Sample records for genetic testing methods

  1. [Difficulties of genetic counselling in rare, mainly neurogenetic disorders].

    PubMed

    Horváth, Emese; Nagy, Nikoletta; Széll, Márta

    2014-08-03

    In recent decades methods used for the investigation of the genetic background of rare diseases showed a great improvement. The aim of the authors was to demonstrate difficulties of genetic counselling and investigations in case of five rare, mainly neurogenetic diseases. During pre-test genetic counselling, the disease suspected from the clinical symptoms and the available genetic tests were considered. During post-test genetic counselling, the results of the genetic tests were discussed. In three of the five cases genetic tests identified the disease-causing genetic abnormalities, while in two cases the causative abnormalities were not identified. Despite a great improvement of the available genetic methods, the causative genetic abnormalities cannot be identified in some cases. The genetic counsellor has a key role in the assessment and interpretation of the results and in helping the family planning.

  2. An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Gramatová, Elena

    2015-07-01

    The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.

  3. How Is Wilson Disease Inherited?

    MedlinePlus

    ... ATP7B gene have been identified thus far. Testing Methods Available Linkage analysis (Haplotype analysis) Molecular genetic testing ... genetic counselor who can carefully discuss the best method of testing to perform and the benefits, limitations, ...

  4. Comparison of genetic algorithm methods for fuel management optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-12-31

    The CIGARO system was developed for genetic algorithm fuel management optimization. Tests are performed to find the best fuel location swap mutation operator probability and to compare genetic algorithm to a truly random search method. Tests showed the fuel swap probability should be between 0% and 10%, and a 50% definitely hampered the optimization. The genetic algorithm performed significantly better than the random search method, which did not even satisfy the peak normalized power constraint.

  5. Revealing barriers and facilitators to use a new genetic test: comparison of three user involvement methods.

    PubMed

    Rhebergen, Martijn D F; Visser, Maaike J; Verberk, Maarten M; Lenderink, Annet F; van Dijk, Frank J H; Kezic, Sanja; Hulshof, Carel T J

    2012-10-01

    We compared three common user involvement methods in revealing barriers and facilitators from intended users that might influence their use of a new genetic test. The study was part of the development of a new genetic test on the susceptibility to hand eczema for nurses. Eighty student nurses participated in five focus groups (n = 33), 15 interviews (n = 15) or questionnaires (n = 32). For each method, data were collected until saturation. We compared the mean number of items and relevant remarks that could influence the use of the genetic test obtained per method, divided by the number of participants in that method. Thematic content analysis was performed using MAXQDA software. The focus groups revealed 30 unique items compared to 29 in the interviews and 21 in the questionnaires. The interviews produced more items and relevant remarks per participant (1.9 and 8.4 pp) than focus groups (0.9 and 4.8 pp) or questionnaires (0.7 and 2.3 pp). All three involvement methods revealed relevant barriers and facilitators to use a new genetic test. Focus groups and interviews revealed substantially more items than questionnaires. Furthermore, this study suggests a preference for the use of interviews because the number of items per participant was higher than for focus groups and questionnaires. This conclusion may be valid for other genetic tests as well.

  6. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes.

    PubMed

    Rohde, Palle Duun; Demontis, Ditte; Cuyabano, Beatriz Castro Dias; Børglum, Anders D; Sørensen, Peter

    2016-08-01

    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case-control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism and immunological responses, which previously have been implicated with schizophrenia based on experimental and observational studies. Copyright © 2016 by the Genetics Society of America.

  7. Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method

    ERIC Educational Resources Information Center

    Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen

    2008-01-01

    In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…

  8. Direct-to-consumer genetic testing: an assessment of genetic counselors' knowledge and beliefs

    PubMed Central

    Hock, Kathryn T.; Christensen, Kurt D.; Yashar, Beverly M.; Roberts, J. Scott; Gollust, Sarah E.; Uhlmann, Wendy R.

    2013-01-01

    Purpose Direct-to-consumer genetic testing is a new means of obtaining genetic testing outside of a traditional clinical setting. This study assesses genetic counselors’ experience, knowledge, and beliefs regarding direct-to-consumer genetic testing for tests that would currently be offered in genetics clinics. Methods Members of the National Society of Genetic Counselors completed a web-administered survey in February 2008. Results Response rate was 36%; the final data analysis included 312 respondents. Eighty-three percent of respondents had two or fewer inquiries about direct-to-consumer genetic testing, and 14% had received requests for test interpretation or discussion. Respondents believed that genetic counselors have a professional obligation to be knowledgeable about direct-to-consumer genetic testing (55%) and interpret results (48%). Fifty-one percent of respondents thought genetic testing should be limited to a clinical setting; 56% agreed direct-to-consumer genetic testing is acceptable if genetic counseling is provided. More than 70% of respondents would definitely or possibly consider direct-to-consumer testing for patients who (1) have concerns about genetic discrimination, (2) want anonymous testing, or (3) have geographic constraints. Conclusions Results indicate that genetic counselors have limited patient experiences with direct-to-consumer genetic testing and are cautiously considering if and under what circumstances this approach should be used PMID:21233722

  9. Clinical application of high throughput molecular screening techniques for pharmacogenomics

    PubMed Central

    Wiita, Arun P; Schrijver, Iris

    2011-01-01

    Genetic analysis is one of the fastest-growing areas of clinical diagnostics. Fortunately, as our knowledge of clinically relevant genetic variants rapidly expands, so does our ability to detect these variants in patient samples. Increasing demand for genetic information may necessitate the use of high throughput diagnostic methods as part of clinically validated testing. Here we provide a general overview of our current and near-future abilities to perform large-scale genetic testing in the clinical laboratory. First we review in detail molecular methods used for high throughput mutation detection, including techniques able to monitor thousands of genetic variants for a single patient or to genotype a single genetic variant for thousands of patients simultaneously. These methods are analyzed in the context of pharmacogenomic testing in the clinical laboratories, with a focus on tests that are currently validated as well as those that hold strong promise for widespread clinical application in the near future. We further discuss the unique economic and clinical challenges posed by pharmacogenomic markers. Our ability to detect genetic variants frequently outstrips our ability to accurately interpret them in a clinical context, carrying implications both for test development and introduction into patient management algorithms. These complexities must be taken into account prior to the introduction of any pharmacogenomic biomarker into routine clinical testing. PMID:23226057

  10. Genetic Testing in Intellectual Disability Psychiatry: Opinions and Practices of UK Child and Intellectual Disability Psychiatrists

    ERIC Educational Resources Information Center

    Wolfe, Kate; Stueber, Kerstin; McQuillin, Andrew; Jichi, Fatima; Patch, Christine; Flinter, Frances; Strydom, André; Bass, Nick

    2018-01-01

    Background: An increasing number of genetic causes of intellectual disabilities (ID) are identifiable by clinical genetic testing, offering the prospect of bespoke patient management. However, little is known about the practices of psychiatrists and their views on genetic testing. Method: We undertook an online survey of 215 psychiatrists, who…

  11. The effect of direct-to-consumer genetic tests on anticipated affect and health-seeking behaviors: a pilot survey.

    PubMed

    Bansback, Nick; Sizto, Sonia; Guh, Daphne; Anis, Aslam H

    2012-10-01

    Numerous websites offer direct-to-consumer (DTC) genetic testing, yet it is unknown how individuals will react to genetic risk profiles online. The objective of this study was to determine the feasibility of using a web-based survey and conjoint methods to elicit individuals' interpretations of genetic risk profiles by their anticipated worry/anxiousness and health-seeking behaviors. A web-based survey was developed using conjoint methods. Each survey presented 12 hypothetical genetic risk profiles describing genetic test results for four diseases. Test results were characterized by the type of disease (eight diseases), individual risk (five levels), and research confidence (three levels). After each profile, four questions were asked regarding anticipated worry and health-seeking behaviors. Probabilities of response outcomes based on attribute levels were estimated from logistic regression models, adjusting for covariates. Overall, 319 participants (69%) completed 3828 unique genetic risk profiles. Across all profiles, most participants anticipated making doctor's appointments (63%), lifestyle changes (57%), and accessing screening (57%); 40% anticipated feeling more worried and anxious. Higher levels of disease risk were significantly associated with affirmative responses. Conjoint methods may be used to elicit reactions to genetic information online. Preliminary results suggest that genetic information may increase worry/anxiousness and health-seeking behaviors among consumers of DTC tests. Further research is planned to determine the appropriateness of these affects and behaviors.

  12. A fast boosting-based screening method for large-scale association study in complex traits with genetic heterogeneity.

    PubMed

    Wang, Lu-Yong; Fasulo, D

    2006-01-01

    Genome-wide association study for complex diseases will generate massive amount of single nucleotide polymorphisms (SNPs) data. Univariate statistical test (i.e. Fisher exact test) was used to single out non-associated SNPs. However, the disease-susceptible SNPs may have little marginal effects in population and are unlikely to retain after the univariate tests. Also, model-based methods are impractical for large-scale dataset. Moreover, genetic heterogeneity makes the traditional methods harder to identify the genetic causes of diseases. A more recent random forest method provides a more robust method for screening the SNPs in thousands scale. However, for more large-scale data, i.e., Affymetrix Human Mapping 100K GeneChip data, a faster screening method is required to screening SNPs in whole-genome large scale association analysis with genetic heterogeneity. We propose a boosting-based method for rapid screening in large-scale analysis of complex traits in the presence of genetic heterogeneity. It provides a relatively fast and fairly good tool for screening and limiting the candidate SNPs for further more complex computational modeling task.

  13. A probabilistic method for testing and estimating selection differences between populations

    PubMed Central

    He, Yungang; Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Xu, Shuhua; Jin, Li

    2015-01-01

    Human populations around the world encounter various environmental challenges and, consequently, develop genetic adaptations to different selection forces. Identifying the differences in natural selection between populations is critical for understanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying selection differences between populations is lacking. Here we report the development of a probabilistic method for testing and estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants. This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants involved in melanin formation and determined their confidence intervals between continental population groups. Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing and quantifying differences in natural selection. PMID:26463656

  14. Valuing the benefits of genetic testing for retinitis pigmentosa: a pilot application of the contingent valuation method.

    PubMed

    Eden, Martin; Payne, Katherine; Combs, Ryan M; Hall, Georgina; McAllister, Marion; Black, Graeme C M

    2013-08-01

    Technological advances present an opportunity for more people with, or at risk of, developing retinitis pigmentosa (RP) to be offered genetic testing. Valuation of these tests using current evaluative frameworks is problematic since benefits may be derived from diagnostic information rather than improvements in health. This pilot study aimed to explore if contingent valuation method (CVM) can be used to value the benefits of genetic testing for RP. CVM was used to elicit willingness-to-pay (WTP) values for (1) genetic counselling and (2) genetic counselling with genetic testing. Telephone and face-to-face interviews with a purposive sample of individuals with (n=25), and without (n=27), prior experience of RP were used to explore the feasibility and validity of CVM in this context. Faced with a hypothetical scenario, the majority of participants stated that they would seek genetic counselling and testing in the context of RP. Between participant groups, respondents offered similar justifications for stated WTP values. Overall stated WTP was higher for genetic counselling plus testing (median=£524.00) compared with counselling alone (median=£224.50). Between-group differences in stated WTP were statistically significant; participants with prior knowledge of the condition were willing to pay more for genetic ophthalmology services. Participants were able to attach a monetary value to the perceived potential benefit that genetic testing offered regardless of prior experience of the condition. This exploratory work represents an important step towards evaluating these services using formal cost-benefit analysis.

  15. Preservation And Processing Methods For Molecular Genetic Detection And Quantification Of Nosema Ceranae

    USDA-ARS?s Scientific Manuscript database

    The prevalence of Nosema ceranae in managed honey bee colonies has increased dramatically in the past 10 – 20 years worldwide. A variety of genetic testing methods for species identification and prevalence are now available. However sample size and preservation method of samples prior to testing hav...

  16. Improving Molecular Genetic Test Utilization through Order Restriction, Test Review, and Guidance.

    PubMed

    Riley, Jacquelyn D; Procop, Gary W; Kottke-Marchant, Kandice; Wyllie, Robert; Lacbawan, Felicitas L

    2015-05-01

    The ordering of molecular genetic tests by health providers not well trained in genetics may have a variety of untoward effects. These include the selection of inappropriate tests, the ordering of panels when the assessment of individual or fewer genes would be more appropriate, inaccurate result interpretation and inappropriate patient guidance, and significant unwarranted cost expenditure. We sought to improve the utilization of molecular genetic tests by requiring providers without specialty training in genetics to use genetic counselors and molecular genetic pathologists to assist in test selection. We used a genetic and genomic test review process wherein the laboratory-based genetic counselor performed the preanalytic assessment of test orders and test triage. Test indication and clinical findings were evaluated against the test panel composition, methods, and test limitations under the supervision of the molecular genetic pathologist. These test utilization management efforts resulted in a decrease in genetic test ordering and a gross cost savings of $1,531,913 since the inception of these programs in September 2011 through December 2013. The combination of limiting the availability of complex genetic tests and providing guidance regarding appropriate test strategies is an effective way to improve genetic tests, contributing to judicious use of limited health care resources. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. Multiple testing and power calculations in genetic association studies.

    PubMed

    So, Hon-Cheong; Sham, Pak C

    2011-01-01

    Modern genetic association studies typically involve multiple single-nucleotide polymorphisms (SNPs) and/or multiple genes. With the development of high-throughput genotyping technologies and the reduction in genotyping cost, investigators can now assay up to a million SNPs for direct or indirect association with disease phenotypes. In addition, some studies involve multiple disease or related phenotypes and use multiple methods of statistical analysis. The combination of multiple genetic loci, multiple phenotypes, and multiple methods of evaluating associations between genotype and phenotype means that modern genetic studies often involve the testing of an enormous number of hypotheses. When multiple hypothesis tests are performed in a study, there is a risk of inflation of the type I error rate (i.e., the chance of falsely claiming an association when there is none). Several methods for multiple-testing correction are in popular use, and they all have strengths and weaknesses. Because no single method is universally adopted or always appropriate, it is important to understand the principles, strengths, and weaknesses of the methods so that they can be applied appropriately in practice. In this article, we review the three principle methods for multiple-testing correction and provide guidance for calculating statistical power.

  18. Direct-to-consumer sales of genetic services on the Internet.

    PubMed

    Gollust, Sarah E; Wilfond, Benjamin S; Hull, Sara Chandros

    2003-01-01

    PURPOSE The increasing use of the Internet to obtain genetics information and to order medical services without a prescription, combined with a rise in direct-to-consumer marketing for genetic testing, suggests the potential for the Internet to be used to sell genetic services. METHODS A systematic World Wide Web search was conducted in May 2002 to assess the availability of genetic services sold directly to consumers on the Internet. RESULTS Out of 105 sites that offered genetic services directly, most offered non-health-related services, including parentage confirmation testing (83%), identity testing (56%), and DNA banking (24%); however, health-related genetic tests were offered through 14 sites (13%). The health-related genetic tests available ranged from standard tests, such as hemochromatosis and cystic fibrosis, to more unconventional tests related to nutrition, behavior, and aging. Of these 14 sites, 5 described risks associated with the genetic services and 6 described the availability of counseling. CONCLUSIONS The availability of direct sales of health-related genetic tests creates the potential for inadequate pretest decision making, misunderstanding test results, and access to tests of questionable clinical value.

  19. Direct-to-consumer sales of genetic services on the Internet

    PubMed Central

    Gollust, Sarah E.; Wilfond, Benjamin S.; Hull, Sara Chandros

    2016-01-01

    Purpose The increasing use of the Internet to obtain genetics information and to order medical services without a prescription, combined with a rise in direct-to-consumer marketing for genetic testing, suggests the potential for the Internet to be used to sell genetic services. Methods A systematic World Wide Web search was conducted in May 2002 to assess the availability of genetic services sold directly to consumers on the Internet. Results Out of 105 sites that offered genetic services directly, most offered non–health-related services, including parentage confirmation testing (83%), identity testing (56%), and DNA banking (24%); however, health-related genetic tests were offered through 14 sites (13%). The health-related genetic tests available ranged from standard tests, such as hemochromatosis and cystic fibrosis, to more unconventional tests related to nutrition, behavior, and aging. Of these 14 sites, 5 described risks associated with the genetic services and 6 described the availability of counseling. Conclusions The availability of direct sales of health-related genetic tests creates the potential for inadequate pretest decision making, misunderstanding test results, and access to tests of questionable clinical value. PMID:12865763

  20. [A survey of willingness about genetic counseling and tests in patients of epithelial ovarian cancer].

    PubMed

    Li, L; Qiu, L; Wu, M

    2017-11-21

    Objective: To analyze patients' tendency towards genetics counseling and tests based on a prospective cohort study on hereditary ovarian cancer. Methods: From February 2017 to June 2017, among 220 cases of epithelial ovarian cancer in Peking Union Medical College Hospital, we collected epidemiological, pathological and tendency towards genetics counseling and tests via medical records and questionnaire.All patients would get education about hereditary ovarian cancer by pamphlets and WeChat.If they would receive further counseling, a face to face interview and tests will be given. Results: Among all 220 patients, 10 (4.5%) denied further counseling.For 210 patients receiving genetic counseling, 170 (81%) accepted genetic tests.In multivariate analysis, risk factors relevant to acceptance of genetic tests included: being charged by physicians of gynecologic oncology for diagnosis and treatment, receiving counseling in genetic counseling clinics, and having family history of breast cancer.For patients denying genetic tests, there were many subjective reasons, among which, "still not understanding genetic tests" (25%) and "unable bear following expensive targeting medicine" . Conclusions: High proportion patients of epithelial ovarian cancer would accept genetic counseling and tests.Genetic counseling clinics for gynecologic oncology would further improve genetic tests for patients.

  1. 75 FR 33317 - Request for Information (RFI) on the National Institutes of Health Plan To Develop the Genetic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... consistent with recommendations of the HHS Secretary's Advisory Committee on Genetics, Health, and Society... molecular basis, including, for example, information about what the test detects and what methods the test... and providing information on the molecular basis of genetic tests, such as detailed information about...

  2. A probabilistic method for testing and estimating selection differences between populations.

    PubMed

    He, Yungang; Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Xu, Shuhua; Jin, Li

    2015-12-01

    Human populations around the world encounter various environmental challenges and, consequently, develop genetic adaptations to different selection forces. Identifying the differences in natural selection between populations is critical for understanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying selection differences between populations is lacking. Here we report the development of a probabilistic method for testing and estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants. This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants involved in melanin formation and determined their confidence intervals between continental population groups. Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing and quantifying differences in natural selection. © 2015 He et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Genetic testing for patients with renal disease: procedures, pitfalls, and ethical considerations.

    PubMed

    Korf, B R

    1999-07-01

    The Human Genome Project is rapidly producing insights into the molecular basis of human genetic disorders. The most immediate clinical benefit is the advent of new diagnostic methods. Molecular diagnostic tools are available for several genetic renal disorders and are in development for many more. Two general approaches to molecular diagnosis are linkage-based testing and direct mutation detection. The former is used when the gene has not been cloned but has been mapped in relation to polymorphic loci. Linkage-based testing is also helpful when a large diversity of mutations makes direct detection difficult. Limitations include the need to study multiple family members, the need for informative polymorphisms, and genetic heterogeneity. Direct mutation detection is limited by genetic heterogeneity and the need to distinguish nonpathogenic allelic variants from pathogenic mutations. Molecular testing raises a number of complex ethical issues, including those associated with prenatal or presymptomatic diagnosis. In addition, there are concerns about informed consent, privacy, genetic discrimination, and technology transfer for newly developed tests. Health professionals need to be aware of the technical and ethical implications of these new methods of testing, as well as the complexities in test interpretation, as molecular approaches are increasingly integrated into medical practice.

  4. EHR based Genetic Testing Knowledge Base (iGTKB) Development

    PubMed Central

    2015-01-01

    Background The gap between a large growing number of genetic tests and a suboptimal clinical workflow of incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic test recommendation system that not only can provide a comprehensive view of genetic tests as education resources, but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB). Methods We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic. Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO). Results Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic. A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243 clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their associated information about genetic tests and genetic disorders. Conclusions In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic testing recommendation system, iGenetics. PMID:26606281

  5. Genetic Stock Identification Of Production Colonies Of Russian Honey Bees

    USDA-ARS?s Scientific Manuscript database

    The prevalence of Nosema ceranae in managed honey bee colonies has increased dramatically in the past 10 – 20 years worldwide. A variety of genetic testing methods for species identification and prevalence are now available. However sample size and preservation method of samples prior to testing hav...

  6. Obtaining genetic testing in pediatric epilepsy.

    PubMed

    Ream, Margie A; Patel, Anup D

    2015-10-01

    The steps from patient evaluation to genetic diagnosis remain complicated. We discuss some of the genetic testing methods available along with their general advantages and disadvantages. We briefly review common pediatric epilepsy syndromes with strong genetic association and provide a potentially useful algorithm for genetic testing in drug-resistant epilepsy. We performed an extensive literature review of available information as it pertains to genetic testing and genetics in pediatric epilepsy. If a genetic disorder is suspected as the cause of epilepsy, based on drug resistance, family history, or clinical phenotype, timely diagnosis may reduce overall cost, limit the diagnostic odyssey that can bring much anxiety to families, improve prognostic accuracy, and lead to targeted therapy. Interpretation of complicated results should be performed only in collaboration with geneticists and genetic counselors, unless the ordering neurologist has a strong background in and understanding of genetics. Genetic testing can play an important role in the care provided to patients with epilepsy. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  7. The psychological impact of genetic testing on parents.

    PubMed

    Dinc, Leyla; Terzioglu, Fusun

    2006-01-01

    The aim of this descriptive study was to explore the psychological impact of genetic testing on parents whose children have been referred for genetic testing. Genetic tests enable individuals to be informed about their health status and to have the opportunity of early diagnosis and treatment of their diseases. However undergoing genetic testing and receiving a positive test result may also cause stress and anxiety. This descriptive study was carried out at the genetic departments of two university hospitals in Ankara. The sample of this study consisted of 128 individuals whose children have been referred for chromosomal analysis. Data were collected through using a semi-structured interview method with a data collection form and the anxiety inventory and analysed using the percentages and independent samples t-test. The majority of our participants experienced distress before genetic testing. Their general trait anxiety score before receiving the test results was 47.38, and following the test results the state anxiety score was 50.65. Having a previous child with an abnormality, a positive test result, and being a mother elevated the anxiety of individuals. This paper supports the findings of previous studies, which indicated that genetic test results might lead to anxiety in individuals and reveals the importance of genetic counselling. As the results of this study indicated, genetic testing causes distress and anxiety in individuals. Nurses can play an important role in minimizing anxiety of parents whose children undergo genetic testing by providing information about genetic testing and by taking part in the counselling process.

  8. Parental attitudes toward genetic testing for prelingual deafness in China.

    PubMed

    Fu, Siqing; Dong, Jiashu; Wang, Chunfang; Chen, Guanming

    2010-10-01

    Recent advances in molecular biology of hearing and deafness have made genetic testing an option for deaf individuals and their families. In China, DNA microarray and other genetic testing method has been applied to rapid genetic diagnosis of non-syndromic hearing loss. However, there is no information about the interests in such testing in China. The purpose of this study is to document the attitudes of parents with normal hearing who have one or more deaf children toward diagnostic, carrier, and prenatal genetic testing for deafness. A structured, self-completion questionnaire was given to delegates at a conference held at Hubei Rehabilitation Research Center for Deaf Children, Wuhan, China on March 3, 2010. Of 366 surveys distributed, 290 were completed and returned. Ninety-four percent of the respondents had a positive attitude toward genetic testing. Seventy-two percent stated that they were interested in genetic testing of deaf child. Of the individuals who were interested in such testing, 69% would consider having prenatal genetic testing for deafness. The present study provided evidence of a predominantly positive attitude toward genetics. Appropriate genetic counseling can help parents to understand the risk, benefits, and limitations of genetic testing for prelingual deafness. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Introducing genetic testing for cardiovascular disease in primary care: a qualitative study

    PubMed Central

    Middlemass, Jo B; Yazdani, Momina F; Kai, Joe; Standen, Penelope J; Qureshi, Nadeem

    2014-01-01

    Background While primary care systematically offers conventional cardiovascular risk assessment, genetic tests for coronary heart disease (CHD) are increasingly commercially available to patients. It is unclear how individuals may respond to these new sources of risk information. Aim To explore how patients who have had a recent conventional cardiovascular risk assessment, perceive additional information from genetic testing for CHD. Design and setting Qualitative interview study in 12 practices in Nottinghamshire from both urban and rural settings. Method Interviews were conducted with 29 adults, who consented to genetic testing after having had a conventional cardiovascular risk assessment. Results Individuals’ principal motivation for genetic testing was their family history of CHD and a desire to convey the results to their children. After testing, however, there was limited recall of genetic test results and scepticism about the value of informing their children. Participants dealt with conflicting findings from the genetic test, family history, and conventional assessment by either focusing on genetic risk or environmental lifestyle factors. In some participants, genetic test results appeared to reinforce healthy behaviour but others were falsely reassured, despite having an ‘above-average’ conventional cardiovascular risk score. Conclusion Although genetic testing was acceptable, participants were unclear how to interpret genetic risk results. To facilitate healthy behaviour, health professionals should explore patients’ understanding of genetic test results in light of their family history and conventional risk assessment. PMID:24771842

  10. Genetic Literacy and Patient Perceptions of IBD Testing Utility and Disease Control: A Randomized Vignette Study of Genetic Testing

    PubMed Central

    Hooker, Gillian W.; Peay, Holly; Erby, Lori; Bayless, Theodore; Biesecker, Barbara B.; Roter, Debra L.

    2014-01-01

    Background Findings from inflammatory bowel disease (IBD) genome-wide association studies are being translated clinically into prognostic and diagnostic indicators of disease. Yet, patient perception and understanding of these tests and their applicability to providing risk information is unclear. The goal of this study was to determine, using hypothetical scenarios, whether patients with IBD perceive genetic testing to be useful for risk assessment, whether genetic test results impact perceived control, and whether low genetic literacy may be a barrier to patient understanding of these tests. Methods Two hundred fifty seven patients with IBD from the Johns Hopkins gastroenterology clinics were randomized to receive a vignette depicting either a genetic testing scenario or a standard blood testing scenario. Participants were asked questions about the vignette and responses were compared between groups. Results Perceptions of test utility for risk assessment were higher among participants responding to the genetic vignette (P < 0.001). There were no significant differences in perceptions of control over IBD after hypothetical testing between vignettes (P = 0.24). Participant responses were modified by genetic literacy, measured using a scale developed for this study. Participants randomized to the genetic vignette who scored higher on the genetic literacy scale perceived greater utility of testing for risk assessment (P = 0.008) and more control after testing (P = 0.02). Conclusions Patients with IBD perceive utility in genetic testing for providing information relevant to family members, and this appreciation is promoted by genetic literacy. Low genetic literacy among patients poses a potential threat to effective translation of genetic and genomic tests. PMID:24691112

  11. Patient Education and Informed Consent for Preimplantation Genetic Diagnosis: Health Literacy for Genetics and Assisted Reproductive Technology

    PubMed Central

    McGowan, Michelle L.; Burant, Chris; Moran, Rocio; Farrell, Ruth

    2013-01-01

    Introduction Innovative applications of genetic testing have emerged within the field of assisted reproductive technology through preimplantation genetic diagnosis (PGD). As in all forms of genetic testing, adequate genetic counseling and informed consent are critical. Despite the growing recognition of the role of informed consent in genetic testing, there is little data available about how this process occurs in the setting of PGD. Methods A cross sectional study of IVF clinics offering PGD in the U.S. was conducted to assess patient education and informed consent practices. Descriptive data were collected with a self-administered survey instrument. Results More than half of the clinics offering PGD required genetic counseling prior to PGD (56%). Genetic counseling was typically performed by certified genetic counselors (84 %). Less than half (37%) of the clinics required a separate informed consent process for genetic testing of embryonic cells. At a majority of those clinics requiring a separate informed consent for genetic testing (54%), informed consent for PGD and genetic testing took place as a single event before beginning IVF procedures. Conclusions The results suggest that patient education and informed consent practices for PGD have yet to be standardized. These findings warrant the establishment of professional guidelines for patient education and informed consent specific to embryonic genetic testing. PMID:19652605

  12. Motivations for genetic testing for lung cancer risk among young smokers.

    PubMed

    O'Neill, Suzanne C; Lipkus, Isaac M; Sanderson, Saskia C; Shepperd, James; Docherty, Sharron; McBride, Colleen M

    2013-11-01

    To examine why young people might want to undergo genetic susceptibility testing for lung cancer despite knowing that tested gene variants are associated with small increases in disease risk. The authors used a mixed-method approach to evaluate motives for and against genetic testing and the association between these motivations and testing intentions in 128 college students who smoke. Exploratory factor analysis yielded four reliable factors: Test Scepticism, Test Optimism, Knowledge Enhancement and Smoking Optimism. Test Optimism and Knowledge Enhancement correlated positively with intentions to test in bivariate and multivariate analyses (ps<0.001). Test Scepticism correlated negatively with testing intentions in multivariate analyses (p<0.05). Open-ended questions assessing testing motivations generally replicated themes of the quantitative survey. In addition to learning about health risks, young people may be motivated to seek genetic testing for reasons, such as gaining knowledge about new genetic technologies more broadly.

  13. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test

    PubMed Central

    Lionel, Anath C; Costain, Gregory; Monfared, Nasim; Walker, Susan; Reuter, Miriam S; Hosseini, S Mohsen; Thiruvahindrapuram, Bhooma; Merico, Daniele; Jobling, Rebekah; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Sung, Wilson W L; Wang, Zhuozhi; Bikangaga, Peter; Boelman, Cyrus; Carter, Melissa T; Cordeiro, Dawn; Cytrynbaum, Cheryl; Dell, Sharon D; Dhir, Priya; Dowling, James J; Heon, Elise; Hewson, Stacy; Hiraki, Linda; Inbar-Feigenberg, Michal; Klatt, Regan; Kronick, Jonathan; Laxer, Ronald M; Licht, Christoph; MacDonald, Heather; Mercimek-Andrews, Saadet; Mendoza-Londono, Roberto; Piscione, Tino; Schneider, Rayfel; Schulze, Andreas; Silverman, Earl; Siriwardena, Komudi; Snead, O Carter; Sondheimer, Neal; Sutherland, Joanne; Vincent, Ajoy; Wasserman, Jonathan D; Weksberg, Rosanna; Shuman, Cheryl; Carew, Chris; Szego, Michael J; Hayeems, Robin Z; Basran, Raveen; Stavropoulos, Dimitri J; Ray, Peter N; Bowdin, Sarah; Meyn, M Stephen; Cohn, Ronald D; Scherer, Stephen W; Marshall, Christian R

    2018-01-01

    Purpose Genetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use. Methods We prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing. Results WGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24% P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A. Conclusion WGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort. PMID:28771251

  14. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test.

    PubMed

    Lionel, Anath C; Costain, Gregory; Monfared, Nasim; Walker, Susan; Reuter, Miriam S; Hosseini, S Mohsen; Thiruvahindrapuram, Bhooma; Merico, Daniele; Jobling, Rebekah; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Sung, Wilson W L; Wang, Zhuozhi; Bikangaga, Peter; Boelman, Cyrus; Carter, Melissa T; Cordeiro, Dawn; Cytrynbaum, Cheryl; Dell, Sharon D; Dhir, Priya; Dowling, James J; Heon, Elise; Hewson, Stacy; Hiraki, Linda; Inbar-Feigenberg, Michal; Klatt, Regan; Kronick, Jonathan; Laxer, Ronald M; Licht, Christoph; MacDonald, Heather; Mercimek-Andrews, Saadet; Mendoza-Londono, Roberto; Piscione, Tino; Schneider, Rayfel; Schulze, Andreas; Silverman, Earl; Siriwardena, Komudi; Snead, O Carter; Sondheimer, Neal; Sutherland, Joanne; Vincent, Ajoy; Wasserman, Jonathan D; Weksberg, Rosanna; Shuman, Cheryl; Carew, Chris; Szego, Michael J; Hayeems, Robin Z; Basran, Raveen; Stavropoulos, Dimitri J; Ray, Peter N; Bowdin, Sarah; Meyn, M Stephen; Cohn, Ronald D; Scherer, Stephen W; Marshall, Christian R

    2018-04-01

    PurposeGenetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use.MethodsWe prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing.ResultsWGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24%; P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A.ConclusionWGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.

  15. A Test of Genetic Algorithms in Relevance Feedback.

    ERIC Educational Resources Information Center

    Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de

    2002-01-01

    Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…

  16. Pathways from Autism Spectrum Disorder (ASD) Diagnosis to Genetic Testing

    PubMed Central

    Barton, Krysta S.; Tabor, Holly K.; Starks, Helene; Garrison, Nanibaa’ A.; Laurino, Mercy; Burke, Wylie

    2017-01-01

    Purpose This study examines challenges faced by families and health providers related to genetic testing for autism spectrum disorder (ASD). Methods This qualitative study of 14 parents and 15 health providers identified an unstandardized three-step process for families who pursue ASD genetic testing. Results Step 1 is the clinical diagnosis of ASD, confirmed by providers practicing alone or in a team. Step 2 is the offer of genetic testing to find an etiology. For those offered testing, step 3 involves the parents’ decision whether to pursue testing. Despite professional guidelines and recommendations, interviews describe considerable variability in approaches to genetic testing for ASD, a lack of consensus among providers, and questions about clinical utility. Many families in our study were unaware of the option for genetic testing; testing decisions by parents appear to be influenced by both provider recommendations and insurance coverage. Conclusion Consideration of genetic testing for ASD should take into account different views about the clinical utility of testing and variability in insurance coverage. Ideally, policy makers from the range of clinical specialties involved in ASD care should revisit policies to clarify the purpose of genetic testing for ASD and promote consensus about its appropriate use. PMID:29048417

  17. Multiple Phenotype Association Tests Using Summary Statistics in Genome-Wide Association Studies

    PubMed Central

    Liu, Zhonghua; Lin, Xihong

    2017-01-01

    Summary We study in this paper jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. PMID:28653391

  18. Multiple phenotype association tests using summary statistics in genome-wide association studies.

    PubMed

    Liu, Zhonghua; Lin, Xihong

    2018-03-01

    We study in this article jointly testing the associations of a genetic variant with correlated multiple phenotypes using the summary statistics of individual phenotype analysis from Genome-Wide Association Studies (GWASs). We estimated the between-phenotype correlation matrix using the summary statistics of individual phenotype GWAS analyses, and developed genetic association tests for multiple phenotypes by accounting for between-phenotype correlation without the need to access individual-level data. Since genetic variants often affect multiple phenotypes differently across the genome and the between-phenotype correlation can be arbitrary, we proposed robust and powerful multiple phenotype testing procedures by jointly testing a common mean and a variance component in linear mixed models for summary statistics. We computed the p-values of the proposed tests analytically. This computational advantage makes our methods practically appealing in large-scale GWASs. We performed simulation studies to show that the proposed tests maintained correct type I error rates, and to compare their powers in various settings with the existing methods. We applied the proposed tests to a GWAS Global Lipids Genetics Consortium summary statistics data set and identified additional genetic variants that were missed by the original single-trait analysis. © 2017, The International Biometric Society.

  19. Personalized genetic testing as a tool for integrating ethics instruction into biology courses.

    PubMed

    Zhang, Tenny R; Anderson, Misti Ault

    2014-12-01

    Personalized genetic testing (PGT) has been used by some educational institutions as a pedagogical tool for teaching human genetics. While work has been done that examines the potential for PGT to improve students' interest and understanding of the science involved in genetic testing, there has been less dialogue about how this method might be useful for integrating ethical and societal issues surrounding genetic testing into classroom discussions. Citing the importance of integrating ethics into the biology classroom, we argue that PGT can be an effective educational tool for integrating ethics and science education, and discuss relevant ethical considerations for instructors using this approach.

  20. Personalized Genetic Testing as a Tool for Integrating Ethics Instruction into Biology Courses

    PubMed Central

    Zhang, Tenny R.; Anderson, Misti Ault

    2014-01-01

    Personalized genetic testing (PGT) has been used by some educational institutions as a pedagogical tool for teaching human genetics. While work has been done that examines the potential for PGT to improve students’ interest and understanding of the science involved in genetic testing, there has been less dialogue about how this method might be useful for integrating ethical and societal issues surrounding genetic testing into classroom discussions. Citing the importance of integrating ethics into the biology classroom, we argue that PGT can be an effective educational tool for integrating ethics and science education, and discuss relevant ethical considerations for instructors using this approach. PMID:25574278

  1. Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

    PubMed Central

    Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.

    2015-01-01

    Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400

  2. Detection of Genetically Modified Food: Has Your Food Been Genetically Modified?

    ERIC Educational Resources Information Center

    Brandner, Diana L.

    2002-01-01

    Explains the benefits and risks of genetically-modified foods and describes methods for genetically modifying food. Presents a laboratory experiment using a polymerase chain reaction (PCR) test to detect foreign DNA in genetically-modified food. (Contains 18 references.) (YDS)

  3. Understanding Genetic Toxicity Through Data Mining: The ...

    EPA Pesticide Factsheets

    This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in a weight-of-evidence approach to assess potential for genetic toxicity, and to guide the development of intelligent testing strategies. This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in a weight-of-evidence approach to assess potential for genetic toxicity, and to guide the development of intelligent testing strategies.

  4. Assessing Attitudes about Genetic Testing as a Component of Continuing Medical Education

    ERIC Educational Resources Information Center

    Mrazek, Michael; Koenig, Barbara; Skime, Michelle; Snyder, Karen; Hook, Christopher; Black, John, III; Mrazek, David

    2007-01-01

    Objective: To investigate the attitudes among mental health professionals regarding the use of genetic testing. Methods: Psychiatrists and other mental health professionals (N = 41) who were enrolled in a week-long course in psychiatric genomics completed questionnaires before and after the course designed to assess how diagnostic genetic tests…

  5. Health Orientation, Knowledge, and Attitudes toward Genetic Testing and Personalized Genomic Services: Preliminary Data from an Italian Sample.

    PubMed

    Oliveri, Serena; Masiero, Marianna; Arnaboldi, Paola; Cutica, Ilaria; Fioretti, Chiara; Pravettoni, Gabriella

    2016-01-01

    Objective . The study aims at assessing personality tendencies and orientations that could be closely correlated with knowledge, awareness, and interest toward undergoing genetic testing. Methods. A sample of 145 subjects in Italy completed an online survey, investigating demographic data, health orientation, level of perceived knowledge about genetic risk, genetic screening, and personal attitudes toward direct to consumer genetic testing (DTCGT). Results . Results showed that respondents considered genetic assessment to be helpful for disease prevention, but they were concerned that results could affect their life planning with little clinical utility. Furthermore, a very high percentage of respondents (67%) had never heard about genetic testing directly available to the public. Data showed that personality tendencies, such as personal health consciousness, health internal control, health esteem, and confidence, motivation to avoid unhealthiness and motivation for healthiness affected the uptake of genetic information and the interest in undergoing genetic testing. Conclusions . Public knowledge and attitudes toward genetic risk and genetic testing among European countries, along with individual personality and psychological tendencies that could affect these attitudes, remain unexplored. The present study constitutes one of the first attempts to investigate how such personality tendencies could motivation to undergo genetic testing and engagement in lifestyle changes.

  6. Health Orientation, Knowledge, and Attitudes toward Genetic Testing and Personalized Genomic Services: Preliminary Data from an Italian Sample

    PubMed Central

    Arnaboldi, Paola; Cutica, Ilaria; Fioretti, Chiara

    2016-01-01

    Objective. The study aims at assessing personality tendencies and orientations that could be closely correlated with knowledge, awareness, and interest toward undergoing genetic testing. Methods. A sample of 145 subjects in Italy completed an online survey, investigating demographic data, health orientation, level of perceived knowledge about genetic risk, genetic screening, and personal attitudes toward direct to consumer genetic testing (DTCGT). Results. Results showed that respondents considered genetic assessment to be helpful for disease prevention, but they were concerned that results could affect their life planning with little clinical utility. Furthermore, a very high percentage of respondents (67%) had never heard about genetic testing directly available to the public. Data showed that personality tendencies, such as personal health consciousness, health internal control, health esteem, and confidence, motivation to avoid unhealthiness and motivation for healthiness affected the uptake of genetic information and the interest in undergoing genetic testing. Conclusions. Public knowledge and attitudes toward genetic risk and genetic testing among European countries, along with individual personality and psychological tendencies that could affect these attitudes, remain unexplored. The present study constitutes one of the first attempts to investigate how such personality tendencies could motivation to undergo genetic testing and engagement in lifestyle changes. PMID:28105428

  7. Genetics-based methods for detection of Salmonella spp. in foods.

    PubMed

    Mozola, Mark A

    2006-01-01

    Genetic methods are now at the forefront of foodborne pathogen testing. The sensitivity, specificity, and inclusivity advantages offered by deoxyribonucleic acid (DNA) probe technology have driven an intense effort in methods development over the past 20 years. DNA probe-based methods for Salmonella spp. and other pathogens have progressed from time-consuming procedures involving the use of radioisotopes to simple, high throughput, automated assays. The analytical sensitivity of nucleic acid amplification technology has facilitated a reduction in analysis time by allowing enriched samples to be tested for previously undetectable quantities of analyte. This article will trace the evolution of the development of genetic methods for detection of Salmonella in foods, review the basic assay formats and their advantages and limitations, and discuss method performance characteristics and considerations for selection of methods.

  8. Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017.

    PubMed

    Giri, Veda N; Knudsen, Karen E; Kelly, William K; Abida, Wassim; Andriole, Gerald L; Bangma, Chris H; Bekelman, Justin E; Benson, Mitchell C; Blanco, Amie; Burnett, Arthur; Catalona, William J; Cooney, Kathleen A; Cooperberg, Matthew; Crawford, David E; Den, Robert B; Dicker, Adam P; Eggener, Scott; Fleshner, Neil; Freedman, Matthew L; Hamdy, Freddie C; Hoffman-Censits, Jean; Hurwitz, Mark D; Hyatt, Colette; Isaacs, William B; Kane, Christopher J; Kantoff, Philip; Karnes, R Jeffrey; Karsh, Lawrence I; Klein, Eric A; Lin, Daniel W; Loughlin, Kevin R; Lu-Yao, Grace; Malkowicz, S Bruce; Mann, Mark J; Mark, James R; McCue, Peter A; Miner, Martin M; Morgan, Todd; Moul, Judd W; Myers, Ronald E; Nielsen, Sarah M; Obeid, Elias; Pavlovich, Christian P; Peiper, Stephen C; Penson, David F; Petrylak, Daniel; Pettaway, Curtis A; Pilarski, Robert; Pinto, Peter A; Poage, Wendy; Raj, Ganesh V; Rebbeck, Timothy R; Robson, Mark E; Rosenberg, Matt T; Sandler, Howard; Sartor, Oliver; Schaeffer, Edward; Schwartz, Gordon F; Shahin, Mark S; Shore, Neal D; Shuch, Brian; Soule, Howard R; Tomlins, Scott A; Trabulsi, Edouard J; Uzzo, Robert; Vander Griend, Donald J; Walsh, Patrick C; Weil, Carol J; Wender, Richard; Gomella, Leonard G

    2018-02-01

    Purpose Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-driven working framework for comprehensive genetic evaluation of inherited PCA in the multigene testing era addressing genetic counseling, testing, and genetically informed management. Methods An expert consensus conference was convened including key stakeholders to address genetic counseling and testing, PCA screening, and management informed by evidence review. Results Consensus was strong that patients should engage in shared decision making for genetic testing. There was strong consensus to test HOXB13 for suspected hereditary PCA, BRCA1/2 for suspected hereditary breast and ovarian cancer, and DNA mismatch repair genes for suspected Lynch syndrome. There was strong consensus to factor BRCA2 mutations into PCA screening discussions. BRCA2 achieved moderate consensus for factoring into early-stage management discussion, with stronger consensus in high-risk/advanced and metastatic setting. Agreement was moderate to test all men with metastatic castration-resistant PCA, regardless of family history, with stronger agreement to test BRCA1/2 and moderate agreement to test ATM to inform prognosis and targeted therapy. Conclusion To our knowledge, this is the first comprehensive, multidisciplinary consensus statement to address a genetic evaluation framework for inherited PCA in the multigene testing era. Future research should focus on developing a working definition of familial PCA for clinical genetic testing, expanding understanding of genetic contribution to aggressive PCA, exploring clinical use of genetic testing for PCA management, genetic testing of African American males, and addressing the value framework of genetic evaluation and testing men at risk for PCA-a clinically heterogeneous disease.

  9. Impact of gene patents on diagnostic testing: a new patent landscaping method applied to spinocerebellar ataxia

    PubMed Central

    Berthels, Nele; Matthijs, Gert; Van Overwalle, Geertrui

    2011-01-01

    Recent reports in Europe and the United States raise concern about the potential negative impact of gene patents on the freedom to operate of diagnosticians and on the access of patients to genetic diagnostic services. Patents, historically seen as legal instruments to trigger innovation, could cause undesired side effects in the public health domain. Clear empirical evidence on the alleged hindering effect of gene patents is still scarce. We therefore developed a patent categorization method to determine which gene patents could indeed be problematic. The method is applied to patents relevant for genetic testing of spinocerebellar ataxia (SCA). The SCA test is probably the most widely used DNA test in (adult) neurology, as well as one of the most challenging due to the heterogeneity of the disease. Typically tested as a gene panel covering the five common SCA subtypes, we show that the patenting of SCA genes and testing methods and the associated licensing conditions could have far-reaching consequences on legitimate access to this gene panel. Moreover, with genetic testing being increasingly standardized, simply ignoring patents is unlikely to hold out indefinitely. This paper aims to differentiate among so-called ‘gene patents' by lifting out the truly problematic ones. In doing so, awareness is raised among all stakeholders in the genetic diagnostics field who are not necessarily familiar with the ins and outs of patenting and licensing. PMID:21811306

  10. The development and standardization of testing methods for genetically modified organisms and their derived products.

    PubMed

    Zhang, Dabing; Guo, Jinchao

    2011-07-01

    As the worldwide commercialization of genetically modified organisms (GMOs) increases and consumers concern the safety of GMOs, many countries and regions are issuing labeling regulations on GMOs and their products. Analytical methods and their standardization for GM ingredients in foods and feed are essential for the implementation of labeling regulations. To date, the GMO testing methods are mainly based on the inserted DNA sequences and newly produced proteins in GMOs. This paper presents an overview of GMO testing methods as well as their standardization. © 2011 Institute of Botany, Chinese Academy of Sciences.

  11. Bayes factors based on robust TDT-type tests for family trio design.

    PubMed

    Yuan, Min; Pan, Xiaoqing; Yang, Yaning

    2015-06-01

    Adaptive transmission disequilibrium test (aTDT) and MAX3 test are two robust-efficient association tests for case-parent family trio data. Both tests incorporate information of common genetic models including recessive, additive and dominant models and are efficient in power and robust to genetic model specifications. The aTDT uses information of departure from Hardy-Weinberg disequilibrium to identify the potential genetic model underlying the data and then applies the corresponding TDT-type test, and the MAX3 test is defined as the maximum of the absolute value of three TDT-type tests under the three common genetic models. In this article, we propose three robust Bayes procedures, the aTDT based Bayes factor, MAX3 based Bayes factor and Bayes model averaging (BMA), for association analysis with case-parent trio design. The asymptotic distributions of aTDT under the null and alternative hypothesis are derived in order to calculate its Bayes factor. Extensive simulations show that the Bayes factors and the p-values of the corresponding tests are generally consistent and these Bayes factors are robust to genetic model specifications, especially so when the priors on the genetic models are equal. When equal priors are used for the underlying genetic models, the Bayes factor method based on aTDT is more powerful than those based on MAX3 and Bayes model averaging. When the prior placed a small (large) probability on the true model, the Bayes factor based on aTDT (BMA) is more powerful. Analysis of a simulation data about RA from GAW15 is presented to illustrate applications of the proposed methods.

  12. Use of Contemporary Genetics in Cardiovascular Diagnosis

    PubMed Central

    George, Alfred L.

    2015-01-01

    An explosion of knowledge regarding the genetic and genomic basis for rare and common diseases has provided a framework for revolutionizing the practice of medicine. Achieving the reality of a genomic medicine era requires that basic discoveries are effectively translated into clinical practice through implementation of genetic and genomic testing. Clinical genetic tests have become routine for many inherited disorders and can be regarded as the standard-of-care in many circumstances including disorders affecting the cardiovascular system. New, high-throughput methods for determining the DNA sequence of all coding exons or complete genomes are being adopted for clinical use to expand the speed and breadth of genetic testing. Along with these extraordinary advances have emerged new challenges to practicing physicians for understanding when and how to use genetic testing along with how to appropriately interpret test results. This review will acquaint readers with general principles of genetic testing including newer technologies, test interpretation and pitfalls. The focus will be on testing genes responsible for monogenic disorders and on other emerging applications such as pharmacogenomic profiling. The discussion will be extended to the new paradigm of direct-to-consumer genetic testing and the value of assessing genomic risk for common diseases. PMID:25421045

  13. Support Seeking or Familial Obligation: An Investigation of Motives for Disclosing Genetic Test Results.

    PubMed

    Greenberg, Marisa; Smith, Rachel A

    2016-01-01

    Genetic test results reveal not only personal information about a person's likelihood of certain medical conditions but also information about the person's genetic relatives. Given the familial nature of genetic information, one's obligation to protect family members may be a motive for disclosing genetic test results, but this claim has not been methodically tested. Existing models of disclosure decision making presume self-interested motives, such as seeking social support, instead of other-interested motives, like familial obligation. This study investigated young adults' (N = 173) motives to share a genetic-based health condition, alpha-1 antitrypsin deficiency, after reading a hypothetical vignette. Results show that social support and familial obligation were both reported as motives for disclosure. In fact, some participants reported familial obligation as their primary motivator for disclosure. Finally, stronger familial obligation predicted increased likelihood of disclosing hypothetical genetic test results. Implications of these results were discussed in reference to theories of disclosure decision-making models and the practice of genetic disclosures.

  14. The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies

    PubMed Central

    Barnett, Ian; Mukherjee, Rajarshi; Lin, Xihong

    2017-01-01

    It is of substantial interest to study the effects of genes, genetic pathways, and networks on the risk of complex diseases. These genetic constructs each contain multiple SNPs, which are often correlated and function jointly, and might be large in number. However, only a sparse subset of SNPs in a genetic construct is generally associated with the disease of interest. In this article, we propose the generalized higher criticism (GHC) to test for the association between an SNP set and a disease outcome. The higher criticism is a test traditionally used in high-dimensional signal detection settings when marginal test statistics are independent and the number of parameters is very large. However, these assumptions do not always hold in genetic association studies, due to linkage disequilibrium among SNPs and the finite number of SNPs in an SNP set in each genetic construct. The proposed GHC overcomes the limitations of the higher criticism by allowing for arbitrary correlation structures among the SNPs in an SNP-set, while performing accurate analytic p-value calculations for any finite number of SNPs in the SNP-set. We obtain the detection boundary of the GHC test. We compared empirically using simulations the power of the GHC method with existing SNP-set tests over a range of genetic regions with varied correlation structures and signal sparsity. We apply the proposed methods to analyze the CGEM breast cancer genome-wide association study. Supplementary materials for this article are available online. PMID:28736464

  15. Support Seeking or Familial Obligation: An Investigation of Motives for Disclosing Genetic Test Results

    PubMed Central

    Greenberg, Marisa; Smith, Rachel A.

    2016-01-01

    Genetic test results reveal not only personal information about a person’s likelihood of certain medical conditions but also information about their genetic relatives (Annas, Glantz, & Roche, 1995). Given the familial nature of genetic information, one’s obligation to protect family members may be a motive for disclosing genetic test results, but this claim has not been methodically tested. Existing models of disclosure decision-making presume self-interested motives, such as seeking social support, instead of other-interested motives, like familial obligation. This study investigated young adults’ (N = 173) motives to share a genetic-based health condition, alpha-1 antitrypsin deficiency, after reading a hypothetical vignette. Results show that social support and familial obligation were both reported as motives for disclosure. In fact, some participants reported familial obligation as their primary motivator for disclosure. Finally, stronger familial obligation predicted increased likelihood of disclosing hypothetical genetic test results. Implications of these results were discussed in reference to theories of disclosure decision-making models and the practice of genetic disclosures. PMID:26507777

  16. Molecular Diagnosis of Thalassemias and Hemoglobinopathies: An ACLPS Critical Review.

    PubMed

    Sabath, Daniel E

    2017-07-01

    To describe the use of molecular diagnostic techniques for patients with hemoglobin disorders. A clinical scenario is presented in which molecular diagnosis is important for genetic counseling. Globin disorders, techniques for their diagnosis, and the role of molecular genetic testing in managing patients with these disorders are described in detail. Hemoglobin disorders, including thalassemias and hemoglobinopathies, are among the commonest genetic diseases, and the clinical laboratory is essential for the diagnosis of patients with these abnormalities. Most disorders can be diagnosed with protein-based techniques such as electrophoresis and chromatography. Since severe syndromes can result due to inheritance of combinations of globin genetic disorders, genetic counseling is important to prevent adverse outcomes. Protein-based methods cannot always detect potentially serious thalassemia disorders; in particular, α-thalassemia may be masked in the presence of β-thalassemia. Deletional forms of β-thalassemia are also sometimes difficult to diagnose definitively with standard methods. Molecular genetic testing serves an important role in identifying individuals carrying thalassemia traits that can cause adverse outcomes in offspring. Furthermore, prenatal genetic testing can identify fetuses with severe globin phenotypes. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  17. Navigating the Interface Between Landscape Genetics and Landscape Genomics.

    PubMed

    Storfer, Andrew; Patton, Austin; Fraik, Alexandra K

    2018-01-01

    As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used.

  18. Navigating the Interface Between Landscape Genetics and Landscape Genomics

    PubMed Central

    Storfer, Andrew; Patton, Austin; Fraik, Alexandra K.

    2018-01-01

    As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used. PMID:29593776

  19. [Analytic methods for seed models with genotype x environment interactions].

    PubMed

    Zhu, J

    1996-01-01

    Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by Monte Carlo simulations.

  20. Utilization of Genetic Testing Prior to Subspecialist Referral for Cerebellar Ataxia

    PubMed Central

    Fogel, Brent L.; Vickrey, Barbara G.; Walton-Wetzel, Jenny; Lieber, Eli

    2013-01-01

    Objective: To evaluate the utilization of laboratory testing in the diagnosis of cerebellar ataxia, including the completeness of initial standard testing for acquired causes, the early use of genetic testing, and associated clinical and nonclinical factors, among a cohort referred for subspecialty consultation. Methods: Data were abstracted from records of 95 consecutive ataxia patients referred to one neurogenetics subspecialist from 2006–2010 and linked to publicly available data on characteristics of referral clinicians. Multivariable logistic and linear regression models were used to analyze unique associations of clinical and nonclinical factors with laboratory investigation of acquired causes and with early genetic testing prior to referral. Results: At referral, 27 of 95 patients lacked evidence of any of 14 laboratory studies suggested for initial work-up of an acquired cause for ataxia (average number of tests=4.5). In contrast, 92% of patients had undergone brain magnetic resonance imaging prior to referral. Overall, 41.1% (n=39) had genetic testing prior to referral; there was no association between family history of ataxia and obtaining genetic testing prior to referral (p=0.39). The level of early genetic testing was 31.6%, primarily due to genetic testing despite an incomplete laboratory evaluation for acquired causes and no family history. A positive family history was consistently associated with less extensive laboratory testing (p=0.004), and referral by a neurologist was associated with higher levels of early genetic testing. Conclusions: Among consecutive referrals to a single center, a substantial proportion of sporadic cases had genetic testing without evidence of a work-up for acquired causes. Better strategies to guide decision making and subspecialty referrals in rare neurologic disorders are needed, given the cost and consequences of genetic testing. PMID:23725007

  1. A Method for the Determination of Genetic Sex in the Fathead Minnow, Pimephales promelas, to Support Testing of Endocrine-active Chemicals

    EPA Science Inventory

    Fathead minnows are used as a model fish species for the characterization of the endocrine-disrupting potential of environmental contaminants. This research describes the development of a PCR method that can determine the genetic sex in this species. This method, when incorpora...

  2. Primary care providers' cancer genetic testing-related knowledge, attitudes, and communication behaviors: A systematic review and research agenda.

    PubMed

    Hamilton, Jada G; Abdiwahab, Ekland; Edwards, Heather M; Fang, Min-Lin; Jdayani, Andrew; Breslau, Erica S

    2017-03-01

    Primary care providers (PCPs) can play a critical role in helping patients receive the preventive health benefits of cancer genetic risk information. Thus, the objective of this systematic review was to identify studies of US PCPs' knowledge, attitudes, and communication-related behaviors regarding genetic tests that could inform risk-stratification approaches for breast, colorectal, and prostate cancer screening in order to describe current findings and research gaps. We conducted a systematic search of six electronic databases to identify peer-reviewed empirical articles relating to US PCPs and genetic testing for breast, colorectal, or prostate cancer published in English from 2008 to 2016. We reviewed these data and used narrative synthesis methods to integrate findings into a descriptive summary and identify research needs. We identified 27 relevant articles. Most focused on genetic testing for breast cancer (23/27) and colorectal cancer risk (12/27); only one study examined testing for prostate cancer risk. Most articles addressed descriptive research questions (24/27). Many studies (24/27) documented PCPs' knowledge, often concluding that providers' knowledge was incomplete. Studies commonly (11/27) examined PCPs' attitudes. Across studies, PCPs expressed some concerns about ethical, legal, and social implications of testing. Attitudes about the utility of clinical genetic testing, including for targeted cancer screening, were generally favorable; PCPs were more skeptical of direct-to-consumer testing. Relatively fewer studies (9/27) examined PCPs' communication practices regarding cancer genetic testing. This review indicates a need for investigators to move beyond descriptive research questions related to PCPs' knowledge and attitudes about cancer genetic testing. Research is needed to address important gaps regarding the development, testing, and implementation of innovative interventions and educational programs that can improve PCPs' genetic testing knowledge, assuage concerns about the appropriateness of cancer genetic testing, and promote open and effective patient-provider communication about genetic risk and genetic testing.

  3. Best practice guidelines for the molecular genetic diagnosis of Type 1 (HFE-related) hereditary haemochromatosis

    PubMed Central

    King, Caitriona; Barton, David E

    2006-01-01

    Background Hereditary haemochromatosis (HH) is a recessively-inherited disorder of iron over-absorption prevalent in Caucasian populations. Affected individuals for Type 1 HH are usually either homozygous for a cysteine to tyrosine amino acid substitution at position 282 (C282Y) of the HFE gene, or compound heterozygotes for C282Y and for a histidine to aspartic acid change at position 63 (H63D). Molecular genetic testing for these two mutations has become widespread in recent years. With diverse testing methods and reporting practices in use, there was a clear need for agreed guidelines for haemochromatosis genetic testing. The UK Clinical Molecular Genetics Society has elaborated a consensus process for the development of disease-specific best practice guidelines for genetic testing. Methods A survey of current practice in the molecular diagnosis of haemochromatosis was conducted. Based on the results of this survey, draft guidelines were prepared using the template developed by UK Clinical Molecular Genetics Society. A workshop was held to develop the draft into a consensus document. The consensus document was then posted on the Clinical Molecular Genetics Society website for broader consultation and amendment. Results Consensus or near-consensus was achieved on all points in the draft guidelines. The consensus and consultation processes worked well, and outstanding issues were documented in an appendix to the guidelines. Conclusion An agreed set of best practice guidelines were developed for diagnostic, predictive and carrier testing for hereditary haemochromatosis and for reporting the results of such testing. PMID:17134494

  4. Neural-network-assisted genetic algorithm applied to silicon clusters

    NASA Astrophysics Data System (ADS)

    Marim, L. R.; Lemes, M. R.; dal Pino, A.

    2003-03-01

    Recently, a new optimization procedure that combines the power of artificial neural-networks with the versatility of the genetic algorithm (GA) was introduced. This method, called neural-network-assisted genetic algorithm (NAGA), uses a neural network to restrict the search space and it is expected to speed up the solution of global optimization problems if some previous information is available. In this paper, we have tested NAGA to determine the ground-state geometry of Sin (10⩽n⩽15) according to a tight-binding total-energy method. Our results indicate that NAGA was able to find the desired global minimum of the potential energy for all the test cases and it was at least ten times faster than pure genetic algorithm.

  5. Experience, Knowledge, and Opinions about Childhood Genetic Testing in Batten Disease

    PubMed Central

    Rose, Katherine; Augustine, Erika F.; Kwon, Jennifer M.; deBlieck, Elisabeth A.; Marshall, Frederick J.; Vierhile, Amy; Mink, Jonathan W.; Nance, Martha A.

    2013-01-01

    Background and Objectives Policies for genetic testing in children (GTIC) focus on medical or psychosocial benefit to the child, discouraging or prohibiting carrier testing, and advising caution regarding pre-symptomatic diagnosis if no treatment exists. This study sought to understand parents’ perspectives on these issues and determine their experiences and knowledge related to genetic testing for Batten disease – a set of inherited neurodegenerative diseases of childhood onset for which no disease modifying therapies yet exist. Methods Parents of children with Batten disease completed a survey of their knowledge of genetics, experience with genetic testing, and opinions regarding GTIC. Results 54% had sought genetic testing for non-affected family members, including predictive diagnosis of healthy, at-risk children. Participation in any genetic counseling was associated with greater knowledge on questions about genetics. The majority of parents felt it was better to know ahead of time that a child would develop Batten disease, believed that this knowledge would not alter how they related to their child, and that parents should have the final say in deciding whether to obtain GTIC. Conclusions Parents of children with an inherited disease are knowledgeable about genetics and wish to establish predictive or carrier status of at-risk children. PMID:24246680

  6. Determination of Slope Safety Factor with Analytical Solution and Searching Critical Slip Surface with Genetic-Traversal Random Method

    PubMed Central

    2014-01-01

    In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679

  7. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease.

    PubMed

    Losekoot, Monique; van Belzen, Martine J; Seneca, Sara; Bauer, Peter; Stenhouse, Susan A R; Barton, David E

    2013-05-01

    Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community. In order to measure the quality and raise the standard of molecular genetic testing in these laboratories, the European Molecular Genetics Quality Network has organized a yearly external quality assessment (EQA) scheme for molecular genetic testing of HD for over 10 years. EQA compares a laboratory's output with a fixed standard both for genotyping and reporting of the results to the referring physicians. In general, the standard of genotyping is very high but the clarity of interpretation and reporting of the test result varies more widely. This emphasizes the need for best practice guidelines for this disorder. We have therefore developed these best practice guidelines for genetic testing for HD to assist in testing and reporting of results. The analytical methods and the potential pitfalls of molecular genetic testing are highlighted and the implications of the different test outcomes for the consultand and his or her family members are discussed.

