 (FPQ-9) were modeled in a variance components modeling framework to test for genetic association with 8.5 M genetic variants across the genome, while adjusting for sex, age, education, and income. Three genetic loci were significantly associated with fear of minor pain (8q24.13, 8p21.2, and 6q26; p < 5 × 10 -8 for all) near the genes TMEM65 , NEFM , NEFL , AGPAT4 , and PARK2 . Other suggestive loci were found for the fear of pain total score and each of the FPQ-9 subscales. Multiple genes were identified as possible candidates contributing to fear of pain. The findings may have implications for understanding and treating chronic orofacial pain.
The Growth of Developmental Thought: Implications for a New Evolutionary Psychology
Lickliter, Robert
2009-01-01
Evolution has come to be increasingly discussed in terms of changes in developmental processes rather than simply in terms of changes in gene frequencies. This shift is based in large part on the recognition that since all phenotypic traits arise during ontogeny as products of individual development, a primary basis for evolutionary change must be variations in the patterns and processes of development. Further, the products of development are epigenetic, not just genetic, and this is the case even when considering the evolutionary process. These insights have led investigators to reconsider the established notion of genes as the primary cause of development, opening the door to research programs focused on identifying how genetic and non-genetic factors coact to guide and constrain the process of development and its outcomes. I explore this growth of developmental thought and its implications for the achievement of a unified theory of heredity, development, and evolution and consider its implications for the realization of a new, developmentally-based evolutionary psychology. PMID:19956346
Verrier, Eloi R; Langevin, Christelle; Tohry, Corinne; Houel, Armel; Ducrocq, Vincent; Benmansour, Abdenour; Quillet, Edwige; Boudinot, Pierre
2012-01-01
Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV) waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction--that was not observed in the susceptible cells--and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses.
Rohde, Palle Duun; Demontis, Ditte; Cuyabano, Beatriz Castro Dias; Børglum, Anders D; Sørensen, Peter
2016-08-01
Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case-control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism and immunological responses, which previously have been implicated with schizophrenia based on experimental and observational studies. Copyright © 2016 by the Genetics Society of America.
Milan, David J; Lubitz, Steven A; Kääb, Stefan; Ellinor, Patrick T
2010-08-01
Genome-wide association studies have been increasingly used to study the genetics of complex human diseases. Within the field of cardiac electrophysiology, this technique has been applied to conditions such as atrial fibrillation, and several electrocardiographic parameters including the QT interval. While these studies have identified multiple genomic regions associated with each trait, questions remain, including the best way to explore the pathophysiology of each association and the potential for clinical utility. This review will summarize recent genome-wide association study results within cardiac electrophysiology and discuss their broader implications in basic science and clinical medicine. Copyright 2010 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity.
Revelas, Mary; Thalamuthu, Anbupalam; Oldmeadow, Christopher; Evans, Tiffany-Jane; Armstrong, Nicola J; Kwok, John B; Brodaty, Henry; Schofield, Peter R; Scott, Rodney J; Sachdev, Perminder S; Attia, John R; Mather, Karen A
2018-06-08
Many factors contribute to exceptional longevity, with genetics playing a significant role. However, to date, genetic studies examining exceptional longevity have been inconclusive. This comprehensive review seeks to determine the genetic variants associated with exceptional longevity by undertaking meta-analyses. Meta-analyses of genetic polymorphisms previously associated with exceptional longevity (85+) were undertaken. For each variant, meta-analyses were performed if there were data from at least three independent studies available, including two unpublished additional cohorts. Five polymorphisms, ACE rs4340, APOE ε2/3/4, FOXO3A rs2802292, KLOTHO KL-VS and IL6 rs1800795 were significantly associated with exceptional longevity, with the pooled effect sizes (odds ratios) ranging from 0.42 (APOE ε4) to 1.45 (FOXO3A males). In general, the observed modest effect sizes of the significant variants suggest many genes of small influence play a role in exceptional longevity, which is consistent with results for other polygenic traits. Our results also suggest that genes related to cardiovascular health may be implicated in exceptional longevity. Future studies should examine the roles of gender and ethnicity and carefully consider study design, including the selection of appropriate controls. Copyright © 2018. Published by Elsevier B.V.
Haplotype diversity in 11 candidate genes across four populations.
Beaty, T H; Fallin, M D; Hetmanski, J B; McIntosh, I; Chong, S S; Ingersoll, R; Sheng, X; Chakraborty, R; Scott, A F
2005-09-01
Analysis of haplotypes based on multiple single-nucleotide polymorphisms (SNP) is becoming common for both candidate gene and fine-mapping studies. Before embarking on studies of haplotypes from genetically distinct populations, however, it is important to consider variation both in linkage disequilibrium (LD) and in haplotype frequencies within and across populations, as both vary. Such diversity will influence the choice of "tagging" SNPs for candidate gene or whole-genome association studies because some markers will not be polymorphic in all samples and some haplotypes will be poorly represented or completely absent. Here we analyze 11 genes, originally chosen as candidate genes for oral clefts, where multiple markers were genotyped on individuals from four populations. Estimated haplotype frequencies, measures of pairwise LD, and genetic diversity were computed for 135 European-Americans, 57 Chinese-Singaporeans, 45 Malay-Singaporeans, and 46 Indian-Singaporeans. Patterns of pairwise LD were compared across these four populations and haplotype frequencies were used to assess genetic variation. Although these populations are fairly similar in allele frequencies and overall patterns of LD, both haplotype frequencies and genetic diversity varied significantly across populations. Such haplotype diversity has implications for designing studies of association involving samples from genetically distinct populations.
Org, Elin; Mehrabian, Margarete; Lusis, Aldons J.
2015-01-01
Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD. PMID:26071662
Collins, Malcolm; September, Alison V; Posthumus, Michael
2015-12-01
Evidence from familial and genetic association studies have reported that DNA sequence variants play an important role, together with non-genetic factors, in the aetiology of both exercise-associated and occupational-associated acute and chronic musculoskeletal soft tissue injuries. The associated variants, which have been identified to date, may contribute to the interindividual variation in the structure and, by implication, mechanical properties of the collagen fibril and surrounding matrix within musculoskeletal soft tissues, as well as their response to mechanical loading and other stimuli. Future work should focus on the establishment of multidisciplinary international consortia for the identification of biologically relevant variants involved in modulating injury risk. These consortia will improve the limitations of the published hypothesis-driven genetic association studies, since they will allow resources to be pooled in recruiting large well-characterised cohorts required for whole-genome screening. Finally, clinicians and coaches need to be aware that many direct-to-consumer companies are currently marketing genetic tests directly to athletes without it being requested by an appropriately qualified healthcare professional, and without interpretation alongside other clinical indicators or lifestyle factors. These specific genetic tests are premature and are not necessarily required to evaluate susceptibility to musculoskeletal soft tissue injury. Current practice should rather consider susceptibility through known risk factors such as a positive family history of a specific injury, a history of other tendon and/or ligament injuries and participation in activities associated with the specific musculoskeletal injuries. Potential susceptible athletes may then be individually managed to reduce their risk profile. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Alexander, Chelsea K A; Veach, Patricia McCarthy; Lian, Fengqin; LeRoy, Bonnie S
2013-12-01
International exchange training in genetic counseling is increasing, but research examining these experiences is lacking. In this study 309 genetic counseling students and genetic counselors completed an anonymous survey investigating six major research questions: (1) How prevalent are international genetic counseling experiences? (2) What types are pursued and why? (3) What supports and barriers exist? 3) What are the demographic characteristics of individuals accruing international experience? (5) Does international experience promote professional development? and (6) Do genetic counseling students and professionals perceive international experiences as beneficial? Most respondents were Caucasian females born in one of 25 countries. The most prevalent experiences involved either clinical observation or clinical training. Common motivations for pursuing international experience were personal growth, exposure to a different healthcare system, and travel opportunities. Outcomes included professionally-relevant experience and personal growth. Barriers included finances, limited availability of opportunities, and for those without international experience, family responsibilities. Additional findings, practice and training implications, and research recommendations are provided.
Actor-network theory: a tool to support ethical analysis of commercial genetic testing.
Williams-Jones, Bryn; Graham, Janice E
2003-12-01
Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.
Paquin, Ryan S; Richards, Adam S; Koehly, Laura M; McBride, Colleen M
2012-12-01
Varying perspectives exist regarding the implications of genetic susceptibility testing for common disease, with some anticipating adverse effects and others expecting positive outcomes; however, little is known about the characteristics of people who are most likely to be interested in direct-to-consumer genetic testing. To that end, this study examines the association of individual dispositional differences with health risk perceptions and online information seeking related to a free genetic susceptibility test. Healthy adults enrolled in a large health maintenance organization were surveyed by telephone. Eligible participants (N = 1,959) were given access to a secure website that provided risk and benefit information about a genetic susceptibility test and given the option to be tested. Neuroticism was associated with increased perceptions of disease risk but not with logging on. Those scoring high in conscientiousness were more likely to log on. We found no evidence that neuroticism, a dispositional characteristic commonly linked to adverse emotional response, was predictive of online genetic information seeking in this sample of healthy adults.
Mano, Hiroyuki; Tanaka, Yoshinari
2017-12-01
This study examines the spatial difference in genetic variation for tolerance to a pesticide, fenitrothion, in Daphnia galeata at field sites in Lake Kasumigaura, Japan. We estimated genetic values of isofemale lines established from dormant eggs of D. galeata collected from field sampling sites with the toxicant threshold model applied using acute toxicity. We compared genetic values and variances and broad-sense heritability across different sites in the lake. Results showed that the mean tolerance values to fenitrothion did not differ spatially. The variance in genetic value and heritability of fenitrothion tolerance significantly differed between sampling sites, revealing that long-term ecological risk of fenitrothion may differ between local populations in the lake. These results have implications for aquatic toxicology research, suggesting that differences in genetic variation of tolerance to a chemical among local populations must be considered for understanding the long-term ecological risks of the chemical over a large geographic area.
Gustavson, Daniel E.; Miyake, Akira; Hewitt, John K.; Friedman, Naomi P.
2014-01-01
Previous research has revealed a moderate positive correlation between procrastination and impulsivity. However, little is known about why these two constructs are related. This study used behavioral genetic methodology to test three predictions derived from an evolutionary account that postulates that procrastination arose as a by-product of impulsivity (Steel, 2010): (a) Procrastination is heritable; (b) the two traits share considerable genetic variation; and (c) goal-management ability is an important component of this shared variation. These predictions were confirmed. First, both procrastination and impulsivity were moderately heritable (46% and 49%, respectively). Second, although the two traits were separable at the phenotypic level (r=.65), they were not separable at the genetic level (rg=1.0). Finally, variation in goal-management ability accounted for much of this shared genetic variation. These results suggest that procrastination and impulsivity are linked primarily through genetic influences on the ability to use their high-priority goals effectively to regulate their action. PMID:24705635
Donnelly, Mary Katherine; Nersesian, Paula V; Foronda, Cynthia; Jones, Emily L; Belcher, Anne E
The aims of this project were to (1) assess nurse faculty members' knowledge of and confidence in teaching genetics/genomics to nursing students and (2) identify the needs of faculty members to inform a faculty development initiative. Significant knowledge gaps were noted, and more than 50% of respondents indicated that they lacked confidence in teaching genetics/genomics. Strategies to address this problem included identifying champions of genetics/genomics education, use of an educational template, and threading genetics/genomics throughout the curriculum.
Anomalous White Matter Morphology in Adults Who Stutter
ERIC Educational Resources Information Center
Cieslak, Matthew; Ingham, Rojer J.; Ingham, Janis C.; Grafton, Scott T.
2015-01-01
Aims: Developmental stuttering is now generally considered to arise from genetic determinants interacting with neurologic function. Changes within speech-motor white matter (WM) connections may also be implicated. These connections can now be studied in great detail by high-angular-resolution diffusion magnetic resonance imaging. Therefore,…
The Importance of Developmental Science for Studies in Bullying and Victimization
ERIC Educational Resources Information Center
Smith, Peter K.; Jones, Alice P.
2012-01-01
Research on bullying and victimization, especially in school settings, has become an important area of developmental research, with strong practical implications. In this article we overview some considerations from neuropsychology, quantitative genetics, developmental neuroscience, we discuss CU traits and conduct problems, individual, group,…
Genetics and culture: the geneticization thesis.
ten Have, H A
2001-01-01
The concept of 'geneticization' has been introduced in the scholarly literature to describe the various interlocking and imperceptible mechanisms of interaction between medicine, genetics, society and culture. It is argued that Western culture currently is deeply involved in a process of geneticization. This process implies a redefinition of individuals in terms of DNA codes, a new language to describe and interpret human life and behavior in a genomic vocabulary of codes, blueprints, traits, dispositions, genetic mapping, and a gentechnological approach to disease, health and the body. This article analyses the thesis of 'geneticization'. Explaining the implications of the thesis, and discussing the critical refutations, it is argued that 'geneticization' primarily is a heuristic tool that can help to re-focus the moral debate on the implications of new genetic knowledge towards interpersonal relations, the power of medicine, the cultural context and social constraints, rather than emphasizing issues as personal autonomy and individual rights.
Promiscuous mating in the harem-roosting fruit bat, Cynopterus sphinx.
Garg, Kritika M; Chattopadhyay, Balaji; Doss D, Paramanatha Swami; A K, Vinoth Kumar; Kandula, Sripathi; Ramakrishnan, Uma
2012-08-01
Observations on mating behaviours and strategies guide our understanding of mating systems and variance in reproductive success. However, the presence of cryptic strategies often results in situations where social mating system is not reflective of genetic mating system. We present such a study of the genetic mating system of a harem-forming bat Cynopterus sphinx where harems may not be true indicators of male reproductive success. This temporal study using data from six seasons on paternity reveals that social harem assemblages do not play a role in the mating system, and variance in male reproductive success is lower than expected assuming polygynous mating. Further, simulations reveal that the genetic mating system is statistically indistinguishable from promiscuity. Our results are in contrast to an earlier study that demonstrated high variance in male reproductive success. Although an outcome of behavioural mating patterns, standardized variance in male reproductive success (I(m)) affects the opportunity for sexual selection. To gain a better understanding of the evolutionary implications of promiscuity for mammals in general, we compared our estimates of I(m) and total opportunity for sexual selection (I(m) /I(f), where I(f) is standardized variance in female reproductive success) with those of other known promiscuous species. We observed a broad range of I(m) /I(f) values across known promiscuous species, indicating our poor understanding of the evolutionary implications of promiscuous mating. © 2012 Blackwell Publishing Ltd.
Present status of understanding on the genetic etiology of polycystic ovary syndrome.
Dasgupta, S; Reddy, B Mohan
2008-01-01
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age with a prevalence of approximately 7-10% worldwide. PCOS reflects multiple potential aetiologies and variable clinical manifestations. This syndrome is characterized by serious health implications such as diabetes, coronary heart diseases and cancer and also leads to infertility. PCOS can be viewed as a heterogeneous androgen excess disorder with varying degrees of reproductive and metabolic abnormalities determined by the interaction of multiple genetic and environmental factors. In this paper, we have attempted a comprehensive review of primarily molecular genetic studies done so far on PCOS. We have also covered the studies focusing on the environmental factors and impact of ethnicity on the presentation of this syndrome. A large number of studies have been attempted to understand the aetiological mechanisms behind PCOS both at the clinical and molecular genetic levels. In the Indian context, majority of the PCOS studies have been confined to the clinical dimensions. However, a concrete genetic mechanism behind the manifestation of PCOS is yet to be ascertained. Understanding of this complex disorder requires comprehensive studies incorporating relatively larger homogenous samples for genetic analysis and taking into account the ethnicity and the environmental conditions of the population/cohort under study. Research focused on these aspects may provide better understanding on the genetic etiology and the interaction between genes and environment, which may help develop new treatment methods and possible prevention of the syndrome.
Park, J; Willmott, M; Vetuz, G; Toye, C; Kirley, A; Hawi, Z; Brookes, K J; Gill, M; Kent, L
2010-05-30
Some children with ADHD also have social and communication difficulties similar to those seen in children with autistic spectrum disorders and this may be due to shared genetic liability. As the oxytocin receptor (OXTR) gene has been implicated in social cognition and autistic spectrum disorders, this study investigated whether OXTR polymorphisms previously implicated in autism were associated with ADHD and whether they influenced OXTR mRNA expression in 27 normal human amygdala brain samples. The family-based association sample consisted of 450 DSM-IV diagnosed ADHD probands and their parents. Although there was no association with the ADHD phenotype, an association with social cognitive impairments in a subset of the ADHD probands (N=112) was found for SNP rs53576 (F=5.24, p=0.007) with post-hoc tests demonstrating that the AA genotype was associated with better social ability compared to the AG genotype. Additionally, significant association was also found for rs13316193 (F=3.09, p=0.05) with post-hoc tests demonstrating that the CC genotype was significantly associated with poorer social ability than the TT genotype. No significant association between genotype and OXTR mRNA expression was found. This study supports previous evidence that the OXTR gene is implicated in social cognition. Copyright 2010 Elsevier Inc. All rights reserved.
Gemenetzi, M; Yang, Y; Lotery, A J
2012-01-01
Glaucoma is a common, complex, heterogenous disease and it constitutes the major cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is the most common type of glaucoma in all populations. Most of the molecular mechanisms leading to POAG development are still unknown. Gene mutations in various populations have been identified by genetic studies and a genetic basis for glaucoma pathogenesis has been established. Linkage analysis and association studies are genetic approaches in the investigation of the genetic basis of POAG. Genome-wide association studies (GWAS) are more powerful compared with linkage analysis in discovering genes of small effect that might contribute to the development of the disease. POAG links to at least 20 genetic loci, but only 2 genes identified in these loci, myocilin and optineurin, are considered as well-established glaucoma-causing genes, whereas the role of other loci, genes, and variants implicated in the development of POAG remains controversial. Gene mutations associated with POAG result in retinal ganglion cell death, which is the common outcome of pathogenetic mechanisms in glaucoma. In future, if the sensitivity and specificity of genotyping increases, it may be possible to screen individuals routinely for disease susceptibility. This review is an update on the latest progress of genetic studies associated with POAG. It emphasizes the correlation of recent achievements in genetics with glaucoma pathophysiology, glaucoma treatment perspectives, and the possibility of future prevention of irreversible visual loss caused by the disease. PMID:22173078
Genetic Psychophysiology: advances, problems, and future directions
Anokhin, Andrey P.
2014-01-01
This paper presents an overview of historical advances and the current state of genetic psychophysiology, a rapidly developing interdisciplinary research linking genetics, brain, and human behavior, discusses methodological problems, and outlines future directions of research. The main goals of genetic psychophysiology are to elucidate the neural pathways and mechanisms mediating genetic influences on cognition and emotion, identify intermediate brain-based phenotypes for psychopathology, and provide a functional characterization of genes being discovered by large association studies of behavioral phenotypes. Since the initiation of this neurogenetic approach to human individual differences in the 1970s, numerous twin and family studies have provided strong evidence for heritability of diverse aspects of brain function including resting-state brain oscillations, functional connectivity, and event-related neural activity in a variety of cognitive and emotion processing tasks, as well as peripheral psychophysiological responses. These data indicate large differences in the presence and strength of genetic influences across measures and domains, permitting the selection of heritable characteristics for gene finding studies. More recently, candidate gene association studies began to implicate specific genetic variants in different aspects of neurocognition. However, great caution is needed in pursuing this line of research due to its demonstrated proneness to generate false-positive findings. Recent developments in methods for physiological signal analysis, hemodynamic imaging, and genomic technologies offer new exciting opportunities for the investigation of the interplay between genetic and environmental factors in the development of individual differences in behavior, both normal and abnormal. PMID:24739435
Genetic determinants of prepubertal and pubertal growth and development.
Thomis, Martine A; Towne, Bradford
2006-12-01
This article surveys the current general understanding of genetic influences on within- and between-population variation in growth and development in the context of establishing an International Growth Standard for Preadolescent and Adolescent Children. Traditional genetic epidemiologic analysis methods are reviewed, and evidence from family studies for genetic effects on different measures of growth and development is then presented. Findings from linkage and association studies seeking to identify specific genomic locations and allelic variants of genes influencing variation in growth and maturation are then summarized. Special mention is made of the need to study the interactions between genes and environments. At present, specific genes and polymorphisms contributing to variation in growth and maturation are only beginning to be identified. Larger genetic epidemiologic studies are needed in different parts of the world to better explore population differences in gene frequencies and gene-environment interactions. As advances continue to be made in molecular and statistical genetic methods, the genetic architecture of complex processes, including those of growth and development, will become better elucidated. For now, it can only be concluded that although the fundamental genetic underpinnings of the growth and development of children worldwide are likely to be essentially the same, there are also likely to be differences between populations in the frequencies of allelic gene variants that influence growth and maturation and in the nature of gene-environment interactions. This does not necessarily preclude an international growth reference, but it does have important implications for the form that such a reference might ultimately take.
Ethical and Social Implications of Genetic Testing for Communication Disorders
ERIC Educational Resources Information Center
Arnos, Kathleen S.
2008-01-01
Advances in genetics and genomics have quickly led to clinical applications to human health which have far-reaching consequences at the individual and societal levels. These new technologies have allowed a better understanding of the genetic factors involved in a wide range of disorders. During the past decade, incredible progress has been made in…
Genetic subpopulation structuring and its implications in a mature eastern white pine stand
Samuel E. Nijensohn; Paul G. Schaberg; Gary J. Hawley; Donald H. DeHayes; Donald H. DeHayes
2005-01-01
We examined patterns of genetic structuring within a mature eastern white pine (Pinus strobus L.) forest, using geographic information system (GIS)-based data and maps that combined genetic (isozyme analysis of 46 loci) and other tree-specific information (e.g., size, growth, age, and location) for 220 trees in Jericho, Vermont. Interconnections between genotypic...
Ethical issues in neurogenetics.
