Nic Lochlainn, Laura; Caffrey, Patrick
2009-01-01
Streptomycetes synthesise several bioactive natural products that are modified with sugar residues derived from GDP-mannose. These include the antifungal polyenes, the antibacterial antibiotics hygromycin A and mannopeptimycins, and the anticancer agent bleomycin. Three enzymes function in biosynthesis of GDP-mannose from the glycolytic intermediate fructose 6-phosphate: phosphomannose isomerase (PMI), phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMPP). Synthesis of GDP-mannose from exogenous mannose requires hexokinase or phosphotransferase enzymes together with PMM and GMPP. In this study, a region containing genes for PMI, PMM and GMPP was cloned from Streptomyces nodosus, producer of the polyenes amphotericins A and B. Inactivation of the manA gene for PMI resulted in production of amphotericins and their aglycones, 8-deoxyamphoteronolides. A double mutant lacking the PMI and PMM genes produced 8-deoxyamphoteronolides in good yields along with trace levels of glycosylated amphotericins. With further genetic engineering these mutants may activate alternative hexoses as GDP-sugars for transfer to aglycones in vivo.
Barreales, Eva G; Vicente, Cláudia M; de Pedro, Antonio; Santos-Aberturas, Javier; Aparicio, Jesús F
2018-05-15
The biosynthesis of small-size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, the archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four-nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3-nucleotide spacer, both located in the promoter region of its unique target gene, pimM A similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here, we used promoter engineering and quantitative transcriptional analyses to determine the contributions of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays were used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. The cooperative binding of PimR SARP appears to be the mechanism involved in the binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding. IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM The expression of this gene is controlled by the Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator PimR, which binds a series of heptameric direct repeats in its promoter region. The structure and importance of such repeats in protein binding, transcriptional activation, and polyene production have been investigated. These findings should provide important clues to understand the regulatory machinery that modulates antibiotic biosynthesis in Streptomyces and open new possibilities for the manipulation of metabolite production. The presence of PimR orthologues encoded by gene clusters for different secondary metabolites and the conservation of their operators suggest that the improvements observed in the activation of pimaricin biosynthesis by Streptomyces natalensis could be extrapolated to the production of different compounds by other species. Copyright © 2018 Barreales et al.
Rolón, Miriam; Seco, Elena M; Vega, Celeste; Nogal, Juan J; Escario, José A; Gómez-Barrio, Alicia; Malpartida, Francisco
2006-08-01
The growth inhibitory effects on Trypanosoma cruzi of several natural tetraene macrolides and their derivatives were studied and compared with that of amphotericin B. All tetraenes strongly inhibited in vitro multiplication. Proliferation of epimastigotes was arrested by all these drugs at < or =3.6 microM, which were also active on amastigotes proliferating in fibroblasts. Compared with amphotericin B, the compounds were less effective but also less toxic, showing no effect on the proliferation of J774 and NCTC 929 mammalian cells at concentrations active against the parasites. CE-108B (a polyene amide) appeared to be an especially potent trypanocidal compound, with strong in vivo trypanocidal activity and very low or no toxic side effects, and thus should be considered for further studies.
Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram
2014-01-01
Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895
Phloretin modulates the rate of channel formation by polyenes.
Chulkov, Evgeny G; Ostroumova, Olga S
2016-02-01
The influence of flavonoids and polyene antibiotics on the permeability of membranes has been investigated through measurements of calcein leakage from large unilamellar vesicles composed of DOPC:cholesterol (67:33 mol%). Phloretin and biochanin A have been shown to induce calcein release from liposomes, but quercetin, daidzein, and catechin have not. Differential scanning calorimetry has indicated a decreasing of melting temperature of DPPC vesicles by 1.5-2°C in the presence of phloretin and biochanin A. Quercetin, catechin, and daidzein have had almost no effect on the main transition temperature. Phloretin, biochanin A, and quercetin have significantly broadened the main transition peak of DPPC. Phloretin have increased a leakage induced by polyene antibiotics, whereas catechin and daidzein have not. Quercetin has slightly affected it. The effects of tested flavonoids on the polyene-induced calcein leakage and channel forming activity have been similar. The obtained data agree with the previously supposed hypothesis regarding the enhancement of polyene activity by reducing elastic stress near the lipid mouth of the nystatin pore. The inhibition of polyene channel forming activity by biochanin A observed in planar DOPC:cholesterol bilayers may be related to the flavonoid competition with cholesterol in the polyene-sterol channel complexes. Copyright © 2015 Elsevier B.V. All rights reserved.
The low-lying electronic excitations in long polyenes: A PPP-MRD-CI study
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1986-12-01
A correct description of the electronic excitations in polyenes demands that electron correlation is accounted for correctly. Very large expansions are necessary including many-electron configurations with at least one, two, three, and four electrons promoted from the Hartree-Fock ground state. The enormous size of such expansions had prohibited accurate computations of the spectra for polyenes with more than ten π electrons. We present a multireference double excitation configuration interaction method (MRD-CI) which allows such computations for polyenes with up to 16 π electrons. We employ a Pariser-Parr-Pople (PPP) model Hamiltonian. For short polyenes with up to ten π electrons our calculations reproduce the excitation energies resulting from full-CI calculations. We extend our calculations to study the low-lying electronic excitations of the longer polyenes, in particular, the gap between the first optically forbidden and the first optically allowed excited singlet state. The size of this gap is shown to depend strongly on the degree of bond alternation and on the dielectric shielding of the Coulomb repulsion between the π electrons.
Schöner, Tim A; Gassel, Sören; Osawa, Ayako; Tobias, Nicholas J; Okuno, Yukari; Sakakibara, Yui; Shindo, Kazutoshi; Sandmann, Gerhard; Bode, Helge B
2016-02-02
Bacterial pigments of the aryl polyene type are structurally similar to the well-known carotenoids with respect to their polyene systems. Their biosynthetic gene cluster is widespread in taxonomically distant bacteria, and four classes of such pigments have been found. Here we report the structure elucidation of the aryl polyene/dialkylresorcinol hybrid pigments of Variovorax paradoxus B4 by HPLC-UV-MS, MALDI-MS and NMR. Furthermore, we show for the first time that this pigment class protects the bacterium from reactive oxygen species, similarly to what is known for carotenoids. An analysis of the distribution of biosynthetic genes for aryl polyenes and carotenoids in bacterial genomes is presented; it shows a complementary distribution of these protective pigments in bacteria. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structures and Optical Properties of Hydrazones Derived from Biological Polyenes
NASA Astrophysics Data System (ADS)
Nakashima, Takayasu; Yamada, Takashi; Hashimoto, Hideki; Kobayashi, Takayoshi
2001-08-01
A set of hydrazone molecules was derived from a series of biological polyenes that have different polyene chain-lengths with common substituent group of 2,4-dinitrophenylhydrazine. Their structures were determined by high-resolution NMR spectroscopy as well as X-ray crystallography, and their optical properties were investigated by room and low temperature optical absorption spectroscopy. Among the derivatives so far synthesized, the one that has the shortest polyene chain (C13-DNPH) afforded single crystals without inversion symmetry, hence applicable for the second-order nonlinear optical devices. Molecular structures in the crystals were closely inspected in order to explain the cause to violate the inversion symmetry. Hydrazones derived in this study gave rise to two transition moments along the molecular axis. Comparison of the optical absorption spectra among the derivatives showed a unique phenomenon that could be attributed to the crossover of the excited state potential energy surfaces along the elongation of the polyene chain-lengths.
Structures and Optical Properties of Hydrazones Derived from Biological Polyenes
NASA Astrophysics Data System (ADS)
Nakashima, Takayasu; Yamada, Takashi; Hashimoto, Hideki; Kobayashi, Takayoshi
A set of hydrazone molecules was derived from a series of biological polyenes that have different polyene chain-lengths with common substituent group of 2,4-dinitrophenylhydrazine. Their structures were determined by high-resolution NMR spectroscopy as well as X-ray crystallography, and their optical properties were investigated by room and low temperature optical absorption spectroscopy. Among the derivatives so far synthesized, the one that has the shortest polyene chain (C13-DNPH) afforded single crystals without inversion symmetry, hence applicable for the second-order nonlinear optical devices. Molecular structures in the crystals were closely inspected in order to explain the cause to violate the inversion symmetry. Hydrazones derived in this study gave rise to two transition moments along the molecular axis. Comparison of the optical absorption spectra among the derivatives showed a unique phenomenon that could be attributed to the crossover of the excited state potential energy surfaces along the elongation of the polyene chain-lengths.
Woerly, Eric M; Roy, Jahnabi; Burke, Martin D
2014-06-01
The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
NASA Astrophysics Data System (ADS)
Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.
2014-06-01
The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
Docosahexaenoic acid in cardiac metabolism and function.
Gudbjarnason, S; Doell, B; Oskarsdóttir, G
1978-01-01
The polyene fatty acid compostition of cardiac phospholipids is modified by a) dietary cod liver oil, b) norepinephrine, c) chronic administration of nicotine to animals fed a high cholesterol diet. Polyene fatty acids stimulate microsomal oxydation of epinephrine to cardiotoxic adrenochrome. Adrenochrome stimulates microsomal peroxydation or oxygenation of polyene fatty acids. There is an exponential relationship between docosahexaenoic acid of cardiac phospholipids and the heart rate.
Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.
2014-01-01
The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233
Fernandes, Rafaella F; Maia, Lenize F; Couri, Mara R C; Costa, Luiz Antonio S; de Oliveira, Luiz Fernando C
2015-01-05
This work presents the Raman spectroscopic characterization of synthetic analogs of natural conjugated polyenals found in octocorals, focusing the unequivocal identification of the chemical species present in these systems. The synthetic material was produced by the autocondensation reaction of crotonaldehyde, generating a demethylated conjugated polyene containing 11 carbon-carbon double bonds, with just a methyl group on the end of the carbon chain. The resonance Raman spectra of such pigment has shown the existence of enhanced modes assigned to ν₁(CC) and ν₂(CC) modes of the main chain. For the resonance Raman spectra of natural pigments from octocorals collected in the Brazilian coast, besides the previously cited bands, it could be also observed the presence of the ν₄(CCH₃), related to the vibrational mode who describes the vibration of the methyl group of the central carbon chain of carotenoids. Other interesting point is the observation of overtones and combination bands, which for carotenoids involves the presence of the ν₄ mode, whereas for the synthetic polyene this band, besides be seen at a slightly different wavenumber position, does not appear as an enhanced mode and also as a combination, such as for the natural carotenoids. Theoretical molecular orbital analysis of polyenal-11 and lycopene has shown the structural differences which are also responsible for the resonance Raman data, based on the appearance of the (CH3) vibrational mode in the resonant transition only for lycopene. At last, the Raman band at ca. 1010 cm(-1), assigned to the (CH₃) vibrational mode, can be used for attributing the presence of each one of the conjugated polyenes: the resonance Raman spectrum containing the band at ca. 1010 cm(-1) refers to the carotenoid (in this case lycopene), and the absence of such band in resonance conditions refers to the polyenal (in this case the polyenal-11). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fernandes, Rafaella F.; Maia, Lenize F.; Couri, Mara R. C.; Costa, Luiz Antonio S.; de Oliveira, Luiz Fernando C.
2015-01-01
This work presents the Raman spectroscopic characterization of synthetic analogs of natural conjugated polyenals found in octocorals, focusing the unequivocal identification of the chemical species present in these systems. The synthetic material was produced by the autocondensation reaction of crotonaldehyde, generating a demethylated conjugated polyene containing 11 carbon-carbon double bonds, with just a methyl group on the end of the carbon chain. The resonance Raman spectra of such pigment has shown the existence of enhanced modes assigned to ν1(Cdbnd C) and ν2(Csbnd C) modes of the main chain. For the resonance Raman spectra of natural pigments from octocorals collected in the Brazilian coast, besides the previously cited bands, it could be also observed the presence of the ν4(Csbnd CH3), related to the vibrational mode who describes the vibration of the methyl group of the central carbon chain of carotenoids. Other interesting point is the observation of overtones and combination bands, which for carotenoids involves the presence of the ν4 mode, whereas for the synthetic polyene this band, besides be seen at a slightly different wavenumber position, does not appear as an enhanced mode and also as a combination, such as for the natural carotenoids. Theoretical molecular orbital analysis of polyenal-11 and lycopene has shown the structural differences which are also responsible for the resonance Raman data, based on the appearance of the (sbnd CH3) vibrational mode in the resonant transition only for lycopene. At last, the Raman band at ca. 1010 cm-1, assigned to the (sbnd CH3) vibrational mode, can be used for attributing the presence of each one of the conjugated polyenes: the resonance Raman spectrum containing the band at ca. 1010 cm-1 refers to the carotenoid (in this case lycopene), and the absence of such band in resonance conditions refers to the polyenal (in this case the polyenal-11).
Electronic excitations in finite and infinite polyenes
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1987-09-01
We study electronic excitations in long polyenes, i.e., in one-dimensional strongly correlated electron systems which are neither infinite nor small. The excitations are described within Hubbard and Pariser-Parr-Pople (PPP) models by means of a multiple-reference double-excitation expansion [P. Tavan and K. Schulten, J. Chem. Phys. 85, 6602 (1986)]. We find that quantized ``transition'' momenta can be assigned to electronic excitations in finite chains. These momenta link excitation energies of finite chains to dispersion relations of infinite chains, i.e., they bridge the gap between finite and infinite systems. A key result is the following: Excitation energies E in polyenes with N carbon atoms are described very accurately by the formula Eβ=ΔEβ0+αβk(N)q, q=1,2,..., where β denotes the excitation class, ΔEβ0 the energy gap in the infinite system [αβk(N)>0], and k(N) the elementary transition momentum. The parameters ΔEβ0 and αβ are determined for covalent and ionic excitations in alternating and nonalternating polyenes. The covalent excitations are combinations of triplet excitations T, i.e., T, TT, TTT, . . . . The lowest singlet excitations in the infinite polyene, e.g., in polyacetylene or polydiacetylene, are TT states. Available evidence proves that these states can dissociate into separate triplets. The bond structure of TT states is that of a neutral soliton-antisoliton pair. The level density of TT states in long polyenes is high enough to allow dissociation into separate solitons.
Hyperpolarizabilities of Push-Pull Polyenes: Experimental Results and a New Two-State Model
NASA Technical Reports Server (NTRS)
Perry, J.; Bourhill, G.; Marder, S.; Lu, D.; Chen, G.; Goddard, W.
1994-01-01
Recent work has demonstrated a correlation between the geometry (i.e., the bond length alteration, BLA) and the first and second hyperpolarizabilities (betta and gamma) of donor-acceptor substituted (push-pull)polyenes.
[Anti-amebic effect of polyenic antibiotics].
Liubimova, L K; Ovnanian, K O; Ivanova, L N
1985-03-01
All-Union Research technological Institute of Antibiotics and Medical Enzymes, Leningrad. Institute of Epidemiology, Virology and medical parasitology, Ministry of Health of the Armenian SSR. The effect of polyenic antibiotics made in the USSR on development of E. histolytica and E. moshkovski was studied. The following antibiotics were used: levorin and its derivatives, mycoheptin, amphotericin B, amphoglucamine and nystatin. The antibiotics were compared with emetine and metronidazole. Some drugs of the imidazole group were also included into the study. On the whole 15 drugs were tested for their antiamebic activity. All the polyenic antibiotics showed a high antiamebic activity. Levorin and its derivatives were the most active. Their MICs ranged from 0.1 to 5.38 micrograms/ml. The most active of the new imidazoles was 100 times less effective than sodium levorin. The studies show that the polyenic antibiotics have an antiamebic activity and a broad antiprotozoal spectrum.
The PPP model of alternant cyclic polyenes with modified boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendazzoli, G.L.; Evangelisti, S.
1995-08-15
The extension of the PPP Hamiltonian for alternant cyclic polyenes to noninteger values of the pseudomomentum by imposing modified boundary conditions is discussed in detail. It is shown that a computer program for periodic boundary conditions can be easily adapted to the new boundary conditions. Full CI computations are carried out for some low-lying states of the PPP model of alternant cyclic polyenes (CH){sub N} (N even) at half-filling. The energy values obtained by using periodic (Bloch) and antiperiodic (Moebius) orbitals are used to perform energy extrapolations for N {yields} {infinity}. 38 refs., 2 figs., 5 tabs.
Liposomes as potential carrier system for targeted delivery of polyene antibiotics.
Naik, Suresh R; Desai, Sandhya K; Shah, Priyank D; Wala, Santosh M
2013-09-01
The development of new therapeutic modalities involves the use of drug carrier, such as liposomes, which can modify pharmacokinetic and bio-distribution of drug profile. Polyene antibiotics incorporation into liposomes improves its availability at the site, bio-distribution and therapeutic index mainly through the engulfment of liposomes by circulating monocytes/macrophages and transportation to the site of infection. Polyene antibiotics (AmB, SJA-95, HA-1-92) and other antibiotics (streptomycin, tobramycin, quinolones, anti-tubercular and anti-cancer drugs), liposomal preparations are described with possible advantages from therapeutic efficacy and toxicity point of view. The polyene macrolide antibiotics liposomal preparations proved to be more effective in the treatment of systemic mycosis. The AmB-cyclodextrin derivatives inclusion complex is a major breakthrough in liposomal preparation which can be converted into aqueous phase of liposome. Liposomal drug incorporated preparation has been one of the important areas of research for developing the existing polyene antibiotics into useful chemotherapeutic agents in clinical medicine. In recent past other antibiotics have also been incorporated into liposomes using wide variety of materials, phosphatidylethanolamine derivatives (pegylated liposomes, enzyme sensitive conjugates, fluidosomes of anti-cancer drugs and poly lactic/glycolic acid microspheres for anti-tuberculosis drugs). In addition, attempts were also made to extend the receptor mediated drug targeting and to review some relevant patents.
Qualitative Aspects of UV-Vis Spectrophotometry of Beta-Carotene and Lycopene.
ERIC Educational Resources Information Center
Tan, Barrie; Soderstrom, David N.
1989-01-01
Explores the structural behavior of polyenic pi systems such as isomerization and conjugation. Uses the simultaneous spectrophotometric analysis of a beta-carotene and lycopene mixture. Presents an empirical method to determine the number of double bonds in the polyenic carotenoid. (MVL)
Escudero, Leticia; Al-Refai, Mahmoud; Nieto, Cristina; Laatsch, Hartmut; Malpartida, Francisco; Seco, Elena M.
2015-01-01
The rimJ gene, which codes for a crotonyl-CoA carboxylase/reductase, lies within the biosynthetic gene cluster for two polyketides belonging to the polyene macrolide group (CE-108 and rimocidin) produced by Streptomyces diastaticus var. 108. Disruption of rimJ by insertional inactivation gave rise to a recombinant strain overproducing new polyene derivatives besides the parental CE-108 (2a) and rimocidin (4a). The structure elucidation of one of them, CE-108D (3a), confirmed the incorporation of an alternative extender unit for elongation step 13. Other compounds were also overproduced in the fermentation broth of rimJ disruptant. The new compounds are in vivo substrates for the previously described polyene carboxamide synthase PcsA. The rimJ disruptant strain, constitutively expressing the pcsA gene, allowed the overproduction of CE-108E (3b), the corresponding carboxamide derivative of CE-108D (3a), with improved pharmacological properties. PMID:26284936
[Lipoproteins as a specific circulatory transport system].