  8. Certification of reference materials for detection of the human prothrombin gene G20210A sequence variant.

    PubMed

    Gancberg, David; Corbisier, Philippe; Meeus, Nele; Marki-Zay, Janos; Mannhalter, Christine; Schimmel, Heinz

    2008-01-01

    There is a need for reference materials (RMs) in the field of genetic testing for verification of test results obtained in patients and probands. For the frequent genetic variation G20210A in the prothrombin gene, it has been shown that purified plasmids containing the gene fragment harbouring the mutation constitute good candidate RMs. Plasmid-type RMs were characterised for homogeneity, stability, sequence identity and fitness for purpose. Their certification required the use of different real-time PCR methods for genotyping and quantification of the plasmid copy number. Homogeneity, stability and fitness for the purpose of the plasmids could be demonstrated. The long-term stability (up to 24 months) of the materials was confirmed by highly sensitive and specific quantitative real-time PCR methods. New types of certified RMs (CRMs) for genetic testing of the human prothrombin gene G20210A sequence variant are available. Their fitness for purpose was demonstrated and no evidence was found that they would not work with other methods as long as these are targeting the whole or parts of the prothrombin gene fragment inserted into the plasmids. The described CRMs support the efforts of the international community in development, validation and harmonisation of tests for molecular genetic testing.

  9. How do clinical genetics consent forms address the familial approach to confidentiality and incidental findings? A mixed-methods study.

    PubMed

    Dheensa, Sandi; Crawford, Gillian; Salter, Claire; Parker, Michael; Fenwick, Angela; Lucassen, Anneke

    2018-01-01

    Genetic test results can be relevant to patients and their relatives. Questions thus arise around whether clinicians regard genetic information as confidential to individuals or to families, and about how they broach this and other issues, including the potential for incidental findings, in consent (forms) for genetic testing. We conducted a content analysis of UK-wide genetic testing consent forms and interviewed 128 clinicians/laboratory scientists. We found that almost all genetic services offered patients multiple, sometimes unworkable, choices on forms, including an option to veto the use of familial genetic information to benefit relatives. Participants worried that documented choices were overriding professional judgement and cautioned against any future forms dictating practice around incidental findings. We conclude that 'tick-box' forms, which do little to enhance autonomy, are masking valid consent processes in clinical practice. As genome-wide testing becomes commonplace, we must re-consider consent processes, so that they protects patients'-and relatives'-interests.

  10. Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.

    PubMed

    Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao

    2015-08-01

    Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.

  11. Modifications to the Patient Rule-Induction Method that utilize non-additive combinations of genetic and environmental effects to define partitions that predict ischemic heart disease.

    PubMed

    Dyson, Greg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne; Sing, Charles F

    2009-05-01

    This article extends the Patient Rule-Induction Method (PRIM) for modeling cumulative incidence of disease developed by Dyson et al. (Genet Epidemiol 31:515-527) to include the simultaneous consideration of non-additive combinations of predictor variables, a significance test of each combination, an adjustment for multiple testing and a confidence interval for the estimate of the cumulative incidence of disease in each partition. We employ the partitioning algorithm component of the Combinatorial Partitioning Method to construct combinations of predictors, permutation testing to assess the significance of each combination, theoretical arguments for incorporating a multiple testing adjustment and bootstrap resampling to produce the confidence intervals. An illustration of this revised PRIM utilizing a sample of 2,258 European male participants from the Copenhagen City Heart Study is presented that assesses the utility of genetic variants in predicting the presence of ischemic heart disease beyond the established risk factors.

  12. An efficient genome-wide association test for mixed binary and continuous phenotypes with applications to substance abuse research.

    PubMed

    Buu, Anne; Williams, L Keoki; Yang, James J

    2018-03-01

    We propose a new genome-wide association test for mixed binary and continuous phenotypes that uses an efficient numerical method to estimate the empirical distribution of the Fisher's combination statistic under the null hypothesis. Our simulation study shows that the proposed method controls the type I error rate and also maintains its power at the level of the permutation method. More importantly, the computational efficiency of the proposed method is much higher than the one of the permutation method. The simulation results also indicate that the power of the test increases when the genetic effect increases, the minor allele frequency increases, and the correlation between responses decreases. The statistical analysis on the database of the Study of Addiction: Genetics and Environment demonstrates that the proposed method combining multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests.

  13. A prevalence-based association test for case-control studies.

    PubMed

    Ryckman, Kelli K; Jiang, Lan; Li, Chun; Bartlett, Jacquelaine; Haines, Jonathan L; Williams, Scott M

    2008-11-01

    Genetic association is often determined in case-control studies by the differential distribution of alleles or genotypes. Recent work has demonstrated that association can also be assessed by deviations from the expected distributions of alleles or genotypes. Specifically, multiple methods motivated by the principles of Hardy-Weinberg equilibrium (HWE) have been developed. However, these methods do not take into account many of the assumptions of HWE. Therefore, we have developed a prevalence-based association test (PRAT) as an alternative method for detecting association in case-control studies. This method, also motivated by the principles of HWE, uses an estimated population allele frequency to generate expected genotype frequencies instead of using the case and control frequencies separately. Our method often has greater power, under a wide variety of genetic models, to detect association than genotypic, allelic or Cochran-Armitage trend association tests. Therefore, we propose PRAT as a powerful alternative method of testing for association.

  14. Genetic susceptibility testing for neurodegenerative diseases: Ethical and practice issues

    PubMed Central

    Roberts, J. Scott; Uhlmann, Wendy R.

    2013-01-01

    As the genetics of neurodegenerative disease become better understood, opportunities for genetic susceptibility testing for at-risk individuals will increase. Such testing raises important ethical and practice issues related to test access, informed consent, risk estimation and communication, return of results, and policies to prevent genetic discrimination. The advent of direct-to-consumer genetic susceptibility testing for various neurodegenerative disorders (including Alzheimer’s disease, Parkinson’s disease, and certain prion diseases) means that ethical and practical challenges must be faced not only in traditional research and clinical settings, but also in broader society. This review addresses several topics relevant to the development and implementation of genetic susceptibility tests across research, clinical, and consumer settings; these include appropriate indications for testing, the implications of different methods for disclosing test results, clinical versus personal utility of risk information, psychological and behavioral responses to test results, testing of minors, genetic discrimination, and ethical dilemmas posed by whole-genome sequencing. We also identify future areas of likely growth in the field, including pharmacogenomics and genetic screening for individuals considering or engaged in activities that pose elevated risk of brain injury (e.g., football players, military personnel). APOE gene testing for risk of Alzheimer’s disease is used throughout as an instructive case example, drawing upon the authors’ experience as investigators in a series of multisite randomized clinical trials that have examined the impact of disclosing APOE genotype status to interested individuals (e.g., first-degree relatives, persons with mild cognitive impairment). PMID:23583530

  15. Reader Reaction On the generalized Kruskal-Wallis test for genetic association studies incorporating group uncertainty

    PubMed Central

    Wu, Baolin; Guan, Weihua

    2015-01-01

    Summary Acar and Sun (2013, Biometrics, 69, 427-435) presented a generalized Kruskal-Wallis (GKW) test for genetic association studies that incorporated the genotype uncertainty and showed its robust and competitive performance compared to existing methods. We present another interesting way to derive the GKW test via a rank linear model. PMID:25351417

  16. Reader reaction on the generalized Kruskal-Wallis test for genetic association studies incorporating group uncertainty.

    PubMed

    Wu, Baolin; Guan, Weihua

    2015-06-01

    Acar and Sun (2013, Biometrics 69, 427-435) presented a generalized Kruskal-Wallis (GKW) test for genetic association studies that incorporated the genotype uncertainty and showed its robust and competitive performance compared to existing methods. We present another interesting way to derive the GKW test via a rank linear model. © 2014, The International Biometric Society.

  17. Recent advances in genetic testing for familial hypercholesterolemia.

    PubMed

    Iacocca, Michael A; Hegele, Robert A

    2017-07-01

    Familial hypercholesterolemia (FH) is a common genetic cause of premature coronary heart disease that is widely underdiagnosed and undertreated. To improve the identification of FH and initiate timely and appropriate treatment strategies, genetic testing is becoming increasingly offered worldwide as a central part of diagnosis. Areas covered: Recent advances have been propelled by an improved understanding of the genetic determinants of FH together with substantially reduced costs of appropriate screening strategies. Here we review the various methods available for obtaining a molecular diagnosis of FH, and highlight the particular advantages of targeted next-generation sequencing (NGS) platforms as the most robust approach. Furthermore, we note the importance of screening for copy number variants and common polymorphisms to aid in molecularly defining suspected FH cases. Expert commentary: The need for genetic analysis of FH will increase, both for diagnosis and reimbursement of new therapies. An effective molecular diagnostic method must detect: 1) molecular and gene locus heterogeneity; 2) a wide range of mutation types; and 3) the polygenic component of FH. As availability of genetic testing for FH expands, standardization of variant curation, maintenance of clinical databases and registries, and wider health care provider education all assume greater importance.

  18. Clues to unraveling the coral species problem: distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits

    PubMed Central

    Wellington, Gerrard M.; Fox, George E.; Toonen, Robert J.

    2015-01-01

    Morphological variation in the geographically widespread coral Porites lobata can make it difficult to distinguish from other massive congeneric species. This morphological variation could be attributed to geographic variability, phenotypic plasticity, or a combination of such factors. We examined genetic and microscopic morphological variability in P. lobata samples from the Galápagos, Easter Island, Tahiti, Fiji, Rarotonga, and Australia. Panamanian P. evermanni specimens were used as a previously established distinct outgroup against which to test genetic and morphological methods of discrimination. We employed a molecular analysis of variance (AMOVA) based on ribosomal internal transcribed spacer region (ITS) sequence, principal component analysis (PCA) of skeletal landmarks, and Mantel tests to compare genetic and morphological variation. Both genetic and morphometric methods clearly distinguished P. lobata and P. evermanni, while significant genetic and morphological variance was attributed to differences among geographic regions for P. lobata. Mantel tests indicate a correlation between genetic and morphological variation for P. lobata across the Pacific. Here we highlight landmark morphometric measures that correlate well with genetic differences, showing promise for resolving species of Porites, one of the most ubiquitous yet challenging to identify architects of coral reefs. PMID:25674364

  19. Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses

    PubMed Central

    Park, Danny S.; Brown, Brielin; Eng, Celeste; Huntsman, Scott; Hu, Donglei; Torgerson, Dara G.; Burchard, Esteban G.; Zaitlen, Noah

    2015-01-01

    Motivation: Approaches to identifying new risk loci, training risk prediction models, imputing untyped variants and fine-mapping causal variants from summary statistics of genome-wide association studies are playing an increasingly important role in the human genetics community. Current summary statistics-based methods rely on global ‘best guess’ reference panels to model the genetic correlation structure of the dataset being studied. This approach, especially in admixed populations, has the potential to produce misleading results, ignores variation in local structure and is not feasible when appropriate reference panels are missing or small. Here, we develop a method, Adapt-Mix, that combines information across all available reference panels to produce estimates of local genetic correlation structure for summary statistics-based methods in arbitrary populations. Results: We applied Adapt-Mix to estimate the genetic correlation structure of both admixed and non-admixed individuals using simulated and real data. We evaluated our method by measuring the performance of two summary statistics-based methods: imputation and joint-testing. When using our method as opposed to the current standard of ‘best guess’ reference panels, we observed a 28% decrease in mean-squared error for imputation and a 73.7% decrease in mean-squared error for joint-testing. Availability and implementation: Our method is publicly available in a software package called ADAPT-Mix available at https://github.com/dpark27/adapt_mix. Contact: noah.zaitlen@ucsf.edu PMID:26072481

  20. ["Screening" in special situations. Assessing predictive genetic screening for hereditary breast and colorectal cancer].

    PubMed

    Jonas, Susanna; Wild, Claudia; Schamberger, Chantal

    2003-02-01

    The aim of this health technology assessment was to analyse the current scientific and genetic counselling on predictive genetic testing for hereditary breast and colorectal cancer. Predictive genetic testing will be available for several common diseases in the future and questions related to financial issues and quality standards will be raised. This report is based on a systematic/nonsystematic literature search in several databases (e.g. EmBase, Medline, Cochrane Library) and on a specific health technology assessment report (CCOHTA) and review (American Gastroenterological Ass.), respectively. Laboratory test methods, early detection methods and the benefit from prophylactic interventions were analysed and social consequences interpreted. Breast and colorectal cancer are counted among the most frequently cancer diseases. Most of them are based on random accumulation of risk factors, 5-10% show a familial determination. A hereditary modified gene is responsible for the increased cancer risk. In these families, high tumour frequency, young age at diagnosis and multiple primary tumours are remarkable. GENETIC DIAGNOSIS: Sequence analysis is the gold standard. Denaturing high performance liquid chromatography is a quick alternative method. The identification of the responsible gene defect in an affected family member is important. If the test result is positive there is an uncertainty whether the disease will develop or not, when and in which degree, which is founded in the geno-/phenotype correlation. The individual risk estimation is based upon empirical evidence. The test results affect the whole family. Currently, primary prevention is possible for familial adenomatous polyposis (celecoxib, prophylactic colectomy) and for hereditary mamma carcinoma (prophylactic mastectomy). The so-called preventive medical check-ups are early detection examinations. The evidence about early detection methods for colorectal cancer is better than for breast cancer. Prophylactic mastectomy (PM) reduces the relative breast cancer risk by approximately 90%. The question is if PM has an impact on mortality. The acceptance of PM is culture-dependent. Colectomy can be used as a prophylactic (FAP) and therapeutic method. After surgery, the cancer risk remains high and so early detection examinations are still necessary. EVIDENCE-BASED STATEMENTS: The evidence is often fragmentary and of limited quality. For objective test result presentation information about sensitivity, specificity, positive predictive value, and number needed to screen and treat, respectively, are necessary. New identification of mutations and demand will lead to an increase of predictive genetic counselling and testing. There is a gap between predictive genetic diagnosis and prediction, prevention, early detection and surgical interventions. These circumstances require a basic strategy. Since predictive genetic diagnosis is a very sensitive issue it is important to deal with it carefully in order to avoid inappropriate hopes. Thus, media, experts and politicians need to consider opportunities and limitations in their daily decision-making processes.

  1. Benefits and Limitations of Prenatal Screening for Prader-Willi Syndrome

    PubMed Central

    Butler, Merlin G.

    2016-01-01

    This review the status of genetic laboratory testing in Prader-Willi syndrome (PWS) due to different genetic subtypes, most often a paternally derived 15q11-q13 deletion, with benefits and limitations related to prenatal screening. Medical literature was searched for prenatal screening and genetic laboratory testing methods in use or under development and discussed in relationship to PWS. Genetic testing includes six established laboratory diagnostic approaches for PWS with direct application to prenatal screening. Ultrasonographic, obstetric and cytogenetic reports were summarized in relationship to the cause of Prader-Willi syndrome and identification of specific genetic subtypes including maternal disomy 15. Advances in genetic technology were described for diagnosing PWS specifically DNA methylation and high-resolution chromosomal SNP microarrays as current tools for genetic screening and incorporating next generation DNA sequencing for noninvasive prenatal testing (NIPT) using cell-free fetal DNA. Positive experiences are reported with NIPT for detection of numerical chromosomal problems (aneuploidies) but not for structural problems (microdeletions). These reports will be discussed along with future directions for genetic screening of PWS. In summary, this review describes and discusses the status of established and ongoing genetic testing options for PWS applicable in prenatal screening including NIPT and future directions for early diagnosis in Prader-Willi syndrome. PMID:27537837

  2. Benefits and limitations of prenatal screening for Prader-Willi syndrome.

    PubMed

    Butler, Merlin G

    2017-01-01

    This review summarizes the status of genetic laboratory testing in Prader-Willi syndrome (PWS) with different genetic subtypes, most often a paternally derived 15q11-q13 deletion and discusses benefits and limitations related to prenatal screening. Medical literature was searched for prenatal screening and genetic laboratory testing methods in use or under development and discussed in relationship to PWS. Genetic testing includes six established laboratory diagnostic approaches for PWS with direct application to prenatal screening. Ultrasonographic, obstetric and cytogenetic reports were summarized in relationship to the cause of PWS and identification of specific genetic subtypes including maternal disomy 15. Advances in genetic technology were described for diagnosing PWS specifically DNA methylation and high-resolution chromosomal SNP microarrays as current tools for genetic screening and incorporating next generation DNA sequencing for noninvasive prenatal testing (NIPT) using cell-free fetal DNA. Positive experiences are reported with NIPT for detection of numerical chromosomal problems (aneuploidies) but not for structural problems (microdeletions). These reports will be discussed along with future directions for genetic screening of PWS. In summary, this review describes and discusses the status of established and ongoing genetic testing options for PWS applicable in prenatal screening including NIPT and future directions for early diagnosis in PWS. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  3. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  4. Gaps in Incorporating Germline Genetic Testing Into Treatment Decision-Making for Early-Stage Breast Cancer.

    PubMed

    Kurian, Allison W; Li, Yun; Hamilton, Ann S; Ward, Kevin C; Hawley, Sarah T; Morrow, Monica; McLeod, M Chandler; Jagsi, Reshma; Katz, Steven J

    2017-07-10

    Purpose Genetic testing for breast cancer risk is evolving rapidly, with growing use of multiple-gene panels that can yield uncertain results. However, little is known about the context of such testing or its impact on treatment. Methods A population-based sample of patients with breast cancer diagnosed in 2014 to 2015 and identified by two SEER registries (Georgia and Los Angeles) were surveyed about genetic testing experiences (N = 3,672; response rate, 68%). Responses were merged with SEER data. A patient subgroup at higher pretest risk of pathogenic mutation carriage was defined according to genetic testing guidelines. Patients' attending surgeons were surveyed about genetic testing and results management. We examined patterns and correlates of genetic counseling and testing and the impact of results on bilateral mastectomy (BLM) use. Results Six hundred sixty-six patients reported genetic testing. Although two thirds of patients were tested before surgical treatment, patients without private insurance more often experienced delays. Approximately half of patients (57% at higher pretest risk, 42% at average risk) discussed results with a genetic counselor. Patients with pathogenic mutations in BRCA1/2 or another gene had the highest rates of BLM (higher risk, 80%; average risk, 85%); however, BLM was also common among patients with genetic variants of uncertain significance (VUS; higher risk, 43%; average risk, 51%). Surgeons' confidence in discussing testing increased with volume of patients with breast cancer, but many surgeons (higher volume, 24%; lower volume, 50%) managed patients with BRCA1/2 VUS the same as patients with BRCA1/2 pathogenic mutations. Conclusion Many patients with breast cancer are tested without ever seeing a genetic counselor. Half of average-risk patients with VUS undergo BLM, suggesting a limited understanding of results that some surgeons share. These findings emphasize the need to address challenges in personalized communication about genetic testing.

  5. Genetic susceptibility testing for neurodegenerative diseases: ethical and practice issues.

    PubMed

    Roberts, J Scott; Uhlmann, Wendy R

    2013-11-01

    As the genetics of neurodegenerative disease become better understood, opportunities for genetic susceptibility testing for at-risk individuals will increase. Such testing raises important ethical and practice issues related to test access, informed consent, risk estimation and communication, return of results, and policies to prevent genetic discrimination. The advent of direct-to-consumer genetic susceptibility testing for various neurodegenerative disorders (including Alzheimer's disease (AD), Parkinson's disease, and certain prion diseases) means that ethical and practical challenges must be faced not only in traditional research and clinical settings, but also in broader society. This review addresses several topics relevant to the development and implementation of genetic susceptibility tests across research, clinical, and consumer settings; these include appropriate indications for testing, the implications of different methods for disclosing test results, clinical versus personal utility of risk information, psychological and behavioral responses to test results, testing of minors, genetic discrimination, and ethical dilemmas posed by whole-genome sequencing. We also identify future areas of likely growth in the field, including pharmacogenomics and genetic screening for individuals considering or engaged in activities that pose elevated risk of brain injury (e.g., football players, military personnel). APOE gene testing for risk of Alzheimer's disease is used throughout as an instructive case example, drawing upon the authors' experience as investigators in a series of multisite randomized clinical trials that have examined the impact of disclosing APOE genotype status to interested individuals (e.g., first-degree relatives of AD patients, persons with mild cognitive impairment). Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Genetic Influences on Cognitive Function Using the Cambridge Neuropsychological Test Automated Battery

    ERIC Educational Resources Information Center

    Singer, Jamie J.; MacGregor, Alex J.; Cherkas, Lynn F.; Spector, Tim D.

    2006-01-01

    The genetic relationship between intelligence and components of cognition remains controversial. Conflicting results may be a function of the limited number of methods used in experimental evaluation. The current study is the first to use CANTAB (The Cambridge Neuropsychological Test Automated Battery). This is a battery of validated computerised…

  7. Understanding Genetic Toxicity Through Data Mining: The Process of Building Knowledge by Integrating Multiple Genetic Toxicity Databases

    EPA Science Inventory

    This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in...

  8. A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic

    PubMed Central

    Madsen, Bo Eskerod; Browning, Sharon R.

    2009-01-01

    Resequencing is an emerging tool for identification of rare disease-associated mutations. Rare mutations are difficult to tag with SNP genotyping, as genotyping studies are designed to detect common variants. However, studies have shown that genetic heterogeneity is a probable scenario for common diseases, in which multiple rare mutations together explain a large proportion of the genetic basis for the disease. Thus, we propose a weighted-sum method to jointly analyse a group of mutations in order to test for groupwise association with disease status. For example, such a group of mutations may result from resequencing a gene. We compare the proposed weighted-sum method to alternative methods and show that it is powerful for identifying disease-associated genes, both on simulated and Encode data. Using the weighted-sum method, a resequencing study can identify a disease-associated gene with an overall population attributable risk (PAR) of 2%, even when each individual mutation has much lower PAR, using 1,000 to 7,000 affected and unaffected individuals, depending on the underlying genetic model. This study thus demonstrates that resequencing studies can identify important genetic associations, provided that specialised analysis methods, such as the weighted-sum method, are used. PMID:19214210

  9. Psychosocial impact of prognostic genetic testing in the care of uveal melanoma patients: protocol of a controlled prospective clinical observational study.

    PubMed

    Erim, Yesim; Scheel, Jennifer; Breidenstein, Anja; Metz, Claudia Hd; Lohmann, Dietmar; Friederich, Hans-Christoph; Tagay, Sefik

    2016-07-07

    Uveal melanoma patients with a poor prognosis can be detected through genetic analysis of the tumor, which has a very high sensitivity. A large number of patients with uveal melanoma decide to receive information about their individual risk and therefore routine prognostic genetic testing is being carried out on a growing number of patients. It is obvious that a positive prediction for recidivism in the future will emotionally burden the respective patients, but research on the psychosocial impact of this innovative method is lacking. The aim of the current study is therefore to investigate the psychosocial impact (psychological distress and quality of life) of prognostic genetic testing in patients with uveal melanoma. This study is a non-randomized controlled prospective clinical observational trial. Subjects are patients with uveal melanoma, in whom genetic testing is possible. Patients who consent to genetic testing are allocated to the intervention group and patients who refuse genetic testing form the observational group. Both groups receive cancer therapy and psycho-oncological intervention when needed. The psychosocial impact of prognostic testing is investigated with the following variables: resilience, social support, fear of tumor progression, depression, general distress, cancer-specific and general health-related quality of life, attitude towards genetic testing, estimation of the perceived risk of metastasis, utilization and satisfaction with psycho-oncological crisis intervention, and sociodemographic data. Data are assessed preoperatively (at initial admission in the clinic) and postoperatively (at discharge from hospital after surgery, 6-12 weeks, 6 and 12 months after initial admission). Genetic test results are communicated 6-12 weeks after initial admission to the clinic. We created optimal conditions for investigation of the psychosocial impact of prognostic genetic testing. This study will provide information on the course of disease and psychosocial outcomes after prognostic genetic testing. We expect that empirical data from our study will give a scientific basis for medico-ethical considerations.

  10. Adaptive transmission disequilibrium test for family trio design.

    PubMed

    Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning

    2009-01-01

    The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.

  11. An Adaptive Genetic Association Test Using Double Kernel Machines.

    PubMed

    Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis

    2015-10-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.

  12. German Ethics Council on genetic diagnostics: trend setting?

    PubMed

    Buechner, Bianca

    2014-06-01

    On 30 April 2013, the German Ethics Council ('Council') published its opinion on 'The future of genetic diagnostics--from research to clinical application' ('the Opinion'). The Council was asked by the German government to discuss the future of genetic diagnostic methods in relation to the current applicable laws and regulations as well as the ethical stand points. The Council's 23 recommendations show that the existing regulations in Germany, and indirectly on a European level, lack in protecting consumers sufficiently. Consumer protection built the major focus of the Council's opinion. However, the opinion misses a critical overall analysis of genetic testing and, for example, the potential misuse of genetic test results by insures or the risk of disclosure toward employers. The Council missed an opportunity to discuss which barriers are necessary from a legal and ethical perspective but which still do not prohibit genetic testing and research.

  13. Higher criticism approach to detect rare variants using whole genome sequencing data

    PubMed Central

    2014-01-01

    Because of low statistical power of single-variant tests for whole genome sequencing (WGS) data, the association test for variant groups is a key approach for genetic mapping. To address the features of sparse and weak genetic effects to be detected, the higher criticism (HC) approach has been proposed and theoretically has proven optimal for detecting sparse and weak genetic effects. Here we develop a strategy to apply the HC approach to WGS data that contains rare variants as the majority. By using Genetic Analysis Workshop 18 "dose" genetic data with simulated phenotypes, we assess the performance of HC under a variety of strategies for grouping variants and collapsing rare variants. The HC approach is compared with the minimal p-value method and the sequence kernel association test. The results show that the HC approach is preferred for detecting weak genetic effects. PMID:25519367

  14. Genetic testing and sports medicine ethics.

    PubMed

    McNamee, Michael John; Müller, Arno; van Hilvoorde, Ivo; Holm, Søren

    2009-01-01

    Sports medicine ethics is neither a well established branch of sports medicine nor of medical ethics. It is therefore important to raise to more general awareness some of the significant ethical implications of sports medicine practices. The field of genetics in sports is likewise in its infancy and raises significant ethical concerns. It is not yet clear how genetics will alter our understanding of human potential and performance in sports. While a number of professional medical bodies accept genetic interventions of a therapeutic nature, we argue that the use of genetic technologies to predict sports potential may well breach both the European bioethics convention and North American anti-discrimination legislation, which are designed to support important ethical ideals and the ongoing commitment of the physician to the welfare of their patient. We highlight further ethical problems associated with confidentiality and consent that may arise in genetic testing as opposed to more conventional methods of testing in sports medicine. We conclude that genetic testing in sport that is not strictly limited to the protection of the athlete against harm, should be viewed in a very sceptical light by sports medicine professionals.

  15. Attitudes Toward Breast Cancer Genetic Testing in Five Special Population Groups

    PubMed Central

    Ramirez, Amelie G.; Chalela, Patricia; Gallion, Kipling J.; Muñoz, Edgar; Holden, Alan E.; Burhansstipanov, Linda; Smith, Selina A.; Wong-Kim, Evaon; Wyatt, Stephen W.; Suarez, Lucina

    2016-01-01

    Purpose This study examined interest in and attitudes toward genetic testing in 5 different population groups. Methods The survey included African American, Asian American, Latina, Native American, and Appalachian women with varying familial histories of breast cancer. A total of 49 women were interviewed in person. Descriptive and nonparametric statistical techniques were used to assess ethnic group differences. Results Overall, interest in testing was high. All groups endorsed more benefits than risks. There were group differences regarding endorsement of specific benefits and risks: testing to “follow doctor recommendations” (p=0.017), “concern for effects on family” (p=0.044), “distrust of modern medicine” (p=0.036), “cost” (p=0.025), and “concerns about communication of results to others” (p=0.032). There was a significant inverse relationship between interest and genetic testing cost (p<0.050), with the exception of Latinas, who showed the highest level of interest regardless of increasing cost. Conclusion Cost may be an important barrier to obtaining genetic testing services, and participants would benefit by genetic counseling that incorporates the unique cultural values and beliefs of each group to create an individualized, culturally competent program. Further research about attitudes toward genetic testing is needed among Asian Americans, Native Americans, and Appalachians for whom data are severely lacking. Future study of the different Latina perceptions toward genetic testing are encouraged. PMID:26855846

  16. Genetic structure of populations and differentiation in forest trees

    Treesearch

    Raymond P. Guries; F. Thomas Ledig

    1981-01-01

    Electrophoretic techniques permit population biologists to analyze genetic structure of natural populations by using large numbers of allozyme loci. Several methods of analysis have been applied to allozyme data, including chi-square contingency tests, F-statistics, and genetic distance. This paper compares such statistics for pitch pine (Pinus rigida...

  17. Testing Genetic Pleiotropy with GWAS Summary Statistics for Marginal and Conditional Analyses.

    PubMed

    Deng, Yangqing; Pan, Wei

    2017-12-01

    There is growing interest in testing genetic pleiotropy, which is when a single genetic variant influences multiple traits. Several methods have been proposed; however, these methods have some limitations. First, all the proposed methods are based on the use of individual-level genotype and phenotype data; in contrast, for logistical, and other, reasons, summary statistics of univariate SNP-trait associations are typically only available based on meta- or mega-analyzed large genome-wide association study (GWAS) data. Second, existing tests are based on marginal pleiotropy, which cannot distinguish between direct and indirect associations of a single genetic variant with multiple traits due to correlations among the traits. Hence, it is useful to consider conditional analysis, in which a subset of traits is adjusted for another subset of traits. For example, in spite of substantial lowering of low-density lipoprotein cholesterol (LDL) with statin therapy, some patients still maintain high residual cardiovascular risk, and, for these patients, it might be helpful to reduce their triglyceride (TG) level. For this purpose, in order to identify new therapeutic targets, it would be useful to identify genetic variants with pleiotropic effects on LDL and TG after adjusting the latter for LDL; otherwise, a pleiotropic effect of a genetic variant detected by a marginal model could simply be due to its association with LDL only, given the well-known correlation between the two types of lipids. Here, we develop a new pleiotropy testing procedure based only on GWAS summary statistics that can be applied for both marginal analysis and conditional analysis. Although the main technical development is based on published union-intersection testing methods, care is needed in specifying conditional models to avoid invalid statistical estimation and inference. In addition to the previously used likelihood ratio test, we also propose using generalized estimating equations under the working independence model for robust inference. We provide numerical examples based on both simulated and real data, including two large lipid GWAS summary association datasets based on ∼100,000 and ∼189,000 samples, respectively, to demonstrate the difference between marginal and conditional analyses, as well as the effectiveness of our new approach. Copyright © 2017 by the Genetics Society of America.

  18. Expansion of genetic testing in the division of functional genomics, research center for bioscience and technology, tottori university from 2000 to 2013.

    PubMed

    Adachi, Kaori

    2014-03-01

    At the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, we have been making an effort to establish a genetic testing facility that can provide the same screening procedures conducted worldwide. Direct Sequencing of PCR products is the main method to detect point mutations, small deletions and insertions. Multiplex Ligation-dependent Probe Amplification (MLPA) was used to detect large deletions or insertions. Expansion of the repeat was analyzed for triplet repeat diseases. Original primers were constructed for 41 diseases when the reported primers failed to amplify the gene. Prediction of functional effects of human nsSNPs (PolyPhen) was used for evaluation of novel mutations. From January 2000 to September 2013, a total of 1,006 DNA samples were subjected to genetic testing in the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University. The hospitals that requested genetic testing were located in 43 prefectures in Japan and in 11 foreign countries. The genetic testing covered 62 diseases, and mutations were detected in 287 out of 1,006 with an average mutation detection rate of 24.7%. There were 77 samples for prenatal diagnosis. The number of samples has rapidly increased since 2010. In 2013, the next-generation sequencers were introduced in our facility and are expected to provide more comprehensive genetic testing in the near future. Nowadays, genetic testing is a popular and powerful tool for diagnosis of many genetic diseases. Our genetic testing should be further expanded in the future.

  19. [Views of Icelandic women towards genetic counseling - and testing of BRCA2 mutations].

    PubMed

    Jonsdottir, Thordis; Valdimarsdottir, Heiddis; Tryggvadottir, Laufey; Lund, Sigrun Helga; Thordardottir, Marianna; Magnusson, Magnus Karl; Valdimarsdottir, Unnur

    2018-01-01

    Introduction The aim of this study was to explore the attitudes of Icelandic women towards existing genetic information, genetic counseling and genetic testing for BRCA mutations which dramatically increase risk for aggressive cancers. Materials and methods Women attending the cancer prevention clinic in Reykjavik, capital of Iceland, from October 12th until November 20th 2015 received an invitation to participate. Participation involved answering a short online questionnaire about background, family history of cancer as well as attitudes towards genetic counseling, BRCA testing and preventive use of such information. Descriptive statistics and chi-square tests were used to describe differences in attitudes towards those questions between subgroups of women. Results 1129 women (69% response rate) answered the questionnaire. Mean age was 47 years (span 21-76 years). Around half (47%) had heard fairly much about the mutations. Independent of family history of cancer, the majority of women were positive towards receiving genetic counseling (79%) and to undergo genetic testing (83%) for BRCA mutation with younger women being more interested than older women. On the other hand, only 4% of the women had already received genetic counseling and 7% undergone genetic testing. Women with family history of cancer were more knowledgeable about BRCA mutations (p<0.0001) and were less afraid of the consequence of being a mutation carrier (p<0.0001) compared to those with little or no family history. Regardless of family history, half (49%) worried that results from genetic testing could influence their health insurance. Almost all, or 97% of the women, were positive or very positive toward using existing genetic information obtained through scientific work, to inform affected indi-viduals of their mutation status. Conclusion Icelandic women are positive towards genetic counseling and testing for BRCA mutations although half of them worry that a positive result might affect their health insurance. Nevertheless, almost all women believe that existing genetic information should be used to inform carriers for preventive purposes.

  20. Eliciting preferences for priority setting in genetic testing: a pilot study comparing best-worst scaling and discrete-choice experiments.

    PubMed

    Severin, Franziska; Schmidtke, Jörg; Mühlbacher, Axel; Rogowski, Wolf H

    2013-11-01

    Given the increasing number of genetic tests available, decisions have to be made on how to allocate limited health-care resources to them. Different criteria have been proposed to guide priority setting. However, their relative importance is unclear. Discrete-choice experiments (DCEs) and best-worst scaling experiments (BWSs) are methods used to identify and weight various criteria that influence orders of priority. This study tests whether these preference eliciting techniques can be used for prioritising genetic tests and compares the empirical findings resulting from these two approaches. Pilot DCE and BWS questionnaires were developed for the same criteria: prevalence, severity, clinical utility, alternatives to genetic testing available, infrastructure for testing and care established, and urgency of care. Interview-style experiments were carried out among different genetics professionals (mainly clinical geneticists, researchers and biologists). A total of 31 respondents completed the DCE and 26 completed the BWS experiment. Weights for the levels of the six attributes were estimated by conditional logit models. Although the results derived from the DCE and BWS experiments differed in detail, we found similar valuation patterns in the DCE and BWS experiments. The respondents attached greatest value to tests with high clinical utility (defined by the availability of treatments that reduce mortality and morbidity) and to testing for highly prevalent conditions. The findings from this study exemplify how decision makers can use quantitative preference eliciting methods to measure aggregated preferences in order to prioritise alternative clinical interventions. Further research is necessary to confirm the survey results.

  1. Perspectives on Genetic and Genomic Technologies in an Academic Medical Center: The Duke Experience

    PubMed Central

    Katsanis, Sara Huston; Minear, Mollie A.; Vorderstrasse, Allison; Yang, Nancy; Reeves, Jason W.; Rakhra-Burris, Tejinder; Cook-Deegan, Robert; Ginsburg, Geoffrey S.; Simmons, Leigh Ann

    2015-01-01

    In this age of personalized medicine, genetic and genomic testing is expected to become instrumental in health care delivery, but little is known about its actual implementation in clinical practice. Methods. We surveyed Duke faculty and healthcare providers to examine the extent of genetic and genomic testing adoption. We assessed providers’ use of genetic and genomic testing options and indications in clinical practice, providers’ awareness of pharmacogenetic applications, and providers’ opinions on returning research-generated genetic test results to participants. Most clinician respondents currently use family history routinely in their clinical practice, but only 18 percent of clinicians use pharmacogenetics. Only two respondents correctly identified the number of drug package inserts with pharmacogenetic indications. We also found strong support for the return of genetic research results to participants. Our results demonstrate that while Duke healthcare providers are enthusiastic about genomic technologies, use of genomic tools outside of research has been limited. Respondents favor return of research-based genetic results to participants, but clinicians lack knowledge about pharmacogenetic applications. We identified challenges faced by this institution when implementing genetic and genomic testing into patient care that should inform a policy and education agenda to improve provider support and clinician-researcher partnerships. PMID:25854543

  2. "Well, good luck with that": reactions to learning of increased genetic risk for Alzheimer disease.

    PubMed

    Zallen, Doris T

    2018-03-08

    PurposeApolipoprotein-E (APOE) genetic testing to estimate risk for developing late-onset Alzheimer disease is increasingly being offered without prior genetic counseling or preparation. Consumer interest continues to grow, raising the question of how best to conduct such testing.MethodsTwenty-six semistructured interviews were carried out to study the reactions of individuals who had already learned of their higher risk after APOE testing had been done because of a family history of Alzheimer disease, or from genetic tests done for other health-related or general-interest reasons.ResultsAdverse psychological reactions were reported by a substantial fraction of the participants, including those who had specifically sought testing, those for whom the information came as a surprise, those with a family history, and those with no known history. Still, nearly all of those interviewed said that they had benefited in the long term from lifestyle changes, often learned from online sources, that they subsequently made.ConclusionThe results show that people should be prepared prior to any genetic testing and allowed to opt out of particular tests. If testing is carried out and a higher risk is revealed, they should be actively assisted in deciding how to proceed.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2018.13.

  3. Cost-effectiveness analysis of carrier and prenatal genetic testing for X-linked hemophilia.

    PubMed

    Tsai, Meng-Che; Cheng, Chao-Neng; Wang, Ru-Jay; Chen, Kow-Tong; Kuo, Mei-Chin; Lin, Shio-Jean

    2015-08-01

    Hemophilia involves a lifelong burden from the perspective of the patient and the entire healthcare system. Advances in genetic testing provide valuable information to hemophilia-affected families for family planning. The aim of this study was to analyze the cost-effectiveness of carrier and prenatal genetic testing in the health-economic framework in Taiwan. A questionnaire was developed to assess the attitudes towards genetic testing for hemophilia. We modeled clinical outcomes of the proposed testing scheme by using the decision tree method. Incremental cost-effectiveness analysis was conducted, based on data from the National Health Insurance (NHI) database and a questionnaire survey. From the NHI database, 1111 hemophilic patients were identified and required an average medical expenditure of approximately New Taiwan (NT) $2.1 million per patient-year in 2009. By using the decision tree model, we estimated that 26 potential carriers need to be tested to prevent one case of hemophilia. At a screening rate of 79%, carrier and prenatal genetic testing would cost NT $85.9 million, which would be offset by an incremental saving of NT $203 million per year by preventing 96 cases of hemophilia. Assuming that the life expectancy for hemophilic patients is 70 years, genetic testing could further save NT $14.2 billion. Higher screening rates would increase the savings for healthcare resources. Carrier and prenatal genetic testing for hemophilia is a cost-effective investment in healthcare allocation. A case management system should be integrated in the current practice to facilitate patient care (e.g., collecting family pedigrees and providing genetic counseling). Copyright © 2013. Published by Elsevier B.V.

  4. An efficient and comprehensive strategy for genetic diagnostics of polycystic kidney disease.

    PubMed

    Eisenberger, Tobias; Decker, Christian; Hiersche, Milan; Hamann, Ruben C; Decker, Eva; Neuber, Steffen; Frank, Valeska; Bolz, Hanno J; Fehrenbach, Henry; Pape, Lars; Toenshoff, Burkhard; Mache, Christoph; Latta, Kay; Bergmann, Carsten

    2015-01-01

    Renal cysts are clinically and genetically heterogeneous conditions. Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent life-threatening genetic disease and mainly caused by mutations in PKD1. The presence of six PKD1 pseudogenes and tremendous allelic heterogeneity make molecular genetic testing challenging requiring laborious locus-specific amplification. Increasing evidence suggests a major role for PKD1 in early and severe cases of ADPKD and some patients with a recessive form. Furthermore it is becoming obvious that clinical manifestations can be mimicked by mutations in a number of other genes with the necessity for broader genetic testing. We established and validated a sequence capture based NGS testing approach for all genes known for cystic and polycystic kidney disease including PKD1. Thereby, we demonstrate that the applied standard mapping algorithm specifically aligns reads to the PKD1 locus and overcomes the complication of unspecific capture of pseudogenes. Employing careful and experienced assessment of NGS data, the method is shown to be very specific and equally sensitive as established methods. An additional advantage over conventional Sanger sequencing is the detection of copy number variations (CNVs). Sophisticated bioinformatic read simulation increased the high analytical depth of the validation study and further demonstrated the strength of the approach. We further raise some awareness of limitations and pitfalls of common NGS workflows when applied in complex regions like PKD1 demonstrating that quality of NGS needs more than high coverage of the target region. By this, we propose a time- and cost-efficient diagnostic strategy for comprehensive molecular genetic testing of polycystic kidney disease which is highly automatable and will be of particular value when therapeutic options for PKD emerge and genetic testing is needed for larger numbers of patients.

  5. Attitudes towards cannabis use and genetic testing for schizophrenia

    PubMed Central

    Schiffman, Jason; Lawrence, Ryan E.; Demro, Caroline; Appelbaum, Paul S.; Dixon, Lisa

    2014-01-01

    Aim Within schizophrenia, genetic factors contribute greatly to risk, yet genetic testing for the disorder is not available. For some individuals with specific genotypes, cannabis use may increase risk of schizophrenia. It is possible that genetic tests could be offered in the future to inform individuals of the risk of schizophrenia if they use cannabis. Previous research, however, provides little guidance on how young adults might respond to such tests. Methods We assessed a group of young adults (n = 83) to determine how the perceived magnitude of increased risk for schizophrenia in the presence of cannabis use influences decisions to undergo genetic testing, as well as subsequent attitudes and intentions towards cannabis use. Results Participants were significantly more likely to indicate willingness to get tested if the results identified a 10% risk versus a 2% risk of schizophrenia. Participants also indicated that if the results of their test reflected increased risk due to cannabis use, it would be more important to avoid cannabis in the 10% risk scenario as compared to the 2% risk scenario. These findings remained consistent among a subset of participants who indicated cannabis use. Conclusions Results suggest that cannabis users and non-users were positively influenced in terms of intentions to change behavior based on the magnitude of risk conveyed by genetic testing. These findings provide an initial step towards understanding young people’s attitudes towards genetic testing and may help prepare interventions specifically tailored around cannabis use reduction for people at risk for schizophrenia. PMID:24957110

  6. Great influence of geographic isolation on the genetic differentiation of Myriophyllum spicatum under a steep environmental gradient

    PubMed Central

    Wu, Zhigang; Yu, Dan; Wang, Zhong; Li, Xing; Xu, Xinwei

    2015-01-01

    Understanding how natural processes affect population genetic structures is an important issue in evolutionary biology. One effective method is to assess the relative importance of environmental and geographical factors in the genetic structure of populations. In this study, we examined the spatial genetic variation of thirteen Myriophyllum spicatum populations from the Qinghai-Tibetan Plateau (QTP) and adjacent highlands (Yunnan-Guizhou Plateau, YGP) by using microsatellite loci and environmental and geographical factors. Bioclim layers, hydrological properties and elevation were considered as environmental variables and reduced by principal component analysis. The genetic isolation by geographic distance (IBD) was tested by Mantel tests and the relative importance of environmental variables on population genetic differentiation was determined by a partial Mantel test and multiple matrix regression with randomization (MMRR). Two genetic clusters corresponding to the QTP and YGP were identified. Both tests and MMRR revealed a significant and strong correlation between genetic divergence and geographic isolation under the influence of environmental heterogeneity at the overall and finer spatial scales. Our findings suggested the dominant role of geography on the evolution of M. spicatum under a steep environmental gradient in the alpine landscape as a result of dispersal limitation and genetic drift. PMID:26494202

  7. Automated design of genetic toggle switches with predetermined bistability.

    PubMed

    Chen, Shuobing; Zhang, Haoqian; Shi, Handuo; Ji, Weiyue; Feng, Jingchen; Gong, Yan; Yang, Zhenglin; Ouyang, Qi

    2012-07-20

    Synthetic biology aims to rationally construct biological devices with required functionalities. Methods that automate the design of genetic devices without post-hoc adjustment are therefore highly desired. Here we provide a method to predictably design genetic toggle switches with predetermined bistability. To accomplish this task, a biophysical model that links ribosome binding site (RBS) DNA sequence to toggle switch bistability was first developed by integrating a stochastic model with RBS design method. Then, to parametrize the model, a library of genetic toggle switch mutants was experimentally built, followed by establishing the equivalence between RBS DNA sequences and switch bistability. To test this equivalence, RBS nucleotide sequences for different specified bistabilities were in silico designed and experimentally verified. Results show that the deciphered equivalence is highly predictive for the toggle switch design with predetermined bistability. This method can be generalized to quantitative design of other probabilistic genetic devices in synthetic biology.

  8. Genetic Effects on Children's Conversational Language Use

    ERIC Educational Resources Information Center

    DeThorne, Laura S.; Petrill, Stephen A.; Hart, Sara A.; Channell, Ron W.; Campbell, Rebecca J.; Deater-Deckard, Kirby; Thompson, Lee Anne; Vanderbergh, David J.

    2008-01-01

    Purpose: The present study examined the extent of genetic and environmental influences on individual differences in children's conversational language use. Method: Behavioral genetic analyses focused on conversational measures and 2 standardized tests from 380 twins (M = 7.13 years) during the 2nd year of the Western Reserve Reading Project (S. A.…

  9. Genetic effects of habitat fragmentation and population isolation on Etheostoma raneyi (Percidae)

    Treesearch

    Ken A. Sterling; David H. Reed; Brice P. Noonan; Melvin L. Warren

    2012-01-01

    The use of genetic methods to quantify the effects of anthropogenic habitat fragmentation on population structure has become increasingly common. However, in today’s highly fragmented habitats, researchers have sometimes concluded that populations are currently genetically isolated due to habitat fragmentation without testing the possibility that populations were...

  10. Method of detecting genetic translocations identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas

    2001-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  11. Method of detecting genetic deletions identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  12. Understanding of and attitudes to genetic testing for inherited retinal disease: a patient perspective

    PubMed Central

    Willis, T A; Potrata, B; Ahmed, M; Hewison, J; Gale, R; Downey, L; McKibbin, M

    2013-01-01

    Background/aims The views of people with inherited retinal disease are important to help develop health policy and plan services. This study aimed to record levels of understanding of and attitudes to genetic testing for inherited retinal disease, and views on the availability of testing. Methods Telephone questionnaires comprising quantitative and qualitative items were completed with adults with inherited retinal disease. Participants were recruited via postal invitation (response rate 48%), approach at clinic or newsletters of relevant charitable organisations. Results Questionnaires were completed with 200 participants. Responses indicated that participants’ perceived understanding of genetic testing for inherited retinal disease was variable. The majority (90%) considered testing to be good/very good and would be likely to undergo genetic testing (90%) if offered. Most supported the provision of diagnostic (97%) and predictive (92%) testing, but support was less strong for testing as part of reproductive planning. Most (87%) agreed with the statement that testing should be offered only after the individual has received genetic counselling from a professional. Subgroup analyses revealed differences associated with participant age, gender, education level and ethnicity (p<0.02). Participants reported a range of perceived benefits (eg, family planning, access to treatment) and risks (eg, impact upon family relationships, emotional consequences). Conclusions Adults with inherited retinal disease strongly support the provision of publicly funded genetic testing. Support was stronger for diagnostic and predictive testing than for testing as part of reproductive planning. PMID:23813418

  13. Impact of Gene Patents and Licensing Practices on Access to Genetic Testing for Cystic Fibrosis

    PubMed Central

    Chandrasekharan, Subhashini; Heaney, Christopher; James, Tamara; Conover, Chris; Cook-Deegan, Robert

    2010-01-01

    Cystic fibrosis (CF) is one of the most commonly tested autosomal recessive disorders in the US. Clinical CF is associated with mutations in the CFTR gene, of which the most common mutation among Caucasians, ΔF508, was identified in 1989. The University of Michigan, Johns Hopkins University, and the Hospital for Sick Children, where much of the initial research occurred, hold key patents for CF genetic sequences, mutations and methods for detecting them. Several patents including the one that covers detection of the ΔF508 mutation are jointly held by the University of Michigan and the Hospital for Sick Children in Toronto, with Michigan administering patent licensing in the US. The University of Michigan broadly licenses the ΔF508 patent for genetic testing with over 60 providers of genetic testing to date. Genetic testing is now used in newborn screening, diagnosis, and reproductive decisions. Interviews with key researchers and intellectual property managers, a survey of laboratories’ prices for CF genetic testing, a review of literature on CF tests’ cost effectiveness, and a review of the developing market for CF testing provide no evidence that patents have significantly hindered access to genetic tests for CF or prevented financially cost-effective screening. Current licensing practices for cystic fibrosis (CF) genetic testing appear to facilitate both academic research and commercial testing. More than one thousand different CFTR mutations have been identified, and research continues to determine their clinical significance. Patents have been nonexclusively licensed for diagnostic use, and have been variably licensed for gene transfer and other therapeutic applications. The Cystic Fibrosis Foundation has been engaged in licensing decisions, making CF a model of collaborative and cooperative patenting and licensing practice. PMID:20393308

  14. The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications.

    PubMed

    Ren, Ning; Atyah, Manar; Chen, Wan-Yong; Zhou, Chen-Hao

    2017-05-22

    Genotoxicity refers to the ability of harmful substances to damage genetic information in cells. Being exposed to chemical and biological agents can result in genomic instabilities and/or epigenetic alterations, which translate into a variety of diseases, cancer included. This concise review discusses, from both a genetic and epigenetic point of view, the current detection methods of different agents' genotoxicity, along with their basic and clinical relation to human cancer, chemotherapy, germ cells and stem cells.

  15. Attitudes About Regulation Among Direct-to-Consumer Genetic Testing Customers

    PubMed Central

    Green, Robert C.; Kaufman, David

    2013-01-01

    Introduction: The first regulatory rulings by the U.S. Food and Drug Administration on direct-to-consumer (DTC) genetic testing services are expected soon. As the process of regulating these and other genetic tests moves ahead, it is important to understand the preferences of DTC genetic testing customers about the regulation of these products. Methods: An online survey of customers of three DTC genetic testing companies was conducted 2–8 months after they had received their results. Participants were asked about the importance of regulating the companies selling DTC genetic tests. Results: Most of the 1,046 respondents responded that it would be important to have a nongovernmental (84%) or governmental agency (73%) monitor DTC companies' claims to ensure the consistency with scientific evidence. However, 66% also felt that it was important that DTC tests be available without governmental oversight. Nearly, all customers favored a policy to ensure that insurers and law enforcement officials could not access their information. Discussion: Although many DTC customers want access to genetic testing services without restrictions imposed by the government regulation, most also favor an organization operating alongside DTC companies that will ensure that the claims made by the companies are consistent with sound scientific evidence. This seeming contradiction may indicate that DTC customers want to ensure that they have unfettered access to high-quality information. Additionally, policies to help ensure privacy of data would be welcomed by customers, despite relatively high confidence in the companies. PMID:23560882

  16. An Adaptive Genetic Association Test Using Double Kernel Machines

    PubMed Central

    Zhan, Xiang; Epstein, Michael P.; Ghosh, Debashis

    2014-01-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study. PMID:26640602

  17. Race, Genomics and Chronic Disease: What Patients with African Ancestry Have to Say

    PubMed Central

    Horowitz, Carol R.; Ferryman, Kadija; Negron, Rennie; Sabin, Tatiana; Rodriguez, Mayra; Zinberg, Randi F.; Böttinger, Erwin; Robinson, Mimsie

    2017-01-01

    Background Variants of the APOL1 gene increase risk for kidney failure 10- fold, and are nearly exclusively found in people with African ancestry. To translate genomic discoveries into practice, we gathered information about effects and challenges incorporating genetic risk in clinical care. Methods An academic- community- clinical team tested 26 adults with self- reported African ancestry for APOL1 variants, conducting in- depth interviews about patients' beliefs and attitudes toward genetic testing- before, immediately, and 30 days after receiving test results. We used constant comparative analysis of interview transcripts to identify themes. Results Themes included: Knowledge of genetic risk for kidney failure may motivate providers and patients to take hypertension more seriously, rather than inspiring fatalism or anxiety. Having genetic risk for a disease may counter stereotypes of Blacks as non- adherent or low- literate, rather than exacerbate stereotypes. Conclusion Populations most likely to benefit from genomic research can inform strategies for genetic testing and future research. PMID:28238999

  18. Estimation of the frequency of occult mutations for an autosomal recessive disease in the presence of genetic heterogeneity: application to genetic hearing loss disorders.

    PubMed

    Kimberling, William J

    2005-11-01

    The routine testing for pathologic mutation(s) in a patient's DNA has become the foundation of modern molecular genetic diagnosis. It is especially valuable when the phenotype shows genetic heterogeneity, and its importance will grow as treatments become genotype specific. However, the technology of mutation detection is imperfect and mutations are often missed. This can be especially troublesome when dealing with a recessive disorder where the combination of genetic heterogeneity and missed mutation creates an imprecision in the genotypic assessment of individuals who do not appear to have the expected complement of two pathologic mutations. This article describes a statistical approach to the estimation of the likelihood of a genetic diagnosis under these conditions. In addition to providing a means of testing for missed mutations, it also provides a method of estimating and testing for the presence of genetic heterogeneity in the absence of linkage data. Gene frequencies as well as estimates of sensitivity and specificity can be obtained as well. The test is applied to GJB2 recessive nonsyndromic deafness, Usher syndrome types Ib and IIa, and Pendred-enlarged vestibular aqueduct syndrome. Copyright 2005 Wiley-Liss, Inc.

  19. Predictive genetic tests: problems and pitfalls.

    PubMed

    Davis, J G

    1997-12-29

    The role that genetic factors play in medicine has expanded, owing to such recent advances as those made by the Human Genome Project and the work that has spun off from it. The project is focusing particularly on localization and characterization of recognized human genetic disorders, which in turn increases awareness of the potential for improved treatment of these disorders. Technical advances in genetic testing in the absence of effective treatment has presented the health profession with major ethical challenges. The example of the identification of the BRCA1 and BRCA2 genes in families at high risk for breast and ovarian cancer is presented to illustrate the issues of the sensitivity of the method, the degree of susceptibility a positive result implies, the need for and availability of counseling and patient education, and confidentiality of the test results. A compelling need exists for adequate education about medical genetics to raise the "literacy" rate among health professionals.

  20. The general public's understanding and perception of direct-to-consumer genetic test results.

    PubMed

    Leighton, J W; Valverde, K; Bernhardt, B A

    2012-01-01

    Direct-to-consumer (DTC) genetic testing allows consumers to discover their risk for common complex disorders. The extent to which consumers understand typical results provided by DTC genetic testing is currently unknown. Misunderstanding of the results could lead to negative consequences including unnecessary concern, false reassurance or unwarranted changes in screening behaviors. We conducted a study to investigate consumers' perceptions and understanding of DTC test results. An online survey was posted on Facebook that included questions relating to 4 sample test results for risk of developing colorectal cancer, heart disease and skin cancer. Genetic counselors were used as a comparison group. 145 individuals from the general public and 171 genetic counselors completed the survey. A significant difference was found between the way the general public and genetic counselors interpreted the meaning of the DTC results. The general public respondents also believed that results in all 4 scenarios would be significantly more helpful than the genetic counselors did. Although the majority of general public respondents rated the results as easy to understand, they often misinterpreted them. These findings imply that the general public has the potential to misinterpret DTC results without appropriate assistance. Further research is needed to explore optimal methods of providing DTC test results and ways to minimize the risk of negative consequences for consumers. Copyright © 2011 S. Karger AG, Basel.

  1. [The progress and prospect of application of genetic testing technology-based gene detection technology in the diagnosis and treatment of hereditary cancer].

    PubMed

    He, J X; Jiang, Y F

    2017-08-06

    Hereditary cancer is caused by specific pathogenic gene mutations. Early detection and early intervention are the most effective ways to prevent and control hereditary cancer. High-throughput sequencing based genetic testing technology (NGS) breaks through the restrictions of pedigree analysis, provide a convenient and efficient method to detect and diagnose hereditary cancer. Here, we introduce the mechanism of hereditary cancer, summarize, discuss and prospect the application of NGS and other genetic tests in the diagnosis of hereditary retinoblastoma, hereditary breast and ovarian cancer syndrome, hereditary colorectal cancer and other complex and rare hereditary tumors.

  2. The impact of patents on the development of genome-based clinical diagnostics: an analysis of case studies

    PubMed Central

    Pierce, Brandon L.; Carlson, Christopher S.; Kuszler, Patricia C.; Stanford, Janet L.; Austin, Melissa A.

    2010-01-01

    Purpose Fragmented ownership of diagnostic gene patents has the potential to create an ‘anticommons’ in the area of genomic diagnostics, making it difficult and expensive to assemble the patent rights necessary to develop a panel of genetic tests. The objectives of this study were to identify U.S. patents that protect existing panels of genetic tests, describe how (or if) test providers acquired rights to these patents, and determine if fragmented patent ownership has inhibited the commercialization of these panels. Methods As case studies, we selected four clinical applications of genetic testing (cystic fibrosis, maturity-onset diabetes of the young, long QT syndrome, and hereditary breast cancer) that utilize tests protected by ≥3 U.S. patents. We summarized publically available information on relevant patents, test providers, licenses, and litigation. Results For each case study, all tests of major genes/mutations were patented, and at least one party held the collective rights to conduct all relevant tests, often as a result of licensing agreements. Conclusions We did not find evidence that fragmentation of patent rights has inhibited commercialization of genetic testing services. However, as knowledge of genetic susceptibility increases, it will be important to consider the potential consequences of fragmented ownership of diagnostic gene patents. PMID:19367193

  3. A kernel regression approach to gene-gene interaction detection for case-control studies.

    PubMed

    Larson, Nicholas B; Schaid, Daniel J

    2013-11-01

    Gene-gene interactions are increasingly being addressed as a potentially important contributor to the variability of complex traits. Consequently, attentions have moved beyond single locus analysis of association to more complex genetic models. Although several single-marker approaches toward interaction analysis have been developed, such methods suffer from very high testing dimensionality and do not take advantage of existing information, notably the definition of genes as functional units. Here, we propose a comprehensive family of gene-level score tests for identifying genetic elements of disease risk, in particular pairwise gene-gene interactions. Using kernel machine methods, we devise score-based variance component tests under a generalized linear mixed model framework. We conducted simulations based upon coalescent genetic models to evaluate the performance of our approach under a variety of disease models. These simulations indicate that our methods are generally higher powered than alternative gene-level approaches and at worst competitive with exhaustive SNP-level (where SNP is single-nucleotide polymorphism) analyses. Furthermore, we observe that simulated epistatic effects resulted in significant marginal testing results for the involved genes regardless of whether or not true main effects were present. We detail the benefits of our methods and discuss potential genome-wide analysis strategies for gene-gene interaction analysis in a case-control study design. © 2013 WILEY PERIODICALS, INC.

  4. [Genetic testing in polygenic diseases : Atrial fibrillation, arterial hypertension and coronary artery disease].

    PubMed

    Trenkwalder, T; Kessler, T; Schunkert, H

    2017-08-01

    Genetic testing plays an increasing role in cardiovascular medicine. Advances in technology and the development of novel and more affordable (high throughput) methods have led to the identification of genetic risk factors in research and clinical practice. Also, this progress has simplified the screening of patients and individuals at risk. In case of rare monogenic diseases, diagnostics, risk stratification, and, in some cases, treatment decisions have become easier. For common, polygenic cardiovascular diseases, the situation is more complex due to interaction of modifiable external risk factors and nonmodifiable factors like genetic predisposition. Over the last few years, it has been shown that multiple genes are involved in the pathophysiology of these cardiovascular diseases rather than one single gene. In the following article, we give an overview of the genetic risk factors in polygenic cardiovascular diseases as atrial fibrillation, arterial hypertension and coronary artery disease. Furthermore, we aim to illustrate in which cases genetic testing is recommended in these diseases.

  5. Changes to perceptions of the pros and cons of genetic susceptibility testing after APOE genotyping for Alzheimer disease risk

    PubMed Central

    Christensen, Kurt D.; Roberts, J. Scott; Uhlmann, Wendy R.; Green, Robert C.

    2011-01-01

    Purpose Perceptions about the pros and cons of genetic susceptibility testing are among the best predictors of test utilization. How actual testing changes such perceptions has yet to be examined. Methods In a clinical trial, first-degree relatives of patients with Alzheimer disease received genetic risk assessments for Alzheimer disease including APOE disclosure. Participants rated 11 possible benefits associated with genetic testing (pros) and 10 risks or limitations (cons) before genetic risk disclosure and again 12 months afterward. Results Pros were rated higher than cons at baseline (3.53 vs. 1.83, P < 0.001) and at 12 months after risk disclosure (3.33 vs. 1.88, P < 0.001). Ratings of pros decreased during the 12-month period (3.33 vs. 3.53, P < 0.001). Ratings of cons did not change (1.88 vs. 1.83, P = 0.199) except for a three-item discrimination subscale which increased (2.07 vs. 1.92, P = 0.012). Among specific pros and cons, three items related to prevention and treatment changed the most. Conclusion The process of APOE genetic risk assessment for Alzheimer disease sensitizes some to its limitations and the risks of discrimination; however, 1-year after disclosure, test recipients still consider the pros to strongly outweigh the cons. PMID:21270636

  6. Using imputed genotype data in the joint score tests for genetic association and gene-environment interactions in case-control studies.