Uhlmann, Wendy R; Roberts, J Scott
2018-01-01
Many neurogenetic conditions are inherited and therefore diagnosis of a patient will have implications for the patient's relatives and can raise ethical issues. Predictive genetic testing offers asymptomatic relatives the opportunity to determine their risk status for a neurogenetic condition, and professional guidelines emphasize patients' autonomy and informed, voluntary decision making. Beneficence and nonmaleficence both need to be considered when making decisions about disclosure and nondisclosure of genetic information and test results. There can be disclosure concerns and challenges in determining whose autonomy to prioritize when a patient makes a genetic testing decision that can reveal the genetic status of a relative (e.g., testing an adult child when the at-risk parent has not been tested). Ethical issues are prominent when genetic testing for neurogenetic conditions is requested prenatally, on minors, adoptees, adult children at 25% risk, and for individuals with psychiatric issues or cognitive impairment. Neurogenetic conditions can result in cognitive decline which can affect decisional capacity and lead to ethical challenges with decision making, informed consent, and determining the patient's ability to comprehend test results. The ethical implications of genetic testing and emerging issues, including direct-to-consumer genetic testing, disclosure of secondary findings from genomic sequencing, and use of apolipoprotein E testing in clinical and research settings, are also discussed. Resources for information about genetic testing practice guidelines, insurance laws, and directories of genetics clinics are included. Copyright © 2018 Elsevier B.V. All rights reserved.
Ethical Issues in Neurogenetics
Uhlmann, Wendy R.; Roberts, J. Scott
2018-01-01
Many neurogenetic conditions are inherited and therefore diagnosis of a patient will have implications for their relatives and can raise ethical issues. Predictive genetic testing offers asymptomatic relatives the opportunity to determine their risk status for a neurogenetic condition, and professional guidelines emphasize patients’ autonomy and informed, voluntary decision-making. Beneficence and non-maleficence both need to be considered when making decisions about disclosure and nondisclosure of genetic information and test results. There can be disclosure concerns and issues of determining whose autonomy to prioritize when a patient makes a genetic testing decision that can reveal the genetic status of a relative (e.g. testing an adult child when the at-risk parent has not been tested). Ethical issues are prominent when genetic testing for neurogenetic conditions is requested prenatally, on minors, adoptees, adult children at 25% risk, and for individuals with psychiatric issues or cognitive impairment. Neurogenetic conditions can result in cognitive decline which can affect decisional capacity and lead to ethical challenges with decision-making, informed consent and determining the patient’s ability to comprehend test results. The ethical implications of genetic testing and emerging issues, including direct-to-consumer genetic testing, disclosure of secondary findings from genomic sequencing, and use of APOE testing in clinical and research settings, are also discussed. Resources for information about genetic testing practice guidelines, insurance laws and directories of genetics clinics are included. PMID:29325614
TXNIP links redox circuitry to glucose control.
Muoio, Deborah M
2007-06-01
Thioredoxin-interacting protein (TXNIP) binds and inhibits the reducing activity of thioredoxin. A new study (Parikh et al., 2007) implicates this redox rheostat as a negative regulator of peripheral glucose metabolism in humans. Investigators combined human physiology, genomic screening, and cell-based genetic studies to highlight TNXIP as a potential culprit in the pathogenesis of type 2 diabetes.
ERIC Educational Resources Information Center
Andrews, Alice E.; Stonestreet, Ruth H.
This paper presents a case study of Gorlin Syndrome, also known as Basal Cell Nevus Syndrome, a rare genetic disorder characterized by widespread developmental defects. Criteria for diagnosis are listed, noting the presence of frequent basal cell carcinomas at a relatively young age and multiple cysts of the jaw. Speech and/or language impairments…
ERIC Educational Resources Information Center
Kirkpatrick, Robert M.; Legrand, Lisa N.; Iacono, William G.; McGue, Matt
2011-01-01
Existing behavior-genetic research implicates substantial influence of heredity and modest influence of shared environment on reading achievement and reading disability. Applying DeFries-Fulker analysis to a combined sample of twins and adoptees (N = 4886, including 266 reading-disabled probands), the present study replicates prior findings of…
Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment
Sun, Xiao-xiao; Yu, Qiang
2015-01-01
Recent studies have revealed extensive genetic and non-genetic variation across different geographical regions of a tumor or throughout different stages of tumor progression, which is referred to as intra-tumor heterogeneity. Several causes contribute to this phenomenon, including genomic instability, epigenetic alteration, plastic gene expression, signal transduction, and microenvironmental differences. These variables may affect key signaling pathways that regulate cancer cell growth, drive phenotypic diversity, and pose challenges to cancer treatment. Understanding the mechanisms underlying this heterogeneity will support the development of effective therapeutic strategies. PMID:26388155
Robert, Cyrille; Pasquier, Laurent; Cohen, David; Fradin, Mélanie; Canitano, Roberto; Damaj, Léna; Odent, Sylvie; Tordjman, Sylvie
2017-01-01
Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling. PMID:28287497
Robert, Cyrille; Pasquier, Laurent; Cohen, David; Fradin, Mélanie; Canitano, Roberto; Damaj, Léna; Odent, Sylvie; Tordjman, Sylvie
2017-03-12
Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling.
Hamilton, Jada G; Abdiwahab, Ekland; Edwards, Heather M; Fang, Min-Lin; Jdayani, Andrew; Breslau, Erica S
2017-03-01
Primary care providers (PCPs) can play a critical role in helping patients receive the preventive health benefits of cancer genetic risk information. Thus, the objective of this systematic review was to identify studies of US PCPs' knowledge, attitudes, and communication-related behaviors regarding genetic tests that could inform risk-stratification approaches for breast, colorectal, and prostate cancer screening in order to describe current findings and research gaps. We conducted a systematic search of six electronic databases to identify peer-reviewed empirical articles relating to US PCPs and genetic testing for breast, colorectal, or prostate cancer published in English from 2008 to 2016. We reviewed these data and used narrative synthesis methods to integrate findings into a descriptive summary and identify research needs. We identified 27 relevant articles. Most focused on genetic testing for breast cancer (23/27) and colorectal cancer risk (12/27); only one study examined testing for prostate cancer risk. Most articles addressed descriptive research questions (24/27). Many studies (24/27) documented PCPs' knowledge, often concluding that providers' knowledge was incomplete. Studies commonly (11/27) examined PCPs' attitudes. Across studies, PCPs expressed some concerns about ethical, legal, and social implications of testing. Attitudes about the utility of clinical genetic testing, including for targeted cancer screening, were generally favorable; PCPs were more skeptical of direct-to-consumer testing. Relatively fewer studies (9/27) examined PCPs' communication practices regarding cancer genetic testing. This review indicates a need for investigators to move beyond descriptive research questions related to PCPs' knowledge and attitudes about cancer genetic testing. Research is needed to address important gaps regarding the development, testing, and implementation of innovative interventions and educational programs that can improve PCPs' genetic testing knowledge, assuage concerns about the appropriateness of cancer genetic testing, and promote open and effective patient-provider communication about genetic risk and genetic testing.
Li, Wen-Dong; Stanek, Kevin C; Zhang, Zhen; Ones, Deniz S; McGue, Matt
2016-11-01
Job satisfaction research has unfolded as an exemplary manifestation of the "person versus environment" debate in applied psychology. With the increasing recognition of the importance of time, it is informative to examine a question critical to the dispositional view of job satisfaction: Are genetic influences on job satisfaction stable across different time points? Drawing upon dispositional and situational perspectives on job satisfaction and recent research in developmental behavioral genetics, we examined whether the relative potency of genetic (i.e., the person) and environmental influences on job satisfaction changed over time in a 3-wave longitudinal twin study. Biometric behavioral genetics analyses showed that genetic influences accounted for 31.2% of the variance in job satisfaction measured at approximately Age 21, which was markedly greater than the 18.7% and 19.8% of variance explained by genetic factors at Age 25 and Age 30. Such genetic influences were mediated via positive affectivity and negative affectivity, but not via general mental ability. After partialing out genetic influences, environmental influences on job satisfaction were related to interpersonal conflict at work and occupational status, and these influences were relatively stable across the 3 time points. These results offer important implications for organizations and employees to better understand and implement practices to enhance job satisfaction. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Autism genetics: searching for specificity and convergence
2012-01-01
Advances in genetics and genomics have improved our understanding of autism spectrum disorders. As many genes have been implicated, we look to points of convergence among these genes across biological systems to better understand and treat these disorders. PMID:22849751
A CAL-Based Undergraduate Genetics Course.
ERIC Educational Resources Information Center
Garbutt, K.; And Others
1979-01-01
Describes a second-year undergraduate practical course in quantitative genetics and biometrics, based upon computer-assisted learning (CAL); and discusses the educational benefits of the course, some problems encountered, and some implications of the extensive use of CAL. (Author/CMV)
Turning of COGS moves forward findings for hormonally mediated cancers.
Sakoda, Lori C; Jorgenson, Eric; Witte, John S
2013-04-01
The large-scale Collaborative Oncological Gene-environment Study (COGS) presents new findings that further characterize the genetic bases of breast, ovarian and prostate cancers. We summarize and provide insights into this collection of papers from COGS and discuss the implications of the results and future directions for such efforts.
Hoh, Boon-Peng; Deng, Lian; Julia-Ashazila, Mat Jusoh; Zuraihan, Zakaria; Nur-Hasnah, Ma'amor; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Endom, Ismail; Zilfalil, Bin Alwi; Khalid, Yusoff; Xu, Shuhua
2015-07-22
Fine scale population structure of Malays - the major population in Malaysia, has not been well studied. This may have important implications for both evolutionary and medical studies. Here, we investigated the population sub-structure of Malay involving 431 samples collected from all states from peninsular Malaysia and Singapore. We identified two major clusters of individuals corresponding to the north and south peninsular Malaysia. On an even finer scale, the genetic coordinates of the geographical Malay populations are in correlation with the latitudes (R(2) = 0.3925; P = 0.029). This finding is further supported by the pairwise FST of Malay sub-populations, of which the north and south regions showed the highest differentiation (FST [North-south] = 0.0011). The collective findings therefore suggest that population sub-structure of Malays are more heterogenous than previously expected even within a small geographical region, possibly due to factors like different genetic origins, geographical isolation, could result in spurious association as demonstrated in our analysis. We suggest that cautions should be taken during the stage of study design or interpreting the association signals in disease mapping studies which are expected to be conducted in Malay population in the near future.
Morales Piga, Antonio; Alonso Ferreira, Verónica; Villaverde-Hueso, Ana
2011-01-01
Recent years have seen an unprecedented increase in the knowledge and understanding of biochemical disturbances involved on constitutional bone disorders. Recognition of the genetic background as the common cause of these diseases prompted the substitution of the term «constitutional» by «genetic», in referring to them. Understanding physiopathological bases by finding out the altered metabolic pathways as well as their regulatory and control systems, favours an earlier and more accurate diagnosis based on interdisciplinary collaboration. Although clinical and radiological assessment remains crucial in the study of these disorders, ever more often the diagnosis is achieved by molecular and genetic analysis. Elucidation of the damaged underlying molecular mechanisms offers targets potentially useful for therapeutic research in these complex and often disabling diseases. 2010 Elsevier España, S.L. All rights reserved.
The genetics of congenital aniridia-a guide for the ophthalmologist.
Landsend, Erlend S; Utheim, Øygunn A; Pedersen, Hilde R; Lagali, Neil; Baraas, Rigmor C; Utheim, Tor P
Congenital aniridia is a rare panocular disease caused by fundamental disturbances in the development of the eye, characterized primarily by hypoplasia of the iris and macula. Severe secondary complications such as keratopathy, cataract, and glaucoma are common and often lead to considerable visual impairment or blindness. Many complications in aniridia patients are difficult to treat and present a challenge for the ophthalmologist. Increasingly, associated nonocular features of the disease are also being recognized. Over the past decades, major steps have been made in the understanding of the genetic basis of aniridia. Moreover, recent studies have prepared the ground for future treatment options based on specific mutations. Therefore, specific knowledge about genetics in aniridia has become more important than ever. We provide an overview of the field of aniridia genetics and its clinical implications. Copyright © 2017 Elsevier Inc. All rights reserved.
Mantovani, Adelar; Morellato, L Patrícia C; Dos Reis, Maurício S
2006-01-01
The internal genetic structure and outcrossing rate of a population of Araucaria angustifolia (Bert.) O. Kuntze were investigated using 16 allozyme loci. Estimates of the mean number of alleles per loci (1.6), percentage of polymorphic loci (43.8%), and expected genetic diversity (0.170) were similar to those obtained for other gymnosperms. The analysis of spatial autocorrelation demonstrated the presence of internal structure in the first distance classes (up to 70 m), suggesting the presence of family structure. The outcrossing rate was high (0.956), as expected for a dioecious species. However, it was different from unity, indicating outcrossings between related individuals and corroborating the presence of internal genetic structure. The results of this study have implications for the methodologies used in conservation collections and for the use or analysis of this forest species.
A global reference for human genetic variation
2016-01-01
The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245
Smith, Rachel A.; Greenberg, Marisa; Parrott, Roxanne L.
2014-01-01
With a growing interest in using genetic information to motivate young adults’ health behaviors, audience segmentation is needed for effective campaign design. Using latent class analysis, this study identifies segments based on young adults’ (N = 327) beliefs about genetic threats to their health and personal efficacy over genetic influences on their health. A four-class model was identified. The model indicators fit the risk perception attitude framework (Rimal & Real, 2003), but the covariates (e.g., current health behaviors) did not. In addition, opinion leader qualities covaried with one profile: those in this profile engaged in fewer preventative behaviors and more dangerous treatment options, and also liked to persuade others, making them a particularly salient group for campaign efforts. The implications for adult-onset disorders, like alpha-1 antitrypsin deficiency are discussed. PMID:24111749
Implications of recurrent disturbance for genetic diversity.
Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C
2016-02-01
Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.
Small Heat Shock Proteins in Redox Metabolism: Implications for Cardiovascular Diseases
Christians, Elisabeth S.; Ishiwata, Takahiro; Benjamin, Ivor J.
2012-01-01
A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. PMID:22710345
Flom, Megan; Saudino, Kimberly J
2017-10-01
Callous-unemotional (CU) behaviors demonstrate meaningful individual differences in early childhood, even in nonclinical samples with low mean levels of CU, but the factors underlying this variation have not been examined. This study investigated genetic and environmental contributions to individual differences and to sources of continuity and change in CU in toddler twins (145 monozygotic, 169 dizygotic) assessed at ages 2 and 3 years. CU, as assessed by the Child Behavior Checklist 1.5-5 (Achenbach & Rescorla, 2000), was moderately stable across age (r = .45, p < .0001). Longitudinal biometric analyses revealed genetic and nonshared environmental influences on CU at both ages, with no significant contribution from shared environmental factors. Stability from age 2 to 3 was due to genetic factors, whereas change was due to both genetic and nonshared environmental influences. This genetic and nonshared environmental change was substantial, suggesting malleability of CU in early childhood. Over 50% of the genetic influences and 100% of the nonshared environmental influences on CU at age 3 were independent of those that operated at age 2. Implications of novel sources of variance across age are discussed.
Scaling laws and universality for the strength of genetic interactions in yeast
NASA Astrophysics Data System (ADS)
Velenich, Andrea; Dai, Mingjie; Gore, Jeff
2012-02-01
Genetic interactions provide a window to the organization of the thousands of biochemical reactions in living cells. If two mutations affect unrelated cellular functions, the fitness effects of their combination can be easily predicted from the two separate fitness effects. However, because of interactions, for some pairs of mutations their combined fitness effect deviates from the naive prediction. We study genetic interactions in yeast cells by analyzing a publicly available database containing experimental growth rates of 5 million double mutants. We show that the characteristic strength of genetic interactions has a simple power law dependence on the fitness effects of the two interacting mutations and that the probability distribution of genetic interactions is a universal function. We further argue that the strength of genetic interactions depends only on the fitness effects of the interacting mutations and not on their biological origin in terms of single point mutations, entire gene knockouts or even more complicated physiological perturbations. Finally, we discuss the implications of the power law scaling of genetic interactions on the ruggedness of fitness landscapes and the consequent evolutionary dynamics.
D'Cunha, Anitha; Pandit, Lekha; Malli, Chaithra
2017-06-01
Indian data have been largely missing from genome-wide databases that provide information on genetic variations in different populations. This hinders association studies for complex disorders in India. This study was aimed to determine whether the complex genetic structure and endogamy among Indians could potentially influence the design of case-control studies for autoimmune disorders in the south Indian population. A total of 12 single nucleotide variations (SNVs) related to genes associated with autoimmune disorders were genotyped in 370 healthy individuals belonging to six different caste groups in southern India. Allele frequencies were estimated; genetic divergence and phylogenetic relationship within the various caste groups and other HapMap populations were ascertained. Allele frequencies for all genotyped SNVs did not vary significantly among the different groups studied. Wright's FSTwas 0.001 per cent among study population and 0.38 per cent when compared with Gujarati in Houston (GIH) population on HapMap data. The analysis of molecular variance results showed a 97 per cent variation attributable to differences within the study population and <1 per cent variation due to differences between castes. Phylogenetic analysis showed a separation of Dravidian population from other HapMap populations and particularly from GIH population. Despite the complex genetic origins of the Indian population, our study indicated a low level of genetic differentiation among Dravidian language-speaking people of south India. Case-control studies of association among Dravidians of south India may not require stratification based on language and caste.
Groenman, Annabeth P.; Greven, Corina U.; van Donkelaar, Marjolein M.J.; Schellekens, Arnt; van Hulzen, Kimm J.E.; Rommelse, Nanda; Hartman, Catharina A.; Hoekstra, Pieter J.; Luman, Marjolein; Franke, Barbara; Faraone, Stephen V.; Oosterlaan, Jaap; Buitelaar, Jan K.
2015-01-01
Individuals with attention-deficit/hyperactivity disorder (ADHD) are at increased risk of developing substance use disorders (SUDs) and nicotine dependence. The co-occurrence of ADHD and SUDs/nicotine dependence may in part be mediated by shared genetic liability. Several neurobiological pathways have been implicated in both ADHD and SUDs, including dopamine and serotonin pathways. We hypothesized that variations in dopamine and serotonin neurotransmission genes were involved in the genetic liability to develop SUDs/nicotine dependence in ADHD. The current study included participants with ADHD (n=280) who were originally part of the Dutch International Multicenter ADHD Genetics study. Participants were aged 5–15 years and attending outpatient clinics at enrollment in the study. Diagnoses of ADHD, SUDs, nicotine dependence, age of first nicotine and substance use, and alcohol use severity were based on semi-structured interviews and questionnaires. Genetic risk scores were created for both serotonergic and dopaminergic risk genes previously shown to be associated with ADHD and SUDs and/or nicotine dependence. The serotonin genetic risk score significantly predicted alcohol use severity. No significant serotonin*dopamine risk score or effect of stimulant medication was found. The current study adds to literature by providing insight into genetic underpinnings of the comorbidity of ADHD and SUDs. While the focus of the literature so far has been mostly on dopamine, our study suggests that serotonin may also play a role in the relationship between these disorders. PMID:25752199
Retrospective reports of parental physical affection and parenting style: a study of Finnish twins.
Harlaar, Nicole; Santtila, Pekka; Björklund, Johanna; Alanko, Katarina; Jern, Patrick; Varjonen, Markus; von der Pahlen, Bettina; Sandnabba, Kenneth
2008-08-01
Individual differences in parenting behaviors are due, in part, to genetic factors. In the present study, the authors sought to determine whether the degree of genetic influence varied according to the type of parental behavior under consideration. A population-based sample of 2,334 pairs of Finnish twins provided ratings on the physical affection, control, abusiveness, and indifference shown by their father and mother during childhood. Genetic influences, shared environmental influences, and nonshared environmental influences accounted for a small-to-medium proportion (17%-30%), a small-to-large proportion (22%-44%), and a medium-to-large proportion (37%-55%) of the variance in each parenting measure, respectively. There were no significant differences in effect sizes for mothers and fathers or across the 4 types of parental behavior. The genetic results may reflect characteristic styles with which parents respond to genetically influenced behaviors of individuals (gene-environment correlations) or individual perceptions of this relationship (gene-person correlation processes). The findings have implications for intervention and prevention work with families and for interpretation of evidence for interactions between genes and parenting behaviors.
Genetic abnormalities in fibrodysplasia ossificans progressiva.
Miao, Jinglei; Zhang, Chaoyue; Wu, Song; Peng, Zhi; Tania, Mousumi
2012-01-01
Fibrodysplasia ossificans progressiva (FOP), characterized by congenital malformation of bones, is an autosomal dominant disorder. This is a rare genetic disorder and its worldwide prevalence is approximately 1/2,000,000. There is no ethnic, racial, gender, or geographic predilection to FOP. It is regarded as one of the intractable disorders, which is not only an extremely disabling disease but also a condition of considerably shortened lifespan. Although the genetic defects of FOP are not completely known, several clinical and animal model studies have implicated that mutations in bone morphogenetic proteins, their receptors, and activin receptor type IA (ACVR1) genes are associated with FOP primarily. The noggin (NOG) gene has also been reported in some studies. In most of the cases of FOP, the mutation was found as 'de novo' however there is paternal age effect on mutations. Unfortunately, at present there is no efficient treatment for FOP. The recent discoveries of genetic basis of FOP provide a clue to the underlying pathophysiology and potential therapy. This review article focuses on the genetic mutations in FOP, their usage as diagnostic markers, and possible target specific drug development to treat FOP patients.
Evaluating the genetic susceptibility to peer reported bullying behaviors.
Musci, Rashelle J; Bettencourt, Amie F; Sisto, Danielle; Maher, Brion; Uhl, George; Ialongo, Nicholas; Bradshaw, Catherine P
2018-05-01
Bullying is a significant public health concern with lasting impacts on youth. Although environmental risk factors for bullying have been well-characterized, genetic influences on bullying are not well understood. This study explored the role of genetics on early childhood bullying behavior. Participants were 561 children who participated in a longitudinal randomized control trial of a preventive intervention beginning in first grade who were present for the first grade peer nominations used to measure early childhood bullying and who provided genetic data during the age 19-21 year follow-up in the form of blood or saliva. Measures included a polygenic risk score (PRS) derived from a conduct disorder genome wide association study. Latent profile analysis identified three profiles of bullying behaviors during early childhood. Results suggest that the PRS was significantly associated with class membership, with individuals in the moderate bully-victim profile having the highest levels of the PRS and those in the high bully-victim profile having the lowest levels. This line of research has important implications for understanding genetic vulnerability to bullying in early childhood. Copyright © 2018 Elsevier B.V. All rights reserved.