Titov, V N
1998-01-01
In accordance with the systemic approach, each circulatory transport system is highly specific and transports an elementary substance from cell to cell in the hydrated medium. In the author's opinion, the lipoprotein system has also a functional specificity and carries the elementary substance fatty acid in the blood stream. A great variety of fatty acids, the individuality of their physicochemical properties, great stereochemic differences of saturated and polyenic fatty acids make their transport virtually impossible. The steric individuality of fatty acids can be reduced if the acids are covalently bonded by a matrix as complex lipids. For formation of complex lipids, nature prefers esterification of fatty acids with alcohols which have a varying hydrophoby, such as glycerol, sphingosine, cholesterol, cetyl alcohol. The steric differences of saturated and polyenic fatty acids form a basis for their being structurized in different lipids. Triacyl glycerides are a transport form of saturated, monounsaturated fatty acids and their transforms and give rise to a crystalline phase. Phospholipids and cholesterol esters are a transport form of mainly polyunsaturated fatty acids in the polar phase in the former case and in the crystalline phase in the latter one. The individual apolipoproteins structure complex lipids into individual lipoprotein particles and transport them in the hydrated medium of blood flow. Saturated fatty acids chiefly transport lipoprotein particles formed by apoB-48- and apoB-100-isoproteins. Polyenic acids transport mainly high-density apoA-1-lipoprotein particles, which makes up a main physiological function of the latter. Cholesterol is nothing more than a matrix; it reesterifies polyenic fatty acids from the polar transport form of phospholipids into the unpolar transport form of cholesterol esters. Cholesterol esterification of polyenic fatty acids may structure complex lipid in the unpolar phase and transport it to the cells via apoB-100-ligand-receptor interaction, which is considered to be a key stage in the multistage process of active transport to the cells of polyenic fatty acids. However, the significant differences of active and inactive transport of polyenic fatty acids in the blood stream await a separate consideration.
Sharma, Monika; Manoharlal, Raman; Negi, Arvind Singh; Prasad, Rajendra
2010-08-01
We have shown previously that pure polyphenol curcumin I (CUR-I) shows antifungal activity against Candida species. By employing the chequerboard method, filter disc and time-kill assays, in the present study we demonstrate that CUR-I at non-antifungal concentration interacts synergistically with azoles and polyenes. For this, pure polyphenol CUR-I was tested for synergy with five azole and two polyene drugs - fluconazole (FLC), miconazole, ketoconazole (KTC), itraconazole (ITR), voriconazole (VRC), nystatin (NYS) and amphotericin B (AMB) - against 21 clinical isolates of Candida albicans with reduced antifungal sensitivity, as well as a drug-sensitive laboratory strain. Notably, there was a 10-35-fold drop in the MIC(80) values of the drugs when CUR-I was used in combination with azoles and polyenes, with fractional inhibitory concentration index (FICI) values ranging between 0.09 and 0.5. Interestingly, the synergistic effect of CUR-I with FLC and AMB was associated with the accumulation of reactive oxygen species, which could be reversed by the addition of an antioxidant such as ascorbic acid. Furthermore, the combination of CUR-I and FLC/AMB triggered apoptosis that could also be reversed by ascorbic acid. We provide the first evidence that pure CUR-I in combination with azoles and polyenes represents a novel therapeutic strategy to improve the activity of common antifungals.
Cyanine polyene reactivity: scope and biomedical applications | Center for Cancer Research
Cyanines are indispensable fluorophores that form the chemical basis of many fluorescence-based applications. A feature that distinguishes cyanines from other common fluorophores is an exposed polyene linker that is both crucial to absorption and emission and subject to covalent reactions that dramatically alter these optical properties. Over the past decade, reactions
Catalytic Enantioselective Cyclization and C3-Fluorination of Polyenes
Cochrane, Nikki A.; Nguyen, Ha; Gagne, Michel R.
2013-01-01
(xylyl-phanephos)Pt2+ in combination with XeF2 mediates the consecutive diastereoselective cation-olefin cyclization/fluorination of polyene substrates. Isolated yields were typically in the 60s while enantioselectivies reached as high as 87%. The data are consistent with a stereoretentive fluorination of a P2Pt-alkyl cation intermediate. PMID:23282101
DOE R&D Accomplishments Database
Schrock, R. R.
1992-01-01
A more direct approach to polyenes by the direct polymerization of acetylenes has been achieved. We were able to show that polymerization of acetylene itself can be controlled with a well- characterized alkylidene catalyst, but only if a base such as quinuclidine is present in order to slow down the rate of propagation relative to initiation. (Quinuclidine may also stabilize vinylalkylidene intermediates formed in the reaction). Unfortunately, living polyenes were no more stable than isolated polyenes, and so this approach had its limitations. Direct polymerization of acetylene by Mo(CH-t-Bu)(NAr)(O-t-Bu){sub 2} was more successful, but inherent polyene instability was still a problem. The most important result of the past grant period is the finding that dipropargyl derivatives (HC=CCH{sub 2}XCH{sub 2}C=CH; X = CH{sub 2}, C(CO{sub 2}R){sub 2}, SiR{sub 2}, etc.), which have been reported to be cyclopolymerized by various classical catalysts by as yet unknown mechanisms, are polymerized by Mo(CH-t-Bu)(NAr)[OCMe(CF{sub 3}){sub 2}]{sub 2} in dimethoxyethane. We speculate that intramolecular formation of a five-membered ring in the product of {alpha} addition is fast enough to yield another terminal alkylidene on the time scale of the polymerization reaction, while a six-membered ring is formed in a reaction involving a more reaction terminal alkylidene. Either intermediate alkylidene, but most likely the terminal alkylidene, could react with additional monomer to lead to growth of a chain having dangling triple bonds that eventually could be employed to form crosslinks.
Cross section of resonant Raman scattering of light by polyenes
NASA Astrophysics Data System (ADS)
Verdyugin, V. V.; Burshteyn, K. Ya.; Shorygin, P. P.
1987-03-01
An experimental study is presented of the resonant Raman spectra of beta carotene. Absolute differential cross sections are obtained for the most intensive Raman spectral lines with excitation at the absorption maximum. A theoretical analysis is presented of the variation in absolute differential cross section as a function of a number of conjunct double bonds in the polyenes.
Radialenes are minimally conjugated cyclic π-systems
NASA Astrophysics Data System (ADS)
Dias, Jerry Ray
2017-03-01
Conjugation energy (CE) in benzene is larger than its aromatic stabilisation energy (ASE). A far-reaching conclusion offered by this work is that per π-electron, CE is energetically larger than aromaticity. If a diene has a doubly degenerate HOMO, then its Diels-Alder reaction will be kinetically faster than a similar diene with a nondegenerate HOMO. The topological conjugation energy (TCE) for the radialene, monocyclic, dendralene, and linear polyene series has quite different trends. Radialenes are minimally conjugated cyclic systems with the TCE/No. π-bond = 0.432 β; the members of the dendralene series approach this same value from smaller values with increasing size. With increasing size, the members of the monocyclic and linear polyene series have, respectively, decreasing and increasing TCE/No. π-bond values approaching 0.547 β. Topological resonance energy (TRE) for radialenes, dendralenes, and linear polyenes all have TRE = 0, and the TRE/π-electron for monocyclic polyenes has alternating declining values between antiaromatic (-0.3066 β, -0.07435 β, -0.03287 β, …) and aromatic (0.04543 β, 0.01594 β, 0.00807 β, …). For benzene, TRE/No. π-bond = 0.0909 β and TCE/No. π-bond = 0.576 β.
Why the Particle-in-a-Box Model Works Well for Cyanine Dyes but Not for Conjugated Polyenes
ERIC Educational Resources Information Center
Autschbach, Jochen
2007-01-01
We investigate why the particle-in-a-box (PB) model works well for calculating the absorption wavelengths of cyanine dyes and why it does not work for conjugated polyenes. The PB model is immensely useful in the classroom, but owing to its highly approximate character there is little reason to expect that it can yield quantitative agreement with…
DOE R&D Accomplishments Database
Schrock, R. R.
1993-12-01
Four studies are reported: living cyclopolymerization of diethyl dipropargylmalonate by Mo(CH-t-Bu)(NAr)[OCMe(CF{sub 3}){sub 2}]{sub 2} in dimethoxyethane, effect of chain length on conductivity of polyacetylene, nonlinear optical analysis of a series of triblock copolymers containing model polyenes, and synthesis of bifunctional hexafluoro-t-butoxide Mo species and their use as initiators in ROMP reactions.
Jørgensen, Hanne; Fjærvik, Espen; Hakvåg, Sigrid; Bruheim, Per; Bredholt, Harald; Klinkenberg, Geir; Ellingsen, Trond E.; Zotchev, Sergey B.
2009-01-01
A large number of Streptomyces bacteria with antifungal activity isolated from samples collected in the Trondheim fjord (Norway) were found to produce polyene compounds. Investigation of polyene-containing extracts revealed that most of the isolates produced the same compound, which had an atomic mass and UV spectrum corresponding to those of candicidin D. The morphological diversity of these isolates prompted us to speculate about the involvement of a mobile genetic element in dissemination of the candicidin biosynthesis gene cluster (can). Eight candicidin-producing isolates were analyzed by performing a 16S rRNA gene-based taxonomic analysis, pulsed-field gel electrophoresis, PCR, and Southern blot hybridization with can-specific probes. These analyses revealed that most of the isolates were related, although they were morphologically diverse, and that all of them contained can genes. The majority of the isolates studied contained large plasmids, and two can-specific probes hybridized to a 250-kb plasmid in one isolate. Incubation of the latter isolate at a high temperature resulted in loss of the can genes and candicidin production, while mating of the “cured” strain with a plasmid-containing donor restored candicidin production. The latter result suggested that the 250-kb plasmid contains the complete can gene cluster and could be responsible for conjugative transfer of this cluster to other streptomycetes. PMID:19286787
Neto, Fausto Carnevale; Guaratini, Thais; Costa-Lotufo, Letícia; Colepicolo, Pio; Gates, Paul J; Lopes, Norberto Peporine
2016-07-15
Carotenoids are polyene isoprenoids with an important role in photosynthesis and photoprotection. Their characterization in biological matrices is a crucial subject for biochemical research. In this work we report the full fragmentation of 16 polyenes (carotenes and xanthophylls) by electrospray ionization tandem mass spectrometry (ESI-CID-MS/MS) and nanospray tandem mass spectrometry (nanoESI-CID-MS/MS). Analyses were carried out on a quadrupole time-of-flight (QTOF) mass spectrometer coupled with a nanoESI source and on a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer with an ESI source. The formulae of the product ions were determined by accurate-mass measurements. It is demonstrated that the fragmentation routes observed for the protonated carotenoids derive essentially from charge-remote fragmentations and pericyclic rearrangements, such as electrocyclic and retro-ene eliminations (assisted or not by a sigmatropic hydrogen shift). All mechanisms are dependent on cis-trans isomerization through the formation of several conjugated polyene carbocation intermediates. Some specific ions for the carotenoid epoxides were justified through formation of cyclic oxonium ions. Complete fragmentation pathways of protonated carotenoids by ESI- and nanoESI-CID-MS/MS provided structural information about functional groups, polyene chain and double bonds, and contribute to identification of carotenoids based on MS/MS fragmentation patterns. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Time Resolved Resonance Raman Conference Royal Institution, London United Kingdom,
1983-01-01
Royal Institution, London U. K. Pell Laboratories 1 urray Hill, New Jersey 07974 S he purpose of the conference was to brinq together a group of...Pdman crosrsection. _ $ 1EELI- This dcunant has been eyptoved Lf ? p bli7: r:lease and sale; Us D I tibution is uAiAt. r - ., ~~- rw r- r -w-r 2. Raman...bacteriorhodopsin are closesly connected with the polyenes since the bacteriorhodopsin chro-ophose consists of a protonated shift base polyene. It is of interest to
Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai
2016-06-29
Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobrowski, K.; Das, P.K.
1986-02-27
At relatively high concentrations (1-10 mM) in O/sub 2/-saturated acetone, pulse radiolysis of all-trans-retinal, -retinoic acid, and -methyl retinoate gives rise to fast transient absorption processes that are best explained in terms of association of radical cations with parent polyenes to form dimers. From the concentration dependence of initial decay/formation kinetics, equilibrium constants (K) for monomer/dimer interconversion are measured to be 220-440 M/sup -1/ (in acetone). On going from acetone to 1,2-dichloroethane, K values for retinal and retinoic acid increase almost by an order of magnitude. For all trans-retinol and retinyl acetate, radical cation dimer formation appears to be negligiblemore » in the concentration range 1-10 mM of the polyene substrates (based on the lack of transient absorption changes seen with retinal and retinoic acid/ester). 24 references, 6 figures, 1 table.« less
Local description of a polyenic radical cation
NASA Astrophysics Data System (ADS)
Karafiloglou, P.; Kapsomenos, G.
1995-06-01
The various local electronic events occurring in a radical cation of a linear polyene with even number of centers are investigated by means of the calculation of the expectation values of second quantized density operators, in the framework of the general poly-electron population analysis. Two series of calculations in two limit geometries (a strong alternant and a polaron-like one) are performed by using as analysers both natural AOs in ab initio correlated wave functions, as well as the model orthogonal AOs in PPP + full CI ones. The probabilities of finding simultaneously the positive charge (+) and the radical center (·) follows, in accord with basic chemical intuition, an oscillating (even-odd) law, even at distant AO positions. The probability of having a transmission of the (+) charge through the π-bonds (when the (·) is located in one extremity of the polyene) is greater than this of the transmission of the (·). Comparing the radical cation with the parent polyene, it is shown that oxidation creates an important trend of single-double bond inversion even in strongly alternant geometry; this effect is more pronounced in bonds of the middle. The examination of various CDW structures shows that some of them can have small or negligible contributions; this counterintuitive and cooperative effect is rationalized by means of Moffitt's theorem. All the above effects are not the consequence of the polaron-like geometry, but are controlled from the topology of n-centers linearly disposed and involving ( n-1) electrons.
Cass, Albert; Finkelstein, Alan; Krespi, Vivian
1970-01-01
Characteristics of nystatin and amphotericin B action on thin (<100 A) lipid membranes are: (a) micromolar amounts increase membrane conductance from 10-8 to over 10-2 Ω-1 cm-2; (b) such membranes are (non-ideally) anion selective and discriminate among anions on the basis of size; (c) membrane sterol is required for action; (d) antibiotic presence on both sides of membrane strongly favors action; (e) conductance is proportional to a large power of antibiotic concentration; (f) conductance decreases ∼104 times for a 10°C temperature rise; (g) kinetics of antibiotic action are also very temperature sensitive; (h) ion selectivity is pH independent between 3 and 10, but (i) activity is reversibly lost at high pH; (j) methyl ester derivatives are fully active; N-acetyl and N-succinyl derivatives are inactive; (k) current-voltage characteristic is nonlinear when membrane separates nonidentical salt solutions. These characteristics are contrasted with those of valinomycin. Observations (a)–(g) suggest that aggregates of polyene and sterol from opposite sides of the membrane interact to create aqueous pores; these pores are not static, but break up (melt) and reform continuously. Mechanism of anion selectivity is obscure. Observations (h)–(j) suggest—NH3 + is important for activity; it is probably not responsible for selectivity, particularly since four polyene antibiotics, each containing two—NH3 + groups, induce ideal cation selectivity. Possibly the many hydroxyl groups in nystatin and amphotericin B are responsible for anion selectivity. The effects of polyene antibiotics on thin lipid membranes are consistent with their action on biological membranes. PMID:5514157
Isolation of a new broad spectrum antifungal polyene from Streptomyces sp. MTCC 5680.
Vartak, A; Mutalik, V; Parab, R R; Shanbhag, P; Bhave, S; Mishra, P D; Mahajan, G B
2014-06-01
A new polyene macrolide antibiotic PN00053 was isolated from the fermentation broth of Streptomyces sp. wild-type strain MTCC-5680. The producer strain was isolated from fertile mountain soil of Naldehra region, Himachal Pradesh, India. The compound PN00053 was purified through various steps of chromatographic techniques and bio-activity guided fractionation followed by its characterization using physiochemical properties, spectral data ((1) H-NMR, (13) C-NMR, HMBC, HSQC, and COSY) and MS analysis. PN00053 exhibited broad spectrum in vitro antifungal activity against strains of Aspergillus fumigatus (HMR), A. fumigatus ATCC 16424, Candida albicans (I.V.), C. albicans ATCC 14503, C. krusei GO6, C. glabrata HO4, Cryptococcus neoformans, Trichophyton sp. as well as fluconazole resistant strains C. krusei GO3 and C. glabrata HO5. It did not inhibit growth of gram positive and gram-negative bacteria, displaying its specificity against fungi. PN00053 is a novel polyene macrolide isolated from a wild strain of Streptomyces sp. PM0727240 (MTCC5680), an isolate from the mountainous rocky regions of Himachal Pradesh, India. The compound is a new derivative of the antibiotic Roflamycoin [32, 33-didehydroroflamycoin (DDHR)]. It displayed broad spectrum antifungal activity against yeast and filamentous fungi. However, it did not show any antibacterial activity. The in vitro study revealed that PN00053 has better potency as compared to clinical gold standard fluconazole. The development of pathogenic resistance against the polyenes has been seldom reported. Hence, we envisage PN00053 could be a potential antifungal lead. © 2014 The Society for Applied Microbiology.
Serhan, George; Stack, Colin M; Perrone, Gabriel G; Morton, Charles Oliver
2014-05-12
There is a pressing need to identify novel antifungal drug targets to aid in the therapy of life-threatening mycoses and overcome increasing drug resistance. Identifying specific mechanisms of action of membrane-interacting antimicrobial drugs on the model fungus Saccharomyces cerevisiae is one avenue towards addressing this issue. The S. cerevisiae deletion mutants Δizh2, Δizh3, Δaif1 and Δstm1 were demonstrated to be resistant to amphibian-derived antimicrobial peptides (AMPs). The purpose of this study was to examine whether AMPs and polyene antifungals have a similar mode of action; this was done by comparing the relative tolerance of the mutants listed above to both classes of antifungal. In support of previous findings on solid media it was shown that Δizh2 and Δizh3 mutants had increased resistance to both amphotericin B (1-2 μg ml-1) and nystatin (2.5 - 5 μg ml-1) in liquid culture, after acute exposure. However, Δaif1 and Δstm1 had wild-type levels of susceptibility to these polyenes. The generation of reactive oxygen species (ROS) after exposure to amphotericin B was also reduced in Δizh2 and Δizh3. These data indicated that polyene antifungal and AMPs may act via distinct mechanisms of inducing cell death in S. cerevisiae. Further understanding of the mechanism(s) involved in causing cell death and the roles of IZH2 and IZH3 in drug susceptibility may help to inform improved drug design and treatment of fungal pathogens.
Compensation Effect in Electrical Conduction Process: Effect of Substituent Group
NASA Astrophysics Data System (ADS)
Mitra, Bani; Misra, T. N.