    PubMed

    Song, Minsun; Wheeler, William; Caporaso, Neil E; Landi, Maria Teresa; Chatterjee, Nilanjan

    2018-03-01

    Genome-wide association studies (GWAS) are now routinely imputed for untyped single nucleotide polymorphisms (SNPs) based on various powerful statistical algorithms for imputation trained on reference datasets. The use of predicted allele counts for imputed SNPs as the dosage variable is known to produce valid score test for genetic association. In this paper, we investigate how to best handle imputed SNPs in various modern complex tests for genetic associations incorporating gene-environment interactions. We focus on case-control association studies where inference for an underlying logistic regression model can be performed using alternative methods that rely on varying degree on an assumption of gene-environment independence in the underlying population. As increasingly large-scale GWAS are being performed through consortia effort where it is preferable to share only summary-level information across studies, we also describe simple mechanisms for implementing score tests based on standard meta-analysis of "one-step" maximum-likelihood estimates across studies. Applications of the methods in simulation studies and a dataset from GWAS of lung cancer illustrate ability of the proposed methods to maintain type-I error rates for the underlying testing procedures. For analysis of imputed SNPs, similar to typed SNPs, the retrospective methods can lead to considerable efficiency gain for modeling of gene-environment interactions under the assumption of gene-environment independence. Methods are made available for public use through CGEN R software package. © 2017 WILEY PERIODICALS, INC.

  7. Pathway-based analyses.

    PubMed

    Kent, Jack W

    2016-02-03

    New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.

  8. Current Landscape and New Paradigms of Proficiency Testing and External Quality Assessment for Molecular Genetics

    PubMed Central

    Kalman, Lisa V.; Lubin, Ira M.; Barker, Shannon; du Sart, Desiree; Elles, Rob; Grody, Wayne W.; Pazzagli, Mario; Richards, Sue; Schrijver, Iris; Zehnbauer, Barbara

    2015-01-01

    Context Participation in proficiency testing (PT) or external quality assessment (EQA) programs allows the assessment and comparison of test performance among different clinical laboratories and technologies. In addition to the approximately 2300 tests for individual genetic disorders, recent advances in technology have enabled the development of clinical tests which quickly and economically analyze the entire human genome. New PT/EQA approaches are needed to ensure the continued quality of these complex tests. Objective To review the availability and scope of PT/EQA for molecular genetic testing for inherited conditions in Europe, Australasia and the United States; to evaluate the successes and demonstrated value of available PT/EQA programs; and to examine the challenges to the provision of comprehensive PT/EQA posed by new laboratory practices and methodologies. Data Sources The available literature on this topic was reviewed and supplemented with personal experiences of several PT/EQA providers. Conclusions PT/EQA schemes are available for common genetic disorders tested in many clinical laboratories, but are not available for most genetic tests offered by only one or a few laboratories. Provision of broad, method-based PT schemes, such as DNA sequencing, would allow assessment of a large number of tests for which formal PT is not currently available. Participation in PT/EQA improves the quality of testing by identifying inaccuracies that laboratories can trace to errors in the testing process. Areas of research and development to ensure that PT/EQA programs can meet the needs of new and evolving genetic tests and technologies are identified and discussed. PMID:23808472

  9. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls.

    PubMed

    Fanin, Marina; Angelini, Corrado

    2015-08-01

    Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology. © 2015 Wiley Periodicals, Inc.

  10. Getting Personal: Head and Neck Cancer Management in the Era of Genomic Medicine

    PubMed Central

    Birkeland, Andrew C.; Uhlmann, Wendy R.; Brenner, J. Chad; Shuman, Andrew G.

    2015-01-01

    Background Genetic testing is rapidly becoming an important tool in the management of patients with head and neck cancer. As we enter the era of genomics and personalized medicine, providers should be aware of testing options, counseling resources, and the benefits, limitations and future of personalized therapy. Methods This manuscript offers a primer to assist clinicians treating patients in anticipating and managing the inherent practical and ethical challenges of cancer care in the genomic era. Results Clinical applications of genomics for head and neck cancer are emerging. We discuss the indications for genetic testing, types of testing available, implications for care, privacy/disclosure concerns and ethical considerations. Hereditary genetic syndromes associated with head and neck neoplasms are reviewed, and online genetics resources are provided. Conclusions This article summarizes and contextualizes the evolving diagnostic and therapeutic options that impact the care of patients with head and neck cancer in the genomic era. PMID:25995036

  11. Reinventing the ames test as a quantitative lab that connects classical and molecular genetics.

    PubMed

    Goodson-Gregg, Nathan; De Stasio, Elizabeth A

    2009-01-01

    While many institutions use a version of the Ames test in the undergraduate genetics laboratory, students typically are not exposed to techniques or procedures beyond qualitative analysis of phenotypic reversion, thereby seriously limiting the scope of learning. We have extended the Ames test to include both quantitative analysis of reversion frequency and molecular analysis of revertant gene sequences. By giving students a role in designing their quantitative methods and analyses, students practice and apply quantitative skills. To help students connect classical and molecular genetic concepts and techniques, we report here procedures for characterizing the molecular lesions that confer a revertant phenotype. We suggest undertaking reversion of both missense and frameshift mutants to allow a more sophisticated molecular genetic analysis. These modifications and additions broaden the educational content of the traditional Ames test teaching laboratory, while simultaneously enhancing students' skills in experimental design, quantitative analysis, and data interpretation.

  12. Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies

    PubMed Central

    Davidoff, Candice; Neitz, Maureen; Neitz, Jay

    2016-01-01

    Purpose The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. Methods We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Results Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red–green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. Conclusions The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. Translational Relevance The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects. PMID:27622081

  13. A genetic-algorithm approach for assessing the liquefaction potential of sandy soils

    NASA Astrophysics Data System (ADS)

    Sen, G.; Akyol, E.

    2010-04-01

    The determination of liquefaction potential is required to take into account a large number of parameters, which creates a complex nonlinear structure of the liquefaction phenomenon. The conventional methods rely on simple statistical and empirical relations or charts. However, they cannot characterise these complexities. Genetic algorithms are suited to solve these types of problems. A genetic algorithm-based model has been developed to determine the liquefaction potential by confirming Cone Penetration Test datasets derived from case studies of sandy soils. Software has been developed that uses genetic algorithms for the parameter selection and assessment of liquefaction potential. Then several estimation functions for the assessment of a Liquefaction Index have been generated from the dataset. The generated Liquefaction Index estimation functions were evaluated by assessing the training and test data. The suggested formulation estimates the liquefaction occurrence with significant accuracy. Besides, the parametric study on the liquefaction index curves shows a good relation with the physical behaviour. The total number of misestimated cases was only 7.8% for the proposed method, which is quite low when compared to another commonly used method.

  14. Chromosome-specific staining to detect genetic rearrangements

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas; Westbrook, Carol

    2013-04-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  15. Changes in screening behaviors and attitudes toward screening from pre-test genetic counseling to post-disclosure in Lynch syndrome families

    PubMed Central

    Burton-Chase, Allison M.; Hovick, Shelly R.; Peterson, Susan K.; Marani, Salma K.; Vernon, Sally W.; Amos, Christopher I.; Frazier, Marsha L.; Lynch, Patrick M.; Gritz, Ellen R.

    2013-01-01

    Purpose This study examined colonoscopy adherence and attitudes towards colorectal cancer (CRC) screening in individuals who underwent Lynch syndrome genetic counseling and testing. Methods We evaluated changes in colonoscopy adherence and CRC screening attitudes in 78 cancer-unaffected relatives of Lynch syndrome mutation carriers before pre-test genetic counseling (baseline) and at 6 and 12 months post-disclosure of test results (52 mutation-negative, 26 mutation-positive). Results While both groups were similar at baseline, at 12 months post-disclosure, a greater number of mutation-positive individuals had had a colonoscopy compared with mutation-negative individuals. From baseline to 12 months post-disclosure, the mutation-positive group demonstrated an increase in mean scores on measures of colonoscopy commitment, self-efficacy, and perceived benefits of CRC screening, and a decrease in mean scores for perceived barriers to CRC screening. Mean scores on colonoscopy commitment decreased from baseline to 6 months in the mutation-negative group. Conclusion Adherence to risk-appropriate guidelines for CRC surveillance improved after genetic counseling and testing for Lynch syndrome. Mutation-positive individuals reported increasingly positive attitudes toward CRC screening after receiving genetic test results, potentially reinforcing longer term colonoscopy adherence. PMID:23414081

  16. A Report on Molecular Diagnostic Testing for Inherited Retinal Dystrophies by Targeted Genetic Analyses.

    PubMed

    Ramkumar, Hema L; Gudiseva, Harini V; Kishaba, Kameron T; Suk, John J; Verma, Rohan; Tadimeti, Keerti; Thorson, John A; Ayyagari, Radha

    2017-02-01

    To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.

  17. Unaffected family members report improvements in daily routine sun-protection 2 years following melanoma genetic testing

    PubMed Central

    Aspinwall, Lisa G.; Taber, Jennifer M.; Kohlmann, Wendy; Leaf, Samantha L.; Leachman, Sancy A.

    2014-01-01

    Purpose Reducing ultraviolet radiation (UVR) exposure may decrease melanoma risk in the hereditary melanoma setting. It is unknown whether genetic counseling and test reporting of CDKN2A/p16 mutation status promote long-term compliance with photoprotection recommendations, especially in unaffected mutation carriers. Methods This study evaluated changes 2 years following melanoma genetic testing in self-reported practice of sun-protection (sunscreen, photoprotective clothing, UVR avoidance) among 37 members of two CDKN2A/p16 kindreds (10 unaffected carriers, 11 affected carriers, 16 unaffected noncarriers; response rate=64.9% of eligible participants). Results Multivariate profile analysis indicated that all 3 participant groups reported increased daily routine practice of sun-protection 2 years following melanoma genetic testing (p<.02), with 96.9% reporting that at least 1 sun-protection behavior was part of their daily routine, up from 78.1% at baseline (p<.015). Unaffected carriers (p<.024) and unaffected noncarriers (p<.027) reported significantly more frequent use of photoprotective clothing. Affected carriers maintained adherence to all sun-protection behaviors. Reported sunburns in the past 6 months decreased significantly (p<.018). Conclusion Members of high-risk families reported increased daily routine sun-protection and decreased sunburns 2 years following melanoma genetic testing, with no net decline in sun-protection following negative test results. Thus, genetic testing and counseling may motivate sustained improvements in prevention behaviors. PMID:24763292

  18. Comparative Study on Prediction Effects of Short Fatigue Crack Propagation Rate by Two Different Calculation Methods

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Liao, Zhen; Qin, Yahang; Wu, Yayun; Liang, Sai; Xiao, Shoune; Yang, Guangwu; Zhu, Tao

    2017-05-01

    To describe the complicated nonlinear process of the fatigue short crack evolution behavior, especially the change of the crack propagation rate, two different calculation methods are applied. The dominant effective short fatigue crack propagation rates are calculated based on the replica fatigue short crack test with nine smooth funnel-shaped specimens and the observation of the replica films according to the effective short fatigue cracks principle. Due to the fast decay and the nonlinear approximation ability of wavelet analysis, the self-learning ability of neural network, and the macroscopic searching and global optimization of genetic algorithm, the genetic wavelet neural network can reflect the implicit complex nonlinear relationship when considering multi-influencing factors synthetically. The effective short fatigue cracks and the dominant effective short fatigue crack are simulated and compared by the Genetic Wavelet Neural Network. The simulation results show that Genetic Wavelet Neural Network is a rational and available method for studying the evolution behavior of fatigue short crack propagation rate. Meanwhile, a traditional data fitting method for a short crack growth model is also utilized for fitting the test data. It is reasonable and applicable for predicting the growth rate. Finally, the reason for the difference between the prediction effects by these two methods is interpreted.

  19. A comparative analysis of the effectiveness of cytogenetic and molecular genetic methods in the detection of Down syndrome.

    PubMed

    Mačkić-Đurović, Mirela; Projić, Petar; Ibrulj, Slavka; Cakar, Jasmina; Marjanović, Damir

    2014-05-01

    The goal of this study was to examine the effectiveness of 6 STR markers application (D21S1435, D21S11, D21S1270, D21S1411, D21S226 and IFNAR) in molecular genetic diagnostics of Down syndrome (DS) and to compare it with cytogenetic method. Testing was performed on 73 children, with the previously cytogenetically confirmed Down syndrome. DNA isolated from the buccal swab was used. Previously mentioned loci located on chromosome 21 were simultaneously amplified using quantitative fluorescence PCR (QF PCR). Using this method, 60 previously cytogenetically diagnosed DS with standard type of trisomy 21 were confirmed. Furthermore, six of eight children with mosaic type of DS were detected. Two false negative results for mosaic type of DS were obtained. Finally, five children with the translocation type of Down syndrome were also confirmed with this molecular test. In conclusion, molecular genetic analysis of STR loci is fast, cheap and simple method that could be used in detection of DS. Regarding possible false results detected for certain number of mosaic types, cytogenetic analysis should be used as a confirmatory test.

  20. BRCAsearch: written pre-test information and BRCA1/2 germline mutation testing in unselected patients with newly diagnosed breast cancer.

    PubMed

    Nilsson, Martin P; Törngren, Therese; Henriksson, Karin; Kristoffersson, Ulf; Kvist, Anders; Silfverberg, Barbro; Borg, Åke; Loman, Niklas

    2018-02-01

    To evaluate a simplified method of pre-test information and germline BRCA1/2 mutation testing. In a prospective, single-arm study, comprehensive BRCA1/2 testing was offered to unselected patients with newly diagnosed breast cancer at three hospitals in south Sweden (BRCAsearch, ClinicalTrials.gov Identifier: NCT02557776). Pre-test information was provided by a standardized invitation letter, but the patients could contact a genetic counselor for telephone genetic counseling if they felt a need for that. Noncarriers were informed about the test result through a letter. Mutation carriers were contacted and offered an appointment for in-person post-test genetic counseling. During the period Feb 2, 2015-Aug 26, 2016, eight hundred and eighteen patients were invited to participate in the study. Through Jan 31, 2017, five hundred and forty-two (66.2%) of them consented to analysis of BRCA1 and BRCA2. Eleven pathogenic mutations were found (BRCA1, n = 2; BRCA2, n = 9), corresponding to a mutation prevalence of 2.0%. Six out of 11 fulfilled the Swedish BRCA testing criteria, and 9 out of 11 fulfilled the NCCN testing criteria. None of the BRCA-associated tumors were of the luminal A-like subtype. Very few patients contacted us for telephone genetic counseling or practical questions, suggesting that a majority felt that the written pre-test information was sufficient for them to make a decision on testing. Streamlining the process of pre-test information, genetic testing, and delivery of test results was feasible and was associated with an uptake of genetic testing in 2/3 of the breast cancer patients.

  1. Assessment of the safety of foods derived from genetically modified (GM) crops.

    PubMed

    König, A; Cockburn, A; Crevel, R W R; Debruyne, E; Grafstroem, R; Hammerling, U; Kimber, I; Knudsen, I; Kuiper, H A; Peijnenburg, A A C M; Penninks, A H; Poulsen, M; Schauzu, M; Wal, J M

    2004-07-01

    This paper provides guidance on how to assess the safety of foods derived from genetically modified crops (GM crops); it summarises conclusions and recommendations of Working Group 1 of the ENTRANSFOOD project. The paper provides an approach for adapting the test strategy to the characteristics of the modified crop and the introduced trait, and assessing potential unintended effects from the genetic modification. The proposed approach to safety assessment starts with the comparison of the new GM crop with a traditional counterpart that is generally accepted as safe based on a history of human food use (the concept of substantial equivalence). This case-focused approach ensures that foods derived from GM crops that have passed this extensive test-regime are as safe and nutritious as currently consumed plant-derived foods. The approach is suitable for current and future GM crops with more complex modifications. First, the paper reviews test methods developed for the risk assessment of chemicals, including food additives and pesticides, discussing which of these methods are suitable for the assessment of recombinant proteins and whole foods. Second, the paper presents a systematic approach to combine test methods for the safety assessment of foods derived from a specific GM crop. Third, the paper provides an overview on developments in this area that may prove of use in the safety assessment of GM crops, and recommendations for research priorities. It is concluded that the combination of existing test methods provides a sound test-regime to assess the safety of GM crops. Advances in our understanding of molecular biology, biochemistry, and nutrition may in future allow further improvement of test methods that will over time render the safety assessment of foods even more effective and informative. Copryright 2004 Elsevier Ltd.

  2. Genetic mapping in the presence of genotyping errors.

    PubMed

    Cartwright, Dustin A; Troggio, Michela; Velasco, Riccardo; Gutin, Alexander

    2007-08-01

    Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders.

  3. Genetic Mapping in the Presence of Genotyping Errors

    PubMed Central

    Cartwright, Dustin A.; Troggio, Michela; Velasco, Riccardo; Gutin, Alexander

    2007-01-01

    Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders. PMID:17277374

  4. Genetic risk assessment for women with epithelial ovarian cancer: referral patterns and outcomes in a university gynecologic oncology clinic.

    PubMed

    Petzel, Sue V; Vogel, Rachel Isaksson; Bensend, Tracy; Leininger, Anna; Argenta, Peter A; Geller, Melissa A

    2013-10-01

    Little is known about genetic service utilization and ovarian cancer. We identified the frequency and outcome of genetic counseling referral, predictors of referral, and referral uptake for ovarian cancer patients. Using pathology reports, we identified all epithelial ovarian cancer patients seen in a university gynecologic oncology clinic (1/04-8/06). Electronic medical records (EMR) were used to document genetic service referral, time from diagnosis-to-referral, point-in-treatment at referral, personal/family cancer history, demographics, and genetic test results. Groups were compared using chi-squared and Fisher's exact test for categorical variables and t-tests for continuous variables. The study population consisted of 376 women with ovarian cancer, 72 (19 %) of who were referred for genetic counseling/testing, primarily during surveillance. Of those referred, 42 (58 %) had personal or family genetic counseling and 34 (47 %) were ultimately tested or identified due to known family mutation. Family history and prior cancer were associated with referral. Family history, living in a larger community, higher-stage disease, and serous histology were associated with undergoing genetic counseling. Risk assessment identified 20 BRCA1/2 (5.3 %) and 1 HNPCC (0.3 %) mutation carriers. Based on recent estimates that 11.7-16.6 % of women with ovarian cancer are BRCA carriers and 2 % are HNPCC carriers, results suggest under-identification of carriers and under-utilization of genetic services by providers and patients. Interventions to increase medical providers' referrals, even in a specialized oncology clinic, are necessary and may include innovations in educating these providers using web-based methods. Ease of referral by the introduction of an electronic cancer genetic referral form represents another new direction that may increase genetic risk assessment for high-risk women with ovarian cancer.

  5. OPATs: Omnibus P-value association tests.

    PubMed

    Chen, Chia-Wei; Yang, Hsin-Chou

    2017-07-10

    Combining statistical significances (P-values) from a set of single-locus association tests in genome-wide association studies is a proof-of-principle method for identifying disease-associated genomic segments, functional genes and biological pathways. We review P-value combinations for genome-wide association studies and introduce an integrated analysis tool, Omnibus P-value Association Tests (OPATs), which provides popular analysis methods of P-value combinations. The software OPATs programmed in R and R graphical user interface features a user-friendly interface. In addition to analysis modules for data quality control and single-locus association tests, OPATs provides three types of set-based association test: window-, gene- and biopathway-based association tests. P-value combinations with or without threshold and rank truncation are provided. The significance of a set-based association test is evaluated by using resampling procedures. Performance of the set-based association tests in OPATs has been evaluated by simulation studies and real data analyses. These set-based association tests help boost the statistical power, alleviate the multiple-testing problem, reduce the impact of genetic heterogeneity, increase the replication efficiency of association tests and facilitate the interpretation of association signals by streamlining the testing procedures and integrating the genetic effects of multiple variants in genomic regions of biological relevance. In summary, P-value combinations facilitate the identification of marker sets associated with disease susceptibility and uncover missing heritability in association studies, thereby establishing a foundation for the genetic dissection of complex diseases and traits. OPATs provides an easy-to-use and statistically powerful analysis tool for P-value combinations. OPATs, examples, and user guide can be downloaded from http://www.stat.sinica.edu.tw/hsinchou/genetics/association/OPATs.htm. © The Author 2017. Published by Oxford University Press.

  6. Obtaining the phase in the star test using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Salazar Romero, Marcos A.; Vazquez-Montiel, Sergio; Cornejo-Rodriguez, Alejandro

    2004-10-01

    The star test is conceptually perhaps the most basic and simplest of all methods of testing image-forming optical systems, the irradiance distribution at the image of a point source (such as a star) is give for the Point Spread Function, PSF. The PSF is very sensitive to aberrations. One way to quantify the PSF is measuring the irradiance distribution on the image of the source point. On the other hand, if we know the aberrations introduced by the optical systems and utilizing the diffraction theory then we can calculate the PSF. In this work we propose a method in order to find the wavefront aberrations starting from the PSF, transforming the problem of fitting a polynomial of aberrations in a problem of optimization using Genetic Algorithm. Also, we show that this method is immune to the noise introduced in the register or recording of the image. Results of these methods are shown.

  7. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  8. Heritability of Nociception IV: Neuropathic pain assays are genetically distinct across methods of peripheral nerve injury

    PubMed Central

    Young, Erin E.; Costigan, Michael; Herbert, Teri A.; Lariviere, William R.

    2013-01-01

    Prior genetic correlation analysis of 22 heritable behavioral measures of nociception and hypersensitivity in the mouse identified five genetically distinct pain types. In the present study, we reanalyzed that dataset and included the results of an additional nine assays of nociception and hypersensitivity to: 1) replicate the previously identified five pain types; 2) test whether any of the newly added pain assays represent novel genetically distinct pain types; 3) test the level of genetic relatedness among nine commonly employed neuropathic pain assays. Multivariate analysis of pairwise correlations between assays shows that the newly added zymosan-induced heat hypersensitivity assay does not conform to the two previously identified groups of heat hypersensitivity assays and cyclophosphamide-induced cystitis, the first organ-specific visceral pain model examined, is genetically distinct from other inflammatory assays. The four included mechanical hypersensitivity assays are genetically distinct, and do not comprise a single pain type as previously reported. Among the nine neuropathic pain assays including autotomy, chemotherapy, nerve ligation and spared nerve injury assays, at least four genetically distinct types of neuropathic sensory abnormalities were identified, corresponding to differences in nerve injury method. In addition, two itch assays and Comt genotype were compared to the expanded set of nociception and hypersensitivity assays. Comt genotype was strongly related only to spontaneous inflammatory nociception assays. These results indicate the priority for continued investigation of genetic mechanisms in several assays newly identified to represent genetically distinct pain types. PMID:24071598

  9. Joint multi-population analysis for genetic linkage of bipolar disorder or "wellness" to chromosome 4p.

    PubMed

    Visscher, P M; Haley, C S; Ewald, H; Mors, O; Egeland, J; Thiel, B; Ginns, E; Muir, W; Blackwood, D H

    2005-02-05

    To test the hypothesis that the same genetic loci confer susceptibility to, or protection from, disease in different populations, and that a combined analysis would improve the map resolution of a common susceptibility locus, we analyzed data from three studies that had reported linkage to bipolar disorder in a small region on chromosome 4p. Data sets comprised phenotypic information and genetic marker data on Scottish, Danish, and USA extended pedigrees. Across the three data sets, 913 individuals appeared in the pedigrees, 462 were classified, either as unaffected (323) or affected (139) with unipolar or bipolar disorder. A consensus linkage map was created from 14 microsatellite markers in a 33 cM region. Phenotypic and genetic data were analyzed using a variance component (VC) and allele sharing method. All previously reported elevated test statistics in the region were confirmed with one or both analysis methods, indicating the presence of one or more susceptibility genes to bipolar disorder in the three populations in the studied chromosome segment. When the results from both the VC and allele sharing method were considered, there was strong evidence for a susceptibility locus in the data from Scotland, some evidence in the data from Denmark and relatively less evidence in the data from the USA. The test statistics from the Scottish data set dominated the test statistics from the other studies, and no improved map resolution for a putative genetic locus underlying susceptibility in all three studies was obtained. Studies reporting linkage to the same region require careful scrutiny and preferably joint or meta analysis on the same basis in order to ensure that the results are truly comparable. (c) 2004 Wiley-Liss, Inc.

  10. Biotechnology of trees: Chestnut

    Treesearch

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  11. Health-Care Referrals from Direct-to-Consumer Genetic Testing

    PubMed Central

    Giovanni, Monica A.; Fickie, Matthew R.; Lehmann, Lisa S.; Green, Robert C.; Meckley, Lisa M.; Veenstra, David

    2010-01-01

    Background: Direct-to-consumer genetic testing (DTC-GT) provides personalized genetic risk information directly to consumers. Little is known about how and why consumers then communicate the results of this testing to health-care professionals. Aim: To query specialists in clinical genetics about their experience with individuals who consulted them after DTC-GT. Methods: Invitations to participate in a questionnaire were sent to three different groups of genetic professionals, totaling 4047 invitations, asking questions about individuals who consulted them after DTC-GT. For each case reported, respondents were asked to describe how the case was referred to them, the patient's rationale for DTC-GT, and the type of DTC-GT performed. Respondents were also queried about the consequences of the consultations in terms of additional testing ordered. The costs associated with each consultation were estimated. A clinical case series was compiled based upon clinician responses. Results: The invitation resulted in 133 responses describing 22 cases of clinical interactions following DTC-GT. Most consultations (59.1%) were self-referred to genetics professionals, but 31.8% were physician referred. Among respondents, 52.3% deemed the DTC-GT to be “clinically useful.” BRCA1/2 testing was considered clinically useful in 85.7% of cases; 35.7% of other tests were considered clinically useful. Subsequent referrals from genetics professionals to specialists and/or additional diagnostic testing were common, generating individual downstream costs estimated to range from $40 to $20,600. Conclusions: This clinical case series suggests that approximately half of clinical geneticists who saw patients after DTC-GT judged that testing was clinically useful, especially the BRCA1/2 testing. Further studies are needed in larger and more diverse populations to better understand the interactions between DTC-GT and the health-care system. PMID:20979566

  12. New paradigms for BRCA1/BRCA2 testing in women with ovarian cancer: results of the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study

    PubMed Central

    Plaskocinska, Inga; Shipman, Hannah; Drummond, James; Thompson, Edward; Buchanan, Vanessa; Newcombe, Barbara; Hodgkin, Charlotte; Barter, Elisa; Ridley, Paul; Ng, Rita; Miller, Suzanne; Dann, Adela; Licence, Victoria; Webb, Hayley; Tan, Li Tee; Daly, Margaret; Ayers, Sarah; Rufford, Barnaby; Earl, Helena; Parkinson, Christine; Duncan, Timothy; Jimenez-Linan, Mercedes; Sagoo, Gurdeep S; Abbs, Stephen; Hulbert-Williams, Nicholas; Pharoah, Paul; Crawford, Robin; Brenton, James D; Tischkowitz, Marc

    2016-01-01

    Background Over recent years genetic testing for germline mutations in BRCA1/BRCA2 has become more readily available because of technological advances and reducing costs. Objective To explore the feasibility and acceptability of offering genetic testing to all women recently diagnosed with epithelial ovarian cancer (EOC). Methods Between 1 July 2013 and 30 June 2015 women newly diagnosed with EOC were recruited through six sites in East Anglia, UK into the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study. Eligibility was irrespective of patient age and family history of cancer. The psychosocial arm of the study used self-report, psychometrically validated questionnaires (Depression Anxiety and Stress Scale (DASS-21); Impact of Event Scale (IES)) and cost analysis was performed. Results 232 women were recruited and 18 mutations were detected (12 in BRCA1, 6 in BRCA2), giving a mutation yield of 8%, which increased to 12% in unselected women aged <70 years (17/146) but was only 1% in unselected women aged ≥70 years (1/86). IES and DASS-21 scores in response to genetic testing were significantly lower than equivalent scores in response to cancer diagnosis (p<0.001). Correlation tests indicated that although older age is a protective factor against any traumatic impacts of genetic testing, no significant correlation exists between age and distress outcomes. Conclusions The mutation yield in unselected women diagnosed with EOC from a heterogeneous population with no founder mutations was 8% in all ages and 12% in women under 70. Unselected genetic testing in women with EOC was acceptable to patients and is potentially less resource-intensive than current standard practice. PMID:27208206

  13. Soft computing methods in design of superalloys

    NASA Technical Reports Server (NTRS)

    Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.

    1995-01-01

    Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modeled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.

  14. Soft Computing Methods in Design of Superalloys

    NASA Technical Reports Server (NTRS)

    Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.

    1996-01-01

    Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modelled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.

  15. An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming

    2017-02-01

    In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.

  16. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2002-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nudeic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  17. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2008-09-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  18. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W [San Francisco, CA; Pinkel, Daniel [Lafayette, CA; Kallioniemi, Olli-Pekka [Turku, FI; Kallioniemi, Anne [Tampere, FI; Sakamoto, Masaru [Tokyo, JP

    2009-10-06

    Methods and compositions for staining based upon nucleic acid sequence that employ .[.nudeic.]. .Iadd.nucleic .Iaddend.acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  19. Chromosome-Specific Staining To Detect Genetic Rearrangements Associated With Chromosome 3 And/Or Chromosone 17

    DOEpatents

    Gray; Joe W.; Pinkel; Daniel; Kallioniemi; Olli-Pekka; Kallioniemi; Anne; Sakamoto; Masaru

    2002-02-05

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  20. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  1. Bend it like Beckham! The Ethics of Genetically Testing Children for Athletic Potential

    PubMed Central

    Camporesi, Silvia

    2016-01-01

    The recent boom of direct-to-consumer (DTC) genetic tests, aimed at measuring children’s athletic potential, is the latest wave in the ‘pre-professionalization’ of children that has characterized, especially but not exclusively, the USA in the last 15 years or so. In this paper, I analyse the use of DTC genetic tests, sometimes coupled with more traditional methods of ‘talent scouting’, to assess a child’s predisposition to athletic performance. I first discuss the scientific evidence at the basis of these tests, and the parental decision in terms of education, and of investing in the children’s future, taken on the basis of the results of the tests. I then discuss how these parental practices impact on the children’s right to an open future, and on their developing sense of autonomy. I also consider the meaning and role of sports in childhood, and conclude that the use of DTC genetic tests to measure children’s athletic potential should be seen as a ‘wake up’ call for other problematic parental attitudes aimed at scouting and developing children’s talent. PMID:27996058

  2. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing

    PubMed Central

    Susswein, Lisa R.; Marshall, Megan L.; Nusbaum, Rachel; Vogel Postula, Kristen J.; Weissman, Scott M.; Yackowski, Lauren; Vaccari, Erica M.; Bissonnette, Jeffrey; Booker, Jessica K.; Cremona, M. Laura; Gibellini, Federica; Murphy, Patricia D.; Pineda-Alvarez, Daniel E.; Pollevick, Guido D.; Xu, Zhixiong; Richard, Gabi; Bale, Sherri; Klein, Rachel T.; Hruska, Kathleen S.; Chung, Wendy K.

    2016-01-01

    Purpose: Germ-line testing for panels of cancer genes using next-generation sequencing is becoming more common in clinical care. We report our experience as a clinical laboratory testing both well-established, high-risk cancer genes (e.g., BRCA1/2, MLH1, MSH2) as well as more recently identified cancer genes (e.g., PALB2, BRIP1), many of which have increased but less well-defined penetrance. Genet Med 18 8, 823–832. Methods: Clinical genetic testing was performed on over 10,000 consecutive cases referred for evaluation of germ-line cancer genes, and results were analyzed for frequency of pathogenic or likely pathogenic variants, and were stratified by testing panel, gene, and clinical history. Genet Med 18 8, 823–832. Results: Overall, a molecular diagnosis was made in 9.0% of patients tested, with the highest yield in the Lynch syndrome/colorectal cancer panel. In patients with breast, ovarian, or colon/stomach cancer, positive yields were 9.7, 13.4, and 14.8%, respectively. Approximately half of the pathogenic variants identified in patients with breast or ovarian cancer were in genes other than BRCA1/2. Genet Med 18 8, 823–832. Conclusion: The high frequency of positive results in a wide range of cancer genes, including those of high penetrance and with clinical care guidelines, underscores both the genetic heterogeneity of hereditary cancer and the usefulness of multigene panels over genetic tests of one or two genes. Genet Med 18 8, 823–832. PMID:26681312

  3. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits

    PubMed Central

    Zeng, Ping; Mukherjee, Sayan; Zhou, Xiang

    2017-01-01

    Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges and often suffer from low statistical power due to multiple test correction. Here, we present a novel, alternative strategy for mapping epistasis: instead of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that have non-zero marginal epistatic effects—the combined pairwise interaction effects between a given variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants that are involved in epistasis without the need to identify the exact partners with which the variants interact, thus potentially alleviating much of the statistical and computational burden associated with standard epistatic mapping procedures. Our method is based on a variance component model, and relies on a recently developed variance component estimation method for efficient parameter inference and p-value computation. We refer to our method as the “MArginal ePIstasis Test”, or MAPIT. With simulations, we show how MAPIT can be used to estimate and test marginal epistatic effects, produce calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions. We further illustrate the benefits of MAPIT in a QTL mapping study by analyzing the gene expression data of over 400 individuals from the GEUVADIS consortium. PMID:28746338

  4. Prioritizing individual genetic variants after kernel machine testing using variable selection.

    PubMed

    He, Qianchuan; Cai, Tianxi; Liu, Yang; Zhao, Ni; Harmon, Quaker E; Almli, Lynn M; Binder, Elisabeth B; Engel, Stephanie M; Ressler, Kerry J; Conneely, Karen N; Lin, Xihong; Wu, Michael C

    2016-12-01

    Kernel machine learning methods, such as the SNP-set kernel association test (SKAT), have been widely used to test associations between traits and genetic polymorphisms. In contrast to traditional single-SNP analysis methods, these methods are designed to examine the joint effect of a set of related SNPs (such as a group of SNPs within a gene or a pathway) and are able to identify sets of SNPs that are associated with the trait of interest. However, as with many multi-SNP testing approaches, kernel machine testing can draw conclusion only at the SNP-set level, and does not directly inform on which one(s) of the identified SNP set is actually driving the associations. A recently proposed procedure, KerNel Iterative Feature Extraction (KNIFE), provides a general framework for incorporating variable selection into kernel machine methods. In this article, we focus on quantitative traits and relatively common SNPs, and adapt the KNIFE procedure to genetic association studies and propose an approach to identify driver SNPs after the application of SKAT to gene set analysis. Our approach accommodates several kernels that are widely used in SNP analysis, such as the linear kernel and the Identity by State (IBS) kernel. The proposed approach provides practically useful utilities to prioritize SNPs, and fills the gap between SNP set analysis and biological functional studies. Both simulation studies and real data application are used to demonstrate the proposed approach. © 2016 WILEY PERIODICALS, INC.

  5. CAP/ACMG proficiency testing for biochemical genetics laboratories: a summary of performance.

    PubMed

    Oglesbee, Devin; Cowan, Tina M; Pasquali, Marzia; Wood, Timothy C; Weck, Karen E; Long, Thomas; Palomaki, Glenn E

    2018-01-01

    PurposeTesting for inborn errors of metabolism is performed by clinical laboratories worldwide, each utilizing laboratory-developed procedures. We sought to summarize performance in the College of American Pathologists' (CAP) proficiency testing (PT) program and identify opportunities for improving laboratory quality. When evaluating PT data, we focused on a subset of laboratories that have participated in at least one survey since 2010.MethodsAn analysis of laboratory performance (2004 to 2014) on the Biochemical Genetics PT Surveys, a program administered by CAP and the American College of Medical Genetics and Genomics. Analytical and interpretive performance was evaluated for four tests: amino acids, organic acids, acylcarnitines, and mucopolysaccharides.ResultsSince 2010, 150 laboratories have participated in at least one of four PT surveys. Analytic sensitivities ranged from 88.2 to 93.4%, while clinical sensitivities ranged from 82.4 to 91.0%. Performance was higher for US participants and for more recent challenges. Performance was lower for challenges with subtle findings or complex analytical patterns.ConclusionUS clinical biochemical genetics laboratory proficiency is satisfactory, with a minority of laboratories accounting for the majority of errors. Our findings underscore the complex nature of clinical biochemical genetics testing and highlight the necessity of continuous quality management.

  6. Genetic screening and diagnosis in epilepsy?

    PubMed

    Sisodiya, Sanjay M

    2015-04-01

    Genetic discovery has been extremely rapid over the last year, with many new discoveries illuminating novel mechanisms and pathways. In particular, the application of whole exome and whole genome sequencing has identified many new genetic causes of the epilepsies. As such methods become increasingly available, it will be critical for practicing neurologists to be acquainted with them. This review surveys some important developments over the last year. The range of tests available to the clinician is wide, and likely soon to be dominated by whole exome and whole genome sequencing. Both whole exome and whole genome sequencing have usually proven to be more powerful than most existing tests. Many new genes have been implicated in the epilepsies, with emerging evidence of the involvement of particular multigene pathways. For the practicing clinician, it will be important to appreciate progress in the field, and to prepare for the application of novel genetic testing in clinical practice, as genetic data are likely to contribute importantly for many people with epilepsy.

  7. A proposal for clinical genetics (genetics in medicine) education for medical technologists and other health professionals in Japan.

    PubMed

    Kohzaki, Hidetsugu

    2014-01-01

    Since the completion of the Human Genome Project, technology has developed markedly in fields such as medical genetics and genetic counseling in the medical arena. In particular, this technology has advanced the discovery of and ways of understanding various genes responsible for genetic diseases, and genetic polymorphisms thought to be associated with disease. Some have been implicated as factors in common lifestyle diseases and have increased the significance of genetic testing. In Japan, doctors and other health professionals, such as nurse and medical technologists have been engaged in genetic testing and genetic disease treatment. Chromosomal and gene aberrations were detected mainly by medical technologists. However, due to the nature of medical technologists who have to provide various clinical tests, such as blood test, pre-medical technology students are required to cover tremendous knowledge of different academic fields to pass the national exam. Therefore, the time allowed for such students to study chromosomal and gene analysis is quite limited. Moreover, they are forced to enter the medical setting without receiving sufficient training. Among them, only few medical technologists specialize in chromosomal and gene analysis. However, with the advancement of clinical genetics and development of chromosomal and gene analysis, conducting clinical practice is becoming more and more difficult for medical technologists who just passed the national exam. Also, doctors and other health professionals have not been able to keep up with service demands either. This paper attempts to address knowledge and skills gaps (especially clinical genetics, English, and ICT literacy) of medical technologists and we propose educational methods to prepare medical genetics professionals in Japan to meet these gaps.

  8. Reducing cross-sectional data using a genetic algorithm method and effects on cross-section geometry and steady-flow profiles

    USGS Publications Warehouse

    Berenbrock, Charles E.

    2015-01-01

    The effects of reduced cross-sectional data points on steady-flow profiles were also determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were used. These two methods were tested for all cross sections with each cross section resolution reduced to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections. Generally, differences from the original water-surface elevation were smaller as the number of data points in reduced cross sections increased, but this was not always the case, especially in the braided reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method than the standard algorithm method.

  9. Genetic Algorithms and Their Application to the Protein Folding Problem

    DTIC Science & Technology

    1993-12-01

    and symbolic methods, random methods such as Monte Carlo simulation and simulated annealing, distance geometry, and molecular dynamics. Many of these...calculated energies with those obtained using the molecular simulation software package called CHARMm. 10 9) Test both the simple and parallel simpie genetic...homology-based, and simplification techniques. 3.21 Molecular Dynamics. Perhaps the most natural approach is to actually simulate the folding process. This

  10. Perceptron Genetic to Recognize Openning Strategy Ruy Lopez

    NASA Astrophysics Data System (ADS)

    Azmi, Zulfian; Mawengkang, Herman

    2018-01-01

    The application of Perceptron method is not effective for coding on hardware based systems because it is not real time learning. With Genetic algorithm approach in calculating and searching the best weight (fitness value) system will do learning only one iteration. And the results of this analysis were tested in the case of the introduction of the opening pattern of chess Ruy Lopez. The Analysis with Perceptron Model with Algorithm Approach Genetics from group Artificial Neural Network for open Ruy Lopez. The data is processed with base open chess, with step eight a position white Pion from end open chess. Using perceptron method have many input and one output process many weight and refraction until output equal goal. Data trained and test with software Matlab and system can recognize the chess opening Ruy Lopez or Not open Ruy Lopez with Real time.

  11. Genetic potential of common bean progenies obtained by different breeding methods evaluated in various environments.

    PubMed

    Pontes Júnior, V A; Melo, P G S; Pereira, H S; Melo, L C

    2016-09-02

    Grain yield is strongly influenced by the environment, has polygenic and complex inheritance, and is a key trait in the selection and recommendation of cultivars. Breeding programs should efficiently explore the genetic variability resulting from crosses by selecting the most appropriate method for breeding in segregating populations. The goal of this study was to evaluate and compare the genetic potential of common bean progenies of carioca grain for grain yield, obtained by different breeding methods and evaluated in different environments. Progenies originating from crosses between lines and CNFC 7812 and CNFC 7829 were replanted up to the F 7 generation using three breeding methods in segregating populations: population (bulk), bulk within F 2 progenies, and single-seed descent (SSD). Fifteen F 8 progenies per method, two controls (BRS Estilo and Perola), and the parents were evaluated in a 7 x 7 simple lattice design, with plots of two 4-m rows. The tests were conducted in 10 environments in four States of Brazil and in three growing seasons in 2009 and 2010. Genetic parameters including genetic variance, heritability, variance of interaction, and expected selection gain were estimated. Genetic variability among progenies and the effect of progeny-environment interactions were determined for the three methods. The breeding methods differed significantly due to the effects of sampling procedures on the progenies and due to natural selection, which mainly affected the bulk method. The SSD and bulk methods provided populations with better estimates of genetic parameters and more stable progenies that were less affected by interaction with the environment.

  12. Cost-effectiveness of MODY genetic testing: translating genomic advances into practical health applications.

    PubMed

    Naylor, Rochelle N; John, Priya M; Winn, Aaron N; Carmody, David; Greeley, Siri Atma W; Philipson, Louis H; Bell, Graeme I; Huang, Elbert S

    2014-01-01

    OBJECTIVE To evaluate the cost-effectiveness of a genetic testing policy for HNF1A-, HNF4A-, and GCK-MODY in a hypothetical cohort of type 2 diabetic patients 25-40 years old with a MODY prevalence of 2%. RESEARCH DESIGN AND METHODS We used a simulation model of type 2 diabetes complications based on UK Prospective Diabetes Study data, modified to account for the natural history of disease by genetic subtype to compare a policy of genetic testing at diabetes diagnosis versus a policy of no testing. Under the screening policy, successful sulfonylurea treatment of HNF1A-MODY and HNF4A-MODY was modeled to produce a glycosylated hemoglobin reduction of -1.5% compared with usual care. GCK-MODY received no therapy. Main outcome measures were costs and quality-adjusted life years (QALYs) based on lifetime risk of complications and treatments, expressed as the incremental cost-effectiveness ratio (ICER) (USD/QALY). RESULTS The testing policy yielded an average gain of 0.012 QALYs and resulted in an ICER of 205,000 USD. Sensitivity analysis showed that if the MODY prevalence was 6%, the ICER would be ~50,000 USD. If MODY prevalence was >30%, the testing policy was cost saving. Reducing genetic testing costs to 700 USD also resulted in an ICER of ~50,000 USD. CONCLUSIONS Our simulated model suggests that a policy of testing for MODY in selected populations is cost-effective for the U.S. based on contemporary ICER thresholds. Higher prevalence of MODY in the tested population or decreased testing costs would enhance cost-effectiveness. Our results make a compelling argument for routine coverage of genetic testing in patients with high clinical suspicion of MODY.

  13. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC)

    PubMed Central

    Caudle, Kelly E.; Dunnenberger, Henry M.; Freimuth, Robert R.; Peterson, Josh F.; Burlison, Jonathan D.; Whirl-Carrillo, Michelle; Scott, Stuart A.; Rehm, Heidi L.; Williams, Marc S.; Klein, Teri E.; Relling, Mary V.; Hoffman, James M.

    2017-01-01

    Introduction: Reporting and sharing pharmacogenetic test results across clinical laboratories and electronic health records is a crucial step toward the implementation of clinical pharmacogenetics, but allele function and phenotype terms are not standardized. Our goal was to develop terms that can be broadly applied to characterize pharmacogenetic allele function and inferred phenotypes. Materials and methods: Terms currently used by genetic testing laboratories and in the literature were identified. The Clinical Pharmacogenetics Implementation Consortium (CPIC) used the Delphi method to obtain a consensus and agree on uniform terms among pharmacogenetic experts. Results: Experts with diverse involvement in at least one area of pharmacogenetics (clinicians, researchers, genetic testing laboratorians, pharmacogenetics implementers, and clinical informaticians; n = 58) participated. After completion of five surveys, a consensus (>70%) was reached with 90% of experts agreeing to the final sets of pharmacogenetic terms. Discussion: The proposed standardized pharmacogenetic terms will improve the understanding and interpretation of pharmacogenetic tests and reduce confusion by maintaining consistent nomenclature. These standard terms can also facilitate pharmacogenetic data sharing across diverse electronic health care record systems with clinical decision support. Genet Med 19 2, 215–223. PMID:27441996

  14. Initialization Method for Grammar-Guided Genetic Programming

    NASA Astrophysics Data System (ADS)

    García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.

    This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.

  15. Genetic Counseling: Implications for Community Counselors.

    ERIC Educational Resources Information Center

    Bodenhorn, Nancy; Lawson, Gerard

    2003-01-01

    Special issue of the "Journal of Health Psychology" (Vol. 7, No. 2, 2002) was reviewed. Articles covered a variety of qualitative studies conducted using an interpretive phenomenological analysis method to examine the interviews with people who had received genetic testing and counseling. Implications for the broader counseling field…

  16. Differential Susceptibility to Prevention: GABAergic, Dopaminergic, and Multilocus Effects

    ERIC Educational Resources Information Center

    Brody, Gene H.; Chen, Yi-fu; Beach, Steven R. H.

    2013-01-01

    Background: Randomized prevention trials provide a unique opportunity to test hypotheses about the interaction of genetic predispositions with contextual processes to create variations in phenotypes over time. Methods: Using two longitudinal, randomized prevention trials, molecular genetic and alcohol use outcome data were gathered from more than…

  17. Has the "Equal Environments" assumption been tested in twin studies?

    PubMed

    Eaves, Lindon; Foley, Debra; Silberg, Judy

    2003-12-01

    A recurring criticism of the twin method for quantifying genetic and environmental components of human differences is the necessity of the so-called "equal environments assumption" (EEA) (i.e., that monozygotic and dizygotic twins experience equally correlated environments). It has been proposed to test the EEA by stratifying twin correlations by indices of the amount of shared environment. However, relevant environments may also be influenced by genetic differences. We present a model for the role of genetic factors in niche selection by twins that may account for variation in indices of the shared twin environment (e.g., contact between members of twin pairs). Simulations reveal that stratification of twin correlations by amount of contact can yield spurious evidence of large shared environmental effects in some strata and even give false indications of genotype x environment interaction. The stratification approach to testing the equal environments assumption may be misleading and the results of such tests may actually be consistent with a simpler theory of the role of genetic factors in niche selection.

  18. Patient and provider attitudes toward genomic testing for prostate cancer susceptibility: a mixed method study.

    PubMed

    Birmingham, Wendy C; Agarwal, Neeraj; Kohlmann, Wendy; Aspinwall, Lisa G; Wang, Mary; Bishoff, Jay; Dechet, Christopher; Kinney, Anita Y

    2013-07-20

    The strong association between family history and prostate cancer (PCa) suggests a significant genetic contribution, yet specific highly penetrant PCa susceptibility genes have not been identified. Certain single-nucleotide-polymorphisms have been found to correlate with PCa risk; however uncertainty remains regarding their clinical utility and how to best incorporate this information into clinical decision-making. Genetic testing is available directly to consumers and both patients and healthcare providers are becoming more aware of this technology. Purchasing online allows patients to bypass their healthcare provider yet patients may have difficulty interpreting test results and providers may be called upon to interpret results. Determining optimal ways to educate both patients and providers, and strategies for appropriately incorporating this information into clinical decision-making are needed. A mixed-method study was conducted in Utah between October 2011 and December 2011. Eleven focus group discussions were held and surveys were administered to 23 first-degree relatives of PCa patients living in Utah and 24 primary-care physicians and urologists practicing in Utah to present specific information about these assessments and determine knowledge and attitudes regarding health implications of using these assessments. Data was independently coded by two researchers (relative Kappa = .88; provider Kappa = .77) and analyzed using a grounded theory approach. Results indicated differences in attitudes and behavioral intentions between patient and provider. Despite the test's limitations relatives indicated interest in genetic testing (52%) while most providers indicated they would not recommend the test for their patients (79%). Relatives expected providers to interpret genetic test results and use results to provide personalized healthcare recommendations while the majority of providers did not think the information would be useful in patient care (92%) and indicated low-levels of genetic self-efficacy. Although similarities exist, discordance between provider and patient attitudes may influence the effective translation of novel genomic tests into clinical practice suggesting both patient and provider perceptions and expectations be considered in development of clinical decision-support tools.

  19. High-level generation of polyclonal antibodies by genetic immunization.

    PubMed

    Chambers, Ross S; Johnston, Stephen Albert

    2003-09-01

    Antibodies are important tools for investigating the proteome, but current methods for producing them have become a rate-limiting step. A primary obstacle in most methods for generating antibodies or antibody-like molecules is the requirement for at least microgram quantities of purified protein. We have developed a technology for producing antibodies using genetic immunization. Genetic immunization-based antibody production offers several advantages, including high throughput and high specificity. Moreover, antibodies produced from genetically immunized animals are more likely to recognize the native protein. Here we show that a genetic immunization-based system can be used to efficiently raise useful antibodies to a wide range of antigens. We accomplished this by linking the antigen gene to various elements that enhance antigenicity and by codelivering plasmids encoding genetic adjuvants. Our system, which was tested by immunizing mice with >130 antigens, has shown a final success rate of 84%.

  20. Dating Antarctic ice sheet collapse: Proposing a molecular genetic approach

    NASA Astrophysics Data System (ADS)

    Strugnell, Jan M.; Pedro, Joel B.; Wilson, Nerida G.

    2018-01-01

    Sea levels at the end of this century are projected to be 0.26-0.98 m higher than today. The upper end of this range, and even higher estimates, cannot be ruled out because of major uncertainties in the dynamic response of polar ice sheets to a warming climate. Here, we propose an ecological genetics approach that can provide insight into the past stability and configuration of the West Antarctic Ice Sheet (WAIS). We propose independent testing of the hypothesis that a trans-Antarctic seaway occurred at the last interglacial. Examination of the genomic signatures of bottom-dwelling marine species using the latest methods can provide an independent window into the integrity of the WAIS more than 100,000 years ago. Periods of connectivity facilitated by trans-Antarctic seaways could be revealed by dating coalescent events recorded in DNA. These methods allow alternative scenarios to be tested against a fit to genomic data. Ideal candidate taxa for this work would need to possess a circumpolar distribution, a benthic habitat, and some level of genetic structure indicated by phylogeographical investigation. The purpose of this perspective piece is to set out an ecological genetics method to help resolve when the West Antarctic Ice Shelf last collapsed.

  1. How have advances in our understanding of the molecular genetics of paediatric leukaemia led to improved targeted therapies for these diseases?

    PubMed

    Szychot, Elwira; Brodkiewicz, Andrzej; Peregud-Pogorzelski, Jarosław

    2014-01-01

    The term "leukaemia" refers to a large and heterogenous group of diseases, with treatment response and outcome dependent on the specific type of malignancy. New molecular methods allow us to specifically evaluate the type of disorder, and provide treatment of necessary intensity. The aim of this review is to provide insight into the progress in leukaemia treatment that had been possible due to advances in molecular genetics over the last few decades. Those new sophisticated diagnostic methods have allowed us not only to predict patients' prognosis but also to provide a specific therapy depending on the molecular and genetic characteristics of patients. Our review is based on 25 articles regarding novel diagnostic and therapeutic methods as well as prognostic factors, released between 1992 and 2011. Those articles focus mostly on molecular and cytogenetic testing allowing revolutionary methods of patient classification and individual therapy for this highly heterogeneous group of disorders. Implementation of molecular genetic testing to evaluate the type of leukaemia allowed paediatric oncologists and haematologists to adjust the intensity of treatment, improve outcome, minimize toxicity of therapies and considerably lower the risk of side effects. In the last few decades there has been a great improvement in survival among children suffering from haematopoietic malignancies. Progress made in molecular genetics allowed the creation of new treatment protocols that are designed to maintain a high cure rate for children with leukaemia while reducing toxicity.

  2. Knowledge of genetic testing for hereditary kidney cancer in Canada is lacking: The results of the Canadian national hereditary kidney cancer needs assessment survey

    PubMed Central

    Violette, Philippe D.; Kamel-Reid, Suzanne; Graham, Gail E.; Reaume, M. Neil; Jewett, Michael A.; Care, Melanie; Basiuk, Joan; Pautler, Stephen E.

    2014-01-01

    Introducton: Treatment of hereditary renal cell carcinoma (HRCC) requires a multidisciplinary approach that may involve medical oncologists, geneticists, genetic counsellors, and urologists. The objective of our survey was to obtain current and representative information about the use and perceived importance of genetic testing for HRCC in Canada. Methods: A self-administered web-based survey was provided to Canadian medical oncologists, geneticists, genetic counsellors, and urologists in collaboration with their respective associations. The survey was created through an iterative process in consultation with the Kidney Cancer Research Network of Canada and contained both quantitative and qualitative components. The survey was designed to be exploratory and results were compared across regions. Results: The overall response was low (6.6%). Of the respondents, 42%, 33%, 19%, 5% were genetic counsellors, urologists, medical oncologists and medical geneticists, respectively. Of the respondents, 62.7% described their practice as academic, and 37.3% described it as non-academic. Non-academic respondents tended to refer for genetic counselling less frequently than academic (48.6% vs. 67.2%). Most respondents believed that genetic testing for HRCC was available (82.8%), although 47.7% did not know which tests were available. This observation was consistent across provinces. Testing for Von Hippel-Lindau syndrome was given the highest priority among respondents. Limited provider knowledge, clinical guidelines, institutional funding, access, and poor coordination between disciplines were cited as barriers to testing. Interpretation: There is a need to increase provider knowledge of genetic testing for HRCC. These findings support the development of practice guidelines and national strategies to improve coordination of specialists and access to genetics services. Limitations of the present study include low survey response which did not allow for inferential analysis by geographic region or respondent specialty. PMID:25485012

  3. The score statistic of the LD-lod analysis: detecting linkage adaptive to linkage disequilibrium.

    PubMed

    Huang, J; Jiang, Y

    2001-01-01

    We study the properties of a modified lod score method for testing linkage that incorporates linkage disequilibrium (LD-lod). By examination of its score statistic, we show that the LD-lod score method adaptively combines two sources of information: (a) the IBD sharing score which is informative for linkage regardless of the existence of LD and (b) the contrast between allele-specific IBD sharing scores which is informative for linkage only in the presence of LD. We also consider the connection between the LD-lod score method and the transmission-disequilibrium test (TDT) for triad data and the mean test for affected sib pair (ASP) data. We show that, for triad data, the recessive LD-lod test is asymptotically equivalent to the TDT; and for ASP data, it is an adaptive combination of the TDT and the ASP mean test. We demonstrate that the LD-lod score method has relatively good statistical efficiency in comparison with the ASP mean test and the TDT for a broad range of LD and the genetic models considered in this report. Therefore, the LD-lod score method is an interesting approach for detecting linkage when the extent of LD is unknown, such as in a genome-wide screen with a dense set of genetic markers. Copyright 2001 S. Karger AG, Basel

  4. Identifying future models for delivering genetic services: a nominal group study in primary care

    PubMed Central

    Elwyn, Glyn; Edwards, Adrian; Iredale, Rachel; Davies, Peter; Gray, Jonathon

    2005-01-01

    Background To enable primary care medical practitioners to generate a range of possible service delivery models for genetic counselling services and critically assess their suitability. Methods Modified nominal group technique using in primary care professional development workshops. Results 37 general practitioners in Wales, United Kingdom too part in the nominal group process. The practitioners who attended did not believe current systems were sufficient to meet anticipated demand for genetic services. A wide range of different service models was proposed, although no single option emerged as a clear preference. No argument was put forward for genetic assessment and counselling being central to family practice, neither was there a voice for the view that the family doctor should become skilled at advising patients about predictive genetic testing and be able to counsel patients about the wider implications of genetic testing for patients and their family members, even for areas such as common cancers. Nevertheless, all the preferred models put a high priority on providing the service in the community, and often co-located in primary care, by clinicians who had developed expertise. Conclusion There is a need for a wider debate about how healthcare systems address individual concerns about genetic concerns and risk, especially given the increasing commercial marketing of genetic tests. PMID:15831099

  5. EPS-LASSO: Test for High-Dimensional Regression Under Extreme Phenotype Sampling of Continuous Traits.

    PubMed

    Xu, Chao; Fang, Jian; Shen, Hui; Wang, Yu-Ping; Deng, Hong-Wen

    2018-01-25

    Extreme phenotype sampling (EPS) is a broadly-used design to identify candidate genetic factors contributing to the variation of quantitative traits. By enriching the signals in extreme phenotypic samples, EPS can boost the association power compared to random sampling. Most existing statistical methods for EPS examine the genetic factors individually, despite many quantitative traits have multiple genetic factors underlying their variation. It is desirable to model the joint effects of genetic factors, which may increase the power and identify novel quantitative trait loci under EPS. The joint analysis of genetic data in high-dimensional situations requires specialized techniques, e.g., the least absolute shrinkage and selection operator (LASSO). Although there are extensive research and application related to LASSO, the statistical inference and testing for the sparse model under EPS remain unknown. We propose a novel sparse model (EPS-LASSO) with hypothesis test for high-dimensional regression under EPS based on a decorrelated score function. The comprehensive simulation shows EPS-LASSO outperforms existing methods with stable type I error and FDR control. EPS-LASSO can provide a consistent power for both low- and high-dimensional situations compared with the other methods dealing with high-dimensional situations. The power of EPS-LASSO is close to other low-dimensional methods when the causal effect sizes are small and is superior when the effects are large. Applying EPS-LASSO to a transcriptome-wide gene expression study for obesity reveals 10 significant body mass index associated genes. Our results indicate that EPS-LASSO is an effective method for EPS data analysis, which can account for correlated predictors. The source code is available at https://github.com/xu1912/EPSLASSO. hdeng2@tulane.edu. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. DNA: The Strand that Connects Us All

    ScienceCinema

    Kaplan, Matt [Univ. of Arizona, Tucson, AZ (United States). Genetics Core Facility

    2018-04-26

    Learn how the methods and discoveries of human population genetics are applied for personal genealogical reconstruction and anthropological testing. Dr. Kaplan starts with a short general review of human genetics and the biology behind this form of DNA testing. He looks at how DNA testing is performed and how samples are processed in the University of Arizona laboratory. He also examines examples of personal genealogical results from Family Tree DNA and personal anthropological results from the Genographic Project. Finally, he describes the newest project in the UA laboratory, the DNA Shoah Project.

  7. Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping

    NASA Astrophysics Data System (ADS)

    Fronita, Mona; Gernowo, Rahmat; Gunawan, Vincencius

    2018-02-01

    Traveling Salesman Problem (TSP) is an optimization to find the shortest path to reach several destinations in one trip without passing through the same city and back again to the early departure city, the process is applied to the delivery systems. This comparison is done using two methods, namely optimization genetic algorithm and hill climbing. Hill Climbing works by directly selecting a new path that is exchanged with the neighbour's to get the track distance smaller than the previous track, without testing. Genetic algorithms depend on the input parameters, they are the number of population, the probability of crossover, mutation probability and the number of generations. To simplify the process of determining the shortest path supported by the development of software that uses the google map API. Tests carried out as much as 20 times with the number of city 8, 16, 24 and 32 to see which method is optimal in terms of distance and time computation. Based on experiments conducted with a number of cities 3, 4, 5 and 6 producing the same value and optimal distance for the genetic algorithm and hill climbing, the value of this distance begins to differ with the number of city 7. The overall results shows that these tests, hill climbing are more optimal to number of small cities and the number of cities over 30 optimized using genetic algorithms.

  8. Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test.

    PubMed

    Sved, J A; Yu, H; Dominiak, B; Gilchrist, A S

    2003-02-01

    Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone.

  9. Computer Simulation Is an Undervalued Tool for Genetic Analysis: A Historical View and Presentation of SHIMSHON – A Web-Based Genetic Simulation Package

    PubMed Central

    Greenberg, David A.

    2011-01-01

    Computer simulation methods are under-used tools in genetic analysis because simulation approaches have been portrayed as inferior to analytic methods. Even when simulation is used, its advantages are not fully exploited. Here, I present SHIMSHON, our package of genetic simulation programs that have been developed, tested, used for research, and used to generated data for Genetic Analysis Workshops (GAW). These simulation programs, now web-accessible, can be used by anyone to answer questions about designing and analyzing genetic disease studies for locus identification. This work has three foci: (1) the historical context of SHIMSHON's development, suggesting why simulation has not been more widely used so far. (2) Advantages of simulation: computer simulation helps us to understand how genetic analysis methods work. It has advantages for understanding disease inheritance and methods for gene searches. Furthermore, simulation methods can be used to answer fundamental questions that either cannot be answered by analytical approaches or cannot even be defined until the problems are identified and studied, using simulation. (3) I argue that, because simulation was not accepted, there was a failure to grasp the meaning of some simulation-based studies of linkage. This may have contributed to perceived weaknesses in linkage analysis; weaknesses that did not, in fact, exist. PMID:22189467

  10. Consumers report lower confidence in their genetics knowledge following direct-to-consumer personal genomic testing

    PubMed Central

    Carere, Deanna Alexis; Kraft, Peter; Kaphingst, Kimberly A.; Roberts, J. Scott; Green, Robert C.

    2015-01-01

    Purpose To measure changes to genetics knowledge and self-efficacy following personal genomic testing (PGT). Methods New customers of 23andMe and Pathway Genomics completed a series of online surveys. Prior to receipt of results, and 6 months post-results, we measured genetics knowledge (9 true/false items) and genetics self-efficacy (5 Likert-scale items) and used paired methods to evaluate change over time. Correlates of change (e.g., decision regret) were identified using linear regression. Results 998 PGT customers (59.9% female; 85.8% White; mean age 46.9±15.5 years) were included in our analyses. Mean genetics knowledge score out of 9 was 8.15±0.95 at baseline and 8.25±0.92 at 6 months (p = .0024). Mean self-efficacy score out of 35 was 29.06±5.59 at baseline and 27.7±5.46 at 6 months (p < .0001); on each item, 30–45% of participants reported lower self-efficacy following PGT. Change in self-efficacy was positively associated with health care provider consultation (p = .0042), impact of PGT on perceived control over one’s health (p < .0001), and perceived value of PGT (p < .0001), and negatively associated with decision regret (p < .0001). Conclusion Lowered genetics self-efficacy following PGT may reflect an appropriate reevaluation by consumers in response to receiving complex genetic information. PMID:25812042

  11. Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.