Human genetic susceptibility and infection with Leishmania peruviana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, M.A.; Davis, C.R.; Collins, A.
1995-11-01
Racial differences, familial clustering, and murine studies are suggestive of host genetic control of Leishmania infections. Complex segregation analysis has been carried out by use of the programs POINTER and COMDS and data from a total population survey, comprising 636 nuclear families, from an L. perurviana endemic area. The data support genetic components controlling susceptibility to clinical leishmaniasis, influencing severity of disease and resistance to disease among healthy individuals. A multifactorial model is favored over a sporadic model. Two-locus models provided the best fit to the data, the optimal model being a recessive gene (frequency .57) plus a modifier locus.more » Individuals infected at an early age and with recurrent lesions are genetically more susceptible than those infected with a single episode of disease at a later age. Among people with no lesions, those with a positive skin-test response are genetically less susceptible than those with a negative response. The possibility of the involvement of more than one gene together with environmental effects has implications for the design of future linkage studies. 31 refs., 7 tabs.« less
Lee, Whiwon; Veach, Patricia McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S
2015-04-01
Compassion fatigue is a state of detachment and isolation experienced when healthcare providers repeatedly engage with patients in distress. Compassion fatigue can hinder empathy and cause extreme tension. Prior research suggests 73.8 % of genetic counselors are at moderate to high risk for compassion fatigue and approximately 1 in 4 have considered leaving the field as a result Injeyan et al. (Journal of Genetic Counseling, 20, 526-540, 2011). Empirical data to establish a reliable profile of genetic counselors at risk for compassion fatigue are limited. Thus the purpose of this study was to establish a profile by assessing relationships between state and trait anxiety, burnout, compassion satisfaction, selected demographics and compassion fatigue risk in practicing genetic counselors. Practicing genetic counselors (n = 402) completed an anonymous, online survey containing demographic questions, the State-Trait Anxiety Inventory, and the Professional Quality of Life scale. Multiple regression analysis yielded four significant predictors which increase compassion fatigue risk (accounting for 48 % of the variance): higher levels of trait anxiety, burnout, and compassion satisfaction, and ethnicity other than Caucasian. Additional findings, study limitations, practice implications, and research recommendations are provided.
Genetic factors affecting dental caries risk.
Opal, S; Garg, S; Jain, J; Walia, I
2015-03-01
This article reviews the literature on genetic aspects of dental caries and provides a framework for the rapidly changing disease model of caries. The scope is genetic aspects of various dental factors affecting dental caries. The PubMed database was searched for articles with keywords 'caries', 'genetics', 'taste', 'diet' and 'twins'. This was followed by extensive handsearching using reference lists from relevant articles. The post-genomic era will present many opportunities for improvement in oral health care but will also present a multitude of challenges. We can conclude from the literature that genes have a role to play in dental caries; however, both environmental and genetic factors have been implicated in the aetiology of caries. Additional studies will have to be conducted to replicate the findings in a different population. Identification of genetic risk factors will help screen and identify susceptible patients to better understand the contribution of genes in caries aetiopathogenesis. Information derived from these diverse studies will provide new tools to target individuals and/or populations for a more efficient and effective implementation of newer preventive measures and diagnostic and novel therapeutic approaches in the management of this disease. © 2015 Australian Dental Association.
The differential diagnosis of the short-limbed dwarfs presenting at birth.
Mukherji, R. N.; Moss, P. D.
1977-01-01
Attention is drawn to the fact that in a number of types of short-limbed dwarfism a precise diagnosis can be made in the neonatal period. Examples are given and the prognostic and genetic implications are discussed. It is important to be able to advise parents of the likely outlook for the infant and of the genetic implication. Early diagnosis is therefore not merely an academic exercise. Images Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 10 Fig. 11 PMID:859790
Anokhin, Andrey P; Golosheykin, Simon; Grant, Julia D; Heath, Andrew C
2017-05-01
The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Taylor, Mark J.; Charman, Tony; Robinson, Elise B.; Hayiou-Thomas, Marianna E.; Happé, Francesca; Dale, Philip S.; Ronald, Angelica
2015-01-01
Language difficulties have historically been viewed as integral to autism spectrum conditions (ASC), leading molecular genetic studies to consider whether ASC and language difficulties have overlapping genetic bases. The extent of genetic, and also environmental, overlap between ASC and language is, however, unclear. We hence conducted a twin study of the concurrent association between autistic traits and receptive language abilities. Internet-based language tests were completed by ~3,000 pairs of twins, while autistic traits were assessed via parent ratings. Twin model fitting explored the association between these measures in the full sample, while DeFries-Fulker analysis tested these associations at the extremes of the sample. Phenotypic associations between language ability and autistic traits were modest and negative. The degree of genetic overlap was also negative, indicating that genetic influences on autistic traits lowered language scores in the full sample (mean genetic correlation = −0.13). Genetic overlap was also low at the extremes of the sample (mean genetic correlation = 0.14), indicating that genetic influences on quantitatively defined language difficulties were largely distinct from those on extreme autistic traits. Variation in language ability and autistic traits were also associated with largely different nonshared environmental influences. Language and autistic traits are influenced by largely distinct etiological factors. This has implications for molecular genetic studies of ASC and understanding the etiology of ASC. Additionally, these findings lend support to forthcoming DSM-5 changes to ASC diagnostic criteria that will see language difficulties separated from the core ASC communication symptoms, and instead listed as a clinical specifier. PMID:25088445
Taylor, Mark J; Charman, Tony; Robinson, Elise B; Hayiou-Thomas, Marianna E; Happé, Francesca; Dale, Philip S; Ronald, Angelica
2014-10-01
Language difficulties have historically been viewed as integral to autism spectrum conditions (ASC), leading molecular genetic studies to consider whether ASC and language difficulties have overlapping genetic bases. The extent of genetic, and also environmental, overlap between ASC and language is, however, unclear. We hence conducted a twin study of the concurrent association between autistic traits and receptive language abilities. Internet-based language tests were completed by ~3,000 pairs of twins, while autistic traits were assessed via parent ratings. Twin model fitting explored the association between these measures in the full sample, while DeFries-Fulker analysis tested these associations at the extremes of the sample. Phenotypic associations between language ability and autistic traits were modest and negative. The degree of genetic overlap was also negative, indicating that genetic influences on autistic traits lowered language scores in the full sample (mean genetic correlation = -0.13). Genetic overlap was also low at the extremes of the sample (mean genetic correlation = 0.14), indicating that genetic influences on quantitatively defined language difficulties were largely distinct from those on extreme autistic traits. Variation in language ability and autistic traits were also associated with largely different nonshared environmental influences. Language and autistic traits are influenced by largely distinct etiological factors. This has implications for molecular genetic studies of ASC and understanding the etiology of ASC. Additionally, these findings lend support to forthcoming DSM-5 changes to ASC diagnostic criteria that will see language difficulties separated from the core ASC communication symptoms, and instead listed as a clinical specifier. © 2014 Wiley Periodicals, Inc.
Anokhin, Andrey P.; Golosheykin, Simon; Grant, Julia D.; Heath, Andrew C.
2017-01-01
The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. PMID:28300615
Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations.
Wang, Yuchen; Lu, Dongsheng; Chung, Yeun-Jun; Xu, Shuhua
2018-01-01
Han Chinese, Japanese and Korean, the three major ethnic groups of East Asia, share many similarities in appearance, language and culture etc., but their genetic relationships, divergence times and subsequent genetic exchanges have not been well studied. We conducted a genome-wide study and evaluated the population structure of 182 Han Chinese, 90 Japanese and 100 Korean individuals, together with the data of 630 individuals representing 8 populations wordwide. Our analyses revealed that Han Chinese, Japanese and Korean populations have distinct genetic makeup and can be well distinguished based on either the genome wide data or a panel of ancestry informative markers (AIMs). Their genetic structure corresponds well to their geographical distributions, indicating geographical isolation played a critical role in driving population differentiation in East Asia. The most recent common ancestor of the three populations was dated back to 3000 ~ 3600 years ago. Our analyses also revealed substantial admixture within the three populations which occurred subsequent to initial splits, and distinct gene introgression from surrounding populations, of which northern ancestral component is dominant. These estimations and findings facilitate to understanding population history and mechanism of human genetic diversity in East Asia, and have implications for both evolutionary and medical studies.
Hansen, John A; Chien, Jason W; Warren, Edus H; Zhao, Lue Ping; Martin, Paul J
2011-01-01
Purpose of review To explore what is known about the genetics of hematopoietic stem cell transplantation (HCT) and how genetic polymorphism affects risk of graft-versus-host disease (GVHD) and mortality. Recent findings Genetic variation found across the human genome can impact HCT outcome by 1) causing genetic disparity between patient and donor, and 2) modifying gene function. Single nucleotide polymorphisms (SNP) and structural variation can result in mismatching for cellular peptides known as histocompatibility antigens (HA). At least 25 to 30 polymorphic genes are known to encode functional HA in mismatched individuals, but their individual contribution to clinical GVHD is unclear. HCT outcome may also be affected by polymorphism in donor or recipient. Association studies have implicated several genes with GVHD and mortality, however results have been inconsistent most likely due to limited sample size, and differences in racial diversity and clinical covariates. New technologies using DNA arrays genotyping for a million or more SNPs promise genome-wide discovery of HCT associated genes, however adequate statistical power requires study populations of several thousand patient-donor pairs. Summary Available data offers strong preliminary support for the impact that genetic variation has on risk of GVHD and mortality following HCT. Definitive results however await future genome-wide studies of large multi-center HCT cohorts. PMID:20827186
Jueterbock, Alexander; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice
2018-06-15
The spatial distribution of genetic diversity and structure has important implications for conservation as it reveals a species' strong and weak points with regard to stability and evolutionary capacity. Temporal genetic stability is rarely tested in marine species other than commercially important fishes, but is crucial for the utility of temporal snapshots in conservation management. High and stable diversity can help to mitigate the predicted northward range shift of seaweeds under the impact of climate change. Given the key ecological role of fucoid seaweeds along rocky shores, the positive effect of genetic diversity may reach beyond the species level to stabilize the entire intertidal ecosystem along the temperate North Atlantic. In this study, we estimated the effective population size, as well as temporal changes in genetic structure and diversity of the seaweed F. serratus using 22 microsatellite markers. Samples were taken across latitudes and a range of temperature regimes at seven locations with decadal sampling (2000 and 2010). Across latitudes, genetic structure and diversity remained stable over 5-10 generations. Stable small-scale structure enhanced regional diversity throughout the species' range. In accordance with its biogeographic history, effective population size and diversity peaked in the species' mid-range in Brittany (France), and declined towards its leading and trailing edge to the north and south. At the species' southern edge, multi-locus-heterozygosity displayed a strong decline from 1999 to 2010. Temporally stable genetic structure over small spatial scales is a potential driver for local adaptation and species radiation in the genus Fucus. Survival and adaptation of the low-diversity leading edge of F. serratus may be enhanced by regional gene flow and 'surfing' of favorable mutations or impaired by the accumulation of deleterious mutations. Our results have clear implications for the conservation of F. serratus at its genetically unique southern edge in Northwest Iberia, where increasing temperatures are likely the major cause for the decline not only of F. serratus, but also other intertidal and subtidal macroalgae. We expect that F. serratus will disappear from Northwest Iberia by 2100 if genetic rescue is not induced by the influx of genetic variation from Brittany.
Burri, Andrea; Spector, Tim; Rahman, Qazi
2015-04-01
Homosexuality is a stable population-level trait in humans that lowers direct fitness and yet is substantially heritable, resulting in a so-called Darwinian "paradox." Evolutionary models have proposed that polymorphic genes influencing homosexuality confer a reproductive benefit to heterosexual carriers, thus offsetting the fitness costs associated with persistent homosexuality. This benefit may consist of a "sex typicality" intermediate phenotype. However, there are few empirical tests of this hypothesis using genetically informative data in humans. This study aimed to test the hypothesis that common genetic factors can explain the association between measures of sex typicality, mating success, and homosexuality in a Western (British) sample of female twins. Here, we used data from 996 female twins (498 twin pairs) comprising 242 full dizygotic pairs and 256 full monozygotic pairs (mean age 56.8) and 1,555 individuals whose co-twin did not participate. Measures of sexual orientation, sex typicality (recalled childhood gender nonconformity), and mating success (number of lifetime sexual partners) were completed. Variables were subject to multivariate variance component analysis. We found that masculine women are more likely to be nonheterosexual, report more sexual partners, and, when heterosexual, also report more sexual partners. Multivariate twin modeling showed that common genetic factors explained the relationship between sexual orientation, sex typicality, and mating success through a shared latent factor. Our findings suggest that genetic factors responsible for nonheterosexuality are shared with genetic factors responsible for the number of lifetime sexual partners via a latent sex typicality phenotype in human females. These results may have implications for evolutionary models of homosexuality but are limited by potential mediating variables (such as personality traits) and measurement issues. © 2015 International Society for Sexual Medicine.
Ackerman, Sara L; Koenig, Barbara A
2018-01-01
Increasingly used for clinical purposes, genome and exome sequencing can generate clinically relevant information that is not directly related to the reason for testing (incidental or secondary findings). Debates about the ethical implications of secondary findings were sparked by the American College of Medical Genetics (ACMG) 2013 policy statement, which recommended that laboratories report pathogenic alterations in 56 genes. Although wide variation in laboratories' secondary findings policies has been reported, little is known about its causes. We interviewed 18 laboratory directors and genetic counselors at 10 U.S. laboratories to investigate the motivations and interests shaping secondary findings reporting policies for clinical exome sequencing. Analysis of interview transcripts and laboratory documents was informed by sociological theories of standardization. Laboratories varied widely in terms of the types of secondary findings reported, consent-form language, and choices offered to patients. In explaining their adaptation of the ACMG report, our participants weighed genetic information's clinical, moral, professional, and commercial value in an attempt to maximize benefits for patients and families, minimize the costs of sequencing and analysis, adhere to professional norms, attract customers, and contend with the uncertain clinical implications of much of the genetic information generated. Nearly all laboratories in our study voluntarily adopted ACMG's recommendations, but their actual practices varied considerably and were informed by laboratory-specific judgments about clinical utility and patient benefit. Our findings offer a compelling example of standardization as a complex process that rarely leads simply to uniformity of practice. As laboratories take on a more prominent role in decisions about the return of genetic information, strategies are needed to inform patients, families, and clinicians about the differences between laboratories' practices and ensure that the consent process prompts a discussion of the value of additional genetic information for patients and their families.
Association of reading disability on chromosome 6p22 in the Afrikaner population.
Platko, Jill V; Wood, Frank B; Pelser, Izelda; Meyer, Marianne; Gericke, George S; O'Rourke, Julia; Birns, Julie; Purcell, Shaun; Pauls, David L
2008-10-05
The genetic basis of reading disability (RD) has long been established through family and twin studies. More recently genetic linkage studies have identified genomic regions that appear to harbor susceptibility genes for RD. Association studies have been shown to have greater power for detecting genes of modest effect, particularly in genetically isolated populations. Hence, a case control study of RD was undertaken in the Afrikaner population in South Africa. Sixty-eight microsatellite markers in regions where linkages had been reported in previous studies were genotyped on 122 children with reading disability and 112 typically reading controls drawn from the same school population. A single allele of marker D6S299 showed a highly significant association with the RD phenotype (D6S299[229], P-value 0.000014). Other markers on other chromosomes also showed suggestive associations. Of particular interest were markers on chromosomes 1 and 15. These two regions have been implicated in studies of populations that formed the founding population in the Afrikaner population.
Lin, Ying-Ju; Liao, Wen-Ling; Wang, Chung-Hsing; Tsai, Li-Ping; Tang, Chih-Hsin; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Liang, Wen-Miin; Hsieh, Ai-Ru; Cheng, Chi-Fung; Chen, Jin-Hua; Chien, Wen-Kuei; Lin, Ting-Hsu; Wu, Chia-Ming; Liao, Chiu-Chu; Huang, Shao-Mei; Tsai, Fuu-Jen
2017-07-25
Human height can be described as a classical and inherited trait model. Genome-wide association studies (GWAS) have revealed susceptible loci and provided insights into the polygenic nature of human height. Familial short stature (FSS) represents a suitable trait for investigating short stature genetics because disease associations with short stature have been ruled out in this case. In addition, FSS is caused only by genetically inherited factors. In this study, we explored the correlations of FSS risk with the genetic loci associated with human height in previous GWAS, alone and cumulatively. We systematically evaluated 34 known human height single nucleotide polymorphisms (SNPs) in relation to FSS in the additive model (p < 0.00005). A cumulative effect was observed: the odds ratios gradually increased with increasing genetic risk score quartiles (p < 0.001; Cochran-Armitage trend test). Six affected genes-ZBTB38, ZNF638, LCORL, CABLES1, CDK10, and TSEN15-are located in the nucleus and have been implicated in embryonic, organismal, and tissue development. In conclusion, our study suggests that 13 human height GWAS-identified SNPs are associated with FSS risk both alone and cumulatively.
Coscia, I; Chopelet, J; Waples, R S; Mann, B Q; Mariani, S
2016-10-01
Large variance in reproductive success is the primary factor that reduces effective population size (Ne) in natural populations. In sequentially hermaphroditic (sex-changing) fish, the sex ratio is typically skewed and biased towards the 'first' sex, while reproductive success increases considerably after sex change. Therefore, sex-changing fish populations are theoretically expected to have lower Ne than gonochorists (separate sexes), assuming all other parameters are essentially equal. In this study, we estimate Ne from genetic data collected from two ecologically similar species living along the eastern coast of South Africa: one gonochoristic, the 'santer' sea bream Cheimerius nufar, and one protogynous (female-first) sex changer, the 'slinger' sea bream Chrysoblephus puniceus. For both species, no evidence of genetic structuring, nor significant variation in genetic diversity, was found in the study area. Estimates of contemporary Ne were significantly lower in the protogynous species, but the same pattern was not apparent over historical timescales. Overall, our results show that sequential hermaphroditism may affect Ne differently over varying time frames, and that demographic signatures inferred from genetic markers with different inheritance modes also need to be interpreted cautiously, in relation to sex-changing life histories.
Can Genetics Research Benefit Educational Interventions for All?
Asbury, Kathryn
2015-01-01
Pretty much everyone knows that our genes have at least something to do with how able or how high achieving we are. Some believe that we should not speak of this common knowledge, nor inquire into how genetic influence works or what it might mean. If we do not keep an open mind to the fact of genetic influence on academic achievement, however, then we cannot explore its possible implications. And if we do not consider the implications, then we cannot, as a society, harness any potential benefits or avoid possible pitfalls. So that's what this essay is about-exploring what behavioral genetics research might be able to offer to educational theory, policy, and practice. We cannot yet use biological information to make accurate predictions for all children. We do know, however, that academic achievement is heritable, which is to say that differences between individuals are influenced by differences in their DNA. If genes are part of the problem for some pupils (to take the negative spin on this), then it seems likely that studying them could be part of a solution. And that's what behavioral geneticists are trying to do-to chart and understand pathways from DNA to behavior and to identify interventions that can maximize outcomes for all. The fact is, though, that we have an awfully long way to go. © 2015 The Hastings Center.
Jody M. Tucker; Michael K. Schwartz; Richard L. Truex; Samantha M. Wisely; Fred W. Allendorf
2014-01-01
The small population of fisher (Pekania pennanti) in the southern Sierra Nevada is completely geographically and genetically isolated putting it at increased risk of extinction. Previous research using a clustered sampling scheme found a high amount of genetic subdivision within the southern Sierra Nevada population hypothesized to be caused by the Kings River Canyon....
USDA-ARS?s Scientific Manuscript database
In clonally propagated crops, non-additive genetic effects can be effectively exploited by the identification of superior genetic individuals as varieties. Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds of millions. We quantified the amount and natur...
ERIC Educational Resources Information Center
O'Brien, Gerald V.
2011-01-01
In the United States, genetic research, as well as policy and practice innovations based on this research, has expanded greatly over the past few decades. This expansion is indicated, for example, by the mapping of the human genome, an expansion of genetic counseling, and other biogenetic research. Also, a disability rights movement that in many…
Age trends in Douglas-fir genetic parameters and implications for optimum selection age.
G.R. Johnson; R.A. Sniezko; N.L. Mandel
1997-01-01
rends in genetic variation were examined over 51 progeny test sites throughout western Oregon. Narrow sense heritabilities for height and diameter showed an increasing trend to age 25, the oldest age examined. Before age 10, height heritabilities were relatively unstable. Type B site-site genetic correlations increased slowly with age for height and remained relatively...
Inferring Genetic Ancestry: Opportunities, Challenges, and Implications
Royal, Charmaine D.; Novembre, John; Fullerton, Stephanie M.; Goldstein, David B.; Long, Jeffrey C.; Bamshad, Michael J.; Clark, Andrew G.
2010-01-01
Increasing public interest in direct-to-consumer (DTC) genetic ancestry testing has been accompanied by growing concern about issues ranging from the personal and societal implications of the testing to the scientific validity of ancestry inference. The very concept of “ancestry” is subject to misunderstanding in both the general and scientific communities. What do we mean by ancestry? How exactly is ancestry measured? How far back can such ancestry be defined and by which genetic tools? How do we validate inferences about ancestry in genetic research? What are the data that demonstrate our ability to do this correctly? What can we say and what can we not say from our research findings and the test results that we generate? This white paper from the American Society of Human Genetics (ASHG) Ancestry and Ancestry Testing Task Force builds upon the 2008 ASHG Ancestry Testing Summary Statement in providing a more in-depth analysis of key scientific and non-scientific aspects of genetic ancestry inference in academia and industry. It culminates with recommendations for advancing the current debate and facilitating the development of scientifically based, ethically sound, and socially attentive guidelines concerning the use of these continually evolving technologies. PMID:20466090
Bridges, C.M.; Semlitsch, R.D.