1987-05-01
The semiconductive properties of Vitamin A acid (Retinoic Acid), a long chain conjugated polyene, were studied as a function of the adsorption of different vapours. A compensation effect was observed in the electrical conduction process; unlike that in Vitamin A alcohol and Vitamin A acetate the compensation temperature was observed on the lower side of the experimental temperature (T0≈285 K). It is concluded that the terminal \\diagdown\\diagupC=0 group conjugated to the polyene chain plays an important role in the manifestation of the compensation effect. Various conduction parameters have been evaluated.
Kinoshita, H; Wongsuntornpoj, S; Ihara, F; Nihira, T
2017-02-01
Rhodotorula species are opportunistic pathogens, which cause not only systemic fungaemia but also other localized infections. Despite serious side effects such as nephrotoxicity and hypokalemia, amphotericin B (a polyene antifungal) has been commonly prescribed for Rhodotorula infection because Rhodotorula species are resistant against a candin family of antifungal agents. In this study, novel active compounds against Rhodotorula species were screened from the extracts of entomopathogenic fungi based on the synergistic effect of polyene nystatin (NYS), which causes efficient targeting of compounds due to increased permeability through the fungal cell membrane. Around 37% of culture extracts from 31 entomopathogenic fungal strains showed anti-Rhodotorula activity in the synergistic bioassay system, suggesting that the coexistence assay with NYS enhanced the discovery of anti-Rhodotorula compounds. Judging from various physicochemical data, the active component from strain HF763 was identified as an immunosuppressant drug, mycophenolic acid (MPA). The minimum inhibitory concentration of MPA against three pathogenic Rhodotorula strains was determined, focusing on the synergistic effect with NYS. The results revealed that the values decreased by at least 87% in the presence of NYS, indicating that MPA showed a synergistic effect with NYS. This study aimed to screen active compounds against Rhodotorula species that are resistant to a candin family of antifungal agents, from entomopathogenic fungi. Assuming that most of the latent antifungal compounds do not exert their activity due to their inability to penetrate the membrane, we took advantage of polyene nystatin in the screening to increase permeability through the fungal cell membrane. The result of the screening revealed hidden antifungal activity of mycophenolic acid, demonstrating that the method applied in this study unlocks the potentials of bioresources, and proposes a new remedy for mycosis. © 2016 The Society for Applied Microbiology.
NASA Technical Reports Server (NTRS)
Beratan, David N.
1989-01-01
The presence of conjugation and substitution defects introduces gap states in finite polyenes that are shown to influence the size and sign of the second molecular hyperpolarizability (SMH). Using a one-electron tight-binding model, the dependence of SMH on the defect-state occupancy and energy in finite polyenes is calculated. Defects can cause a significant decrease or enhancement of SMH by impeding charge delocalization or by creating partly filled bands (mimicking the one-band limit), respectively. Concomitant sign changes in SMH are predicted. Calculation results suggest strategies for designing molecules that can be either photochemically or electrochemically switched between states with considerably different SMHs.
NASA Astrophysics Data System (ADS)
Ouyang, Shunli; Sun, Chenglin; Zhou, Mi; Li, Dongfei; Wang, Weiwei; Qu, Guannan; Li, Zuowei; Gao, Shuqin; Yang, Jiange
2010-09-01
We have measured the Raman spectra and UV-Vis absorption spectra of linear polyene biomolecules (β-carotene and lycopene) in CS2 at low concentrations (10-6-10-10 mol/L). With decreasing concentration, all the carbon-carbon vibrations form a coherent mode in ordered β-carotene and lycopene due to extended π-conjugation that gives strong electron-phonon coupling, which leads to an anomalous experimental phenomenon. We observed an extremely high Raman scattering cross section( RSCS) and the Raman activities in β-carotene and lycopene are characterized by intensive overtones and combinations. Further, the UV-Vis absorption bands become narrower.
Valence-bond theory of linear Hubbard and Pariser-Parr-Pople models
NASA Astrophysics Data System (ADS)
Soos, Z. G.; Ramasesha, S.
1984-05-01
The ground and low-lying states of finite quantum-cell models with one state per site are obtained exactly through a real-space basis of valence-bond (VB) diagrams that explicitly conserve the total spin. Regular and alternating Hubbard and Pariser-Parr-Pople (PPP) chains and rings with Ne electrons on N(<=12) sites are extrapolated to infinite arrays. The ground-state energy and optical gap of regular U=4|t| Hubbard chains agree with exact results, suggesting comparable accuracy for alternating Hubbard and PPP models, but differ from mean-field results. Molecular PPP parameters describe well the excitations of finite polyenes, odd polyene ions, linear cyanine dyes, and slightly overestimate the absorption peaks in polyacetylene (CH)x. Molecular correlations contrast sharply with uncorrelated descriptions of topological solitons, which are modeled by regular polyene radicals and their ions for both wide and narrow alternation crossovers. Neutral solitons have no midgap absorption and negative spin densities, while the intensity of the in-gap excitation of charged solitons is not enhanced. The properties of correlated states in quantum-cell models with one valence state per site are discussed in the adiabatic limit for excited-state geometries and instabilities to dimerization.
Leishmanicidal activity of Nystatin (mycostatin): a potent polyene compound.
Ali, S A; Iqbal, J; Nabeel; Khalil, Y; Manzoor, A; Bukhari, I; Ahmad, B; Yasinzai, M M
1997-10-01
The susceptibility of promastigote of Leishmania major to Nystatin in vitro was examined. L. major (MHOM/PK/88/DESTO) promastigote were cultured in medium 199 supplemented with 10% heat inactivated foetal bovine serum and 2% urine. The growth of the promastigote was monitored in the absence and presence of the experimental compound (Nystatin) for upto 5 days post-inoculation. The EC50 value (the concentration of drug necessary to inhibit the growth rate of cells to 50% of the control value) obtained for Nystatin against the promastigote of L. major was less than 9.76 iu ml. Certain polyene compounds like Amphotericin-B and Nystatin (mycostatin) are familiar for their fungicidal activity. Amphotericin-B is used since long as antileishmanial drug as well. Results obtained suggest that Nystatin has a very good anti leishmanial activity in vitro. The mode of action proposed for this drug is same as for Amphotericin-B as both of these polyene compounds interact with the various sterols present on the surface of the parasite, thus unusual gaps and pores are formed on the surface that results in the leakage of the ions. This leakage finally leads to the destruction of the parasite.
NASA Astrophysics Data System (ADS)
Sabri, N. A.; Nawi, M. A.; Nawawi, W. I.
2015-10-01
Carbon coated nitrogen-doped Degussa P25TiO2 (or C,N-P25TiO2) was successfully immobilized on a glass plate using epoxidized natural rubber (ENR-50) and polyvinyl chloride (PVC) as the organic binders. Photo-etching of the fabricated system for 10 h oxidized its PVC binder into polyenes as well as forming a highly porous surface. The band gap energy (Eg) of the photo-etched immobilized photocatalyst system (C,N-P25TiO2/ENR/PVC-10 h) was reduced from 2.91 to 2.86 eV. Its photocatalytic activity was studied via photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under a 45 W visible light fluorescent lamp. C,N-P25TiO2/ENR/PVC-10 h with polyenes performed better than its slurry counterpart under visible light irradiation where the conjugated double bonds acted as photo sensitizers. The immobilized C,N-P25TiO2/ENR/PVC-10 h has excellent reusability and sustainable with an average k value of 0.056 ± 0.011 min-1 and average percent removal of 99.18 ± 0.54%.
The Nature of the Intramolecular Charge Transfer State in Peridinin
Wagner, Nicole L.; Greco, Jordan A.; Enriquez, Miriam M.; Frank, Harry A.; Birge, Robert R.
2013-01-01
Experimental and theoretical evidence is presented that supports the theory that the intramolecular charge transfer (ICT) state of peridinin is an evolved state formed via excited-state bond-order reversal and solvent reorganization in polar media. The ICT state evolves in <100 fs and is characterized by a large dipole moment (∼35 D). The charge transfer character involves a shift of electron density within the polyene chain, and it does not involve participation of molecular orbitals localized in either of the β-rings. Charge is moved from the allenic side of the polyene into the furanic ring region and is accompanied by bond-order reversal in the central portion of the polyene chain. The electronic properties of the ICT state are generated via mixing of the “11Bu+” ionic state and the lowest-lying “21Ag–” covalent state. The resulting ICT state is primarily 1Bu+-like in character and exhibits not only a large oscillator strength but an unusually large doubly excited character. In most solvents, two populations exist in equilibrium, one with a lowest-lying ICT ionic state and a second with a lowest-lying “21Ag–” covalent state. The two populations are separated by a small barrier associated with solvent relaxation and cavity formation. PMID:23528091
NASA Astrophysics Data System (ADS)
Kohnen, M. E. L.; Damsté, J. S. Slnninghe; Kock-van Dalen, A. C.; Haven, H. L. Ten; Rullkötter, J.; De Leeuw, J. W.
1990-11-01
A number of C 25 and C 30 highly branched isoprenoid (HBI) sulphur compounds (E.G., thiolanes, 1-oxo-thiolanes, thiophenes, and benzo[ b]thiophenes) with 2,6,10,14-tetramethyl-7-(3-methylpentyl)pentadecane and 2,6,10,14,18-pentamethyl-7-(3-methylpentyl)nonadecane carbon skeletons were identified in sediments, ranging from Holocene to Upper Cretaceous. These identifications are based on mass spectral characterisation, desulphurisation, and, in some cases, by comparison of mass spectral and relative retention time data with those of authentic standards. The presence of unsaturated C 25 and C 30 HBI thiolanes in a Recent sediment from the Black Sea (age 3-6 × 10 3 a) strongly supports their formation during early diagenesis. The co-occurrence of HBI polyenes (C 25 and C 30) and unsaturated HBI thiolanes (C 25 and C 30) possessing two double bonds less than the corresponding HBI polyenes, in this Recent sediment, testifies to the formation of unsaturated HBI thiolanes by a reaction of inorganic sulphur species with double bonds of the HBI polyenes. Furthermore, a diagenetic scheme for HBI sulphur compounds is proposed based on the identification of HBI sulphur compounds in sediment samples with different maturity levels.
Sugar, A M; Goldani, L Z; Picard, M
1991-01-01
The in vivo interactions of cilofungin, an echinocandin antifungal agent, and amphotericin B, a polyene derivative, in a murine model of disseminated candidiasis have been investigated. While single therapy with either drug alone prolonged survival of infected mice, kidney colony counts were not appreciably reduced. In contrast, combination therapy, especially at higher doses of both drugs, resulted in significant prolongation of survival and suppression of growth of yeast cells in the kidneys. Combination therapy of experimental candidiasis with cilofungin and amphotericin B did not result in antagonism; rather, additive or synergistic effects were seen. Future preclinical work with other echinocandin and polyene derivatives should include studies evaluating the in vivo interactions of both classes of compounds. PMID:1759836
Sphingolipids as targets for treatment of fungal infections
Rollin-Pinheiro, Rodrigo; Singh, Ashutosh; Barreto-Bergter, Eliana; Del Poeta, Maurizio
2016-01-01
Invasive fungal infections have significantly increased in the last few decades. Three classes of drugs are commonly used to treat these infections: polyenes, azoles and echinocandins. Unfortunately each of these drugs has drawbacks; polyenes are toxic, resistance against azoles is emerging and echinocandins have narrow spectrum of activity. Thus, the development of new antifungals is urgently needed. In this context, fungal sphingolipids have emerged as a potential target for new antifungals, because their biosynthesis in fungi is structurally different than in mammals. Besides, some fungal sphingolipids play an important role in the regulation of virulence in a variety of fungi. This review aims to highlight the diverse strategies that could be used to block the synthesis or/and function of fungal sphingolipids. PMID:27502288
Method of making soluble polyacetylenic and polyaromatic polymers
Aldissi, Mahmoud; Liepins, Raimond
1985-01-01
A soluble polyene polymer and a method of making the same are disclosed. The polymer is of the class suitable for doping to produce an electrically conductive polymer. The method is generally applicable to acetylenic and aromatic monomers, proven examples of which include acetylene, benzene, anthracene and napthalene. In accordance with the method, the monomer is dissolved in arsenic trifluoride. Arsenic pentafluoride is then introduced into the solution to induce polymerization by what is speculated to be an ionic polymerization reaction. The resulting polymer differs from other polyene polymers in that it is soluble in common organic solvents, and further in that it can be melted without undergoing decomposition, thereby rendering it particularly suitable for processing to form various polymeric articles.
Soluble polyacetylenic and polyaromatic polymers and method of mking the same
Aldissi, M.; Liepins, R.
1983-12-16
A soluble polyene polymer and a method of making the same are disclosed. The polymer is of the class suitable for doping to produce an electrically conductive polymer. The method is generally applicable to acetylenic and aromatic monomers, proven examples of which include acetylene, benzene, anthracene and napthalene. In accordance with the method, the monomer is dissolved in arsenic trifluoride. Arsenic pentafluoride is then introduced into the solution to induce polymerization by what is speculated to be an ionic polymerization reaction. The resulting polymer differs from other polyene polymers in that it is soluble in common organic solvents, and further in that it can be melted without undergoing decomposition, thereby rendering it particularly suitable for processing to form various polymeric articles.
Nakano, Masahiko; Yoshikawa, Takeshi; Hirata, So; Seino, Junji; Nakai, Hiromi
2017-11-05
We have implemented a linear-scaling divide-and-conquer (DC)-based higher-order coupled-cluster (CC) and Møller-Plesset perturbation theories (MPPT) as well as their combinations automatically by means of the tensor contraction engine, which is a computerized symbolic algebra system. The DC-based energy expressions of the standard CC and MPPT methods and the CC methods augmented with a perturbation correction were proposed for up to high excitation orders [e.g., CCSDTQ, MP4, and CCSD(2) TQ ]. The numerical assessment for hydrogen halide chains, polyene chains, and first coordination sphere (C1) model of photoactive yellow protein has revealed that the DC-based correlation methods provide reliable correlation energies with significantly less computational cost than that of the conventional implementations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Prodhan, Suryoday; Ramasesha, S.
2017-08-01
Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.
Theory of even-parity states and two-photon spectra of conjugated polymers
NASA Astrophysics Data System (ADS)
McWilliams, P. C. M.; Hayden, G. W.; Soos, Z. G.
1991-04-01
The two-photon absorption (TPA) spectrum of interacting π electrons in conjugated polymers is shown to be qualitatively different from any single-particle description, including the Hartree-Fock limit. Alternating transfer integrals t(1+/-δ) along the backbone lead to a weak TPA below the one-photon gap Eg for arbitrarily weak correlations at δ=0, for intermediate correlations at δ=0.07 in polyenes, and for strong correlations at any δ<1. More intense TPA is derived from two-electron transfer across Eg; this even-parity state shifts from 2Eg in single-particle theory to Eg in the limit of strong correlations in Hubbard models and is around 1.5Eg for Pariser-Parr-Pople (PPP) parameters. The PPP model, which accounts for one- and two-photon excitations of finite polyenes, is extended to even-parity states in polydiacetylenes (PDA's), polyacetylene (PA), and polysilanes (PS's). Previous experimental data for PDA and PS support both the strong TPA above Eg and weak TPA slightly below Eg for δ=0.15 in PDA and above Eg for δ~0.3 in PS. The strong TPA expected around 1.5Eg in isolated PA strands shifts to ~Eg due to interchain π-electron dispersion forces. TPA intensities in correlated states are shown to reflect both ionicity and mean-square charge separation. The even-parity states of conjugated polymers, like those of polyenes, show qualitatively different features associated with electron-electron correlations.
Kinnibrugh, Tiffany L.; Salman, Seyhan; Getmanenko, Yulia A.; Coropceanu, Veaceslav; Porter, William W.; Timofeeva, Tatiana V.; Matzger, Adam J.; Brédas, Jean-Luc; Marder, Seth R.; Barlow, Stephen
2009-01-01
Crystal structures have been determined for six dipolar polyene chromophores with metallocenyl – ferrocenyl (Fc), octamethylferrocenyl (Fc″), or ruthenocenyl (Rc) – donors and strong heterocyclic acceptors based on 1,3-diethyl-2-thiobarbituric acid or 3-dicyanomethylidene-2,3-dihydrobenzothiophene-1,1-dioxide. In each case, crystals were found to belong to centrosymmetric space groups. For one example, polymer-induced heteronucleation revealed the existence of two additional polymorphs, which were inactive in second-harmonic generation, suggesting that they were also centrosymmetric. The bond-length alternations between the formally double and single bonds of the polyene bridges are reduced compared to simple polyenes, indicating significant contribution from charge-separated resonance structures, although the metallocenes are not significantly distorted towards the [(η6-fulvene)(η5-cyclopentadienyl)metal(II)]+ extreme. DFT geometries are in excellent agreement with those determined crystallographically; while the π-donor strengths of the three metallocenyl groups are insufficiently different to result in detectable differences in the crystallographic bond-length alternations, the DFT geometries, as well as DFT-calculations of partial charges for atoms, suggest that π-donor strength decreases in the order Fc″ ≫ Fc > Rc. NMR, IR and electrochemical evidence also suggests that octamethylferrocenyl is the stronger π-donor, exhibiting similar π-donor strength to a p-(dialkylamino)phenyl group, while ferrocenyl and ruthenocenyl show very similar π-donor strengths to one another in chromophores of this type. PMID:20047010
Cryptic antifungal compounds active by synergism with polyene antibiotics.
Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya
2016-04-01
The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation
NASA Astrophysics Data System (ADS)
Lichtor, Phillip A.; Miller, Scott J.
2012-12-01
Selectivity in the catalytic functionalization of complex molecules is a major challenge in chemical synthesis. The problem is magnified when there are several possible stereochemical outcomes and when similar functional groups occur repeatedly within the same molecule. Selective polyene oxidation provides an archetypical example of this challenge. Historically, enzymatic catalysis has provided the only precedents. Although non-enzymatic catalysts that meet some of these challenges became known, a comprehensive solution has remained elusive. Here, we describe low molecular weight peptide-based catalysts, discovered through a combinatorial synthesis and screening protocol, that exhibit site- and enantioselective oxidation of certain positions of various isoprenols. This diversity-based approach, which exhibits features reminiscent of the directed evolution of enzymes, delivers catalysts that compare favourably to the state-of-the-art for the asymmetric oxidation of these compounds. Moreover, the approach culminated in catalysts that exhibit alternative-site selectivity in comparison to oxidation catalysts previously described.
Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic
2010-01-14
We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).
NASA Astrophysics Data System (ADS)
de Oliveira, Leandra N.; de Oliveira, Vanessa E.; D'ávila, Sthefane; Edwards, Howell G. M.; de Oliveira, Luiz Fernando C.
2013-10-01
The colours of mollusc shells were determined using the Raman spectroscopy and these analyses suggest that the conjugated polyenes (carotenoids) and psittacofulvins are the organic pigments incorporated into their skeletal structures responsible by their colorations. The symmetric stretching vibration of the carbonate ion gives rise to a very strong Raman band at ca. 1089 cm-1 and a weak band at 705 cm-1, for all samples; the second band characterizes the aragonite as the inorganic matrix and can be used as a marker. The specimens show bands at 1523-1500 and at 1130-1119 cm-1, assigned to the ν1 and ν2 modes of the polyenic chain vibrations, respectively. Another band at 1293 cm-1, assigned to the CHdbnd CH in-plane rocking mode of the olefinic hydrogen is also observed in all samples, which reinforces the psittacofulvin compound as the main pigment present in the analyzed samples.