    PubMed

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei

    2016-02-01

    Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.

  12. Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions

    PubMed Central

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei

    2015-01-01

    Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979

  13. Modifications to the Patient Rule-Induction Method that utilize non-additive combinations of genetic and environmental effects to define partitions that predict ischemic heart disease

    PubMed Central

    Dyson, Greg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G.; Tybjærg-Hansen, Anne; Sing, Charles F.

    2009-01-01

    This paper extends the Patient Rule-Induction Method (PRIM) for modeling cumulative incidence of disease developed by Dyson et al. (2007) to include the simultaneous consideration of non-additive combinations of predictor variables, a significance test of each combination, an adjustment for multiple testing and a confidence interval for the estimate of the cumulative incidence of disease in each partition. We employ the partitioning algorithm component of the Combinatorial Partitioning Method (CPM) to construct combinations of predictors, permutation testing to assess the significance of each combination, theoretical arguments for incorporating a multiple testing adjustment and bootstrap resampling to produce the confidence intervals. An illustration of this revised PRIM utilizing a sample of 2258 European male participants from the Copenhagen City Heart Study is presented that assesses the utility of genetic variants in predicting the presence of ischemic heart disease beyond the established risk factors. PMID:19025787

  14. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  15. A comparison of fitness-case sampling methods for genetic programming

    NASA Astrophysics Data System (ADS)

    Martínez, Yuliana; Naredo, Enrique; Trujillo, Leonardo; Legrand, Pierrick; López, Uriel

    2017-11-01

    Genetic programming (GP) is an evolutionary computation paradigm for automatic program induction. GP has produced impressive results but it still needs to overcome some practical limitations, particularly its high computational cost, overfitting and excessive code growth. Recently, many researchers have proposed fitness-case sampling methods to overcome some of these problems, with mixed results in several limited tests. This paper presents an extensive comparative study of four fitness-case sampling methods, namely: Interleaved Sampling, Random Interleaved Sampling, Lexicase Selection and Keep-Worst Interleaved Sampling. The algorithms are compared on 11 symbolic regression problems and 11 supervised classification problems, using 10 synthetic benchmarks and 12 real-world data-sets. They are evaluated based on test performance, overfitting and average program size, comparing them with a standard GP search. Comparisons are carried out using non-parametric multigroup tests and post hoc pairwise statistical tests. The experimental results suggest that fitness-case sampling methods are particularly useful for difficult real-world symbolic regression problems, improving performance, reducing overfitting and limiting code growth. On the other hand, it seems that fitness-case sampling cannot improve upon GP performance when considering supervised binary classification.

  16. Attitudes towards Social Networking and Sharing Behaviors among Consumers of Direct-to-Consumer Personal Genomics

    PubMed Central

    Lee, Sandra Soo-Jin; Vernez, Simone L.; Ormond, K.E.; Granovetter, Mark

    2013-01-01

    Little is known about how consumers of direct-to-consumer personal genetic services share personal genetic risk information. In an age of ubiquitous online networking and rapid development of social networking tools, understanding how consumers share personal genetic risk assessments is critical in the development of appropriate and effective policies. This exploratory study investigates how consumers share personal genetic information and attitudes towards social networking behaviors. Methods: Adult participants aged 23 to 72 years old who purchased direct-to-consumer genetic testing from a personal genomics company were administered a web-based survey regarding their sharing activities and social networking behaviors related to their personal genetic test results. Results: 80 participants completed the survey; of those, 45% shared results on Facebook and 50.9% reported meeting or reconnecting with more than 10 other individuals through the sharing of their personal genetic information. For help interpreting test results, 70.4% turned to Internet websites and online sources, compared to 22.7% who consulted their healthcare providers. Amongst participants, 51.8% reported that they believe the privacy of their personal genetic information would be breached in the future. Conclusion: Consumers actively utilize online social networking tools to help them share and interpret their personal genetic information. These findings suggest a need for careful consideration of policy recommendations in light of the current ambiguity of regulation and oversight of consumer initiated sharing activities. PMID:25562728

  17. Learning the scientific method using GloFish.

    PubMed

    Vick, Brianna M; Pollak, Adrianna; Welsh, Cynthia; Liang, Jennifer O

    2012-12-01

    Here we describe projects that used GloFish, brightly colored, fluorescent, transgenic zebrafish, in experiments that enabled students to carry out all steps in the scientific method. In the first project, students in an undergraduate genetics laboratory course successfully tested hypotheses about the relationships between GloFish phenotypes and genotypes using PCR, fluorescence microscopy, and test crosses. In the second and third projects, students doing independent research carried out hypothesis-driven experiments that also developed new GloFish projects for future genetics laboratory students. Brianna Vick, an undergraduate student, identified causes of the different shades of color found in orange GloFish. Adrianna Pollak, as part of a high school science fair project, characterized the fluorescence emission patterns of all of the commercially available colors of GloFish (red, orange, yellow, green, blue, and purple). The genetics laboratory students carrying out the first project found that learning new techniques and applying their knowledge of genetics were valuable. However, assessments of their learning suggest that this project was not challenging to many of the students. Thus, the independent projects will be valuable as bases to widen the scope and range of difficulty of experiments available to future genetics laboratory students.

  18. Irradiation influence on the detection of genetic-modified soybeans

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.

    2004-09-01

    Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.

  19. Science, law, and politics in the Food and Drug Administration's genetically engineered foods policy: FDA's 1992 policy statement.

    PubMed

    Pelletier, David L

    2005-05-01

    The US Food and Drug Administration's (FDA's) 1992 policy statement was developed in the context of critical gaps in scientific knowledge concerning the compositional effects of genetic transformation and severe limitations in methods for safety testing. FDA acknowledged that pleiotropy and insertional mutagenesis may cause unintended changes, but it was unknown whether this happens to a greater extent in genetic engineering compared with traditional breeding. Moreover, the agency was not able to identify methods by which producers could screen for unintended allergens and toxicants. Despite these uncertainties, FDA granted genetically engineered foods the presumption of GRAS (Generally Recognized As Safe) and recommended that producers use voluntary consultations before marketing them.

  20. Further evidence for the increased power of LOD scores compared with nonparametric methods.

    PubMed

    Durner, M; Vieland, V J; Greenberg, D A

    1999-01-01

    In genetic analysis of diseases in which the underlying model is unknown, "model free" methods-such as affected sib pair (ASP) tests-are often preferred over LOD-score methods, although LOD-score methods under the correct or even approximately correct model are more powerful than ASP tests. However, there might be circumstances in which nonparametric methods will outperform LOD-score methods. Recently, Dizier et al. reported that, in some complex two-locus (2L) models, LOD-score methods with segregation analysis-derived parameters had less power to detect linkage than ASP tests. We investigated whether these particular models, in fact, represent a situation that ASP tests are more powerful than LOD scores. We simulated data according to the parameters specified by Dizier et al. and analyzed the data by using a (a) single locus (SL) LOD-score analysis performed twice, under a simple dominant and a recessive mode of inheritance (MOI), (b) ASP methods, and (c) nonparametric linkage (NPL) analysis. We show that SL analysis performed twice and corrected for the type I-error increase due to multiple testing yields almost as much linkage information as does an analysis under the correct 2L model and is more powerful than either the ASP method or the NPL method. We demonstrate that, even for complex genetic models, the most important condition for linkage analysis is that the assumed MOI at the disease locus being tested is approximately correct, not that the inheritance of the disease per se is correctly specified. In the analysis by Dizier et al., segregation analysis led to estimates of dominance parameters that were grossly misspecified for the locus tested in those models in which ASP tests appeared to be more powerful than LOD-score analyses.

  1. Strategies for identifying new prions in yeast

    PubMed Central

    MacLea, Kyle S

    2011-01-01

    The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology. PMID:22052351

  2. Equivalence testing using existing reference data: An example with genetically modified and conventional crops in animal feeding studies.

    PubMed

    van der Voet, Hilko; Goedhart, Paul W; Schmidt, Kerstin

    2017-11-01

    An equivalence testing method is described to assess the safety of regulated products using relevant data obtained in historical studies with assumedly safe reference products. The method is illustrated using data from a series of animal feeding studies with genetically modified and reference maize varieties. Several criteria for quantifying equivalence are discussed, and study-corrected distribution-wise equivalence is selected as being appropriate for the example case study. An equivalence test is proposed based on a high probability of declaring equivalence in a simplified situation, where there is no between-group variation, where the historical and current studies have the same residual variance, and where the current study is assumed to have a sample size as set by a regulator. The method makes use of generalized fiducial inference methods to integrate uncertainties from both the historical and the current data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Evolving hard problems: Generating human genetics datasets with a complex etiology.

    PubMed

    Himmelstein, Daniel S; Greene, Casey S; Moore, Jason H

    2011-07-07

    A goal of human genetics is to discover genetic factors that influence individuals' susceptibility to common diseases. Most common diseases are thought to result from the joint failure of two or more interacting components instead of single component failures. This greatly complicates both the task of selecting informative genetic variants and the task of modeling interactions between them. We and others have previously developed algorithms to detect and model the relationships between these genetic factors and disease. Previously these methods have been evaluated with datasets simulated according to pre-defined genetic models. Here we develop and evaluate a model free evolution strategy to generate datasets which display a complex relationship between individual genotype and disease susceptibility. We show that this model free approach is capable of generating a diverse array of datasets with distinct gene-disease relationships for an arbitrary interaction order and sample size. We specifically generate eight-hundred Pareto fronts; one for each independent run of our algorithm. In each run the predictiveness of single genetic variation and pairs of genetic variants have been minimized, while the predictiveness of third, fourth, or fifth-order combinations is maximized. Two hundred runs of the algorithm are further dedicated to creating datasets with predictive four or five order interactions and minimized lower-level effects. This method and the resulting datasets will allow the capabilities of novel methods to be tested without pre-specified genetic models. This allows researchers to evaluate which methods will succeed on human genetics problems where the model is not known in advance. We further make freely available to the community the entire Pareto-optimal front of datasets from each run so that novel methods may be rigorously evaluated. These 76,600 datasets are available from http://discovery.dartmouth.edu/model_free_data/.

  4. Design of a DNA chip for detection of unknown genetically modified organisms (GMOs).

    PubMed

    Nesvold, Håvard; Kristoffersen, Anja Bråthen; Holst-Jensen, Arne; Berdal, Knut G

    2005-05-01

    Unknown genetically modified organisms (GMOs) have not undergone a risk evaluation, and hence might pose a danger to health and environment. There are, today, no methods for detecting unknown GMOs. In this paper we propose a novel method intended as a first step in an approach for detecting unknown genetically modified (GM) material in a single plant. A model is designed where biological and combinatorial reduction rules are applied to a set of DNA chip probes containing all possible sequences of uniform length n, creating probes capable of detecting unknown GMOs. The model is theoretically tested for Arabidopsis thaliana Columbia, and the probabilities for detecting inserts and receiving false positives are assessed for various parameters for this organism. From a theoretical standpoint, the model looks very promising but should be tested further in the laboratory. The model and algorithms will be available upon request to the corresponding author.

  5. A Statistical Approach for Testing Cross-Phenotype Effects of Rare Variants

    PubMed Central

    Broadaway, K. Alaine; Cutler, David J.; Duncan, Richard; Moore, Jacob L.; Ware, Erin B.; Jhun, Min A.; Bielak, Lawrence F.; Zhao, Wei; Smith, Jennifer A.; Peyser, Patricia A.; Kardia, Sharon L.R.; Ghosh, Debashis; Epstein, Michael P.

    2016-01-01

    Increasing empirical evidence suggests that many genetic variants influence multiple distinct phenotypes. When cross-phenotype effects exist, multivariate association methods that consider pleiotropy are often more powerful than univariate methods that model each phenotype separately. Although several statistical approaches exist for testing cross-phenotype effects for common variants, there is a lack of similar tests for gene-based analysis of rare variants. In order to fill this important gap, we introduce a statistical method for cross-phenotype analysis of rare variants using a nonparametric distance-covariance approach that compares similarity in multivariate phenotypes to similarity in rare-variant genotypes across a gene. The approach can accommodate both binary and continuous phenotypes and further can adjust for covariates. Our approach yields a closed-form test whose significance can be evaluated analytically, thereby improving computational efficiency and permitting application on a genome-wide scale. We use simulated data to demonstrate that our method, which we refer to as the Gene Association with Multiple Traits (GAMuT) test, provides increased power over competing approaches. We also illustrate our approach using exome-chip data from the Genetic Epidemiology Network of Arteriopathy. PMID:26942286

  6. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology

    PubMed Central

    Vissers, Lisenka E.L.M.; van Nimwegen, Kirsten J.M.; Schieving, Jolanda H.; Kamsteeg, Erik-Jan; Kleefstra, Tjitske; Yntema, Helger G.; Pfundt, Rolph; van der Wilt, Gert Jan; Krabbenborg, Lotte; Brunner, Han G.; van der Burg, Simone; Grutters, Janneke; Veltman, Joris A.; Willemsen, Michèl A.A.P.

    2017-01-01

    Purpose: Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. Methods: We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene–based testing) and WES simultaneously. Results: Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Conclusion: Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin. Genet Med advance online publication 23 March 2017 PMID:28333917

  7. Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa

    PubMed Central

    Ma, Yuanyuan; Chiang, Pei-Wen; Zhong, Jing; Liu, Xuyang; Asan; Wu, Jing; Su, Yan; Li, Xin; Deng, Jianlian; Huang, Yingping; Zhang, Xinxin; Li, Yang; Fan, Ning; Wang, Ying; Tang, Lihui; Shen, Jinting; Chen, Meiyan; Zhang, Xiuqing; Te, Deng; Banerjee, Santasree; Liu, Hui; Qi, Ming; Yi, Xin

    2018-01-01

    Background Inherited eye diseases are major causes of vision loss in both children and adults. Inherited eye diseases are characterized by clinical variability and pronounced genetic heterogeneity. Genetic testing may provide an accurate diagnosis for ophthalmic genetic disorders and allow gene therapy for specific diseases. Methods A targeted gene capture panel was designed to capture exons of 283 inherited eye disease genes including 58 known causative retinitis pigmentosa (RP) genes. 180 samples were tested with this panel, 68 were previously tested by Sanger sequencing. Systematic evaluation of our method and comprehensive molecular diagnosis were carried on 99 RP patients. Results 96.85% targeted regions were covered by at least 20 folds, the accuracy of variants detection was 99.994%. In 4 of the 68 samples previously tested by Sanger sequencing, mutations of other diseases not consisting with the clinical diagnosis were detected by next-generation sequencing (NGS) not Sanger. Among the 99 RP patients, 64 (64.6%) were detected with pathogenic mutations, while in 3 patients, it was inconsistent between molecular diagnosis and their initial clinical diagnosis. After revisiting, one patient’s clinical diagnosis was reclassified. In addition, 3 patients were found carrying large deletions. Conclusions We have systematically evaluated our method and compared it with Sanger sequencing, and have identified a large number of novel mutations in a cohort of 99 RP patients. The results showed a sufficient accuracy of our method and suggested the importance of molecular diagnosis in clinical diagnosis. PMID:29641573

  8. Genetic evaluation of mastitis liability and recovery through longitudinal analysis of transition probabilities

    PubMed Central

    2012-01-01

    Background Many methods for the genetic analysis of mastitis use a cross-sectional approach, which omits information on, e.g., repeated mastitis cases during lactation, somatic cell count fluctuations, and recovery process. Acknowledging the dynamic behavior of mastitis during lactation and taking into account that there is more than one binary response variable to consider, can enhance the genetic evaluation of mastitis. Methods Genetic evaluation of mastitis was carried out by modeling the dynamic nature of somatic cell count (SCC) within the lactation. The SCC patterns were captured by modeling transition probabilities between assumed states of mastitis and non-mastitis. A widely dispersed SCC pattern generates high transition probabilities between states and vice versa. This method can model transitions to and from states of infection simultaneously, i.e. both the mastitis liability and the recovery process are considered. A multilevel discrete time survival model was applied to estimate breeding values on simulated data with different dataset sizes, mastitis frequencies, and genetic correlations. Results Correlations between estimated and simulated breeding values showed that the estimated accuracies for mastitis liability were similar to those from previously tested methods that used data of confirmed mastitis cases, while our results were based on SCC as an indicator of mastitis. In addition, unlike the other methods, our method also generates breeding values for the recovery process. Conclusions The developed method provides an effective tool for the genetic evaluation of mastitis when considering the whole disease course and will contribute to improving the genetic evaluation of udder health. PMID:22475575

  9. Genetic Complexity of Episodic Memory: A Twin Approach to Studies of Aging

    PubMed Central

    Kremen, William S.; Spoon, Kelly M.; Jacobson, Kristen C.; Vasilopoulos, Terrie; McCaffery, Jeanne M.; Panizzon, Matthew S.; Franz, Carol E.; Vuoksimaa, Eero; Xian, Hong; Rana, Brinda K.; Toomey, Rosemary; McKenzie, Ruth; Lyons, Michael J.

    2016-01-01

    Episodic memory change is a central issue in cognitive aging, and understanding that process will require elucidation of its genetic underpinnings. A key limiting factor in genetically informed research on memory has been lack of attention to genetic and phenotypic complexity, as if “memory is memory” and all well-validated assessments are essentially equivalent. Here we applied multivariate twin models to data from late-middle-aged participants in the Vietnam Era Twin Study of Aging to examine the genetic architecture of 6 measures from 3 standard neuropsychological tests: the California Verbal Learning Test-2, and Wechsler Memory Scale-III Logical Memory (LM) and Visual Reproductions (VR). An advantage of the twin method is that it can estimate the extent to which latent genetic influences are shared or independent across different measures before knowing which specific genes are involved. The best-fitting model was a higher order common pathways model with a heritable higher order general episodic memory factor and three test-specific subfactors. More importantly, substantial genetic variance was accounted for by genetic influences that were specific to the latent LM and VR subfactors (28% and 30%, respectively) and independent of the general factor. Such unique genetic influences could partially account for replication failures. Moreover, if different genes influence different memory phenotypes, they could well have different age-related trajectories. This approach represents an important step toward providing critical information for all types of genetically informative studies of aging and memory. PMID:24956007

  10. Genetic Assay for Transcription Errors: Methods to Monitor Treatments or Chemicals that Increase the Error Rate of RNA synthesis | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) developed a genetic assay for detecting transcription errors in RNA synthesis. This new assay extends the familiar concept of an Ames test which monitors DNA damage and synthesis errors to the previously inaccessible issue of RNA synthesis fidelity. The FDA requires genetic DNA focused tests for all drug approval as it assesses the in vivo mutagenic and carcinogenic potential of a drug. The new assay will open an approach to monitoring the impact of treatments on the accuracy of RNA synthesis. Errors in transcription have been hypothesized to be a component of aging and age-related diseases. The National Cancer Institute (NCI) seeks licensing partners for the genetic assay.

  11. Testing for genetic association taking into account phenotypic information of relatives.

    PubMed

    Uh, Hae-Won; Wijk, Henk Jan van der; Houwing-Duistermaat, Jeanine J

    2009-12-15

    We investigated efficient case-control association analysis using family data. The outcome of interest was coronary heart disease. We employed existing and new methods that take into account the correlations among related individuals to obtain the proper type I error rates. The methods considered for autosomal single-nucleotide polymorphisms were: 1) generalized estimating equations-based methods, 2) variance-modified Cochran-Armitage (MCA) trend test incorporating kinship coefficients, and 3) genotypic modified quasi-likelihood score test. Additionally, for X-linked single-nucleotide polymorphisms we proposed a two-degrees-of-freedom test. Performance of these methods was tested using Framingham Heart Study 500 k array data.

  12. Genetics at school level: addressing the difficulties

    NASA Astrophysics Data System (ADS)

    Chu, Yu-Chien; Reid, Norman

    2012-11-01

    Background : A wide range of studies has offered suggestions why genetics is difficult and some of their key findings are summarised. Underpinning all of this is the way the brain works when handling information. The limitations of working memory capacity offer an interpretation of these difficulties Purpose : The aim is to confirm that working memory capacity (and the related concept of field dependency) controls performance in understanding genetics and whether it is possible to improve performance by changing the teaching approach to mininise overload. Programme description : The curriculum in Taiwan in genetics is outlined briefly. A wide range of measurements were made. Using a diagnostic test of understanding of underpinning ideas, the key areas of weakness were detected before the pupils started the course. Sample : Stage 1: 141 students in Taiwan, aged 13, boys and girls, drawn from a cross-section of Taiwanese pupils at this age, following their first course in genetics. Stage 2: 361 students, drawn from a cross-section of Taiwanese pupils at the same age, and divided into two groups (experimental-control) which both encompass the same ability range. Design and methods : Stage 1: test of pre-knowledge using structural communication grids, applied before the course commenced; working memory capacity using the figural intersection test; extent of field dependency using the group embedded figure test; understanding of genetics was measured at end of course; school test data collated. Stage 2: following a completely revised approach, performance in genetics was measured using traditional school tests and a word association test. Student perspectives were measured. Results : The test of pre-knowledge revealed key areas of difficulty. In addition, it was found that working memory capacity and extent of field dependency both correlated extremely highly with all measures of performance. Given that it has been established that working memory capacity controls performance, working memory demand explains why genetics is difficult. It was found that re-structuring the teaching approach to minimise mental overload brought about a very marked improvement in performance. Conclusions : The findings suggest that it is possible to reduce difficulties in understanding genetics by means of teaching re-design to minimise potential working memory overload, with concomitant improvements in learner confidence.

  13. Interest in Genetic Counseling and Testing for Adolescent Nicotine Addiction Susceptibility among a Sample of Adolescent Medicine Providers Attending a Scientific Conference on Adolescent Health

    PubMed Central

    Tercyak, Kenneth P.; Peshkin, Beth N.; Abraham, Anisha; Wine, Lauren; Walker, Leslie R.

    2007-01-01

    Purpose Preventing adolescents from smoking and becoming addicted to nicotine is an important public health issue. New research on the genetics of susceptibility to nicotine addition is emerging and may someday help identify adolescents at high risk. Over time, genetic counseling and testing for nicotine addiction susceptibility may become incorporated into tobacco control practice, and providers in primary care settings are likely to be at the forefront of these services. As such, it is important to understand the attitudes and practices of adolescent medicine providers toward tobacco control and genetic testing to better anticipate their needs and interests and prepare for the future. This study describes adolescent medicine providers’ interest, and correlates of their interest, in genetic counseling and testing for nicotine addiction susceptibility among their adolescent patients--a test which is not yet clinically available. Methods Adolescent medicine providers attending a national scientific conference (N = 232) completed a survey about their patient tobacco control and other screening behaviors, perceptions of their patients’ attitudes and beliefs toward tobacco control, and their own attitudes and beliefs about smoking and genetics. Results Providers who engaged in more regular tobacco screening behaviors with their adolescent patients (Odds Ratio [OR] = 4.07, 95% Confidence Interval [CI] = 2.20, 7.751, p = .00) and those who were more optimistic that biobehavioral research would lead to significant improvements in adolescent smoking prevention and treatment (OR = 2.47, 95% CI = 1.40, 4.37, p = .00), were more interested in counseling and testing. Conclusions Someday, adolescent wellness visits may present an opportunity to offer genetic counseling and testing for nicotine addiction susceptibility. Implementation at the provider level may depend on tobacco screening behavior and research optimism. Educating providers about safe and effective adolescent tobacco control strategies incorporating genetics will be essential. PMID:17577533

  14. Detecting Coevolution in Mammalian Sperm–Egg Fusion Proteins

    PubMed Central

    CLAW, KATRINA G.; GEORGE, RENEE D.; SWANSON, WILLIE J.

    2018-01-01

    SUMMARY Interactions between sperm and egg proteins can occur physically between gamete surface-binding proteins, and genetically between gamete proteins that work in complementary pathways in which they may not physically interact. Physically interacting sperm–egg proteins have been functionally identified in only a few species, and none have been verified within mammals. Candidate genes on both the sperm and egg surfaces exist, but gene deletion studies do not support functional interactions between these sperm–egg proteins; interacting sperm–egg proteins thus remain elusive. Cooperative gamete proteins undergo rapid evolution, and it is predicted that these sperm–egg proteins will also have correlated evolutionary rates due to compensatory changes on both the sperm and egg. To explore potential physical and genetic interactions in sperm–egg proteins, we sequenced four candidate genes from diverse primate species, and used regression and likelihood methods to test for signatures of coevolution between sperm–egg gene pairs. With both methods, we found that the egg protein CD9 coevolves with the sperm protein IZUMO1, suggesting a physical or genetic interaction occurs between them. With regression analysis, we found that CD9 and CRISP2 have correlated rates of evolution, and with likelihood analysis, that CD9 and CRISP1 have correlated rates. This suggests that the different tests may reflect different levels of interaction, be it physical or genetic. Coevolution tests thus provide an exploratory method for detecting potentially interacting sperm–egg protein pairs. PMID:24644026

  15. Detecting coevolution in mammalian sperm-egg fusion proteins.

    PubMed

    Claw, Katrina G; George, Renee D; Swanson, Willie J

    2014-06-01

    Interactions between sperm and egg proteins can occur physically between gamete surface-binding proteins, and genetically between gamete proteins that work in complementary pathways in which they may not physically interact. Physically interacting sperm-egg proteins have been functionally identified in only a few species, and none have been verified within mammals. Candidate genes on both the sperm and egg surfaces exist, but gene deletion studies do not support functional interactions between these sperm-egg proteins; interacting sperm-egg proteins thus remain elusive. Cooperative gamete proteins undergo rapid evolution, and it is predicted that these sperm-egg proteins will also have correlated evolutionary rates due to compensatory changes on both the sperm and egg. To explore potential physical and genetic interactions in sperm-egg proteins, we sequenced four candidate genes from diverse primate species, and used regression and likelihood methods to test for signatures of coevolution between sperm-egg gene pairs. With both methods, we found that the egg protein CD9 coevolves with the sperm protein IZUMO1, suggesting a physical or genetic interaction occurs between them. With regression analysis, we found that CD9 and CRISP2 have correlated rates of evolution, and with likelihood analysis, that CD9 and CRISP1 have correlated rates. This suggests that the different tests may reflect different levels of interaction, be it physical or genetic. Coevolution tests thus provide an exploratory method for detecting potentially interacting sperm-egg protein pairs. © 2014 Wiley Periodicals, Inc.

  16. Genetic parameters for milk, fat and protein yields in Murrah buffaloes (Bubalus bubalis Artiodactyla, Bovidae)

    PubMed Central

    2010-01-01

    The objective of the present study was to estimate genetic parameters for test-day milk, fat and protein yields and 305-day-yields in Murrah buffaloes. 4,757 complete lactations of Murrah buffaloes were analyzed. Co-variance components were estimated by the restricted maximum likelihood method. The models included additive direct genetic and permanent environmental effects as random effects, and the fixed effects of contemporary group, milking number and age of the cow at calving as linear and quadratic covariables. Contemporary groups were defined by herd-year-month of test for test-day yields and by herd-year-season of calving for 305-day yields. The heritability estimates obtained by two-trait analysis ranged from 0.15 to 0.24 for milk, 0.16 to 0.23 for protein and 0.13 to 0.22 for fat, yields. Genetic and phenotypic correlations were all positive. The observed population additive genetic variation indicated that selection might be an effective tool in changing population means in milk, fat and protein yields. PMID:21637608

  17. Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies.

    PubMed

    Davidoff, Candice; Neitz, Maureen; Neitz, Jay

    2016-09-01

    The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red-green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects.

  18. Data mining and computationally intensive methods: summary of Group 7 contributions to Genetic Analysis Workshop 13.

    PubMed

    Costello, Tracy J; Falk, Catherine T; Ye, Kenny Q

    2003-01-01

    The Framingham Heart Study data, as well as a related simulated data set, were generously provided to the participants of the Genetic Analysis Workshop 13 in order that newly developed and emerging statistical methodologies could be tested on that well-characterized data set. The impetus driving the development of novel methods is to elucidate the contributions of genes, environment, and interactions between and among them, as well as to allow comparison between and validation of methods. The seven papers that comprise this group used data-mining methodologies (tree-based methods, neural networks, discriminant analysis, and Bayesian variable selection) in an attempt to identify the underlying genetics of cardiovascular disease and related traits in the presence of environmental and genetic covariates. Data-mining strategies are gaining popularity because they are extremely flexible and may have greater efficiency and potential in identifying the factors involved in complex disorders. While the methods grouped together here constitute a diverse collection, some papers asked similar questions with very different methods, while others used the same underlying methodology to ask very different questions. This paper briefly describes the data-mining methodologies applied to the Genetic Analysis Workshop 13 data sets and the results of those investigations. Copyright 2003 Wiley-Liss, Inc.

  19. The differing perspectives of workers and occupational medicine physicians on the ethical, legal and social issues of genetic testing in the workplace.

    PubMed

    Brandt-Rauf, Sherry I; Brandt-Rauf, Elka; Gershon, Robyn; Brandt-Rauf, Paul W

    2011-01-01

    Genetic testing in the workplace holds the promise of improving worker health but also raises ethical, legal, and social issues. In considering such testing, it is critical to understand the perspectives of workers, who are most directly affected by it, and occupational health professionals, who are often directly involved in its implementation. Therefore, a series of focus groups of unionized workers (n=25) and occupational medicine physicians (n=23) was conducted. The results demonstrated strikingly different perspectives of workers and physicians in several key areas, including the goals and appropriateness of genetic testing, and methods to minimize its risks. In general, workers were guided by a profound mistrust of the employer, physician, and government, while physicians were guided primarily by scientific and medical concerns, and, in many cases, by the business concerns distrusted by the workers.

  20. [Application of droplet digital PCR technology for genetic testing and prenatal diagnosis of spinal muscular atrophy].

    PubMed

    Zou, Yang; Xu, Peiwen; Li, Jie; Huang, Sexin; Gao, Ming; Kang, Ranran; Gao, Xuan; Gao, Yuan

    2016-10-01

    To explore the clinical application of droplet digital PCR (ddPCR) for genetic testing and prenatal diagnosis of spinal muscular atrophy (SMA) with deletion of SMN1 gene exon 7. A total of 138 clinical samples, including 121 peripheral blood, 13 amniotic fluid, 2 umbilical cord blood and 2 chorionic villi from 56 SMA families, were tested by both ddPCR and multiplex ligation-dependent probe amplification (MLPA). Results of the two approaches were analyzed with commercial software QuantaSoft (ddPCR) and Coffalyser (MLPA), respectively. Among the 138 cases, 25 had two copies, 84 had one copy, and 29 had null copy of exon 7 of the SMN1 gene. The results of ddPCR and MLPA were completely consistent. As a rapid, precise and economically efficient method, ddPCR will provide a new choice for genetic testing of SMA.

  1. Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds

    PubMed Central

    Amos, J. Nevil; Bennett, Andrew F.; Mac Nally, Ralph; Newell, Graeme; Pavlova, Alexandra; Radford, James Q.; Thomson, James R.; White, Matt; Sunnucks, Paul

    2012-01-01

    Inference concerning the impact of habitat fragmentation on dispersal and gene flow is a key theme in landscape genetics. Recently, the ability of established approaches to identify reliably the differential effects of landscape structure (e.g. land-cover composition, remnant vegetation configuration and extent) on the mobility of organisms has been questioned. More explicit methods of predicting and testing for such effects must move beyond post hoc explanations for single landscapes and species. Here, we document a process for making a priori predictions, using existing spatial and ecological data and expert opinion, of the effects of landscape structure on genetic structure of multiple species across replicated landscape blocks. We compare the results of two common methods for estimating the influence of landscape structure on effective distance: least-cost path analysis and isolation-by-resistance. We present a series of alternative models of genetic connectivity in the study area, represented by different landscape resistance surfaces for calculating effective distance, and identify appropriate null models. The process is applied to ten species of sympatric woodland-dependant birds. For each species, we rank a priori the expectation of fit of genetic response to the models according to the expected response of birds to loss of structural connectivity and landscape-scale tree-cover. These rankings (our hypotheses) are presented for testing with empirical genetic data in a subsequent contribution. We propose that this replicated landscape, multi-species approach offers a robust method for identifying the likely effects of landscape fragmentation on dispersal. PMID:22363508

  2. Assessing the Ability of Chloroplast and Nuclear DNA Gene Markers to Verify the Geographic Origin of Jatoba (Hymenaea courbaril L.) Timber.

    PubMed

    Chaves, Camila L; Degen, Bernd; Pakull, Birte; Mader, Malte; Honorio, Euridice; Ruas, Paulo; Tysklind, Niklas; Sebbenn, Alexandre M

    2018-06-27

    Deforestation-reinforced by illegal logging-is a serious problem in many tropical regions and causes pervasive environmental and economic damage. Existing laws that intend to reduce illegal logging need efficient, fraud resistant control methods. We developed a genetic reference database for Jatoba (Hymenaea courbaril), an important, high value timber species from the Neotropics. The data set can be used for controls on declarations of wood origin. Samples from 308 Hymenaea trees from 12 locations in Brazil, Bolivia, Peru, and French Guiana have been collected and genotyped on 10 nuclear microsatellites (nSSRs), 13 chloroplast SNPs (cpSNP), and 1 chloroplast indel marker. The chloroplast gene markers have been developed using Illumina DNA sequencing. Bayesian cluster analysis divided the individuals based on the nSSRs into 8 genetic groups. Using self-assignment tests, the power of the genetic reference database to judge on declarations on the location has been tested for 3 different assignment methods. We observed a strong genetic differentiation among locations leading to high and reliable self-assignment rates for the locations between 50% to 100% (average of 88%). Although all 3 assignment methods came up with similar mean self-assignment rates, there were differences for some locations linked to the level of genetic diversity, differentiation, and heterozygosity. Our results show that the nuclear and chloroplast gene markers are effective to be used for a genetic certification system and can provide national and international authorities with a robust tool to confirm legality of timber.

  3. Development and Evaluation of Event-Specific Quantitative PCR Method for Genetically Modified Soybean MON87701.

    PubMed

    Tsukahara, Keita; Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Nishimaki-Mogami, Tomoko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event, MON87701. First, a standard plasmid for MON87701 quantification was constructed. The conversion factor (C f ) required to calculate the amount of genetically modified organism (GMO) was experimentally determined for a real-time PCR instrument. The determined C f for the real-time PCR instrument was 1.24. For the evaluation of the developed method, a blind test was carried out in an inter-laboratory trial. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr), respectively. The determined biases and the RSDr values were less than 30 and 13%, respectively, at all evaluated concentrations. The limit of quantitation of the method was 0.5%, and the developed method would thus be applicable for practical analyses for the detection and quantification of MON87701.

  4. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  5. Tag SNP selection via a genetic algorithm.

    PubMed

    Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh

    2010-10-01

    Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.

  6. Interpreting findings from Mendelian randomization using the MR-Egger method.

    PubMed

    Burgess, Stephen; Thompson, Simon G

    2017-05-01

    Mendelian randomization-Egger (MR-Egger) is an analysis method for Mendelian randomization using summarized genetic data. MR-Egger consists of three parts: (1) a test for directional pleiotropy, (2) a test for a causal effect, and (3) an estimate of the causal effect. While conventional analysis methods for Mendelian randomization assume that all genetic variants satisfy the instrumental variable assumptions, the MR-Egger method is able to assess whether genetic variants have pleiotropic effects on the outcome that differ on average from zero (directional pleiotropy), as well as to provide a consistent estimate of the causal effect, under a weaker assumption-the InSIDE (INstrument Strength Independent of Direct Effect) assumption. In this paper, we provide a critical assessment of the MR-Egger method with regard to its implementation and interpretation. While the MR-Egger method is a worthwhile sensitivity analysis for detecting violations of the instrumental variable assumptions, there are several reasons why causal estimates from the MR-Egger method may be biased and have inflated Type 1 error rates in practice, including violations of the InSIDE assumption and the influence of outlying variants. The issues raised in this paper have potentially serious consequences for causal inferences from the MR-Egger approach. We give examples of scenarios in which the estimates from conventional Mendelian randomization methods and MR-Egger differ, and discuss how to interpret findings in such cases.

  7. Genetic Architecture of the Delis-Kaplan Executive Function System Trail Making Test: Evidence for Distinct Genetic Influences on Executive Function

    PubMed Central

    Vasilopoulos, Terrie; Franz, Carol E.; Panizzon, Matthew S.; Xian, Hong; Grant, Michael D.; Lyons, Michael J; Toomey, Rosemary; Jacobson, Kristen C.; Kremen, William S.

    2012-01-01

    Objective To examine how genes and environments contribute to relationships among Trail Making test conditions and the extent to which these conditions have unique genetic and environmental influences. Method Participants included 1237 middle-aged male twins from the Vietnam-Era Twin Study of Aging (VESTA). The Delis-Kaplan Executive Function System Trail Making test included visual searching, number and letter sequencing, and set-shifting components. Results Phenotypic correlations among Trails conditions ranged from 0.29 – 0.60, and genes accounted for the majority (58–84%) of each correlation. Overall heritability ranged from 0.34 to 0.62 across conditions. Phenotypic factor analysis suggested a single factor. In contrast, genetic models revealed a single common genetic factor but also unique genetic influences separate from the common factor. Genetic variance (i.e., heritability) of number and letter sequencing was completely explained by the common genetic factor while unique genetic influences separate from the common factor accounted for 57% and 21% of the heritabilities of visual search and set-shifting, respectively. After accounting for general cognitive ability, unique genetic influences accounted for 64% and 31% of those heritabilities. Conclusions A common genetic factor, most likely representing a combination of speed and sequencing accounted for most of the correlation among Trails 1–4. Distinct genetic factors, however, accounted for a portion of variance in visual scanning and set-shifting. Thus, although traditional phenotypic shared variance analysis techniques suggest only one general factor underlying different neuropsychological functions in non-patient populations, examining the genetic underpinnings of cognitive processes with twin analysis can uncover more complex etiological processes. PMID:22201299

  8. Combination of DNA-based and conventional methods to detect human leukocyte antigen polymorphism and its use for paternity testing.

    PubMed

    Kereszturya, László; Rajczya, Katalin; Lászikb, András; Gyódia, Eva; Pénzes, Mária; Falus, András; Petrányia, Gyõzõ G

    2002-03-01

    In cases of disputed paternity, the scientific goal is to promote either the exclusion of a falsely accused man or the affiliation of the alleged father. Until now, in addition to anthropologic characteristics, the determination of genetic markers included human leukocyte antigen gene variants; erythrocyte antigens and serum proteins were used for that reason. Recombinant DNA techniques provided a new set of highly variable genetic markers based on DNA nucleotide sequence polymorphism. From the practical standpoint, the application of these techniques to paternity testing provides greater versatility than do conventional genetic marker systems. The use of methods to detect the polymorphism of human leukocyte antigen loci significantly increases the chance of validation of ambiguous results in paternity testing. The outcome of 2384 paternity cases investigated by serologic and/or DNA-based human leukocyte antigen typing was statistically analyzed. Different cases solved by DNA typing are presented involving cases with one or two accused men, exclusions and nonexclusions, and tests of the paternity of a deceased man. The results provide evidence for the advantage of the combined application of various techniques in forensic diagnostics and emphasizes the outstanding possibilities of DNA-based assays. Representative examples demonstrate the strength of combined techniques in paternity testing.

  9. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    USGS Publications Warehouse

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  10. American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation

    PubMed Central

    Shaffer, Lisa G.

    2005-01-01

    The following are the recommendations of the American College of Medical Genetics (ACMG) Professional Practice and Guidelines Committee, which was convened to assist health care professionals in making decisions regarding cytogenetic diagnostic testing and counseling for mental retardation (MR) and developmental delay (DD). This document reviews available evidence concerning the value of conventional and molecular cytogenetic testing for the identification of chromosomal anomalies that play a role in the etiology of MR/DD, and, based on this evidence, specific recommendations for each method of testing are provided. PMID:16301868

  11. The effect of rare variants on inflation of the test statistics in case-control analyses.

    PubMed

    Pirie, Ailith; Wood, Angela; Lush, Michael; Tyrer, Jonathan; Pharoah, Paul D P

    2015-02-20

    The detection of bias due to cryptic population structure is an important step in the evaluation of findings of genetic association studies. The standard method of measuring this bias in a genetic association study is to compare the observed median association test statistic to the expected median test statistic. This ratio is inflated in the presence of cryptic population structure. However, inflation may also be caused by the properties of the association test itself particularly in the analysis of rare variants. We compared the properties of the three most commonly used association tests: the likelihood ratio test, the Wald test and the score test when testing rare variants for association using simulated data. We found evidence of inflation in the median test statistics of the likelihood ratio and score tests for tests of variants with less than 20 heterozygotes across the sample, regardless of the total sample size. The test statistics for the Wald test were under-inflated at the median for variants below the same minor allele frequency. In a genetic association study, if a substantial proportion of the genetic variants tested have rare minor allele frequencies, the properties of the association test may mask the presence or absence of bias due to population structure. The use of either the likelihood ratio test or the score test is likely to lead to inflation in the median test statistic in the absence of population structure. In contrast, the use of the Wald test is likely to result in under-inflation of the median test statistic which may mask the presence of population structure.

  12. Positive perception of pharmacogenetic testing for psychotropic medications

    PubMed Central

    Lanktree, Matthew B; Zai, Gwyneth; VanderBeek, Laura E; Giuffra, Daniel E; Smithson, David S; Kipp, Lucas B; Dalseg, Timothy R; Speechley, Mark; Kennedy, James L

    2014-01-01

    Introduction Pharmacogenetics attempts to identify inter-individual genetic differences that are predictive of variable drug response and propensity to side effects, with the prospect of assisting physicians to select the most appropriate drug and dosage for treatment. However, many concerns regarding genetic tests exist. We sought to test the opinions of undergraduate science and medical students in southern Ontario universities toward pharmacogenetic testing. Methods and Results Questionnaires were completed by 910 undergraduate medicine and science students from 2005 to 2007. Despite students' concerns that the results of genetic tests may be used for other purposes without consent (71%) or lead to discrimination (78%), an overwhelming number of students were in favor of pharmacogenetic testing (90%). Discussion To our knowledge, this study is the first to survey a large sample for their attitude toward pharmacogenetic testing for psychotropic medications. Our results indicate that, although concerns remain and scientific advancements are required, respondents were in support of pharmacogenetic testing for medications used to treat schizophrenia. © 2014 The Authors. Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons, Ltd. PMID:24604560

  13. Methods for meta-analysis of multiple traits using GWAS summary statistics.

    PubMed

    Ray, Debashree; Boehnke, Michael

    2018-03-01

    Genome-wide association studies (GWAS) for complex diseases have focused primarily on single-trait analyses for disease status and disease-related quantitative traits. For example, GWAS on risk factors for coronary artery disease analyze genetic associations of plasma lipids such as total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides (TGs) separately. However, traits are often correlated and a joint analysis may yield increased statistical power for association over multiple univariate analyses. Recently several multivariate methods have been proposed that require individual-level data. Here, we develop metaUSAT (where USAT is unified score-based association test), a novel unified association test of a single genetic variant with multiple traits that uses only summary statistics from existing GWAS. Although the existing methods either perform well when most correlated traits are affected by the genetic variant in the same direction or are powerful when only a few of the correlated traits are associated, metaUSAT is designed to be robust to the association structure of correlated traits. metaUSAT does not require individual-level data and can test genetic associations of categorical and/or continuous traits. One can also use metaUSAT to analyze a single trait over multiple studies, appropriately accounting for overlapping samples, if any. metaUSAT provides an approximate asymptotic P-value for association and is computationally efficient for implementation at a genome-wide level. Simulation experiments show that metaUSAT maintains proper type-I error at low error levels. It has similar and sometimes greater power to detect association across a wide array of scenarios compared to existing methods, which are usually powerful for some specific association scenarios only. When applied to plasma lipids summary data from the METSIM and the T2D-GENES studies, metaUSAT detected genome-wide significant loci beyond the ones identified by univariate analyses. Evidence from larger studies suggest that the variants additionally detected by our test are, indeed, associated with lipid levels in humans. In summary, metaUSAT can provide novel insights into the genetic architecture of a common disease or traits. © 2017 WILEY PERIODICALS, INC.

  14. Test Scheduling for Core-Based SOCs Using Genetic Algorithm Based Heuristic Approach

    NASA Astrophysics Data System (ADS)

    Giri, Chandan; Sarkar, Soumojit; Chattopadhyay, Santanu

    This paper presents a Genetic algorithm (GA) based solution to co-optimize test scheduling and wrapper design for core based SOCs. Core testing solutions are generated as a set of wrapper configurations, represented as rectangles with width equal to the number of TAM (Test Access Mechanism) channels and height equal to the corresponding testing time. A locally optimal best-fit heuristic based bin packing algorithm has been used to determine placement of rectangles minimizing the overall test times, whereas, GA has been utilized to generate the sequence of rectangles to be considered for placement. Experimental result on ITC'02 benchmark SOCs shows that the proposed method provides better solutions compared to the recent works reported in the literature.

  15. Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models

    PubMed Central

    Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong

    2015-01-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  16. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  17. [Willingness of Students of Economics to Pay for Predictive Oncological Genetic Testing - An Empirical Analysis].

    PubMed

    Siol, V; Lange, A; Prenzler, A; Neubauer, S; Frank, M

    2017-05-01

    Objectives: The present study aims to investigate the interest of young adults in predictive oncological genetic testing and their willingness to pay for such a test. Furthermore, major determinants of the 2 variables of interest were identified. Methods: 348 students of economics from the Leibniz University of Hanover were queried in July 2013 using an extensive questionnaire. Among other things, the participants were asked if they are interested in information about the probability to develop cancer in the future and their willingness to pay for such information. Data were analysed using descriptive statistics and ordinal probit regressions. Additionally marginal effects were calculated. Results: About 50% of the students were interested in predictive oncological genetic testing and were willing to pay for the test. Moreover, the participants who were willing to pay for the test partly attach high monetary values to the information that could so be obtained. The study shows that the interest of the students and their willingness to pay were primarily influenced by individual attitudes and perceptions. Conclusions: The study proves that young adults were interested in predictive genetic testing and appreciate information about their probability of develop cancer someday. © Georg Thieme Verlag KG Stuttgart · New York.

  18. A Kernel Machine Method for Detecting Effects of Interaction Between Multidimensional Variable Sets: An Imaging Genetics Application

    PubMed Central

    Ge, Tian; Nichols, Thomas E.; Ghosh, Debashis; Mormino, Elizabeth C.

    2015-01-01

    Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. PMID:25600633

  19. What Is Genetic Ancestry Testing?

    MedlinePlus

    ... Testing What is genetic ancestry testing? What is genetic ancestry testing? Genetic ancestry testing, or genetic genealogy, ... mixed with other groups. For more information about genetic ancestry testing: The University of Utah provides video ...

  20. Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association

    PubMed Central

    Grinde, Kelsey E.; Arbet, Jaron; Green, Alden; O'Connell, Michael; Valcarcel, Alessandra; Westra, Jason; Tintle, Nathan

    2017-01-01

    To date, gene-based rare variant testing approaches have focused on aggregating information across sets of variants to maximize statistical power in identifying genes showing significant association with diseases. Beyond identifying genes that are associated with diseases, the identification of causal variant(s) in those genes and estimation of their effect is crucial for planning replication studies and characterizing the genetic architecture of the locus. However, we illustrate that straightforward single-marker association statistics can suffer from substantial bias introduced by conditioning on gene-based test significance, due to the phenomenon often referred to as “winner's curse.” We illustrate the ramifications of this bias on variant effect size estimation and variant prioritization/ranking approaches, outline parameters of genetic architecture that affect this bias, and propose a bootstrap resampling method to correct for this bias. We find that our correction method significantly reduces the bias due to winner's curse (average two-fold decrease in bias, p < 2.2 × 10−6) and, consequently, substantially improves mean squared error and variant prioritization/ranking. The method is particularly helpful in adjustment for winner's curse effects when the initial gene-based test has low power and for relatively more common, non-causal variants. Adjustment for winner's curse is recommended for all post-hoc estimation and ranking of variants after a gene-based test. Further work is necessary to continue seeking ways to reduce bias and improve inference in post-hoc analysis of gene-based tests under a wide variety of genetic architectures. PMID:28959274

  1. A unified genetic association test robust to latent population structure for a count phenotype.

    PubMed

    Song, Minsun

    2018-06-04

    Confounding caused by latent population structure in genome-wide association studies has been a big concern despite the success of genome-wide association studies at identifying genetic variants associated with complex diseases. In particular, because of the growing interest in association mapping using count phenotype data, it would be interesting to develop a testing framework for genetic associations that is immune to population structure when phenotype data consist of count measurements. Here, I propose a solution for testing associations between single nucleotide polymorphisms and a count phenotype in the presence of an arbitrary population structure. I consider a classical range of models for count phenotype data. Under these models, a unified test for genetic associations that protects against confounding was derived. An algorithm was developed to efficiently estimate the parameters that are required to fit the proposed model. I illustrate the proposed approach using simulation studies and an empirical study. Both simulated and real-data examples suggest that the proposed method successfully corrects population structure. Copyright © 2018 John Wiley & Sons, Ltd.

  2. A Network-Based Kernel Machine Test for the Identification of Risk Pathways in Genome-Wide Association Studies

    PubMed Central

    Freytag, Saskia; Manitz, Juliane; Schlather, Martin; Kneib, Thomas; Amos, Christopher I.; Risch, Angela; Chang-Claude, Jenny; Heinrich, Joachim; Bickeböller, Heike

    2014-01-01

    Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). Here, the kernel converts genomic information of two individuals to a quantitative value reflecting their genetic similarity. With the selection of the kernel one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms. PMID:24434848

  3. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders

    PubMed Central

    Pfundt, Rolph; del Rosario, Marisol; Vissers, Lisenka E.L.M.; Kwint, Michael P.; Janssen, Irene M.; de Leeuw, Nicole; Yntema, Helger G.; Nelen, Marcel R.; Lugtenberg, Dorien; Kamsteeg, Erik-Jan; Wieskamp, Nienke; Stegmann, Alexander P.A.; Stevens, Servi J.C.; Rodenburg, Richard J.T.; Simons, Annet; Mensenkamp, Arjen R.; Rinne, Tuula; Gilissen, Christian; Scheffer, Hans; Veltman, Joris A.; Hehir-Kwa, Jayne Y.

    2017-01-01

    Purpose: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10–20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. Methods: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. Results: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to –5.8% per disorder). Conclusions: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics. Genet Med advance online publication 27 October 2016 PMID:28574513

  4. Privacy-preserving genomic testing in the clinic: a model using HIV treatment

    PubMed Central

    McLaren, Paul J.; Raisaro, Jean Louis; Aouri, Manel; Rotger, Margalida; Ayday, Erman; Bartha, István; Delgado, Maria B.; Vallet, Yannick; Günthard, Huldrych F.; Cavassini, Matthias; Furrer, Hansjakob; Doco-Lecompte, Thanh; Marzolini, Catia; Schmid, Patrick; Di Benedetto, Caroline; Decosterd, Laurent A.; Fellay, Jacques; Hubaux, Jean-Pierre; Telenti, Amalio

    2016-01-01

    Purpose: The implementation of genomic-based medicine is hindered by unresolved questions regarding data privacy and delivery of interpreted results to health-care practitioners. We used DNA-based prediction of HIV-related outcomes as a model to explore critical issues in clinical genomics. Genet Med 18 8, 814–822. Methods: We genotyped 4,149 markers in HIV-positive individuals. Variants allowed for prediction of 17 traits relevant to HIV medical care, inference of patient ancestry, and imputation of human leukocyte antigen (HLA) types. Genetic data were processed under a privacy-preserving framework using homomorphic encryption, and clinical reports describing potentially actionable results were delivered to health-care providers. Genet Med 18 8, 814–822. Results: A total of 230 patients were included in the study. We demonstrated the feasibility of encrypting a large number of genetic markers, inferring patient ancestry, computing monogenic and polygenic trait risks, and reporting results under privacy-preserving conditions. The average execution time of a multimarker test on encrypted data was 865 ms on a standard computer. The proportion of tests returning potentially actionable genetic results ranged from 0 to 54%. Genet Med 18 8, 814–822. Conclusions: The model of implementation presented herein informs on strategies to deliver genomic test results for clinical care. Data encryption to ensure privacy helps to build patient trust, a key requirement on the road to genomic-based medicine. Genet Med 18 8, 814–822. PMID:26765343

  5. GEE-based SNP set association test for continuous and discrete traits in family-based association studies.

    PubMed

    Wang, Xuefeng; Lee, Seunggeun; Zhu, Xiaofeng; Redline, Susan; Lin, Xihong

    2013-12-01

    Family-based genetic association studies of related individuals provide opportunities to detect genetic variants that complement studies of unrelated individuals. Most statistical methods for family association studies for common variants are single marker based, which test one SNP a time. In this paper, we consider testing the effect of an SNP set, e.g., SNPs in a gene, in family studies, for both continuous and discrete traits. Specifically, we propose a generalized estimating equations (GEEs) based kernel association test, a variance component based testing method, to test for the association between a phenotype and multiple variants in an SNP set jointly using family samples. The proposed approach allows for both continuous and discrete traits, where the correlation among family members is taken into account through the use of an empirical covariance estimator. We derive the theoretical distribution of the proposed statistic under the null and develop analytical methods to calculate the P-values. We also propose an efficient resampling method for correcting for small sample size bias in family studies. The proposed method allows for easily incorporating covariates and SNP-SNP interactions. Simulation studies show that the proposed method properly controls for type I error rates under both random and ascertained sampling schemes in family studies. We demonstrate through simulation studies that our approach has superior performance for association mapping compared to the single marker based minimum P-value GEE test for an SNP-set effect over a range of scenarios. We illustrate the application of the proposed method using data from the Cleveland Family GWAS Study. © 2013 WILEY PERIODICALS, INC.

  6. A set of autosomal multiple InDel markers for forensic application and population genetic analysis in the Chinese Xinjiang Hui group.

    PubMed

    Xie, Tong; Guo, Yuxin; Chen, Ling; Fang, Yating; Tai, Yunchun; Zhou, Yongsong; Qiu, Pingming; Zhu, Bofeng

    2018-07-01

    In recent years, insertion/deletion (InDel) markers have become a promising and useful supporting tool in forensic identification cases and biogeographic research field. In this study, 30 InDel loci were explored to reveal the genetic diversities and genetic relationships between Chinese Xinjiang Hui group and the 25 previously reported populations using various biostatistics methods such as forensic statistical parameter analysis, phylogenetic reconstruction, multi-dimensional scaling, principal component analysis, and STRUCTURE analysis. No deviations from Hardy-Weinberg equilibrium tests were found at all 30 loci in the Chinese Xinjiang Hui group. The observed heterozygosity and expected heterozygosity ranged from 0.1971 (HLD118) to 0.5092 (HLD92), 0.2222 (HLD118) to 0.5000 (HLD6), respectively. The cumulative probability of exclusion and combined power of discrimination were 0.988849 and 0.99999999999378, respectively, which indicated that these 30 loci could be qualified for personal identification and used as complementary genetic markers for paternity tests in forensic cases. The results of present research based on the different methods of population genetic analysis revealed that the Chinese Xinjiang Hui group had close relationships with most Chinese groups, especially Han populations. In spite of this, for a better understanding of genetic background of the Chinese Xinjiang Hui group, more molecular genetic markers such as ancestry informative markers, single nucleotide polymorphisms (SNPs), and copy number variations will be conducted in future studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Decisional Outcomes of Maternal Disclosure of BRCA1/2 Genetic Test Results to Children

    PubMed Central

    Tercyak, Kenneth P.; Mays, Darren; DeMarco, Tiffani A.; Peshkin, Beth N.; Valdimarsdottir, Heiddis B.; Schneider, Katherine A.; Garber, Judy E.; Patenaude, Andrea Farkas

    2013-01-01

    Background Although BRCA1/2 genetic testing is discouraged in minors, mothers may disclose their own results to their children. Factors affecting patients’ disclosure decisions and patient outcomes of disclosure are largely unknown. Methods Mothers (N = 221) of children ages 8-21 enrolled in this prospective study of family communication about cancer genetic testing. Patients underwent BRCA1/2 genetic counseling and testing, and completed standardized behavioral assessments prior to and 1-month following receipt of their results. Results Most patients (62.4%) disclosed BRCA1/2 test results to their child. Patients were more likely to disclose if they received negative or uninformative vs. positive results (OR = 3.11; 95% CI = 1.11 - 8.71; P = .03), their child was ≥ 13 years of age vs. younger (OR = 5.43; 95% CI = 2.18 - 13.53; P < .001), and as the ratio of patients’ perceived benefits of disclosure outweighed potential risks (OR = 2.40; 95% CI = 1.63 - 3.54; P < .001). Post-decision satisfaction about disclosure was lowest among nondisclosing patients (P < .001) and those reporting greater decisional conflict (P < .001). Conclusions Patients commonly discuss their BRCA1/2 results with their teenage and young adult children, especially if the information is perceived as beneficial. Satisfaction with disclosure decision-making remains lowest among nondisclosing and conflicted patients. Family communication decision support adjuncts to genetic counseling are needed to help ameliorate these effects. Impact This study describes the prevalence of family communication about maternal BRCA1/2 genetic testing with minor children, and decisions and outcomes of disclosure. PMID:23825307

  8. The nature of creativity: The roles of genetic factors, personality traits, cognitive abilities, and environmental sources.

    PubMed

    Kandler, Christian; Riemann, Rainer; Angleitner, Alois; Spinath, Frank M; Borkenau, Peter; Penke, Lars

    2016-08-01

    This multitrait multimethod twin study examined the structure and sources of individual differences in creativity. According to different theoretical and metrological perspectives, as well as suggestions based on previous research, we expected 2 aspects of individual differences, which can be described as perceived creativity and creative test performance. We hypothesized that perceived creativity, reflecting typical creative thinking and behavior, should be linked to specific personality traits, whereas test creativity, reflecting maximum task-related creative performance, should show specific associations with cognitive abilities. Moreover, we tested whether genetic variance in intelligence and personality traits account for the genetic component of creativity. Multiple-rater and multimethod data (self- and peer reports, observer ratings, and test scores) from 2 German twin studies-the Bielefeld Longitudinal Study of Adult Twins and the German Observational Study of Adult Twins-were analyzed. Confirmatory factor analyses yielded the expected 2 correlated aspects of creativity. Perceived creativity showed links to openness to experience and extraversion, whereas tested figural creativity was associated with intelligence and also with openness. Multivariate behavioral genetic analyses indicated that the heritability of tested figural creativity could be accounted for by the genetic component of intelligence and openness, whereas a substantial genetic component in perceived creativity could not be explained. A primary source of individual differences in creativity was due to environmental influences, even after controlling for random error and method variance. The findings are discussed in terms of the multifaceted nature and construct validity of creativity as an individual characteristic. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Testing Multilateral Comparisons in Africa.

    ERIC Educational Resources Information Center

    Bender, M. Lionel

    In this paper, the multilateral comparison method of classifying languages is described and analyzed. It is suggested that while it is espoused as a simple and reasonable approach to language classification, the method has serious flaws. "Multilateral" or "mass" comparison (MC) is not a method of genetic language…

  10. A high-throughput method for GMO multi-detection using a microfluidic dynamic array.

    PubMed

    Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J

    2014-02-01

    The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.

  11. A method for the dynamic management of genetic variability in dairy cattle

    PubMed Central

    Colleau, Jean-Jacques; Moureaux, Sophie; Briend, Michèle; Bechu, Jérôme

    2004-01-01

    According to the general approach developed in this paper, dynamic management of genetic variability in selected populations of dairy cattle is carried out for three simultaneous purposes: procreation of young bulls to be further progeny-tested, use of service bulls already selected and approval of recently progeny-tested bulls for use. At each step, the objective is to minimize the average pairwise relationship coefficient in the future population born from programmed matings and the existing population. As a common constraint, the average estimated breeding value of the new population, for a selection goal including many important traits, is set to a desired value. For the procreation of young bulls, breeding costs are additionally constrained. Optimization is fully analytical and directly considers matings. Corresponding algorithms are presented in detail. The efficiency of these procedures was tested on the current Norman population. Comparisons between optimized and real matings, clearly showed that optimization would have saved substantial genetic variability without reducing short-term genetic gains. PMID:15231230

  12. How Well Do Customers of Direct-to-Consumer Personal Genomic Testing Services Comprehend Genetic Test Results? Findings from the Impact of Personal Genomics Study

    PubMed Central

    Ostergren, Jenny E.; Gornick, Michele C.; Carere, Deanna Alexis; Kalia, Sarah S.; Uhlmann, Wendy R.; Ruffin, Mack T.; Mountain, Joanna L.; Green, Robert C.; Roberts, J. Scott

    2016-01-01

    Aim To assess customer comprehension of health-related personal genomic testing (PGT) results. Methods We presented sample reports of genetic results and examined responses to comprehension questions in 1,030 PGT customers (mean age: 46.7 years; 59.9% female; 79.0% college graduates; 14.9% non-White; 4.7% of Hispanic/Latino ethnicity). Sample reports presented a genetic risk for Alzheimer’s disease and type 2 diabetes, carrier screening summary results for >30 conditions, results for phenylketonuria and cystic fibrosis, and drug response results for a statin drug. Logistic regression was used to identify correlates of participant comprehension. Results Participants exhibited high overall comprehension (mean score: 79.1% correct). The highest comprehension (range: 81.1–97.4% correct) was observed in the statin drug response and carrier screening summary results, and lower comprehension (range: 63.6–74.8% correct) on specific carrier screening results. Higher levels of numeracy, genetic knowledge, and education were significantly associated with greater comprehension. Older age (≥ 60 years) was associated with lower comprehension scores. Conclusions Most customers accurately interpreted the health implications of PGT results; however, comprehension varied by demographic characteristics, numeracy and genetic knowledge, and types and format of the genetic information presented. Results suggest a need to tailor the presentation of PGT results by test type and customer characteristics. PMID:26087778

  13. Engagement with genetic discrimination: concerns and experiences in the context of Huntington disease

    PubMed Central

    Bombard, Yvonne; Penziner, Elizabeth; Suchowersky, Oksana; Guttman, Mark; Paulsen, Jane S; Bottorff, Joan L; Hayden, Michael R

    2013-01-01

    It has been over 20 years since the inception of predictive testing for Huntington disease (HD), yet the social implications of knowing one's genetic risk for HD have not been fully explored. Genetic discrimination (GD) is a potential risk associated with predictive testing. Although anecdotal reports of GD have been documented, there is a paucity of research on the nature and experiences of GD in the context of HD. The purpose of this study was to describe the concerns and experiences of GD in the HD community. Semistructured interviews were conducted with 45 genetically tested and 10 untested individuals and analyzed using grounded theory methods. Our findings demonstrate that a majority of individuals were concerned about (37/55) and experienced GD (32/55) across a variety of contexts that extend beyond the traditionally examined contexts of insurance and employment to include family, social, government, and health-care domains. We describe a process of engagement with GD in which individuals formed meaningful interpretations of GD and personalized its risk and consequences in their lives. Our findings provide an insight into some of the specific processes and factors influencing engagement with GD. These results help identify areas where more education and support is needed and provide direction to genetic professionals supporting their clients as they confront issues of GD and genetic testing. PMID:17957229

  14. National Estimates of Genetic Testing in Women With a History of Breast or Ovarian Cancer.

    PubMed

    Childers, Christopher P; Childers, Kimberly K; Maggard-Gibbons, Melinda; Macinko, James

    2017-12-01

    Purpose In the United States, 3.8 million women have a history of breast (BC) or ovarian cancer (OC). Up to 15% of cases are attributable to heritable mutations, which, if identified, provide critical knowledge for treatment and preventive care. It is unknown how many patients who are at high risk for these mutations have not been tested and how rates vary by risk criteria. Methods We used pooled cross-sectional data from three Cancer Control Modules (2005, 2010, 2015) of the National Health Interview Survey, a national in-person household interview survey. Eligible patients were adult females with a history of BC and/or OC meeting select 2017 National Comprehensive Cancer Network eligibility criteria on the basis of age of diagnosis and family history. Outcomes included the proportion of individuals reporting a history of discussing genetic testing with a health professional, being advised to undergo genetic testing, or undergoing genetic testing for BC or OC. Results Of 47,218 women, 2.7% had a BC history and 0.4% had an OC history. For BC, 35.6% met one or more select eligibility criteria; of those, 29.0% discussed, 20.2% were advised to undergo, and 15.3% underwent genetic testing. Testing rates for individual eligibility criteria ranged from 6.2% (relative with OC) to 18.2% (diagnosis ≤ 45 years of age). For OC, 15.1% discussed, 13.1% were advised to undergo, and 10.5% underwent testing. Using only four BC eligibility criteria and all patients with OC, an estimated 1.2 to 1.3 million individuals failed to receive testing. Conclusion Fewer than one in five individuals with a history of BC or OC meeting select National Cancer Comprehensive Network criteria have undergone genetic testing. Most have never discussed testing with a health care provider. Large national efforts are warranted to address this unmet need.