2001-01-01
Currently, conservation efforts are devoted to determining the extent and the causes of the decline of many amphibian species worldwide. Human impacts frequently degrade amphibian habitat and have been implicated in many declines. Because genetic variance is critical in determining the persistence of a species in a changing environment, we examined the amount of genetic variability present in a single population for tolerance to an environmental stressor. We examined the amount of genetic variability among full- and half-sib families in a single population of southern leopard frogs (Rana sphenocephala) with respect to their tolerance to lethal concentrations of the agricultural chemical, carbaryl. Analysis of time-to-death data indicated significant differences among full-sib families and suggests a large amount of variability present in the responses to this environmental stressor. Significant differences in responses among half-sib families indicated that there is additive genetic variance. These data suggest that this population may have the ability to adapt to environmental stressors. It is possible that declines of amphibian populations in the western United States may be attributed to low genetic variability resulting from limited migration among populations and small population sizes.
Kumar, S; Deffenbacher, K; Marres, H A; Cremers, C W; Kimberling, W J
2000-01-01
Branchio-oto-renal (BOR) syndrome is characterized by ear malformations, cervical fistulas, hearing loss, and renal anomalies. It is an autosomal dominant disorder with variable clinical manifestations. The most common features of BOR syndrome are branchial, hearing, and renal anomalies. However, many affected subjects have been observed with branchial-cleft anomalies and hearing loss but without renal anomalies, a condition called "branchio-otic" (BO) syndrome. It is logical to question whether the BOR and BO syndromes are allelic or whether they represent distinct genetic entities. We identified a very large extended family whose members had branchial and hearing anomalies associated with commissural lip pits that segregated in an autosomal dominant fashion. Using a genomewide search strategy, we identified genetic linkage, with a maximum LOD score of 4.81 at recombination fraction 0, between the BO phenotype and polymorphic marker D1S2757 in the genetic region of chromosome 1q31. This is the first report of linkage for a second gene associated with BOR syndrome. The findings have important clinical implications and will provide insight into the genetic basis of BOR syndrome. PMID:10762556
Smith, C T; Dang, L C; Buckholtz, J W; Tetreault, A M; Cowan, R L; Kessler, R M; Zald, D H
2017-04-11
Dopamine function is broadly implicated in multiple neuropsychiatric conditions believed to have a genetic basis. Although a few positron emission tomography (PET) studies have investigated the impact of single-nucleotide polymorphisms (SNPs) in the dopamine D2 receptor gene (DRD2) on D2/3 receptor availability (binding potential, BP ND ), these studies have often been limited by small sample size. Furthermore, the most commonly studied SNP in D2/3 BP ND (Taq1A) is not located in the DRD2 gene itself, suggesting that its linkage with other DRD2 SNPs may explain previous PET findings. Here, in the largest PET genetic study to date (n=84), we tested for effects of the C957T and -141C Ins/Del SNPs (located within DRD2) as well as Taq1A on BP ND of the high-affinity D2 receptor tracer 18 F-Fallypride. In a whole-brain voxelwise analysis, we found a positive linear effect of C957T T allele status on striatal BP ND bilaterally. The multilocus genetic scores containing C957T and one or both of the other SNPs produced qualitatively similar striatal results to C957T alone. The number of C957T T alleles predicted BP ND in anatomically defined putamen and ventral striatum (but not caudate) regions of interest, suggesting some regional specificity of effects in the striatum. By contrast, no significant effects arose in cortical regions. Taken together, our data support the critical role of C957T in striatal D2/3 receptor availability. This work has implications for a number of psychiatric conditions in which dopamine signaling and variation in C957T status have been implicated, including schizophrenia and substance use disorders.
Wolfe, Marnin D; Kulakow, Peter; Rabbi, Ismail Y; Jannink, Jean-Luc
2016-08-31
In clonally propagated crops, non-additive genetic effects can be effectively exploited by the identification of superior genetic individuals as varieties. Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds of millions. We quantified the amount and nature of non-additive genetic variation for three key traits in a breeding population of cassava from sub-Saharan Africa using additive and non-additive genome-wide marker-based relationship matrices. We then assessed the accuracy of genomic prediction for total (additive plus non-additive) genetic value. We confirmed previous findings based on diallel populations, that non-additive genetic variation is significant for key cassava traits. Specifically, we found that dominance is particularly important for root yield and epistasis contributes strongly to variation in CMD resistance. Further, we showed that total genetic value predicted observed phenotypes more accurately than additive only models for root yield but not for dry matter content, which is mostly additive or for CMD resistance, which has high narrow-sense heritability. We address the implication of these results for cassava breeding and put our work in the context of previous results in cassava, and other plant and animal species. Copyright © 2016 Author et al.
NASA Astrophysics Data System (ADS)
Budde, G.; Burkhardt, C.; Kleine, T.
2017-07-01
Mo isotope systematics manifest a fundamental dichotomy in the genetic heritage of carbonaceous and non-carbonaceous meteorites. We discuss its implications in light of the most recent literature data and new isotope data for primitive achondrites.
Inbreeding Depression and Male Survivorship in Drosophila: Implications for Senescence Theory
Swindell, William R.; Bouzat, Juan L.
2006-01-01
The extent to which inbreeding depression affects longevity and patterns of survivorship is an important issue from several research perspectives, including evolutionary biology, conservation biology, and the genetic analysis of quantitative traits. However, few previous inbreeding depression studies have considered longevity as a focal life-history trait. We maintained laboratory populations of Drosophila melanogaster at census population sizes of 2 and 10 male-female pairs for up to 66 generations and performed repeated assays of male survivorship throughout this time period. On average, significant levels of inbreeding depression were observed for median life span and age-specific mortality. For age-specific mortality, the severity of inbreeding depression increased over the life span. We found that a baseline inbreeding load of 0.307 lethal equivalents per gamete affected age-specific mortality, and that this value increased at a rate of 0.046 per day of the life span. With respect to some survivorship parameters, the differentiation of lineages was nonlinear with respect to the inbreeding coefficient, which suggested that nonadditive genetic variation contributed to variation among lineages. These findings provide insights into the genetic basis of longevity as a quantitative trait and have implications regarding the mutation-accumulation evolutionary explanation of senescence. PMID:16204222
FTO associations with obesity and telomere length.
Zhou, Yuling; Hambly, Brett D; McLachlan, Craig S
2017-09-01
This review examines the biology of the Fat mass- and obesity-associated gene (FTO), and the implications of genetic association of FTO SNPs with obesity and genetic aging. Notably, we focus on the role of FTO in the regulation of methylation status as possible regulators of weight gain and genetic aging. We present a theoretical review of the FTO gene with a particular emphasis on associations with UCP2, AMPK, RBL2, IRX3, CUX1, mTORC1 and hormones involved in hunger regulation. These associations are important for dietary behavior regulation and cellular nutrient sensing via amino acids. We suggest that these pathways may also influence telomere regulation. Telomere length (TL) attrition may be influenced by obesity-related inflammation and oxidative stress, and FTO gene-involved pathways. There is additional emerging evidence to suggest that telomere length and obesity are bi-directionally associated. However, the role of obesity risk-related genotypes and associations with TL are not well understood. The FTO gene may influence pathways implicated in regulation of TL, which could help to explain some of the non-consistent relationship between weight phenotype and telomere length that is observed in population studies investigating obesity.
Sniekers, Suzanne; Stringer, Sven; Watanabe, Kyoko; Jansen, Philip R; Coleman, Jonathan R I; Krapohl, Eva; Taskesen, Erdogan; Hammerschlag, Anke R; Okbay, Aysu; Zabaneh, Delilah; Amin, Najaf; Breen, Gerome; Cesarini, David; Chabris, Christopher F; Iacono, William G; Ikram, M Arfan; Johannesson, Magnus; Koellinger, Philipp; Lee, James J; Magnusson, Patrik K E; McGue, Matt; Miller, Mike B; Ollier, William E R; Payton, Antony; Pendleton, Neil; Plomin, Robert; Rietveld, Cornelius A; Tiemeier, Henning; van Duijn, Cornelia M; Posthuma, Danielle
2017-07-01
Intelligence is associated with important economic and health-related life outcomes. Despite intelligence having substantial heritability (0.54) and a confirmed polygenic nature, initial genetic studies were mostly underpowered. Here we report a meta-analysis for intelligence of 78,308 individuals. We identify 336 associated SNPs (METAL P < 5 × 10 -8 ) in 18 genomic loci, of which 15 are new. Around half of the SNPs are located inside a gene, implicating 22 genes, of which 11 are new findings. Gene-based analyses identified an additional 30 genes (MAGMA P < 2.73 × 10 -6 ), of which all but one had not been implicated previously. We show that the identified genes are predominantly expressed in brain tissue, and pathway analysis indicates the involvement of genes regulating cell development (MAGMA competitive P = 3.5 × 10 -6 ). Despite the well-known difference in twin-based heritability for intelligence in childhood (0.45) and adulthood (0.80), we show substantial genetic correlation (r g = 0.89, LD score regression P = 5.4 × 10 -29 ). These findings provide new insight into the genetic architecture of intelligence.
Producing offspring in Armadillidium vulgare: Effects of genetic diversity and inbreeding.
Durand, Sylvine; Loiseau, Vincent; Prigot, Cybèle; Braquart-Varnier, Christine; Beltran-Bech, Sophie
2018-03-01
Genetic diversity is known to be correlated to fitness traits, and inbred individuals often display lower values for life history traits. In this study, we attempt to quantify how inbreeding affects such traits in the terrestrial isopod Armadillidium vulgare by performing inbred and non-inbred crosses under laboratory conditions. We estimated genetic characteristics of parents and offspring, and related them to fecundity and fertility measures, as well as offspring growth and survival. Our study shows that a decrease in offspring number might result from mortality around birth, but not to changes in fecundity, fertilization rate, or developmental failure between inbred and non-inbred crosses. More heterozygous females tended to be bigger and had a higher fecundity, which could have implications in mate choice. No effect of inbreeding was detected on offspring growth and survival. These results can be related to previously observed effects of genetic characteristics on mating strategies in A. vulgare, and could shed light on mechanisms of inbreeding avoidance in this species. © 2018 Wiley Periodicals, Inc.
Role of genetic background in induced instability
NASA Technical Reports Server (NTRS)
Kadhim, Munira A.; Nelson, G. A. (Principal Investigator)
2003-01-01
Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.
Selfish genetic elements and the gene’s-eye view of evolution
2016-01-01
During the last few decades, we have seen an explosion in the influx of details about the biology of selfish genetic elements. Ever since the early days of the field, the gene’s-eye view of Richard Dawkins, George Williams, and others, has been instrumental to make sense of new empirical observations and to the generation of new hypotheses. However, the close association between selfish genetic elements and the gene’s-eye view has not been without critics and several other conceptual frameworks have been suggested. In particular, proponents of multilevel selection models have used selfish genetic elements to criticize the gene’s-eye view. In this paper, I first trace the intertwined histories of the study of selfish genetic elements and the gene’s-eye view and then discuss how their association holds up when compared with other proposed frameworks. Next, using examples from transposable elements and the major transitions, I argue that different models highlight separate aspects of the evolution of selfish genetic elements and that the productive way forward is to maintain a plurality of perspectives. Finally, I discuss how the empirical study of selfish genetic elements has implications for other conceptual issues associated with the gene’s-eye view, such as agential thinking, adaptationism, and the role of fitness maximizing models in evolution. PMID:29491953
Malen, Rachel; Knerr, Sarah; Delgado, Fernanda; Fullerton, Stephanie M; Thompson, Beti
2016-01-01
Disseminating the results of transdisciplinary health disparities research will increasingly involve discussing family health history and/or genetic information with study participants and their communities. Often, individuals' familiarity and comfort with these topics will be unclear. To inform the dissemination activities of a Center for Population Health and Health Disparities (CPHHD) studying multilevel determinants of breast cancer disparities in Latinas, we talked with Spanish-speaking Mexican-Americans from a rural agricultural community about family health history, genetics, and disease risk. We found that participants had limited genetic literacy but were familiar with some concepts related to family health history. Participants emphasized the role of individual behavior in shaping health and expressed a strong desire for health-related information. This included genetic information about future disease risk, which participants were previously unaware of but thought could be useful for disease prevention. These findings suggest that for research dissemination to facilitate health promotion, gaps in knowledge, particularly genetic knowledge, will need to be overcome. Outreach to underserved Latino communities should take advantage of this existing knowledge of family health history and strong desire for health information, but also take care to not overstate the significance of unreplicated or low-penetrance genetic associations.
Role of genetic testing in patients undergoing percutaneous coronary intervention.
Moon, Jae Youn; Franchi, Francesco; Rollini, Fabiana; Rivas Rios, Jose R; Kureti, Megha; Cavallari, Larisa H; Angiolillo, Dominick J
2018-02-01
Variability in individual response profiles to antiplatelet therapy, in particular clopidogrel, is a well-established phenomenon. Genetic variations of the cytochrome P450 (CYP) 2C19 enzyme, a key determinant in clopidogrel metabolism, have been associated with clopidogrel response profiles. Moreover, the presence of a CYP2C19 loss-of-function allele is associated with an increased risk of atherothrombotic events among clopidogrel-treated patients undergoing percutaneous coronary interventions (PCI), prompting studies evaluating the use of genetic tests to identify patients who may be potential candidates for alternative platelet P2Y 12 receptor inhibiting therapies (prasugrel or ticagrelor). Areas covered: The present manuscript provides an overview of genetic factors associated with response profiles to platelet P2Y 12 receptor inhibitors and their clinical implications, as well as the most recent developments and future considerations on the role of genetic testing in patients undergoing PCI. Expert commentary: The availability of more user-friendly genetic tests has contributed towards the development of many ongoing clinical trials and personalized medicine programs for patients undergoing PCI. Results of pilot investigations have shown promising results, which however need to be confirmed in larger-scale studies to support the routine use of genetic testing as a strategy to personalize antiplatelet therapy and improve clinical outcomes.
Hunt, E; Bornovalova, M A; Patrick, C J
2015-05-01
Previous studies have reported strong genetic and environmental overlap between antisocial-externalizing (factor 2; F2) features of psychopathy and borderline personality disorder (BPD) tendencies. However, this line of research has yet to examine etiological associations of affective-interpersonal (factor 1, F1) features of psychopathy with BPD tendencies. The current study investigated differential phenotypic and genetic overlap of psychopathy factors 1 and 2 with BPD tendencies in a sample of over 250 male and female community-recruited adult twin pairs. Consistent with previous research, biometric analyses revealed strong genetic and non-shared environmental correlations of F2 with BPD tendencies, suggesting that common genetic and non-shared environmental factors contribute to both phenotypes. In contrast, negative genetic and non-shared environmental correlations were observed between F1 and BPD tendencies, indicating that the genetic factors underlying F1 serve as protective factors against BPD. No gender differences emerged in the analyses. These findings provide further insight into associations of psychopathic features - F1 as well as F2 - and BPD tendencies. Implications for treatment and intervention are discussed, along with how psychopathic traits may differentially influence the manifestation of BPD tendencies.
Role of Genetic Testing in Patients undergoing Percutaneous Coronary Intervention
Moon, Jae Youn; Franchi, Francesco; Rollini, Fabiana; Rios, Jose R. Rivas; Kureti, Megha; Cavallari, Larisa H.; Angiolillo, Dominick J.
2017-01-01
Introduction Variability in individual response profiles to antiplatelet therapy, in particular clopidogrel, is a well-established phenomenon. Genetic variations of the cytochrome P450 (CYP) 2C19 enzyme, a key determinant in clopidogrel metabolism, have been associated with clopidogrel response profiles. Moreover, the presence of a CYP2C19 loss-of-function allele is associated with an increased risk of atherothrombotic events among clopidogrel-treated patients undergoing percutaneous coronary interventions (PCI), prompting studies evaluating the use of genetic tests to identify patients who may be potential candidates for alternative platelet P2Y12 receptor inhibiting therapies (prasugrel or ticagrelor). Areas covered The present manuscript provides an overview of genetic factors associated with response profiles to platelet P2Y12 receptor inhibitors and their clinical implications, as well as the most recent developments and future considerations on the role of genetic testing in patients undergoing PCI. Expert Commentary The availability of more user-friendly genetic tests has contributed towards the development of many ongoing clinical trials and personalized medicine programs for patients undergoing PCI. Results of pilot investigations have shown promising results, which however need to be confirmed in larger-scale studies to support the routine use of genetic testing as a strategy to personalize antiplatelet therapy and improve clinical outcomes. PMID:28689434
Foster, Morris W
2009-09-01
The ongoing debate about the relationship between race and genetics is more than a century old and has yet to be resolved. Recent emphasis on population-based patterns in human genetic variation and the implications of those for disease susceptibility and drug response have revitalized that long-standing debate. Both sides in the debate use the same rhetorical device of treating geographic, ancestral, population-specific, and other categories as surrogates for race, but otherwise share no evidentiary standards, analytic frameworks, or scientific goals that might resolve the debate and result in some productive outcome. Setting a common goal of weighing the scientific benefits of using racial and other social heuristics with testable estimates of the potential social harms of racialization can reduce both the unreflexive use of race and other social identities in biological analyses as well as the unreflexive use of racialization in social critiques of genetics. Treating social identities used in genetic studies as objects for investigation rather than artifacts of participant self-report or researcher attribution also will reduce the extent to which genetic studies that report social identities imply that membership in social categories can be defined or predicted using genetic features.
Severns, Paul M; Liston, Aaron; Wilson, Mark V
2011-01-01
Small population size, genetic diversity, and spatial patterns of vegetative spread are important aspects to consider when managing populations of rare clonal plant species. We used 5 variable nuclear simple sequence repeat nDNA loci to determine the extent of genet rhizome spread, examine the possibility of very small population sizes, and project how Bombus spp. (bumblebee) foraging may impact selfing (through geitonogamy) for a threatened lupine (Lupinus oreganus Heller) that sprawls through nonadventitious rhizomes. Genotyping identified 1 genet (27 × 13 m) that dominated about 30% of a study site, whereas 15 genets spread a maximum average distance of about 5.5 m (range 1.6 -27.1 m) and appeared to be well integrated with intervening genets. We found unexpectedly high genotype diversity, no evidence of a recent genetic bottleneck, and 5 of 6 patches had mean fixation index values that were near Hardy-Weinberg Equilibrium expectations. If the median maximum Bombus foraging distance observed in lupine patches (1.2 m) occurred within genotyped populations, a typical foraging flight would have >80% chance of occurring between different genets. Our study demonstrates that inferences associated with clonality, small population size, and inbreeding depression should be directly evaluated for rare vegetatively spreading plants.
Incorporating genomics into breast and prostate cancer screening: assessing the implications
Chowdhury, Susmita; Dent, Tom; Pashayan, Nora; Hall, Alison; Lyratzopoulos, Georgios; Hallowell, Nina; Hall, Per; Pharoah, Paul; Burton, Hilary
2013-01-01
Individual risk prediction and stratification based on polygenic profiling may be useful in disease prevention. Risk-stratified population screening based on multiple factors including a polygenic risk profile has the potential to be more efficient than age-stratified screening. In this article, we summarize the implications of personalized screening for breast and prostate cancers. We report the opinions of multidisciplinary international experts who have explored the scientific, ethical, and logistical aspects of stratified screening. We have identified (i) the need to recognize the benefits and harms of personalized screening as compared with existing screening methods, (ii) that the use of genetic data highlights complex ethical issues including discrimination against high-risk individuals by insurers and employers and patient autonomy in relation to genetic testing of minors, (iii) the need for transparency and clear communication about risk scores, about harms and benefits, and about reasons for inclusion and exclusion from the risk-based screening process, and (iv) the need to develop new professional competences and to assess cost-effectiveness and acceptability of stratified screening programs before implementation. We conclude that health professionals and stakeholders need to consider the implications of incorporating genetic information in intervention strategies for health-care planning in the future. Genet Med 2013:15(6):423–432 PMID:23412607
Genetic Testing: How Genetics and Genomics Can Affect Healthcare Disparities .
Allen, Deborah
2018-02-01
Advances in oncology care have transformed treatment approaches as genetics and genomics analyses promote implementation of personalized medicine. Genetics and genomics research in TP53 have demonstrated that some mutations are prevalent in minority populations. This has implications on personalized treatment approaches, particularly in early disease stages. The purpose of this article is to describe oncology nurses' role in applying these findings in practice to reduce disparities observed in cancer and survivorship care. .
Understanding genetics: a primer for occupational health practice.
Wright, Lynette
2005-12-01
Because biologic diversity is essential for life, genes have developed many versions that may be further modified by interaction with other genes and with environmental factors. Polymorphic alterations of genetic material influence drug responses, predisposition or resistance to disease, and susceptibility to environmental toxicity. The occupational health professional should be aware of rapidly changing genetic tests, be able to distinguish between screening and diagnostic modalities, be able to access genetic resources to find the latest protocols, and should consider the ethical, legal, and social implications of genetic testing in the workplace.
Genetic diversity of Grapevine virus A in Washington and California vineyards.
Alabi, Olufemi J; Al Rwahnih, Maher; Mekuria, Tefera A; Naidu, Rayapati A
2014-05-01
Grapevine virus A (GVA; genus Vitivirus, family Betaflexiviridae) has been implicated with the Kober stem grooving disorder of the rugose wood disease complex. In this study, 26 isolates of GVA recovered from wine grape (Vitis vinifera) cultivars from California and Washington were analyzed for their genetic diversity. An analysis of a portion of the RNA-dependent RNA polymerase (RdRp) and complete coat protein (CP) sequences revealed intra- and inter-isolate sequence diversity. Our results indicated that both RdRp and CP are under strong negative selection based on the normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site. A global phylogenetic analysis of CP sequences revealed segregation of virus isolates into four major clades with no geographic clustering. In contrast, the RdRp-based phylogenetic tree indicated segregation of GVA isolates from California and Washington into six clades, independent of geographic origin or cultivar. Phylogenetic network coupled with recombination analyses showed putative recombination events in both RdRp and CP sequence data sets, with more of these events located in the CP sequence. The preponderance of divergent variants of GVA co-replicating within individual grapevines could increase viral genotypic complexity with implications for phylogenetic analysis and evolutionary history of the virus. The knowledge of genetic diversity of GVA generated in this study will provide a foundation for elucidating the epidemiological characteristics of virus populations at different scales and implementing appropriate management strategies for minimizing the spread of genetic variants of the virus by vectors and via planting materials supplied to nurseries and grape growers.