NASA Astrophysics Data System (ADS)
Fetterolf, Monty L.; Leverette, Chad L.; Perez, Christopher; Smith, Garriet W.
2017-10-01
Gorgonians respond to insult (damage and disease) by producing sclerites containing a purple pigment as opposed to the normal white sclerites. Raman microscopy is used to study the purple areas of three species of diseased coral, Gorgonia ventalina, Pseudoplexaura porosa, and Eunicea laciniata obtained from Puerto Rico. These spectra were compared to Gorgonia ventalina samples previously reported that were obtained from San Salvador, Bahamas. Spectra from two samples of G. ventalina that had been infected by different agents, Aspergillus sydowii and a slime mold, were also obtained. The results indicate that the purple compounds (polyenes) generated by the coral in response to infection are similar regardless of region from which the coral were harvested, of species of coral, and of the infective agent. A discussion of the Raman spectra of G. ventalina and the other coral species is presented.
Can membrane-bound carotenoid pigment zeaxanthin carry out a transmembrane proton transfer?
Kupisz, Kamila; Sujak, Agnieszka; Patyra, Magdalena; Trebacz, Kazimierz; Gruszecki, Wiesław I
2008-10-01
Polar carotenoid pigment zeaxanthin (beta,beta-carotene-3,3'-diol) incorporated into planar lipid membranes formed with diphytanoyl phosphatidylcholine increases the specific electric resistance of the membrane from ca. 4 to 13 x 10(7) Omega cm2 (at 5 mol% zeaxanthin with respect to lipid). Such an observation is consistent with the well known effect of polar carotenoids in decreasing fluidity and structural stabilization of lipid bilayers. Zeaxanthin incorporated into the lipid membrane at 1 mol% has very small effect on the overall membrane resistance but facilitates equilibration of the transmembrane proton gradient, as demonstrated with the application of the H+-sensitive antimony electrodes. Relatively low changes in the electrical potential suggest that the equilibration process may be associated with a symport/antiport activity or with a transmembrane transfer of the molecules of acid. UV-Vis linear dichroism analysis of multibilayer formed with the same lipid-carotenoid system shows that the transition dipole moment of the pigment molecules forms a mean angle of 21 degrees with respect to the axis normal to the plane of the membrane. This means that zeaxanthin spans the membrane and tends to have its two hydroxyl groups anchored in the opposite polar zones of the membrane. Detailed FTIR analysis of beta-carotene and zeaxanthin indicates that the polyene chain of carotenoids is able to form weak hydrogen bonds with water molecules. Possible molecular mechanisms responsible for proton transport by polyenes are discussed, including direct involvement of the polyene chain in proton transfer and indirect effect of the pigment on physical properties of the membrane.
Teacher-to-Teacher: An Annotated Bibliography on DNA and Genetic Engineering.
ERIC Educational Resources Information Center
Mertens, Thomas R., Comp.
1984-01-01
Presented is an annotated bibliography of 24 books on DNA and genetic engineering. Areas considered in these books include: basic biological concepts to help understand advances in genetic engineering; applications of genetic engineering; social, legal, and moral issues of genetic engineering; and historical aspects leading to advances in…
Polymerization of perfluorobutadiene at near-ambient conditions
NASA Technical Reports Server (NTRS)
Toy, M. S.
1971-01-01
Peroxide catalyst under mild conditions initiates homopolymerization of perfluoro butadiene to new linear perfluoro polyenes and vulcanizable fluoro elastomers. Resulting polyperfluoro butadiene serves as hard elastomer for good chemical resistance, as intermediate in graft polymerizations, and as crosslink for high molecular weight materials.
Electronic excitations in long polyenes revisited
NASA Astrophysics Data System (ADS)
Schmidt, Maximilian; Tavan, Paul
2012-03-01
We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000), 10.1007/s002149900083] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ⩽ N ⩽ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ⩽ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B_u^- states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B_u^- state is the third excited singlet state for N < 12 and becomes the second for N ⩾ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.
Molecular Control of Polyene Macrolide Biosynthesis
Santos-Aberturas, Javier; Vicente, Cláudia M.; Guerra, Susana M.; Payero, Tamara D.; Martín, Juan F.; Aparicio, Jesús F.
2011-01-01
Control of polyene macrolide production in Streptomyces natalensis is mediated by the transcriptional activator PimM. This regulator, which combines an N-terminal PAS domain with a C-terminal helix-turn-helix motif, is highly conserved among polyene biosynthetic gene clusters. PimM, truncated forms of the protein without the PAS domain (PimMΔPAS), and forms containing just the DNA-binding domain (DBD) (PimMDBD) were overexpressed in Escherichia coli as GST-fused proteins. GST-PimM binds directly to eight promoters of the pimaricin cluster, as demonstrated by electrophoretic mobility shift assays. Assays with truncated forms of the protein revealed that the PAS domain does not mediate specificity or the distinct recognition of target genes, which rely on the DBD domain, but significantly reduces binding affinity up to 500-fold. Transcription start points were identified by 5′-rapid amplification of cDNA ends, and the binding regions of PimMDBD were investigated by DNase I protection studies. In all cases, binding took place covering the −35 hexamer box of each promoter, suggesting an interaction of PimM and RNA polymerase to cause transcription activation. Information content analysis of the 16 sequences protected in target promoters was used to deduce the structure of the PimM-binding site. This site displays dyad symmetry, spans 14 nucleotides, and adjusts to the consensus TVGGGAWWTCCCBA. Experimental validation of this binding site was performed by using synthetic DNA duplexes. Binding of PimM to the promoter region of one of the polyketide synthase genes from the Streptomyces nodosus amphotericin cluster containing the consensus binding site was also observed, thus proving the applicability of the findings reported here to other antifungal polyketides. PMID:21187288
DOE R&D Accomplishments Database
Schrock, R. R.
1989-01-01
Research continued on the chemistry and preparation of bimetallic cyclopentadienyl complexes containing up to two tungsten or one tungsten and a cobalt, rhodium, or ruthenium. The general method for preparation and analysis of polyenes is also discussed. (CBS)
Scaling behavior of ground-state energy cluster expansion for linear polyenes
NASA Astrophysics Data System (ADS)
Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.
Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.
Fetterolf, Monty L; Leverette, Chad L; Perez, Christopher; Smith, Garriet W
2017-10-05
Gorgonians respond to insult (damage and disease) by producing sclerites containing a purple pigment as opposed to the normal white sclerites. Raman microscopy is used to study the purple areas of three species of diseased coral, Gorgonia ventalina, Pseudoplexaura porosa, and Eunicea laciniata obtained from Puerto Rico. These spectra were compared to Gorgonia ventalina samples previously reported that were obtained from San Salvador, Bahamas. Spectra from two samples of G. ventalina that had been infected by different agents, Aspergillus sydowii and a slime mold, were also obtained. The results indicate that the purple compounds (polyenes) generated by the coral in response to infection are similar regardless of region from which the coral were harvested, of species of coral, and of the infective agent. A discussion of the Raman spectra of G. ventalina and the other coral species is presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Pal, Bikash; Chang, Chun-Hsiung; Zeng, Cian-Jhe; Lin, Chih-Hsiu
2017-12-11
Pentacene is one of the most versatile organic semiconductors. New synthetic strategies to construct the pentacene skeleton are imperative to produce pentacene derivatives with appropriate solubility, stability, and optoelectronic properties for various applications. This paper describes a template-directed approach to pentacene derivatives. In the retrosynthesis, the acene skeleton is viewed as a laddered double strand polyene instead of the more intuitive linearly fused hexagons. Based on this vision, the template strand of polyene is constructed with Wittig olefination, whereas the second strand is accomplished with Knoevenagel condensation to produce pentacene and tetracene derivatives. The synthetic scheme is flexible enough to generate an array of acene derivatives with substitution patterns that were hitherto difficult to access. Amphiphilic pentacene and tetracene derivatives were also synthesized by the template strategy. One pentacene based amphiphilic rod-coil molecule undergoes self-assembly to form helical wire structures that were visualized with TEM. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Watanabe, T; Sugiyama, T; Chino, K; Suzuki, T; Wakabayashi, S; Hayashi, H; Itami, R; Shima, J; Izaki, K
1992-04-01
New antibiotics enacyloxins (ENXs) are a family of non-lactonic polyene antibiotics produced by Frateuria sp. W-315. For the production of antibiotics, we had to employ two-step fermentations, the first is the production of spent medium of Neurospora crassa and the second is the production of antibiotics by Frateuria. To simplify the production of antibiotics, systematic analyses have been done on the spent medium, and factors which affect the production of antibiotics characterized. From the above results, we constructed a new medium for antibiotic production. Moreover, we could get a new antibiotic named enacyloxin IIIa (1), C33H48O11NCl (m/z 669). 1 was deduced to be one of the congeners of enacyloxins because it was similar to ENX IIa or ENX IVa both in biological and physico-chemical properties. Chlorine of 1 could be replaced by bromine, biosynthetically, and the resultant bromine-containing antibiotic also showed an antibacterial activity comparable to 1.
Bacillusin A, an antibacterial macrodiolide from Bacillus amyloliquefaciens
USDA-ARS?s Scientific Manuscript database
Bioassay-guided fractionation of the organic extracts of a Bacillus amyloliquefaciens strain (AP183) led to the discovery of a new macrocyclic polyene antibiotic, bacillusin A (1). Its structure was assigned by interpretation of NMR and MS spectroscopic data as a novel macrodiolide composed of dimer...
NASA Technical Reports Server (NTRS)
Marder, S. R.; Tiemann, B. G.; Friedli, A. C.; Cheng, L. -T.; Blanchard-Desce, M.
1993-01-01
Conjugated organic compounds with 3-phenyl-5-isoxazolone, or N, N'-diethylthiobarbituric acid acceptors have large first molecular hyperpolarizabilities in comparison to compounds with 4-nitrophenyl acceptors as measured by electric feld induced second harmonic generation, (EFISH), in chloroform, with 1.907 micron fundamental radiation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
... Information Regarding the Introduction of Genetically Engineered Organisms With State and Tribal Government... proposing to amend our regulations regarding genetically engineered organisms regulated by the United States...). The regulations refer to such genetically engineered (GE) organisms and products as ``regulated...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... for Corn Genetically Engineered To Produce an Enzyme That Facilitates Ethanol Production AGENCY... event 3272, which has been genetically engineered to produce a microbial enzyme that facilitates ethanol... transformation event 3272, which has been genetically engineered to produce a microbial enzyme that facilitates...
DeKorver, Kyle A; Wang, Xiao-Na; Walton, Mary C; Hsung, Richard P
2012-04-06
A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured.
DeKorver, Kyle A.; Wang, Xiao-Na; Walton, Mary C.; Hsung, Richard P.
2012-01-01
A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured. PMID:22414252
Structure and functions of fungal cell surfaces
NASA Technical Reports Server (NTRS)
Nozawa, Y.
1984-01-01
A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.
Characterization of epoxy carotenoids by fast atom bombardment collision-induced dissociation MS/MS.
Maoka, Takashi; Fujiwara, Yasuhiro; Hashimoto, Keiji; Akimoto, Naoshige
2004-02-01
The characterization and structure of epoxy carotenoids possessing 5,6-epoxy, 5,8-epoxy and 3,6-epoxy end groups conjugated to the polyene chain were investigated using high-energy fast atom bombardment collision-induced dissociation MS/MS methods. In addition to [M - 80](+*), a characteristic fragment ion of an epoxy carotenoid, product ions resulting from the cleavage of C-C bonds in the polyene chain from the epoxy end group, such as m/z 181 (b ion) and 121 (c ion), were detected. On the other hand, diagnostic ions of m/z 286 (e-H ion) and 312 (f-H ion) were observed, not in the 5,6-epoxy or 5,8-epoxy carotenoid but in the 3,6-epoxy carotenoid. These fragmentation patterns can be used to distinguish 3,6-epoxy carotenoids from 5,6-epoxy or 5,8-epoxy carotenoids. The structure of an epoxy carotenoid, 3,6-epoxy-5,6-dihydro-7',8'-didehydro-beta,beta-carotene-5,3'-diol (8), isolated from oyster, was characterized using FAB CID-MS/MS by comparing fragmentation patterns with those of related known compounds.
Targeting excited states in all-trans polyenes with electron-pair states.
Boguslawski, Katharina
2016-12-21
Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.
Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal
NASA Astrophysics Data System (ADS)
Bharath, D.; Kalainathan, S.
2014-11-01
2-{3-[2-(4-Hydroxyphenyl) vinyl]-5, 5-dimethylcyclo-hex-2-en-1-ylidene}malononitrile (OH1) phenolic locked polyene organic material has been synthesized by the Knoevenagel condensation method. OH1 single crystals were grown in methanol by a slow evaporation method. In order to avoid the multinucleation and reduce the metastable zone width, phosphoric acid is added in different concentrations. The linear optical property of OH1 crystal has been studied using UV-vis-NIR spectroscopy in the wavelength range 190-1100 nm and optical constants are calculated theoretically. The magnitude of nonlinear refractive index (10-12 m2/W), nonlinear absorption (10-6 m/W) and third order nonlinear susceptibility (10-6 esu) has been studied using a Z-scan technique. Dielectric property of OH1 crystal has been studied in frequency range 50 Hz-5 MHz. Photoluminescence spectrum was recorded using a xenon lamp in the range of 450-700 nm. Laser optical damage threshold of OH1 crystal was obtained (0.62 GW/cm2) using a pulsed Nd-YAG laser (1064 nm) of repetition rate 10 ns.
Cox, Bryan D.; Muccio, Donald D.; Hamilton, Tracy P.
2013-01-01
Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all-trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers (6–7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers (6–7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers (6–7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations. PMID:25798372
Cox, Bryan D; Muccio, Donald D; Hamilton, Tracy P
2013-05-01
Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all- trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers ( 6-7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers ( 6-7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers ( 6-7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
... for Cotton Genetically Engineered for Insect Resistance and Herbicide Tolerance AGENCY: Animal and... determination that a genetically engineered cotton developed by Bayer CropScience LP, designated as TwinLink TM cotton (events T304-40 and GHB119), which has been genetically engineered to be tolerant to the herbicide...
Seeking perfection: a Kantian look at human genetic engineering.
Gunderson, Martin
2007-01-01
It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.
Modularization of genetic elements promotes synthetic metabolic engineering.
Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin
2015-11-15
In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.
Tacchini, Massimo; Spagnoletti, Antonella; Brighenti, Virginia; Prencipe, Francesco Pio; Benvenuti, Stefania; Sacchetti, Gianni; Pellati, Federica
2017-11-30
The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC-UV/DAD and HPLC-ESI-MS n by using an Ascentis Express C 18 column (150mm×3.0mm I.D., 2.7μm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1h (15min static and 45min dynamic for 1 cycle) with the oven temperature set at 40-45°C and 90bar of pressure, an overall extraction yield of 1.18-1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC 50 values ranging from 21.01±2.89 to 31.11±2.l4μg/mL; cell viability was affected mainly between 24 and 48h of exposure. The results show the possibility of a new "green" approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention. Copyright © 2017 Elsevier B.V. All rights reserved.
Genetic engineering possibilities for CELSS: A bibliography and summary of techniques
NASA Technical Reports Server (NTRS)
Johnson, E. J.
1982-01-01
A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... engineered organisms and products. We are soliciting comments on whether this genetically engineered corn is... pests. Such genetically engineered organisms and products are considered ``regulated articles.'' The... Assessment for Determination of Nonregulated Status of Corn Genetically Engineered for Insect Resistance...
Selected Readings in Genetic Engineering
ERIC Educational Resources Information Center
Mertens, Thomas R.; Robinson, Sandra K.
1973-01-01
Describes different sources of readings for understanding issues and concepts of genetic engineering. Broad categories of reading materials are: concerns about genetic engineering; its background; procedures; and social, ethical and legal issues. References are listed. (PS)
Engineered Intrinsic Bioremediation of Ammonium Perchlorate in Groundwater
2010-12-01
German Collection of Microorganisms and Cell Cultures) GA Genetic Algorithms GA-ANN Genetic Algorithm Artificial Neural Network GMO genetically...for in situ treatment of perchlorate in groundwater. This is accomplished without the addition of genetically engineered microorganisms ( GMOs ) to the...perchlorate, even in the presence of oxygen and without the addition of genetically engineered microorganisms ( GMOs ) to the environment. This approach
Commercialising genetically engineered animal biomedical products.
Sullivan, Eddie J; Pommer, Jerry; Robl, James M
2008-01-01
Research over the past two decades has increased the quality and quantity of tools available to produce genetically engineered animals. The number of potentially viable biomedical products from genetically engineered animals is increasing. However, moving from cutting-edge research to development and commercialisation of a biomedical product that is useful and wanted by the public has significant challenges. Even early stage development of genetically engineered animal applications requires consideration of many steps, including quality assurance and quality control, risk management, gap analysis, founder animal establishment, cell banking, sourcing of animals and animal-derived material, animal facilities, product collection facilities and processing facilities. These steps are complicated and expensive. Biomedical applications of genetically engineered animals have had some recent successes and many applications are well into development. As researchers consider applications for their findings, having a realistic understanding of the steps involved in the development and commercialisation of a product, produced in genetically engineered animals, is useful in determining the risk of genetic modification to the animal nu. the potential public benefit of the application.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
... peer review of safety tests, and health effects of genetically modified organisms and glyphosate. APHIS...] Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified... that there is reason to believe are plant pests. Such genetically engineered organisms and products are...
What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?
ERIC Educational Resources Information Center
Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward
2000-01-01
Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
...] Scotts Miracle-Gro Co.; Regulatory Status of Kentucky Bluegrass Genetically Engineered for Herbicide... engineered for herbicide tolerance without the use of plant pest components, does not meet the definition of... has been genetically engineered for herbicide tolerance, does not meet the definition of a regulated...
Genetic engineering applied to agriculture has a long row to hoe.
Miller, Henry I
2018-01-02
In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.
ERIC Educational Resources Information Center
Phillips, John
1973-01-01
Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)
The Potential of Genetic Engineering in Agriculture to Affect Global Stability
2013-04-17
manipulation in agriculture is thousands of years old, dating back to man’s first efforts of plant domestication. Over the last 200 years, and especially the...engineering.” In agriculture, genetic engineering describes the science of manipulating the genetic material (DNA) of plants by adding or taking...nature run its course. This paper does not delve into the science or even the raging safety debate over the use of genetic engineering in plants that
1. To evaluate the potential effects of genetically engineered (transgenic) plants on soil ecosystems, litterbags containing leaves of non-engineered (parental) and transgenic tobacco plants were buried in field plots. The transgenic tobacco plants were genetically engineered to ...
78 FR 44199 - Semiannual Regulatory Agenda, Spring 2013
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
..., interstate movement, and environmental release of certain genetically engineered organisms. This rule will... genetically engineered plants and certain other genetically engineered organisms. Timetable: Action Date FR... Citrus Canker; 0579-AC05 Compensation for Certified Citrus Nursery Stock. 17 Introduction of Organisms...
Excited Electronic States, Photochemistry and Photophysics of Carotenoids
NASA Astrophysics Data System (ADS)
Frank, Harry A.; Christensen, Ronald L.