  15. Improving diagnosis for congenital cataract by introducing NGS genetic testing.

    PubMed

    Musleh, Mohammud; Ashworth, Jane; Black, Graeme; Hall, Georgina

    2016-01-01

    Childhood cataract (CC) has an incidence of 3.5 per 10,000 by age 15 years. Diagnosis of any underlying cause is important to ensure effective and prompt management of multisystem complications, to facilitate accurate genetic counselling and to streamline multidisciplinary care. Next generation sequencing (NGS) has been shown to be effective in providing an underlying diagnosis in 70% of patients with CC in a research setting. This project aimed to integrate NGS testing in CC within six months of presentation and increase the rate of diagnosis. A retrospective case note review was undertaken to define the baseline efficacy of current care in providing a precise diagnosis. Quality improvement methods were used to integrate and optimize NGS testing in clinical care and measure the improvements made. The percentage of children receiving an NGS result within six months increased from 26% to 71% during the project period. The mean time to NGS testing and receiving a report decreased and there was a reduction in variation over the study period. Several patients and families had a change in management or genetic counselling as a direct result of the diagnosis given by the NGS test. The current recommended investigation of patients with bilateral CC is ineffective in identifying a diagnosis. Quality Improvement methods have facilitated successful integration of NGS testing into clinical care, improving time to diagnosis and leading to development of a new care pathway.

  16. Impact of Gene Patents and Licensing Practices on Access to Genetic Testing for Hearing Loss

    PubMed Central

    Chandrasekharan, Subhashini; Fiffer, Melissa

    2011-01-01

    Genetic testing for heritable hearing loss involves a mix of patented and unpatented genes, mutations and testing methods. More than half of all hearing loss is linked to inherited mutations, and five genes are most commonly tested in the United States. There are no patents on three of these genes, but Athena Diagnostics holds exclusive licenses to test for a common mutation in the GJB2 gene associated with about 50% of all cases, as well as mutations in the MTRNR1 gene. This fragmented intellectual property landscape made hearing loss a useful case study for assessing whether patent rights in genetic testing can proliferate or overlap, and whether it is possible to gather the rights necessary to perform testing. Testing for hearing loss is widely available, primarily from academic medical centers. Based on literature reviews and interviews with researchers, research on the genetics of hearing loss has generally not been impeded by patents. There is no consistent evidence of a premium in testing prices attributable to patent status. Athena Diagnostics has, however, used its intellectual property to discourage other providers from offering some tests. There is no definitive answer about the suitability of current patenting and licensing of commonly tested genes because of continuing legal uncertainty about the extent of enforcement of patent rights. Clinicians have also expressed concerns that multiplex tests will be difficult to develop because of overlapping intellectual property and conflict with Athena’s sole provider business model. PMID:20393307

  17. A 100-Year Review: Methods and impact of genetic selection in dairy cattle-From daughter-dam comparisons to deep learning algorithms.

    PubMed

    Weigel, K A; VanRaden, P M; Norman, H D; Grosu, H

    2017-12-01

    In the early 1900s, breed society herdbooks had been established and milk-recording programs were in their infancy. Farmers wanted to improve the productivity of their cattle, but the foundations of population genetics, quantitative genetics, and animal breeding had not been laid. Early animal breeders struggled to identify genetically superior families using performance records that were influenced by local environmental conditions and herd-specific management practices. Daughter-dam comparisons were used for more than 30 yr and, although genetic progress was minimal, the attention given to performance recording, genetic theory, and statistical methods paid off in future years. Contemporary (herdmate) comparison methods allowed more accurate accounting for environmental factors and genetic progress began to accelerate when these methods were coupled with artificial insemination and progeny testing. Advances in computing facilitated the implementation of mixed linear models that used pedigree and performance data optimally and enabled accurate selection decisions. Sequencing of the bovine genome led to a revolution in dairy cattle breeding, and the pace of scientific discovery and genetic progress accelerated rapidly. Pedigree-based models have given way to whole-genome prediction, and Bayesian regression models and machine learning algorithms have joined mixed linear models in the toolbox of modern animal breeders. Future developments will likely include elucidation of the mechanisms of genetic inheritance and epigenetic modification in key biological pathways, and genomic data will be used with data from on-farm sensors to facilitate precision management on modern dairy farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test.

    PubMed Central

    Sved, J A; Yu, H; Dominiak, B; Gilchrist, A S

    2003-01-01

    Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone. PMID:12618417

  19. Detection by real-time PCR and pyrosequencing of the cry1Ab and cry1Ac genes introduced in genetically modified (GM) constructs.

    PubMed

    Debode, Frederic; Janssen, Eric; Bragard, Claude; Berben, Gilbert

    2017-08-01

    The presence of genetically modified organisms (GMOs) in food and feed is mainly detected by the use of targets focusing on promoters and terminators. As some genes are frequently used in genetically modified (GM) construction, they also constitute excellent screening elements and their use is increasing. In this paper we propose a new target for the detection of cry1Ab and cry1Ac genes by real-time polymerase chain reaction (PCR) and pyrosequencing. The specificity, sensitivity and robustness of the real-time PCR method were tested following the recommendations of international guidelines and the method met the expected performance criteria. This paper also shows how the robustness testing was assessed. This new cry1Ab/Ac method can provide a positive signal with a larger number of GM events than do the other existing methods using double dye-probes. The method permits the analysis of results with less ambiguity than the SYBRGreen method recommended by the European Reference Laboratory (EURL) GM Food and Feed (GMFF). A pyrosequencing method was also developed to gain additional information thanks to the sequence of the amplicon. This method of sequencing-by-synthesis can determine the sequence between the primers used for PCR. Pyrosequencing showed that the sequences internal to the primers present differences following the GM events considered and three different sequences were observed. The sensitivity of the pyrosequencing was tested on reference flours with a low percentage GM content and different copy numbers. Improvements in the pyrosequencing protocol provided correct sequences with 50 copies of the target. Below this copy number, the quality of the sequence was more random.

  20. A robust and efficient statistical method for genetic association studies using case and control samples from multiple cohorts

    PubMed Central

    2013-01-01

    Background The theoretical basis of genome-wide association studies (GWAS) is statistical inference of linkage disequilibrium (LD) between any polymorphic marker and a putative disease locus. Most methods widely implemented for such analyses are vulnerable to several key demographic factors and deliver a poor statistical power for detecting genuine associations and also a high false positive rate. Here, we present a likelihood-based statistical approach that accounts properly for non-random nature of case–control samples in regard of genotypic distribution at the loci in populations under study and confers flexibility to test for genetic association in presence of different confounding factors such as population structure, non-randomness of samples etc. Results We implemented this novel method together with several popular methods in the literature of GWAS, to re-analyze recently published Parkinson’s disease (PD) case–control samples. The real data analysis and computer simulation show that the new method confers not only significantly improved statistical power for detecting the associations but also robustness to the difficulties stemmed from non-randomly sampling and genetic structures when compared to its rivals. In particular, the new method detected 44 significant SNPs within 25 chromosomal regions of size < 1 Mb but only 6 SNPs in two of these regions were previously detected by the trend test based methods. It discovered two SNPs located 1.18 Mb and 0.18 Mb from the PD candidates, FGF20 and PARK8, without invoking false positive risk. Conclusions We developed a novel likelihood-based method which provides adequate estimation of LD and other population model parameters by using case and control samples, the ease in integration of these samples from multiple genetically divergent populations and thus confers statistically robust and powerful analyses of GWAS. On basis of simulation studies and analysis of real datasets, we demonstrated significant improvement of the new method over the non-parametric trend test, which is the most popularly implemented in the literature of GWAS. PMID:23394771

  1. Impact of genetic counseling and Connexin-26 and Connexin-30 testing on deaf identity and comprehension of genetic test results in a sample of deaf adults: a prospective, longitudinal study.

    PubMed

    Palmer, Christina G S; Boudreault, Patrick; Baldwin, Erin E; Sinsheimer, Janet S

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results.

  2. Genetic variance of tolerance and the toxicant threshold model.

    PubMed

    Tanaka, Yoshinari; Mano, Hiroyuki; Tatsuta, Haruki

    2012-04-01

    A statistical genetics method is presented for estimating the genetic variance (heritability) of tolerance to pollutants on the basis of a standard acute toxicity test conducted on several isofemale lines of cladoceran species. To analyze the genetic variance of tolerance in the case when the response is measured as a few discrete states (quantal endpoints), the authors attempted to apply the threshold character model in quantitative genetics to the threshold model separately developed in ecotoxicology. The integrated threshold model (toxicant threshold model) assumes that the response of a particular individual occurs at a threshold toxicant concentration and that the individual tolerance characterized by the individual's threshold value is determined by genetic and environmental factors. As a case study, the heritability of tolerance to p-nonylphenol in the cladoceran species Daphnia galeata was estimated by using the maximum likelihood method and nested analysis of variance (ANOVA). Broad-sense heritability was estimated to be 0.199 ± 0.112 by the maximum likelihood method and 0.184 ± 0.089 by ANOVA; both results implied that the species examined had the potential to acquire tolerance to this substance by evolutionary change. Copyright © 2012 SETAC.

  3. Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions.

    PubMed

    Chatterjee, Nilanjan; Kalaylioglu, Zeynep; Moslehi, Roxana; Peters, Ulrike; Wacholder, Sholom

    2006-12-01

    In modern genetic epidemiology studies, the association between the disease and a genomic region, such as a candidate gene, is often investigated using multiple SNPs. We propose a multilocus test of genetic association that can account for genetic effects that might be modified by variants in other genes or by environmental factors. We consider use of the venerable and parsimonious Tukey's 1-degree-of-freedom model of interaction, which is natural when individual SNPs within a gene are associated with disease through a common biological mechanism; in contrast, many standard regression models are designed as if each SNP has unique functional significance. On the basis of Tukey's model, we propose a novel but computationally simple generalized test of association that can simultaneously capture both the main effects of the variants within a genomic region and their interactions with the variants in another region or with an environmental exposure. We compared performance of our method with that of two standard tests of association, one ignoring gene-gene/gene-environment interactions and the other based on a saturated model of interactions. We demonstrate major power advantages of our method both in analysis of data from a case-control study of the association between colorectal adenoma and DNA variants in the NAT2 genomic region, which are well known to be related to a common biological phenotype, and under different models of gene-gene interactions with use of simulated data.

  4. Assessment of genetic diversity in lettuce (Lactuca sativa L.) germplasm using RAPD markers.

    PubMed

    Sharma, Shubhangi; Kumar, Pankaj; Gambhir, Geetika; Kumar, Ramesh; Srivastava, D K

    2018-01-01

    The importance of germplasm characterization is an important link between the conservation and utilization of plant genetic resources in various breeding programmes. In the present study, genetic variability and relationships among 25 Lactuca sativa L. genotypes were tested using random amplified polymorphic DNA (RAPD) molecular markers. A total of 45 random decamer oligonucleotide primers were examined to generate RAPD profiles, out of these reproducible patterns were obtained with 22 primers. A total of 87 amplicon were obtained, out of which all were polymorphic and 7 were unique bands. The level of polymorphism across genotypes was 100% as revealed by RAPD. Genetic similarity matrix, based on Jaccard's coefficients ranged from 13.7 to 84.10% indicating a wide genetic base. Dendrogram was constructed by unweighted pair group method with arithmetic averages method. RAPD technology could be useful for identification of different accessions as well as assessing the genetic similarity among different genotypes of lettuce. The study reveals the limited genetic base and the needs to diversify using new sources from the germplasm.

  5. Knowledge of Genetics and Attitudes toward Genetic Testing among College Students in Saudi Arabia.

    PubMed

    Olwi, Duaa; Merdad, Leena; Ramadan, Eman

    2016-01-01

    Genetic testing has been gradually permeating the practice of medicine. Health-care providers may be confronted with new genetic approaches that require genetically informed decisions which will be influenced by patients' knowledge of genetics and their attitudes toward genetic testing. This study assesses the knowledge of genetics and attitudes toward genetic testing among college students. A cross-sectional study was conducted using a multistage stratified sample of 920 senior college students enrolled at King Abdulaziz University, Saudi Arabia. Information regarding knowledge of genetics, attitudes toward genetic testing, and sociodemographic data were collected using a self-administered questionnaire. In general, students had a good knowledge of genetics but lacked some fundamentals of genetics. The majority of students showed positive attitudes toward genetic testing, but some students showed negative attitudes toward certain aspects of genetic testing such as resorting to abortion in the case of an untreatable major genetic defect in an unborn fetus. The main significant predictors of knowledge were faculty, gender, academic year, and some prior awareness of 'genetic testing'. The main significant predictors of attitudes were gender, academic year, grade point average, and some prior awareness of 'genetic testing'. The knowledge of genetics among college students was higher than has been reported in other studies, and the attitudes toward genetic testing were fairly positive. Genetics educational programs that target youths may improve knowledge of genetics and create a public perception that further supports genetic testing. © 2016 S. Karger AG, Basel.

  6. [Detection and application of PIS genetic deficiency gene in dairy goat].

    PubMed

    Yang, Bo; Jia, Li-Li; Zhao, De-Chao; Meng, Li-Yun; Liu, Xue-Feng; Zhang, Yan-Jun; Zhang, Wen-Guang; Li, Jin-Quan

    2012-07-01

    The purpose of this study was to develop a molecular method for detecting polled intersex syndrome (PIS) genetic deficiency gene in dairy goat. Three pairs of primers, PIS-, PIS+, and NEI were designed based on PIS gene sequence (AF404302) to identify the PIS genetic deficiency genotype. For the normal phenotype, the fragments of 141 and 300 bp were obtained for the genotype PIS-PIS-, and 141, 449, and 300 bp for the genotype PIS-PIS+. For the PIS goat with the genotype PIS+PIS+, 449 and 300 bp were obtained. Two hundred and twenty-four dairy goats in one population were tested based on this method. The results showed that there were 150 PIS-PIS+, 70 PIS -PIS-, and 4 PIS+PIS+. The genotype frequency of PIS-PIS+ was 66.9%, and the gene frequency of PIS+ was 35.3% in the population. Therefore, the frequency of PIS offspring was over 12%. This study developed a method to detect PIS genetic deficiency dairy goat. The method could identify buck genotype accurately to avoid the occurrence of PIS genetic deficiency. The ease and accuracy show a strong potential of the method for use in marker assisted selection of dairy goats and healthy development of dairy goat industry.

  7. Personal Factors Associated with Reported Benefits of Huntington Disease Family History or Genetic Testing

    PubMed Central

    Williams, Janet K.; Erwin, Cheryl; Juhl, Andrew; Mills, James; Brossman, Bradley

    2010-01-01

    Aims: A family history of Huntington disease (HD) or receiving results of HD predictive genetic testing can influence individual well-being, family relationships, and social interactions in positive and negative ways. The aim of this study was to examine benefits reported by people with an HD family history or those who have undergone predictive HD testing, as well as the personal variables associated with perceived benefits. Methods: Seventy-four of 433 people completing the International Response of a Sample Population to HD risk (I-RESPOND-HD) survey reported benefits. Knowledge and understanding was perceived as the most common benefit from participants in both groups. The next most frequent perceived benefits from a family history were connecting with others and achieving life meaning and insights. The next most common perceived benefits from genetic testing were life planning and social support. The least common perceived benefit for both groups was renewed hope and optimism. Older age and spirituality were significantly associated with benefits in both groups. Conclusions: Perceptions of benefit may not be as likely until later years in people with prodromal HD. A developed sense of spirituality is identified as a personal resource associated with the perception of benefit from genetic testing for HD. Associations among spirituality, perceived benefits, and other indicators of personal and family well-being may be useful in genetic counseling and health care of people with prodromal HD. PMID:20722493

  8. Controversies in colorectal cancer screening.

    PubMed

    Pox, Christian P

    2014-01-01

    Colorectal cancer (CRC) is one of the most common cancers worldwide and a good candidate for screening programmes. However, there is controversy concerning which of the available screening tests should be used. There is general agreement that screening for CRC in the asymptomatic population should begin at the age of 50. Several different screening methods are available which can be separated into those that mainly detect cancers: faecal occult blood tests [guaiac (FOBT) and immunochemical (FIT)], genetic stool tests, blood tests and the M2-pyruvate kinase (M2-PK) test. Methods that detect cancers and polyps are colonoscopy, sigmoidoscopy, CT-colonography (CT-C) and colon capsule endoscopy. The only tests for which a reduction in CRC mortality compared to no screening have been proven in randomized trials are FOBT and sigmoidoscopy. Several trials suggest that FIT are superior to FOBT in terms of detection rates of cancers and advanced adenomas and possibly compliance. There is indirect evidence suggesting efficacy of colonoscopy as a screening test. The role of CT-C is controversial. There is data suggesting a good sensitivity for neoplasia >9 mm with a lower sensitivity for smaller neoplasia. However, radiation exposure is considered a major limitation in some countries. Unresolved questions include the lesion cut-off for referral to colonoscopy and work-up of extracolonic findings. For other methods, like genetic stool testing using newer markers, blood tests, capsule endoscopy and M2-PK, there is currently insufficient data on screening of the asymptomatic population. Key Messages: Colorectal screening is recommended and should be performed in the form of an organized programme. If detection of early-stage cancers is the aim of a screening programme, FIT seem to be superior to FOBT. If detection and removal of adenomas is the aim of a screening programme, endoscopic methods seem to be good alternatives. Sigmoidoscopy is easier to perform but will likely only have an effect on distal cancers. Colonoscopy is more invasive but enables inspection of the whole colon. The role of CT-C, capsule endoscopy, genetic stool tests, blood tests and M2-PK is currently unknown. © 2014 S. Karger AG, Basel.

  9. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics

    USGS Publications Warehouse

    Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.

    2011-01-01

    Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.

  10. A generalized Kruskal-Wallis test incorporating group uncertainty with application to genetic association studies.

    PubMed

    Acar, Elif F; Sun, Lei

    2013-06-01

    Motivated by genetic association studies of SNPs with genotype uncertainty, we propose a generalization of the Kruskal-Wallis test that incorporates group uncertainty when comparing k samples. The extended test statistic is based on probability-weighted rank-sums and follows an asymptotic chi-square distribution with k - 1 degrees of freedom under the null hypothesis. Simulation studies confirm the validity and robustness of the proposed test in finite samples. Application to a genome-wide association study of type 1 diabetic complications further demonstrates the utilities of this generalized Kruskal-Wallis test for studies with group uncertainty. The method has been implemented as an open-resource R program, GKW. © 2013, The International Biometric Society.

  11. A Population Genetic Signal of Polygenic Adaptation

    PubMed Central

    Berg, Jeremy J.; Coop, Graham

    2014-01-01

    Adaptation in response to selection on polygenic phenotypes may occur via subtle allele frequencies shifts at many loci. Current population genomic techniques are not well posed to identify such signals. In the past decade, detailed knowledge about the specific loci underlying polygenic traits has begun to emerge from genome-wide association studies (GWAS). Here we combine this knowledge from GWAS with robust population genetic modeling to identify traits that may have been influenced by local adaptation. We exploit the fact that GWAS provide an estimate of the additive effect size of many loci to estimate the mean additive genetic value for a given phenotype across many populations as simple weighted sums of allele frequencies. We use a general model of neutral genetic value drift for an arbitrary number of populations with an arbitrary relatedness structure. Based on this model, we develop methods for detecting unusually strong correlations between genetic values and specific environmental variables, as well as a generalization of comparisons to test for over-dispersion of genetic values among populations. Finally we lay out a framework to identify the individual populations or groups of populations that contribute to the signal of overdispersion. These tests have considerably greater power than their single locus equivalents due to the fact that they look for positive covariance between like effect alleles, and also significantly outperform methods that do not account for population structure. We apply our tests to the Human Genome Diversity Panel (HGDP) dataset using GWAS data for height, skin pigmentation, type 2 diabetes, body mass index, and two inflammatory bowel disease datasets. This analysis uncovers a number of putative signals of local adaptation, and we discuss the biological interpretation and caveats of these results. PMID:25102153

  12. Prenatal molecular diagnosis of oculocutaneous albinism (OCA) in a large cohort of Israeli families.

    PubMed

    Rosenmann, Ada; Bejarano-Achache, Idit; Eli, Dalia; Maftsir, Genia; Mizrahi-Meissonnier, Liliana; Blumenfeld, Anat

    2009-10-01

    To present our accumulated data on prenatal molecular diagnosis of oculocutaneous albinism (OCA) in a large cohort of Israeli albino families. Albinism consists of variable phenotypes, but only families with predicted severely handicapped albino offspring, who declared their wish to terminate a pregnancy of such a fetus, are eligible for prenatal testing. Prenatal testing is not offered otherwise. Following detailed genetic investigation and counseling, molecular prenatal testing was performed using the combination of mutation screening, direct sequencing, and haplotype analysis. A total of 55 prenatal tests were performed in 37 families; in 26 families the propositus was the child, and in 11, a parent or a close relative. In 32 families tyrosinase (TYR) mutations were diagnosed. In 5 families a P gene mutation was detected. Twelve albino fetuses were diagnosed. Following further genetic counseling, all couples elected to terminate the pregnancy. Three additional pregnancies were terminated for other reasons. Families with increased risk for an albino child with severe visual handicap, seek premarital and prenatal genetic counseling and testing, for the prevention of affected offspring. Our combined methods of molecular genetic testing enable a nationwide approach for prevention of albinism. The same paradigm can be applied to other populations affected with albinism.

  13. EHR based Genetic Testing Knowledge Base (iGTKB) Development.

    PubMed

    Zhu, Qian; Liu, Hongfang; Chute, Christopher G; Ferber, Matthew

    2015-01-01

    The gap between a large growing number of genetic tests and a suboptimal clinical workflow of incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic test recommendation system that not only can provide a comprehensive view of genetic tests as education resources, but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB). We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic. Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO). Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic. A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243 clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their associated information about genetic tests and genetic disorders. In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic testing recommendation system, iGenetics.

  14. Palmar dermatoglyphic patterns in twins.

    PubMed

    Jacques, S M; Salzano, F M; Penña, H F

    1977-01-01

    The role of genetic factors in the determination of palmar dermatoglyphic patterns was investigated in a series of 49 MZ and 51 DZ twins, using Spearman's rank correlation and analysis of variance. Both methods indicated that the genetic effect in the distribution of patterns is highest in the interdigital III and lowest in the interdigital IV regions, the hypothenar and thenar showing intermediate values. As for interdigital II, no evaluation of genetic effects was possible using the nonparametric test, but the estimates of genetic variance indicate that inherited factors may play a relatively minor role in the pattern distribution of this area.

  15. View-Invariant Gait Recognition Through Genetic Template Segmentation

    NASA Astrophysics Data System (ADS)

    Isaac, Ebenezer R. H. P.; Elias, Susan; Rajagopalan, Srinivasan; Easwarakumar, K. S.

    2017-08-01

    Template-based model-free approach provides by far the most successful solution to the gait recognition problem in literature. Recent work discusses how isolating the head and leg portion of the template increase the performance of a gait recognition system making it robust against covariates like clothing and carrying conditions. However, most involve a manual definition of the boundaries. The method we propose, the genetic template segmentation (GTS), employs the genetic algorithm to automate the boundary selection process. This method was tested on the GEI, GEnI and AEI templates. GEI seems to exhibit the best result when segmented with our approach. Experimental results depict that our approach significantly outperforms the existing implementations of view-invariant gait recognition.

  16. Impact of Genetic Counseling and Connexin-26 and Connexin-30 Testing on Deaf Identity and Comprehension of Genetic Test Results in a Sample of Deaf Adults: A Prospective, Longitudinal Study

    PubMed Central

    Palmer, Christina G. S.; Boudreault, Patrick; Baldwin, Erin E.; Sinsheimer, Janet S.

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results. PMID:25375116

  17. What Is Direct-to-Consumer Genetic Testing?

    MedlinePlus

    ... consumer genetic testing? What is direct-to-consumer genetic testing? Most of the time, genetic testing is ... testing. For more information about direct-to-consumer genetic testing: Centers for Disease Control and Prevention (CDC) ...

  18. Creation and Implementation of an Environmental Scan to Assess Cancer Genetics Services at Three Oncology Care Settings.

    PubMed

    Bednar, Erica M; Walsh, Michael T; Baker, Ellen; Muse, Kimberly I; Oakley, Holly D; Krukenberg, Rebekah C; Dresbold, Cara S; Jenkinson, Sandra B; Eppolito, Amanda L; Teed, Kelly B; Klein, Molly H; Morman, Nichole A; Bowdish, Elizabeth C; Russ, Pauline; Wise, Emaline E; Cooper, Julia N; Method, Michael W; Henson, John W; Grainger, Andrew V; Arun, Banu K; Lu, Karen H

    2018-05-16

    An environmental scan (ES) is an efficient mixed-methods approach to collect and interpret relevant data for strategic planning and project design. To date, the ES has not been used nor evaluated in the clinical cancer genetics setting. We created and implemented an ES to inform the design of a quality improvement (QI) project to increase the rates of adherence to national guidelines for cancer genetic counseling and genetic testing at three unique oncology care settings (OCS). The ES collected qualitative and quantitative data from reviews of internal processes, past QI efforts, the literature, and each OCS. The ES used a data collection form and semi-structured interviews to aid in data collection. The ES was completed within 6 months, and sufficient data were captured to identify opportunities and threats to the QI project's success, as well as potential barriers to, and facilitators of guideline-based cancer genetics services at each OCS. Previously unreported barriers were identified, including inefficient genetic counseling appointment scheduling processes and the inability to track referrals, genetics appointments, and genetic test results within electronic medical record systems. The ES was a valuable process for QI project planning at three OCS and may be used to evaluate genetics services in other settings.

  19. A Computationally Efficient Hypothesis Testing Method for Epistasis Analysis using Multifactor Dimensionality Reduction

    PubMed Central

    Pattin, Kristine A.; White, Bill C.; Barney, Nate; Gui, Jiang; Nelson, Heather H.; Kelsey, Karl R.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.

    2008-01-01

    Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free data mining method for detecting, characterizing, and interpreting epistasis in the absence of significant main effects in genetic and epidemiologic studies of complex traits such as disease susceptibility. The goal of MDR is to change the representation of the data using a constructive induction algorithm to make nonadditive interactions easier to detect using any classification method such as naïve Bayes or logistic regression. Traditionally, MDR constructed variables have been evaluated with a naïve Bayes classifier that is combined with 10-fold cross validation to obtain an estimate of predictive accuracy or generalizability of epistasis models. Traditionally, we have used permutation testing to statistically evaluate the significance of models obtained through MDR. The advantage of permutation testing is that it controls for false-positives due to multiple testing. The disadvantage is that permutation testing is computationally expensive. This is in an important issue that arises in the context of detecting epistasis on a genome-wide scale. The goal of the present study was to develop and evaluate several alternatives to large-scale permutation testing for assessing the statistical significance of MDR models. Using data simulated from 70 different epistasis models, we compared the power and type I error rate of MDR using a 1000-fold permutation test with hypothesis testing using an extreme value distribution (EVD). We find that this new hypothesis testing method provides a reasonable alternative to the computationally expensive 1000-fold permutation test and is 50 times faster. We then demonstrate this new method by applying it to a genetic epidemiology study of bladder cancer susceptibility that was previously analyzed using MDR and assessed using a 1000-fold permutation test. PMID:18671250

  20. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation

    PubMed Central

    Xu, Man K.; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J. S.; Croudace, Tim J.; Barnett, Jennifer H.; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B.

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene (MAOA) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = −0.167; CI: −0.289, −0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits. PMID:29075213

  1. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation.

    PubMed

    Xu, Man K; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J S; Croudace, Tim J; Barnett, Jennifer H; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene ( MAOA ) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = -0.167; CI: -0.289, -0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits.

  2. Genetic drift and the population history of the Irish travellers.

    PubMed

    Relethford, John H; Crawford, Michael H

    2013-02-01

    The Irish Travellers are an itinerant group in Ireland that has been socially isolated. Two hypotheses have been proposed concerning the genetic origin of the Travellers: (1) they are genetically related to Roma populations in Europe that share a nomadic lifestyle or (2) they are of Irish origin, and genetic differences from the rest of Ireland reflect genetic drift. These hypotheses were tested using data on 33 alleles from 12 red blood cell polymorphism loci. Comparison with other European, Roma, and Indian populations shows that the Travellers are genetically distinct from the Roma and Indian populations and most genetically similar to Ireland, in agreement with earlier genetic analyses of the Travellers. However, the Travellers are still genetically distinct from other Irish populations, which could reflect some external gene flow and/or the action of genetic drift in a small group that was descended from a small number of founders. In order to test the drift hypothesis, we analyzed genetic distances comparing the Travellers to four geographic regions in Ireland. These distances were then compared with adjusted distances that account for differential genetic drift using a method developed by Relethford (Hum Biol 68 (1996) 29-44). The unadjusted distances show the genetic distinctiveness of the Travellers. After adjustment for the expected effects of genetic drift, the Travellers are equidistant from the other Irish samples, showing their Irish origins and population history. The observed genetic differences are thus a reflection of genetic drift, and there is no evidence of any external gene flow. Copyright © 2012 Wiley Periodicals, Inc.

  3. A missing ancestry - Genetic Testing | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Testing - From Genetics Home Reference: the benefits, costs, risks, and limitations of genetic testing Genetic Testing Registry -A publicly funded medical genetics information resource developed for physicians, other health care providers, and researchers MedlinePlus — Genetic Testing CLINSEQ®: ...

  4. Neonatal diabetes in Ukraine: incidence, genetics, clinical phenotype and treatment

    PubMed Central

    Globa, Evgenia; Zelinska, Nataliya; Mackay, Deborah J.G.; Temple, Karen I.; Houghton, Jayne A.L.; Hattersley, Andrew T.; Flanagan, Sarah E.; Ellard, Sian

    2016-01-01

    Background Neonatal diabetes has not been previously studied in Ukraine. We investigated the genetic etiology in patients with onset of diabetes during the first 9 months of life. Methods We established a Pediatric Diabetes Register to identify patients diagnosed with diabetes before 9 months of age. Genetic testing was undertaken for 42 patients with permanent or transient diabetes diagnosed within the first 6 months of life (n=22) or permanent diabetes diagnosed between 6 and 9 months (n=20). Results We determined the genetic etiology in 23 of 42 (55%) patients; 86% of the patients diagnosed before 6 months and 20% diagnosed between 6 and 9 months. The incidence of neonatal diabetes in Ukraine was calculated to be 1 in 126,397 live births. Conclusions Genetic testing for patients identified through the Ukrainian Pediatric Diabetes Register identified KCNJ11 and ABCC8 mutations as the most common cause (52%) of neonatal diabetes. Transfer to sulfonylureas improved glycemic control in all 11 patients. PMID:26208381

  5. A kernel machine method for detecting effects of interaction between multidimensional variable sets: an imaging genetics application.

    PubMed

    Ge, Tian; Nichols, Thomas E; Ghosh, Debashis; Mormino, Elizabeth C; Smoller, Jordan W; Sabuncu, Mert R

    2015-04-01

    Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of the interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A variational Bayes discrete mixture test for rare variant association

    PubMed Central

    Logsdon, Benjamin A.; Dai, James Y.; Auer, Paul L.; Johnsen, Jill M.; Ganesh, Santhi K.; Smith, Nicholas L.; Wilson, James G.; Tracy, Russell P.; Lange, Leslie A.; Jiao, Shuo; Rich, Stephen S.; Lettre, Guillaume; Carlson, Christopher S.; Jackson, Rebecca D.; O’Donnell, Christopher J.; Wurfel, Mark M.; Nickerson, Deborah A.; Tang, Hua; Reiner, Alexander P.; Kooperberg, Charles

    2014-01-01

    Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that “aggregate” tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute’s Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans. PMID:24482836

  7. A variational Bayes discrete mixture test for rare variant association.

    PubMed

    Logsdon, Benjamin A; Dai, James Y; Auer, Paul L; Johnsen, Jill M; Ganesh, Santhi K; Smith, Nicholas L; Wilson, James G; Tracy, Russell P; Lange, Leslie A; Jiao, Shuo; Rich, Stephen S; Lettre, Guillaume; Carlson, Christopher S; Jackson, Rebecca D; O'Donnell, Christopher J; Wurfel, Mark M; Nickerson, Deborah A; Tang, Hua; Reiner, Alexander P; Kooperberg, Charles

    2014-01-01

    Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that "aggregate" tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute's Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans.

  8. The emotional impact of genetic testing and aspects of counseling prior to prescription of oral contraceptives.

    PubMed

    Gartner, Verena; Weber, Michael; Eichinger, Sabine

    2008-11-01

    Oral contraceptives increase the thrombotic risk in women with factor V Leiden. Emotional aspects of genetic testing prior to the prescription of oral contraceptives (OC), aspects of counseling and referral patterns are widely unknown. Two hundred forty-seven women with and 132 women without factor V Leiden were interviewed by questionnaire. One hundred sixty-one women (65%) with factor V Leiden and 63 (48%) with wild-type factor V responded. One hundred seventy-one women (76%) reported being emotionally disturbed by genetic testing. Eighty percent of women with factor V Leiden and 16% of women with wild-type factor V were discouraged from OC use. Three percent of women with factor V Leiden were encouraged to take OC. Forty-one percent of women with factor V Leiden used at least one hormone contraceptive method after diagnosis. Only 46 women (29%) with factor V Leiden were counseled about the relevance of the mutation in case of pregnancy. Testing for factor V Leiden has considerable emotional impact. Recommendations after testing are not consistently driven by the test result.

  9. Estimation of genetic parameters related to eggshell strength using random regression models.

    PubMed

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  10. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2009-10-06

    Methods and compositions for staining based upon nucleic acid sequence that employ nudeic nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  11. Production scheduling and rescheduling with genetic algorithms.

    PubMed

    Bierwirth, C; Mattfeld, D C

    1999-01-01

    A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs.

  12. Perceptions and Discourses Relating to Genetic Testing: Interviews with People with Down Syndrome

    ERIC Educational Resources Information Center

    Barter, Barbara; Hastings, Richard Patrick; Williams, Rebecca; Huws, Jaci C.

    2017-01-01

    Background: The perceptions of individuals with Down syndrome are conspicuously absent in discussions about the use of prenatal testing. Method: Eight individuals with Down syndrome were interviewed about their views and experience of the topic of prenatal testing. Results: Interpretative phenomenological analysis revealed two major themes with…

  13. A Diagnosis of Lynch Syndrome - Genetic Testing | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Testing - From Genetics Home Reference: the benefits, costs, risks, and limitations of genetic testing Genetic Testing Registry -A publicly funded medical genetics information resource developed for physicians, other health care providers, and researchers MedlinePlus — Genetic Testing CLINSEQ®: ...

  14. A statistical assessment of differences and equivalences between genetically modified and reference plant varieties

    PubMed Central

    2011-01-01

    Background Safety assessment of genetically modified organisms is currently often performed by comparative evaluation. However, natural variation of plant characteristics between commercial varieties is usually not considered explicitly in the statistical computations underlying the assessment. Results Statistical methods are described for the assessment of the difference between a genetically modified (GM) plant variety and a conventional non-GM counterpart, and for the assessment of the equivalence between the GM variety and a group of reference plant varieties which have a history of safe use. It is proposed to present the results of both difference and equivalence testing for all relevant plant characteristics simultaneously in one or a few graphs, as an aid for further interpretation in safety assessment. A procedure is suggested to derive equivalence limits from the observed results for the reference plant varieties using a specific implementation of the linear mixed model. Three different equivalence tests are defined to classify any result in one of four equivalence classes. The performance of the proposed methods is investigated by a simulation study, and the methods are illustrated on compositional data from a field study on maize grain. Conclusions A clear distinction of practical relevance is shown between difference and equivalence testing. The proposed tests are shown to have appropriate performance characteristics by simulation, and the proposed simultaneous graphical representation of results was found to be helpful for the interpretation of results from a practical field trial data set. PMID:21324199

  15. Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa.

    PubMed

    Huang, Hui; Chen, Yanhua; Chen, Huishuang; Ma, Yuanyuan; Chiang, Pei-Wen; Zhong, Jing; Liu, Xuyang; Asan; Wu, Jing; Su, Yan; Li, Xin; Deng, Jianlian; Huang, Yingping; Zhang, Xinxin; Li, Yang; Fan, Ning; Wang, Ying; Tang, Lihui; Shen, Jinting; Chen, Meiyan; Zhang, Xiuqing; Te, Deng; Banerjee, Santasree; Liu, Hui; Qi, Ming; Yi, Xin

    2018-01-01

    Inherited eye diseases are major causes of vision loss in both children and adults. Inherited eye diseases are characterized by clinical variability and pronounced genetic heterogeneity. Genetic testing may provide an accurate diagnosis for ophthalmic genetic disorders and allow gene therapy for specific diseases. A targeted gene capture panel was designed to capture exons of 283 inherited eye disease genes including 58 known causative retinitis pigmentosa (RP) genes. 180 samples were tested with this panel, 68 were previously tested by Sanger sequencing. Systematic evaluation of our method and comprehensive molecular diagnosis were carried on 99 RP patients. 96.85% targeted regions were covered by at least 20 folds, the accuracy of variants detection was 99.994%. In 4 of the 68 samples previously tested by Sanger sequencing, mutations of other diseases not consisting with the clinical diagnosis were detected by next-generation sequencing (NGS) not Sanger. Among the 99 RP patients, 64 (64.6%) were detected with pathogenic mutations, while in 3 patients, it was inconsistent between molecular diagnosis and their initial clinical diagnosis. After revisiting, one patient's clinical diagnosis was reclassified. In addition, 3 patients were found carrying large deletions. We have systematically evaluated our method and compared it with Sanger sequencing, and have identified a large number of novel mutations in a cohort of 99 RP patients. The results showed a sufficient accuracy of our method and suggested the importance of molecular diagnosis in clinical diagnosis.

  16. Quality of Life and Psychological State in Chinese Breast Cancer Patients Who Received BRCA1/2 Genetic Testing

    PubMed Central

    Qiu, Jiajia; Guan, Jiaqin; Yang, Xiaochen; Wu, Jiong; Liu, Guangyu; Di, Genhong; Chen, Canming; Hou, Yifeng; Han, Qixia; Shen, Zhenzhou; Shao, Zhimin; Hu, Zhen

    2016-01-01

    Background This study aims to understand the quality of life (QOL) and psychological state (PS) of Chinese breast cancer patients who received BRCA1/2 genetic testing; to examine the psychological changes between BRCA1/2 mutation carriers and non-carriers; and to further explore the psychological experience of BRCA1/2 mutation carriers. Methods This study was combined with quantitative and qualitative designs. First, we performed a quantitative investigation using FACT-B (Chinese version) and Irritability, Depression and Anxiety scale (IDA) to assess the QOL and PS in breast cancer patients who received BRCA1/2 genetic testing. Then semi-structured in-depth qualitative interviews among 13 mutation carriers were conducted in hospital. Results Results from the quantitative study showed QOL scores were relatively high and the IDA scores were relatively low among the patients, and there was no significant difference in the QOL or IDA scores between non-carriers and carriers. Based on the qualitative analysis, four main themes emerged: (1) Finding the reason for having breast cancer; (2) Negative emotions; (3) Behavioral changes; (4) Lack of information. Conclusions The present study showed that QOL and PS are good among the breast cancer patients who received genetic testing. Genetic testing itself does not cause long psychosocial effects. BRCA1/2 mutation carriers may have certain negative emotions at the first stage they knew the testing results and may initiate behavioral and lifestyle changes. The patients with a BRCA1/2 mutation desire knowledge with regard to genetic aspects in mainland China. Professional information and advice can be provided to relieve the patients’ negative emotions when they were informed of gene defect. PMID:27428375

  17. Drifting to oblivion? Rapid genetic differentiation in an endangered lizard following habitat fragmentation and drought

    USGS Publications Warehouse

    Vandergast, Amy; Wood, Dustin A.; Thompson, Andrew R.; Fisher, Mark; Barrows, Cameron W.; Grant, Tyler J.

    2016-01-01

    Aim The frequency and severity of habitat alterations and disturbance are predicted to increase in upcoming decades, and understanding how disturbance affects population integrity is paramount for adaptive management. Although rarely is population genetic sampling conducted at multiple time points, pre- and post-disturbance comparisons may provide one of the clearest methods to measure these impacts. We examined how genetic properties of the federally threatened Coachella Valley fringe-toed lizard (Uma inornata) responded to severe drought and habitat fragmentation across its range. Location Coachella Valley, California, USA. Methods We used 11 microsatellites to examine population genetic structure and diversity in 1996 and 2008, before and after a historic drought. We used Bayesian assignment methods and F-statistics to estimate genetic structure. We compared allelic richness across years to measure loss of genetic diversity and employed approximate Bayesian computing methods and heterozygote excess tests to explore the recent demographic history of populations. Finally, we compared effective population size across years and to abundance estimates to determine whether diversity remained low despite post-drought recovery. Results Genetic structure increased between sampling periods, likely as a result of population declines during the historic drought of the late 1990s–early 2000s, and habitat loss and fragmentation that precluded post-drought genetic rescue. Simulations supported recent demographic declines in 3 of 4 main preserves, and in one preserve, we detected significant loss of allelic richness. Effective population sizes were generally low across the range, with estimates ≤100 in most sites. Main conclusions Fragmentation and drought appear to have acted synergistically to induce genetic change over a short time frame. Progressive deterioration of connectivity, low Ne and measurable loss of genetic diversity suggest that conservation efforts have not maintained the genetic integrity of this species. Genetic sampling over time can help evaluate population trends to guide management.

  18. [Diabetes and predictive medicine--parallax of the present time].

    PubMed

    Rybka, J

    2010-04-01

    Predictive genetics uses genetic testing to estimate the risk in asymptomatic persons. Since in the case of multifactorial diseases predictive genetic analysis deals with findings which allow wider interpretation, it has a higher predictive value in expressly qualified diseases (monogenous) with high penetration compared to multifactorial (polygenous) diseases with high participation of environmental factors. In most "civilisation" (multifactorial) diseases including diabetes, heredity and environmental factors do not play two separate, independent roles. Instead, their interactions play a principal role. The new classification of diabetes is based on the implementation of not only ethiopathogenetic, but also genetic research. Diabetes mellitus type 1 (DM1T) is a polygenous multifactorial disease with the genetic component carrying about one half of the risk, the non-genetic one the other half. The study of the autoimmune nature of DM1T in connection with genetic analysis is going to bring about new insights in DM1T prediction. The author presents new pieces of knowledge on molecular genetics concerning certain specific types of diabetes. Issues relating to heredity in diabetes mellitus type 2 (DM2T) are even more complex. The disease has a polygenous nature, and the phenotype of a patient with DM2T, in addition to environmental factors, involves at least three, perhaps even tens of different genetic variations. At present, results at the genom-wide level appear to be most promising. The current concept of prediabetes is a realistic foundation for our prediction and prevention of DM2T. A multifactorial, multimarker approach based on our understanding of new pathophysiological factors of DM2T, tries to outline a "map" of prediabetes physiology, and if these tests are combined with sophisticated methods of genetic forecasting of DM2T, this may represent a significant step in our methodology of diabetes prediction. So far however, predictive genetics is limited by the interpretation of genetic predisposition and individualisation of the level of risk. There is no doubt that interpretation calls for co-operation with clinicians, while results of genetic analyses should presently be not uncritically overestimated. Predictive medicine, however, unquestionably fulfills the preventive focus of modern medicine, and genetic analysis is a perspective diagnostic method.

  19. IWGT report on quantitative approaches to genotoxicity risk ...

    EPA Pesticide Factsheets

    This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose–response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clast

  20. Confidence intervals for population allele frequencies: the general case of sampling from a finite diploid population of any size.

    PubMed

    Fung, Tak; Keenan, Kevin

    2014-01-01

    The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%), a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L.), occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.

  1. A Novel Test for Gene-Ancestry Interactions in Genome-Wide Association Data

    PubMed Central

    Dunlop, Malcolm G.; Houlston, Richard S.; Tomlinson, Ian P.; Holmes, Chris C.

    2012-01-01

    Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into “ancestry groups” and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions. PMID:23236349

  2. Genetic Testing (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Genetic Testing KidsHealth / For Parents / Genetic Testing What's in ... blood, skin, bone, or other tissue is needed. Genetic Testing During Pregnancy For genetic testing before birth, ...

  3. Grains of connectivity: analysis at multiple spatial scales in landscape genetics.

    PubMed

    Galpern, Paul; Manseau, Micheline; Wilson, Paul

    2012-08-01

    Landscape genetic analyses are typically conducted at one spatial scale. Considering multiple scales may be essential for identifying landscape features influencing gene flow. We examined landscape connectivity for woodland caribou (Rangifer tarandus caribou) at multiple spatial scales using a new approach based on landscape graphs that creates a Voronoi tessellation of the landscape. To illustrate the potential of the method, we generated five resistance surfaces to explain how landscape pattern may influence gene flow across the range of this population. We tested each resistance surface using a raster at the spatial grain of available landscape data (200 m grid squares). We then used our method to produce up to 127 additional grains for each resistance surface. We applied a causal modelling framework with partial Mantel tests, where evidence of landscape resistance is tested against an alternative hypothesis of isolation-by-distance, and found statistically significant support for landscape resistance to gene flow in 89 of the 507 spatial grains examined. We found evidence that major roads as well as the cumulative effects of natural and anthropogenic disturbance may be contributing to the genetic structure. Using only the original grid surface yielded no evidence for landscape resistance to gene flow. Our results show that using multiple spatial grains can reveal landscape influences on genetic structure that may be overlooked with a single grain, and suggest that coarsening the grain of landcover data may be appropriate for highly mobile species. We discuss how grains of connectivity and related analyses have potential landscape genetic applications in a broad range of systems. © 2012 Blackwell Publishing Ltd.

  4. Deep Brain Stimulation for Dystonia: A Novel Perspective on the Value of Genetic Testing

    PubMed Central

    Jinnah, H. A.; Alterman, Ron; Klein, Christine; Krauss, Joachim K.; Moro, Elena; Vidailhet, Marie; Raike, Robert

    2017-01-01

    The dystonias are a group of disorders characterized by excessive muscle contractions leading to abnormal movements and postures. There are many different clinical manifestations and underlying causes. Deep brain stimulation (DBS) provides an effect treatment, but outcomes can vary considerably among the different subtypes of dystonia. Several variables are thought to contribute to this variation including age of onset and duration of dystonia, specific characteristics of the dystonic movements, location of stimulation and stimulator settings, and others. The potential contributions of genetic factors have received little attention. In this review, we summarize evidence that some of the variation in DBS outcomes for dystonia is due to genetic factors. The evidence suggests that more methodical genetic testing may provide useful information in the assessment of potential surgical candidates, and in advancing our understanding of the biological mechanisms that influence DBS outcomes. PMID:28160152

  5. Attitudes and Practices Among Internists Concerning Genetic Testing

    PubMed Central

    Chung, Wendy; Marder, Karen; Shanmugham, Anita; Chin, Lisa J.; Stark, Meredith; Leu, Cheng-Shiun; Appelbaum, Paul S.

    2012-01-01

    Many questions remain concerning whether, when, and how physicians order genetic tests, and what factors are involved in their decisions. We surveyed 220 internists from two academic medical centers about their utilization of genetic testing. Rates of genetic utilizations varied widely by disease. Respondents were most likely to have ordered tests for Factor V Leiden (16.8%), followed by Breast/Ovarian Cancer (15.0%). In the past 6 months, 65% had counseled patients on genetic issues, 44% had ordered genetic tests, 38.5% had referred patients to a genetic counselor or geneticist, and 27.5% had received ads from commercial labs for genetic testing. Only 4.5% had tried to hide or disguise genetic information, and <2% have had patients report genetic discrimination. Only 53.4% knew of a geneticist/genetic counselor to whom to refer patients. Most rated their knowledge as very/somewhat poor concerning genetics (73.7%) and guidelines for genetic testing (87.1%). Most felt needs for more training on when to order tests (79%), and how to counsel patients (82%), interpret results (77.3%), and maintain privacy (80.6%). Physicians were more likely to have ordered a genetic test if patients inquired about genetic testing (p<.001), and if physicians had a geneticist/genetic counselor to whom to refer patients (p<.002), had referred patients to a geneticist/genetic counselor in the past 6 months, had more comfort counseling patients about testing (p<.019), counseled patients about genetics, larger practices (p<.032), fewer African-American patients (p<.027), and patients who had reported genetic discrimination (p<.044). In a multiple logistic regression, ordering a genetic test was associated with patients inquiring about testing, having referred patients to a geneticist/genetic counselor and knowing how to order tests., These data suggest that physicians recognize their knowledge deficits, and are interested in training. These findings have important implications for future medical practice, research, and education. PMID:22585186

  6. Perceptions of family history and genetic testing and feasibility of pedigree development among African Americans with hypertension

    PubMed Central

    Pettey, Christina M; McSweeney, Jean C; Stewart, Katharine E; Price, Elvin T; Cleves, Mario A; Heo, Seongkum; Souder, Elaine

    2016-01-01

    Background Pedigree development, family history, and genetic testing are thought to be useful in improving outcomes of chronic illnesses such as hypertension (HTN). However, the clinical utility of pedigree development is still unknown. Further, little is known about African Americans’ (AAs’) perceptions of family history and genetic testing. Aims This study examined the feasibility of developing pedigrees for AAs with HTN and explored perceptions of family history and genetic research among AAs with HTN. Methods The US Surgeon General’s My Family Health Portrait was administered, and 30–60 minute in-person individual interviews were conducted. Descriptive statistics were used to analyze pedigree data. Interview transcripts were analyzed with content analysis and constant comparison. Results Twenty-nine AAs with HTN were recruited from one free clinic (15 women, 14 men; mean age 49 years, SD 9.6). Twenty-six (90%) reported their family history in sufficient detail to develop a pedigree. Perceptions of family history included knowledge of HTN in the family, culturally influenced family teaching about HTN, and response to family history of HTN. Most participants agreed to future genetic testing and DNA collection because they wanted to help others; some said they needed more information and others expressed a concern for privacy. Conclusion The majority of AAs in this sample possessed extensive knowledge of HTN within their family and were able to develop a three generation pedigree with assistance. The majority were willing to participate in future genetic research. PMID:25322748

  7. The occurrence, transmission, virulence and antibiotic resistance of Listeria monocytogenes in fish processing plant.

    PubMed

    Skowron, Krzysztof; Kwiecińska-Piróg, Joanna; Grudlewska, Katarzyna; Świeca, Agnieszka; Paluszak, Zbigniew; Bauza-Kaszewska, Justyna; Wałecka-Zacharska, Ewa; Gospodarek-Komkowska, Eugenia

    2018-06-13

    The aim of this research was to investigate the occurrence of Listeria monocytogenes in fish and fish processing plant and to determine their transmission, virulence and antibiotic resistance. L. monocytogenes was isolated according to the ISO 11290-1. The identification of L. monocytogenes was confirmed by multiplex PCR method. Genetic similarity of L. monocytogenes strains was determined with the Pulsed-Filed Gene Electrophoresis (PFGE) method. The multiplex PCR was used for identification of L. monocytogenes serogroups and detection of selected virulence genes (actA, fbpA, hlyA, iap, inlA, inlB, mpl, plcA, plcB, prfA). The L. monocytogens isolates susceptibility to penicillin, ampicillin, meropenem, erythromycin, trimethoprim/sulfamethoxazole was evaluated with disc diffusion method according to EUCAST v. 7.1. The presence of 237 L. monocytogenes isolates (before genetic similarity assessment) in 614 examined samples was confirmed. After strain differentiation by PFGE techniques the presence of 161 genetically different strains were confirmed. The genetic similarity of the examined isolates suggested that the source of the L. monocytogenes strains were fishes originating from farms. All tested strains possessed all detected virulence genes. Among examined strains, the most (26, 38.6%) belonged to the group 1/2a-3a. The most of tested strains were resistant to erythromycin (47.1%) and trimethoprim/sulfamethoxazole (47.1%). Copyright © 2018. Published by Elsevier B.V.

  8. Should patients with ocular genetic disorders have genetic testing?

    PubMed

    Zanolli, Mario T; Khetan, Vikas; Dotan, Gad; Pizzi, Laura; Levin, Alex V

    2014-09-01

    To discuss the risks, benefits and value of genetic testing for ocular genetic disease. Testing for ocular genetics diseases is becoming more available and successful gene therapy is being reported. Clinicians must prepare for this trend by considering diagnostic genetic testing for their patients. As advances continually occur in genetic testing for ocular genetic disorders, clinicians must develop an understanding of the potential risks and benefits for their patients.

  9. PERSONAL CHARACTERISTICS OF OLDER PRIMARY CARE PATIENTS WHO PROVIDE A BUCCAL SWAB FOR APOE TESTING AND BANKING OF GENETIC MATERIAL: THE SPECTRUM STUDY

    PubMed Central

    Bogner, Hillary R.; Wittink, Marsha N.; Merz, Jon F.; Straton, Joseph B.; Cronholm, Peter F.; Rabins, Peter V.; Gallo, Joseph J.

    2009-01-01

    OBJECTIVE To determine the personal characteristics and reasons associated with providing a buccal swab for APOE genetic testing in a primary care study. METHODS The study sample consisted of 342 adults aged 65 years and older recruited from primary care settings. RESULTS In all, 88% of patients agreed to provide a DNA sample for APOE genotyping and 78% of persons providing a sample agreed to banking of the DNA. Persons aged 80 years and older and African-Americans were less likely to participate in APOE genotyping. Concern about confidentiality was the most common reason for not wanting to provide a DNA sample or to have DNA banked. CONCLUSION We found stronger relationships between sociodemographic variables of age and ethnicity with participation in genetic testing than we did between level of educational attainment, gender, function, cognition, and affect. PMID:15692195

  10. Physicians' Current Practices and Opportunities for DNA Banking of Dying Patients With Cancer

    PubMed Central

    Quillin, John M.; Bodurtha, Joann N.; Siminoff, Laura A.; Smith, Thomas J.

    2011-01-01

    Purpose: The availability of genetic tests for cancer susceptibility is increasing. Current tests, however, have limited clinical sensitivity. Even when clinically valid tests are available, the genetic counseling and informed consent process might not be feasible for dying patients with cancer. DNA banking preserves the opportunity for future research or clinical testing and may provide critical opportunities for surviving relatives. This study explored the current practices and potential for DNA banking for cancer susceptibility among oncologists specializing in palliative care. Methods: Palliative care oncologists actively providing clinical care for dying patients with cancer were recruited for an online survey. Descriptive statistics for DNA banking practices, perceived qualification to recommend banking, and potential predictors were assessed. Results: Data were collected from 49 physicians (37% recruitment rate). Eighty percent reported assessing at least some patients for genetic cancer susceptibility in the past 12 months. No participants reported banking DNA for patients in the past 12 months. Only 5% reported feeling at least somewhat qualified to order DNA banking. A Web-based risk assessment tool and genetic counselor on staff were perceived as the most helpful potential resources. Conclusion: Despite its potential, DNA banking is not being used by palliative care oncologists. PMID:21886501

  11. Can genetic risk information for age-related macular degeneration influence motivation to stop smoking? A pilot study

    PubMed Central

    Rennie, C A; Stinge, A; King, E A; Sothirachagan, S; Osmond, C; Lotery, A J

    2012-01-01

    Aims Smoking can increase the risk of macular degeneration and this is more than additive if a person also has a genetic risk. The purpose of this study was to examine whether knowledge of genetic risk for age-related macular degeneration (AMD) could influence motivation to quit smoking. Methods A questionnaire-based study of hypothetical case scenarios given to 49 smokers without AMD. Participants were randomly allocated to a generic risk, high genetic risk, or low genetic risk of developing AMD scenario. Results Forty-seven percent knew of the link between smoking and eye disease. In all, 76%, 67%, and 46% for the high risk, generic, and low risk groups, respectively, would rethink quitting (Pfor trend=0.082). In all, 67%, 40%, and 38.5%, respectively, would be likely, very likely, or would definitely quit in the following month (Pfor trend=0.023). Few participants (<16% of any group) were very likely to or would definitely attend a quit smoking session with no difference across groups. In all, 75.5% of participants would consider taking a genetic test for AMD. Conclusion In this pilot study, a trend was seen for the group given high genetic risk information to be more likely to quit than the generic or low genetic risk groups. Participants were willing to take a genetic test but further work is needed to address the cost benefits of routine genetic testing for risk of AMD. More generic risk information should be given to the public, and health warnings on cigarette packets that ‘smoking causes blindness' is a good way to achieve this. PMID:22037055

  12. A Unified Framework for Association Analysis with Multiple Related Phenotypes

    PubMed Central

    Stephens, Matthew

    2013-01-01

    We consider the problem of assessing associations between multiple related outcome variables, and a single explanatory variable of interest. This problem arises in many settings, including genetic association studies, where the explanatory variable is genotype at a genetic variant. We outline a framework for conducting this type of analysis, based on Bayesian model comparison and model averaging for multivariate regressions. This framework unifies several common approaches to this problem, and includes both standard univariate and standard multivariate association tests as special cases. The framework also unifies the problems of testing for associations and explaining associations – that is, identifying which outcome variables are associated with genotype. This provides an alternative to the usual, but conceptually unsatisfying, approach of resorting to univariate tests when explaining and interpreting significant multivariate findings. The method is computationally tractable genome-wide for modest numbers of phenotypes (e.g. 5–10), and can be applied to summary data, without access to raw genotype and phenotype data. We illustrate the methods on both simulated examples, and to a genome-wide association study of blood lipid traits where we identify 18 potential novel genetic associations that were not identified by univariate analyses of the same data. PMID:23861737

  13. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility.

    PubMed

    2003-06-15

    As the leading organization representing cancer specialists involved in patient care and clinical research, the American Society of Clinical Oncology (ASCO) reaffirms its commitment to integrating cancer risk assessment and management, including molecular analysis of cancer predisposition genes, into the practice of oncology and preventive medicine. The primary goal of this effort is to foster expanded access to, and continued advances in, medical care provided to patients and families affected by hereditary cancer syndromes. The 1996 ASCO Statement on Genetic Testing for Cancer Susceptibility set forth specific recommendations relating to clinical practice, research needs, educational opportunities, requirement for informed consent, indications for genetic testing, regulation of laboratories, and protection from discrimination, as well as access to and reimbursement for cancer genetics services. In updating this Statement, ASCO endorses the following principles: Indications for Genetic Testing: ASCO recommends that genetic testing be offered when 1) the individual has personal or family history features suggestive of a genetic cancer susceptibility condition, 2) the test can be adequately interpreted, and 3) the results will aid in diagnosis or influence the medical or surgical management of the patient or family members at hereditary risk of cancer. ASCO recommends that genetic testing only be done in the setting of pre- and post-test counseling, which should include discussion of possible risks and benefits of cancer early detection and prevention modalities. Special Issues in Testing Children for Cancer Susceptibility: ASCO recommends that the decision to offer testing to potentially affected children should take into account the availability of evidence-based risk-reduction strategies and the probability of developing a malignancy during childhood. Where risk-reduction strategies are available or cancer predominantly develops in childhood, ASCO believes that the scope of parental authority encompasses the right to decide for or against testing. In the absence of increased risk of a childhood malignancy, ASCO recommends delaying genetic testing until an individual is of sufficient age to make an informed decision regarding such tests. As in other areas of pediatric care, the clinical cancer genetics professional should be an advocate for the best interests of the child. Counseling About Medical Management After Testing: ASCO recommends that oncologists include in pre- and post-test counseling the discussion of possible risks and benefits of cancer early-detection and prevention modalities, some of which have presumed but unproven efficacy for individuals at increased hereditary risk of cancer. Regulation of Genetic Testing: ASCO recommends strengthening regulatory oversight of laboratories that provide clinical cancer predisposition tests. These quality assurance mechanisms should include oversight of the reagents used in genetic testing, interlaboratory comparisons of reference samples, standardization of laboratory genetic test reports, and proficiency testing. Protection From Insurance and Employment Discrimination: ASCO supports establishing a federal law to prohibit discrimination by health insurance providers and employers on the basis of an individual's inherited susceptibility to cancer. Protections against genetic discrimination should apply to those with group coverage, those with individual health insurance policies, and the uninsured. Coverage of Services: ASCO supports efforts to ensure that all individuals at significantly increased risk of hereditary cancer have access to appropriate genetic counseling, testing, screening, surveillance, and all related medical and surgical interventions, which should be covered without penalty by public and private third-party payers. Confidentiality and Communication of Familial Risk: ASCO recommends that providers make concerted efforts to protect the confidentiality of genetic information. However, they should remind patients of the importance of communicating test results to family members, as part of pretest counseling and informed consent discussions. ASCO believes that the cancer care provider's obligations (if any) to at-risk relatives are best fulfilled by communication of familial risk to the person undergoing testing, emphasizing the importance of sharing this information with family members so that they may also benefit. Educational Opportunities in Genetics: ASCO is committed to continuing to provide educational opportunities for physicians and other health care providers regarding the methods of cancer risk assessment, the clinical characteristics of hereditary cancer susceptibility syndromes, and the range of issues related to genetic testing, including pre- and post-test genetic counseling, and risk management, so that health professionals may responsibly integrate the care of persons at increased genetic risk of cancer into the practice of clinical and preventive oncology. Special Issues Relating to Genetic Research on Human Tissues:ASCO recommends that all researchers proposing to use or store human biologic specimens for genetic studies should consult either the responsible institutional review board (IRB) or a comparable body specifically constituted to assess human tissue research, to determine the requirements for protection specific to the study under consideration. This consultation should take place before the project is initiated. The determination of the need for informed consent or authorization in such studies should depend on whether the research involves tests for genetic markers of known clinical significance and whether research data will be linked to protected health information, as well as other considerations specific to the study proposed. Special attention should also be paid to 1) whether future research findings will be disclosed to the research participants, 2) whether future contact of participants is planned, 3) whether and how protected health information about the tissue donors will be stored, and what will happen to study specimens after the trial ends. In addition, ASCO affirms the right of people contributing tissue to a databank to rescind their permission, in accordance with federal privacy regulations.