Impact of prosocial neuropeptides on human brain function.
Meyer-Lindenberg, Andreas
2008-01-01
Oxytocin and vasopressin are key effectors of social behaviour (Insel, T. R. and Fernald, R. D. (2004). Annu. Rev. Neurosci., 27: 697-722). Oxytocin effects in humans were recently demonstrated by a behavioural study showing selectively increased trust after hormone administration (Kosfeld, M., et al. (2005). Nature, 435: 673-676). Since this suggested involvement of the amygdala, which is linked to trust (Winston, J. S., et al. (2002). Nat. Neurosci., 5: 277-283) - presumably because of its role in danger monitoring - and highly expresses oxytocin receptors (Huber, D., et al. (2005). Science, 308: 245-248), we studied amygdala circuitry after double-blind crossover intranasal application of placebo or oxytocin (Kirsch, P., et al. (2005). J. Neurosci., 25: 11489-11493). Oxytocin potently reduced amygdala activation and decreased coupling to brainstem regions implicated in autonomic and behavioural manifestations of fear, indicating a neural mechanism for the effects of oxytocin in social cognition in humans and providing a potential therapeutic approach to social anxiety currently being tested in social phobia and autism. Furthermore, these data suggested a translational genetic approach. Preliminary findings (data not presented) from our laboratory using imaging genetics indeed implicate genetic variants for both AVPR1A, encoding the primary receptor of vasopressin in brain, and the oxytocin receptor, OXTR, in amygdala regulation and activation. Taken together, our results indicate neural mechanisms for human social behaviour mediating genetic risk for autism through an impact on amygdala signalling and provide a rationale for exploring therapeutic strategies aimed at abnormal amygdala function in this disorder and in social dysfunction in general.
Clopidogrel and genetic testing: is it necessary for everyone?
Goswami, Sweta; Cheng-Lai, Angela; Nawarskas, James
2012-01-01
Clopidogrel is a widely used antiplatelet agent to treat and prevent a variety of atherothrombotic diseases. More than a decade after its initial Food and Drug Administration approval, studies have emerged raising concerns regarding its possible reduced efficacy in patients who have impaired conversion of clopidogrel to its active metabolite (ie, poor metabolizers). Research has implicated genetic variations in the CYP2C19 isozyme as at least partly responsible for the variable antiplatelet response seen with clopidogrel. Studies have shown that patients possessing genetic variants of the CYP2C19 isozyme may be at increased risk of adverse cardiovascular events due to impaired clopidogrel efficacy, although this has not been definitively demonstrated. The Food and Drug Administration has issued a boxed warning regarding this concern. However, specific recommendations on genetic testing and alternative therapeutic strategies are not currently available. Genetic testing is commercially available to test patients for variability in the CYP2C19 isozyme, but altering antiplatelet therapy based on the results of this testing has not been adequately studied, and it is therefore not clear how to adjust therapy based on the results of this genetic testing. In addition, there are many other factors that may contribute to the variability in antiplatelet effect seen with clopidogrel besides CYP2C19 genetic polymorphisms. Ongoing trials dealing with adjusting antiplatelet therapy based on genetic testing will hopefully provide more useful information on how to appropriately integrate pharmacogenomics with the care of patients with atherothrombotic disease.
Inflammatory bowel disease: pathogenesis.
Zhang, Yi-Zhen; Li, Yong-Yu
2014-01-07
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by chronic relapsing intestinal inflammation. It has been a worldwide health-care problem with a continually increasing incidence. It is thought that IBD results from an aberrant and continuing immune response to the microbes in the gut, catalyzed by the genetic susceptibility of the individual. Although the etiology of IBD remains largely unknown, it involves a complex interaction between the genetic, environmental or microbial factors and the immune responses. Of the four components of IBD pathogenesis, most rapid progress has been made in the genetic study of gut inflammation. The latest internationally collaborative studies have ascertained 163 susceptibility gene loci for IBD. The genes implicated in childhood-onset and adult-onset IBD overlap, suggesting similar genetic predispositions. However, the fact that genetic factors account for only a portion of overall disease variance indicates that microbial and environmental factors may interact with genetic elements in the pathogenesis of IBD. Meanwhile, the adaptive immune response has been classically considered to play a major role in the pathogenesis of IBD, as new studies in immunology and genetics have clarified that the innate immune response maintains the same importance in inducing gut inflammation. Recent progress in understanding IBD pathogenesis sheds lights on relevant disease mechanisms, including the innate and adaptive immunity, and the interactions between genetic factors and microbial and environmental cues. In this review, we provide an update on the major advances that have occurred in above areas.
ERIC Educational Resources Information Center
Soni, S.; Whittington, J.; Holland, A. J.; Webb, T.; Maina, E.; Boer, H.; Clarke, D.
2007-01-01
Background: This study is part of a larger UK-wide study investigating psychiatric illness in people with Prader-Willi syndrome (PWS), and describes the longitudinal aspect of psychiatric illness, in particular psychotic illness, and examines the use and role of psychotropic medication. Method: A total of 119 individuals with genetically confirmed…
ERIC Educational Resources Information Center
Association for Education in Journalism and Mass Communication.
The Qualitative Studies section of the Proceedings contains the following 10 papers: "An Alternative to Alternative Media'" (James Hamilton); "A Critical Assessment of News Coverage of the Ethical Implications of Genetic Testing" (David A. Craig); "Earth First! and the Boundaries of Postmodern Environmental…
Org, Elin; Mehrabian, Margarete; Lusis, Aldons J
2015-08-01
Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Clinical Interpretation and Implications of Whole-Genome Sequencing
Dewey, Frederick E.; Grove, Megan E.; Pan, Cuiping; Goldstein, Benjamin A.; Bernstein, Jonathan A.; Chaib, Hassan; Merker, Jason D.; Goldfeder, Rachel L.; Enns, Gregory M.; David, Sean P.; Pakdaman, Neda; Ormond, Kelly E.; Caleshu, Colleen; Kingham, Kerry; Klein, Teri E.; Whirl-Carrillo, Michelle; Sakamoto, Kenneth; Wheeler, Matthew T.; Butte, Atul J.; Ford, James M.; Boxer, Linda; Ioannidis, John P. A.; Yeung, Alan C.; Altman, Russ B.; Assimes, Themistocles L.; Snyder, Michael; Ashley, Euan A.; Quertermous, Thomas
2014-01-01
IMPORTANCE Whole-genome sequencing (WGS) is increasingly applied in clinical medicine and is expected to uncover clinically significant findings regardless of sequencing indication. OBJECTIVES To examine coverage and concordance of clinically relevant genetic variation provided by WGS technologies; to quantitate inherited disease risk and pharmacogenomic findings in WGS data and resources required for their discovery and interpretation; and to evaluate clinical action prompted by WGS findings. DESIGN, SETTING, AND PARTICIPANTS An exploratory study of 12 adult participants recruited at Stanford University Medical Center who underwent WGS between November 2011 and March 2012. A multidisciplinary team reviewed all potentially reportable genetic findings. Five physicians proposed initial clinical follow-up based on the genetic findings. MAIN OUTCOMES AND MEASURES Genome coverage and sequencing platform concordance in different categories of genetic disease risk, person-hours spent curating candidate disease-risk variants, interpretation agreement between trained curators and disease genetics databases, burden of inherited disease risk and pharmacogenomic findings, and burden and interrater agreement of proposed clinical follow-up. RESULTS Depending on sequencing platform, 10% to 19% of inherited disease genes were not covered to accepted standards for single nucleotide variant discovery. Genotype concordance was high for previously described single nucleotide genetic variants (99%-100%) but low for small insertion/deletion variants (53%-59%). Curation of 90 to 127 genetic variants in each participant required a median of 54 minutes (range, 5-223 minutes) per genetic variant, resulted in moderate classification agreement between professionals (Gross κ, 0.52; 95%CI, 0.40-0.64), and reclassified 69%of genetic variants cataloged as disease causing in mutation databases to variants of uncertain or lesser significance. Two to 6 personal disease-risk findings were discovered in each participant, including 1 frameshift deletion in the BRCA1 gene implicated in hereditary breast and ovarian cancer. Physician review of sequencing findings prompted consideration of a median of 1 to 3 initial diagnostic tests and referrals per participant, with fair interrater agreement about the suitability of WGS findings for clinical follow-up (Fleiss κ, 0.24; P < 001). CONCLUSIONS AND RELEVANCE In this exploratory study of 12 volunteer adults, the use of WGS was associated with incomplete coverage of inherited disease genes, low reproducibility of detection of genetic variation with the highest potential clinical effects, and uncertainty about clinically reportable findings. In certain cases, WGS will identify clinically actionable genetic variants warranting early medical intervention. These issues should be considered when determining the role of WGS in clinical medicine. PMID:24618965
Kengne-Ouafo, Jonas A.; Millard, James D.; Nji, Theobald M.; Tantoh, William F.; Nyoh, Doris N.; Tendongfor, Nicholas; Enyong, Peter A.; Newport, Melanie J.; Davey, Gail; Wanji, Samuel
2016-01-01
Background There is limited assessment of whether research participants in low-income settings are afforded a full understanding of the meaning of medical research. There may also be particular issues with the understanding of genetic research. We used a rapid ethical assessment methodology to explore perceptions surrounding the meaning of research, genetics and genetic research in north west Cameroon. Methods Eleven focus group discussions (including 107 adults) and 72 in-depth interviews were conducted with various stakeholders in two health districts in north west Cameroon between February and April 2012. Results Most participants appreciated the role of research in generating knowledge and identified a difference between research and healthcare but gave varied explanations as to this difference. Most participants' understanding of genetics was limited to concepts of hereditary, with potential benefits limited to the level of the individual or family. Explanations based on supernatural beliefs were identified as a special issue but participants tended not to identify any other special risks with genetic research. Conclusion We demonstrated a variable level of understanding of research, genetics and genetic research, with implications for those carrying out genetic research in this and other low resource settings. Our study highlights the utility of rapid ethical assessment prior to complex or sensitive research. PMID:25969503
Nunes, C F; Setotaw, T A; Pasqual, M; Chagas, E A; Santos, E G; Santos, D N; Lima, C G B; Cançado, G M A
2017-03-22
Myrciaria dubia (camu-camu) is an Amazon tree that produces a tart fruit with high vitamin C content. It is probably the fruit with the highest vitamin C content among all Brazilian fruit crops and it can be used to supplement daily vitamin C dose. This property has attracted the attention of consumers and, consequently, encouraged fruit farmers to produce it. In order to identify and select potential accessions for commercial exploitation and breeding programs, M. dubia has received considerable research attention. The identification and characterization of genetic diversity, as well as identification of the population structure of accessions preserved in germplasm banks are fundamental for the success of any breeding program. The objective of this study was to evaluate the genetic variability of 10 M. dubia populations obtained from the shores of Reis Lake, located in the municipality of Caracaraí, Roraima, Brazil. Fourteen polymorphic inter simple sequence repeat (ISSR) markers were used to study the population genetic diversity, which resulted in 108 identified alleles. Among the 14 primers, GCV, UBC810, and UBC827 produced the highest number of alleles. The study illustrated the suitability and efficiency of ISSR markers to study the genetic diversity of M. dubia accessions. We also revealed the existence of high genetic variability among both accessions and populations that can be exploited in future breeding programs and conservation activities of this species.
NASA Astrophysics Data System (ADS)
Tsui, Chi-Yan; Treagust, David
2010-05-01
While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two-tier multiple-choice instrument for diagnosing grades 10 and 12 students' understanding of genetics in terms of reasoning. The pretest and posttest forms of the diagnostic instrument were used alongside other methods in evaluating students' understanding of genetics in a case-based qualitative study on teaching and learning with multiple representations in three Western Australian secondary schools. Previous studies have shown that a two-tier diagnostic instrument is useful in probing students' understanding or misunderstanding of scientific concepts and ideas. The diagnostic instrument in this study was designed and then progressively refined, improved, and implemented to evaluate student understanding of genetics in three case schools. The final version of the instrument had Cronbach's alpha reliability of 0.75 and 0.64, respectively, for its pretest and the posttest forms when it was administered to a group of grade 12 students (n = 17). This two-tier diagnostic instrument complemented other qualitative data collection methods in this research in generating a more holistic picture of student conceptual learning of genetics in terms of scientific reasoning. Implications of the findings of this study using the diagnostic instrument are discussed.
Genetic privacy and confidentiality: why they are so hard to protect.
Rothstein, M A
1998-01-01
Author notes that widespread concerns have been raised about protecting genetic privacy and confidentiality in insurance and employment. He argues that effective protections are difficult because complicated issues, such as the right of access to health care, are invariably implicated.
Roberts, Celia; Franklin, Sarah
2004-12-01
Contemporary scientific and clinical knowledges and practices continue to make available new forms of genetic information, and to create new forms of reproductive choice. For example, couples at high risk of passing on a serious genetic condition to their offspring in Britain today have the opportunity to use Preimplantation Genetic Diagnosis (PGD) to select embryos that are unaffected by serious genetic disease. This information assists these couples in making reproductive choices. This article presents an analysis of patients' experiences of making the decision to undertake PGD treatment and of making reproductive choices based on genetic information. We present qualitative interview data from an ethnographic study of PGD based in two British clinics which indicate how these new forms of genetic choice are experienced by patients. Our data suggest that PGD patients make decisions about treatment in a complex way, taking multiple variables into account, and maintaining ongoing assessments of the multiple costs of engaging with PGD. Patients are aware of broader implications of their decisions, at personal, familial, and societal levels, as well as clinical ones. Based on these findings we argue that the ethical and social aspects of PGD are often as innovative as the scientific and medical aspects of this technique, and that in this sense, science cannot be described as "racing ahead" of society.
Verrier, Eloi R.; Langevin, Christelle; Tohry, Corinne; Houel, Armel; Ducrocq, Vincent; Benmansour, Abdenour; Quillet, Edwige; Boudinot, Pierre
2012-01-01
Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV) waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction - that was not observed in the susceptible cells - and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses. PMID:22514610
Vissers, Lisenka E L M; van Nimwegen, Kirsten J M; Schieving, Jolanda H; Kamsteeg, Erik-Jan; Kleefstra, Tjitske; Yntema, Helger G; Pfundt, Rolph; van der Wilt, Gert Jan; Krabbenborg, Lotte; Brunner, Han G; van der Burg, Simone; Grutters, Janneke; Veltman, Joris A; Willemsen, Michèl A A P
2017-09-01
Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene-based testing) and WES simultaneously. Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin.Genet Med advance online publication 23 March 2017.
Vissers, Lisenka E.L.M.; van Nimwegen, Kirsten J.M.; Schieving, Jolanda H.; Kamsteeg, Erik-Jan; Kleefstra, Tjitske; Yntema, Helger G.; Pfundt, Rolph; van der Wilt, Gert Jan; Krabbenborg, Lotte; Brunner, Han G.; van der Burg, Simone; Grutters, Janneke; Veltman, Joris A.; Willemsen, Michèl A.A.P.
2017-01-01
Purpose: Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. Methods: We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene–based testing) and WES simultaneously. Results: Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Conclusion: Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin. Genet Med advance online publication 23 March 2017 PMID:28333917
Application of Genetic/Genomic Approaches to Allergic Disorders
Baye, Tesfaye M.; Martin, Lisa J.; Khurana Hershey, Gurjit K.
2010-01-01
Completion of the human genome project and rapid progress in genetics and bioinformatics have enabled the development of large public databases, which include genetic and genomic data linked to clinical health data. With the massive amount of information available, clinicians and researchers have the unique opportunity to complement and integrate their daily practice with the existing resources to clarify the underlying etiology of complex phenotypes such as allergic diseases. The genome itself is now often utilized as a starting point for many studies and multiple innovative approaches have emerged applying genetic/genomic strategies to key questions in the field of allergy and immunology. There have been several successes, which have uncovered new insights into the biologic underpinnings of allergic disorders. Herein, we will provide an in depth review of genomic approaches to identifying genes and biologic networks involved in allergic diseases. We will discuss genetic and phenotypic variation, statistical approaches for gene discovery, public databases, functional genomics, clinical implications, and the challenges that remain. PMID:20638111
Garon-Carrier, Gabrielle; Boivin, Michel; Kovas, Yulia; Feng, Bei; Brendgen, Mara; Vitaro, Frank; Séguin, Jean R; Tremblay, Richard E; Dionne, Ginette
2017-12-01
This study investigated the stable and transient genetic and environmental contributions to individual differences in number knowledge in the transition from preschool (age 5) to Grade 1 (age 7) and to the predictive association between early number knowledge and later math achievement (age 10-12). We conducted genetic simplex modeling across these three time points. Genetic variance was transmitted from preschool number knowledge to late-elementary math achievement; in addition, significant genetic innovation (i.e., new influence) occurred at ages 10 through 12 years. The shared and nonshared environmental contributions decreased during the transition from preschool to school entry, but shared and nonshared environment contributed to the continuity across time from preschool number knowledge to subsequent number knowledge and math achievement. There was no new environmental contribution at time points subsequent to preschool. Results are discussed in light of their practical implications for children who have difficulties with mathematics, as well as for preventive intervention.
Genetic neurological channelopathies: molecular genetics and clinical phenotypes.
Spillane, J; Kullmann, D M; Hanna, M G
2016-01-01
Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Genealogical analyses of rabies virus strains from Brazil based on N gene alleles.
Heinemann, M. B.; Fernandes-Matioli, F. M. C.; Cortez, A.; Soares, R. M.; Sakamoto, S. M.; Bernardi, F.; Ito, F. H.; Madeira, A. M. B. N.; Richtzenhain, L. J.
2002-01-01
Thirty rabies virus isolates from cows and vampire bats from different regions of São Paulo State, Southeastern Brazil and three rabies vaccines were studied genetically. The analysis was based on direct sequencing of PCR-amplified products of 600 nucleotides coding for the amino terminus of nucleoprotein gene. The sequences were checked to verify their genealogical and evolutionary relationships and possible implication for health programmes. Statistical data indicated that there were no significant genetic differences between samples isolated from distinct hosts, from different geographical regions and between samples collected in the last two decades. According to the HKA test, the variability observed in the sequences is probably due to genetic drift. Since changes in genetic material may produce modifications in the protein responsible for immunogenicity of virus, which may eventually cause vaccine failure in herds, we suggest that continuous efforts in monitoring genetic diversity in rabies virus field strains, in relation to vaccine strains, must be conducted. PMID:12113496
Multhaup, Michael L.; Seldin, Marcus; Jaffe, Andrew E.; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R.; Wong, G. William; Feinberg, Andrew P.
2015-01-01
SUMMARY Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211
Genetics: Implications for Prevention and Management of Coronary Artery Disease.
Assimes, Themistocles L; Roberts, Robert
2016-12-27
An exciting new era has dawned for the prevention and management of coronary artery disease (CAD) utilizing genetic risk variants. The recent identification of over 60 susceptibility loci for CAD confirms not only the importance of established risk factors, but also the existence of many novel causal pathways that are expected to improve our understanding of the genetic basis of CAD and facilitate the development of new therapeutic agents over time. Concurrently, Mendelian randomization studies have provided intriguing insights on the causal relationship between CAD-related traits, and highlight the potential benefits of long-term modifications of risk factors. Last, genetic risk scores of CAD may serve not only as prognostic, but also as predictive markers, and carry the potential to considerably improve the delivery of established prevention strategies. This review will summarize the evolution and discovery of genetic risk variants for CAD and their current and future clinical applications. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Field Studies to Evaluate Potential Differences between Bt and non-Bt Corn Residue
USDA-ARS?s Scientific Manuscript database
Some reports suggest that the genetically-modified Bt corn residue may have higher lignin content and that the residue may be more resistant to decomposition. If true, then there are implications for both farming practices, e.g., tillage and planting, as well as global carbon budgets. We conducted ...
Field Studies to Evaluate Potential Differences between Bt and non-Bt Corn Residue
USDA-ARS?s Scientific Manuscript database
Some reports suggest that the genetically-modified Bt corn residue may have higher lignin content and that the residue may be more resistant to decomposition. If true, then there are implications for both farming practices, e.g., tillage and planting, as well as global carbon budgets. We evaluated ...
The association between intelligence and lifespan is mostly genetic.
Arden, Rosalind; Luciano, Michelle; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M
2016-02-01
Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. The finding of common genetic effects between lifespan and intelligence has important implications for public health, and for those interested in the genetics of intelligence, lifespan or inequalities in health outcomes including lifespan. © The Author 2015; Published by Oxford University Press on behalf of the International Epidemiological Association.
The association between intelligence and lifespan is mostly genetic
Arden, Rosalind; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M
2016-01-01
Abstract Background: Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. Methods: We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. Results: The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. Conclusions: The finding of common genetic effects between lifespan and intelligence has important implications for public health, and for those interested in the genetics of intelligence, lifespan or inequalities in health outcomes including lifespan. PMID:26213105
The morality of human gene patents.
Resnik, David B
1997-03-01
This paper discusses the morality of patenting human genes and genetic technologies. After examining arguments on different sides of the issue, the paper concludes that there are, at present, no compelling reasons to prohibit the extension of current patent laws to the realm of human genetics. However, since advances in genetics are likely to have profound social implications, the most prudent course of action demands a continual reexamination of genetics laws and policies in light of ongoing developments in science and technology.
Gonzaga-Jauregui, Claudia; Harel, Tamar; Gambin, Tomasz; Kousi, Maria; Griffin, Laurie B.; Francescatto, Ludmila; Ozes, Burcak; Karaca, Ender; Jhangiani, Shalini; Bainbridge, Matthew N.; Lawson, Kim S.; Pehlivan, Davut; Okamoto, Yuji; Withers, Marjorie; Mancias, Pedro; Slavotinek, Anne; Reitnauer, Pamela J; Goksungur, Meryem T.; Shy, Michael; Crawford, Thomas O.; Koenig, Michel; Willer, Jason; Flores, Brittany N.; Pediaditrakis, Igor; Us, Onder; Wiszniewski, Wojciech; Parman, Yesim; Antonellis, Anthony; Muzny, Donna M.; Katsanis, Nicholas; Battaloglu, Esra; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.