The most striking characteristic of carotenoids is their palette of colours. Absorption of light in the visible region of the electromagnetic spectrum by molecules such as β-carotene (3) and lycopene (31) not only readily accounts for their colours but also signals the ability of these long-chain polyenes to serve as antenna pigments in diverse photosynthetic systems [1-4].
On the inversion of the 1 Bu and 2 Ag electronic states in α,ω-diphenylpolyenes
NASA Astrophysics Data System (ADS)
Catalán, J.
2003-07-01
An alternative model to that of the inversion of the states 1Bu and 2Ag is proposed for interpreting the photophysics of the α,ω-diphenylpolyenes. This model is based upon the existence of two chemical structures with Bu symmetry, which may be ascribed to the same excited electronic state 1Bu. One of the two chemical structures corresponds to the Franck-Condon structure with conjugated single and double bonds for the polyene chain, and another consists of a nearly equivalent series of partial double bonds along the polyene chain. The latter relaxed structure is consistent with the observation of high torsional energy barriers and low photoisomerization quantum yields for diphenylhexatriene in the singlet excited state manifold. Interestingly, such a simple quantum model as that of the particle in a one-dimensional box provides quite an accurate description of the absorption spectroscopic properties of these major compounds. This is partly the result of the most stable structures for these compounds being of the all-trans type; such structures increase in length as additional ethylene units are added, which makes them very similar to a one-dimensional box becoming increasingly longer.
Conical intersection seams in polyenes derived from their chemical composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenov, Artur; Vivie-Riedle, Regina de
2012-08-21
The knowledge of conical intersection seams is important to predict and explain the outcome of ultrafast reactions in photochemistry and photobiology. They define the energetic low-lying reachable regions that allow for the ultrafast non-radiative transitions. In complex molecules it is not straightforward to locate them. We present a systematic approach to predict conical intersection seams in multifunctionalized polyenes and their sensitivity to substituent effects. Included are seams that facilitate the photoreaction of interest as well as seams that open competing loss channels. The method is based on the extended two-electron two-orbital method [A. Nenov and R. de Vivie-Riedle, J. Chem.more » Phys. 135, 034304 (2011)]. It allows to extract the low-lying regions for non-radiative transitions, which are then divided into small linear segments. Rules of thumb are introduced to find the support points for these segments, which are then used in a linear interpolation scheme for a first estimation of the intersection seams. Quantum chemical optimization of the linear interpolated structures yields the final energetic position. We demonstrate our method for the example of the electrocyclic isomerization of trifluoromethyl-pyrrolylfulgide.« less
Genetic engineering of industrial strains of Saccharomyces cerevisiae.
Le Borgne, Sylvie
2012-01-01
Genetic engineering has been successfully applied to Saccharomyces cerevisiae laboratory strains for different purposes: extension of substrate range, improvement of productivity and yield, elimination of by-products, improvement of process performance and cellular properties, and extension of product range. The potential of genetically engineered yeasts for the massive production of biofuels as bioethanol and other nonfuel products from renewable resources as lignocellulosic biomass hydrolysates has been recognized. For such applications, robust industrial strains of S. cerevisiae have to be used. Here, some relevant genetic and genomic characteristics of industrial strains are discussed in relation to the problematic of the genetic engineering of such strains. General molecular tools applicable to the manipulation of S. cerevisiae industrial strains are presented and examples of genetically engineered industrial strains developed for the production of bioethanol from lignocellulosic biomass are given.
Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua
2006-02-01
To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.
Genetically engineered nanocarriers for drug delivery.
Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew
2014-01-01
Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.
Genetically engineered nanocarriers for drug delivery
Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew
2014-01-01
Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. PMID:24741309
The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...
What's in a name: the Vermont Genetically Engineered Food Labeling Act
McPherson, Malia J.
2014-01-01
On May 8, 2014, Vermont passed the Vermont Genetically Engineered Food Labeling Act (Act) requiring labels on certain genetically engineered foods. Once the bill takes effect July 1, 2016, all Vermont-retailed foods with more than 0.9% of their total weight in genetically modified ingredients must be labeled with language stating, “may be partially produced with genetic engineering.” As genetically engineered food are considered scientifically equivalent to their traditional counterparts and are not subject to federal labeling by the FDA, the Act presents several legal questions. Several of the legal questions have been raised in a recent lawsuit filed by the Grocery Manufactures Association that claims the Act violates the First Amendment, Supremacy Clause, and Commerce Clause. This paper will discuss why the Second Circuit could strike down the Act as unconstitutional as to each claim. PMID:27774175
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... Determination of Nonregulated Status for Corn Genetically Engineered for Drought Tolerance AGENCY: Animal and... nonregulated status for corn designated as MON 87460, which has been genetically engineered for drought... nonregulated status for corn designated as MON 87460, which has been genetically engineered for drought...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... Determination of Nonregulated Status of Soybean Genetically Engineered for Herbicide Resistance AGENCY: Animal... genetically engineered for resistance to herbicides in the imidazolinone family. We are soliciting comments on... genetically engineered for resistance to herbicides in the imidazolinone family. The petition states that this...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
...] Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the Herbicide Glyphosate... for tolerance to the herbicide glyphosate based on APHIS' final environmental impact statement. FOR... regulated status of alfalfa genetically engineered for tolerance to the herbicide glyphosate based on an...
Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.
ERIC Educational Resources Information Center
Roberts, Leslie
Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified Fatty Acid Profile... soybean designated as MON 87705, which has been genetically engineered to have a modified fatty acid... our regulations concerning the introduction of certain genetically engineered organisms and products...
Non-genetic engineering of cells for drug delivery and cell-based therapy.
Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert
2015-08-30
Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.
Pellati, Federica; Orlandini, Giulia; Benvenuti, Stefania
2012-06-15
In this study, a detailed phytochemical characterization of Echinacea pallida (Nutt.) Nutt. root extracts and dietary supplements was carried out for the first time by developing advanced chromatographic techniques, based on HPLC with diode array (DAD) and electrospray ionization-mass spectrometry (ESI-MS) detection (with ion trap and triple quadrupole mass analyzers), for the simultaneous analysis of hydrophilic and lipophilic secondary metabolites. The HPLC analyses were carried out on an Ascentis C(18) column (250 mm × 4.6 mm I.D., 5 μm), with a mobile phase composed by H(2)O and ACN both containing 0.1% formic acid, under gradient elution. The UV spectra, in combination with MS and MS/MS data, allowed the identification of fourteen compounds, including caffeic acid derivatives, polyacetylenes and polyenes, in the analyzed samples. MS and MS/MS data were discussed in detail and the typical fragmentation patterns of each class of secondary metabolites were identified. For the first time, a hydroperoxide intermediate was characterized as an oxidation product of one of E. pallida monocarbonylic acetylenes, providing a confirmation of the mechanism that leads to the generation of hydroxylated derivatives. The HPLC method was fully validated in agreement with ICH guidelines and then applied to real samples. The quantitative analysis indicated that there was a great variability in the amount of the active compounds in the dietary supplements containing E. pallida root extracts: the content of total caffeic acid derivatives ranged from 2.31 to 11.45 mg/g and the amount of total polyacetylenes and polyenes from 6.38 to 30.54 mg/g. In the analyzed samples, the most abundant caffeic acid derivative was found to be echinacoside. Regarding polyacetylenes and polyenes, the most representative compounds were found to be tetradec-(8Z)-ene-11,13-diyn-2-one, pentedeca-(8Z,11Z)-dien-2-one and pentadec-(8Z)-en-2-one. The developed method can be considered suitable for metabolite fingerprinting and quality control of E. pallida plant material and natural products. Copyright © 2012 Elsevier B.V. All rights reserved.
Genetically Modified Food: Knowledge and Attitude of Teachers and Students
NASA Astrophysics Data System (ADS)
Mohapatra, Animesh K.; Priyadarshini, Deepika; Biswas, Antara
2010-10-01
The concepts behind the technology of genetic modification of organisms and its applications are complex. A diverse range of opinions, public concern and considerable media interest accompanies the subject. This study explores the knowledge and attitudes of science teachers and senior secondary biology students about the application of a rapidly expanding technology, genetic engineering, to food production. The results indicated significant difference in understanding of concepts related with genetically engineered food stuffs between teachers and students. The most common ideas about genetically modified food were that cross bred plants and genetically modified plants are not same, GM organisms are produced by inserting a foreign gene into a plant or animal and are high yielding. More teachers thought that genetically engineered food stuffs were unsafe for the environment. Both teachers and students showed number of misconceptions, for example, the pesticidal proteins produced by GM organisms have indirect effects through bioaccumulation, induces production of allergic proteins, genetic engineering is production of new genes, GM plants are leaky sieves and that transgenes are more likely to introgress into wild species than mutated species. In general, more students saw benefits while teachers were cautious about the advantages of genetically engineered food stuffs.
Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia.
Chen, Shih-Shih; Chiorazzi, Nicholas
2014-07-01
Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Stofer, Kathryn A.; Schiebel, Tracee M.
2017-01-01
Researchers and pollsters still debate the acceptance of genetic engineering technology among U.S. adults, and continue to assess their knowledge as part of this research. While decision-making may not rely entirely on knowledge, querying opinions and perceptions rely on public understanding of genetic engineering terms. Experience with…
Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Genetic Engineering
ERIC Educational Resources Information Center
Ramsey, Paul
1972-01-01
Presented are issues related to genetic engineering. Increased knowledge of techniques to manipulate genes are apt to create confusion about moral values in relation to unborn babies and other living organisms on earth. Human beings may use this knowledge to disturb the balance maintained by nature. (PS)
Genetic Engineering of Alfalfa (Medicago sativa L.).
Wang, Dan; Khurshid, Muhammad; Sun, Zhan Min; Tang, Yi Xiong; Zhou, Mei Liang; Wu, Yan Min
2016-01-01
Alfalfa is excellent perennial legume forage for its extensive ecological adaptability, high nutrition value, palatability and biological nitrogen fixation. It plays a very important role in the agriculture, animal husbandry and ecological construction. It is cultivated in all continents. With the development of modern plant breeding and genetic engineering techniques, a large amount of work has been carried out on alfalfa. Here we summarize the recent research advances in genetic engineering of alfalfa breeding, including transformation, quality improvement, stress resistance and as a bioreactor. The review article can enables us to understand the research method, direction and achievements of genetic engineering technology of Alfalfa.
Moral Fantasy in Genetic Engineering.
ERIC Educational Resources Information Center
Boone, C. Keith
1984-01-01
Discusses the main ethical issues generated by the new genetics and suggests ways to think about them. Concerns include "playing God," violation of the natural order of the universe, and abuse of genetic technology. Critical distinctions for making difficult decisions about genetic engineering issues are noted. (DH)
Genetic Engineering Strategies for Enhanced Biodiesel Production.
Hegde, Krishnamoorthy; Chandra, Niharika; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Veeranki, Venkata Dasu
2015-07-01
The focus on biodiesel research has shown a tremendous growth over the last few years. Several microbial and plant sources are being explored for the sustainable biodiesel production to replace the petroleum diesel. Conventional methods of biodiesel production have several limitations related to yield and quality, which led to development of new engineering strategies to improve the biodiesel production in plants, and microorganisms. Substantial progress in utilizing algae, yeast, and Escherichia coli for the renewable production of biodiesel feedstock via genetic engineering of fatty acid metabolic pathways has been reported in the past few years. However, in most of the cases, the successful commercialization of such engineering strategies for sustainable biodiesel production is yet to be seen. This paper systematically presents the drawbacks in the conventional methods for biodiesel production and an exhaustive review on the present status of research in genetic engineering strategies for production of biodiesel in plants, and microorganisms. Further, we summarize the technical challenges need to be tackled to make genetic engineering technology economically sustainable. Finally, the need and prospects of genetic engineering technology for the sustainable biodiesel production and the recommendations for the future research are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... MON 87769, which has been genetically engineered to produce stearidonic acid, an omega-3 fatty acid... 87769, which has been genetically engineered to produce stearidonic acid, an omega-3 fatty acid not... NEPA (40 CFR parts 1500-1508), (3) USDA regulations implementing NEPA (7 CFR part 1b), and (4) APHIS...
Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand
1999-01-01
The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
... reason to believe are plant pests. Such genetically engineered organisms (GE) and products are considered... genetically engineered organisms. Paragraph (e) of Sec. 340.6 provides that APHIS will publish a notice in the... Preliminary Decision for an Extension of a Determination of Nonregulated Status of Corn Genetically Engineered...
Human Genetic Engineering: A Survey of Student Value Stances
ERIC Educational Resources Information Center
Wilson, Sara McCormack; And Others
1975-01-01
Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)
Low gloss UV-cured coatings for aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Mark; Muschar, Harry
A method of applying a low gloss coating to a substrate such as the exterior surface of an aircraft is disclosed. The coating composition comprising a polyene, a polythiol, a flatting agent and a coloring pigment is applied to the substrate and given a first dosage of UV radiation followed by a second dosage in which the second dosage is greater than the first resulting in an ultralow gloss coating.
Qian, Guoliang; Wang, Yulan; Liu, Yiru; Xu, Feifei; He, Ya-Wen; Du, Liangcheng; Venturi, Vittorio; Fan, Jiaqin; Hu, Baishi; Liu, Fengquan
2013-11-01
Lysobacter enzymogenes is a ubiquitous environmental bacterium that is emerging as a potentially novel biological control agent and a new source of bioactive secondary metabolites, such as the heat-stable antifungal factor (HSAF) and photoprotective polyene pigments. Thus far, the regulatory mechanism(s) for biosynthesis of these bioactive secondary metabolites remains largely unknown in L. enzymogenes. In the present study, the diffusible signal factor (DSF) and diffusible factor (DF)-mediated cell-cell signaling systems were identified for the first time from L. enzymogenes. The results show that both Rpf/DSF and DF signaling systems played critical roles in modulating HSAF biosynthesis in L. enzymogenes. Rpf/DSF signaling and DF signaling played negative and positive effects in polyene pigment production, respectively, with DF playing a more important role in regulating this phenotype. Interestingly, only Rpf/DSF, but not the DF signaling system, regulated colony morphology of L. enzymgenes. Both Rpf/DSF and DF signaling systems were involved in the modulation of expression of genes with diverse functions in L. enzymogenes, and their own regulons exhibited only a few loci that were regulated by both systems. These findings unveil for the first time new roles of the Rpf/DSF and DF signaling systems in secondary metabolite biosynthesis of L. enzymogenes.
Effect of Amphotericin B antibiotic on the properties of model lipid membrane
NASA Astrophysics Data System (ADS)
Kiryakova, S.; Dencheva-Zarkova, M.; Genova, J.
2014-12-01
Model membranes formed from natural and synthetic lipids are an interesting object for scientific investigations due to their similarity to biological cell membrane and their simple structure with controlled composition and properties. Amphotericin B is an important polyene antifungal antibiotic, used for treatment of systemic fungal infections. It is known from the literature that the studied antibiotic has a substantial effect on the transmembrane ionic channel structures. When applied to the lipid membranes it has the tendency to create pores and in this way to affect the structure and the properties of the membrane lipid bilayer. In this work the thermally induced shape fluctuations of giant quasi-spherical liposomes have been used to study the influence of polyene antibiotic amphotericin B on the elastic properties of model lipid membranes. It have been shown experimentally that the presence of 3 mol % of AmB in the lipid membrane reduces the bending elasticity of the lipid membrane for both studied cases: pure SOPC membrane and mixed SOPC-Cholesterol membrane. Interaction of the amphotericin B with bilayer lipid membranes containing channels have been studied in this work. Model membranes were self-assembled using the patch-clamp and tip-dip patch clamp technique. We have found that amphotericin B is an ionophore and reduces the resistance of the lipid bilayer.
List, Nanna Holmgaard; Kauczor, Joanna; Saue, Trond; Jensen, Hans Jørgen Aagaard; Norman, Patrick
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.
Arrhenius, Thomas S.; Blanchard-Desce, Mireille; Dvolaitzky, Maya; Lehn, Jean-Marie; Malthete, Jacques
1986-01-01
Molecular wires, which would allow electron flow to take place between different components, are important elements in the design of molecular devices. An approach to such species would be molecules possessing an electron-conducting conjugated chain, terminal electroactive polar groups, and a length sufficient to span a lipid membrane. To this end, bispyridinium polyenes of different lengths have been synthesized and their incorporation into the bilayer membrane of sodium dihexadecyl phosphate vesicles has been studied. Since they combine the features of carotenoids and of viologens, they may be termed caroviologens. Vesicles containing the caroviologen whose length approximately corresponds to the thickness of the sodium dihexadecyl phosphate bilayer display temperature-dependent changes of its absorption spectrum reflecting the gel → liquid-crystal phase transition of the membrane. The data agree with a structural model in which the caroviologens of sufficient length span the bilayer membrane, the pyridinium sites being close to the negatively charged outer and inner surfaces of the sodium dihexadecyl phosphate vesicles and the polyene chain crossing the lipidic interior of the membrane. These membranes may now be tested in processes in which the caroviologen would function as a continuous, transmembrane electron channel—i.e., as a molecular wire. Various further developments may be envisaged along these lines. PMID:16593731
Bone and joint infections by Mucorales, Scedosporium, Fusarium and even rarer fungi.
Koehler, Philipp; Tacke, Daniela; Cornely, Oliver A
2016-01-01
Mucorales, Scedosporium and Fusarium species are rarely considered as cause for bone and joint infections. However, these moulds are emerging as important fungal pathogens in immunocompromised and immunocompetent patients. Typical pre-disposing host conditions are immunosuppression and diabetes. Most common causative pathogens are Mucorales followed by Scedosporium and Fusarium. Acremonium and Phialemonium species are rare but some case reports exist. MRI is the gold standard imaging technique. Tissue specimens obtained as aspirates, imaging guided biopsy or open surgery need mycological and histopathological work-up for genus and species identification. Multimodal treatment strategies combine surgical debridement, drainage of joints or abscesses, removal of infected prosthetic joints and systemic antifungals. The treatment of mucormycosis is polyene based and may be combined with either posaconazole or - in rare cases - caspofungin. As Scedosporium species are intrinsically resistant to polyenes and azoles show absence of in vitro activity, voriconazole plus synergistic treatment regimens become the therapeutic standard. In fusariosis, fungal susceptibility is virtually impossible to predict, so that combination treatment of voriconazole and lipid-based amphotericin B should be the first-line strategy while susceptibility results are pending. In the absence of randomized controlled trials, infections due to the above moulds should be registered, e.g. in the registries of the European Confederation of Medical Mycology (ECMM).