  14. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  15. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    PubMed

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  16. Development and Validation of A 48-Target Analytical Method for High-throughput Monitoring of Genetically Modified Organisms

    PubMed Central

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-01

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930

  17. General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies

    PubMed Central

    Lee, Seunggeun; Teslovich, Tanya M.; Boehnke, Michael; Lin, Xihong

    2013-01-01

    We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels. PMID:23768515

  18. Efficiency of a genetic test to detect benzimidazole resistant Haemonchus contortus nematodes in sheep farms in Quebec, Canada.

    PubMed

    Barrère, Virginie; Keller, Kathy; von Samson-Himmelstjerna, Georg; Prichard, Roger K

    2013-10-01

    Haemonchus contortus is a hemophilic nematode which infects sheep and causes anemia and death to lambs. Benzimidazole drugs are used to remove these parasites, but the phenomenon of resistance has arisen worldwide. A sensitive test to detect resistance before treatment would be a useful tool to enable farmers to anticipate the efficiency of the drug before drenching the flock. In this study, we compared a test for benzimidazole resistance based on detection of genetic markers in H. contortus before treatment with the common method of fecal egg count reduction test (FECRT). We recruited 11 farms from different regions of Quebec for this study. Fecal samples from animals were collected per rectum before and after treatment in control and treated groups (10 animals per group). The 10 sheep were treated with fenbendazole at the recommended dose rate. Among the 11 farms participating in the study, we found H. contortus in 8 of them and it was the most predominant nematode species detected by egg count. Using the genetic test, we found benzimidazole resistance in each of these 8 farms. In 5 of these 8 farms there were sufficient sheep with an egg count for H. contortus above 150 eggs per gram to allow the FECRT test to be conducted. Benzimidazole resistance was observed in each of these 5 farms by the FECRT. When we compared the results from the genetic test for samples off pasture and from individual sheep, with the results from the FECRT, we concluded that the genetic test can be applied to samples collected off pasture to estimate benzimidazole resistance levels before treatment for H. contortus infections. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Accurate and fast multiple-testing correction in eQTL studies.

    PubMed

    Sul, Jae Hoon; Raj, Towfique; de Jong, Simone; de Bakker, Paul I W; Raychaudhuri, Soumya; Ophoff, Roel A; Stranger, Barbara E; Eskin, Eleazar; Han, Buhm

    2015-06-04

    In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Assessing the impact of breeding strategies on inherited disorders and genetic diversity in dogs.

    PubMed

    Leroy, Grégoire; Rognon, Xavier

    2012-12-01

    In the context of management of genetic diversity and control of genetic disorders within dog breeds, a method is proposed for assessing the impact of different breeding strategies that takes into account the genealogical information specific to a given breed. Two types of strategies were investigated: (1) eradication of an identified monogenic recessive disorder, taking into account three different mating limitations and various initial allele frequencies; and (2) control of the population sire effect by limiting the number of offspring per reproducer. The method was tested on four dog breeds: Braque Saint Germain, Berger des Pyrénées, Coton de Tulear and Epagneul Breton. Breeding policies, such as the removal of all carriers from the reproduction pool, may have a range of effects on genetic diversity, depending on the breed and the frequency of deleterious alleles. Limiting the number of offspring per reproducer may also have a positive impact on genetic diversity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Orbit computation of the TELECOM-2D satellite with a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Deleflie, Florent; Coulot, David; Vienne, Alain; Decosta, Romain; Richard, Pascal; Lasri, Mohammed Amjad

    2014-07-01

    In order to test a preliminary orbit determination method, we fit an orbit of the geostationary satellite TELECOM-2D, as if we did not know any a priori information on its trajectory. The method is based on a genetic algorithm coupled to an analytical propagator of the trajectory, that is used over a couple of days, and that uses a whole set of altazimutal data that are acquired by the tracking network made up of the two TAROT telescopes. The adjusted orbit is then compared to a numerical reference. The method is described, and the results are analyzed, as a step towards an operational method of preliminary orbit determination for uncatalogued objects.

  2. Genetic evidence for an East Asian origin of Chinese Muslim populations Dongxiang and Hui

    PubMed Central

    Yao, Hong-Bing; Wang, Chuan-Chao; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Zhu, Bofeng; Kang, Longli; Jin, Li; Li, Hui

    2016-01-01

    There is a long-going debate on the genetic origin of Chinese Muslim populations, such as Uygur, Dongxiang, and Hui. However, genetic information for those Muslim populations except Uygur is extremely limited. In this study, we investigated the genetic structure and ancestry of Chinese Muslims by analyzing 15 autosomal short tandem repeats in 652 individuals from Dongxiang, Hui, and Han Chinese populations in Gansu province. Both genetic distance and Bayesian-clustering methods showed significant genetic homogeneity between the two Muslim populations and East Asian populations, suggesting a common genetic ancestry. Our analysis found no evidence of substantial gene flow from Middle East or Europe into Dongxiang and Hui people during their Islamization. The dataset generated in present study are also valuable for forensic identification and paternity tests in China. PMID:27924949

  3. Developing genetic competency in undergraduate nursing students through the context of human disease and the constructivist framework

    NASA Astrophysics Data System (ADS)

    Tribble, Leta Meole

    Nowhere is the influence of genetics more extensively seen than in medicine. More precise diagnostic testing, prevention methods, and risk counseling have resulted from recent decades of genetics research, including the Human Genome Project (HGP). The expansion in genetics knowledge and related technologies will drive a major paradigm shift from diagnosis and treatment to preventive medicine. Resulting from this predicted shift are educational challenges for healthcare professionals including both physicians and nurses. The largest group of healthcare providers is registered professional nurses whose work allows a unique and holistic view of patients and families, often caring for patients throughout the life span. Nurses need to understand basic genetic concepts including the role of genes in common diseases, to identify individuals at risk through the collection of informed family histories, to provide information about genetic testing and informed consent, and to know when and how to make appropriate referrals to genetic specialists. The purpose of this study was to expand the clinical application and use of genetic principles in patient management and care. To do this, a survey of South Carolina nursing educators from twenty two nursing programs was conducted to determine the extent of genetic content in the curriculum. The second part of the study was teaching a semester course in human genetics to undergraduate nursing students, a need identified in the literature review and supported by results of the nursing programs survey. Through the use of clinical case studies, PBL activities, and "shrink wrapped" lectures, all congruent with the constructivist viewpoint of learning, student's objective post-intervention measurements indicated significant improvement in content knowledge with an effect size of 1.6 and significant improvement in their ability to analyze and draw the family history in a pedigree format. An attitudinal tool used to assess student preferences of teaching approaches indicated preference for all three constructivist methods over traditional lecture.

  4. Optimal subset selection of primary sequence features using the genetic algorithm for thermophilic proteins identification.

    PubMed

    Wang, LiQiang; Li, CuiFeng

    2014-10-01

    A genetic algorithm (GA) coupled with multiple linear regression (MLR) was used to extract useful features from amino acids and g-gap dipeptides for distinguishing between thermophilic and non-thermophilic proteins. The method was trained by a benchmark dataset of 915 thermophilic and 793 non-thermophilic proteins. The method reached an overall accuracy of 95.4 % in a Jackknife test using nine amino acids, 38 0-gap dipeptides and 29 1-gap dipeptides. The accuracy as a function of protein size ranged between 85.8 and 96.9 %. The overall accuracies of three independent tests were 93, 93.4 and 91.8 %. The observed results of detecting thermophilic proteins suggest that the GA-MLR approach described herein should be a powerful method for selecting features that describe thermostabile machines and be an aid in the design of more stable proteins.

  5. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  6. Genetic Simulation Resources: a website for the registration and discovery of genetic data simulators

    PubMed Central

    Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Clarke, Lauren; Gillanders, Elizabeth; Feuer, Eric J.

    2013-01-01

    Summary: Many simulation methods and programs have been developed to simulate genetic data of the human genome. These data have been widely used, for example, to predict properties of populations retrospectively or prospectively according to mathematically intractable genetic models, and to assist the validation, statistical inference and power analysis of a variety of statistical models. However, owing to the differences in type of genetic data of interest, simulation methods, evolutionary features, input and output formats, terminologies and assumptions for different applications, choosing the right tool for a particular study can be a resource-intensive process that usually involves searching, downloading and testing many different simulation programs. Genetic Simulation Resources (GSR) is a website provided by the National Cancer Institute (NCI) that aims to help researchers compare and choose the appropriate simulation tools for their studies. This website allows authors of simulation software to register their applications and describe them with well-defined attributes, thus allowing site users to search and compare simulators according to specified features. Availability: http://popmodels.cancercontrol.cancer.gov/gsr. Contact: gsr@mail.nih.gov PMID:23435068

  7. A Prospective, Longitudinal Study of the Impact of GJB2/GJB6 Genetic Testing on the Beliefs and Attitudes of Parents of Deaf and Hard-of-Hearing Infants

    PubMed Central

    Palmer, Christina G.S.; Martinez, Ariadna; Fox, Michelle; Zhou, Jin; Shapiro, Nina; Sininger, Yvonne; Grody, Wayne W.; Schimmenti, Lisa A.

    2010-01-01

    There are limited data on the impact of incorporating genetic counseling and testing into the newborn hearing screening process. We report on results from a prospective, longitudinal study to determine the impact of genetic counseling and GJB2/GJB6 genetic testing on parental knowledge, attitudes, and beliefs about genetic testing. One hundred thirty culturally hearing parents of 93 deaf or hard-of-hearing children ages 0 – 3 years primarily identified through newborn hearing screening received pre- and post-test genetic counseling for GJB2 and GJB6. Parents completed questionnaires following pre-test counseling, and 1- and 6-months post-test result disclosure. Results indicate that following pre-test counseling all parents perceived benefits to genetic testing. While parents who received positive results continued to perceive benefits from testing, perceived benefit declined among parents who received inconclusive or negative results. Parents did not perceive genetic testing as harmful following pre-test counseling or receipt of test results. Parents who received positive test results performed better in understanding recurrence and causation of their child’s deafness and indicated greater interest in prenatal genetic testing than those who received inconclusive or negative test results. Parents felt that pediatricians and audiologists should inform parents of genetic testing availability; however, there was no consensus on timing of this discussion. Thus culturally hearing parents do not perceive genetic testing of their deaf or hard-of-hearing infants/toddlers as harmful; they feel that primary care providers should discuss genetic testing with them; and positive genetic test results with genetic counseling give rise to better understanding and perceived benefit than negative or inconclusive results. PMID:19449415

  8. A prospective, longitudinal study of the impact of GJB2/GJB6 genetic testing on the beliefs and attitudes of parents of deaf and hard-of-hearing infants.

    PubMed

    Palmer, Christina G S; Martinez, Ariadna; Fox, Michelle; Zhou, Jin; Shapiro, Nina; Sininger, Yvonne; Grody, Wayne W; Schimmenti, Lisa A

    2009-06-01

    There are limited data on the impact of incorporating genetic counseling and testing into the newborn hearing screening process. We report on results from a prospective, longitudinal study to determine the impact of genetic counseling and GJB2/GJB6 genetic testing on parental knowledge, attitudes, and beliefs about genetic testing. One hundred thirty culturally hearing parents of 93 deaf or hard-of-hearing children ages 0-3 years primarily identified through newborn hearing screening received pre- and post-test genetic counseling for GJB2 and GJB6. Parents completed questionnaires following pre-test counseling, and 1- and 6-month post-test result disclosure. Results indicate that following pre-test counseling all parents perceived benefits to genetic testing. While parents who received positive results continued to perceive benefits from testing, perceived benefit declined among parents who received inconclusive or negative results. Parents did not perceive genetic testing as harmful following pre-test counseling or receipt of test results. Parents who received positive test results performed better in understanding recurrence and causation of their child's deafness and indicated greater interest in prenatal genetic testing than those who received inconclusive or negative test results. Parents felt that pediatricians and audiologists should inform parents of genetic testing availability; however, there was no consensus on timing of this discussion. Thus culturally hearing parents do not perceive genetic testing of their deaf or hard-of-hearing infants/toddlers as harmful; they feel that primary care providers should discuss genetic testing with them; and positive genetic test results with genetic counseling give rise to better understanding and perceived benefit than negative or inconclusive results. (c) 2009 Wiley-Liss, Inc.

  9. Genetic Testing Integration Panels (GTIPs): A novel approach for considering integration of direct-to-consumer and other new genetic tests into patient care

    PubMed Central

    Uhlmann, Wendy R.; Sharp, Richard R.

    2014-01-01

    There has been a dramatic increase in the number of genetic tests available but few tests have practice guidelines. In addition, many tests have become available outside of genetics clinics through direct-to-consumer (DTC) companies and several offer tests not considered standard of care. To address several practical challenges associated with the rapid introduction of clinical and DTC genetic tests, we propose that genetic counselors and geneticists organize expert panels in their institutions to discuss the integration of new tests into patient care. We propose the establishment of Genetic Testing Integration Panels (GTIPs) to bring together local experts in medical genetics, genetic counseling, bioethics and law, health communication and clinical laboratory genetics. We describe key features of this approach and consider some of the potential advantages and limitations of using a GTIP to address the many clinical challenges raised by rapidly emerging clinical and DTC genetic tests. PMID:22246561

  10. Ten-year experiences on initial genetic examination in childhood acute lymphoblastic leukaemia in Hungary (1993-2002). Technical approaches and clinical implementation.

    PubMed

    Olah, Eva; Balogh, Erzsebet; Pajor, Laszlo; Jakab, Zsuzsanna

    2011-03-01

    A nationwide study was started in 1993 to provide genetic diagnosis for all newly diagnosed childhood ALL cases in Hungary using cytogenetic examination, DNA-index determination, FISH (aneuploidy, ABL/BCR, TEL/AML1) and molecular genetic tests (ABL/BCR, MLL/AF4, TEL/AML1). Aim of the study was to assess the usefulness of different genetic methods, to study the frequency of various aberrations and their prognostic significance. Results were synthesized for genetic subgrouping of patients. To assess the prognostic value of genetic aberrations overall and event-free survival of genetic subgroups were compared using Kaplan-Meier method. Prognostic role of aberrations was investigated by multivariate analysis (Cox's regression) as well in comparison with other factors (age, sex, major congenital abnormalities, initial WBC, therapy, immunophenotype). Five hundred eighty-eight ALL cases were diagnosed between 1993-2002. Cytogenetic examination was performed in 537 (91%) (success rate 73%), DNA-index in 265 (45%), FISH in 74 (13%), TEL/AML1 RT-PCR in 219 (37%) cases producing genetic diagnosis in 457 patients (78%). Proportion of subgroups with good prognosis in prae-B-cell ALL was lower than expected: hyperdiploidB 18% (73/400), TEL/AML1+ 9% (36/400). Univariate analysis showed significantly better 5-year EFS in TEL/AML1+ (82%) and hyperdiploidB cases (78%) than in tetraploid (44%) or pseudodiploid (52%) subgroups. By multivariate analysis main negative prognostic factors were: congenital abnormalities, high WBC, delay in therapy, specific translocations. Complementary use of each of genetic methods used is necessary for reliable genetic diagnosis according to the algorithm presented. Specific genetic alterations proved to be of prognostic significance.

  11. A risk-based classification scheme for genetically modified foods. II: Graded testing.

    PubMed

    Chao, Eunice; Krewski, Daniel

    2008-12-01

    This paper presents a graded approach to the testing of crop-derived genetically modified (GM) foods based on concern levels in a proposed risk-based classification scheme (RBCS) and currently available testing methods. A graded approach offers the potential for more efficient use of testing resources by focusing less on lower concern GM foods, and more on higher concern foods. In this proposed approach to graded testing, products that are classified as Level I would have met baseline testing requirements that are comparable to what is widely applied to premarket assessment of GM foods at present. In most cases, Level I products would require no further testing, or very limited confirmatory analyses. For products classified as Level II or higher, additional testing would be required, depending on the type of the substance, prior dietary history, estimated exposure level, prior knowledge of toxicity of the substance, and the nature of the concern related to unintended changes in the modified food. Level III testing applies only to the assessment of toxic and antinutritional effects from intended changes and is tailored to the nature of the substance in question. Since appropriate test methods are not currently available for all effects of concern, future research to strengthen the testing of GM foods is discussed.

  12. Testing for genetically modified organisms (GMOs): Past, present and future perspectives.

    PubMed

    Holst-Jensen, Arne

    2009-01-01

    This paper presents an overview of GMO testing methodologies and how these have evolved and may evolve in the next decade. Challenges and limitations for the application of the test methods as well as to the interpretation of results produced with the methods are highlighted and discussed, bearing in mind the various interests and competences of the involved stakeholders. To better understand the suitability and limitations of detection methodologies the evolution of transformation processes for creation of GMOs is briefly reviewed.

  13. Genetic counseling and the ethical issues around direct to consumer genetic testing.

    PubMed

    Hawkins, Alice K; Ho, Anita

    2012-06-01

    Over the last several years, direct to consumer(DTC) genetic testing has received increasing attention in the public, healthcare and academic realms. DTC genetic testing companies face considerable criticism and scepticism,particularly from the medical and genetic counseling community. This raises the question of what specific aspects of DTC genetic testing provoke concerns, and conversely,promises, for genetic counselors. This paper addresses this question by exploring DTC genetic testing through an ethic allens. By considering the fundamental ethical approaches influencing genetic counseling (the ethic of care and principle-based ethics) we highlight the specific ethical concerns raised by DTC genetic testing companies. Ultimately,when considering the ethics of DTC testing in a genetic counseling context, we should think of it as a balancing act. We need careful and detailed consideration of the risks and troubling aspects of such testing, as well as the potentially beneficial direct and indirect impacts of the increased availability of DTC genetic testing. As a result it is essential that genetic counselors stay informed and involved in the ongoing debate about DTC genetic testing and DTC companies. Doing so will ensure that the ethical theories and principles fundamental to the profession of genetic counseling are promoted not just in traditional counseling sessions,but also on a broader level. Ultimately this will help ensure that the public enjoys the benefits of an increasingly genetic based healthcare system.

  14. Diallel analysis for sex-linked and maternal effects.

    PubMed

    Zhu, J; Weir, B S

    1996-01-01

    Genetic models including sex-linked and maternal effects as well as autosomal gene effects are described. Monte Carlo simulations were conducted to compare efficiencies of estimation by minimum norm quadratic unbiased estimation (MINQUE) and restricted maximum likelihood (REML) methods. MINQUE(1), which has 1 for all prior values, has a similar efficiency to MINQUE(θ), which requires prior estimates of parameter values. MINQUE(1) has the advantage over REML of unbiased estimation and convenient computation. An adjusted unbiased prediction (AUP) method is developed for predicting random genetic effects. AUP is desirable for its easy computation and unbiasedness of both mean and variance of predictors. The jackknife procedure is appropriate for estimating the sampling variances of estimated variances (or covariances) and of predicted genetic effects. A t-test based on jackknife variances is applicable for detecting significance of variation. Worked examples from mice and silkworm data are given in order to demonstrate variance and covariance estimation and genetic effect prediction.

  15. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC).

    PubMed

    Caudle, Kelly E; Dunnenberger, Henry M; Freimuth, Robert R; Peterson, Josh F; Burlison, Jonathan D; Whirl-Carrillo, Michelle; Scott, Stuart A; Rehm, Heidi L; Williams, Marc S; Klein, Teri E; Relling, Mary V; Hoffman, James M

    2017-02-01

    Reporting and sharing pharmacogenetic test results across clinical laboratories and electronic health records is a crucial step toward the implementation of clinical pharmacogenetics, but allele function and phenotype terms are not standardized. Our goal was to develop terms that can be broadly applied to characterize pharmacogenetic allele function and inferred phenotypes. Terms currently used by genetic testing laboratories and in the literature were identified. The Clinical Pharmacogenetics Implementation Consortium (CPIC) used the Delphi method to obtain a consensus and agree on uniform terms among pharmacogenetic experts. Experts with diverse involvement in at least one area of pharmacogenetics (clinicians, researchers, genetic testing laboratorians, pharmacogenetics implementers, and clinical informaticians; n = 58) participated. After completion of five surveys, a consensus (>70%) was reached with 90% of experts agreeing to the final sets of pharmacogenetic terms. The proposed standardized pharmacogenetic terms will improve the understanding and interpretation of pharmacogenetic tests and reduce confusion by maintaining consistent nomenclature. These standard terms can also facilitate pharmacogenetic data sharing across diverse electronic health care record systems with clinical decision support.Genet Med 19 2, 215-223.

  16. How Is Genetic Testing Done?

    MedlinePlus

    ... does it take to get the results? Will health insurance cover the costs of genetic testing? What are the benefits of genetic testing? What are the risks and limitations of genetic testing? What is genetic ...

  17. QUANTITATIVE CANCER RISK ASSESSMENT METHODOLOGY USING SHORT-TERM GENETIC BIOASSAYS: THE COMPARATIVE POTENCY METHOD

    EPA Science Inventory

    Quantitative risk assessment is fraught with many uncertainties. The validity of the assumptions underlying the methods employed are often difficult to test or validate. Cancer risk assessment has generally employed either human epidemiological data from relatively high occupatio...

  18. Evaluating Genetic Counseling for Family Members of Individuals With Schizophrenia in the Molecular Age

    PubMed Central

    Bassett, Anne S.

    2014-01-01

    Background: Myths and concerns about the extent and meaning of genetic risk in schizophrenia may contribute to significant stigma and burden for families. Genetic counseling has long been proposed to be a potentially informative and therapeutic intervention for schizophrenia. Surprisingly, however, available data are limited. We evaluated a contemporary genetic counseling protocol for use in a community mental health-care setting by non–genetics professionals. Methods: We used a pre-post study design with longitudinal follow-up to assess the impact of genetic counseling on family members of individuals with schizophrenia, where molecular testing had revealed no known clinically relevant genetic risk variant. We assessed the outcome using multiple measures, including standard items and scales used to evaluate genetic counseling for other complex diseases. Results: Of the 122 family members approached, 78 (63.9%) actively expressed an interest in the study. Participants (n = 52) on average overestimated the risk of familial recurrence at baseline, and demonstrated a significant improvement in this estimate postintervention (P < .0001). This change was associated with an enduring decrease in concern about recurrence (P = .0003). Significant and lasting benefits were observed in other key areas, including increased knowledge (P < .0001) and a decreased sense of stigma (P = .0047). Endorsement of the need for genetic counseling was high (96.1%). Conclusions: These results provide initial evidence of the efficacy of schizophrenia genetic counseling for families, even in the absence of individually relevant genetic test results or professional genetics services. The findings support the integration of contemporary genetic counseling for families into the general management of schizophrenia in the community. PMID:23104866

  19. Genetic Testing and Parkinson Disease: Assessment of Patient Knowledge, Attitudes, and Interest

    PubMed Central

    Wood, Elisabeth McCarty; Xie, Sharon X.; Siderowf, Andrew; Van Deerlin, Vivianna M.

    2012-01-01

    The most common genetic contributor to late-onset Parkinson disease (PD) is the LRRK2 gene. In order to effectively integrate LRRK2 genetic testing into clinical practice, a strategy tailored to the PD population must be developed. We assessed 168 individuals with PD for baseline knowledge of genetics, perceived risk, and interest and opinions regarding genetic counseling and testing. Most participants felt that they were familiar with general genetics terms but overall knowledge levels were low, with an average score of 55%. The majority of participants thought it was likely they inherited a PD gene (72%), believed genetic testing for PD would be useful (86%), and were interested in genetic testing (59%) and genetic counseling (56%). However, only a few participants had heard of any genetic tests for PD (29%) or LRRK2 (10%). There appears to be a significant level of interest in genetics and genetic testing within the PD population, but a considerable deficit in genetics knowledge and an over-estimation of risk. Genetic education and counseling tools to address these needs were developed to provide patients with the ability to make informed and knowledgeable genetic testing decisions. PMID:21476119

  20. What Do the Results of Genetic Tests Mean?

    MedlinePlus

    ... does it take to get the results? Will health insurance cover the costs of genetic testing? What are the benefits of genetic testing? What are the risks and limitations of genetic testing? What is genetic ...

  1. New knowledge-based genetic algorithm for excavator boom structural optimization

    NASA Astrophysics Data System (ADS)

    Hua, Haiyan; Lin, Shuwen

    2014-03-01

    Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.

  2. Genetic testing: medico-legal issues.

    PubMed

    Bird, Sara

    2014-07-01

    The availability and frequency of genetic testing is increasing. Genetic testing poses some unique ethical and legal issues for medical practitioners because of the potential to identify genetic variants that carry implications for the risk of disease in the future for the patient and their relatives. The regulatory framework within which genetic testing is provided in Australia is also changing. This article examines some medico-legal issues associated with genetic testing that general practitioners (GPs) are likely encounter in their practices. There is inevitable involvement of the GP in the long term care of a patient (and possibly their family) following genetic testing, regardless of whether or not the GP has ordered the testing. Cases are presented to illustrate some of the medico-legal issues that may arise from direct-to-consumer genetic testing, information disclosure to genetic relatives and requests for parentage testing.

  3. Adults' perceptions of genetic counseling and genetic testing.

    PubMed

    Houfek, Julia Fisco; Soltis-Vaughan, Brigette S; Atwood, Jan R; Reiser, Gwendolyn M; Schaefer, G Bradley

    2015-02-01

    This study described the perceptions of genetic counseling and testing of adults (N = 116) attending a genetic education program. Understanding perceptions of genetic counseling, including the importance of counseling topics, will contribute to patient-focused care as clinical genetic applications for common, complex disorders evolve. Participants completed a survey addressing: the importance of genetic counseling topics, benefits and negative effects of genetic testing, and sharing test results. Topics addressing practical information about genetic conditions were rated most important; topics involving conceptual genetic/genomic principles were rated least important. The most frequently identified benefit and negative effect of testing were prevention/early detection/treatment and psychological distress. Participants perceived that they were more likely to share test results with first-degree than other relatives. Findings suggest providing patients with practical information about genetic testing and genetic contributions to disease, while also determining whether their self-care abilities would be enhanced by teaching genetic/genomic principles. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A multifactorial analysis of obesity as CVD risk factor: use of neural network based methods in a nutrigenetics context.

    PubMed

    Valavanis, Ioannis K; Mougiakakou, Stavroula G; Grimaldi, Keith A; Nikita, Konstantina S

    2010-09-08

    Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm. PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV) resampling. Classification accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets. The ANN based methods revealed factors that interactively contribute to obesity trait and provided predictive models with a promising generalization ability. In general, results showed that ANNs and their hybrids can provide useful tools for the study of complex traits in the context of nutrigenetics.

  5. Familial Hypercholesterolaemia in the Era of Genetic Testing.

    PubMed

    Hughes, D P; Viljoen, A; Wierzbicki, A S

    2016-05-01

    Familial hypercholesterolaemia (FH) is a relatively common autosomal dominant genetic condition leading to premature ischaemic vascular disease and mortality if left untreated. Currently, a universal consensus on the diagnostic criteria of FH does not exist but the diagnosis of FH largely relies on the evaluation of low density lipoprotein-cholesterol (LDL-C) levels, a careful documentation of family history, and the identification of clinical features. Diagnosis based purely on lipid levels remains common but there are several limitations to this method of diagnosis both practically and in the proportion of false-negatives and false-positives detected, resulting in substantial under-diagnosis of FH. In some countries, diagnostic algorithms are supplemented with genetic testing of the index case as well as genetic and lipid testing of relatives of the index case. Such "cascade" screening of families following identification of index cases appears to not only improve the rate of diagnosis but is also cost-effective. Currently, we observe a great variation in the excess mortality among patients with FH, which likely reflects a combination of additional genetic and environmental effects on risk overlaid on the risk associated with FH. Current accepted drug therapies for FH include statins and PSCK9 inhibitors. Further work is required to evaluate the cardiovascular disease risk in patients with genetically diagnosed FH and to determine whether a risk-based approach to the treatment of FH is appropriate.

  6. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.

  7. Awareness and uptake of direct-to-consumer genetic testing among cancer cases, their relatives, and controls: the Northwest Cancer Genetics Network.

    PubMed

    Hall, Taryn O; Renz, Anne D; Snapinn, Katherine W; Bowen, Deborah J; Edwards, Karen L

    2012-07-01

    To determine if awareness of, interest in, and use of direct-to-consumer (DTC) genetic testing is greater in a sample of high-risk individuals (cancer cases and their relatives), compared to controls. Participants were recruited from the Northwest Cancer Genetics Network. A follow-up survey was mailed to participants to assess DTC genetic testing awareness, interest, and use. One thousand two hundred sixty-seven participants responded to the survey. Forty-nine percent of respondents were aware of DTC genetic testing. Of those aware, 19% indicated interest in obtaining and <1% reported having used DTC genetic testing. Additional information supplied by respondents who reported use of DTC genetic tests indicated that 55% of these respondents likely engaged in clinical genetic testing, rather than DTC genetic testing. Awareness of DTC genetic testing was greater in our sample of high-risk individuals than in controls and population-based studies. Although interest in and use of these tests among cases in our sample were equivalent to other population-based studies, interest in testing was higher among relatives and people who self-referred for a registry focused on cancer than among cases and controls. Additionally, our results suggest that there may be some confusion about what constitutes DTC genetic testing.

  8. Ethnic differences in parental perceptions of genetic testing for deaf infants.

    PubMed

    Palmer, Christina G S; Martinez, Ariadna; Fox, Michelle; Sininger, Yvonne; Grody, Wayne W; Schimmenti, Lisa A

    2008-02-01

    As genetic testing becomes an integral part of the evaluation of deaf infants and children, it is important to understand parental views on genetic testing. The purpose of this study is to examine parental reasons for, and beliefs about, genetic testing for deafness in early-identified infants, and to determine if they differ as a function of ethnicity. We present baseline data collected from 56 Caucasian, 59 Hispanic, and 24 Asian parents of deaf children participating in a longitudinal, prospective study on genetic testing for connexin-related deafness. The overall finding is that reasons for, and beliefs about, genetic testing for deafness varied as a function of ethnicity. Virtually all parents sought genetic testing to understand why their child is deaf. However, Asian and/or Hispanic parents were more likely than Caucasian parents to view family planning, helping with their child's medical care, and helping the family as other important reasons for testing, and were more likely than Caucasian parents to perceive genetic testing to be useful for these purposes. Asian and Hispanic parents were more likely than Caucasian parents to perceive genetic testing in harmful terms. Genetic testing fulfills a cognitive need for parents to understand why their child is deaf, yet differences in responses suggest that Asian and Hispanic parents may seek testing for other purposes. Understanding different perspectives on genetic testing for deafness will enhance genetic counselors' cultural competence and facilitate the pre-test genetic counseling session.

  9. Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach

    PubMed Central

    2011-01-01

    Background In aquaculture breeding, resistance against infectious diseases is commonly assessed as time until death under exposure to a pathogen. For some diseases, a fraction of the individuals may appear as "cured" (non-susceptible), and the resulting survival time may thus be a result of two confounded underlying traits, i.e., endurance (individual hazard) and susceptibility (whether at risk or not), which may be accounted for by fitting a cure survival model. We applied a cure model to survival data of Pacific white shrimp (Penaeus vannamei) challenged with the Taura syndrome virus, which is one of the major pathogens of Panaeid shrimp species. Methods In total, 15,261 individuals of 513 full-sib families from three generations were challenge-tested in 21 separate tests (tanks). All challenge-tests were run until mortality naturally ceased. Time-until-event data were analyzed with a mixed cure survival model using Gibbs sampling, treating susceptibility and endurance as separate genetic traits. Results Overall mortality at the end of test was 28%, while 38% of the population was considered susceptible to the disease. The estimated underlying heritability was high for susceptibility (0.41 ± 0.07), but low for endurance (0.07 ± 0.03). Furthermore, endurance and susceptibility were distinct genetic traits (rg = 0.22 ± 0.25). Estimated breeding values for endurance and susceptibility were only moderately correlated (0.50), while estimated breeding values from classical models for analysis of challenge-test survival (ignoring the cured fraction) were closely correlated with estimated breeding values for susceptibility, but less correlated with estimated breeding values for endurance. Conclusions For Taura syndrome resistance, endurance and susceptibility are apparently distinct genetic traits. However, genetic evaluation of susceptibility based on the cure model showed clear associations with standard genetic evaluations that ignore the cure fraction for these data. Using the current testing design, genetic variation in observed survival time and absolute survival at the end of test were most likely dominated by genetic variation in susceptibility. If the aim is to reduce susceptibility, earlier termination of the challenge-test or back-truncation of the follow-up period should be avoided, as this may shift focus of selection towards endurance rather than susceptibility. PMID:21418636

  10. A universal genetic testing initiative for patients with high-grade, non-mucinous epithelial ovarian cancer and the implications for cancer treatment.

    PubMed

    Bednar, Erica M; Oakley, Holly D; Sun, Charlotte C; Burke, Catherine C; Munsell, Mark F; Westin, Shannon N; Lu, Karen H

    2017-08-01

    Genetic counseling (GC) and germline genetic testing (GT) for BRCA1 and BRCA2 are considered standard of care for patients with high-grade, non-mucinous epithelial ovarian, fallopian tube, and primary peritoneal cancers (HGOC). We describe a universal genetic testing initiative to increase the rates of recommendation and acceptance of GC and GT to >80% for patients with HGOC at our institution. Data from a consecutive cohort of patients seen in our gynecologic oncology clinics between 9/1/2012 and 8/31/2015 for evaluation of HGOC were retrospectively analyzed. Data were abstracted from the tumor registry, medical records, and research databases. Descriptive statistics were used to evaluate patient characteristics and GC, GT, and PARP inhibitor use. Various clinic interventions were developed, influenced by the Plan-Do-Study-Act cycle method, which included physician-coordinated GT, integrated GC, and assisted GC referrals. A cohort of 1636 patients presented to the gynecologic oncology clinics for evaluation of HGOC during our study period, and 1423 (87.0%) were recommended to have GC and GT. Of these, 1214 (85.3%) completed GT and 217 (17.9%) were found to have a BRCA1 or BRCA2 mutation. Among BRCA-positive patients, 167 had recurrent or progressive disease, and 56 of those received PARP inhibitor therapy. The rates of GC and GT recommendation and completion among patients with HGOC at our institution exceeded 80% following the implementation of a universal genetic testing initiative. Universal genetic testing of patients with HGOC is one strategy to identify those who may benefit from PARP inhibitor therapy. Copyright © 2017. Published by Elsevier Inc.

  11. Recommendations for genetic testing to reduce the incidence of anthracycline‐induced cardiotoxicity

    PubMed Central

    Aminkeng, Folefac; Ross, Colin J. D.; Rassekh, Shahrad R.; Hwang, Soomi; Rieder, Michael J.; Bhavsar, Amit P.; Smith, Anne; Sanatani, Shubhayan; Gelmon, Karen A.; Bernstein, Daniel; Hayden, Michael R.; Amstutz, Ursula

    2016-01-01

    Aims Anthracycline‐induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline‐based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence‐based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk. Methods We followed a standard guideline development process, including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group. Results RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B – moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow‐up, as well as therapeutic options within the current standard of clinical practice. Conclusions Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT. PMID:27197003

  12. What Are the Risks and Limitations of Genetic Testing?

    MedlinePlus

    ... does it take to get the results? Will health insurance cover the costs of genetic testing? What are the benefits of genetic testing? What are the risks and limitations of genetic testing? What is genetic ...

  13. The genetics of malignant hyperthermia.

    PubMed Central

    Ball, S P; Johnson, K J

    1993-01-01

    Malignant hyperthermia susceptibility remains the commonest cause of death owing to general anaesthesia. This is despite the availability of presymptomatic testing, admittedly by a highly invasive method, and a recognised treatment for implementation immediately a patient shows signs of developing a crisis. Recently the finding of linkage to markers from chromosome 19q13.1-13.2 and the identification of mutations in a candidate gene held out hope of genetic diagnosis being available. However, it is likely that only about 50% of families have a mutation of the skeletal muscle calcium release channel gene. With this degree of genetic heterogeneity, presymptomatic testing based on DNA markers can only be offered at present to a limited number of families where linkage to markers from 19q13.1-13.2 has been clearly shown. Images PMID:8383206

  14. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang

    2017-12-01

    This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.

  15. Pulmonary arterial hypertension: Specialists’ knowledge, practices, and attitudes of genetic counseling and genetic testing in the USA

    PubMed Central

    Jacher, Joseph E.; Martin, Lisa J.; Chung, Wendy K.; Loyd, James E.; Nichols, William C.

    2017-01-01

    Pulmonary arterial hypertension (PAH) is characterized by obstruction of pre-capillary pulmonary arteries, which leads to sustained elevation of pulmonary arterial pressure. Identifying those at risk through early interventions, such as genetic testing, may mitigate disease course. Current practice guidelines recommend genetic counseling and offering genetic testing to individuals with heritable PAH, idiopathic PAH, and their family members. However, it is unclear if PAH specialists follow these recommendations. Thus, our research objective was to determine PAH specialists’ knowledge, utilization, and perceptions about genetic counseling and genetic testing. A survey was designed and distributed to PAH specialists who primarily work in the USA to assess their knowledge, practices, and attitudes about the genetics of PAH. Participants’ responses were analyzed using parametric and non-parametric statistics and groups were compared using the Wilcoxon rank sum test. PAH specialists had low perceived and actual knowledge of the genetics of PAH, with 13.2% perceiving themselves as knowledgeable and 27% actually being knowledgeable. Although these specialists had positive or ambivalent attitudes about genetic testing and genetic counseling, they had poor utilization of these genetic services, with almost 80% of participants never or rarely ordering genetic testing or referring their patients with PAH for genetic counseling. Physicians were more knowledgeable, but had lower perceptions of the value of genetic testing and genetic counseling compared to non-physicians (P < 0.05). The results suggest that increased education and awareness is needed about the genetics of PAH as well as the benefits of genetic testing and genetic counseling for individuals who treat patients with PAH. PMID:28597770

  16. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms.

    PubMed

    Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong

    2013-08-01

    Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.

  17. How Can Consumers Be Sure a Genetic Test Is Valid and Useful?

    MedlinePlus

    ... does it take to get the results? Will health insurance cover the costs of genetic testing? What are the benefits of genetic testing? What are the risks and limitations of genetic testing? What is genetic ...

  18. The Salmonella Mutagenicity Assay: The Stethoscope of Genetic Toxicology for the 21 st Century

    EPA Science Inventory

    OBJECTIVES: According to the 2007 National Research Council report Toxicology for the Twenty-first Century, modem methods ("omics," in vitro assays, high-throughput testing, computational methods, etc.) will lead to the emergence of a new approach to toxicology. The Salmonella ma...

  19. Assessing Genetic Literacy Awareness and Knowledge Gaps in the US Population: Results from the Health Information National Trends Survey.

    PubMed

    Krakow, Melinda; Ratcliff, Chelsea L; Hesse, Bradford W; Greenberg-Worisek, Alexandra J

    2018-05-31

    Public understanding of the role of genetics in disease risk is key to appropriate disease prevention and detection. This study assessed the current extent of awareness and use of genetic testing in the US population. Additionally, the study identified characteristics of subgroups more likely to be at risk for low genetic literacy. The study used data from the National Cancer Institute's 2017 Health Information National Trends Survey, including measures of genetic testing awareness, genetic testing applications and genetic testing usage. Multivariable logistic regression models estimated associations between sociodemographics, genetic testing awareness, and genetic testing use. Fifty-seven percent of respondents were aware of genetic tests. Testing awareness differed by age, household income, and race/ethnicity. Most participants had heard of using tests to determine personal disease risk (82.58%) or inherited disease risk in children (81.41%), but less were familiar with determining treatment (38.29%) or drug efficacy (40.76%). Among those with genetic testing awareness, actual testing uptake was low. A large portion of the general public lacks genetic testing awareness and may benefit from educational campaigns. As precision medicine expands, increasing public awareness about genetic testing applications for disease prevention and treatment will be important to support population health. This is a work of the US Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. Published by S. Karger AG, Basel.

  20. Prediction/discussion-based learning cycle versus conceptual change text: comparative effects on students' understanding of genetics

    NASA Astrophysics Data System (ADS)

    khawaldeh, Salem A. Al

    2013-07-01

    Background and purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test-post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test-post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students' understanding of science.

  1. Filtering genetic variants and placing informative priors based on putative biological function.

    PubMed

    Friedrichs, Stefanie; Malzahn, Dörthe; Pugh, Elizabeth W; Almeida, Marcio; Liu, Xiao Qing; Bailey, Julia N

    2016-02-03

    High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop (GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and adjusting the significance level for correlations between variants yielded significant associations with blood pressure traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027 in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common variants, which was observed to depend on linkage disequilibrium structure.

  2. Patients with Amyotrophic Lateral Sclerosis Have High Interest in and Limited Access to Genetic Testing.

    PubMed

    Wagner, Karin N; Nagaraja, Haikady; Allain, Dawn C; Quick, Adam; Kolb, Stephen; Roggenbuck, Jennifer

    2017-06-01

    Although genetic testing for amyotrophic lateral sclerosis (ALS) is widely available, it is unknown what proportion of patients with ALS have access to genetic counseling and testing, and patient attitudes towards ALS genetic testing have not been studied. We conducted a national survey of ALS patients enrolled in the Agency for Toxic Substances and Disease Registry, which consisted of multiple choice questions and two 12 item Likert scale series assessing respondents' experience with and attitude toward genetic testing. The survey had an 8 % response rate, with 449 completed responses. Genetic testing was offered to 33.4 % and completed by 67.1 % of those offered. A minority of respondents (12.5 %) saw a genetic counselor, and were much more likely to be offered genetic testing (p = 0.0001). Respondents with a family history of ALS (8.4 %) were more likely to be offered testing (p = 0.0001) and complete testing (p = 0.05). Respondents with a family history of ALS were more likely to report a favorable attitude towards genetic testing (p = 0.0003), as were respondents who saw a genetic counselor (p = 0.02). The majority of respondents (82.7 %) felt that genetic testing should be offered to all patients with ALS. Our results indicate that ALS patients may have limited access to genetic testing, but perceive benefit from this service. Development of practice guidelines for genetic testing in ALS, to include the routine offer of genetic counseling, may result in broader and more consistent access to these services.

  3. Introducing genetic testing for cardiovascular disease in primary care: a qualitative study.

    PubMed

    Middlemass, Jo B; Yazdani, Momina F; Kai, Joe; Standen, Penelope J; Qureshi, Nadeem

    2014-05-01

    While primary care systematically offers conventional cardiovascular risk assessment, genetic tests for coronary heart disease (CHD) are increasingly commercially available to patients. It is unclear how individuals may respond to these new sources of risk information. To explore how patients who have had a recent conventional cardiovascular risk assessment, perceive additional information from genetic testing for CHD. Qualitative interview study in 12 practices in Nottinghamshire from both urban and rural settings. Interviews were conducted with 29 adults, who consented to genetic testing after having had a conventional cardiovascular risk assessment. Individuals' principal motivation for genetic testing was their family history of CHD and a desire to convey the results to their children. After testing, however, there was limited recall of genetic test results and scepticism about the value of informing their children. Participants dealt with conflicting findings from the genetic test, family history, and conventional assessment by either focusing on genetic risk or environmental lifestyle factors. In some participants, genetic test results appeared to reinforce healthy behaviour but others were falsely reassured, despite having an 'above-average' conventional cardiovascular risk score. Although genetic testing was acceptable, participants were unclear how to interpret genetic risk results. To facilitate healthy behaviour, health professionals should explore patients' understanding of genetic test results in light of their family history and conventional risk assessment.

  4. Genetic sex determination assays in 53 mammalian species: Literature analysis and guidelines for reporting standardization.

    PubMed

    Hrovatin, Karin; Kunej, Tanja

    2018-01-01

    Erstwhile, sex was determined by observation, which is not always feasible. Nowadays, genetic methods are prevailing due to their accuracy, simplicity, low costs, and time-efficiency. However, there is no comprehensive review enabling overview and development of the field. The studies are heterogeneous, lacking a standardized reporting strategy. Therefore, our aim was to collect genetic sexing assays for mammals and assemble them in a catalogue with unified terminology. Publications were extracted from online databases using key words such as sexing and molecular. The collected data were supplemented with species and gene IDs and the type of sex-specific sequence variant (SSSV). We developed a catalogue and graphic presentation of diagnostic tests for molecular sex determination of mammals, based on 58 papers published from 2/1991 to 10/2016. The catalogue consists of five categories: species, genes, SSSVs, methods, and references. Based on the analysis of published literature, we propose minimal requirements for reporting, consisting of: species scientific name and ID, genetic sequence with name and ID, SSSV, methodology, genomic coordinates (e.g., restriction sites, SSSVs), amplification system, and description of detected amplicon and controls. The present study summarizes vast knowledge that has up to now been scattered across databases, representing the first step toward standardization regarding molecular sexing, enabling a better overview of existing tests and facilitating planned designs of novel tests. The project is ongoing; collecting additional publications, optimizing field development, and standardizing data presentation are needed.

  5. A practical guide to environmental association analysis in landscape genomics.

    PubMed

    Rellstab, Christian; Gugerli, Felix; Eckert, Andrew J; Hancock, Angela M; Holderegger, Rolf

    2015-09-01

    Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next-generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced-representation sequencing, candidate-gene approaches, linearity of allele-environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies. © 2015 John Wiley & Sons Ltd.

  6. Using genetic algorithms to determine near-optimal pricing, investment and operating strategies in the electric power industry

    NASA Astrophysics Data System (ADS)

    Wu, Dongjun

    Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.

  7. A unified partial likelihood approach for X-chromosome association on time-to-event outcomes.

    PubMed

    Xu, Wei; Hao, Meiling

    2018-02-01

    The expression of X-chromosome undergoes three possible biological processes: X-chromosome inactivation (XCI), escape of the X-chromosome inactivation (XCI-E), and skewed X-chromosome inactivation (XCI-S). Although these expressions are included in various predesigned genetic variation chip platforms, the X-chromosome has generally been excluded from the majority of genome-wide association studies analyses; this is most likely due to the lack of a standardized method in handling X-chromosomal genotype data. To analyze the X-linked genetic association for time-to-event outcomes with the actual process unknown, we propose a unified approach of maximizing the partial likelihood over all of the potential biological processes. The proposed method can be used to infer the true biological process and derive unbiased estimates of the genetic association parameters. A partial likelihood ratio test statistic that has been proved asymptotically chi-square distributed can be used to assess the X-chromosome genetic association. Furthermore, if the X-chromosome expression pertains to the XCI-S process, we can infer the correct skewed direction and magnitude of inactivation, which can elucidate significant findings regarding the genetic mechanism. A population-level model and a more general subject-level model have been developed to model the XCI-S process. Finite sample performance of this novel method is examined via extensive simulation studies. An application is illustrated with implementation of the method on a cancer genetic study with survival outcome. © 2017 WILEY PERIODICALS, INC.

  8. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?

    PubMed

    Veturi, Yogasudha; Ritchie, Marylyn D

    2018-01-01

    Transcriptome-wide association studies (TWAS) have recently been employed as an approach that can draw upon the advantages of genome-wide association studies (GWAS) and gene expression studies to identify genes associated with complex traits. Unlike standard GWAS, summary level data suffices for TWAS and offers improved statistical power. Two popular TWAS methods include either (a) imputing the cis genetic component of gene expression from smaller sized studies (using multi-SNP prediction or MP) into much larger effective sample sizes afforded by GWAS - TWAS-MP or (b) using summary-based Mendelian randomization - TWAS-SMR. Although these methods have been effective at detecting functional variants, it remains unclear how extensive variability in the genetic architecture of complex traits and diseases impacts TWAS results. Our goal was to investigate the different scenarios under which these methods yielded enough power to detect significant expression-trait associations. In this study, we conducted extensive simulations based on 6000 randomly chosen, unrelated Caucasian males from Geisinger's MyCode population to compare the power to detect cis expression-trait associations (within 500 kb of a gene) using the above-described approaches. To test TWAS across varying genetic backgrounds we simulated gene expression and phenotype using different quantitative trait loci per gene and cis-expression /trait heritability under genetic models that differentiate the effect of causality from that of pleiotropy. For each gene, on a training set ranging from 100 to 1000 individuals, we either (a) estimated regression coefficients with gene expression as the response using five different methods: LASSO, elastic net, Bayesian LASSO, Bayesian spike-slab, and Bayesian ridge regression or (b) performed eQTL analysis. We then sampled with replacement 50,000, 150,000, and 300,000 individuals respectively from the testing set of the remaining 5000 individuals and conducted GWAS on each set. Subsequently, we integrated the GWAS summary statistics derived from the testing set with the weights (or eQTLs) derived from the training set to identify expression-trait associations using (a) TWAS-MP (b) TWAS-SMR (c) eQTL-based GWAS, or (d) standalone GWAS. Finally, we examined the power to detect functionally relevant genes using the different approaches under the considered simulation scenarios. In general, we observed great similarities among TWAS-MP methods although the Bayesian methods resulted in improved power in comparison to LASSO and elastic net as the trait architecture grew more complex while training sample sizes and expression heritability remained small. Finally, we observed high power under causality but very low to moderate power under pleiotropy.

  9. An application of traveling salesman problem using the improved genetic algorithm on android google maps

    NASA Astrophysics Data System (ADS)

    Narwadi, Teguh; Subiyanto

    2017-03-01

    The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, which means that no exact algorithm to solve it in polynomial time. This paper present a new variant application genetic algorithm approach with a local search technique has been developed to solve the TSP. For the local search technique, an iterative hill climbing method has been used. The system is implemented on the Android OS because android is now widely used around the world and it is mobile system. It is also integrated with Google API that can to get the geographical location and the distance of the cities, and displays the route. Therefore, we do some experimentation to test the behavior of the application. To test the effectiveness of the application of hybrid genetic algorithm (HGA) is compare with the application of simple GA in 5 sample from the cities in Central Java, Indonesia with different numbers of cities. According to the experiment results obtained that in the average solution HGA shows in 5 tests out of 5 (100%) is better than simple GA. The results have shown that the hybrid genetic algorithm outperforms the genetic algorithm especially in the case with the problem higher complexity.

  10. What is in a cause? Exploring the relationship between genetic cause and felt stigma

    PubMed Central

    Sankar, Pamela; Cho, Mildred K.; Wolpe, Paul Root; Schairer, Cynthia

    2008-01-01

    Purpose Concern over stigma as a consequence of genetic testing has grown in response to the recent increase in genetic research and testing resulting from the Human Genome Project. However, whether a genetic or hereditary basis necessarily confers a stigma to a condition remains unexamined. Methods We performed a qualitative interview study with 86 individuals with one of four conditions: deafness or hearing loss, breast cancer, sickle cell disease, and cystic fibrosis. The first two groups were divided approximately between people who ascribed their conditions to a genetic or hereditary cause and those who did not. Results Respondents interpreted genetic or hereditary causes and nongenetic causes in a variety of ways. Subjects with breast cancer reported the most consistently negative interpretation of genetic cause. This response concerned future ill health, not an enduring sense of stigma. Deaf and hard of hearing subjects provided the most consistently positive comments about a genetic or hereditary basis to their condition, casting familial hearing loss as a vital component of group and individual identity. Respondents with sickle cell disease and cystic fibrosis offered similar and positive interpretations of the genetic cause of their condition insofar as it meant their conditions were not contagious. Conclusions Although some subjects report feeling stigmatized as a result of their condition, this stigmatization is not uniformly associated with the condition’s cause, genetic or otherwise. Instead, stigma emerges from a variety of sources in the context of the lived experience of a particular condition. PMID:16418597

  11. Quantitative characterization of genetic parts and circuits for plant synthetic biology.

    PubMed

    Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok

    2016-01-01

    Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.

  12. Wildlife forensic science: A review of genetic geographic origin assignment.

    PubMed

    Ogden, Rob; Linacre, Adrian

    2015-09-01

    Wildlife forensic science has become a key means of enforcing legislation surrounding the illegal trade in protected and endangered species. A relatively new dimension to this area of forensic science is to determine the geographic origin of a seized sample. This review focuses on DNA testing, which relies on assignment of an unknown sample to its genetic population of origin. Key examples of this are the trade in timber, fish and ivory and these are used only to illustrate the large number of species for which this type of testing is potentially available. The role of mitochondrial and nuclear DNA markers is discussed, alongside a comparison of neutral markers with those exhibiting signatures of selection, which potentially offer much higher levels of assignment power to address specific questions. A review of assignment tests is presented along with detailed methods for evaluating error rates and considerations for marker selection. The availability and quality of reference data are of paramount importance to support assignment applications and ensure reliability of any conclusions drawn. The genetic methods discussed have been developed initially as investigative tools but comment is made regarding their use in courts. The potential to compliment DNA markers with elemental assays for greater assignment power is considered and finally recommendations are made for the future of this type of testing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Upweighting rare favourable alleles increases long-term genetic gain in genomic selection programs.

    PubMed

    Liu, Huiming; Meuwissen, Theo H E; Sørensen, Anders C; Berg, Peer

    2015-03-21

    The short-term impact of using different genomic prediction (GP) models in genomic selection has been intensively studied, but their long-term impact is poorly understood. Furthermore, long-term genetic gain of genomic selection is expected to improve by using Jannink's weighting (JW) method, in which rare favourable marker alleles are upweighted in the selection criterion. In this paper, we extend the JW method by including an additional parameter to decrease the emphasis on rare favourable alleles over the time horizon, with the purpose of further improving the long-term genetic gain. We call this new method dynamic weighting (DW). The paper explores the long-term impact of different GP models with or without weighting methods. Different selection criteria were tested by simulating a population of 500 animals with truncation selection of five males and 50 females. Selection criteria included unweighted and weighted genomic estimated breeding values using the JW or DW methods, for which ridge regression (RR) and Bayesian lasso (BL) were used to estimate marker effects. The impacts of these selection criteria were compared under three genetic architectures, i.e. varying numbers of QTL for the trait and for two time horizons of 15 (TH15) or 40 (TH40) generations. For unweighted GP, BL resulted in up to 21.4% higher long-term genetic gain and 23.5% lower rate of inbreeding under TH40 than RR. For weighted GP, DW resulted in 1.3 to 5.5% higher long-term gain compared to unweighted GP. JW, however, showed a 6.8% lower long-term genetic gain relative to unweighted GP when BL was used to estimate the marker effects. Under TH40, both DW and JW obtained significantly higher genetic gain than unweighted GP. With DW, the long-term genetic gain was increased by up to 30.8% relative to unweighted GP, and also increased by 8% relative to JW, although at the expense of a lower short-term gain. Irrespective of the number of QTL simulated, BL is superior to RR in maintaining genetic variance and therefore results in higher long-term genetic gain. Moreover, DW is a promising method with which high long-term genetic gain can be expected within a fixed time frame.

  14. Genetics educational needs in China: physicians' experience and knowledge of genetic testing.

    PubMed

    Li, Jing; Xu, Tengda; Yashar, Beverly M

    2015-09-01

    The aims of this study were to explore the relationship between physicians' knowledge and utilization of genetic testing and to explore genetics educational needs in China. An anonymous survey about experience, attitudes, and knowledge of genetic testing was conducted among physicians affiliated with Peking Union Medical College Hospital during their annual health evaluation. A personal genetics knowledge score was developed and predictors of personal genetics knowledge score were evaluated. Sixty-four physicians (33% male) completed the survey. Fifty-eight percent of them had used genetic testing in their clinical practice. Using a 4-point scale, mean knowledge scores of six common genetic testing techniques ranged from 1.7 ± 0.9 to 2.4 ± 1.0, and the average personal genetics knowledge score was 2.1 ± 0.8. In regression analysis, significant predictors of higher personal genetics knowledge score were ordering of genetic testing, utilization of pedigrees, higher medical degree, and recent genetics training (P < 0.05). Sixty-six percent of physicians indicated a desire for specialized genetic services, and 84% reported a desire for additional genetics education. This study demonstrated a sizable gap between Chinese physicians' knowledge and utilization of genetic testing. Participants had high self-perceived genetics educational needs. Development of genetics educational platforms is both warranted and desired in China.Genet Med 17 9, 757-760.

  15. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].

    PubMed

    Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing

    2015-01-01

    In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.

  16. Automation of diagnostic genetic testing: mutation detection by cyclic minisequencing.

    PubMed

    Alagrund, Katariina; Orpana, Arto K

    2014-01-01

    The rising role of nucleic acid testing in clinical decision making is creating a need for efficient and automated diagnostic nucleic acid test platforms. Clinical use of nucleic acid testing sets demands for shorter turnaround times (TATs), lower production costs and robust, reliable methods that can easily adopt new test panels and is able to run rare tests in random access principle. Here we present a novel home-brew laboratory automation platform for diagnostic mutation testing. This platform is based on the cyclic minisequecing (cMS) and two color near-infrared (NIR) detection. Pipetting is automated using Tecan Freedom EVO pipetting robots and all assays are performed in 384-well micro plate format. The automation platform includes a data processing system, controlling all procedures, and automated patient result reporting to the hospital information system. We have found automated cMS a reliable, inexpensive and robust method for nucleic acid testing for a wide variety of diagnostic tests. The platform is currently in clinical use for over 80 mutations or polymorphisms. Additionally to tests performed from blood samples, the system performs also epigenetic test for the methylation of the MGMT gene promoter, and companion diagnostic tests for analysis of KRAS and BRAF gene mutations from formalin fixed and paraffin embedded tumor samples. Automation of genetic test reporting is found reliable and efficient decreasing the work load of academic personnel.

  17. Genetic basis for using Tradescantia clone 4430 as an environmental monitor of mutagens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmerling-Thompson, M.; Nawrocky, M.M.

    1980-01-01

    The Tradescantia stamen hair system developed by the late Dr. Arnold H. Sparrow has been used in a wide variety of radiobiological studies, and more recently as an environmental monitor for assessing the potential genetic hazards of various gaseous chemicals of both industrial and natural origin. The use of this system as a genetic monitor necessitates a thorough genetic analysis of the marker employed to measure mutagenicity. The phenotypic change in color from blue to pink in either petal or stamen hair cells has been used as a genetic marker under the assumption that the petal and stamen hair cellsmore » are heterozygous for blue, and if the dominant allele for blue color mutates or is lost, the recessive allele determines that the daughter cells will be pink. It is the purpose of this communication to present the results of genetic tests by conventional breeding methods involving the pink locus in Tradescantia clone 4430, the diploid clone used exclusively in the Mobile Monitoring Vehicle at Brookhaven National Laboratory. Confirmation of a genetic, as opposed to a physiological, origin of the pink color in the petal and stamen hair cells of Tradescantia clone 4430 is essential to evaluating the validity of this test system.« less

  18. Inferring Causalities in Landscape Genetics: An Extension of Wright's Causal Modeling to Distance Matrices.

    PubMed

    Fourtune, Lisa; Prunier, Jérôme G; Paz-Vinas, Ivan; Loot, Géraldine; Veyssière, Charlotte; Blanchet, Simon

    2018-04-01

    Identifying landscape features that affect functional connectivity among populations is a major challenge in fundamental and applied sciences. Landscape genetics combines landscape and genetic data to address this issue, with the main objective of disentangling direct and indirect relationships among an intricate set of variables. Causal modeling has strong potential to address the complex nature of landscape genetic data sets. However, this statistical approach was not initially developed to address the pairwise distance matrices commonly used in landscape genetics. Here, we aimed to extend the applicability of two causal modeling methods-that is, maximum-likelihood path analysis and the directional separation test-by developing statistical approaches aimed at handling distance matrices and improving functional connectivity inference. Using simulations, we showed that these approaches greatly improved the robustness of the absolute (using a frequentist approach) and relative (using an information-theoretic approach) fits of the tested models. We used an empirical data set combining genetic information on a freshwater fish species (Gobio occitaniae) and detailed landscape descriptors to demonstrate the usefulness of causal modeling to identify functional connectivity in wild populations. Specifically, we demonstrated how direct and indirect relationships involving altitude, temperature, and oxygen concentration influenced within- and between-population genetic diversity of G. occitaniae.

  19. Perception of Genetic Testing for Deafness and Factors Associated with Interest in Genetic Testing Among Deaf People in a Selected Population in Sub-Saharan Africa.