2015-01-01
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity. PMID:26257172
Dimond, Rebecca
2014-01-01
This article identifies a significant transformation in the role and identity of parents accompanying their child to clinic. This shift is a product of the intersection between paediatric and genetic medicine, where parents play a critical role in providing information about their child, family and ultimately, about themselves. To provide a context for this matrix, two broad areas of sociological inquiry are highlighted. The first is explanations of the role a parent plays in paediatric medicine and the second is the diagnostic process in paediatric genetics and the implications for parent and child identities. Drawing from an ethnographic study of clinical consultations, attention is paid to the changing role of parenthood and the extended role of patienthood in paediatric genetic medicine. © 2013 The Author. Sociology of Health & Illness © 2013 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.
Obesity is associated with genetic variants that alter dopamine availability.
Need, A C; Ahmadi, K R; Spector, T D; Goldstein, D B
2006-05-01
Human and animal studies have implicated dopamine in appetite regulation, and family studies have shown that BMI has a strong genetic component. Dopamine availability is controlled largely by three enzymes: COMT, MAOA and MAOB, and by the dopamine transporter SLC6A3, and each gene has a well-characterized functional variant. Here we look at these four functional polymorphisms together, to investigate how heritable variation in dopamine levels influences the risk of obesity in a cohort of 1150, including 240 defined as obese (BMI > or = 30). The COMT and SLC6A3 polymorphisms showed no association with either weight, BMI or obesity risk. We found, however, that both MAOA and MAOB show an excess of the low-activity genotypes in obese individuals (MAOA:chi2= 15.45, p = 0.004; MAOB:chi2= 8.05, p = 0.018). Additionally, the MAOA genotype was significantly associated with both weight (p = 0.0005) and BMI (p = 0.001). When considered together, the 'at risk genotype'--low activity genotypes at both the MAOA and MAOB loci--shows a relative risk for obesity of 5.01. These results have not been replicated and, given the experience of complex trait genetics, warrant caution in interpretation. In implicating both the MAOA and MOAB variants, however, this study provides the first indication that dopamine availability (as opposed to other effects of MAOA) is involved in human obesity. It is therefore a priority to assess the associations in replication datasets.
Takahashi, Nagahide; Nielsen, Karin Sandager; Aleksic, Branko; Petersen, Steffen; Ikeda, Masashi; Kushima, Itaru; Vacaresse, Nathalie; Ujike, Hiroshi; Iwata, Nakao; Dubreuil, Véronique; Mirza, Naheed; Sakurai, Takeshi; Ozaki, Norio; Buxbaum, Joseph D.; Sap, Jan
2011-01-01
Background Solid evidence links schizophrenia (SZ) susceptibility to neurodevelopmental processes involving tyrosine phosphorylation-mediated signaling. Mouse studies implicate the Ptpra gene, encoding protein tyrosine phosphatase RPTPα, in the control of radial neuronal migration, cortical cytoarchitecture, and oligodendrocyte differentiation. The human gene encoding RPTPα, PTPRA, maps to a chromosomal region (20p13) associated with susceptibility to psychotic illness. Methods We characterized neurobehavioral parameters, as well as gene expression in the central nervous system, of mice with a null mutation in the Ptpra gene. We searched for genetic association between polymorphisms in PTPRA and schizophrenia risk (2 independent cohorts; total of 1420 cases and 1377 controls), and we monitored PTPRA expression in prefrontal dorsolateral cortex of SZ patients (35 cases, 2 control groups of 35 cases) Results We find that Ptpra−/− mice reproduce neurobehavioral endophenotypes of human SZ: sensitization to metamphetamine-induced hyperactivity, defective sensorimotor gating, and defective habituation to a startle response. Ptpra loss of function also leads to reduced expression of multiple myelination genes, mimicking the hypomyelination-associated changes in gene expression observed in post mortem patient brains. We further report that a polymorphism at the PTPRA locus is genetically associated with SZ, and that PTPRA mRNA levels are reduced in post mortem dorsolateral prefrontal cortex of subjects with SZ. Conclusion The implication of this well-studied signaling protein in SZ risk and endophenotype manifestation provides novel entry points into the etiopathology of this disease. PMID:21831360
Practical implications for genetic modeling in the genomics era
USDA-ARS?s Scientific Manuscript database
Genetic models convert data into estimated breeding values and other information useful to breeders. The goal is to provide accurate and timely predictions of the future performance for each animal (or embryo). Modeling involves defining traits, editing raw data, removing environmental effects, incl...
Genetic Technology and Agricultural Development
ERIC Educational Resources Information Center
Staub, William J.; Blase, Melvin G.
1971-01-01
Examines the nature, application, limits and potential of applied genetics in plant breeding as a factor in South Asian agricultural development. Concludes other factors were also present in recent agricultural growth, and indicates some economic implications of continued growth, including problems of employment of displaced rural workers. (AL)
Neurogenetic and Neurodevelopmental Pathways to Learning Disabilities.
ERIC Educational Resources Information Center
Mazzocco, Michele M. M.; And Others
1997-01-01
This paper reviews ongoing research designed to specify the cognitive, behavioral, and neuroanatomical phenotypes of specific genetic etiologies of learning disability. The genetic disorders at the focus of the research include reading disability, neurofibromatosis type 1, Tourette syndrome, and fragile X syndrome. Implications for identifying…
P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE
The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...
Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo
Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less
Inequities in genetic testing for hereditary breast cancer: implications for public health practice.
Sayani, Ambreen
2018-05-20
The Ontario Breast Screening Program for women with a genetic predisposition to breast cancer is one of the first international models of a government-funded public health service that offers systematic genetic screening to women at a high risk of breast cancer. However, since the implementation of the program in 2011, enrolment rates have been lower than anticipated. Whilst there may be several reasons for this to happen, it does call into consideration the 'inverse equity law', whereby the more advantaged in society are the first to participate and benefit from universal health services. An outcome of this phenomenon is an increase in the health divide between those that are at a social advantage versus those that are not. Using an intersectionality lens, this paper explores the role of the social determinants of health and social identity in creating possible barriers in the access to genetic screening for hereditary breast cancer, and the implications for public health practice in recognising and ameliorating these differences.
Stocking activities for the Arctic charr in Lake Geneva: Genetic effects in space and time.
Savary, Romain; Dufresnes, Christophe; Champigneulle, Alexis; Caudron, Arnaud; Dubey, Sylvain; Perrin, Nicolas; Fumagalli, Luca
2017-07-01
Artificial stocking practices are widely used by resource managers worldwide, in order to sustain fish populations exploited by both recreational and commercial activities, but their benefits are controversial. Former practices involved exotic strains, although current programs rather consider artificial breeding of local fishes (supportive breeding). Understanding the complex genetic effects of these management strategies is an important challenge with economic and conservation implications, especially in the context of population declines. In this study, we focus on the declining Arctic charr ( Salvelinus alpinus ) population from Lake Geneva (Switzerland and France), which has initially been restocked with allochtonous fishes in the early eighties, followed by supportive breeding. In this context, we conducted a genetic survey to document the evolution of the genetic diversity and structure throughout the last 50 years, before and after the initiation of hatchery supplementation, using contemporary and historical samples. We show that the introduction of exotic fishes was associated with a genetic bottleneck in the 1980-1990s, a break of Hardy-Weinberg Equilibrium (HWE), a reduction in genetic diversity, an increase in genetic structure among spawning sites, and a change in their genetic composition. Together with better environmental conditions, three decades of subsequent supportive breeding using local fishes allowed to re-establish HWE and the initial levels of genetic variation. However, current spawning sites have not fully recovered their original genetic composition and were extensively homogenized across the lake. Our study demonstrates the drastic genetic consequences of different restocking tactics in a comprehensive spatiotemporal framework and suggests that genetic alteration by nonlocal stocking may be partly reversible through supportive breeding. We recommend that conservation-based programs consider local diversity and implement adequate protocols to limit the genetic homogenization of this Arctic charr population.
Variability of individual genetic load: consequences for the detection of inbreeding depression.
Restoux, Gwendal; Huot de Longchamp, Priscille; Fady, Bruno; Klein, Etienne K
2012-03-01
Inbreeding depression is a key factor affecting the persistence of natural populations, particularly when they are fragmented. In species with mixed mating systems, inbreeding depression can be estimated at the population level by regressing the average progeny fitness by the selfing rate of their mothers. We applied this method using simulated populations to investigate how population genetic parameters can affect the detection power of inbreeding depression. We simulated individual selfing rates and genetic loads from which we computed fitness values. The regression method yielded high statistical power, inbreeding depression being detected as significant (5 % level) in 92 % of the simulations. High individual variation in selfing rate and high mean genetic load led to better detection of inbreeding depression while high among-individual variation in genetic load made it more difficult to detect inbreeding depression. For a constant sampling effort, increasing the number of progenies while decreasing the number of individuals per progeny enhanced the detection power of inbreeding depression. We discuss the implication of among-mother variability of genetic load and selfing rate on inbreeding depression studies.
Białecka, Monika; Robowski, Piotr; Honczarenko, Krystyna; Roszmann, Anna; Sławek, Jarosław
2009-01-01
Elevated homocysteine (Hcy) plasma levels are caused by genetic and environmental factors. Polymorphisms of Hcy metabolizing enzyme genes may result in its plasma increase. Experimental and clinical studies have shown the possible role of hyperhomocysteinaemia in pathogenesis of Parkinson's disease (PD), Alzheimer's disease and vascular disorders. The results of clinical studies in PD generally do not support the theoretical hypotheses, and animal studies remain controversial. A major environmental factor responsible for Hcy increase in PD seems to be levodopa therapy. Its metabolism results in Hcy increase and may be reduced with folate and vitamins B6, B12 supplementation or inhibition of catechol-O-methyltransferase (COMT) activity. Therefore, the potential harmful role of Hcy may be diminished in PD patients with vascular comorbidities. Further studies are needed to establish the real role of Hcy for PD and other neurological disorders. The paper summarizes the current knowledge on the genetic and environmental factors responsible for Hcy increase in PD.
Introduction to Genetics and Childhood Obesity: Relevance to Nursing Practice
Seal, Nuananong
2013-01-01
Purpose The aims for this article are to provide an overview of the current state of research on genetic contributions to the development of childhood obesity and to suggest genetic-focused nursing practices to prevent childhood obesity. Organizing Constructs Genetic epidemiology of childhood obesity, modes to identifying obesity genes, types of human obesity genes, and nursing implications are discussed. Clinical Relevance The successful integration of genetics into nursing practice will provide opportunities for nurses to participate fully as major agents and collaborators in the health care revolution. Conclusions Practicing nurses across the profession will need to become knowledgeable about genetics and take part in obesity prevention through genetic assessment of susceptibility and appropriate environmental interventions. PMID:20798151
Genetics of Inflammatory Bowel Diseases
McGovern, Dermot; Kugathasan, Subra; Cho, Judy H.
2015-01-01
In this Review, we provide an update on genome-wide association studies (GWAS) in inflammatory bowel disease (IBD). In addition, we summarize progress in defining the functional consequences of associated alleles for coding and non-coding genetic variation. In the small minority of loci where major association signals correspond to non-synonymous variation, we summarize studies defining their functional effects and implications for therapeutic targeting. Importantly, the large majority of GWAS-associated loci involve non-coding variation, many of which modulate levels of gene expression. Recent expression quantitative trait loci (eQTL) studies have established that expression of the large majority of human genes is regulated by non-coding genetic variation. Significant advances in defining the epigenetic landscape have demonstrated that IBD GWAS signals are highly enriched within cell-specific active enhancer marks. Studies in European ancestry populations have dominated the landscape of IBD genetics studies, but increasingly, studies in Asian and African-American populations are being reported. Common variation accounts for only a modest fraction of the predicted heritability and the role of rare genetic variation of higher effects (i.e. odds ratios markedly deviating from one) is increasingly being identified through sequencing efforts. These sequencing studies have been particularly productive in very-early onset, more severe cases. A major challenge in IBD genetics will be harnessing the vast array of genetic discovery for clinical utility, through emerging precision medicine initiatives. We discuss the rapidly evolving area of direct to consumer genetic testing, as well as the current utility of clinical exome sequencing, especially in very early onset, severe IBD cases. We summarize recent progress in the pharmacogenetics of IBD with respect of partitioning patient responses to anti-TNF and thiopurine therapies. Highly collaborative studies across research centers and across subspecialties and disciplines will be required to fully realize the promise of genetic discovery in IBD. PMID:26255561
Gao, R; Penzes, P
2015-01-01
Autism Spectrum Disorders (ASD) and Schizophrenia (SCZ) are cognitive disorders with complex genetic architectures but overlapping behavioral phenotypes, which suggests common pathway perturbations. Multiple lines of evidence implicate imbalances in excitatory and inhibitory activity (E/I imbalance) as a shared pathophysiological mechanism. Thus, understanding the molecular underpinnings of E/I imbalance may provide essential insight into the etiology of these disorders and may uncover novel targets for future drug discovery. Here, we review key genetic, physiological, neuropathological, functional, and pathway studies that suggest alterations to excitatory/inhibitory circuits are keys to ASD and SCZ pathogenesis.
Human genetic variation and the gut microbiome in disease.
Hall, Andrew Brantley; Tolonen, Andrew C; Xavier, Ramnik J
2017-11-01
Taxonomic and functional changes to the composition of the gut microbiome have been implicated in multiple human diseases. Recent microbiome genome-wide association studies reveal that variants in many human genes involved in immunity and gut architecture are associated with an altered composition of the gut microbiome. Although many factors can affect the microbial organisms residing in the gut, a number of recent findings support the hypothesis that certain host genetic variants predispose an individual towards microbiome dysbiosis. This condition, in which the normal microbiome population structure is disturbed, is a key feature in disorders of metabolism and immunity.
Luong, Khanh vinh quoc; Nguyen, Lan Thi Hoàng
2013-06-01
Genetic studies have identified numerous factors linking β-adrenergic blockade to Parkinson's disease (PD), including human leukocyte antigen genes, the renin-angiotensin system, poly(adenosine diphosphate-ribose) polymerase 1, nerve growth factor, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate. β-Adrenergic blockade has also been implicated in PD via its effects on matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase 2, and nitric oxide synthase. β-Adrenergic blockade may have a significant role in PD; therefore, the characterization of β-adrenergic blockade in patients with PD is needed.
Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher
2014-01-01
Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532
Exome Sequencing Identifies Three Novel Candidate Genes Implicated in Intellectual Disability
Azam, Maleeha; Ayub, Humaira; Vissers, Lisenka E. L. M.; Gilissen, Christian; Ali, Syeda Hafiza Benish; Riaz, Moeen; Veltman, Joris A.; Pfundt, Rolph; van Bokhoven, Hans; Qamar, Raheel
2014-01-01
Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID. PMID:25405613
McBride, Colleen M; Alford, Sharon Hensley; Reid, Robert J; Larson, Eric B; Baxevanis, Andreas D; Brody, Lawrence C
2009-08-01
To evaluate what psychological and behavioral factors predict who is likely to seek SNP-based genetic tests for multiple common health conditions where feedback can be used to motivate primary prevention. Adults aged 25-40 years who were enrolled in a large managed care organization were surveyed. Those eligible could log on to a secure study Web site to review information about the risks and benefits of a SNP-based genetic test and request free testing. Two primary outcomes are addressed: accessing the Web (yes or no) and deciding to be tested (completed a blood draw at the clinic) Those considering genetic susceptibility testing did not hold genetically deterministic beliefs (0.42 on scale of 0 [behavior] to 1 [genetic]) but believed genetic information to be valuable and were confident they could understand such information. Individuals who believed it important to learn about genetics (odds ratio = 1.28), were confident they could understand genetics (odds ratio = 1.26), and reported the most health habits to change (odds ratio = 1.39) were most likely to get tested. Individuals who present to health care providers with online genetics information may be among the most motivated to take steps toward healthier lifestyles. These motives might be leveraged by health care providers to promote positive health outcomes.
Candidate genes implicated in type 1 diabetes susceptibility.
Aribi, Mourad
2008-05-01
Type 1 diabetes (T1D) is an autoimmune disease resulting from pancreatic beta-cells destruction, often appearing on a genetic ground susceptibility under the influence of one or more environmental factors. Multiplex families studies, using genetic markers allowed the identification of various genes, including HLA, insulin, SUMO-4 and CTLA-4 all being linked with different degrees to disease risk. The MIF gene was also suggested, although its role has yet to be established on family or twin studies. The difference in susceptibility among T1D patients suggest the development of the disease as resulting from the interaction between genetic and environmental factors. This review emphasizes the importance of identifying the genes that have a direct impact on the autoimmune process, while recalling the different strategies that are followed. The style of writing should appeal to those with strong interests in molecular biology with an equal balance of immunology and molecular epidemiology.
Atkinson, Breanna E; Lipton, Debra; Baughman, Holly M; Schermer, Julie A; Harris, Juliette; Vernon, Philip A
2015-04-01
This article reports the first behavioral genetic study of relationships between alexithymia and four styles of humor: affiliative, self-enhancing, self-defeating, and aggressive. A total of 509 MZ pairs and 264 DZ pairs of twins completed the Toronto Alexithymia Scale-20 (TAS-20) and the Humor Styles Questionnaire (HSQ). Consistent with our predictions, alexithymia correlated negatively with affiliative and self-enhancing humor and positively with self-defeating and aggressive humor. All but one of the 16 phenotypic correlations that we report are significant at the 0.01 level. Also consistent with our predictions, the phenotypic correlations between alexithymia and humor styles were primarily attributable to correlated genetic factors and to a lesser extent to correlated non-shared environmental factors. Correlated shared environmental factors had no significant effect. Implications and limitations of this study are discussed.
Mutation screening of X-chromosomal neuroligin genes: no mutations in 196 autism probands.
Vincent, John B; Kolozsvari, Debbie; Roberts, Wendy S; Bolton, Patrick F; Gurling, Hugh M D; Scherer, Stephen W
2004-08-15
Autism, a childhood neuropsychiatric disorder with a strong genetic component, is currently the focus of considerable attention within the field of human genetics as well many other medical-related disciplines. A recent study has implicated two X-chromosomal neuroligin genes, NLGN3 and NLGN4, as having an etiological role in autism, having identified a frameshift mutation in one gene and a substitution mutation in the other, segregating in multiplex autism spectrum families (Jamain et al. [2003: Nat Genet 34:27-29]). The function of neuroligin as a trigger for synapse formation would suggest that such mutations would likely result in some form of pathological manifestation. Our own study, screening a larger sample of 196 autism probands, failed to identify any mutations that would affect the coding regions of these genes. Our findings suggest that mutations in these two genes are infrequent in autism. Copyright 2004 Wiley-Liss, Inc.
Hannigan, Laurie J; McAdams, Tom A; Plomin, Robert; Eley, Thalia C
2017-09-01
Theoretical models of child development typically consider the home environment as a product of bidirectional effects, with parent- and child-driven processes operating interdependently. However, the developmental structure of these processes during the transition from childhood to adolescence has not been well studied. In this study we used longitudinal genetic analyses of data from 6646 UK-representative twin pairs (aged 9-16 years) to investigate stability and change in parenting and household chaos in the context of parent-child bidirectional effects. Stability in the home environment was modest, arising mainly from parent-driven processes and family-wide influences. In contrast, change over time was more influenced by child-driven processes, indicated by significant age-specific genetic influences. Interpretations of these results and their implications for researchers are discussed. © 2016 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
Gaber, Richard F.; Mathison, Lorilee; Edelman, Irv; Culbertson, Michael R.
1983-01-01
Five previously unmapped frameshift suppressor genes have been located on the yeast genetic map. In addition, we have further characterized the map positions of two suppressors whose approximate locations were determined in an earlier study. These results represent the completion of genetic mapping studies on all 25 of the known frameshift suppressor genes in yeast.—The approximate location of each suppressor gene was initially determined through the use of a set of mapping strains containing 61 signal markers distributed throughout the yeast genome. Standard meiotic linkage was assayed in crosses between strains carrying the suppressors and the mapping strains. Subsequent to these approximate linkage determinations, each suppressor gene was more precisely located in multi-point crosses. The implications of these mapping results for the genomic distribution of frameshift suppressor genes, which include both glycine and proline tRNA genes, are discussed. PMID:17246112
Tabor, M P; Brakenhoff, R H; van Houten, V M; Kummer, J A; Snel, M H; Snijders, P J; Snow, G B; Leemans, C R; Braakhuis, B J
2001-06-01
In 1953, Slaughter et al. [D. P. Slaughter et al., Cancer (Phila.), 6: 963-968, 1953] proposed the concept of field cancerization in patients with squamous cell carcinoma of the head and neck (HNSCC) and discussed its clinical significance for the development of second primary tumors and local recurrences. To define the process of field cancerization and its putative clinical implications, we analyzed genetic aberrations in HNSCC and the accompanying macroscopically normal mucosa. In 28 HNSCC patients, loss of heterozygosity was determined in tumor and five noncontiguous mucosal biopsies using eight microsatellite markers at 9p, 3p, and 17p. For patients who showed loss of heterozygosity in their mucosal biopsies, all margins of the surgical specimen were subsequently analyzed to determine the extension of the field. In these cases, additional markers at 8p, 13q, and 18q as well as p53 mutations were included to determine subclonal differences between field and tumor. Genetically altered fields were detected in 36% (10 of 28) of the HNSCC patients. The field varied in size between patients and consisted of genetically different subclones. In 7 of 10 cases, the field extended into the surgical margins. One particular patient with a genetically altered field in a surgical margin developed a local recurrence after 28 months of follow-up. Microsatellite analysis showed that this recurrence had more molecular markers in common with the nonresected premalignant field than with the original tumor, suggesting that this persistent field has progressed further into a new malignancy. Our data show that genetically altered mucosa remains after treatment in a significant proportion of HNSCC patients, which may explain in part the high frequency of local recurrences and second primary tumors. Adequate identification and risk assessment of these genetically altered fields may have profound implications for future patient management.