Qian, Guoliang; Wang, Yulan; Liu, Yiru; Xu, Feifei; He, Ya-Wen; Du, Liangcheng; Venturi, Vittorio; Fan, Jiaqin; Hu, Baishi
2013-01-01
Lysobacter enzymogenes is a ubiquitous environmental bacterium that is emerging as a potentially novel biological control agent and a new source of bioactive secondary metabolites, such as the heat-stable antifungal factor (HSAF) and photoprotective polyene pigments. Thus far, the regulatory mechanism(s) for biosynthesis of these bioactive secondary metabolites remains largely unknown in L. enzymogenes. In the present study, the diffusible signal factor (DSF) and diffusible factor (DF)-mediated cell-cell signaling systems were identified for the first time from L. enzymogenes. The results show that both Rpf/DSF and DF signaling systems played critical roles in modulating HSAF biosynthesis in L. enzymogenes. Rpf/DSF signaling and DF signaling played negative and positive effects in polyene pigment production, respectively, with DF playing a more important role in regulating this phenotype. Interestingly, only Rpf/DSF, but not the DF signaling system, regulated colony morphology of L. enzymgenes. Both Rpf/DSF and DF signaling systems were involved in the modulation of expression of genes with diverse functions in L. enzymogenes, and their own regulons exhibited only a few loci that were regulated by both systems. These findings unveil for the first time new roles of the Rpf/DSF and DF signaling systems in secondary metabolite biosynthesis of L. enzymogenes. PMID:23974132
Study of carotenoids in cyanobacteria by Raman spectroscopy.
de Oliveira, Vanessa End; Neves Miranda, Marcela A C; Soares, Maria Carolina Silva; Edwards, Howell G M; de Oliveira, Luiz Fernando Cappa
2015-01-01
Cyanobacteria have established dominant aquatic populations around the world, generally in aggressive environments and under severe stress conditions, e.g., intense solar radiation. Several marine strains make use of compounds such as the polyenic molecules for their damage protection justifying the range of colours observed for these species. The peridinin/chlorophyll-a/protein complex is an excellent example of essential structures used for self-prevention; their systems allow to them surviving under aggressive environments. In our simulations, few protective dyes are required to the initial specimen defense; this is an important data concern the synthetic priority in order to supply adequate damage protection. Raman measurements obtained with 1064 and 514.5 nm excitations for Cylindrospermopsis raciborskii and Microcystis aeruginosa strains shows bands assignable to the carotenoid peridinin. It was characterized by bands at 1940, 1650, 1515, 1449, 1185, 1155 and 1000 cm(-1) assigned to ν(C=C=C) (allenic vibration), ν(C=C/CO), ν(C=C), δ(C-H, C-18/19), δ(C-H), ν(C-C), and ρ(C-CH3), respectively. Recognition by Raman spectroscopy proved to be an important tool for preliminaries detections and characterization of polyene molecules in several algae, besides initiate an interesting discussion about their synthetic priority. Copyright © 2015 Elsevier B.V. All rights reserved.
Integration of β-carotene molecules in small liposomes
NASA Astrophysics Data System (ADS)
Andreeva, Atanaska; Popova, Antoaneta
2010-11-01
The most typical feature of carotenoids is the long polyene chain with conjugated double bonds suggesting that they can serve as conductors of electrons, acting as ''molecular wires'', important elements in the molecular electronic devices. Carotenoids are essential components of photosynthetic systems, performing different functions as light harvesting, photoprotection and electron transfer. They act also as natural antioxidants. In addition they perform structural role stabilizing the three-dimensional organization of photosynthetic membranes. Carotenoids contribute to the stability of the lipid phase, preserving the membrane integrity under potentially harmful environmental conditions. Carotenoids can be easily integrated into model membranes, facilitating the investigation of their functional roles. In carotenoid-egg phosphatidylcholine (EPC) liposomes ß-carotene is randomly distributed in the hydrocarbon interior of the bilayer, without any preferred, well defined orientation and retains a substantial degree of mobility. Here we investigate the degree of integration of ß-carotene in small unilamellar EPC liposomes and the changes in ß-carotene absorption and Raman spectra due to the lipid-pigment interaction. All observed changes in ß-carotene absorption and Raman spectra may be regarded as a result of the lipid-pigment interactions leading to the polyene geometry distortion and increasing of the environment heterogenety in the liposomes as compared to the solutions.
Genetic Engineering Workshop Report, 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, J; Slezak, T
2010-11-03
The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies (TMT) program. The high-level goal of TMT is to accelerate the development of broad-spectrum countermeasures. To achieve this goal, there is a need to assess the genetic engineering (GE) approaches, potential application as well as detection and mitigation strategies. LLNL was tasked to coordinate a workshop to determine the scope of investments that DTRA should make to stay current with the rapid advances in genetic engineering technologies, so that accidental or malicious uses of GE technologies could be adequately detected andmore » characterized. Attachment A is an earlier report produced by LLNL for TMT that provides some relevant background on Genetic Engineering detection. A workshop was held on September 23-24, 2010 in Springfield, Virginia. It was attended by a total of 55 people (see Attachment B). Twenty four (44%) of the attendees were academic researchers involved in GE or bioinformatics technology, 6 (11%) were from DTRA or the TMT program management, 7 (13%) were current TMT performers (including Jonathan Allen and Tom Slezak of LLNL who hosted the workshop), 11 (20%) were from other Federal agencies, and 7 (13%) were from industries that are involved in genetic engineering. Several attendees could be placed in multiple categories. There were 26 attendees (47%) who were from out of the DC area and received travel assistance through Invitational Travel Orders (ITOs). We note that this workshop could not have been as successful without the ability to invite experts from outside of the Beltway region. This workshop was an unclassified discussion of the science behind current genetic engineering capabilities. US citizenship was not required for attendance. While this may have limited some discussions concerning risk, we felt that it was more important for this first workshop to focus on the scientific state of the art. We also consciously chose to not dwell on matters of policy (for example, screening of commercial gene or oligo synthesis orders), as multiple other forums for policy discussion have taken place in recent years. We acknowledge that other workshops on topics relevant to genetic engineering should be held, some of which may need to take place at higher classification levels. The workshop moderators would like to acknowledge the enthusiastic participation of the attendees in the discussions. Special thanks are given to Sofi Ibrahim, for his extensive assistance on helping this report reach its final form. The genetic engineering workshop brought together a diverse mix of genetic engineering pioneers and experts, Federal agency representatives concerned with abuses of genetic engineering, TMT performers, bioinformatics experts, and representatives from industry involved with large-scale genetic engineering and synthetic biology. Several talks established the current range of genetic engineering capabilities and the relative difficulties of identifying and characterizing the results of their use. Extensive discussions established a number of recommendations to DTRA of how to direct future research investments so that any mis-use of genetic engineering techniques can be promptly identified and characterized.« less
Genetic Engineering: A Matter that Requires Further Refinement in Spanish Secondary School Textbooks
ERIC Educational Resources Information Center
Martinez-Gracia, M. V.; Gil-Quylez, M. J.; Osada, J.
2003-01-01
Genetic engineering is now an integral part of many high school textbooks but little work has been done to assess whether it is being properly addressed. A checklist with 19 items was used to analyze how genetic engineering is presented in biology textbooks commonly used in Spanish high schools, including the content, its relationship with…
Genetically engineered orange petunias on the market.
Bashandy, Hany; Teeri, Teemu H
2017-08-01
Unauthorized genetically engineered orange petunias were found on the market. Genetic engineering of petunia was shown to lead to novel flower color some 20 years ago. Here we show that petunia lines with orange flowers, generated for scientific purposes, apparently found their way to petunia breeding programmes, intentionally or unintentionally. Today they are widely available, but have not been registered for commerce.
The Effect of Case Teaching on Meaningful and Retentive Learning When Studying Genetic Engineering
ERIC Educational Resources Information Center
Güccük, Ahmet; Köksal, Mustafa Serdar
2017-01-01
The purpose of this study is to investigate the effects of case teaching on how students learn about genetic engineering, in terms of meaningful learning and retention of learning. The study was designed as quasi-experimental research including 63 8th graders (28 boys and 35 girls). To collect data, genetic engineering achievement tests were…
German politics of genetic engineering and its deconstruction.
Gottweis, H
1995-05-01
Policy-making, as exemplified by biotechnology policy, can be understood as an attempt to manage a field of discursivity, to construct regularity in a dispersed multitude of combinable elements. Following this perspective of politics as a textual process, the paper interprets the politicization of genetic engineering in Germany as a defence of the political as a regime of heterogeneity, as a field of 'dissensus' rather than 'consensus', and a rejection of the idea that the framing of technological transformation is an autonomous process. From its beginning in the early 1970s, genetic engineering was symbolically entrenched as a key technology of the future, and as an integral element of the German politics of modernization. Attempts by new social movements and the Green Party to displace the egalitarian imaginary of democratic discourse into the politics of genetic engineering were construed by the political élites as an attack on the political order of post-World War II Germany. The 1990 Genetic Engineering Law attempted a closure of this controversy. But it is precisely the homogenizing idiom of this 'settlement' which continues to nourish the social movements and their radical challenge to the definitions and codings of the politics of genetic engineering.
Ormandy, Elisabeth H; Dale, Julie; Griffin, Gilly
2013-05-01
The genetic engineering of animals for their use in science challenges the implementation of refinement and reduction in several areas, including the invasiveness of the procedures involved, unanticipated welfare concerns, and the numbers of animals required. Additionally, the creation of genetically-engineered animals raises problems with the Canadian system of reporting animal numbers per Category of Invasiveness, as well as raising issues of whether ethical limits can, or should, be placed on genetic engineering. A workshop was held with the aim of bringing together Canadian animal care committee members to discuss these issues, to reflect on progress that has been made in addressing them, and to propose ways of overcoming any challenges. Although previous literature has made recommendations with regard to refinement and reduction when creating new genetically-engineered animals, the perception of the workshop participants was that some key opportunities are being missed. The participants identified the main roadblocks to the implementation of refinement and reduction alternatives as confidentiality, cost and competition. If the scientific community is to make progress concerning the implementation of refinement and reduction, particularly in the creation and use of genetically-engineered animals, addressing these roadblocks needs to be a priority. 2013 FRAME.
Genetic engineering including superseding microinjection: new ways to make GM pigs.
Galli, Cesare; Perota, Andrea; Brunetti, Dario; Lagutina, Irina; Lazzari, Giovanna; Lucchini, Franco
2010-01-01
Techniques for genetic engineering of swine are providing genetically modified animals of importance for the field of xenotransplantation, animal models for human diseases and for a variety of research applications. Many of these modifications have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. A number of techniques are today available to engineering the genome of mammals, these range from the well established less efficient method of DNA microinjection into the zygote, the use of viral vectors, to the more recent use of somatic cell nuclear transfer. The use of enzymatic engineering that are being developed now will refine the precision of the genetic modification combined with the use of new vectors like transposons. The use of somatic cell nuclear transfer is currently the most efficient way to generate genetically modified pigs. The development of enzymatic engineering with zinc-finger nucleases, recombinases and transposons will revolutionize the field. Nevertheless, genetic engineering in large domesticated animals will remain a challenging task. Recent improvements in several fields of cell and molecular biology offer new promises and opportunities toward an easier, cost-effective and efficient generation of transgenic pigs. © 2010 John Wiley & Sons A/S.
Genetically Engineered Cyanobacteria
NASA Technical Reports Server (NTRS)
Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)
2015-01-01
The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.
Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids.
Xu, Jun-Wei; Zhong, Jian-Jiang
2015-01-01
Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum.
Genetically Engineered Immunotherapy for Advanced Cancer
In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer
Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids
Xu, Jun-Wei; Zhong, Jian-Jiang
2015-01-01
Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum. PMID:26588475
Genetically engineered mouse models of melanoma.
Pérez-Guijarro, Eva; Day, Chi-Ping; Merlino, Glenn; Zaidi, M Raza
2017-06-01
Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society. © 2017 American Cancer Society.
2017-06-01
Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease The views, opinions and...Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease Form...NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. The major goal of this research project was to genetically and pharmacologically test the requirement of PAK
Building a Genome Engineering Toolbox in Non-Model Prokaryotic Microbes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert, Carrie A; Freed, Emily; Smolinski, Sharon
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g. sunlight, CO2, non-food biomass) to biofuels and bioproducts at sufficient titers and costs. For model microbes such as E. coli, advances in DNA reading and writing technologies are driving adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks such as photosynthesis, autotrophic growth, and cellulose degradation have very few, if any, genetic tools for metabolicmore » engineering. Therefore, it is important to begin to develop 'design rules' for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and available genetic tools to expand our ability to genetically engineer non-model systems.« less
Mameli, M
2007-02-01
Some authors have argued that the human use of reproductive cloning and genetic engineering should be prohibited because these biotechnologies would undermine the autonomy of the resulting child. In this paper, two versions of this view are discussed. According to the first version, the autonomy of cloned and genetically engineered people would be undermined because knowledge of the method by which these people have been conceived would make them unable to assume full responsibility for their actions. According to the second version, these biotechnologies would undermine autonomy by violating these people's right to an open future. There is no evidence to show that people conceived through cloning and genetic engineering would inevitably or even in general be unable to assume responsibility for their actions; there is also no evidence for the claim that cloning and genetic engineering would inevitably or even in general rob the child of the possibility to choose from a sufficiently large array of life plans.
Mameli, M
2007-01-01
Some authors have argued that the human use of reproductive cloning and genetic engineering should be prohibited because these biotechnologies would undermine the autonomy of the resulting child. In this paper, two versions of this view are discussed. According to the first version, the autonomy of cloned and genetically engineered people would be undermined because knowledge of the method by which these people have been conceived would make them unable to assume full responsibility for their actions. According to the second version, these biotechnologies would undermine autonomy by violating these people's right to an open future. There is no evidence to show that people conceived through cloning and genetic engineering would inevitably or even in general be unable to assume responsibility for their actions; there is also no evidence for the claim that cloning and genetic engineering would inevitably or even in general rob the child of the possibility to choose from a sufficiently large array of life plans. PMID:17264194
Current Progress of Genetically Engineered Pig Models for Biomedical Research
Gün, Gökhan
2014-01-01
Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311
Building a genome engineering toolbox in nonmodel prokaryotic microbes.
Freed, Emily; Fenster, Jacob; Smolinski, Sharon L; Walker, Julie; Henard, Calvin A; Gill, Ryan; Eckert, Carrie A
2018-05-11
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO 2 , and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop "design rules" for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems. © 2018 Wiley Periodicals, Inc.
Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals.
Shi, Shuobo; Zhao, Huimin
2017-01-01
Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium , Trichosporon , and Lipomyces . This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.
Yao, Yuan; Yu, Chuan-xin
2013-08-01
Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.
Field performance of a genetically engineered strain of pink bollworm.
Simmons, Gregory S; McKemey, Andrew R; Morrison, Neil I; O'Connell, Sinead; Tabashnik, Bruce E; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S; Phillips, Caroline E; Miller, Ernie D; Rose, Robert I; Staten, Robert T; Donnelly, Christl A; Alphey, Luke
2011-01-01
Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.
Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio
2012-01-01
Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044
Reilly, Matthew T; Harris, R Adron; Noronha, Antonio
2012-01-01
Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene's function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput "next-generation sequencing" technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism.
Virus resistant plums through genetic engineering - from lab to market
USDA-ARS?s Scientific Manuscript database
Genetic engineering (GE) has the potential to revolutionize the genetic improvement of fruit trees and other specialty crops, to provide greater flexibility and speed in responding to changes in climate, production systems and market demands, and to maintain the competitiveness of American agricultu...
A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN
2014-09-01
AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream
Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies
Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.
2015-01-01
The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980
2014-10-01
AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b
Paret, Mathews L; Sharma, Shiv K; Green, Lisa M; Alvarez, Anne M
2010-04-01
Raman spectra of Gram-positive and Gram-negative plant bacteria have been measured with micro-Raman spectrometers equipped with 785 and 514.5 nm lasers. The Gram-positive bacteria Microbacterium testaceum, Paenibacillus validus, and Clavibacter michiganensis subsp. michiganensis have strong carotenoid bands in the regions 1155-1157 cm(-1) and 1516-1522 cm(-1) that differentiate them from other tested Gram-negative bacteria. In the Raman spectrum of Gram-positive bacteria Bacillus megaterium excited with 785 nm laser, the Raman bands at 1157 and 1521 cm(-1) are weak in intensity compared to other Gram-positive bacteria, and these bands did not show significant resonance Raman enhancement in the spectrum recorded with 514.5 nm laser excitation. The Gram-positive bacteria could be separated from each other based on the bands associated with the in-phase C=C (v(1)) vibrations of the polyene chain of carotenoids. None of the Gram-negative bacteria tested had carotenoid bands. The bacteria in the genus Xanthomonas have a carotenoid-like pigment, xanthomonadin, identified in Xanthomonas axonopodis pv. dieffenbachiae, and it is a unique Raman marker for the bacteria. The representative bands for xanthomonadin were the C-C stretching (v(2)) vibrations of the polyene chain at 1135-1136 cm(-1) and the in-phase C=C (v(1)) vibrations of the polyene chain at 1529-1531 cm(-1), which were distinct from the carotenoid bands of other tested bacteria. The tyrosine peak in the region 1170-1175 cm(-1) was the only other marker present in Gram-negative bacteria that was absent in all tested Gram-positives. A strong-intensity exopolysaccharide-associated marker at 1551 cm(-1) is a distinguishable feature of Enterobacter cloacae. The Gram-negative Agrobacterium rhizogenes and Ralstonia solanacearum were differentiated from each other and other tested bacteria on the basis of presence or absence and relative intensities of peaks. The principal components analysis (PCA) of the spectra excited with 785 nm laser differentiated the various strains of bacteria based on the unique pigments these bacteria do or do not possess. Raman spectroscopy of diverse plant bacteria that are pathogenic and non-pathogenic to plants, and isolated from plants and soil, indicates the possibilities of using the method in understanding plant-bacterial interactions at the cellular level.
Genetic engineering: a matter that requires further refinement in Spanish secondary school textbooks
NASA Astrophysics Data System (ADS)
Martínez-Gracia, M. V.; Gil-Quýlez, M. J.
2003-09-01
Genetic engineering is now an integral part of many high school textbooks but little work has been done to assess whether it is being properly addressed. A checklist with 19 items was used to analyze how genetic engineering is presented in biology textbooks commonly used in Spanish high schools, including the content, its relationship with fundamental genetic principles, and how it aims to improve the genetic literacy of students. The results show that genetic engineering was normally introduced without a clear reference to the universal genetic code, protein expression or the genetic material shared by all species. In most cases it was poorly defined, without a clear explanation of all the relevant processes involved. Some procedures (such as vectors) were explained in detail without considering previous student knowledge or skills. Some books emphasized applications such as the human genome project without describing DNA sequencing. All books included possible repercussions, but in most cases only fashionable topics such as human cloning. There was an excess of information that was not always well founded and hence was unsuitable to provide a meaningful understanding of DNA technology required for citizens in the twenty-first century.
Genetic diversity in natural populations of a soil bacterium across a landscape gradient
McArthur, J. Vaun; Kovacic, David A.; Smith, Michael H.
1988-01-01
Genetic diversity in natural populations of the bacterium Pseudomonas cepacia was surveyed in 10 enzymes from 70 clones isolated along a landscape gradient. Estimates of genetic diversity, ranging from 0.54 to 0.70, were higher than any previously reported values of which we are aware and were positively correlated with habitat variability. Patterns of bacterial genetic diversity were correlated with habitat variability. Findings indicate that the source of strains used in genetic engineering will greatly affect the outcome of planned releases in variable environments. Selection of generalist strains may confer a large advantage to engineered populations, while selection of laboratory strains may result in quick elimination of the engineered strains. PMID:16594009
Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals
Shi, Shuobo; Zhao, Huimin
2017-01-01
Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years. PMID:29167664
Whitelaw, C Bruce A; Joshi, Akshay; Kumar, Satish; Lillico, Simon G; Proudfoot, Chris
2016-02-01
It has been thirty years since the first genetically engineered animal with altered milk composition was reported. During the intervening years, the world population has increased from 5bn to 7bn people. An increasing demand for protein in the human diet has followed this population expansion, putting huge stress on the food supply chain. Many solutions to the grand challenge of food security for all have been proposed and are currently under investigation and study. Amongst these, genetics still has an important role to play, aiming to continually enable the selection of livestock with enhanced traits. Part of the geneticist's tool box is the technology of genetic engineering. In this Invited Review, we indicate that this technology has come a long way, we focus on the genetic engineering of dairy animals and we argue that the new strategies for precision breeding demand proper evaluation as to how they could contribute to the essential increases in agricultural productivity our society must achieve.