    PubMed

    Adedokun, Babatunde O; Yusuf, Bidemi O; Lasisi, J Taye; Jinadu, A A; Sunmonu, M T; Ashanke, A F; Lasisi, O Akeem

    2015-12-01

    Understanding the perceptions of genetic testing by members of the deaf community may help in planning deafness genetics research, especially so in the context of strong adherence to cultural values as found among native Africans. Among Yorubas in Nigeria, deafness is perceived to be caused by some offensive actions of the mother during pregnancy, spiritual attack, and childhood infections. We studied attitudes towards, and acceptance of genetic testing by the deaf community in Nigeria. Structured questionnaires were administered to individuals sampled from the Vocational Training Centre for the Deaf, the religious Community, and government schools, among others. The main survey items elicited information about the community in which the deaf people participate, their awareness of genetic testing, whether or not they view genetic testing as acceptable, and their understanding of the purpose of genetic testing. There were 150 deaf participants (61.3 % males, 38.7 % females) with mean age of 26.7 years ±9.8. A majority of survey respondents indicated they relate only with other members of the deaf community (78 %) and reported believing genetic testing does more good than harm (79.3 %); 57 % expressed interest in genetic testing. Interest in genetic testing for deafness or in genetic testing in pregnancy was not related to whether respondents relate primarily to the deaf or to the hearing community. However, a significantly higher number of male respondents and respondents with low education reported interest in genetic testing.

  20. The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models

    PubMed Central

    Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.

    2015-01-01

    The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318

  1. Boolean dynamics of genetic regulatory networks inferred from microarray time series data

    DOE PAGES

    Martin, Shawn; Zhang, Zhaoduo; Martino, Anthony; ...

    2007-01-31

    Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this paper we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our methodmore » first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation–inhibition networks to match the discretized data. In conclusion, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics.« less

  2. Strain gage selection in loads equations using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.

  3. Statement of the ESHG on direct-to-consumer genetic testing for health-related purposes

    PubMed Central

    2010-01-01

    Many private companies offer direct-to-consumer (DTC) genetic testing services. Some tests may detect severe and highly penetrant monogenic disorders, while other tests are for genetic variants found associated with increased susceptibility for common and complex diseases in large-scale population studies. Through its Public and Professional Policy committee followed by member and expert consultation, the European Society of Human Genetics has developed the following policy on advertising and provision of predictive genetic tests by such DTC companies: (1) clinical utility of a genetic test shall be an essential criterion for deciding to offer this test to a person or a group of persons; (2) laboratories providing genetic tests should comply with accepted quality standards, including those regarding laboratory personnel qualifications; (3) information about the purpose and appropriateness of testing should be given before the test is done; (4) genetic counselling appropriate to the type of test and disease should be offered; and for some tests psychosocial evaluation and follow-up should be available; (5) privacy and confidentiality of sensitive genetic information should be secured and the data safely guarded; (6) special measures should be taken to avoid inappropriate testing of minors and other legally incapacitated persons; (7) all claims regarding genetic tests should be transparent; advertisement should be unbiased and marketing of genetic tests should be fair; (8) in biomedical research, health care and marketing, respect should be given to relevant ethical principles, as well as international treaties and recommendations regarding genetic testing; and (9) nationally approved guidelines considering all the above-mentioned aspects should be made and followed. PMID:20736974

  4. Genetic testing of newborns for type 1 diabetes susceptibility: a prospective cohort study on effects on maternal mental health

    PubMed Central

    2010-01-01

    Background Concerns about the general psychological impact of genetic testing have been raised. In the Environmental Triggers of Type 1 Diabetes (MIDIA) study, genetic testing was performed for HLA-conferred type 1 diabetes susceptibility among Norwegian newborns. The present study assessed whether mothers of children who test positively suffer from poorer mental health and well-being after receiving genetic risk information about their children. Methods The study was based on questionnaire data from the Norwegian Mother and Child Cohort (MoBa) study conducted by the Norwegian Institute of Public Health. Many of the mothers in the MoBa study also took part in the MIDIA study, in which their newborn children were tested for HLA-conferred genetic susceptibility for type 1 diabetes. We used MoBa questionnaire data from the 30th week of pregnancy (baseline) and 6 months post-partum (3-3.5 months after disclosure of test results). We measured maternal symptoms of anxiety and depression (SCL-8), maternal self-esteem (RSES), and satisfaction with life (SWLS). The mothers also reported whether they were seriously worried about their child 6 months post-partum. We compared questionnaire data from mothers who had received information about having a newborn with high genetic risk for type 1 diabetes (N = 166) with data from mothers who were informed that their baby did not have a high-risk genotype (N = 7224). The association between genetic risk information and maternal mental health was analysed using multiple linear regression analysis, controlling for baseline mental health scores. Results Information on genetic risk in newborns was found to have no significant impact on maternal symptoms of anxiety and depression (p = 0.9), self-esteem (p = 0.2), satisfaction with life (p = 0.2), or serious worry about their child (OR = 0.98, 95% CI 0.64-1.48). Mental health before birth was strongly associated with mental health after birth. In addition, an increased risk of maternal worry was found if the mother herself had type 1 diabetes (OR = 2.39, 95% CI 1.2-4.78). Conclusions This study did not find evidence supporting the notion that genetic risk information about newborns has a negative impact on the mental health of Norwegian mothers. PMID:20630116

  5. Prediction of cancer class with majority voting genetic programming classifier using gene expression data.

    PubMed

    Paul, Topon Kumar; Iba, Hitoshi

    2009-01-01

    In order to get a better understanding of different types of cancers and to find the possible biomarkers for diseases, recently, many researchers are analyzing the gene expression data using various machine learning techniques. However, due to a very small number of training samples compared to the huge number of genes and class imbalance, most of these methods suffer from overfitting. In this paper, we present a majority voting genetic programming classifier (MVGPC) for the classification of microarray data. Instead of a single rule or a single set of rules, we evolve multiple rules with genetic programming (GP) and then apply those rules to test samples to determine their labels with majority voting technique. By performing experiments on four different public cancer data sets, including multiclass data sets, we have found that the test accuracies of MVGPC are better than those of other methods, including AdaBoost with GP. Moreover, some of the more frequently occurring genes in the classification rules are known to be associated with the types of cancers being studied in this paper.

  6. Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics.

    PubMed

    Dutheil, Julien; Gaillard, Sylvain; Bazin, Eric; Glémin, Sylvain; Ranwez, Vincent; Galtier, Nicolas; Belkhir, Khalid

    2006-04-04

    A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/output methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets), various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses) and various algorithms for numerical calculus. Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.

  7. The GMOseek matrix: a decision support tool for optimizing the detection of genetically modified plants.

    PubMed

    Block, Annette; Debode, Frédéric; Grohmann, Lutz; Hulin, Julie; Taverniers, Isabel; Kluga, Linda; Barbau-Piednoir, Elodie; Broeders, Sylvia; Huber, Ingrid; Van den Bulcke, Marc; Heinze, Petra; Berben, Gilbert; Busch, Ulrich; Roosens, Nancy; Janssen, Eric; Žel, Jana; Gruden, Kristina; Morisset, Dany

    2013-08-22

    Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs' molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms.

  8. TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies

    PubMed Central

    van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.

    2013-01-01

    To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524

  9. The GMOseek matrix: a decision support tool for optimizing the detection of genetically modified plants

    PubMed Central

    2013-01-01

    Background Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs’ molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. Description The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. Conclusions The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms. PMID:23965170

  10. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory?

    PubMed

    Horne, Justine; Madill, Janet; O'Connor, Colleen; Shelley, Jacob; Gilliland, Jason

    2018-04-10

    Studying the impact of genetic testing interventions on lifestyle behaviour change has been a priority area of research in recent years. Substantial heterogeneity exists in the results and conclusions of this literature, which has yet to be explained using validated behaviour change theory and an assessment of the quality of genetic interventions. The theory of planned behaviour (TPB) helps to explain key contributors to behaviour change. It has been hypothesized that personalization could be added to this theory to help predict changes in health behaviours. This systematic review provides a detailed, comprehensive identification, assessment, and summary of primary research articles pertaining to lifestyle behaviour change (nutrition, physical activity, sleep, and smoking) resulting from genetic testing interventions. The present review further aims to provide in-depth analyses of studies conducted to date within the context of the TPB and the quality of genetic interventions provided to participants while aiming to determine whether or not genetic testing facilitates changes in lifestyle habits. This review is timely in light of a recently published "call-to-action" paper, highlighting the need to incorporate the TPB into personalized healthcare behaviour change research. Three bibliographic databases, one key website, and article reference lists were searched for relevant primary research articles. The PRISMA Flow Diagram and PRISMA Checklist were used to guide the search strategy and manuscript preparation. Out of 32,783 titles retrieved, 26 studies met the inclusion criteria. Three quality assessments were conducted and included: (1) risk of bias, (2) quality of genetic interventions, and (3) consideration of theoretical underpinnings - primarily the TPB. Risk of bias in studies was overall rated to be "fair." Consideration of the TPB was "poor," with no study making reference to this validated theory. While some studies (n = 11; 42%) made reference to other behaviour change theories, these theories were generally mentioned briefly, and were not thoroughly incorporated into the study design or analyses. The genetic interventions provided to participants were overall of "poor" quality. However, a separate analysis of studies using controlled intervention research methods demonstrated the use of higher-quality genetic interventions (overall rated to be "fair"). The provision of actionable recommendations informed by genetic testing was more likely to facilitate behaviour change than the provision of genetic information without actionable lifestyle recommendations. Several studies of good quality demonstrated changes in lifestyle habits arising from the provision of genetic interventions. The most promising lifestyle changes were changes in nutrition. It is possible to facilitate behaviour change using genetic testing as the catalyst. Future research should ensure that high-quality genetic interventions are provided to participants, and should consider validated theories such as the TPB in their study design and analyses. Further recommendations for future research are provided. © 2018 S. Karger AG, Basel.

  11. Pflanzliche Zellkulturtechniken als Züchtungsschritt am Beispiel Raps

    NASA Astrophysics Data System (ADS)

    Hoffmann, Franz

    1980-06-01

    A supplementation of classical plant breeding is now necessary due to the limitations imposed by available genetic variability and the slowness of the method. Therefore, cell culture techniques could play an important role in the future. Using rape seed, in which plants derived from anther culture and in vitro mutagenesis are already field tested, it has been shown that, in this case, somatic genetics is very close to becoming a practical method. For most of the other crop plants, in particular the cereals, no such unconventional breeding techniques have yet been satisfactorily established for commercial use.

  12. Random search optimization based on genetic algorithm and discriminant function

    NASA Technical Reports Server (NTRS)

    Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.

    1990-01-01

    The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.

  13. A 2-step penalized regression method for family-based next-generation sequencing association studies.

    PubMed

    Ding, Xiuhua; Su, Shaoyong; Nandakumar, Kannabiran; Wang, Xiaoling; Fardo, David W

    2014-01-01

    Large-scale genetic studies are often composed of related participants, and utilizing familial relationships can be cumbersome and computationally challenging. We present an approach to efficiently handle sequencing data from complex pedigrees that incorporates information from rare variants as well as common variants. Our method employs a 2-step procedure that sequentially regresses out correlation from familial relatedness and then uses the resulting phenotypic residuals in a penalized regression framework to test for associations with variants within genetic units. The operating characteristics of this approach are detailed using simulation data based on a large, multigenerational cohort.

  14. Genetic parameters for type classification of Nelore cattle on central performance tests at pasture in Brazil.

    PubMed

    Lima, Paulo Ricardo Martins; Paiva, Samuel Rezende; Cobuci, Jaime Araujo; Braccini Neto, José; Machado, Carlos Henrique Cavallari; McManus, Concepta

    2013-10-01

    The objective of this study was to characterize Nelore cattle on central performance tests in pasture, ranked by the visual classification method EPMURAS (structure, precocity, muscle, navel, breed, posture, and sexual characteristics), and to estimate genetic and phenotypic correlations between these parameters, including visual as well as production traits (initial and final weight on test, weight gain, and weight corrected for 550 days). The information used in the study was obtained on 21,032 Nelore bulls which were participants in the central performance test at pasture of the Brazilian Association for Zebu Breeders (ABCZ). Heritabilities obtained were from 0.19 to 0.50. Phenotypic correlations were positive from 0.70 to 0.97 between the weight traits, from 0.65 to 0.74 between visual characteristics, and from 0.29 to 0.47 between visual characteristics and weight traits. The genetic correlations were positive ranging from 0.80 to 0.98 between the characteristics of structure, precocity and musculature, from 0.13 to 0.64 between the growth characteristics, and from 0.41 to 0.97 between visual scores and weight gains. Heritability and genetic correlations indicate that the use of visual scores, along with the selection for growth characteristics, can bring positive results in selection of beef cattle for rearing on pasture.

  15. Internet-Based Direct-to-Consumer Genetic Testing: A Systematic Review

    PubMed Central

    Rubinelli, Sara; Ceretti, Elisabetta; Gelatti, Umberto

    2015-01-01

    Background Direct-to-consumer genetic tests (DTC-GT) are easily purchased through the Internet, independent of a physician referral or approval for testing, allowing the retrieval of genetic information outside the clinical context. There is a broad debate about the testing validity, their impact on individuals, and what people know and perceive about them. Objective The aim of this review was to collect evidence on DTC-GT from a comprehensive perspective that unravels the complexity of the phenomenon. Methods A systematic search was carried out through PubMed, Web of Knowledge, and Embase, in addition to Google Scholar according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist with the key term “Direct-to-consumer genetic test.” Results In the final sample, 118 articles were identified. Articles were summarized in five categories according to their focus on (1) knowledge of, attitude toward use of, and perception of DTC-GT (n=37), (2) the impact of genetic risk information on users (n=37), (3) the opinion of health professionals (n=20), (4) the content of websites selling DTC-GT (n=16), and (5) the scientific evidence and clinical utility of the tests (n=14). Most of the articles analyzed the attitude, knowledge, and perception of DTC-GT, highlighting an interest in using DTC-GT, along with the need for a health care professional to help interpret the results. The articles investigating the content analysis of the websites selling these tests are in agreement that the information provided by the companies about genetic testing is not completely comprehensive for the consumer. Given that risk information can modify consumers’ health behavior, there are surprisingly few studies carried out on actual consumers and they do not confirm the overall concerns on the possible impact of DTC-GT. Data from studies that investigate the quality of the tests offered confirm that they are not informative, have little predictive power, and do not measure genetic risk appropriately. Conclusions The impact of DTC-GT on consumers’ health perceptions and behaviors is an emerging concern. However, negative effects on consumers or health benefits have yet to be observed. Nevertheless, since the online market of DTC-GT is expected to grow, it is important to remain aware of a possible impact. PMID:26677835

  16. An audit of clinical service examining the uptake of genetic testing by at-risk family members.

    PubMed

    Forrest, Laura; Delatycki, Martin; Curnow, Lisette; Gen Couns, M; Skene, Loane; Aitken, Maryanne

    2012-01-01

    The aim of this study was to investigate the uptake of genetic testing by at-risk family members for four genetic conditions: chromosomal translocations, fragile X syndrome, Huntington disease, and spinal muscular atrophy. A clinical audit was undertaken using genetics files from Genetic Health Services Victoria. Data were extracted from the files regarding the number of at-risk family members and the proportion tested. Information was also collected about whether discussion of at-risk family members and family communication during the genetic consultation was recorded. The proportion of at-risk family members who had genetic testing ranged from 11% to 18%. First-degree family members were most frequently tested and the proportion of testing decreased by degree of relatedness to the proband. Smaller families were significantly more likely to have genetic testing for all conditions except Huntington disease. Female at-risk family members were significantly more likely to have testing for fragile X syndrome. The majority of at-risk family members do not have genetic testing. Family communication is likely to influence the uptake of genetic testing by at-risk family members and therefore it is important that families are supported while communicating to ensure that at-risk family members are able to make informed decisions about genetic testing.

  17. A systematic analysis of online marketing materials used by providers of expanded carrier screening.

    PubMed

    Chokoshvili, Davit; Borry, Pascal; Vears, Danya F

    2017-12-14

    PurposeExpanded carrier screening (ECS) for a large number of recessive disorders is available to prospective parents through commercial providers. This study aimed to analyze the content of marketing materials on ECS providers' websites.MethodsTo identify providers of ECS tests, we undertook a comprehensive online search, reviewed recent academic literature on commercial carrier screening, and consulted with colleagues familiar with the current ECS landscape. The identified websites were archived in April 2017, and inductive content analysis was performed on website text, brochures and educational materials, and video transcripts.ResultsWe identified 18 ECS providers, including 16 commercial genetic testing companies. Providers typically described ECS as an important family planning tool. The content differed in both the tone used to promote ECS and the accuracy and completeness of the test information provided. We found that most providers offered complimentary genetic counseling to their consumers, although this was often optional, limited to the posttest context, and, in some cases, appeared to be available only to test-positive individuals.ConclusionThe quality of ECS providers' websites could be improved by offering more complete and accurate information about ECS and their tests. Providers should also ensure that all carrier couples receive posttest genetic counseling to inform their subsequent reproductive decision making.Genet Med advance online publication, 14 December 2017; doi:10.1038/gim.2017.222.

  18. Genetic screening and testing in an episode-based payment model: preserving patient autonomy.

    PubMed

    Sutherland, Sharon; Farrell, Ruth M; Lockwood, Charles

    2014-11-01

    The State of Ohio is implementing an episode-based payment model for perinatal care. All costs of care will be tabulated for each live birth and assigned to the delivering provider, creating a three-tiered model for reimbursement for care. Providers will be reimbursed as usual for care that is average in cost and quality, while instituting rewards or penalties for those outside the expected range in either domain. There are few exclusions, and all methods of genetic screening and diagnostic testing are included in the episode cost calculation as proposed. Prenatal ultrasonography, genetic screening, and diagnostic testing are critical components of the delivery of high-quality, evidence-based prenatal care. These tests provide pregnant women with key information about the pregnancy, which, in turn, allows them to work closely with their health care provider to determine optimal prenatal care. The concepts of informed consent and decision-making, cornerstones of the ethical practice of medicine, are founded on the principles of autonomy and respect for persons. These principles recognize that patients' rights to make choices and take actions are based on their personal beliefs and values. Given the personal nature of such decisions, it is critical that patients have unbarred access to prenatal genetic tests if they elect to use them as part of their prenatal care. The proposed restructuring of reimbursement creates a clear conflict between patient autonomy and physician financial incentives.

  19. Short communication: Principal components and factor analytic models for test-day milk yield in Brazilian Holstein cattle.

    PubMed

    Bignardi, A B; El Faro, L; Rosa, G J M; Cardoso, V L; Machado, P F; Albuquerque, L G

    2012-04-01

    A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Hopes and Expectations Regarding Genetic Testing for Schizophrenia Among Young Adults at Clinical High-Risk for Psychosis.

    PubMed

    Friesen, Phoebe; Lawrence, Ryan E; Brucato, Gary; Girgis, Ragy R; Dixon, Lisa

    2016-11-01

    Genetic tests for schizophrenia could introduce both risks and benefits. Little is known about the hopes and expectations of young adults at clinical high-risk for psychosis concerning genetic testing for schizophrenia, despite the fact that these youth could be among those highly affected by such tests. We conducted semistructured interviews with 15 young adults at clinical high-risk for psychosis to ask about their interest, expectations, and hopes regarding genetic testing for schizophrenia. Most participants reported a high level of interest in genetic testing for schizophrenia, and the majority said they would take such a test immediately if it were available. Some expressed far-reaching expectations for a genetic test, such as predicting symptom severity and the timing of symptom onset. Several assumed that genetic testing would be accompanied by interventions to prevent schizophrenia. Participants anticipated mixed reactions on finding out they had a genetic risk for schizophrenia, suggesting that they might feel both a sense of relief and a sense of hopelessness. We suggest that genetic counseling could play an important role in counteracting a culture of genetic over-optimism and helping young adults at clinical high-risk for psychosis understand the limitations of genetic testing. Counseling sessions could also invite individuals to explore how receiving genetic risk information might impact their well-being, as early evidence suggests that some psychological factors help individuals cope, whereas others heighten distress related to genetic test results.

  1. High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT).

    PubMed

    Howard, E L; Whittock, S P; Jakše, J; Carling, J; Matthews, P D; Probasco, G; Henning, J A; Darby, P; Cerenak, A; Javornik, B; Kilian, A; Koutoulis, A

    2011-05-01

    Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.

  2. Acceptance of Genetic Testing in a General Population: Age, Education and Gender Differences.

    ERIC Educational Resources Information Center

    Aro, A. R.; Hakonen, A.; Hietala, M.; Lonnqvist, J.; Niemela, P.; Peltonen, L; Aula, P.

    1997-01-01

    Effects of age, education, and gender on acceptance of genetic testing were studied. Finnish participants responded to a questionnaire presenting reasons for and against genetic testing (N=1,967). Intentions to take genetic tests, worries, and experience of genetic test or hereditary disease were also assessed. Results are presented and discussed.…

  3. Perceptions of genetic testing and genomic medicine among drug users.

    PubMed

    Perlman, David C; Gelpí-Acosta, Camila; Friedman, Samuel R; Jordan, Ashly E; Hagan, Holly

    2015-01-01

    Genetic testing will soon enter care for human immunodeficiency virus (HIV) and hepatitis C virus (HCV), and for addiction. There is a paucity of data on how to disseminate genetic testing into healthcare for marginalized populations. We explored drug users' perceptions of genetic testing. Six focus groups were conducted with 34 drug users recruited from syringe exchange programmes and an HIV clinic between May and June 2012. Individual interviews were conducted with participants reporting previous genetic testing. All participants expressed acceptance of genetic testing to improve care, but most had concerns regarding confidentiality and implications for law enforcement. Most expressed more comfort with genetic testing based on individual considerations rather than testing based on race/ethnicity. Participants expressed comfort with genetic testing in medical care rather than drug treatment settings and when specifically asked permission, with peer support, and given a clear rationale. Although participants understood the potential value of genetic testing, concerns regarding breaches in confidentiality and discrimination may reduce testing willingness. Safeguards against these risks, peer support, and testing in medical settings based on individual factors and with clear rationales provided may be critical in efforts to promote acceptance of genetic testing among drug users. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The efficiency of close inbreeding to reduce genetic adaptation to captivity

    PubMed Central

    Theodorou, K; Couvet, D

    2015-01-01

    Although ex situ conservation is indispensable for thousands of species, captive breeding is associated with negative genetic changes: loss of genetic variance and genetic adaptation to captivity that is deleterious in the wild. We used quantitative genetic individual-based simulations to model the effect of genetic management on the evolution of a quantitative trait and the associated fitness of wild-born individuals that are brought to captivity. We also examined the feasibility of the breeding strategies under a scenario of a large number of loci subject to deleterious mutations. We compared two breeding strategies: repeated half-sib mating and a method of minimizing mean coancestry (referred to as gc/mc). Our major finding was that half-sib mating is more effective in reducing genetic adaptation to captivity than the gc/mc method. Moreover, half-sib mating retains larger allelic and adaptive genetic variance. Relative to initial standing variation, the additive variance of the quantitative trait increased under half-sib mating during the sojourn in captivity. Although fragmentation into smaller populations improves the efficiency of the gc/mc method, half-sib mating still performs better in the scenarios tested. Half-sib mating shows two caveats that could mitigate its beneficial effects: low heterozygosity and high risk of extinction when populations are of low fecundity and size and one of the following conditions are met: (i) the strength of selection in captivity is comparable with that in the wild, (ii) deleterious mutations are numerous and only slightly deleterious. Experimental validation of half-sib mating is therefore needed for the advancement of captive breeding programs. PMID:25052417

  5. Awareness of Cancer Susceptibility Genetic Testing

    PubMed Central

    Mai, Phuong L.; Vadaparampil, Susan Thomas; Breen, Nancy; McNeel, Timothy S.; Wideroff, Louise; Graubard, Barry I.

    2014-01-01

    Background Genetic testing for several cancer susceptibility syndromes is clinically available; however, existing data suggest limited population awareness of such tests. Purpose To examine awareness regarding cancer genetic testing in the U.S. population aged ≥25 years in the 2000, 2005, and 2010 National Health Interview Surveys. Methods The weighted percentages of respondents aware of cancer genetic tests, and percent changes from 2000–2005 and 2005–2010, overall and by demographic, family history, and healthcare factors were calculated. Interactions were used to evaluate the patterns of change in awareness between 2005 and 2010 among subgroups within each factor. To evaluate associations with awareness in 2005 and 2010, percentages were adjusted for covariates using multiple logistic regression. The analysis was performed in 2012. Results Awareness decreased from 44.4% to 41.5% (p<0.001) between 2000 and 2005, and increased to 47.0% (p<0.001) in 2010. Awareness increased between 2005 and 2010 in most subgroups, particularly among individuals in the South (p-interaction=0.03) or with a usual place of care (p-interaction=0.01). In 2005 and 2010, awareness was positively associated with personal or family cancer history and high perceived cancer risk, and inversely associated with racial/ethnic minorities, age 25–39 or ≥60 years, male gender, lower education and income levels, public or no health insurance, and no provider contact in 12 months. Conclusions Despite improvement from 2005 to 2010, ≤50% of the U.S. adult population was aware of cancer genetic testing in 2010. Notably, disparities persist for racial/ethnic minorities and individuals with limited health care access or income. PMID:24745633

  6. Pitfalls in genetic testing: a case of a SNP in primer-annealing region leading to allele dropout in BRCA1.

    PubMed

    Silva, Felipe Carneiro; Torrezan, Giovana Tardin; Brianese, Rafael Canfield; Stabellini, Raquel; Carraro, Dirce Maria

    2017-07-01

    Hereditary breast and ovarian cancer is characterized by mutations in BRCA1 or BRCA2 genes and PCR-based screening techniques, such as capillary sequencing and next-generation sequencing (NGS), are considered gold standard methods for detection of pathogenic mutations in these genes. Single-nucleotide polymorphisms (SNPs) constitute a vast source of variation in the human genome and represent a risk for misdiagnosis in genetic testing, since the presence of a SNP in primer-annealing sites may cause false negative results due to allele dropout. However, few reports are available and the frequency of this phenomenon in diagnostic assays remains unknown. In this article, we investigated the causes of a false negative capillary sequencing result in BRCA1 involving a mother-daughter dyad. Using several molecular strategies, including different DNA polymerases, primer redesign, allele-specific PCR and NGS, we established that the initial misdiagnosis was caused by a SNP located in the primer-annealing region, leading to allele dropout of the mutated allele. Assuming that this problem can also occur in any PCR-based method that are widely used in diagnostic settings, the clinical report presented here draws attention for one of the limitations of genetic testing in general, for which medical and laboratory communities need to be aware.

  7. Detecting Genomic Clustering of Risk Variants from Sequence Data: Cases vs. Controls

    PubMed Central

    Schaid, Daniel J.; Sinnwell, Jason P.; McDonnell, Shannon K.; Thibodeau, Stephen N.

    2013-01-01

    As the ability to measure dense genetic markers approaches the limit of the DNA sequence itself, taking advantage of possible clustering of genetic variants in, and around, a gene would benefit genetic association analyses, and likely provide biological insights. The greatest benefit might be realized when multiple rare variants cluster in a functional region. Several statistical tests have been developed, one of which is based on the popular Kulldorff scan statistic for spatial clustering of disease. We extended another popular spatial clustering method – Tango’s statistic – to genomic sequence data. An advantage of Tango’s method is that it is rapid to compute, and when single test statistic is computed, its distribution is well approximated by a scaled chi-square distribution, making computation of p-values very rapid. We compared the Type-I error rates and power of several clustering statistics, as well as the omnibus sequence kernel association test (SKAT). Although our version of Tango’s statistic, which we call “Kernel Distance” statistic, took approximately half the time to compute than the Kulldorff scan statistic, it had slightly less power than the scan statistic. Our results showed that the Ionita-Laza version of Kulldorff’s scan statistic had the greatest power over a range of clustering scenarios. PMID:23842950

  8. An entropy-based statistic for genomewide association studies.

    PubMed

    Zhao, Jinying; Boerwinkle, Eric; Xiong, Momiao

    2005-07-01

    Efficient genotyping methods and the availability of a large collection of single-nucleotide polymorphisms provide valuable tools for genetic studies of human disease. The standard chi2 statistic for case-control studies, which uses a linear function of allele frequencies, has limited power when the number of marker loci is large. We introduce a novel test statistic for genetic association studies that uses Shannon entropy and a nonlinear function of allele frequencies to amplify the differences in allele and haplotype frequencies to maintain statistical power with large numbers of marker loci. We investigate the relationship between the entropy-based test statistic and the standard chi2 statistic and show that, in most cases, the power of the entropy-based statistic is greater than that of the standard chi2 statistic. The distribution of the entropy-based statistic and the type I error rates are validated using simulation studies. Finally, we apply the new entropy-based test statistic to two real data sets, one for the COMT gene and schizophrenia and one for the MMP-2 gene and esophageal carcinoma, to evaluate the performance of the new method for genetic association studies. The results show that the entropy-based statistic obtained smaller P values than did the standard chi2 statistic.

  9. Understanding genetics: Analysis of secondary students' conceptual status

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Yan; Treagust, David F.

    2007-02-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.

  10. Phenotype definition and development--contributions from Group 7.

    PubMed

    Wilcox, Marsha A; Paterson, Andrew D

    2009-01-01

    The papers in Genetic Analysis Workshop 16 Group 7 covered a wide range of topics. The effects of confounder misclassification and selection bias on association results were examined by one group. Another focused on bias introduced by various methods of accounting for treatment effects. Two groups used related methods to derive phenotypic traits. They used different analytic strategies for genetic associations with non-overlapping results (but because they used different sets of single-nucleotide polymorphisms (SNPs) and significance criteria, this is not surprising). Another group relied on the well-characterized definition of type 2 diabetes to show benefits of a novel predictive test. Transmission-ratio distortion was the focus of another paper. The results were extended to show a potential secondary benefit of the test to identify potentially mis-called SNPs. (c) 2009 Wiley-Liss, Inc.

  11. Resistance to antibiotics in clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Sevillano, E; Valderrey, C; Canduela, M J; Umaran, A; Calvo, F; Gallego, L

    2006-01-01

    To analyse the global resistance to some antibiotics used to treat nosocomial infections by Pseudomonas aeruginosa, specially to carbapenems, and its relationship with the presence of carbapenemases, OXA, VIM and IMP. The study included 229 P. aeruginosa isolates from a Hospital in Northern Spain (year 2002). Susceptibility to antimicrobial agents was determined by the analysis of the MIC. Genetic typing was carried out by RAPD-PCR fingerprinting with primer ERIC-2. Genetic experiments to detect class-1 integrons were performed by PCR with primers 5'CS and 3'CS. Detection of carbapenemases was done by phenotypic (Hodge test and DDST) and genotypic methods (PCR with primers for imp, vim1, vim2 and oxa40 genes). 23.9% of isolates were resistant to ceftazidime, 35.9% to cefotaxime, 5.3% to amikacin, 54.9% to gentamicin, 14.6% to imipenem and 6.6% to meropenem. Isolates resistant to imipenem (33) were furtherly tested. Genetic typing didn't show clonal relatedness among the most of the isolates. Class-1 integrons were present in most isolates (sizes 600-1700 bp). Phenotypic methods for carbapenemases showed 5 positive isolates. Genotypic methods showed the presence of two isolates with the oxa40 gene. Meropenem, amikacin and imipenem were the most active agents to treat infections caused by Pseudomonas aeruginosa. In our study, the presence of carbapenemase enzymes wasn't high. Phenotypic tests cannot be considered as accurate screening tool to detect carbapenemases. This is the fist report of the oxa40 gene in Pseudomonas aeruginosa isolates.

  12. Development and Validation of a P-35S, T-nos, T-35S and P-FMV Tetraplex Real-time PCR Screening Method to Detect Regulatory Genes of Genetically Modified Organisms in Food.

    PubMed

    Eugster, Albert; Murmann, Petra; Kaenzig, Andre; Breitenmoser, Alda

    2014-10-01

    In routine analysis screening methods based on real-time PCR (polymerase chain reaction) are most commonly used for the detection of genetically modified (GM) plant material in food and feed. Screening tests are based on sequences frequently used for GM development, allowing the detection of a large number of GMOs (genetically modified organisms). Here, we describe the development and validation of a tetraplex real-time PCR screening assay comprising detection systems for the regulatory genes Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens nos terminator, Cauliflower Mosaic Virus 35S terminator and Figwort Mosaic Virus 34S promoter. Three of the four primer and probe combinations have already been published elsewhere, whereas primers and probe for the 35S terminator have been developed in-house. Adjustment of primer and probe concentrations revealed a high PCR sensitivity with insignificant physical cross-talk between the four detection channels. The sensitivity of each PCR-system is sufficient to detect a GMO concentration as low as 0.05% of the containing respective element. The specificity of the described tetraplex is high when tested on DNA from GM maize, soy, rapeseed and tomato. We also demonstrate the robustness of the system by inter-laboratory tests. In conclusion, this method provides a sensitive and reliable screening procedure for the detection of the most frequently used regulatory elements present in GM crops either authorised or unauthorised for food.

  13. [Present status and tasks for genetic testing and risk-reducing surgery in patients with hereditary breast and ovarian cancer].

    PubMed

    Arai, Masami; Taki, Keiko; Iwase, Haruko; Takizawa, Ken; Nishimura, Seiichiro; Iwase, Takuji

    2012-04-01

    In Japan, awareness of hereditary breast and ovarian cancer (HBOC) has gradually increased among health care workers and the general population. We focus on two current topics: genetic testing and risk-reducing surgery for HBOC. Genetic testing for BRCA1 and BRCA2, the genes responsible for HBOC, is performed to diagnose HBOC. PCR-direct sequencing is a standard method used for BRCA1/2 mutation analysis. Recently, genetic rearrangement of BRCA1 was reported in a Japanese patient with HBOC. Therefore, MLPA tests are also being included in routine genetic testing for the disease. The result of "uncertain significance, " which indicates unclear pathogenic significance, is obtained in about 3% of all patients who undergo BRCA1/2 genetic tests. Furthermore, novel candidate genes for HBOC, such as RAD51C, PALB2, and BRIP1, were recently identified. Prophylactic surgical intervention for HBOC includes procedures such as risk-reducing bilateral salpingo-oophorectomy (RRSO) and risk-reducing mastectomy(RRM). In Japan, RRSO is performed in very few patients at present. Increasing evidence from overseas indicates that RRSO contributes to a decreased incidence of ovarian/breast cancers and lowers overall mortality. Therefore, a system for performing RRSO was established in our institute. RRSO was approved to be performed as a clinical examination by our Institutional Review Board. The clinical significance of ipsilateral complete mastectomy and RRM remains unclear. Based on the NCCN guidelines, conservative mastectomy with radiation therapy is relatively contraindicated in patients with HBOC. However, several studies have reported that conservative mastectomy with radiation the rapydoes not increase the incidence of recurrent or metachronous breast cancers in the ipsilateral breast of mutation-positive patients when compared to mutation-negative or control patients. However, more aggressive malignancies seem to be included in the mutation-positive group(especially BRCA1 -mutation-positive cases). RRM clearly reduced the incidence of breast cancers. RRM may also be allowed as a treatment option for HBOC in Japan.

  14. Functional linear models for association analysis of quantitative traits.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY PERIODICALS, INC.

  15. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.

    PubMed

    Huang, Yen-Tsung; Liang, Liming; Moffatt, Miriam F; Cookson, William O C M; Lin, Xihong

    2015-07-01

    Genome-wide association studies (GWAS) have been a standard practice in identifying single nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family-based design for genetic association studies. Specifically, the relations among SNPs, gene expression, and disease are modeled within the mediation analysis framework, which allows us to disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a gene expression (mediation effect, ME) and an effect through other biological mechanisms or environment-mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS approach is able to facilitate discovering genetic association mechanisms, and outperforms the SNP-only method for testing genetic associations. We conduct a family-based iGWAS of childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the omnibus test with false discovery rate less than 1%, whereas no gene using SNP-only analyses survives with the same cut-off. The iGWAS analyses further characterize that genetic effects of these genes are mostly mediated through their gene expressions. In summary, the iGWAS approach provides a new analytic framework to investigate the mechanism of genetic etiology, and identifies novel susceptibility genes of childhood asthma that were biologically meaningful. © 2015 WILEY PERIODICALS, INC.

  16. [Survey on the attitude toward genetic testing of neurologists certified by the Japanese Society of Neurology].

    PubMed

    Yoshida, Kunihiro; Ohata, Takako; Muto, Kaori; Tsuchiya, Atsushi; Sawada, Jinichi; Hazama, Takanori; Ikeda, Shu-Ichi; Toda, Tatsushi

    2013-01-01

    To clarify the attitude toward genetic testing for neuromuscular diseases, a questionnaire was sent to 4,762 neurologists certified by the Japanese Society of Neurology. By December 21, 2011, 1,493 questionnaires (31.4%) were returned. Of these, 1,233 (82.6%) had experienced genetic testing, but only 396 (26.5%) had referred to the guideline for genetic testing of the Japanese Society of Neurology (2009). The numbers of respondents who were positive, or more positive than negative for genetic testing for myotonic dystrophy type 1 (DM1), Huntington's disease (HD), and familial amyloid polyneuropathy (FAP) were 753 (50.4%), 915 (61.3%), and 980 (65.6%), respectively. The predominant reason for a positive attitude toward genetic testing was to confirm or exclude the diagnosis. Conversely, the predominant reason for a negative attitude toward genetic testing differed between the diseases. For DM1, it was to confirm the diagnosis without genetic testing. For HD, it was that genetic testing would not result in effective prevention or therapy. In FAP, it was that post-testing psychosocial support for the patient and their family was difficult. Common to DM1, HD, and FAP, a significant number of respondents (approximately 60%) felt it difficult to explain the negative aspects that might occur after the disclosure of test results. Concerning predictive or prenatal genetic testing, most respondents referred at-risk individuals to specialized genetic counseling clinics. In general, neurologists are likely to conduct genetic testing properly in consideration not only of the characteristics of the diseases but also of the circumstances of each patient and his or her family. To support neurologists who are involved in genetic testing, the guidelines should be more easily accessible. Many respondents wanted information on the institutions that provide genetic counseling and testing; however, financial support to such institutions is indispensable for fulfilling this requirement.

  17. Genetic tools for the investigation of Roseobacter clade bacteria

    PubMed Central

    2009-01-01

    Background The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools. Results Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T. Conclusion A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria. PMID:20021642

  18. Genetic Testing for Cardiomyopathies in Clinical Practice.

    PubMed

    Ingles, Jodie; Bagnall, Richard D; Semsarian, Christopher

    2018-04-01

    Cardiac genetic testing for inherited cardiomyopathies has become a routine aspect of care. Advances in genetic testing technologies have made testing more comprehensive and affordable. With this increase come greater understanding of the genetic basis of these diseases, but also shines a light on the challenges. Ability to ascertain whether a rare variant is causative of disease is problematic. A genetic diagnosis in a family can offer an invaluable tool for cascade genetic testing of at-risk relatives and avenues for reproductive testing options. A careful approach to cardiac genetic testing that recognizes where there is potential for harm ensures the best possible outcomes for families. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Genetic diversity and genetic structure of endangered wild Sinopodophyllum emodi by start codon targeted polymorphism].

    PubMed

    Chen, Da-Xia; Zhao, Ji-Feng; Liu, Xiang; Wang, Chang-Hua; Zhang, Zhi-Wei; Qin, Song-Yun; Zhong, Guo-Yue

    2013-01-01

    Revealed the genetic diversity level and genetic structure characteristics in Sinopodophyllum emodi, a rare and endangered species in China. We detected the genetic polymorphism within and among six wild populations (45 individuals) by the approach of Start Codon Targeted (SCoT) Polymorphism. The associated genetic parameters were calculated by POP-GENE1.31 and the relationship was constructed based on UPGMA method. A total of 350 bands were scored by 27 primers and 284 bands of them were polymorphic. The average polymorphic bands of each primer were 10.52. At species level, there was a high level of genetic diversity among six populations (PPB = 79.27%, N(e) = 1.332 7, H = 0.210 9 and H(sp) = 0.328 6). At population level, the genetic diversity level was low (PPB = 10.48% (4.00% -23.71%), N(e) = 1.048 7 (1.020 7-1.103 7), H = 0.029 7 (0.012 9-0.063 1), H(pop) = 0.046 2 (0.019 9-0.098 6). The Nei's coefficient of genetic differentiation was 0.841 1, which was consistent with the Shannon's coefficient of genetic differentiation (0.849 4). Two calculated methods all showed that most of the genetic variation existed among populations. The gene flow (N(m) = 0.094 4) was less among populations, indicating that the degree of genetic differentiation was higher. Genetic similarity coefficient were changed from 0.570 8 to 0.978 7. By clustering analysis, the tested populations were divided into two classes and had a tendency that the same geographical origin or material of similar habitats clustered into one group. The genetic diversity of samples of S. emodi is high,which laid a certain foundation for effective protection and improvement of germplasm resources.

  20. Differences in attitudes toward genetic testing among the public, patients, and health-care professionals in Korea.

    PubMed

    Eum, Heesang; Lee, Mangyeong; Yoon, Junghee; Cho, Juhee; Lee, Eun Sook; Choi, Kui Son; Lee, Sangwon; Jung, So-Youn; Lim, Myong Cheol; Kong, Sun-Young; Chang, Yoon Jung

    2018-06-18

    With further advances in medical genetics, genetic tests to determine predisposition to disease are becoming viable for a growing number of diseases. Accordingly, it has also become important to identify various viewpoints on genetic testing. The aims of this study were to examine awareness of and attitudes toward genetic testing among the general public (public), cancer patients (patients), and health-care professionals (clinicians and researchers) in Korea. The present survey was conducted from November 2016 to February 2017. The public and patients were surveyed via face-to-face interviews conducted by trained interviewers. Health-care professionals were surveyed via self-administered questionnaires. In total, 1500 individuals from the general public, 1500 cancer patients, 113 clinicians, and 413 researchers were surveyed. Most respondents from the public and patients had previously heard about genetic testing (public, 89.4%; patients, 92.7%, p < 0.01). Differences in attitudes toward genetic testing among the public, patients, and professionals were noted, although most respondents in the present study were aware of genetic testing. Most of the cancer patients tended to overestimate the potential benefit of genetic testing, whereas clinicians expressed concerns for genetic testing. Providing correct information to people who are scheduled to undergo or order genetic testing could help in making an informed decision thereon.

  1. Researcher responsibilities and genetic counseling for pure-bred dog populations.

    PubMed

    Bell, Jerold S

    2011-08-01

    Breeders of dogs have ethical responsibilities regarding the testing and management of genetic disease. Molecular genetics researchers have their own responsibilities, highlighted in this article. Laboratories offering commercial genetic testing should have proper sample identification and quality control, official test result certificates, clear explanations of test results and reasonably priced testing fees. Providing test results to a publicly-accessible genetic health registry allows breeders and the public to search for health-tested parents to reduce the risk of producing or purchasing affected offspring. Counseling on the testing and elimination of defective genes must consider the effects of genetic selection on the population. Recommendations to breed quality carriers to normal-testing dogs and replacing them with quality normal-testing offspring will help to preserve breeding lines and breed genetic diversity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Pathway Analysis in Attention Deficit Hyperactivity Disorder: An Ensemble Approach

    PubMed Central

    Mooney, Michael A.; McWeeney, Shannon K.; Faraone, Stephen V.; Hinney, Anke; Hebebrand, Johannes; Nigg, Joel T.; Wilmot, Beth

    2016-01-01

    Despite a wealth of evidence for the role of genetics in attention deficit hyperactivity disorder (ADHD), specific and definitive genetic mechanisms have not been identified. Pathway analyses, a subset of gene-set analyses, extend the knowledge gained from genome-wide association studies (GWAS) by providing functional context for genetic associations. However, there are numerous methods for association testing of gene sets and no real consensus regarding the best approach. The present study applied six pathway analysis methods to identify pathways associated with ADHD in two GWAS datasets from the Psychiatric Genomics Consortium. Methods that utilize genotypes to model pathway-level effects identified more replicable pathway associations than methods using summary statistics. In addition, pathways implicated by more than one method were significantly more likely to replicate. A number of brain-relevant pathways, such as RhoA signaling, glycosaminoglycan biosynthesis, fibroblast growth factor receptor activity, and pathways containing potassium channel genes, were nominally significant by multiple methods in both datasets. These results support previous hypotheses about the role of regulation of neurotransmitter release, neurite outgrowth and axon guidance in contributing to the ADHD phenotype and suggest the value of cross-method convergence in evaluating pathway analysis results. PMID:27004716

  3. Genetic Structure of Bluefin Tuna in the Mediterranean Sea Correlates with Environmental Variables

    PubMed Central

    Riccioni, Giulia; Stagioni, Marco; Landi, Monica; Ferrara, Giorgia; Barbujani, Guido; Tinti, Fausto

    2013-01-01

    Background Atlantic Bluefin Tuna (ABFT) shows complex demography and ecological variation in the Mediterranean Sea. Genetic surveys have detected significant, although weak, signals of population structuring; catch series analyses and tagging programs identified complex ABFT spatial dynamics and migration patterns. Here, we tested the hypothesis that the genetic structure of the ABFT in the Mediterranean is correlated with mean surface temperature and salinity. Methodology We used six samples collected from Western and Central Mediterranean integrated with a new sample collected from the recently identified easternmost reproductive area of Levantine Sea. To assess population structure in the Mediterranean we used a multidisciplinary framework combining classical population genetics, spatial and Bayesian clustering methods and a multivariate approach based on factor analysis. Conclusions FST analysis and Bayesian clustering methods detected several subpopulations in the Mediterranean, a result also supported by multivariate analyses. In addition, we identified significant correlations of genetic diversity with mean salinity and surface temperature values revealing that ABFT is genetically structured along two environmental gradients. These results suggest that a preference for some spawning habitat conditions could contribute to shape ABFT genetic structuring in the Mediterranean. However, further studies should be performed to assess to what extent ABFT spawning behaviour in the Mediterranean Sea can be affected by environmental variation. PMID:24260341

  4. Compressed Genotyping

    PubMed Central

    Erlich, Yaniv; Gordon, Assaf; Brand, Michael; Hannon, Gregory J.; Mitra, Partha P.

    2011-01-01

    Over the past three decades we have steadily increased our knowledge on the genetic basis of many severe disorders. Nevertheless, there are still great challenges in applying this knowledge routinely in the clinic, mainly due to the relatively tedious and expensive process of genotyping. Since the genetic variations that underlie the disorders are relatively rare in the population, they can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group testing, we have developed a cost-effective genotyping protocol to detect carriers for severe genetic disorders. In particular, we have adapted our scheme to a recently developed class of high throughput DNA sequencing technologies. The mathematical framework presented here has some important distinctions from the ’traditional’ compressed sensing and group testing frameworks in order to address biological and technical constraints of our setting. PMID:21451737

  5. Genetics Home Reference: Pompe disease

    MedlinePlus

    ... Genetic Testing (2 links) Genetic Testing Registry: Glycogen storage disease type II, infantile Genetic Testing Registry: Glycogen storage disease, type II Other Diagnosis and Management Resources ( ...

  6. Nutrigenomics and ethics interface: direct-to-consumer services and commercial aspects.

    PubMed

    Ries, Nola M; Castle, David

    2008-12-01

    A growing variety and number of genetic tests are advertised and sold directly to consumers (DTC) via the Internet, including nutrigenomic tests and associated products and services. Consumers have more access to genetic information about themselves, but access does not entail certainty about the implications of test results. Potential personal and public health harms and benefits are associated with DTC access to genetic testing services. Early policy responses to direct-to-consumer (DTC) genetic testing often involved calls for bans, and some jurisdictions prohibited DTC genetic tests. Recent policy responses by oversight bodies acknowledge expansion in the range of DTC tests available and suggest that a "one-size-fits-all" regulatory approach is not appropriate for all genetic tests. This review discusses ethical and regulatory aspects of DTC genetic testing, focusing particularly on nutrigenomic tests. We identify policy options for regulating DTC genetic tests, including full or partial prohibitions, enforcement of existing truth-in-advertising laws, and more comprehensive information disclosure about genetic tests. We advocate the latter option as an important means to improve transparency about current evidence on the strengths and limits of gene-disease associations and allow consumers to make informed purchasing decisions in the DTC marketplace.

  7. ACOG Technology Assessment No. 11: Genetics and molecular diagnostic testing.

    PubMed

    2014-02-01

    Human genetics and molecular testing are playing an increasingly important role in medicine, including obstetric and gynecologic practice. As the genetic basis for reproductive disorders, common diseases, and cancer is elucidated with improved molecular technology, genetic testing opportunities are expanding and influencing treatment options and prevention strategies. It is essential that obstetrician-gynecologists be aware of advances in the understanding of genetic disease and the fundamental principles of genetic screening and molecular testing as genetics becomes a more integral part of routine medical practice. This document reviews the basics of genetic transmission and genetic technologies in current use.

  8. DIM SUM: demography and individual migration simulated using a Markov chain.

    PubMed

    Brown, Jeremy M; Savidge, Kevin; McTavish, Emily Jane B

    2011-03-01

    An increasing number of studies seek to infer demographic history, often jointly with genetic relationships. Despite numerous analytical methods for such data, few simulations have investigated the methods' power and robustness, especially when underlying assumptions have been violated. DIM SUM (Demography and Individual Migration Simulated Using a Markov chain) is a stand-alone Java program for the simulation of population demography and individual migration while recording ancestor-descendant relationships. It does not employ coalescent assumptions or discrete population boundaries. It is extremely flexible, allowing the user to specify border positions, reactions of organisms to borders, local and global carrying capacities, individual dispersal kernels, rates of reproduction and strategies for sampling individuals. Spatial variables may be specified using image files (e.g., as exported from gis software) and may vary through time. In combination with software for genetic marker simulation, DIM SUM will be useful for testing phylogeographic (e.g., nested clade phylogeographic analysis, coalescent-based tests and continuous-landscape frameworks) and landscape-genetic methods, specifically regarding violations of coalescent assumptions. It can also be used to explore the qualitative features of proposed demographic scenarios (e.g. regarding biological invasions) and as a pedagogical tool. DIM SUM (with user's manual) can be downloaded from http://code.google.com/p/bio-dimsum. © 2010 Blackwell Publishing Ltd.

  9. Interactive searching of facial image databases

    NASA Astrophysics Data System (ADS)

    Nicholls, Robert A.; Shepherd, John W.; Shepherd, Jean

    1995-09-01

    A set of psychological facial descriptors has been devised to enable computerized searching of criminal photograph albums. The descriptors have been used to encode image databased of up to twelve thousand images. Using a system called FACES, the databases are searched by translating a witness' verbal description into corresponding facial descriptors. Trials of FACES have shown that this coding scheme is more productive and efficient than searching traditional photograph albums. An alternative method of searching the encoded database using a genetic algorithm is currenly being tested. The genetic search method does not require the witness to verbalize a description of the target but merely to indicate a degree of similarity between the target and a limited selection of images from the database. The major drawback of FACES is that is requires a manual encoding of images. Research is being undertaken to automate the process, however, it will require an algorithm which can predict human descriptive values. Alternatives to human derived coding schemes exist using statistical classifications of images. Since databases encoded using statistical classifiers do not have an obvious direct mapping to human derived descriptors, a search method which does not require the entry of human descriptors is required. A genetic search algorithm is being tested for such a purpose.

  10. Molecular testing for cystic fibrosis carrier status practice guidelines: recommendations of the National Society of Genetic Counselors.

    PubMed

    Langfelder-Schwind, Elinor; Karczeski, Barbara; Strecker, Michelle N; Redman, Joy; Sugarman, Elaine A; Zaleski, Christina; Brown, Trisha; Keiles, Steven; Powers, Amy; Ghate, Sumheda; Darrah, Rebecca

    2014-02-01

    To provide practice recommendations for genetic counselors whose clients are considering cystic fibrosis (CF) carrier testing or seeking information regarding CF molecular test results. The goals of these recommendations are to: 1) Provide updated information about the natural history, diagnosis, and treatment of CF and related conditions. 2) Supplement genetic counselors' knowledge and understanding of the available carrier screening and diagnostic testing options. 3) Describe the current state of genotype/phenotype correlations for CFTR mutations and an approach to interpreting both novel and previously described variants. 4) Provide a framework for genetic counselors to assist clients' decision-making regarding CF carrier testing, prenatal diagnosis, and pregnancy management. Disclaimer The practice guidelines of the National Society of Genetic Counselors (NSGC) are developed by members of the NSGC to assist genetic counselors and other health care providers in making decisions about appropriate management of genetic concerns; including access to and/or delivery of services. Each practice guideline focuses on a clinical or practice-based issue, and is the result of a review and analysis of current professional literature believed to be reliable. As such, information and recommendations within the NSGC practice guidelines reflect the current scientific and clinical knowledge at the time of publication, are only current as of their publication date, and are subject to change without notice as advances emerge.In addition, variations in practice, which take into account the needs of the individual patient and the resources and limitations unique to the institution or type of practice, may warrant approaches, treatments and/or procedures that differ from the recommendations outlined in this guideline. Therefore, these recommendations should not be construed as dictating an exclusive course of management, nor does the use of such recommendations guarantee a particular outcome. Genetic counseling practice guidelines are never intended to displace a health care provider's best medical judgment based on the clinical circumstances of a particular patient or patient population.Practice guidelines are published by NSGC for educational and informational purposes only, and NSGC does not "approve" or "endorse" any specific methods, practices, or sources of information.

  11. "Genetic exceptionalism" in medicine: clarifying the differences between genetic and nongenetic tests.

    PubMed

    Green, Michael J; Botkin, Jeffrey R

    2003-04-01

    Predictive genetic tests are now available for assessing susceptibility to a variety of conditions, including breast and colon cancer, hemochromatosis, and Alzheimer and Huntington disease. Much controversy surrounds the application of these tests, stemming from their similarities to and differences from other tests commonly used in asymptomatic persons. Some have argued that genetic tests are unique and therefore justify special consideration with regard to informed consent and privacy. This paper examines the arguments for such "genetic exceptionalism" and concludes that no clear, significant distinctions between genetic and nongenetic tests justify a different approach to testing by clinicians. Nevertheless, with many genetic tests, the results may cause stigmatization, family discord, and psychological distress. Regardless of whether a test is genetic, when this combination of characteristics is present and when health care providers are not specifically trained to interpret results, testing should be performed with particular caution and the highest standards of informed consent and privacy protection should be applied.

  12. US system of oversight for genetic testing: a report from the Secretary's Advisory Committee on Genetics, Health and Society.

    PubMed

    Ferreira-Gonzalez, Andrea; Teutsch, Steven; Williams, Marc S; Au, Sylvia M; Fitzgerald, Kevin T; Miller, Paul Steven; Fomous, Cathy

    2008-09-01

    As genetic testing technology is integrated into healthcare, increasingly detailed information about individual and population genetic variation is available to patients and providers. Health professionals use genetic testing to diagnose or assess the risk of disease in individuals, families and populations and to guide healthcare decisions. Consumers are beginning to explore personalized genomic services in an effort to learn more about their risk for common diseases. Scientific and technological advances in genetic testing, as with any newly introduced medical technology, present certain challenges to existing frameworks of oversight. In addition, the growing use of genetic testing will require a significant investment in evidence-based assessments to understand the validity and utility of these tests in clinical and personal decisionmaking. To optimize the use of genetic testing in healthcare, all sectors of the oversight system need to be strengthened and yet remain flexible in order to adapt to advances that will inevitably increase the range of genetic tests and methodologies.

  13. Health care providers and direct-to-consumer access and advertising of genetic testing in the United States

    PubMed Central

    2011-01-01

    Marketing pressures, regulatory policies, clinical guidelines, and consumer demand all affect health care providers' knowledge and use of health-related genetic tests that are sold and/or advertised to consumers. In addition, clinical guidelines, regulatory policies, and educational efforts are needed to promote the informed use of genetic tests that are sold and advertised to consumers and health care providers. A shift in culture regarding the regulation of genetic tests that are sold directly to consumers is suggested: by recent actions taken by the US Food and Drug Administration (FDA), including letters sent to direct-to-consumer (DTC) genetic testing companies stating that their tests meet the definition of medical devices; by public meetings held by the FDA to discuss laboratory developed tests; and by the convening of the Molecular and Clinical Genetics Panel to gather input on scientific issues concerning DTC genetic tests that make medical claims. This review provides a brief overview of DTC advertising and the regulation of pharmaceuticals and genetic tests in the United States. It highlights recent changes in the regulatory culture regarding genetic tests that are sold to consumers, and discusses the impact on health care providers of selling and advertising genetic tests directly to consumers. PMID:22204616

  14. Health care providers and direct-to-consumer access and advertising of genetic testing in the United States.

    PubMed

    Myers, Melanie F

    2011-12-28

    Marketing pressures, regulatory policies, clinical guidelines, and consumer demand all affect health care providers' knowledge and use of health-related genetic tests that are sold and/or advertised to consumers. In addition, clinical guidelines, regulatory policies, and educational efforts are needed to promote the informed use of genetic tests that are sold and advertised to consumers and health care providers. A shift in culture regarding the regulation of genetic tests that are sold directly to consumers is suggested: by recent actions taken by the US Food and Drug Administration (FDA), including letters sent to direct-to-consumer (DTC) genetic testing companies stating that their tests meet the definition of medical devices; by public meetings held by the FDA to discuss laboratory developed tests; and by the convening of the Molecular and Clinical Genetics Panel to gather input on scientific issues concerning DTC genetic tests that make medical claims. This review provides a brief overview of DTC advertising and the regulation of pharmaceuticals and genetic tests in the United States. It highlights recent changes in the regulatory culture regarding genetic tests that are sold to consumers, and discusses the impact on health care providers of selling and advertising genetic tests directly to consumers.

  15. Health-related direct-to-consumer genetic testing: a review of companies' policies with regard to genetic testing in minors.

    PubMed

    Borry, Pascal; Howard, Heidi C; Sénécal, Karine; Avard, Denise

    2010-03-01

    More and more companies are advertising and selling genetic tests directly to consumers. Considering the ethical, legal, and psychological concerns surrounding genetic testing in minors, a study of companies' websites was performed in order to describe and analyze their policies with respect to this issue. Of the 29 companies analyzed, 13 did not provide any information about this matter, eight companies allowed genetic testing upon parental request, four companies stated that their website is not directed to children under 18 years, and four companies suggested that in order to be tested, applicants should have reached the age of legal majority. If private companies offer genetic tests which are also offered in a clinical setting, can they be expected to adhere to the existing clinical guidelines with regard to these tests? If so, a certain ambiguity exists. Many companies are emphasizing in their disclaimers that their services are not medical services and should not be used as a basis for making medical decisions. Nonetheless, it remains debatable whether genetic testing in minors would be appropriate in this context. In line with the Advisory Committee on Genetic Testing, the Human Genetics Commission addressed the problem of non-consensual testing and recommended not to supply genetic testing services directly to those under the age of 16 or to those not able to make a competent decision regarding testing.

  16. Perceptions of genetic discrimination among people at risk for Huntington's disease: a cross sectional survey.

    PubMed

    Bombard, Yvonne; Veenstra, Gerry; Friedman, Jan M; Creighton, Susan; Currie, Lauren; Paulsen, Jane S; Bottorff, Joan L; Hayden, Michael R

    2009-06-09

    To assess the nature and prevalence of genetic discrimination experienced by people at risk for Huntington's disease who had undergone genetic testing or remained untested. Cross sectional, self reported survey. Seven genetics and movement disorders clinics servicing rural and urban communities in Canada. 233 genetically tested and untested asymptomatic people at risk for Huntington's disease (response rate 80%): 167 underwent testing (83 had the Huntington's disease mutation, 84 did not) and 66 chose not to be tested. Self reported experiences of genetic discrimination and related psychological distress based on family history or genetic test results. Discrimination was reported by 93 respondents (39.9%). Reported experiences occurred most often in insurance (29.2%), family (15.5%), and social (12.4%) settings. There were few reports of discrimination in employment (6.9%), health care (8.6%), or public sector settings (3.9%). Although respondents who were aware that they carried the Huntington's disease mutation reported the highest levels of discrimination, participation in genetic testing was not associated with increased levels of genetic discrimination. Family history of Huntington's disease, rather than the result of genetic testing, was the main reason given for experiences of genetic discrimination. Psychological distress was associated with genetic discrimination (P<0.001). Genetic discrimination was commonly reported by people at risk for Huntington's disease and was a source of psychological distress. Family history, and not genetic testing, was the major reason for genetic discrimination.

  17. Personal genome testing in medical education: student experiences with genotyping in the classroom

    PubMed Central

    2013-01-01

    Background Direct-to-consumer (DTC) personal genotyping services are beginning to be adopted by educational institutions as pedagogical tools for learning about human genetics. However, there is little known about student reactions to such testing. This study investigated student experiences and attitudes towards DTC personal genome testing. Methods Individual interviews were conducted with students who chose to undergo personal genotyping in the context of an elective genetics course. Ten medical and graduate students were interviewed before genotyping occurred, and at 2 weeks and 6 months after receiving their genotype results. Qualitative analysis of interview transcripts assessed the expectations and experiences of students who underwent personal genotyping, how they interpreted and applied their results; how the testing affected the quality of their learning during the course, and what were their perceived needs for support. Results Students stated that personal genotyping enhanced their engagement with the course content. Although students expressed skepticism over the clinical utility of some test results, they expressed significant enthusiasm immediately after receiving their personal genetic analysis, and were particularly interested in results such as drug response and carrier testing. However, few reported making behavioral changes or following up on specific results through a healthcare provider. Students did not report utilizing genetic counseling, despite feeling strongly that the 'general public' would need these services. In follow-up interviews, students exhibited poor recall on details of the consent and biobanking agreements, but expressed little regret over their decision to undergo genotyping. Students reported mining their raw genetic data, and conveyed a need for further consultation support in their exploration of genetic variants. Conclusions Personal genotyping may improve students' self-reported motivation and engagement with course material. However, consultative support that is different from traditional genetic counseling will be necessary to support students. Before incorporating personal genotyping into coursework, institutions should lead multi-disciplinary discussion to anticipate issues and incorporate teaching mechanisms that engage the ethical, legal, and social implications of personal genotyping, including addressing those found in this study, to go beyond what is offered by commercial providers. PMID:23510111

  18. Pathway-based discovery of genetic interactions in breast cancer

    PubMed Central

    Xu, Zack Z.; Boone, Charles; Lange, Carol A.

    2017-01-01

    Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314

  19. Privacy preserving protocol for detecting genetic relatives using rare variants.

    PubMed

    Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Guan, Feng; Ostrosky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-06-15

    High-throughput sequencing technologies have impacted many areas of genetic research. One such area is the identification of relatives from genetic data. The standard approach for the identification of genetic relatives collects the genomic data of all individuals and stores it in a database. Then, each pair of individuals is compared to detect the set of genetic relatives, and the matched individuals are informed. The main drawback of this approach is the requirement of sharing your genetic data with a trusted third party to perform the relatedness test. In this work, we propose a secure protocol to detect the genetic relatives from sequencing data while not exposing any information about their genomes. We assume that individuals have access to their genome sequences but do not want to share their genomes with anyone else. Unlike previous approaches, our approach uses both common and rare variants which provide the ability to detect much more distant relationships securely. We use a simulated data generated from the 1000 genomes data and illustrate that we can easily detect up to fifth degree cousins which was not possible using the existing methods. We also show in the 1000 genomes data with cryptic relationships that our method can detect these individuals. The software is freely available for download at http://genetics.cs.ucla.edu/crypto/. © The Author 2014. Published by Oxford University Press.