Buried treasure: evolutionary perspectives on microbial iron piracy
Barber, Matthew F.; Elde, Nels C.
2015-01-01
Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a critical innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of `iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution, but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease. PMID:26431675
Geronikolou, Styliani A; Pavlopoulou, Athanasia; Cokkinos, Dennis; Chrousos, George
2017-01-01
Obesity is a chronic disease of increasing prevalence reaching epidemic proportions. Genetic defects as well as epigenetic effects contribute to the obesity phenotype. Investigating gene (e.g. MC4R defects)-environment (behavior, infectious agents, stress) interactions is a relative new field of great research interest. In this study, we have made an effort to create an interactome (henceforth referred to as "obesidome"), where extrinsic stressors response, intrinsic predisposition, immunity response to inflammation and autonomous nervous system implications are integrated. These pathways are presented in one interactome network for the first time. In our study, obesity-related genes/gene products were found to form a complex interactions network.
Personality and language characteristics in parents from multiple-incidence autism families.
Piven, J; Palmer, P; Landa, R; Santangelo, S; Jacobi, D; Childress, D
1997-07-25
Several studies have suggested that the genetic liability for autism may be expressed in non-autistic relatives of autistic probands, in behavioral characteristics that are milder but qualitatively similar to the defining features of autism. We employ a variety of direct assessment approaches to examine both personality and language in parents ascertained through having two autistic children (multiple-incidence autism parents) and parents of Down syndrome probands. Multiple-incidence autism parents had higher rates of particular personality characteristics (rigidity, aloofness, hypersensitivity to criticism, and anxiousness), speech and pragmatic language deficits, and more limited friendships than parents in the comparison group. The implications of these findings for future genetic studies of autism are discussed.
McHugh, Kirk M
2014-04-01
Congenital obstructive nephropathy remains one of the leading causes of chronic renal failure in children. The direct link between obstructed urine flow and abnormal renal development and subsequent dysfunction represents a central paradigm of urogenital pathogenesis that has far-reaching clinical implications. Even so, a number of diagnostic, prognostic, and therapeutic quandaries still exist in the management of congenital obstructive nephropathy. Studies in our laboratory have characterized a unique mutant mouse line that develops in utero megabladder, variable hydronephrosis, and progressive renal failure. Megabladder mice represent a valuable functional model for the study of congenital obstructive nephropathy. Recent studies have begun to shed light on the genetic etiology of mgb (-/-) mice as well as the molecular pathways controlling disease progression in these animals.
Ovine Reference Materials and Assays for Prion Genetic Testing
USDA-ARS?s Scientific Manuscript database
Codon variants implicated in scrapie susceptibility or disease progression include those at amino acid positions 112, 136, 141, 154, and 171. Nine single nucleotide polymorphisms (SNPs) determine which residues are encoded by the five implicated codons and accurately scoring these SNPs is essential...
The Co-occurring Use and Misuse of Cannabis and Tobacco: A Review
Agrawal, Arpana; Budney, Alan J.; Lynskey, Michael T.
2012-01-01
Aims Cannabis and tobacco use and misuse frequently co-occur. This review examines the epidemiological evidence supporting the lifetime co-occurrence of cannabis and tobacco use and outlines the mechanisms that link these drugs to each other. Mechanisms include (a) shared genetic factors; (b) shared environmental influences, including (c) route of administration (via smoking), (d) co-administration and (e) models of co-use. We also discuss respiratory harms associated with co-use of cannabis and tobacco, overlapping withdrawal syndromes and outline treatment implications for cooccurring use. Methods Selective review of published studies. Results Both cannabis and tobacco use and misuse are influenced by genetic factors and a proportion of these genetic factors influence both cannabis and tobacco use and misuse. Environmental factors such as availability play an important role, with economic models suggesting a complementary relationship where increases in price of one drug decrease the use of the other. Route of administration and smoking cues may contribute to their sustained use. Similar withdrawal syndromes, with many symptoms in common, may have important treatment implications. Emerging evidence suggests that dual abstinence may predict better cessation outcomes, yet empirically researched treatments tailored for co-occurring use are lacking. Conclusion There is accumulating evidence that some mechanisms linking cannabis and tobacco use are distinct from those contributing to co-occurring use of drugs in general. There is an urgent need for research to identify the underlying mechanisms and harness their potential etiological implications to tailor treatment options for this serious public health challenge. PMID:22300456
Attention as an Organ System: Implications for Education, Training and Rehabilitation
2010-03-31
nucleotide genotype (CC, CT and TT) t iti 521a pos on - . Mapping the genetic variation of executive attention onto brain activityfMRI results: N=16 MAOA ...EDUCATION AND EXPERTISE SUMMARY Attention System Alert Orient Executive Individuality Implications for Training, Expertise Pathology and Genes ...Curran 2001) , SUMMARY Attention System Alert Oreint Executive Individuality Implications for Training, Expertise Pathology and Genes , Rehabilitation
ERIC Educational Resources Information Center
Rakhlin, Natalia; Kornilov, Sergey A.; Palejev, Dean; Koposov, Roman A.; Chang, Joseph T.; Grigorenko, Elena L.
2013-01-01
This article describes the results of an epidemiological study of developmental language disorder (DLD) in an isolated rural Russian population. We report an atypically high prevalence of DLD across all age groups when contrasted with a comparison population. The results are corroborated by a set of comparisons of school-aged children from the…
USDA-ARS?s Scientific Manuscript database
Genotyping-by-sequencing (GBS) was performed on 257 Phytophthora infestans isolates belonging to four clonal lineages to study within-lineage diversity. The four lineages used in the study included US-8 (n=28), US-11 (n=27), US-23 (n=166), and US-24 (n=36), with isolates originating from 23 of the U...
Ovine Reference Materials and Assays for Prion Genetic Testing
USDA-ARS?s Scientific Manuscript database
Background: Genetic predisposition to scrapie in sheep is associated with variation in the peptide sequence of the ovine prion protein encoded by Prnp. Codon variants implicated in scrapie susceptibility or disease progression include those at amino acid positions 112, 136, 141, 154, and 171. Nin...
Family Secrets: The Bioethics of Genetic Testing
ERIC Educational Resources Information Center
Markowitz, Dina G.; DuPre, Michael J.; Holt, Susan; Chen, Shaw-Ree; Wischnowski, Michael
2006-01-01
This article discusses "Family Secrets," a problem-based learning (PBL) curriculum module that focuses on the bioethical implications of genetic testing. In high school biology classrooms throughout New York State, students are using "Family Secrets" to learn about DNA testing; Huntington's disease (HD); and the ethical, legal,…
Alzheimer disease in women: a clinical and genetics perspective.
Gies, Cheryl; Lessick, Mira
2009-08-01
Upon completion of this activity, the learner will be able to: 1. Identify clinical and genetic characteristics and considerations associated with Alzheimer disease (AD). 2. Describe assessment and management strategies for AD. 3. Describe nursing implications for women and families with, or at risk for, AD.
A new definition of Genetic Counseling: National Society of Genetic Counselors' Task Force report.
Resta, Robert; Biesecker, Barbara Bowles; Bennett, Robin L; Blum, Sandra; Hahn, Susan Estabrooks; Strecker, Michelle N; Williams, Janet L
2006-04-01
The Genetic Counseling Definition Task Force of the National Society of Genetic Counselors (NSGC) developed the following definition of genetic counseling that was approved by the NSGC Board of Directors: Genetic counseling is the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease. This process integrates the following: Interpretation of family and medical histories to assess the chance of disease occurrence or recurrence. Education about inheritance, testing, management, prevention, resources and research. Counseling to promote informed choices and adaptation to the risk or condition. The definition was approved after a peer review process with input from the NSGC membership, genetic professional organizations, the NSGC legal counsel, and leaders of several national genetic advocacy groups.
[Genetic composition of the Chilean population: the population from San Pedro de Atacama].
Acuña, M; Llop, E; Rothhammer, F
1994-10-01
This work describes the genetic composition of atacameños from San Pedro de Atacama. The results show that a) the contribution of non-indigenous genes is relatively low, in relation to the spanish immigration period. b) the Hardy-Weinberg genetic disequilibrium for MNSs system should have biological implications c) the variant for esterasa D enzyme may be the same found in other chilean populations.
The genetics of Takayasu arteritis.
Renauer, Paul; Sawalha, Amr H
Takayasu arteritis (TAK) is a rare systemic vasculitis that is characterized by granulomatous inflammation of the aorta and its major branches. The cellular and biochemical processes involved in the pathogenesis of TAK are beginning to be elucidated, and implicate both cell and antibody-mediated autoimmune mechanisms. In addition, the underlying etiology to TAK may be explained, at least in part, by a complex genetic contribution. The most well-recognized genetic susceptibility locus for the disease is the classical HLA allele, HLA-B*52, which has been confirmed in several ethnicities. The genetic susceptibility with HLA-B*52, as well as additional classical alleles and loci, implicate both HLA class I and class II involvement in TAK. Furthermore, genetic associations with genes encoding immune response regulators, pro-inflammatory cytokines and mediators of humoral immunity may directly relate to disease mechanisms. Non-HLA susceptibility loci that have been recently established for TAK with a genome-wide level of significance include FCGR2A/FCGR3A, IL12B, IL6, RPS9/LILRB3, and a locus on chromosome 21 near PSMG1. In this review, we present the complex genetic predisposition to TAK and discuss how recent findings identified potential targets in the pathogenesis and treatment of the disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Albar, Mohammed A
2002-06-01
Genetic diseases include not only single gene disorders, but multifactorial, somatic cell genetic disorders, mitochondrial and even chromosomal. One in 4 adults will suffer from a multifactorial or a somatic cell genetic disease. The common diseases in the community have a hereditary component namely diabetes mellitus, hypertension, ischemic heart diseases and many types of cancer. Even monogenic diseases which affect a small number of the newborns (2%-3%), have a greater impact on childhood diseases up to age 15 years. Therefore, it is imperative to scrutinize the available methods of prevention and management of genetic disorders, their ethical implications, and since east Mediterranean region is mainly occupied by Arabs and muslims, religious considerations become of paramount importance. Islam differs from many other religions in providing a complete code of life, which encompasses the secular with spiritual, the mundane with the celestial and hence forms the basis of the ethical, moral and even juridical attitudes and laws towards any problem or situation. Islamic teachings carry a great deal of instructions for health promotion and disease prevention including hereditary and genetic disorders. This review discusses how the Islamic teachings play an important role in the prevention and management of genetic disorders and the type of ethical implications involved in such management namely premarital medical examination, the question of consanguinity, the genetic counseling, the question of preimplantation diagnosis, the question of abortion and the offering of alternative ways of reproduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jager, Yetta
2005-01-01
This study uses a genetic individual-based model of white sturgeon (Acipenser transmontanus) populations in a river to examine the genetic and demographic trade-offs associated with operating a conservation hatchery. Simulation experiments evaluated three management practices: (i) setting quotas to equalize family contributions in an effort to prevent genetic swamping, (ii) an adaptive management scheme that interrupts stocking when introgression exceeds a specified threshold, and (iii) alternative broodstock selection strategies that influence domestication. The first set of simulations, designed to evaluate equalizing the genetic contribution of families, did not show the genetic benefits expected. The second set of simulations showed thatmore » simulated adaptive management was not successful in controlling introgression over the long term, especially with uncertain feedback. The third set of simulations compared the effects of three alternative broodstock selection strategies on domestication for hypothetical traits controlling early density-dependent survival. Simulated aquaculture selected for a density-tolerant phenotype when broodstock were taken from a genetically connected population. Using broodstock from an isolated population (i.e., above an upstream barrier or in a different watershed) was more effective at preventing domestication than using wild broodstock from a connected population.« less
Vadaparampil, S T; Scherr, C L; Cragun, D; Malo, T L; Pal, T
2015-05-01
Genetic counseling and testing for hereditary breast and ovarian cancer now includes practitioners from multiple healthcare professions, specialties, and settings. This study examined whether non-genetics professionals (NGPs) perform guideline-based patient intake and informed consent before genetic testing. NGPs offering BRCA testing services in Florida (n = 386) were surveyed about clinical practices. Among 81 respondents (response rate = 22%), approximately half reported: sometimes scheduling a separate session for pre-test counseling lasting 11-30 min prior to testing, discussing familial implications of testing, benefits and limitations of risk management options, and discussing the potential psychological impact and insurance-related issues. Few constructed a three-generation pedigree, discussed alternative hereditary cancer syndromes, or the meaning of a variant result. This lack of adherence to guideline-based practice may result in direct harm to patients and their family members. NGPs who are unable to deliver guideline adherent cancer genetics services should focus on identification and referral of at-risk patients to in person or telephone services provided by genetics professionals. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Social and Ethical Implications of Genomics, Race, Ethnicity and Health Inequities
Knerr, Sarah
2010-01-01
Objectives To review ethical, ethnic/ancestral, and societal issues of genetic and genomic information and technologies in the context of racial and ethnic health disparities. Data sources Research and journal articles, government reports, web sites. Conclusion As knowledge of human genetic variation and its link to diseases continues to grow, some see race and ethnicity well poised to serve as genetic surrogates in predicting disease etiology and treatment response. However, stereotyping and bias, in clinical interactions can be barriers to effective treatment for racial and ethnic minority patients. Implications for nursing practice The nursing profession has a key role in assuring that genomic healthcare does not enhance racial and ethnic health inequities. This will require utilization of new genomic knowledge and caring for each patient as an individual in a culturally and clinically appropriate manner. PMID:19000599
An integrated analysis of genes and functional pathways for aggression in human and rodent models.
Zhang-James, Yanli; Fernàndez-Castillo, Noèlia; Hess, Jonathan L; Malki, Karim; Glatt, Stephen J; Cormand, Bru; Faraone, Stephen V
2018-06-01
Human genome-wide association studies (GWAS), transcriptome analyses of animal models, and candidate gene studies have advanced our understanding of the genetic architecture of aggressive behaviors. However, each of these methods presents unique limitations. To generate a more confident and comprehensive view of the complex genetics underlying aggression, we undertook an integrated, cross-species approach. We focused on human and rodent models to derive eight gene lists from three main categories of genetic evidence: two sets of genes identified in GWAS studies, four sets implicated by transcriptome-wide studies of rodent models, and two sets of genes with causal evidence from online Mendelian inheritance in man (OMIM) and knockout (KO) mice reports. These gene sets were evaluated for overlap and pathway enrichment to extract their similarities and differences. We identified enriched common pathways such as the G-protein coupled receptor (GPCR) signaling pathway, axon guidance, reelin signaling in neurons, and ERK/MAPK signaling. Also, individual genes were ranked based on their cumulative weights to quantify their importance as risk factors for aggressive behavior, which resulted in 40 top-ranked and highly interconnected genes. The results of our cross-species and integrated approach provide insights into the genetic etiology of aggression.
Pauci- and Multibacillary Leprosy: Two Distinct, Genetically Neglected Diseases
Gaschignard, Jean; Grant, Audrey Virginia; Thuc, Nguyen Van; Orlova, Marianna; Cobat, Aurélie; Huong, Nguyen Thu; Ba, Nguyen Ngoc; Thai, Vu Hong; Abel, Laurent; Schurr, Erwin; Alcaïs, Alexandre
2016-01-01
After sustained exposure to Mycobacterium leprae, only a subset of exposed individuals develops clinical leprosy. Moreover, leprosy patients show a wide spectrum of clinical manifestations that extend from the paucibacillary (PB) to the multibacillary (MB) form of the disease. This “polarization” of leprosy has long been a major focus of investigation for immunologists because of the different immune response in these two forms. But while leprosy per se has been shown to be under tight human genetic control, few epidemiological or genetic studies have focused on leprosy subtypes. Using PubMed, we collected available data in English on the epidemiology of leprosy polarization and the possible role of human genetics in its pathophysiology until September 2015. At the genetic level, we assembled a list of 28 genes from the literature that are associated with leprosy subtypes or implicated in the polarization process. Our bibliographical search revealed that improved study designs are needed to identify genes associated with leprosy polarization. Future investigations should not be restricted to a subanalysis of leprosy per se studies but should instead contrast MB to PB individuals. We show the latter approach to be the most powerful design for the identification of genetic polarization determinants. Finally, we bring to light the important resource represented by the nine-banded armadillo model, a unique animal model for leprosy. PMID:27219008
Genetics and intelligence differences: five special findings.
Plomin, R; Deary, I J
2015-02-01
Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for 'positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century-Genome-wide Complex Trait Analysis (GCTA)-which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture of intelligence that are relevant to attempts to narrow the 'missing heritability' gap.
Genetics and intelligence differences: five special findings
Plomin, R; Deary, I J
2015-01-01
Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for ‘positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century—Genome-wide Complex Trait Analysis (GCTA)—which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture of intelligence that are relevant to attempts to narrow the ‘missing heritability' gap. PMID:25224258
Pathway-based discovery of genetic interactions in breast cancer
Xu, Zack Z.; Boone, Charles; Lange, Carol A.
2017-01-01
Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314
Sleep disorders and Parkinson disease; lessons from genetics.
Gan-Or, Ziv; Alcalay, Roy N; Rouleau, Guy A; Postuma, Ronald B
2018-01-31
Parkinson disease is a common, age-related neurodegenerative disorder, projected to afflict millions of individuals in the near future. Understanding its etiology and identifying clinical, genetic or biological markers for Parkinson disease onset and progression is therefore of major importance. Various sleep-related disorders are the most common group of non-motor symptoms in advanced Parkinson disease, but they can also occur during its prodromal phase. However, with the exception of REM sleep behavior disorder, it is unclear whether they are part of the early pathological process of Parkinson disease, or if they develop as Parkinson disease advances because of treatments and neurodegeneration progression. The advancements in genetic studies in the past two decades have generated a wealth of information, and recent genetic studies offer new insight on the association of sleep-related disorders with Parkinson disease. More specifically, comparing genetic data between Parkinson disease and sleep-related disorders can clarify their association, which may assist in determining whether they can serve as clinical markers for Parkinson disease risk or progression. In this review, we discuss the current knowledge on the genetics of sleep-related disorders in Parkinson disease context, and the potential implications on research, diagnosis, counseling and treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice
Sutter, Andreas; Lindholm, Anna K.
2015-01-01
Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically inferior mates. A reduction in genetic quality is associated with costly selfish genetic elements (SGEs), and studies in invertebrates have shown that males bearing sex ratio distorting SGEs are worse sperm competitors than wild-type males. We used a vertebrate model species to test whether females can avoid an autosomal SGE, the t haplotype, through polyandry. The t haplotype in house mice exhibits strong drive in t heterozygous males by affecting spermatogenesis and is associated with homozygous in utero lethality. We used controlled matings to test the effect of the t haplotype on sperm competitiveness. Regardless of mating order, t heterozygous males sired only 11% of zygotes when competing against wild-type males, suggesting a very strong effect of the t haplotype on sperm quality. We provide, to our knowledge, the first substantial evidence that polyandry ameliorates the harmful effects of an autosomal SGE arising through genetic incompatibility. We discuss potential mechanisms in our study species and the broader implications for the benefits of polyandry. PMID:26136452
A threshold model of content knowledge transfer for socioscientific argumentation
NASA Astrophysics Data System (ADS)
Sadler, Troy D.; Fowler, Samantha R.
2006-11-01
This study explores how individuals make use of scientific content knowledge for socioscientific argumentation. More specifically, this mixed-methods study investigates how learners apply genetics content knowledge as they justify claims relative to genetic engineering. Interviews are conducted with 45 participants, representing three distinct groups: high school students with variable genetics knowledge, college nonscience majors with little genetics knowledge, and college science majors with advanced genetics knowledge. During the interviews, participants advance positions concerning three scenarios dealing with gene therapy and cloning. Arguments are assessed in terms of the number of justifications offered as well as justification quality, based on a five-point rubric. Multivariate analysis of variance results indicate that college science majors outperformed the other groups in terms of justification quality and frequency. Argumentation does not differ among nonscience majors or high school students. Follow-up qualitative analyses of interview responses suggest that all three groups tend to focus on similar, sociomoral themes as they negotiate socially complex, genetic engineering issues, but that the science majors frequently reference specific science content knowledge in the justification of their claims. Results support the Threshold Model of Content Knowledge Transfer, which proposes two knowledge thresholds around which argumentation quality can reasonably be expected to increase. Research and educational implications of these findings are discussed.
Kyndt, Tina; Assogbadjo, Achille E; Hardy, Olivier J; Glele Kakaï, Romain; Sinsin, Brice; Van Damme, Patrick; Gheysen, Godelieve
2009-05-01
This study evaluates the spatial genetic structure of baobab (Adansonia digitata) populations from West African agroforestry systems at different geographical scales using AFLP fingerprints. Eleven populations from four countries (Benin, Ghana, Burkina Faso, and Senegal) had comparable levels of genetic diversity, although the two populations in the extreme west (Senegal) had less diversity. Pairwise F(ST) ranged from 0.02 to 0.28 and increased with geographic distance, even at a regional scale. Gene pools detected by Bayesian clustering seem to be a byproduct of the isolation-by-distance pattern rather than representing actual discrete entities. The organization of genetic diversity appears to result essentially from spatially restricted gene flow, with some influences of human seed exchange. Despite the potential for relatively long-distance pollen and seed dispersal by bats within populations, statistically significant spatial genetic structuring within populations (SGS) was detected and gave a mean indirect estimate of neighborhood size of ca. 45. This study demonstrated that relatively high levels of genetic structuring are present in baobab at both large and within-population level, which was unexpected in regard to its dispersal by bats and the influence of human exchange of seeds. Implications of these results for the conservation of baobab populations are discussed.
Education and alcohol use: A study of gene-environment interaction in young adulthood.