Cho, Mildred K.
2016-01-01
Recent experiments have been used to “edit” genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a “gene drive” that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments. PMID:26632356
Sankar, Pamela L; Cho, Mildred K
2015-01-01
Recent experiments have been used to "edit" genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing the Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a "gene drive" that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtola, Susi; Parkhill, John; Head-Gordon, Martin
Novel implementations based on dense tensor storage are presented here for the singlet-reference perfect quadruples (PQ) [J. A. Parkhill et al., J. Chem. Phys. 130, 084101 (2009)] and perfect hextuples (PH) [J. A. Parkhill and M. Head-Gordon, J. Chem. Phys. 133, 024103 (2010)] models. The methods are obtained as block decompositions of conventional coupled-cluster theory that are exact for four electrons in four orbitals (PQ) and six electrons in six orbitals (PH), but that can also be applied to much larger systems. PQ and PH have storage requirements that scale as the square, and as the cube of the numbermore » of active electrons, respectively, and exhibit quartic scaling of the computational effort for large systems. Applications of the new implementations are presented for full-valence calculations on linear polyenes (C nH n+2), which highlight the excellent computational scaling of the present implementations that can routinely handle active spaces of hundreds of electrons. The accuracy of the models is studied in the π space of the polyenes, in hydrogen chains (H 50), and in the π space of polyacene molecules. In all cases, the results compare favorably to density matrix renormalization group values. With the novel implementation of PQ, active spaces of 140 electrons in 140 orbitals can be solved in a matter of minutes on a single core workstation, and the relatively low polynomial scaling means that very large systems are also accessible using parallel computing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard; Kauczor, Joanna
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure ofmore » the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.« less
A regulatory gene (ECO-orf4) required for ECO-0501 biosynthesis in Amycolatopsis orientalis.
Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie
2014-02-01
ECO-0501 is a novel linear polyene antibiotic, which was discovered from Amycolatopsis orientalis. Recent study of ECO-0501 biosynthesis pathway revealed the presence of regulatory gene: ECO-orf4. The A. orientalis ECO-orf4 gene from the ECO-0501 biosynthesis cluster was analyzed, and its deduced protein (ECO-orf4) was found to have amino acid sequence homology with large ATP-binding regulators of the LuxR (LAL) family regulators. Database comparison revealed two hypothetical domains, a LuxR-type helix-turn-helix (HTH) DNA binding motif near the C-terminal and an N-terminal nucleotide triphosphate (NTP) binding motif included. Deletion of the corresponding gene (ECO-orf4) resulted in complete loss of ECO-0501 production. Complementation by one copy of intact ECO-orf4 restored the polyene biosynthesis demonstrating that ECO-orf4 is required for ECO-0501 biosynthesis. The results of overexpression ECO-orf4 on ECO-0501 production indicated that it is a positive regulatory gene. Gene expression analysis by reverse transcription PCR of the ECO-0501 gene cluster showed that the transcription of ECO-orf4 correlates with that of genes involved in polyketide biosynthesis. These results demonstrated that ECO-orf4 is a pathway-specific positive regulatory gene that is essential for ECO-0501 biosynthesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic Engineering: The Modification of Man
ERIC Educational Resources Information Center
Sinsheimer, Robert L.
1970-01-01
Describes somatic and genetic manipulations of individual genotypes, using diabetes control as an example of the first mode that is potentially realizable be derepression or viral transduction of genes. Advocates the use of genetic engineering of the second mode to remove man from his biological limitations, but offers maxims to ensure the…
USDA-ARS?s Scientific Manuscript database
In most woody fruit species, transformation and regeneration are difficult. However, European plum (Prunus domestica) has been shown to be amenable to genetic improvement technologies from classical hybridization, to genetic engineering, to rapid cycle crop breeding (‘FasTrack’ breeding). Since th...
USDA-ARS?s Scientific Manuscript database
Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... Engineered for Herbicide Tolerance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... soybean designated as MON 87708, which has been genetically engineered for tolerance to the herbicide... MON 87708, which has been genetically engineered for tolerance to the herbicide dicamba, stating that...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... Engineered for Herbicide Tolerance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... VCO-[Oslash]1981-5, which has been genetically engineered for tolerance to the herbicide glyphosate...- [Oslash]1981-5, which has been genetically engineered for tolerance to the herbicide glyphosate, stating...
Zhu, Yong-Guan; Rosen, Barry P
2009-04-01
Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization.
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
Genetic tool development and systemic regulation in biosynthetic technology.
Dai, Zhongxue; Zhang, Shangjie; Yang, Qiao; Zhang, Wenming; Qian, Xiujuan; Dong, Weiliang; Jiang, Min; Xin, Fengxue
2018-01-01
With the increased development in research, innovation, and policy interest in recent years, biosynthetic technology has developed rapidly, which combines engineering, electronics, computer science, mathematics, and other disciplines based on classical genetic engineering and metabolic engineering. It gives a wider perspective and a deeper level to perceive the nature of life via cell mechanism, regulatory networks, or biological evolution. Currently, synthetic biology has made great breakthrough in energy, chemical industry, and medicine industries, particularly in the programmable genetic control at multiple levels of regulation to perform designed goals. In this review, the most advanced and comprehensive developments achieved in biosynthetic technology were represented, including genetic engineering as well as synthetic genomics. In addition, the superiority together with the limitations of the current genome-editing tools were summarized.
Genome engineering in cattle: recent technological advancements.
Wang, Zhongde
2015-02-01
Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered cattle for agricultural and biomedical applications.
Engineering Bacterial Thiosulfate and Tetrathionate Sensors for Detecting Gut Inflammation
2017-04-03
Article Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation Kristina N-M Daeffler1 , Jeffrey D Galley2, Ravi U...interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we...understood. Genetically engineered sensor bacteria have untapped potential as tools for analyzing gut pathways. Bacteria have evolved sensors of a large
Petri, Cesar; Alburquerque, Nuria; Faize, Mohamed; Scorza, Ralph; Dardick, Chris
2018-06-01
In most woody fruit species, transformation and regeneration are difficult. However, European plum (Prunus domestica) has been shown to be amenable to genetic improvement technologies from classical hybridization, to genetic engineering, to rapid cycle crop breeding ('FasTrack' breeding). Since the first report on European plum transformation with marker genes in the early 90 s, numerous manuscripts have been published reporting the generation of new clones with agronomically interesting traits, such as pests, diseases and/or abiotic stress resistance, shorter juvenile period, dwarfing, continuous flowering, etc. This review focuses on the main advances in genetic transformation of European plum achieved to date, and the lines of work that are converting genetic engineering into a contemporary breeding tool for this species.
GMOs in Russia: Research, Society and Legislation.
Korobko, I V; Georgiev, P G; Skryabin, K G; Kirpichnikov, M P
2016-01-01
Russian legislation lags behind the rapid developments witnessed in genetic engineering. Only a scientifically based and well-substantiated policy on the place of organisms that are created with the use of genetic engineering technologies and an assessment of the risks associated with them could guarantee that the breakthroughs achieved in modern genetic engineering technologies are effectively put to use in the real economy. A lack of demand for such breakthroughs in the practical field will lead to stagnation in scientific research and to a loss of expertise.
USDA-ARS?s Scientific Manuscript database
Feral populations of cultivated crops have the potential to function as bridges and reservoirs that contribute to the unwanted movement of novel genetically engineered (GE) traits. Recognizing that feral alfalfa has the potential to lower genetic purity in alfalfa seed production fields when it is g...
Generating Alternative Engineering Designs by Integrating Desktop VR with Genetic Algorithms
ERIC Educational Resources Information Center
Chandramouli, Magesh; Bertoline, Gary; Connolly, Patrick
2009-01-01
This study proposes an innovative solution to the problem of multiobjective engineering design optimization by integrating desktop VR with genetic computing. Although, this study considers the case of construction design as an example to illustrate the framework, this method can very much be extended to other engineering design problems as well.…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
... Status of Soybean Genetically Engineered for Herbicide Tolerance AGENCY: Animal and Plant Health... SYHTOH2, which has been genetically engineered for tolerance to the herbicides glufosinate and mesotrione... engineered to tolerate exposure to the herbicides glufosinate and mesotrione. Glufosinate tolerance is not a...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... Engineered Eucalyptus Hybrid AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... for a proposed controlled field release of a genetically engineered clone of a Eucalyptus hybrid. This... proposed controlled field release of a genetically engineered clone of a Eucalyptus hybrid. \\1\\ To view the...
"Genetic Engineering" Gains Momentum (Science/Society Case Study).
ERIC Educational Resources Information Center
Moore, John W.; Moore, Elizabeth A., Eds.
1980-01-01
Reviews the benefits and hazards of genetic engineering, or "recombinant-DNA" research. Recent federal safety rules issued by NIH which ease the strict prohibitions on recombinant-DNA research are explained. (CS)
Computer-aided design for metabolic engineering.
Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup
2014-12-20
The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease
Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko
2015-01-01
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641
Zhu, Yong-Guan; Rosen, Barry P
2015-01-01
Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization. PMID:19303764
Emergency deployment of genetically engineered veterinary vaccines in Europe.
Ramezanpour, Bahar; de Foucauld, Jean; Kortekaas, Jeroen
2016-06-24
On the 9th of November 2015, preceding the World Veterinary Vaccine Congress, a workshop was held to discuss how veterinary vaccines can be deployed more rapidly to appropriately respond to future epizootics in Europe. Considering their potential and unprecedented suitability for surge production, the workshop focussed on vaccines based on genetically engineered viruses and replicon particles. The workshop was attended by academics and representatives from leading pharmaceutical companies, regulatory experts, the European Medicines Agency and the European Commission. We here outline the present regulatory pathways for genetically engineered vaccines in Europe and describe the incentive for the organization of the pre-congress workshop. The participants agreed that existing European regulations on the deliberate release of genetically engineered vaccines into the environment should be updated to facilitate quick deployment of these vaccines in emergency situations. Copyright © 2016.
Pluripotent stem cells and livestock genetic engineering
Soto, Delia A.
2016-01-01
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs. PMID:26894405
Pluripotent stem cells and livestock genetic engineering.
Soto, Delia A; Ross, Pablo J
2016-06-01
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.
ERIC Educational Resources Information Center
Sadler, Troy D.; Zeidler, Dana L.
2005-01-01
This study focused on informal reasoning regarding socioscientific issues. It sought to explore how content knowledge influenced the negotiation and resolution of contentious and complex scenarios based on genetic engineering. Two hundred and sixty-nine students drawn from undergraduate natural science and nonnatural science courses completed a…
ERIC Educational Resources Information Center
Weiss, J.; Egea-Cortines, M.
2008-01-01
We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…
Registration of Dicamba for Use on Genetically Engineered Crops
EPA has registered a new dicamba formulation, Extendimax™ with VaporGrip™, specifically designed to have lower volatility, to control weeds in cotton and soybean plants that have been genetically engineered (GE) to resist dicamba.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
GMOs in Russia: Research, Society and Legislation
Korobko, I. V.; Georgiev, P. G.; Skryabin, K. G.; Kirpichnikov, M. P.
2016-01-01
Russian legislation lags behind the rapid developments witnessed in genetic engineering. Only a scientifically based and well-substantiated policy on the place of organisms that are created with the use of genetic engineering technologies and an assessment of the risks associated with them could guarantee that the breakthroughs achieved in modern genetic engineering technologies are effectively put to use in the real economy. A lack of demand for such breakthroughs in the practical field will lead to stagnation in scientific research and to a loss of expertise. PMID:28050262
[Research progress of genetic engineering on medicinal plants].
Teng, Zhong-qiu; Shen, Ye
2015-02-01
The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.
Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan
2017-02-01
Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.
Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts.
Levin, Rachel A; Voolstra, Christian R; Agrawal, Shobhit; Steinberg, Peter D; Suggett, David J; van Oppen, Madeleine J H
2017-01-01
Elevated sea surface temperatures from a severe and prolonged El Niño event (2014-2016) fueled by climate change have resulted in mass coral bleaching (loss of dinoflagellate photosymbionts, Symbiodinium spp., from coral tissues) and subsequent coral mortality, devastating reefs worldwide. Genetic variation within and between Symbiodinium species strongly influences the bleaching tolerance of corals, thus recent papers have called for genetic engineering of Symbiodinium to elucidate the genetic basis of bleaching-relevant Symbiodinium traits. However, while Symbiodinium has been intensively studied for over 50 years, genetic transformation of Symbiodinium has seen little success likely due to the large evolutionary divergence between Symbiodinium and other model eukaryotes rendering standard transformation systems incompatible. Here, we integrate the growing wealth of Symbiodinium next-generation sequencing data to design tailored genetic engineering strategies. Specifically, we develop a testable expression construct model that incorporates endogenous Symbiodinium promoters, terminators, and genes of interest, as well as an internal ribosomal entry site from a Symbiodinium virus. Furthermore, we assess the potential for CRISPR/Cas9 genome editing through new analyses of the three currently available Symbiodinium genomes. Finally, we discuss how genetic engineering could be applied to enhance the stress tolerance of Symbiodinium , and in turn, coral reefs.
NASA Astrophysics Data System (ADS)
Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.
Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.
Perception of risks and benefits of in vitro fertilization, genetic engineering and biotechnology.
Macer, D R
1994-01-01
The use of new biotechnology in medicine has become an everyday experience, but many people still express concern about biotechnology. Concerns are evoked particularly by the phrases genetic engineering and in vitro fertilization (IVF), and these concerns persist despite more than a decade of their use in medicine. Mailed nationwide opinion surveys on attitudes to biotechnology were conducted in Japan, among samples of the public (N = 551), high school biology teachers (N = 228), scientists (N = 555) and nurses (N = 301). People do see more benefits coming from science than harm when balanced against the risks. There were especially mixed perceptions of benefit and risk about IVF and genetic engineering, and a relatively high degree of worry compared to other developments of science and technology. A discussion of assisted reproductive technologies and surrogacy in Japan is also made. The opinions of people in Japan were compared to the results of previous surveys conducted in Japan, and international surveys conducted in Australia, China, Europe, New Zealand, U.K. and U.S.A. Japanese have a very high awareness of biotechnology, 97% saying that they had heard of the word. They also have a high level of awareness of IVF and genetic engineering. Genetic engineering was said to be a worthwhile research area for Japan by 76%, while 58% perceived research on IVF as being worthwhile, however 61% were worried about research on IVF or genetic engineering. Japanese expressed more concern about IVF and genetic engineering than New Zealanders. The major reason cited for rejection of genetic manipulation research in Japan and New Zealand was that it was seen as interfering with nature, playing God or as unethical. The emotions concerning these technologies are complex, and we should avoid using simplistic public opinion data as measures of public perceptions. The level of concern expressed by scientists and teachers in Japan suggest that public education "technology promotion campaigns" will not reduce concern about science and technology. Such concern should be valued as discretion that is basic to increasing the bioethical maturity of a society, rather than being feared.
Lehtola, Susi; Parkhill, John; Head-Gordon, Martin
2016-10-07
Novel implementations based on dense tensor storage are presented here for the singlet-reference perfect quadruples (PQ) [J. A. Parkhill et al., J. Chem. Phys. 130, 084101 (2009)] and perfect hextuples (PH) [J. A. Parkhill and M. Head-Gordon, J. Chem. Phys. 133, 024103 (2010)] models. The methods are obtained as block decompositions of conventional coupled-cluster theory that are exact for four electrons in four orbitals (PQ) and six electrons in six orbitals (PH), but that can also be applied to much larger systems. PQ and PH have storage requirements that scale as the square, and as the cube of the numbermore » of active electrons, respectively, and exhibit quartic scaling of the computational effort for large systems. Applications of the new implementations are presented for full-valence calculations on linear polyenes (C nH n+2), which highlight the excellent computational scaling of the present implementations that can routinely handle active spaces of hundreds of electrons. The accuracy of the models is studied in the π space of the polyenes, in hydrogen chains (H 50), and in the π space of polyacene molecules. In all cases, the results compare favorably to density matrix renormalization group values. With the novel implementation of PQ, active spaces of 140 electrons in 140 orbitals can be solved in a matter of minutes on a single core workstation, and the relatively low polynomial scaling means that very large systems are also accessible using parallel computing.« less
Hemmerling, Franziska; Lebe, Karen E; Wunderlich, Johannes; Hahn, Frank
2018-03-08
The divinylcyclopropane (DVC) fragment of the ambruticins is proposed to be formed by a unique polyene cyclisation mechanism, in which the unusual didomain AmbG plays a key role. It is proposed to activate the branched thioester carboxylic acid resulting from polyene cyclisation and to transfer it to its associated acyl carrier protein (ACP). After oxidative decarboxylation, the intermediate is channelled back into polyketide synthase (PKS) processing. AmbG was previously annotated as an adenylation-thiolation didomain with a very unusual substrate selectivity code but has not yet been biochemically studied. On the basis of sequence and homology model analysis, we reannotate AmbG as a fatty acyl:adenylate ligase (FAAL)-acyl carrier protein didomain with unusual substrate specificity. The expected adenylate-forming activity on fatty acids was confirmed by in vitro studies. AmbG also adenylates a number of structurally diverse carboxylic acids, including functionalised fatty acids and unsaturated and aromatic carboxylic acids. HPLC-MS analysis and competition experiments show that AmbG preferentially acylates its ACP with long-chain hydrophobic acids and tolerates a π system and a branch near the carboxylic acid. AmbG is the first characterised example of a FAAL-ACP didomain that is centrally located in a PKS and apparently activates a polyketidic intermediate. This is an important step towards deeper biosynthetic studies such as partial reconstitution of the ambruticin pathway to elucidate DVC formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Paret, Mathews L.; Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro; deSilva, Asoka S.; Vowell, Tomie; Alvarez, Anne M.
2012-06-01
We used micro- and resonance Raman spectroscopy with 785 nm and 514.5 nm laser excitation, respectively, to characterize a plant pathogenic bacteria, Xanthomonas axonopodis pv. dieffenbachiae D150. The bacterial genus Xathomonas is closely related to bacterial genus Stenotrophomonas that causes an infection in humans. This study has identified for the first time the unique Raman spectra of the carotenoid-like pigment xanthomonadin of the Xanthomonas strain. Xanthomonadin is a brominated aryl-polyene pigment molecule similar to carotenoids. Further studies were conducted using resonance Raman spectroscopy with 514.5 nm laser excitation on several strains of the bacterial genus Xanthomonas isolated from numerous plants from various geographical locations. The current study revealed that the Raman bands representing the vibrations (v1, v2, v3) of the polyene chain of xanthomonadin are 1003-1005 (v3), 1135-1138 (v2), and 1530 (v1). Overtone bands representing xanthomonadin were identified as 2264-2275 (2v2), and combinational bands at 2653-2662 (v1+ v2). The findings from this study validate our previous finding that the Raman fingerprints of xanthomonadin are unique for the genus Xanthomonas. This facilitates rapid identification (~5 minutes) of Xanthomonas spp. from bacterial culture plates. The xanthomonadin marker is different from Raman markers of many other bacterial genus including Agrobacterium, Bacillus, Clavibacter, Enterobacter, Erwinia, Microbacterium, Paenibacillus, and Ralstonia. This study also identified Xanthomonas spp. from bacterial strains isolated from a diseased wheat sample on a culture plate.