  20. Genotoxicity assessment of nanomaterials: recommendations on best practices, assays and methods.

    PubMed

    Elespuru, Rosalie; Pfuhler, Stefan; Aardema, Marilyn; Chen, Tao; Doak, Shareen H; Doherty, Ann; Farabaugh, Christopher S; Kenny, Julia; Manjanatha, Mugimane; Mahadevan, Brinda; Moore, Martha M; Ouédraogo, Gladys; Stankowski, Leon F; Tanir, Jennifer Y

    2018-04-26

    Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.

  1. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    PubMed

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.

  2. Integrating surgery and genetic testing for the modern surgeon.

    PubMed

    Caso, Raul; Beamer, Matthew; Lofthus, Alexander D; Sosin, Michael

    2017-10-01

    The field of cancer genetics is rapidly evolving and several genetic mutations have been identified in hereditary cancer syndromes. These mutations can be diagnosed via routine genetic testing allowing prompt intervention. This is especially true for certain variants of colorectal, breast, and thyroid cancers where genetic testing may guide surgical therapy. Ultimately, surgical intervention may drastically diminish disease manifestation or progression in individuals deemed as high-risk based on their genetic makeup. Understanding the concepts of gene-based testing and integrating into current surgical practice is crucial. This review addresses common genetic syndromes, tests, and interventions salient to the current surgeon.

  3. Practical considerations to guide development of access controls and decision support for genetic information in electronic medical records.

    PubMed

    Darcy, Diana C; Lewis, Eleanor T; Ormond, Kelly E; Clark, David J; Trafton, Jodie A

    2011-11-02

    Genetic testing is increasingly used as a tool throughout the health care system. In 2011 the number of clinically available genetic tests is approaching 2,000, and wide variation exists between these tests in their sensitivity, specificity, and clinical implications, as well as the potential for discrimination based on the results. As health care systems increasingly implement electronic medical record systems (EMRs) they must carefully consider how to use information from this wide spectrum of genetic tests, with whom to share information, and how to provide decision support for clinicians to properly interpret the information. Although some characteristics of genetic tests overlap with other medical test results, there are reasons to make genetic test results widely available to health care providers and counterbalancing reasons to restrict access to these test results to honor patient preferences, and avoid distracting or confusing clinicians with irrelevant but complex information. Electronic medical records can facilitate and provide reasonable restrictions on access to genetic test results and deliver education and decision support tools to guide appropriate interpretation and use. This paper will serve to review some of the key characteristics of genetic tests as they relate to design of access control and decision support of genetic test information in the EMR, emphasizing the clear need for health information technology (HIT) to be part of optimal implementation of genetic medicine, and the importance of understanding key characteristics of genetic tests when designing HIT applications.

  4. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Zhai, Shanli; Liu, Bang

    2013-11-01

    In this study, sensitive and rapid detection systems were designed using a loop-mediated isothermal amplification (LAMP) method to detect the genetically modified goats. A set of 4 primers were designed for each exogenous nucleic acids HBsAg and hATIII. The DNA samples were first amplified with the outer and inner primers and released a single-stranded DNA,of which both ends were stem-loop structure. Then one inner primer hybridized with the loop, and initiated displacement synthesis in less than 1 h. The result could be visualized by both agarose gel electrophoresis and unaided eyes directly after adding SYBR GREEN 1. The detection limit of LAMP was ten copies of target molecules, indicating that LAMP was tenfold more sensitive than the classical PCR. Furthermore, all the samples of genetically modified goats were tested positively by LAMP, and the results demonstrated that the LAMP was a rapid and sensitive method for detecting the genetically modified organism.

  5. Application of artificial intelligence to search ground-state geometry of clusters

    NASA Astrophysics Data System (ADS)

    Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.

    2002-08-01

    We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.

  6. Effects of functionally asexual reproduction on quantitative genetic variation in the evening primroses (Oenothera, Onagraceae).

    PubMed

    Godfrey, Ryan M; Johnson, Marc T J

    2014-11-01

    It has long been predicted that a loss of sexual reproduction leads to decreased heritable variation within populations and increased differentiation between populations. Despite an abundance of theory, there are few empirical tests of how sex affects genetic variation in phenotypic traits, especially for plants. Here we test whether repeated losses of two critical components of sex (recombination and segregation) in the evening primroses (Oenothera L., Onagraceae) affect quantitative genetic variation within and between populations. We sampled multiple genetic families from 3-5 populations from each of eight Oenothera species, which represented four independent transitions between sexual reproduction and a functionally asexual genetic system called "permanent translocation heterozygosity." We used quantitative genetics methods to partition genetic variation within and between populations for eight plant traits related to growth, leaf physiology, flowering, and resistance to herbivores. Heritability was, on average, 74% higher in sexual Oenothera populations than in functionally asexual populations, with plant growth rate, specific leaf area, and the percentage of leaf water content showing the strongest differences. By contrast, genetic differentiation among populations was 2.8× higher in functionally asexual vs. sexual Oenothera species. This difference was particularly strong for specific leaf area. Sexual populations tended to exhibit higher genetic correlations among traits, but this difference was weakly supported. These results support the prediction that sexual reproduction maintains higher genetic variation within populations, which may facilitate adaptive evolution. We also found partial support for the prediction that a loss of sex leads to greater population differentiation, which may elevate speciation rates. © 2014 Botanical Society of America, Inc.

  7. Appreciating Uncertainty and Personal Preference in Genetic Testing.

    PubMed

    Kadlac, Adam

    2015-01-01

    Genetic testing seems to hold out hope for the cure of a number of debilitating conditions. At the same time, many people fear the information that genetic testing can make available. In this commentary, I argue that as of now, the nature of the information revealed in such tests should lead to cautious views about the value of genetic testing. Moreover, I suggest that our overall views about such testing should account for the fact that individuals place different sorts of value on the possession of their own genetic information. As a result, we should largely defer to personal preference in thinking about the propriety of genetic testing.

  8. [Practical guidelines for genetic testing in cardiovascular diseases].

    PubMed

    Reinhard, W; Trenkwalder, T; Schunkert, H

    2017-08-01

    In the last decade, genetic testing for cardiovascular disorders has become more and more relevant. Progress in molecular genetics has led to new opportunities for diagnostics, improved risk prediction and could lead to novel therapeutic approaches. Genetic diagnostic testing is relevant for both confirming a diagnosis as well as deciding on therapeutic consequences, if applicable. Furthermore, predictive testing in family members for specific cardiovascular diseases is now a standard procedure in holistic patient management. The process of genetic testing as well as documentation requirements and discussion of test results with patients are subject to legal regulations. These regulations might be confusing for clinical practitioners/cardiologists. The aim of this article is to provide a clinical framework for genetic testing. First, we explain the legal and ethical background. Second, we illustrate the process of genetic testing step by step and present updates on remuneration. Finally, we discuss the significance of genetic testing and specific disease indications in cardiology.

  9. Quality assurance and quality improvement in U.S. clinical molecular genetic laboratories.

    PubMed

    Chen, Bin; Richards, C Sue; Wilson, Jean Amos; Lyon, Elaine

    2011-04-01

    A robust quality-assurance program is essential for laboratories that perform molecular genetic testing to maintain high-quality testing and be able to address challenges associated with performance or delivery of testing services as the use of molecular genetic tests continues to expand in clinical and public health practice. This unit discusses quality-assurance and quality-improvement considerations that are critical for molecular genetic testing performed for heritable diseases and conditions. Specific discussion is provided on applying regulatory standards and best practices in establishing/verifying test performance, ensuring quality of the total testing process, monitoring and maintaining personnel competency, and continuing quality improvement. The unit provides a practical reference for laboratory professionals to use in recognizing and addressing essential quality-assurance issues in human molecular genetic testing. It should also provide useful information for genetics researchers, trainees, and fellows in human genetics training programs, as well as others who are interested in quality assurance and quality improvement for molecular genetic testing. 2011 by John Wiley & Sons, Inc.

  10. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  11. Is a multivariate consensus representation of genetic relationships among populations always meaningful?

    PubMed Central

    Moazami-Goudarzi, K; Laloë, D

    2002-01-01

    To determine the relationships among closely related populations or species, two methods are commonly used in the literature: phylogenetic reconstruction or multivariate analysis. The aim of this article is to assess the reliability of multivariate analysis. We describe a method that is based on principal component analysis and Mantel correlations, using a two-step process: The first step consists of a single-marker analysis and the second step tests if each marker reveals the same typology concerning population differentiation. We conclude that if single markers are not congruent, the compromise structure is not meaningful. Our model is not based on any particular mutation process and it can be applied to most of the commonly used genetic markers. This method is also useful to determine the contribution of each marker to the typology of populations. We test whether our method is efficient with two real data sets based on microsatellite markers. Our analysis suggests that for closely related populations, it is not always possible to accept the hypothesis that an increase in the number of markers will increase the reliability of the typology analysis. PMID:12242255

  12. How should we discuss genetic testing with women newly diagnosed with breast cancer? Design and implementation of a randomized controlled trial of two models of delivering education about treatment-focused genetic testing to younger women newly diagnosed with breast cancer

    PubMed Central

    2012-01-01

    Background Germline BRCA1 and BRCA2 mutation testing offered shortly after a breast cancer diagnosis to inform women’s treatment choices - treatment-focused genetic testing ‘TFGT’ - has entered clinical practice in specialist centers and is likely to be soon commonplace in acute breast cancer management, especially for younger women. Yet the optimal way to deliver information about TFGT to younger women newly diagnosed with breast cancer is not known, particularly for those who were not suspected of having a hereditary breast cancer syndrome prior to their cancer diagnosis. Also, little is known about the behavioral and psychosocial impact or cost effectiveness of educating patients about TFGT. This trial aims to examine the impact and efficiency of two models of educating younger women newly diagnosed with breast cancer about genetic testing in order to provide evidence for a safe and effective future clinical pathway for this service. Design/methods In this non-inferiority randomized controlled trial, 140 women newly diagnosed with breast cancer (aged less than 50 years) are being recruited from nine cancer centers in Australia. Eligible women with either a significant family history of breast and/or ovarian cancer or with other high risk features suggestive of a mutation detection rate of > 10% are invited by their surgeon prior to mastectomy or radiotherapy. After completing the first questionnaire, participants are randomized to receive either: (a) an educational pamphlet about genetic testing (intervention) or (b) a genetic counseling appointment at a family cancer center (standard care). Each participant is offered genetic testing for germline BRCA mutations. Decision-related and psychosocial outcomes are assessed over 12 months and include decisional conflict (primary outcome);uptake of bilateral mastectomy and/or risk-reducing salpingo-oophorectomy; cancer-specific- and general distress; family involvement in decision making; and decision regret. A process-oriented retrospective online survey will examine health professionals’ attitudes toward TFGT; a health economic analysis will determine the cost effectiveness of the intervention. Discussion This trial will provide crucial information about the impact, efficiency and cost effectiveness of an educational pamphlet designed to inform younger women newly diagnosed with breast cancer about genetic testing. Issues regarding implementation of the trial are discussed. Trial registration The study is registered with the Australian and New Zealand Clinical Trials Group (Registration no: ACTRN12610000502033) PMID:22838957

  13. Knowledge, group-based medical mistrust, future expectations, and perceived disadvantages of medical genetic testing: perspectives of Black African immigrants/refugees.

    PubMed

    Buseh, A; Kelber, S; Millon-Underwood, S; Stevens, P; Townsend, L

    2014-01-01

    Reasons for low participation of ethnic minorities in genetic studies are multifactorial and often poorly understood. Based on published literature, participation in genetic testing is low among Black African immigrants/refugees although they are purported to bear disproportionate disease burden. Thus, research involving Black African immigrant/refugee populations that examine their perspectives on participating in genetic studies is needed. This report examines and describes the knowledge of medical genetics, group-based medical mistrust, and future expectations of genetic research and the influence of these measures on the perceived disadvantages of genetic testing among Black African immigrants/refugees. Using a cross-sectional survey design, a nonprobability sample (n = 212) of Black African immigrants/refugees was administered a questionnaire. Participants ranged in age from 18 to 61 years (mean = 38.91, SD = 9.78). The questionnaire consisted of 5 instruments: (a) sociodemographic characteristics, (b) Knowledge of Medical Genetics scale, (c) Group-Based Medical Mistrust Scale, (d) Future Expectations/Anticipated Consequences of Genetics Research scale, and (e) Perceived Disadvantages of Genetic Testing scale. Participants were concerned that genetic research may result in scientists 'playing God,' interfering with the natural order of life. In multivariate analyses, the perceived disadvantages of genetic testing increased as medical mistrust and anticipated negative impacts of genetic testing increased. Increase in genetic knowledge contributed to a decrease in perceived disadvantages. Our findings suggest that recruitment of Black African immigrants/refugees in genetic studies should address potential low knowledge of genetics, concerns about medical mistrust, the expectations/anticipated consequences of genetic research, and the perceived disadvantages of genetic testing.

  14. Testing cross-phenotype effects of rare variants in longitudinal studies of complex traits.

    PubMed

    Rudra, Pratyaydipta; Broadaway, K Alaine; Ware, Erin B; Jhun, Min A; Bielak, Lawrence F; Zhao, Wei; Smith, Jennifer A; Peyser, Patricia A; Kardia, Sharon L R; Epstein, Michael P; Ghosh, Debashis

    2018-06-01

    Many gene mapping studies of complex traits have identified genes or variants that influence multiple phenotypes. With the advent of next-generation sequencing technology, there has been substantial interest in identifying rare variants in genes that possess cross-phenotype effects. In the presence of such effects, modeling both the phenotypes and rare variants collectively using multivariate models can achieve higher statistical power compared to univariate methods that either model each phenotype separately or perform separate tests for each variant. Several studies collect phenotypic data over time and using such longitudinal data can further increase the power to detect genetic associations. Although rare-variant approaches exist for testing cross-phenotype effects at a single time point, there is no analogous method for performing such analyses using longitudinal outcomes. In order to fill this important gap, we propose an extension of Gene Association with Multiple Traits (GAMuT) test, a method for cross-phenotype analysis of rare variants using a framework based on the distance covariance. The approach allows for both binary and continuous phenotypes and can also adjust for covariates. Our simple adjustment to the GAMuT test allows it to handle longitudinal data and to gain power by exploiting temporal correlation. The approach is computationally efficient and applicable on a genome-wide scale due to the use of a closed-form test whose significance can be evaluated analytically. We use simulated data to demonstrate that our method has favorable power over competing approaches and also apply our approach to exome chip data from the Genetic Epidemiology Network of Arteriopathy. © 2018 WILEY PERIODICALS, INC.

  15. Evidence-based management of nutrigenomics expectations and ELSIs.

    PubMed

    Ozdemir, Vural; Godard, Béatrice

    2007-08-01

    Nutrigenomics is a new application context for genomics technologies that focuses on the bidirectional study of genetic factors influencing host (individuals' or populations') response to diet and the effects of bioactive constituents in food on host genome and gene expression. Nutrigenomics is considered the next wave after pharmacogenomics for individualization of health interventions. However, relatively little attention has been given to the specific ethical-legal-social issues (ELSIs) and sociotechnical expectations raised by nutrigenomics research. Some of the ELSIs, such as ensuring privacy of genetic information and implications of genetic testing for health insurance and employment, may be shared across the continuum of genomic technology applications in human disease genetics, pharmacogenomics and nutrigenomics. However, there are certain aspects of nutrigenomics research that may result in unique or unprecedented ELSIs. For example, nutrigenomics has a strong focus on public health and the prevention/modification of 'predisease phenotypes' in apparently healthy individuals. Thus, in contrast to previous applications of genomics technologies, where the goal is to distinguish existing disease from absence of disease, the aim of nutrigenomics is the discernment of nuanced differences in predisease states. Moreover, there is evidence to suggest that ELSIs may be different in biomarker discovery, translational research and clinical testing stages of nutrigenomics. Ideally, ELSI research and nutrigenomics bioscience should progress in parallel and in a commensurate manner. We suggest that qualitative research methods, using a hypothesis-free approach, can be employed to gain deeper insights on complex bioethics issues that do not ordinarily lend themselves to formal hypothesis testing with the quantitative methods used in biomedical sciences.

  16. Genetic Variation in the Raptor Gene Is Associated With Overweight But Not Hypertension in American Men of Japanese Ancestry

    PubMed Central

    Carnes, Bruce A.; Chen, Randi; Donlon, Timothy A.; He, Qimei; Grove, John S.; Masaki, Kamal H.; Elliott, Ayako; Willcox, Donald C.; Allsopp, Richard; Willcox, Bradley J.

    2015-01-01

    BACKGROUND The mechanistic target of rapamycin (mTOR) pathway is pivotal for cell growth. Regulatory associated protein of mTOR complex I (Raptor) is a unique component of this pro-growth complex. The present study tested whether variation across the raptor gene (RPTOR) is associated with overweight and hypertension. METHODS We tested 61 common (allele frequency ≥ 0.1) tagging single nucleotide polymorphisms (SNPs) that captured most of the genetic variation across RPTOR in 374 subjects of normal lifespan and 439 subjects with a lifespan exceeding 95 years for association with overweight/obesity, essential hypertension, and isolated systolic hypertension. Subjects were drawn from the Honolulu Heart Program, a homogeneous population of American men of Japanese ancestry, well characterized for phenotypes relevant to conditions of aging. Hypertension status was ascertained when subjects were 45–68 years old. Statistical evaluation involved contingency table analysis, logistic regression, and the powerful method of recursive partitioning. RESULTS After analysis of RPTOR genotypes by each statistical approach, we found no significant association between genetic variation in RPTOR and either essential hypertension or isolated systolic hypertension. Models generated by recursive partitioning analysis showed that RPTOR SNPs significantly enhanced the ability of the model to accurately assign individuals to either the overweight/obese or the non-overweight/obese groups (P = 0.008 by 1-tailed Z test). CONCLUSION Common genetic variation in RPTOR is associated with overweight/obesity but does not discernibly contribute to either essential hypertension or isolated systolic hypertension in the population studied. PMID:25249372

  17. Expanding Access to BRCA1/2 Genetic Counseling with Telephone Delivery: A Cluster Randomized Trial

    PubMed Central

    Butler, Karin M.; Schwartz, Marc D.; Mandelblatt, Jeanne S.; Boucher, Kenneth M.; Pappas, Lisa M.; Gammon, Amanda; Kohlmann, Wendy; Edwards, Sandra L.; Stroup, Antoinette M.; Buys, Saundra S.; Flores, Kristina G.; Campo, Rebecca A.

    2014-01-01

    Background The growing demand for cancer genetic services underscores the need to consider approaches that enhance access and efficiency of genetic counseling. Telephone delivery of cancer genetic services may improve access to these services for individuals experiencing geographic (rural areas) and structural (travel time, transportation, childcare) barriers to access. Methods This cluster-randomized clinical trial used population-based sampling of women at risk for BRCA1/2 mutations to compare telephone and in-person counseling for: 1) equivalency of testing uptake and 2) noninferiority of changes in psychosocial measures. Women 25 to 74 years of age with personal or family histories of breast or ovarian cancer and who were able to travel to one of 14 outreach clinics were invited to participate. Randomization was by family. Assessments were conducted at baseline one week after pretest and post-test counseling and at six months. Of the 988 women randomly assigned, 901 completed a follow-up assessment. Cluster bootstrap methods were used to estimate the 95% confidence interval (CI) for the difference between test uptake proportions, using a 10% equivalency margin. Differences in psychosocial outcomes for determining noninferiority were estimated using linear models together with one-sided 97.5% bootstrap CIs. Results Uptake of BRCA1/2 testing was lower following telephone (21.8%) than in-person counseling (31.8%, difference = 10.2%, 95% CI = 3.9% to 16.3%; after imputation of missing data: difference = 9.2%, 95% CI = -0.1% to 24.6%). Telephone counseling fulfilled the criteria for noninferiority to in-person counseling for all measures. Conclusions BRCA1/2 telephone counseling, although leading to lower testing uptake, appears to be safe and as effective as in-person counseling with regard to minimizing adverse psychological reactions, promoting informed decision making, and delivering patient-centered communication for both rural and urban women. PMID:25376862

  18. [Issues on business of genetic testing in near future].

    PubMed

    Takada, Fumio

    2009-06-01

    Since 1990's, a business condition that company sells genetic testing services directly to consumers without through medical facility, so called "direct-to-consumers (DTC) genetic testing", has risen. They provide genetic testing for obesity, disease susceptibility or paternity, etc. There are serious problems in this kind of business. Most of the providers do not make sales with face-to-face selling, and do through internet instead. They do not provide genetic counseling by certified genetic counselor or clinical geneticist. Most DTC genetic testing services for disease susceptibility or predispositions including obesity, lack scientific validity, clinical validity and clinical utility. And also including paternity genetic testing, they all have risks of ethical legal and social issues (ELSI) in genetic discrimination and/or eugenics. The specific problem in Japan is that the healthcare section of the government still has not paid attention and not taken seriously the requirement to deploy safety net.

  19. Genetic genealogy: the Woodson family's experience.

    PubMed

    Williams, Sloan R

    2005-06-01

    In 1998, Foster and colleagues published the results of a genetic study intended to test whether Thomas Jefferson could have fathered any of Sally Hemings' children. They found that the Jefferson Y chromosome haplotype matched that of a descendant of Hemings' youngest child, but not that of the descendants of the eldest son, Thomas Woodson. The Woodson descendants were shocked by the study's finding, which disagreed with their family oral history. They were suspicious of the study conclusions because of the methods used in recruiting participants for the study and the manner in which they learned of the results. The Woodsons' experience as participants in one of the first examples of genetic genealogy illustrates several issues that both geneticists and amateur genetic genealogists will face in studies of this kind. Misperceptions about the relationship between biology and race, and group genetics in general, can make the interpretation of genetic data difficult. Continuing collaborations between the media and the scientific community will help the public to better understand the risks as well as the benefits of genetic genealogy. Researchers must decide prior to beginning their research what role the human subjects will play in the study and when they will be notified of the study's conclusions. Amateur genetic genealogists should anticipate unexpected outcomes, such as the identification of nonpaternity, to minimize any harmful effects to study participants. Although modern genetic methods provide a powerful new tool for genealogical study, they cannot resolve all genealogical issues, as this study shows, and can involve unanticipated risks to the participants.

  20. Genetics and Common Disorders: Implications for Primary Care and Public Health Providers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, Joseph D.; Greendale, Karen; Peay, Holly L.

    We developed this program for primary care providers (PCPs) and public health professionals (PHPs) who are interested in increasing their understanding of the genetics of common chronic diseases and of the implications of genetics and genomics for their fields. The program differs from virtually all previous educational efforts in genetics for health professionals in that it focuses on the genetics of common chronic disease and on the broad principles that emerge when one views disease from the perspectives of variation and individuality, which are at the heart of thinking genetically. The CD-ROM introduces users to content that will improve theirmore » understanding of topics such as: • A framework for genetics and common disease; • Basic information on genetics, genomics, genetic medicine, and public health genetics, all in the context of common chronic disease; • The status of research on genetic contributions to specific common diseases, including a review of research methods; • Genetic/environmental interaction as the new “central dogma” of public health genetics; • The importance of taking and analyzing a family history; • The likely impact of potential gene discovery and genetic testing on genetic counseling and risk assessment and on the practices of PCPs and PHPs; • Stratification of populations into low-, moderate-, and high-risk categories; • The potential role of PCPs and PHPs in identifying high-risk individuals and families, in providing limited genetics services, and in referring to clinical genetics specialists; the potential for standard referral algorithms; • Implications of genetic insights for diagnosis and treatment; • Ethical, legal, and social issues that arise from genetic testing for common chronic diseases; and • Specific prevention strategies based on understanding of genetics and genetic/ environmental interactions. The interactive content – developed by experts in genetics, primary care, and public health – is organized around two case studies designed to appeal to primary care providers (thrombophilia) and public health professionals (development of a screening grogram for colorectal cancer). NCHPEG has distributed more than 0000 copies of the CD-ROM to NCHPEG member organizations and to other organizations and individuals in response to requests. The program also is available at www.nchpeg.org.« less

  1. Population genetic testing for cancer susceptibility: founder mutations to genomes.

    PubMed

    Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare

    2016-01-01

    The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

  2. Inherited medullary thyroid cancer and the duty to warn: revisiting Pate v. Threlkel in light of HIPAA.

    PubMed

    Rosenthal, M Sara; Pierce, Heather Hanson

    2005-02-01

    Familial medullary thyroid cancer (FMTC) is one of the few autosomal dominant cancers for which genetic testing provides a clear medical indication for prophylactic and/or curative therapy, and for which prophylactic thyroidectomy, followed by thyroid hormone replacement, presents a relatively low morbidity risk. Medullary thyroid cancer (MTC) is a particularly aggressive type of thyroid cancer, and screening by traditional biochemical markers yields a high proportion of advanced stage diagnoses in individuals from FMTC families. This is particularly hazardous since there are no curative systemic treatments for MTC. Genetic testing for germline mutations of the RET proto-oncogene provides a reliable method of identifying at-risk family members in those FMTC families in which a mutation has been identified in the proband. Prophylactic thyroidectomy in such at-risk family members has significantly reduced the proportion of advanced stage MTC diagnoses in MTC families. Since a clear medical benefit exists for genetic testing in family members, and a clear danger to family members exists in the absence of genetic counseling, establishing genetic diagnosis as standard of care has critical legal and ethical implications for medical providers caring for probands and family members. The "duty to warn," reinforced by the courts in the legal case of Pate v. Threlkel, may override recent confidentiality legislation, known as the HIPAA Privacy Rules, which came into effect April 12, 2003.

  3. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries

    PubMed Central

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405

  4. Genetics of hereditary neurological disorders in children.

    PubMed

    Huang, Yue; Yu, Sui; Wu, Zhanhe; Tang, Beisha

    2014-04-01

    Hereditary neurological disorders (HNDs) are relatively common in children compared to those occurring in adulthood. Recognising clinical manifestations of HNDs is important for the selection of genetic testing, genetic testing results interpretation, and genetic consultation. Meanwhile, advances in next generation sequencing (NGS) technologies have significantly enabled the discovery of genetic causes of HNDs and also challenge paediatricians on applying genetic investigation. Combination of both clinical information and advanced technologies will enhance the genetic test yields in clinical setting. This review summarises the clinical presentations as well as genetic causes of paediatric neurological disorders in four major areas including movement disorders, neuropsychiatric disorders, neuron peripheral disorders and epilepsy. The aim of this review is to help paediatric neurologists not only to see the clinical features but also the complex genetic aspect of HNDs in order to utilise genetic investigation confidently in their clinical practice. A smooth transition from research based to clinical use of comprehensive genetic testing in HNDs in children could be foreseen in the near future while genetic testing, genetic counselling and genetic data interpretation are in place appropriately.

  5. Hereditary arrhythmias and cardiomyopathies: decision-making about genetic testing.

    PubMed

    Louis, Clauden; Calamaro, Emily; Vinocur, Jeffrey M

    2018-01-01

    The modern field of clinical genetics has advanced beyond the traditional teachings familiar to most practicing cardiologists. Increased understanding of the roles of genetic testing may improve uptake and appropriateness of use. Clinical genetics has become integral to the management of patients with hereditary arrhythmia and cardiomyopathy diagnoses. Depending on the condition, genetic testing may be useful for diagnosis, prognosis, treatment, family screening, and reproductive planning. However, genetic testing is a powerful tool with potential for underuse, overuse, and misuse. In the absence of a substantial body of literature on how these guidelines are applied in clinical practice, we use a case-based approach to highlight key lessons and pitfalls. Importantly, in many scenarios genetic testing has become the standard of care supported by numerous class I recommendations; genetic counselors can improve accessibility to and appropriate use and application of testing. Optimal management of hereditary arrhythmias and cardiomyopathies incorporates genetic testing, applied as per consensus guidelines, with involvement of a multidisciplinary team.

  6. Role of non-Invasive Tests for the Early Detection of Cancer

    Cancer.gov

    Dr. Nickolas Papadopoulos is Professor of Oncology & Pathology and Director of Translational Genetics at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. He is internationally known as a co-discoverer of the genetic basis of the predisposition to hereditary nonpolyposis colon cancer (HNPCC), one of the most common hereditary forms of cancer, earlier in his career. He is known for the development of diagnostic tests and is considered an expert in cancer genetics and diagnostics. He was part of the interdisciplinary team that was first to sequence all of the protein coding genes, determine genetic alterations, and construct expression profiles of four common tumor types. Later, he was involved in the identification of genetic alterations that drive tumorigenesis in multiple tumor types. Noteworthy discoveries made by Dr. Papadopoulos include the identification of novel mutations in chromatin remodeling genes in ovarian clear cell carcinomas and pancreatic neuroendocrine tumors. He is a co-developer of sensitive methods for the detection of tumor DNA in liquid biopsy, and also the co-founder of two companies that develop diagnostics for cancer. Currently, he is focused on translating the genetic information derived from cancer genome analyses to clinical applications in early detection, diagnosis and monitoring of cancer. Dr. Papadopoulos received his PhD from the University of Texas McGovern Medical School in Houston.

  7. Using Zebrafish to Test the Genetic Basis of Human Craniofacial Diseases.

    PubMed

    Machado, R Grecco; Eames, B Frank

    2017-10-01

    Genome-wide association studies (GWASs) opened an innovative and productive avenue to investigate the molecular basis of human craniofacial disease. However, GWASs identify candidate genes only; they do not prove that any particular one is the functional villain underlying disease or just an unlucky genomic bystander. Genetic manipulation of animal models is the best approach to reveal which genetic loci identified from human GWASs are functionally related to specific diseases. The purpose of this review is to discuss the potential of zebrafish to resolve which candidate genetic loci are mechanistic drivers of craniofacial diseases. Many anatomic, embryonic, and genetic features of craniofacial development are conserved among zebrafish and mammals, making zebrafish a good model of craniofacial diseases. Also, the ability to manipulate gene function in zebrafish was greatly expanded over the past 20 y, enabling systems such as Gateway Tol2 and CRISPR-Cas9 to test gain- and loss-of-function alleles identified from human GWASs in coding and noncoding regions of DNA. With the optimization of genetic editing methods, large numbers of candidate genes can be efficiently interrogated. Finding the functional villains that underlie diseases will permit new treatments and prevention strategies and will increase understanding of how gene pathways operate during normal development.

  8. Primary hypolactasia diagnosis: Comparison between the gaxilose test, shortened lactose tolerance test, and clinical parameters corresponding to the C/T-13910 polymorphism.

    PubMed

    Domínguez Jiménez, José Luis; Fernández Suárez, Antonio; Muñoz Colmenero, Aurora Úrsula; Fatela Cantillo, Daniel; López Pelayo, Iratxe

    2017-04-01

    There is no consensus on the most accurate method to diagnose primary hypolactasia. We aimed to compare the diagnostic accuracy of the new gaxilose test with 2 traditional tests (lactose tolerance test and clinical criteria) for the diagnosis of primary hypolactasia using the C/T-13910 polymorphism as a reference standard. Patients with a clinical suspicion of lactose intolerance were subjected to gaxilose tests, shortened lactose tolerance tests, and symptom questionnaires before and after overload with 50 g lactose and after a lactose-free diet. The diagnostic accuracy and degree of agreement and correlation were assessed using a genetic test (C/T-13910 polymorphism) as a reference standard and their respective 95% confidence intervals. Thirty consecutive patients (70% women) participated in the study. The genetic test confirmed the C/T-13910 polymorphism in 11 patients (36.8%). The presence of diarrhoea and the symptom score after lactose overload, along with the tolerance test, were the variables with the highest degree of agreement (κ > 0.60). Area under the ROC curve was >0.82 (p < 0.05), with sensitivity and specificity values of >0.80. However, the gaxilose test obtained lower values: κ, 0.47; area under curve, 0.75 (0.57-0.94); sensitivity, 0.82 (0.55-1); and specificity, 0.68 (0.45-0.92). The multivariate analysis showed an association between the post-overload symptom questionnaire and the results of the genetic test (odds ratio: 1.17; 1.04-1.31; p < 0.01). The presence of diarrhoea and the symptom score after overload with 50 g lactose showed a higher degree of agreement and diagnostic accuracy for primary hypolactasia than the gaxilose test when the genetic test is used as a reference standard. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Gene-Environment Interactions

    PubMed Central

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra; Dunning, Alison M.; Milne, Roger L.; Bojesen, Stig E.; Swerdlow, Anthony; Andrulis, Irene; Brenner, Hermann; Behrens, Sabine; Orr, Nicholas; Jones, Michael; Ashworth, Alan; Li, Jingmei; Cramp, Helen; Connley, Dan; Czene, Kamila; Darabi, Hatef; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Knight, Julia; Glendon, Gord; Mulligan, Anna M.; Dumont, Martine; Severi, Gianluca; Baglietto, Laura; Olson, Janet; Vachon, Celine; Purrington, Kristen; Moisse, Matthieu; Neven, Patrick; Wildiers, Hans; Spurdle, Amanda; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M.; Hamann, Ute; Ko, Yon-Dschun; Dieffenbach, Aida K.; Arndt, Volker; Stegmaier, Christa; Malats, Núria; Arias Perez, JoséI.; Benítez, Javier; Flyger, Henrik; Nordestgaard, Børge G.; Truong, Théresè; Cordina-Duverger, Emilie; Menegaux, Florence; Silva, Isabel dos Santos; Fletcher, Olivia; Johnson, Nichola; Häberle, Lothar; Beckmann, Matthias W.; Ekici, Arif B.; Braaf, Linde; Atsma, Femke; van den Broek, Alexandra J.; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Cox, Angela; Simard, Jacques; Giles, Graham G.; Lambrechts, Diether; Mannermaa, Arto; Brauch, Hiltrud; Guénel, Pascal; Peto, Julian; Fasching, Peter A.; Hopper, John; Flesch-Janys, Dieter; Couch, Fergus; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; Schmidt, Marjanka K.; Hall, Per; Easton, Douglas F.; Chang-Claude, Jenny

    2014-01-01

    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10−07), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m2 (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m2 or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10−05). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci. PMID:24248812

  10. Ethics in prevention science involving genetic testing.

    PubMed

    Fisher, Celia B; Harrington McCarthy, Erika L

    2013-06-01

    The Human Genome Project and rapid technological advances in genomics have begun to enrich prevention science's contributions to understanding the role of genetic factors in the etiology, onset and escalation of mental disorders, allowing for more precise descriptions of the interplay between genetic and non-genetic influences. Understanding of ethical challenges associated with the integration of genetic data into prevention science has not kept pace with the rapid increase in the collection and storage of genetic data and dissemination of research results. This article discusses ethical issues associated with (1) decisions to withhold or disclose personal genetic information to participants; (2) implications of recruitment and data collection methods that may reveal genetic information of family members; and the (3) nature and timing of informed consent. These issues are presented within the contexts of adult and pediatric research, longitudinal studies, and use of biobanks for storage of genetic materials. Recommendations for research ethics decision-making are provided. The article concludes with a section on justice and research burdens and the unique ethical responsibilities of prevention scientists to ensure the new genomic science protects the informational rights of participants, their families and communities.

  11. Attitudes to Gun Control in an American Twin Sample: Sex Differences in the Causes of Variation.

    PubMed

    Eaves, Lindon J; Silberg, Judy L

    2017-10-01

    The genetic and social causes of individual differences in attitudes to gun control are estimated in a sample of senior male and female twin pairs in the United States. Genetic and environmental parameters were estimated by weighted least squares applied to polychoric correlations for monozygotic (MZ) and dizygotic (DZ) twins of both sexes. The analysis suggests twin similarity for attitudes to gun control in men is entirely genetic while that in women is purely social. Although the volunteer sample is small, the analysis illustrates how the well-tested concepts and methods of genetic epidemiology may be a fertile resource for deepening our scientific understanding of biological and social pathways that affect individual risk to gun violence.

  12. Perceptions of genetic discrimination among people at risk for Huntington’s disease: a cross sectional survey

    PubMed Central

    Bombard, Yvonne; Veenstra, Gerry; Friedman, Jan M; Creighton, Susan; Currie, Lauren; Paulsen, Jane S; Bottorff, Joan L

    2009-01-01

    Objective To assess the nature and prevalence of genetic discrimination experienced by people at risk for Huntington’s disease who had undergone genetic testing or remained untested. Design Cross sectional, self reported survey. Setting Seven genetics and movement disorders clinics servicing rural and urban communities in Canada. Participants 233 genetically tested and untested asymptomatic people at risk for Huntington’s disease (response rate 80%): 167 underwent testing (83 had the Huntington’s disease mutation, 84 did not) and 66 chose not to be tested. Main outcome measures Self reported experiences of genetic discrimination and related psychological distress based on family history or genetic test results. Results Discrimination was reported by 93 respondents (39.9%). Reported experiences occurred most often in insurance (29.2%), family (15.5%), and social (12.4%) settings. There were few reports of discrimination in employment (6.9%), health care (8.6%), or public sector settings (3.9%). Although respondents who were aware that they carried the Huntington’s disease mutation reported the highest levels of discrimination, participation in genetic testing was not associated with increased levels of genetic discrimination. Family history of Huntington’s disease, rather than the result of genetic testing, was the main reason given for experiences of genetic discrimination. Psychological distress was associated with genetic discrimination (P<0.001). Conclusions Genetic discrimination was commonly reported by people at risk for Huntington’s disease and was a source of psychological distress. Family history, and not genetic testing, was the major reason for genetic discrimination. PMID:19509425

  13. Regulation of Genetic Tests

    MedlinePlus

    ... Informed Consent for Genomics Research Intellectual Property Online Bioethics Resources Privacy in Genomics Regulation of Genetic Tests ... Research Intellectual Property Issues in Genetics Archive Online Bioethics Resources Privacy in Genomics Regulation of Genetic Tests ...

  14. Exact tests using two correlated binomial variables in contemporary cancer clinical trials.

    PubMed

    Yu, Jihnhee; Kepner, James L; Iyer, Renuka

    2009-12-01

    New therapy strategies for the treatment of cancer are rapidly emerging because of recent technology advances in genetics and molecular biology. Although newer targeted therapies can improve survival without measurable changes in tumor size, clinical trial conduct has remained nearly unchanged. When potentially efficacious therapies are tested, current clinical trial design and analysis methods may not be suitable for detecting therapeutic effects. We propose an exact method with respect to testing cytostatic cancer treatment using correlated bivariate binomial random variables to simultaneously assess two primary outcomes. The method is easy to implement. It does not increase the sample size over that of the univariate exact test and in most cases reduces the sample size required. Sample size calculations are provided for selected designs.

  15. Direct-to-consumer genetic testing in Slovenia: availability, ethical dilemmas and legislation.

    PubMed

    Vrecar, Irena; Peterlin, Borut; Teran, Natasa; Lovrecic, Luca

    2015-01-01

    Over the last few years, many private companies are advertising direct-to-consumer genetic testing (DTC GT), mostly with no or only minor clinical utility and validity of tests and without genetic counselling. International professional community does not approve provision of DTC GT and situation in some EU countries has been analysed already. The aim of our study was to analyse current situation in the field of DTC GT in Slovenia and related legal and ethical issues. Information was retrieved through internet search, performed independently by two authors, structured according to individual private company and the types of offered genetic testing. Five private companies and three Health Insurance Companies offer DTC GT and it is provided without genetic counselling. Available tests include testing for breast cancer, tests with other health-related information (complex diseases, drug responses) and other tests (nutrigenetic, ancestry, paternity). National legislation is currently being developed and Council of Experts in Medical Genetics has issued an opinion about Genetic Testing and Commercialization of Genetic Tests in Slovenia. Despite the fact that Slovenia has signed the Additional protocol to the convention on human rights and biomedicine, concerning genetic testing for health purposes, DTC GT in Slovenia is present and against all international recommendations. There is lack of or no medical supervision, clinical validity and utility of tests and inappropriate genetic testing of minors is available. There is urgent need for regulation of ethical, legal, and social aspects. National legislation on DTC GT is being prepared.

  16. Genetic testing in inherited polyposis syndromes - how and why?

    PubMed

    Lee, G H; Payne, S J; Melville, A; Clark, S K

    2014-08-01

    There have been recent advances in genetic testing enabling accurate diagnosis of polyposis syndromes by identifying causative gene mutations, which is essential in the management of individuals with polyposis syndrome and predictive genetic testing of their extended families. There are some similarities in clinical presentation of various polyposis syndromes, which may pose a challenge to diagnosis. In this review, we discuss the clinical presentation of the main polyposis syndromes and the process of genetic testing, including the latest advancement and future of genetic testing. We aim to reiterate the importance of genetic testing in the management of polyposis syndromes, potential pitfalls associated with genetic testing and recommendations for healthcare professionals involved with the care of polyposis patients. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  17. Gene patents still alive and kicking: their impact on provision of genetic testing for long QT syndrome in the Canadian public health-care system

    PubMed Central

    Ali-Khan, Sarah E; Gold, E Richard

    2017-01-01

    Purpose Although the Supreme Court of the United States limited their availability in Association for Molecular Pathology v. Myriad Genetics, gene patents remain important around the world. We examine the situation in Canada, where gene patents continue to exist, in light of recent litigation relating to familial long QT syndrome (LQTS). Methods We conducted in-depth semistructured interviews with 25 stakeholders across five Canadian provinces and supplemented this with a case analysis of the litigation. Results The majority of LQTS testing was carried out outside Canada. Rising costs prompted several provinces to attempt to repatriate testing. However, LQTS gene patents stymied efforts, particularly in provinces where testing was more centralized, increasing costs and lowering innovation. It was in this context that a hospital launched a test case against the LQTS patents, resulting in a novel agreement to free Canadian hospitals from the effects of patents. Conclusion Our analysis reveals a rapidly evolving genetic test provision landscape under pressure from gene patents, strained budgets and poor collaboration. The litigation resulted in a blueprint for free public use of gene patents throughout Canada's health-care system, but it will only have value if governments are proactive in its use. PMID:28492533

  18. Genetic Testing and Its Implications: Human Genetics Researchers Grapple with Ethical Issues.

    ERIC Educational Resources Information Center

    Rabino, Isaac

    2003-01-01

    Contributes systematic data on the attitudes of scientific experts who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. Finds that they are highly supportive of voluntary testing and the right to know one's genetic heritage. Calls for greater genetic literacy. (Contains 87 references.) (Author/NB)

  19. Deaf Adults' Reasons for Genetic Testing Depend on Cultural Affiliation: Results from a Prospective, Longitudinal Genetic Counseling and Testing Study

    ERIC Educational Resources Information Center

    Boudreault, Patrick; Baldwin, Erin E.; Fox, Michelle; Dutton, Loriel; Tullis, LeeElle; Linden, Joyce; Kobayashi, Yoko; Zhou, Jin; Sinsheimer, Janet S.; Sininger, Yvonne; Grody, Wayne W.; Palmer, Christina G. S.

    2010-01-01

    This article examines the relationship between cultural affiliation and deaf adults' motivations for genetic testing for deafness in the first prospective, longitudinal study to examine the impact of genetic counseling and genetic testing on deaf adults and the deaf community. Participants (n = 256), classified as affiliating with hearing, Deaf,…

  20. Perceived genetic knowledge, attitudes towards genetic testing, and the relationship between these among patients with a chronic disease.

    PubMed

    Morren, Mattijn; Rijken, Mieke; Baanders, Arianne N; Bensing, Jozien

    2007-02-01

    Genetics increasingly permeate everyday medicine. When patients want to make informed decisions about genetic testing, they require genetic knowledge. This study examined the genetic knowledge and attitudes of patients with chronic diseases, and the relationship between both. In addition, patients were asked about their preferred source of genetic information. Questionnaires were mailed to participants of a nationwide representative sample of patients with chronic diseases in the Netherlands (n = 1916). The response rate was 82% (n = 1496). Perceived genetic knowledge was low, particularly among older and lower educated patients. Attitudes towards genetics were rather positive, especially among younger and higher educated patients. Some concerns were also documented, mainly about the consequences of genetic testing for employment and taking insurance. Patients who perceived to have little knowledge found it difficult to formulate an opinion about genetic testing. Higher levels of genetic knowledge were associated with a more favourable attitude towards genetics. Chronic patients prefer to receive genetic information from their GP. Chronic patients are ill prepared when they require genetic knowledge to make decisions regarding the treatment of their disease. This seems to result from a knowledge deficiency rather than from disagreement with the genetic developments. When chronic patients are in need of information about genetics or genetic testing, their general practitioner should provide this.

  1. Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise.

    PubMed

    Giudicessi, John R; Ackerman, Michael J

    2013-01-01

    In this review, we summarize the basic principles governing rare variant interpretation in the heritable cardiac arrhythmia syndromes, focusing on recent advances that have led to disease-specific approaches to the interpretation of positive genetic testing results. Elucidation of the genetic substrates underlying heritable cardiac arrhythmia syndromes has unearthed new arrhythmogenic mechanisms and given rise to a number of clinically meaningful genotype-phenotype correlations. As such, genetic testing for these disorders now carries important diagnostic, prognostic, and therapeutic implications. Recent large-scale systematic studies designed to explore the background genetic 'noise' rate associated with these genetic tests have provided important insights and enhanced how positive genetic testing results are interpreted for these potentially lethal, yet highly treatable, cardiovascular disorders. Clinically available genetic tests for heritable cardiac arrhythmia syndromes allow the identification of potentially at-risk family members and contribute to the risk-stratification and selection of therapeutic interventions in affected individuals. The systematic evaluation of the 'signal-to-noise' ratio associated with these genetic tests has proven critical and essential to assessing the probability that a given variant represents a rare pathogenic mutation or an equally rare, yet innocuous, genetic bystander.

  2. Genetic diversity among Angus, American Brahman, Senepol and Romosinuano cattle breeds.

    PubMed

    Brenneman, R A; Chase, C C; Olson, T A; Riley, D G; Coleman, S W

    2007-02-01

    The objective of this study was to quantify the genetic diversity among breeds under evaluation for tropical adaptability traits that affect the performance of beef cattle at the USDA/ARS SubTropical Agricultural Research Station (STARS) near Brooksville, FL, USA. Twenty-six microsatellite loci were used to estimate parameters of genetic diversity among the breeds American Brahman, Angus, Senepol and Romosinuano; the latter was comprised of two distinct bloodlines (Costa Rican and Venezuelan). Genotypes of 47 animals from each of these STARS herds were analysed for genetic diversity and genetic distance. Using two methods, the greatest genetic distance was detected between the Costa Rican line of Romosinuano and the Senepol. Gene diversity ranged between 0.64 (Costa Rican line of Romosinuano) and 0.75 (American Brahman). The breed relationship inferences, which are based on genetic distance, provide additional tools for consideration in future crossbreeding studies and for testing the relationship between quantified breed diversity and observed heterosis.

  3. A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context

    PubMed Central

    2010-01-01

    Background Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm. Results PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV) resampling. Classification accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets. Conclusions The ANN based methods revealed factors that interactively contribute to obesity trait and provided predictive models with a promising generalization ability. In general, results showed that ANNs and their hybrids can provide useful tools for the study of complex traits in the context of nutrigenetics. PMID:20825661

  4. Clonality, genetic diversity and support for the diversifying selection hypothesis in natural populations of a flower-living yeast.

    PubMed

    Herrera, C M; Pozo, M I; Bazaga, P

    2011-11-01

    Vast amounts of effort have been devoted to investigate patterns of genetic diversity and structuring in plants and animals, but similar information is scarce for organisms of other kingdoms. The study of the genetic structure of natural populations of wild yeasts can provide insights into the ecological and genetic correlates of clonality, and into the generality of recent hypotheses postulating that microbial populations lack the potential for genetic divergence and allopatric speciation. Ninety-one isolates of the flower-living yeast Metschnikowia gruessii from southeastern Spain were DNA fingerprinted using amplified fragment length polymorphism (AFLP) markers. Genetic diversity and structuring was investigated with band-based methods and model- and nonmodel-based clustering. Linkage disequilibrium tests were used to assess reproduction mode. Microsite-dependent, diversifying selection was tested by comparing genetic characteristics of isolates from bumble bee vectors and different floral microsites. AFLP polymorphism (91%) and genotypic diversity were very high. Genetic diversity was spatially structured, as shown by amova (Φ(st)  = 0.155) and clustering. The null hypothesis of random mating was rejected, clonality seeming the prevailing reproductive mode in the populations studied. Genetic diversity of isolates declined from bumble bee mouthparts to floral microsites, and frequency of five AFLP markers varied significantly across floral microsites, thus supporting the hypothesis of diversifying selection on clonal lineages. Wild populations of clonal fungal microbes can exhibit levels of genetic diversity and spatial structuring that are not singularly different from those shown by sexually reproducing plants or animals. Microsite-dependent, divergent selection can maintain high local and regional genetic diversity in microbial populations despite extensive clonality. © 2011 Blackwell Publishing Ltd.

  5. Incorporating gene-environment interaction in testing for association with rare genetic variants.

    PubMed

    Chen, Han; Meigs, James B; Dupuis, Josée

    2014-01-01

    The incorporation of gene-environment interactions could improve the ability to detect genetic associations with complex traits. For common genetic variants, single-marker interaction tests and joint tests of genetic main effects and gene-environment interaction have been well-established and used to identify novel association loci for complex diseases and continuous traits. For rare genetic variants, however, single-marker tests are severely underpowered due to the low minor allele frequency, and only a few gene-environment interaction tests have been developed. We aimed at developing powerful and computationally efficient tests for gene-environment interaction with rare variants. In this paper, we propose interaction and joint tests for testing gene-environment interaction of rare genetic variants. Our approach is a generalization of existing gene-environment interaction tests for multiple genetic variants under certain conditions. We show in our simulation studies that our interaction and joint tests have correct type I errors, and that the joint test is a powerful approach for testing genetic association, allowing for gene-environment interaction. We also illustrate our approach in a real data example from the Framingham Heart Study. Our approach can be applied to both binary and continuous traits, it is powerful and computationally efficient.

  6. Wolcott-Rallison Syndrome Is the Most Common Genetic Cause of Permanent Neonatal Diabetes in Consanguineous Families

    PubMed Central

    Rubio-Cabezas, Oscar; Patch, Ann-Marie; Minton, Jayne A. L.; Flanagan, Sarah E.; Edghill, Emma L.; Hussain, Khalid; Balafrej, Amina; Deeb, Asma; Buchanan, Charles R.; Jefferson, Ian G.; Mutair, Angham; Hattersley, Andrew T.; Ellard, Sian

    2009-01-01

    Context and Objective: Mutations in EIF2AK3 cause Wolcott-Rallison syndrome (WRS), a rare recessive disorder characterized by early-onset diabetes, skeletal abnormalities, and liver dysfunction. Although early diagnosis is important for clinical management, genetic testing is generally performed after the full clinical picture develops. We aimed to identify patients with WRS before any other abnormalities apart from diabetes are present and study the overall frequency of WRS among patients with permanent neonatal diabetes. Research Design and Methods: The coding regions of EIF2AK3 were sequenced in 34 probands with infancy-onset diabetes with a clinical phenotype suggestive of WRS (n = 28) or homozygosity at the WRS locus (n = 6). Results: Twenty-five probands (73.5%) were homozygous or compound heterozygous for mutations in EIF2AK3. Twenty of the 26 mutations identified were novel. Whereas a diagnosis of WRS was suspected before genetic testing in 22 probands, three patients with apparently isolated diabetes were diagnosed after identifying a large homozygous region encompassing EIF2AK3. In contrast to nonconsanguineous pedigrees, mutations in EIF2AK3 are the most common known genetic cause of diabetes among patients born to consanguineous parents (24 vs. < 2%). Age at diabetes onset and birth weight might be used to prioritize genetic testing in the latter group. Conclusions: WRS is the most common cause of permanent neonatal diabetes mellitus in consanguineous pedigrees. In addition to testing patients with a definite clinical diagnosis, EIF2AK3 should be tested in patients with isolated neonatal diabetes diagnosed after 3 wk of age from known consanguineous families, isolated populations, or countries in which inbreeding is frequent. PMID:19837917

  7. Laboratory diagnosis of creatine deficiency syndromes: a technical standard and guideline of the American College of Medical Genetics and Genomics.

    PubMed

    Sharer, J Daniel; Bodamer, Olaf; Longo, Nicola; Tortorelli, Silvia; Wamelink, Mirjam M C; Young, Sarah

    2017-02-01

    Disclaimer: These ACMG Standards and Guidelines are intended as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of others that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, clinical laboratory geneticists should apply their professional judgment to the specific circumstances presented by the patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Cerebral creatine deficiency syndromes are neurometabolic conditions characterized by intellectual disability, seizures, speech delay, and behavioral abnormalities. Several laboratory methods are available for preliminary and confirmatory diagnosis of these conditions, including measurement of creatine and related metabolites in biofluids using liquid chromatography-tandem mass spectrometry or gas chromatography-mass spectrometry, enzyme activity assays in cultured cells, and DNA sequence analysis. These guidelines are intended to standardize these procedures to help optimize the diagnosis of creatine deficiency syndromes. While biochemical methods are emphasized, considerations for confirmatory molecular testing are also discussed, along with variables that influence test results and interpretation.Genet Med 19 2, 256-263.

  8. Vertical decomposition with Genetic Algorithm for Multiple Sequence Alignment

    PubMed Central

    2011-01-01

    Background Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution and analyzing sequence structure relationships. Results In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0. Conclusions The experimental results showed that the VDGA with three vertical divisions was the most successful variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results also confirmed that VDGA outperformed the other methods considered in this research. PMID:21867510

  9. Genetic divergence of physiological-quality traits of seeds in a population of peppers.

    PubMed

    Pessoa, A M S; Barroso, P A; do Rêgo, E R; Medeiros, G D A; Bruno, R L A; do Rêgo, M M

    2015-10-16

    Brazil has a great diversity of Capsicum peppers that can be used in breeding programs. The objective of this study was to evaluate genetic variation in traits related to the physiological quality of seeds of Capsicum annuum L. in a segregating F2 population and its parents. A total of 250 seeds produced by selfing in the F1 generation resulting from crosses between UFPB 77.3 and UFPB 76 were used, with 100 seeds of both parents used as additional controls, totaling 252 genotypes. The seeds were germinated in gerboxes containing substrate blotting paper moistened with distilled water. Germination and the following vigor tests were evaluated: first count, germination velocity index, and root and shoot lengths. Data were subjected to analysis of variance, and means were compared by Scott and Knott's method at 1% probability. Tocher's clustering based on Mahalanobis distance and canonical variable analysis with graphic dispersion of genotypes were performed, and genetic parameters were estimated. All variables were found to be significant by the F test (P ≤ 0.01) and showed high heritability and a CVg/CVe ratio higher than 1.0, indicating genetic differences among genotypes. Parents (genotypes 1 and 2) formed distinct groups in all clustering methods. Genotypes 3, 104, 153, and 232 were found to be the most divergent according to Tocher's clustering method, and this was mainly due to early germination, which was observed on day 14, and would therefore be selected. Understanding the phenotypic variability among these 252 genotypes will serve as a basis for continuing the breeding program within this family.

  10. On the use of sibling recurrence risks to select environmental factors liable to interact with genetic risk factors.

    PubMed

    Kazma, Rémi; Bonaïti-Pellié, Catherine; Norris, Jill M; Génin, Emmanuelle

    2010-01-01

    Gene-environment interactions are likely to be involved in the susceptibility to multifactorial diseases but are difficult to detect. Available methods usually concentrate on some particular genetic and environmental factors. In this paper, we propose a new method to determine whether a given exposure is susceptible to interact with unknown genetic factors. Rather than focusing on a specific genetic factor, the degree of familial aggregation is used as a surrogate for genetic factors. A test comparing the recurrence risks in sibs according to the exposure of indexes is proposed and its power is studied for varying values of model parameters. The Exposed versus Unexposed Recurrence Analysis (EURECA) is valuable for common diseases with moderate familial aggregation, only when the role of exposure has been clearly outlined. Interestingly, accounting for a sibling correlation for the exposure increases the power of EURECA. An application on a sample ascertained through one index affected with type 2 diabetes is presented where gene-environment interactions involving obesity and physical inactivity are investigated. Association of obesity with type 2 diabetes is clearly evidenced and a potential interaction involving this factor is suggested in Hispanics (P=0.045), whereas a clear gene-environment interaction is evidenced involving physical inactivity only in non-Hispanic whites (P=0.028). The proposed method might be of particular interest before genetic studies to help determine the environmental risk factors that will need to be accounted for to increase the power to detect genetic risk factors and to select the most appropriate samples to genotype.

  11. Macroevolutionary developmental biology: Embryos, fossils, and phylogenies.

    PubMed

    Organ, Chris L; Cooper, Lisa Noelle; Hieronymus, Tobin L

    2015-10-01

    The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses. We survey the vertebrate fossil record of preserved embryos and discuss how phylogenetic comparative methods can integrate data from developmental genetics and paleontology. Fossil embryos provide limited, yet critical, developmental data from deep time. They help constrain when developmental innovations first appeared during the history of life and also reveal the order in which related morphologies evolved. Phylogenetic comparative methods provide a powerful statistical approach that allows evo-devo researchers to infer the presence of nonpreserved developmental traits in fossil species and to detect discordant evolutionary patterns and processes across levels of biological organization. © 2015 Wiley Periodicals, Inc.

  12. The genetic algorithm: A robust method for stress inversion

    NASA Astrophysics Data System (ADS)

    Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.

    2017-01-01

    The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.

  13. Use of Embryos Extracted from Individual Cannabis sativa Seeds for Genetic Studies and Forensic Applications.

    PubMed

    Soler, Salvador; Borràs, Dionís; Vilanova, Santiago; Sifres, Alicia; Andújar, Isabel; Figàs, Maria R; Llosa, Ernesto R; Prohens, Jaime

    2016-03-01

    Legal limits on the psychoactive tetrahydrocannabinol (THC) content in Cannabis sativa plants have complicated genetic and forensic studies in this species. However, Cannabis seeds present very low THC levels. We developed a method for embryo extraction from seeds and an improved protocol for DNA extraction and tested this method in four hemp and six marijuana varieties. This embryo extraction method enabled the recovery of diploid embryos from individual seeds. An improved DNA extraction protocol (CTAB3) was used to obtain DNA from individual embryos at a concentration and quality similar to DNA extracted from leaves. DNA extracted from embryos was used for SSR molecular characterization in individuals from the 10 varieties. A unique molecular profile for each individual was obtained, and a clear differentiation between hemp and marijuana varieties was observed. The combined embryo extraction-DNA extraction methodology and the new highly polymorphic SSR markers facilitate genetic and forensic studies in Cannabis. © 2015 American Academy of Forensic Sciences.

  14. Consumers report lower confidence in their genetics knowledge following direct-to-consumer personal genomic testing.

    PubMed

    Carere, Deanna Alexis; Kraft, Peter; Kaphingst, Kimberly A; Roberts, J Scott; Green, Robert C

    2016-01-01

    The aim of this study was to measure changes to genetics knowledge and self-efficacy following personal genomic testing (PGT). New customers of 23andMe and Pathway Genomics completed a series of online surveys. We measured genetics knowledge (nine true/false items) and genetics self-efficacy (five Likert-scale items) before receipt of results and 6 months after results and used paired methods to evaluate change over time. Correlates of change (e.g., decision regret) were identified using linear regression. 998 PGT customers (59.9% female; 85.8% White; mean age 46.9 ± 15.5 years) were included in our analyses. Mean genetics knowledge score was 8.15 ± 0.95 (out of 9) at baseline and 8.25 ± 0.92 at 6 months (P = 0.0024). Mean self-efficacy score was 29.06 ± 5.59 (out of 35) at baseline and 27.7 ± 5.46 at 6 months (P < 0.0001); on each item, 30-45% of participants reported lower self-efficacy following PGT. Change in self-efficacy was positively associated with health-care provider consultation (P = 0.0042), impact of PGT on perceived control over one's health (P < 0.0001), and perceived value of PGT (P < 0.0001) and was negatively associated with decision regret (P < 0.0001). Lowered genetics self-efficacy following PGT may reflect an appropriate reevaluation by consumers in response to receiving complex genetic information.Genet Med 18 1, 65-72.

  15. HYPOTHESIS TESTING WITH THE SIMILARITY INDEX

    EPA Science Inventory

    Mulltilocus DNA fingerprinting methods have been used extensively to address genetic issues in wildlife populations. Hypotheses concerning population subdivision and differing levels of diversity can be addressed through the use of the similarity index (S), a band-sharing coeffic...

  16. GENOTOXICITY RISK ASSESSMENT: A PROPOSED CLASSIFICATION STRATEGY

    EPA Science Inventory

    Recent advances in genetic toxicity (mutagenicity) testing methods and in approaches to performing risk assessment are prompting a renewed effort to harmonize genotoxicity risk assessment across the world. The US Environmental Protection Agency (EPA) first published Guidelines fo...

  17. Genetic Testing: What It Means for Your Health and Your Family's Health

    MedlinePlus

    ... cost of the genetic testing and whether your health insurance will cover the cost. The availability of genetics professionals who can talk with you about all of the benefits and possible risks of genetic testing. A federal law called the Genetic Information Nondiscrimination ...

  18. [Ethical guidelines on genetic testing and gene therapy].

    PubMed

    Fukushima, Yoshimitsu

    2005-03-01

    According to the recent and rapid advances in molecular genetics research, genetic testing and gene therapy have a potential of giving unexpected influence to the human beings. To prevent and to solve various ethical, legal and social implementations (ELSI) of genetic testing and gene therapy, several guidelines have been established. In Japan, all researchers and all clinicians have to know and keep the following three guidelines on genetic testing and a guideline on gene therapy: 1) "Guidelines for Researches on Human Genome and Gene (2001)" by the three Ministries (Education, Health and Economy), 2) "Guidelines for Genetic Testing (2001)" by the Genetic--medicine--related 10 societies, 3) "Ethical Principles on Entrusted Genetic Testing (2001)" by the Japan Registered Clinical Laboratories Association, and 4) "Guidelines for Clinical Research on Gene Therapy (2002)" by the two Ministries (Health and Education).

  19. Understanding the impact of genetic testing for inherited retinal dystrophy

    PubMed Central

    Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina

    2013-01-01

    The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy. PMID:23403902

  20. Understanding the impact of genetic testing for inherited retinal dystrophy.

    PubMed

    Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina

    2013-11-01

    The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy.

Top