Barr, Peter B; Salvatore, Jessica E; Maes, Hermine; Aliev, Fazil; Latvala, Antti; Viken, Richard; Rose, Richard J; Kaprio, Jaakko; Dick, Danielle M
2016-08-01
The consequences of heavy alcohol use remain a serious public health problem. Consistent evidence has demonstrated that both genetic and social influences contribute to alcohol use. Research on gene-environment interaction (GxE) has also demonstrated that these social and genetic influences do not act independently. Instead, certain environmental contexts may limit or exacerbate an underlying genetic predisposition. However, much of the work on GxE and alcohol use has focused on adolescence and less is known about the important environmental contexts in young adulthood. Using data from the young adult wave of the Finnish Twin Study, FinnTwin12 (N = 3402), we used biometric twin modeling to test whether education moderated genetic risk for alcohol use as assessed by drinking frequency and intoxication frequency. Education is important because it offers greater access to personal resources and helps determine one's position in the broader stratification system. Results from the twin models show that education did not moderate genetic variance components and that genetic risk was constant across levels of education. Instead, education moderated environmental variance so that under conditions of low education, environmental influences explained more of the variation in alcohol use outcomes. The implications and limitations of these results are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Education and Alcohol Use: A Study of Gene-Environment Interaction in Young Adulthood
Barr, Peter B.; Salvatore, Jessica E.; Maes, Hermine; Aliev, Fazil; Latvala, Antti; Viken, Richard; Rose, Richard J.; Kaprio, Jaakko; Dick, Danielle M.
2016-01-01
The consequences of heavy alcohol use remain a serious public health problem. Consistent evidence has demonstrated that both genetic and social influences contribute to alcohol use. Research on gene-environment interaction (GxE) has also demonstrated that these social and genetic influences do not act independently. Instead, certain environmental contexts may limit or exacerbate an underlying genetic predisposition. However, much of the work on GxE and alcohol use has focused on adolescence and less is known about the important environmental contexts in young adulthood. Using data from the young adult wave of the Finnish Twin Study, FinnTwin12 (N=3,402), we used biometric twin modeling to test whether education moderated genetic risk for alcohol use as assessed by drinking frequency and intoxication frequency. Education is important because it offers greater access to personal resources and helps determine one’s position in the broader stratification system. Results from the twin models show that education did not moderate genetic variance components and that genetic risk was constant across levels of education. Instead, education moderated environmental variance so that under conditions of low education, environmental influences explained more of the variation in alcohol use outcomes. The implications and limitations of these results are discussed. PMID:27367897
Hsueh, Wen-Chi; He, Qimei; Willcox, D. Craig; Nievergelt, Caroline M.; Donlon, Timothy A.; Kwok, Pui-Yan; Suzuki, Makoto; Willcox, Bradley J.
2014-01-01
Isolated populations have advantages for genetic studies of longevity from decreased haplotype diversity and long-range linkage disequilibrium. This permits smaller sample sizes without loss of power, among other utilities. Little is known about the genome of the Okinawans, a potential population isolate, recognized for longevity. Therefore, we assessed genetic diversity, structure, and admixture in Okinawans, and compared this with Caucasians, Chinese, Japanese, and Africans from HapMap II, genotyped on the same Affymetrix GeneChip Human Mapping 500K array. Principal component analysis, haplotype coverage, and linkage disequilibrium decay revealed a distinct Okinawan genome—more homogeneity, less haplotype diversity, and longer range linkage disequilibrium. Population structure and admixture analyses utilizing 52 global reference populations from the Human Genome Diversity Cell Line Panel demonstrated that Okinawans clustered almost exclusively with East Asians. Sibling relative risk (λs) analysis revealed that siblings of Okinawan centenarians have 3.11 times (females) and 3.77 times (males) more likelihood of centenarianism. These findings suggest that Okinawans are genetically distinct and share several characteristics of a population isolate, which are prone to develop extreme phenotypes (eg, longevity) from genetic drift, natural selection, and population bottlenecks. These data support further exploration of genetic influence on longevity in the Okinawans. PMID:24444611
Heritability of tic disorders: a twin-family study.
Zilhão, N R; Olthof, M C; Smit, D J A; Cath, D C; Ligthart, L; Mathews, C A; Delucchi, K; Boomsma, D I; Dolan, C V
2017-04-01
Genetic-epidemiological studies that estimate the contributions of genetic factors to variation in tic symptoms are scarce. We estimated the extent to which genetic and environmental influences contribute to tics, employing various phenotypic definitions ranging between mild and severe symptomatology, in a large population-based adult twin-family sample. In an extended twin-family design, we analysed lifetime tic data reported by adult mono- and dizygotic twins (n = 8323) and their family members (n = 7164; parents and siblings) from 7311 families in the Netherlands Twin Register. We measured tics by the abbreviated version of the Schedule for Tourette and Other Behavioral Syndromes. Heritability was estimated by genetic structural equation modeling for four tic disorder definitions: three dichotomous and one trichotomous phenotype, characterized by increasingly strictly defined criteria. Prevalence rates of the different tic disorders in our sample varied between 0.3 and 4.5% depending on tic disorder definition. Tic frequencies decreased with increasing age. Heritability estimates varied between 0.25 and 0.37, depending on phenotypic definitions. None of the phenotypes showed evidence of assortative mating, effects of shared environment or non-additive genetic effects. Heritabilities of mild and severe tic phenotypes were estimated to be moderate. Overlapping confidence intervals of the heritability estimates suggest overlapping genetic liabilities between the various tic phenotypes. The most lenient phenotype (defined only by tic characteristics, excluding criteria B, C and D of DSM-IV) rendered sufficiently reliable heritability estimates. These findings have implications in phenotypic definitions for future genetic studies.
Roke, Kaitlin; Walton, Kathryn; Klingel, Shannon L; Harnett, Amber; Subedi, Sanjeena; Haines, Jess; Mutch, David M
2017-03-06
Nutrigenetics research is anticipated to lay the foundation for personalized dietary recommendations; however, it remains unclear if providing individuals with their personal genetic information changes dietary behaviors. Our objective was to evaluate if providing information for a common variant in the fatty acid desaturase 1 ( FADS1 ) gene changed omega-3 fatty acid (FA) intake and blood levels in young female adults (18-25 years). Participants were randomized into Genetic (intervention) and Non-Genetic (control) groups, with measurements taken at Baseline and Final (12 weeks). Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was assessed using an omega-3 food frequency questionnaire. Red blood cell (RBC) FA content was quantified by gas chromatography. Implications of participation in a nutrigenetics study and awareness of omega-3 FAs were assessed with online questionnaires. Upon completion of the study, EPA and DHA intake increased significantly ( p = 1.0 × 10 -4 ) in all participants. This change was reflected by small increases in RBC %EPA. Participants in the Genetic group showed increased awareness of omega-3 terminology by the end of the study, reported that the dietary recommendations were more useful, and rated cost as a barrier to omega-3 consumption less often than those in the Non-Genetic group. Providing participants FADS1 genetic information did not appear to influence omega-3 intake during the 12 weeks, but did change perceptions and behaviors related to omega-3 FAs in this timeframe.
Roke, Kaitlin; Walton, Kathryn; Klingel, Shannon L.; Harnett, Amber; Subedi, Sanjeena; Haines, Jess; Mutch, David M.
2017-01-01
Nutrigenetics research is anticipated to lay the foundation for personalized dietary recommendations; however, it remains unclear if providing individuals with their personal genetic information changes dietary behaviors. Our objective was to evaluate if providing information for a common variant in the fatty acid desaturase 1 (FADS1) gene changed omega-3 fatty acid (FA) intake and blood levels in young female adults (18–25 years). Participants were randomized into Genetic (intervention) and Non-Genetic (control) groups, with measurements taken at Baseline and Final (12 weeks). Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was assessed using an omega-3 food frequency questionnaire. Red blood cell (RBC) FA content was quantified by gas chromatography. Implications of participation in a nutrigenetics study and awareness of omega-3 FAs were assessed with online questionnaires. Upon completion of the study, EPA and DHA intake increased significantly (p = 1.0 × 10−4) in all participants. This change was reflected by small increases in RBC %EPA. Participants in the Genetic group showed increased awareness of omega-3 terminology by the end of the study, reported that the dietary recommendations were more useful, and rated cost as a barrier to omega-3 consumption less often than those in the Non-Genetic group. Providing participants FADS1 genetic information did not appear to influence omega-3 intake during the 12 weeks, but did change perceptions and behaviors related to omega-3 FAs in this timeframe. PMID:28272299
Wermter, Anne-Kathrin; Kamp-Becker, Inge; Hesse, Philipp; Schulte-Körne, Gerd; Strauch, Konstantin; Remschmidt, Helmut
2010-03-05
An increasing number of animal studies advert to a substantial role of the neuropeptide oxytocin in the regulation of social attachment and affiliation. Furthermore, animal studies showed anxiety and stress-reduced effects of oxytocin. First human studies confirm these findings in animal studies and implicate a crucial role of oxytocin in human social attachment behavior and in social interactions. Thus, the oxytocin system might be involved in the impairment of social interaction and attachment in autism spectrum disorders (ASD). The human oxytocin receptor gene (OXTR) represents a plausible candidate gene for the etiology of ASD. To analyze whether genetic variants in the OXTR gene are associated with ASD we performed family-based single-marker and haplotype association analyses with 22 single nucleotide polymorphisms (SNPs) in the OXTR and its 5' region in 100 families with autistic disorders on high-functioning level (Asperger syndrome (AS), high-functioning autism (HFA), and atypical autism (AA)). Single-marker and haplotype association analyses revealed nominally significant associations of one single SNP and one haplotype with autism, respectively. Furthermore, employing a "reverse phenotyping" approach, patients carrying the haplotype associated with autism showed nominally significant impairments in comparison to noncarriers of the haplotype in items of the Autism Diagnostic Interview-Revised algorithm describing aspects of social interaction and communication. In conclusion, our results implicate that genetic variation in the OXTR gene might be relevant in the etiology of autism on high-functioning level. (c) 2009 Wiley-Liss, Inc.
O'Doherty, Kieran C
2007-02-01
The question of what probability actually is has long been debated in philosophy and statistics. Although the concept of probability is fundamental to many applications in the health sciences, these debates are generally not well known to health professionals. This paper begins with an outline of some of the different interpretations of probability. Examples are provided of how each interpretation manifests in clinical practice. The discipline of genetic counselling (familial cancer) is used to ground the discussion. In the second part of the paper, some of the implications that different interpretations of probability may have in practice are examined. The main purpose of the paper is to draw attention to the fact that there is much contention as to the nature of the concept of probability. In practice, this creates the potential for ambiguity and confusion. This paper constitutes a call for deeper engagement with the ways in which probability and risk are understood in health research and practice.
Curti, Maira Ladeia R.; Jacob, Patrícia; Borges, Maria Carolina; Rogero, Marcelo Macedo; Ferreira, Sandra Roberta G.
2011-01-01
Obesity is currently considered a serious public health issue due to its strong impact on health, economy, and quality of life. It is considered a chronic low-grade inflammation state and is directly involved in the genesis of metabolic disturbances, such as insulin resistance and dyslipidemia, which are well-known risk factors for cardiovascular disease. Furthermore, there is evidence that genetic variation that predisposes to inflammation and metabolic disturbances could interact with environmental factors, such as diet, modulating individual susceptibility to developing these conditions. This paper aims to review the possible interactions between diet and single-nucleotide polymorphisms (SNPs) in genes implicated on the inflammatory response, lipoprotein metabolism, and oxidative status. Therefore, the impact of genetic variants of the peroxisome proliferator-activated receptor-(PPAR-)gamma, tumor necrosis factor-(TNF-)alpha, interleukin (IL)-1, IL-6, apolipoprotein (Apo) A1, Apo A2, Apo A5, Apo E, glutathione peroxidases 1, 2, and 4, and selenoprotein P exposed to variations on diet composition is described. PMID:21773006
Hjörleifsson, Stefán; Schei, Edvin
2006-07-01
Technology development in human genetics is fraught with uncertainty, controversy and unresolved moral issues, and industry scientists are sometimes accused of neglecting the implications of their work. The present study was carried out to elicit industry scientists' reflections on the relationship between commercial, scientific and ethical dimensions of present day genetics and the resources needed for robust governance of new technologies. Interviewing scientists of the company deCODE genetics in Iceland, we found that in spite of optimism, the informants revealed ambiguity and uncertainty concerning the use of human genetic technologies for the prevention of common diseases. They concurred that uncritical marketing of scientific success might cause exaggerated public expectations of health benefits from genetics, with the risk of backfiring and causing resistance to genetics in the population. On the other hand, the scientists did not address dilemmas arising from the commercial nature of their own employer. Although the scientists tended to describe public fear as irrational, they identified issues where scepticism might be well founded and explored examples where they, despite expert knowledge, held ambiguous or tentative personal views on the use of predictive genetic technologies. The rationality of science was not seen as sufficient to ensure beneficial governance of new technologies. The reflexivity and suspension of judgement demonstrated in the interviews exemplify productive features of moral deliberation in complex situations. Scientists should take part in dialogues concerning the governance of genetic technologies, acknowledge any vested interests, and use their expertise to highlight, not conceal the technical and moral complexity involved.
Accurate population genetic measurements require cryptic species identification in corals
NASA Astrophysics Data System (ADS)
Sheets, Elizabeth A.; Warner, Patricia A.; Palumbi, Stephen R.
2018-06-01
Correct identification of closely related species is important for reliable measures of gene flow. Incorrectly lumping individuals of different species together has been shown to over- or underestimate population differentiation, but examples highlighting when these different results are observed in empirical datasets are rare. Using 199 single nucleotide polymorphisms, we assigned 768 individuals in the Acropora hyacinthus and A. cytherea morphospecies complexes to each of eight previously identified cryptic genetic species and measured intraspecific genetic differentiation across three geographic scales (within reefs, among reefs within an archipelago, and among Pacific archipelagos). We then compared these calculations to estimated genetic differentiation at each scale with all cryptic genetic species mixed as if we could not tell them apart. At the reef scale, correct genetic species identification yielded lower F ST estimates and fewer significant comparisons than when species were mixed, raising estimates of short-scale gene flow. In contrast, correct genetic species identification at large spatial scales yielded higher F ST measurements than mixed-species comparisons, lowering estimates of long-term gene flow among archipelagos. A meta-analysis of published population genetic studies in corals found similar results: F ST estimates at small spatial scales were lower and significance was found less often in studies that controlled for cryptic species. Our results and these prior datasets controlling for cryptic species suggest that genetic differentiation among local reefs may be lower than what has generally been reported in the literature. Not properly controlling for cryptic species structure can bias population genetic analyses in different directions across spatial scales, and this has important implications for conservation strategies that rely on these estimates.
Global Genetic Diversity of Aedes aegypti
Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D.; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi bin; Fernandez-Salas, Ildefonso; Kamal, Hany A.; Kamgang, Basile; Khater, Emad I. M.; Kramer, Laura D.; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B.; Saleh, Amag A.; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A.; Tabachnick, Walter J.; Troyo, Adriana; Powell, Jeffrey R.
2016-01-01
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti, from 30 countries in six continents and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya) the two subspecies remain genetically distinct whereas in urban settings they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats, and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th Centuries was followed by its introduction to Asia in the late 19th Century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l.. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for methods using genetic modification of populations. PMID:27671732
Prevalence and genetic diversity of Bartonella strains in rodents from northwestern Mexico.
Rubio, André V; Ávila-Flores, Rafael; Osikowicz, Lynn M; Bai, Ying; Suzán, Gerardo; Kosoy, Michael Y
2014-12-01
Bartonella infections were investigated in wild rodents from northwestern Chihuahua, Mexico. A total of 489 rodents belonging to 14 species were surveyed in four areas. Bartonella bacteria were cultured from 50.1% of rodent samples (245/489). Infection rates ranged from 0% to 83.3% per rodent species, with no significant difference between sites except for Cynomys ludovicianus. Phylogenetic analyses of the citrate synthase gene (gltA) of the Bartonella isolates revealed 23 genetic variants (15 novel and 8 previously described), clustering into five phylogroups. Three phylogroups were associated with Bartonella vinsonii subsp. vinsonii, B. vinsonii subsp. arupensis, and B. washoensis, respectively. The other two phylogroups were not genetically related to any known Bartonella species. The genetic variants and phylogenetic groups exhibited a high degree of host specificity, mainly at the genus and family levels. This is the first study that describes the genetic diversity of Bartonella strains in wild rodents from Mexico. Considering that some variants found in this study are associated with Bartonella species that have been reported as zoonotic, more investigations are needed to further understand the ecology of Bartonella species in Mexican wildlife and their implications for human health.
Narain, Ralph B; Lalithambika, Sreedevi; Kamble, Shripat T
2015-07-01
With the recent global resurgence of the bed bugs (Cimex lectularius L.), there is a need to better understand its biology, ecology, and ability to establish populations. Bed bugs are domestic pests that feed mainly on mammalian blood. Although bed bugs have not been implicated as vectors of pathogens, their biting activity inflicts severe insomnia and allergic reactions. Moreover, they have recently developed resistance to various insecticides, which requires further molecular research to determine genetic variation and appropriate interventions. Population dynamics, including genetic differentiation and genetic distance of 10 populations from the Midwest were analyzed in this study. The bed bug samples collected by pest control companies were genotyped using eight species-specific microsatellite markers. Results showed all eight markers were polymorphic, with 8-16 alleles per locus, suggesting high genetic diversity. The FST values were >0.25, signifying pronounced genetic differentiation. The G-test results also indicated high genetic differentiation among populations. The frequency of the most common allele across all eight loci was 0.42. The coefficient of relatedness between each of the populations was >0.5, indicative of sibling or parent-offspring relationships, while the FIS and its confidence interval values were statistically insignificant within the populations tested. The populations departed from Hardy-Weinberg equilibrium, possibly because of high heterozygosity. The genetic distance analysis using a neighbor-joining tree showed that the populations from Kansas City, MO, were genetically separate from most of those from Nebraska, indicating a geographic pattern of genetic structure. Our study demonstrated the effectiveness of using microsatellite markers to study bed bugs population structure, thereby improving our understanding of bed bug population dynamics in the Midwest. Overall, this study showed a high genetic diversity and identified several new alleles in the bed bug populations in the Midwest. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Aldahmesh, Mohammed A.; Li, Yuanyuan; Alhashem, Amal; Anazi, Shams; Alkuraya, Hisham; Hashem, Mais; Awaji, Ali A.; Sogaty, Sameera; Alkharashi, Abdullah; Alzahrani, Saeed; Al Hazzaa, Selwa A.; Xiong, Yong; Kong, Shanshan; Sun, Zhaoxia; Alkuraya, Fowzan S.
2014-01-01
Bardet–Biedl syndrome (BBS) is an autosomal recessive ciliopathy with multisystem involvement. So far, 18 BBS genes have been identified and the majority of them are essential for the function of BBSome, a protein complex involved in transporting membrane proteins into and from cilia. Yet defects in the identified genes cannot account for all the BBS cases. The genetic heterogeneity of this disease poses significant challenge to the identification of additional BBS genes. In this study, we coupled human genetics with functional validation in zebrafish and identified IFT27 as a novel BBS gene (BBS19). This is the first time an intraflagellar transport (IFT) gene is implicated in the pathogenesis of BBS, highlighting the genetic complexity of this disease. PMID:24488770
Clifford, Sierra; Lemery-Chalfant, Kathryn; Goldsmith, H. Hill
2015-01-01
This study examined the extent to which subordinate dimensions of negative emotionality were genetically and environmentally distinct in a sample of 1316 twins (51% female, 85.8% Caucasian, primarily middle class, mean age = 7.87 years, SD = .93), recruited from Wisconsin hospital birth records between 1989 and 2004. Cholesky, independent pathway, and common pathway models were fitted for mother-report, father-report, and in-home observation of temperament. Although findings support the use of negative emotionality, there were heritable aspects of anger and fear not explained by a common genetic factor, and shared environmental influences common to anger and sadness but not fear. Observed fear was independent from observed anger and sadness. Distinctions support specificity in measurement when considering implications for child development. PMID:26182850
Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K
2016-01-01
Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.
Pescosolido, Matthew F; Yang, Unikora; Sabbagh, Mark; Morrow, Eric M
2012-09-01
In this review, we outline critical molecular processes that have been implicated by discovery of genetic mutations in autism. These mechanisms need to be mapped onto the neurodevelopment step(s) gone awry that may be associated with cause in autism. Molecular mechanisms include: (i) regulation of gene expression; (ii) pre-mRNA splicing; (iii) protein localization, translation, and turnover; (iv) synaptic transmission; (v) cell signaling; (vi) the functions of cytoskeletal and scaffolding proteins; and (vii) the function of neuronal cell adhesion molecules. While the molecular mechanisms appear broad, they may converge on only one of a few steps during neurodevelopment that perturbs the structure, function, and/or plasticity of neuronal circuitry. While there are many genetic mutations involved, novel treatments may need to target only one of few developmental mechanisms.
Guerra, Daniel J.
2011-01-01
Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD. PMID:22937247
The ethical implications of genetic testing in the classroom.
Taylor, Ann T S; Rogers, Jill Cellars
2011-07-01
The development of classroom experiments where students examine their own DNA is frequently described as an innovative teaching practice. Often these experiences involve students analyzing their genes for various polymorphisms associated with disease states, like an increased risk for developing cancer. Such experiments can muddy the distinction between classroom investigation and medical testing. Although the goals and issues surrounding classroom genotyping do not directly align with those of clinical testing, instructors can use the guidelines and standards established by the medical genetics community when evaluating the ethics of human genotyping. We developed a laboratory investigation and discussion which allowed undergraduate science students to explore current DNA manipulation techniques to isolate their p53 gene, followed by a dialogue probing the ethical implications of examining their sample for various polymorphisms. Students never conducted genotyping on their samples because of the ethical concerns presented in this paper, so the discussion replaced the actual genetic testing in the class. A science faculty member led the laboratory portion, while a genetic counselor facilitated the discussion of the ethical concepts underlying genetic counseling: autonomy, beneficence, confidentiality, and justice. In their final papers, students demonstrated an understanding of the practice guidelines established by the genetics community and acknowledged the ethical considerations inherent in p53 genotyping. Given the burgeoning market for personalized medicine, teaching undergraduates about the psychosocial and ethical dimensions of human genetic testing is important and timely. Moreover, incorporating a genetic counselor in the classroom discussion provided a rich and dynamic discussion of human genetic testing. Copyright © 2011 Wiley Periodicals, Inc.