NASA Astrophysics Data System (ADS)
Lehtola, Susi; Parkhill, John; Head-Gordon, Martin
2016-10-01
Novel implementations based on dense tensor storage are presented for the singlet-reference perfect quadruples (PQ) [J. A. Parkhill et al., J. Chem. Phys. 130, 084101 (2009)] and perfect hextuples (PH) [J. A. Parkhill and M. Head-Gordon, J. Chem. Phys. 133, 024103 (2010)] models. The methods are obtained as block decompositions of conventional coupled-cluster theory that are exact for four electrons in four orbitals (PQ) and six electrons in six orbitals (PH), but that can also be applied to much larger systems. PQ and PH have storage requirements that scale as the square, and as the cube of the number of active electrons, respectively, and exhibit quartic scaling of the computational effort for large systems. Applications of the new implementations are presented for full-valence calculations on linear polyenes (CnHn+2), which highlight the excellent computational scaling of the present implementations that can routinely handle active spaces of hundreds of electrons. The accuracy of the models is studied in the π space of the polyenes, in hydrogen chains (H50), and in the π space of polyacene molecules. In all cases, the results compare favorably to density matrix renormalization group values. With the novel implementation of PQ, active spaces of 140 electrons in 140 orbitals can be solved in a matter of minutes on a single core workstation, and the relatively low polynomial scaling means that very large systems are also accessible using parallel computing.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
... Engineered for Herbicide Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... maize line HCEM485, which has been genetically engineered to be resistant to the herbicide glyphosate...
Project #OPE-FY15-0055, July 09, 2015. The EPA OIG plans to begin preliminary research on the EPA's ability to manage and prevent increased insect resistance to genetically engineered Bacillus thuringiensis (Bt) corn.
Ligand interaction scan: a general method for engineering ligand-sensitive protein alleles.
Erster, Oran; Eisenstein, Miriam; Liscovitch, Mordechai
2007-05-01
The ligand interaction scan (LIScan) method is a general procedure for engineering small molecule ligand-regulated forms of a protein that is complementary to other 'reverse' genetic and chemical-genetic methods for drug-target validation. It involves insertional mutagenesis by a chemical-genetic 'switch', comprising a genetically encoded peptide module that binds with high affinity to a small-molecule ligand. We demonstrated the method with TEM-1 beta-lactamase, using a tetracysteine hexapeptide insert and a biarsenical fluorescein ligand (FlAsH).
From Precaution to Peril: Public Relations Across Forty Years of Genetic Engineering.
Hogan, Andrew J
2016-12-01
The Asilomar conference on genetic engineering in 1975 has long been pointed to by scientists as a model for internal regulation and public engagement. In 2015, the organizers of the International Summit on Human Gene Editing in Washington, DC looked to Asilomar as they sought to address the implications of the new CRISPR gene editing technique. Like at Asilomar, the conveners chose to limit the discussion to a narrow set of potential CRISPR applications, involving inheritable human genome editing. The adoption by scientists in 2015 of an Asilomar-like script for discussing genetic engineering offers historians the opportunity to analyze the adjustments that have been made since 1975, and to identify the blind spots that remain in public engagement. Scientists did take important lessons from the fallout of their limited engagement with public concerns at Asilomar. Nonetheless, the scientific community has continued to overlook some of the longstanding public concerns about genetic engineering, in particular the broad and often covert genetic modification of food products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genetically engineered mouse models for studying inflammatory bowel disease.
Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko
2016-01-01
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Pelletier, David L
2005-05-01
The US Food and Drug Administration's (FDA's) 1992 policy statement was developed in the context of critical gaps in scientific knowledge concerning the compositional effects of genetic transformation and severe limitations in methods for safety testing. FDA acknowledged that pleiotropy and insertional mutagenesis may cause unintended changes, but it was unknown whether this happens to a greater extent in genetic engineering compared with traditional breeding. Moreover, the agency was not able to identify methods by which producers could screen for unintended allergens and toxicants. Despite these uncertainties, FDA granted genetically engineered foods the presumption of GRAS (Generally Recognized As Safe) and recommended that producers use voluntary consultations before marketing them.
Project #OPE-FY16-0023, March 25, 2016. The EPA OIG plans to begin preliminary research to assess the EPA's management and oversight of resistance issues related to herbicide tolerant genetically engineered crops.
The establishment of genetically engineered canola populations in the U.S.
Concerns regarding the commercial release of genetically engineered (GE) crops include naturalization, introgression to sexually compatible relatives and the transfer of beneficial traits to native and weedy species through hybridization. To date there have been few documented re...
Expanding and reprogramming the genetic code.
Chin, Jason W
2017-10-04
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Recent advances in genetic modification systems for Actinobacteria.
Deng, Yu; Zhang, Xi; Zhang, Xiaojuan
2017-03-01
Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.
Genetically Engineered Pig Models for Human Diseases
Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric
2015-01-01
Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017
Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?
Kubyshkin, Vladimir; Budisa, Nediljko
2017-08-01
The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Induction of atherosclerosis in mice and hamsters without germline genetic engineering.
Bjørklund, Martin Maeng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup; Dagnaes-Hansen, Frederik; Christoffersen, Christina; Mikkelsen, Jacob Giehm; Bentzon, Jacob Fog
2014-05-23
Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. To develop a method for induction of atherosclerosis without germline genetic engineering. Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions to the fibroatheromatous stage. To demonstrate the applicability of this method for rapid analysis of the atherosclerosis susceptibility of a mouse strain and for providing temporal control over disease induction, we demonstrated the accelerated atherosclerosis of mature diabetic Akita mice. Furthermore, the versatility of this approach for creating atherosclerosis models also in nonmurine species was demonstrated by inducing hypercholesterolemia and early atherosclerosis in Golden Syrian hamsters. Single injections of proprotein convertase subtilisin/kexin type 9-encoding recombinant adeno-associated viral vectors are a rapid and versatile method to induce atherosclerosis in animals. This method should prove useful for experiments that are high-throughput or involve genetic techniques, strains, or species that do not combine well with current genetically engineered models. © 2014 American Heart Association, Inc.
Genetic engineering for skeletal regenerative medicine.
Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J
2007-01-01
The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.
Genetically Engineering Entomopathogenic Fungi.
Zhao, H; Lovett, B; Fang, W
2016-01-01
Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.
CRISPR: a Versatile Tool for Both Forward and Reverse Genetics Research
Gurumurthy, Channabasavaiah B.; Grati, M'hamed; Ohtsuka, Masato; Schilit, Samantha L.P.; Quadros, Rolen M.; Liu, Xue Zhong
2016-01-01
Human genetics research employs the two opposing approaches of forward and reverse genetics. While forward genetics identifies and links a mutation to an observed disease etiology, reverse genetics induces mutations in model organisms to study their role in disease. In most cases, causality for mutations identified by forward genetics is confirmed by reverse genetics through the development of genetically engineered animal models and an assessment of whether the model can recapitulate the disease. While many technological advances have helped improve these approaches, some gaps still remain. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, which has emerged as a revolutionary genetic engineering tool, holds great promise for closing such gaps. By combining the benefits of forward and reverse genetics, it has dramatically expedited human genetics research. We provide a perspective on the power of CRISPR-based forward and reverse genetics tools in human genetics and discuss its applications using some disease examples. PMID:27384229
Jakab, Ágnes; Emri, Tamás; Sipos, Lilla; Kiss, Ágnes; Kovács, Renátó; Dombrádi, Viktor; Kemény-Beke, Ádám; Balla, József; Majoros, László; Pócsi, István
2015-08-01
The fluorinated glucocorticoid betamethasone stimulated both the extracellular phospholipase production and hypha formation of the opportunistic human pathogen Candida albicans and also decreased the efficiency of the polyene antimycotics amphotericin B and nystatin against C. albicans in a dose-dependent manner. Importantly, betamethasone increased synergistically the anti-Candida activity of the oxidative stress generating agent menadione, which may be exploited in future combination therapies to prevent or cure C. albicans infections, in the field of dermatology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-10-01
0.5 0.5 Aspergillus flavus 12 0.5 0.5 0.5 0.5 Aspergillus terreus 5 0.125 0.125 0.5 0.5 Aspergillus niger 10 0.5 0.5 0.5 0.5 Candida albicans...Candida spp., Aspergillus fumigatus and polyene-resistant non-fumigatus Aspergillus species, Fusarium species and Zygomycetes. We have also established a... Aspergillus strains, and the CLSI protocol M27-A3 “Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard- Third
Lipid composition and sensitivity of Prototheca wickerhamii to membrane-active antimicrobial agents.
Sud, I J; Feingold, D S
1979-01-01
The lipid composition of Prototheca wickerhamii ATCC 16529 is presented and discussed in relation to the unique susceptibility of the organism to drugs of three membrane-active antimicrobial classes: the polyenes, the polymyxins, and the imidazoles. The presence of ergosterol in the neutral lipid fraction of the membrane is likely responsible for the exquisite susceptibility to amphotericin B. The presence of a large quantity of free fatty acids in the membrane appears responsible for imidazole susceptibility. The membrane determinants of polymyxin B susceptibility are less well defined. PMID:518077
Nonlinear susceptibilities of finite conjugated organic polymers
NASA Technical Reports Server (NTRS)
Beratan, David N.; Onuchic, Jose Nelson; Perry, Joseph W.
1987-01-01
Tight-binding calculations of the length dependence of the third-order molecular hyperpolarizability for polyenes and polyynes are reported. The pi-electron wave functions were determined by exploiting the limited translational symmetry of the molecules. Perturbation theory was used to calculate the longitudinal component of the electronic nonresonant hyperpolarizability. This is the first two-'band' calculation of third-order hyperpolarizabilities on finite pi-electron systems of varying length. In contrast to the results of the one-'band' models, the hyperpolarizability densities increase rapidly and then, after about 10-15 repeating units, approach an asymptotic value.
NASA Technical Reports Server (NTRS)
Cooper, John; Aust, Jeffrey F.; Wise, Kent L.; Jensen, Brian J.
1999-01-01
The vibrational spectrum of a high temperature (330 C) polymerization reaction was successfully monitored in real time using a modulated fiber-optic FT-Raman spectrometer. A phenylethynyl terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.
NASA Technical Reports Server (NTRS)
Aust, Jeffrey F.; Cooper, John B.; Wise, Kent L.; Jensen, Brian J.
1999-01-01
The vibrational spectrum of a high-temperature (330 C) polymerization reaction was successfully monitored in real time with the use of a modulated fiber-optic Fourier transform (FT)-Raman spectrometer. A phenylethynyl-terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.
Silk Materials Functionalized via Genetic Engineering for Biomedical Applications.
Deptuch, Tomasz; Dams-Kozlowska, Hanna
2017-12-12
The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications.
Genetic Engineering and Crop Production.
ERIC Educational Resources Information Center
Jones, Helen C.; Frost, S.
1991-01-01
With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)
ERIC Educational Resources Information Center
Dewhurst, D. G.; And Others
1989-01-01
An interactive computer-assisted learning program written for the BBC microcomputer to teach the basic principles of genetic engineering is described. Discussed are the hardware requirements software, use of the program, and assessment. (Author/CW)
IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)
Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...
A portable expression resource for engineering cross-species genetic circuits and pathways
Kushwaha, Manish; Salis, Howard M.
2015-01-01
Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts. PMID:26184393
Huang, Ke; Chen, Chuan; Shen, Qirong; Rosen, Barry P.
2015-01-01
Organic manures may contain high levels of arsenic (As) due to the use of As-containing growth-promoting substances in animal feed. To develop a bioremediation strategy to remove As from organic waste, Bacillus subtilis 168, a bacterial strain which can grow at high temperature but is unable to methylate and volatilize As, was genetically engineered to express the arsenite S-adenosylmethionine methyltransferase gene (CmarsM) from the thermophilic alga Cyanidioschyzon merolae. The genetically engineered B. subtilis 168 converted most of the inorganic As in the medium into dimethylarsenate and trimethylarsine oxide within 48 h and volatized substantial amounts of dimethylarsine and trimethylarsine. The rate of As methylation and volatilization increased with temperature from 37 to 50°C. When inoculated into an As-contaminated organic manure composted at 50°C, the modified strain significantly enhanced As volatilization. This study provides a proof of concept of using genetically engineered microorganisms for bioremediation of As-contaminated organic waste during composting. PMID:26187966
Pressure for a select committee on human embryo research and genetic engineering.
McKie, David
1985-11-02
By a commanding majority of almost five million votes, this year's Labour Party conference agreed that Labour Members of Parliament should not be permitted to let their consciences decide their votes on "issues affecting the reproductive rights of women." The targets for this censure were the 44 Labour MPs who backed Enoch Powell's bill to outlaw experiments on embryos. Conservative supporters of the Powell bill are countering their defeat by advocating a Parliamentary select committee to examine "matters of human embryo research and human genetic engineering." McKie comments that they are thus shifting emphasis from "fertility," which has public support, to genetic engineering, which generates fear.
Ariyasu, Hiroyuki; Akamizu, Takashi
2015-01-01
Ghrelin, an endogenous ligand for the growth hormone (GH) secretagogue receptor (GHS-R or ghrelin receptor), is a 28-amino acid acylated peptide mainly produced in the stomach. The pharmacological administration of ghrelin is known to exert diverse effects, such as stimulating GH secretion, promoting food intake, and increasing adiposity. In recent years, genetically engineered mouse models have provided important insights into the physiology of various hormones. In this review, we discuss current knowledge regarding the physiological significance of ghrelin on the basis of studies using genetically engineered mouse models with modifications in the ghrelin system.
Crop Genetics: The Seeds of Revolution.
ERIC Educational Resources Information Center
DeYoung, H. Garrett
1983-01-01
Current research in plant genetics is described. Benefits of this research (which includes genetic engineering applications) will include reduction/elimination of crop diseases, assurance of genetic stability, and the creation of new crop varieties. (JN)
Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Sarah R.; Rodemeyer, Michael; Garfinkel, Michele S.
Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as “synthetic biology” has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods formore » genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDA’s authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic engineering techniques will leave many engineered plants without any pre-market regulatory review. Second, the number and diversity of engineered microbes for commercial use will increase in the near future, challenging EPA’s resources, expertise, and perhaps authority to regulate them. For each of these challenges, the report sets out a series of options, including an analysis of the advantages and disadvantages of each option from a variety of perspectives, for policy makers to consider. Policy responses will depend on the trade-offs chosen among competing considerations. This report, funded by the Department of Energy with additional funds from the Alfred P. Sloan Foundation, is the result of a two-year process that included interviews, commissioned background papers, discussions, and two workshops that sought input from a wide range of experts, including U.S. federal agency regulators, legal and science policy experts, representatives from the biotechnology indus¬try, and non-governmental organiza¬tions. This cross-section of views informed this report, but the conclusions are solely those of the authors. An Executive Summary, full Report, and background papers are available at: http://www.jcvi.org/cms/research/projects/synthetic-biology-and-the-us-biotechnology-regulatory-system/overview/« less
ERIC Educational Resources Information Center
MacClintic, Scott D.; Nelson, Genevieve M.
Bacterial transformation is a commonly used technique in genetic engineering that involves transferring a gene of interest into a bacterial host so that the bacteria can be used to produce large quantities of the gene product. Although several kits are available for performing bacterial transformation in the classroom, students do not always…
USDA-ARS?s Scientific Manuscript database
Background: The limited xylose utilizing ability of native Saccharomyces cerevisiae has been a major obstacle for efficient cellulosic ethanol production from lignocellulosic materials. Haploid laboratory strains of S. cerevisiae are commonly used for genetic engineering to enable its xylose utiliza...
University Students' Knowledge and Attitude about Genetic Engineering
ERIC Educational Resources Information Center
Bal, Senol; Samanci, Nilay Keskin; Bozkurt, Orçun
2007-01-01
Genetic engineering and biotechnology made possible of gene transfer without discriminating microorganism, plant, animal or human. However, although these scientific techniques have benefits, they cause arguments because of their ethical and social impacts. The arguments about ethical ad social impacts of biotechnology made clear that not only…
The potential ecological consequences of the commercialization of genetically engineered (GD) crops have been the subject of intense debate, particularly when the GE crops are perennial and capable of outcrossing to wild relatives. The essential ecological impact issues for engi...
78 FR 1522 - Semiannual Regulatory Agenda, Fall 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
..., interstate movement, and environmental release of certain genetically engineered organisms and update the... of Organisms 0579-AC31 and Products Altered or Produced Through Genetic Engineering. 139 Importation..., Riverdale, MD 20737-1231, Phone: 301 851-2286. RIN: 0579-AC05 138. Introduction of Organisms and Products...
Ekser, Burcin; Klein, Edwin; He, Jing; Stolz, Donna B; Echeverri, Gabriel J; Long, Cassandra; Lin, Chih Che; Ezzelarab, Mohamed; Hara, Hidetaka; Veroux, Massimiliano; Ayares, David; Cooper, David K C; Gridelli, Bruno
2012-01-01
Orthotopic liver transplantation was carried out in baboons using wild-type (WT, n = 1) or genetically-engineered pigs (α1,3-galactosyltransferase gene-knockout, GTKO), n = 1; GTKO pigs transgenic for human CD46, n = 7) and a clinically-acceptable immunosuppressive regimen. Biopsies were obtained from the WT pig liver pre-Tx and at 30 min, 1, 2, 3, 4 and 5 h post-transplantation. Biopsies of genetically-engineered livers were obtained pre-Tx, 2 h after reperfusion and at necropsy (4-7 days after transplantation). Tissues were examined by light, confocal, and electron microscopy. All major native organs were also examined. The WT pig liver underwent hyperacute rejection. After genetically-engineered pig liver transplantation, hyperacute rejection did not occur. Survival was limited to 4-7 days due to repeated spontaneous bleeding in the liver and native organs (as a result of profound thrombocytopenia) which necessitated euthanasia. At 2 h, graft histology was largely normal. At necropsy, genetically-engineered pig livers showed hemorrhagic necrosis, platelet aggregation, platelet-fibrin thrombi, monocyte/macrophage margination mainly in liver sinusoids, and vascular endothelial cell hypertrophy, confirmed by confocal and electron microscopy. Immunohistochemistry showed minimal deposition of IgM, and almost absence of IgG, C3, C4d, C5b-9, and of a cellular infiltrate, suggesting that neither antibody- nor cell-mediated rejection played a major role.
History and future of genetically engineered food animal regulation: an open request.
Wells, Kevin D
2016-06-01
Modern biotechnology resulted from of a series of incremental improvements in the understanding of DNA and the enzymes that nature evolved to manipulate it. As the potential impact of genetic engineering became apparent, scientists began the process of trying to identify the potential unintended consequences. Restrictions to recombinant DNA experimentation were at first self-imposed. Collaborative efforts between scientists and lawyers formalized an initial set of guidelines. These guidelines have been used to promulgate regulations around world. However, the initial guidelines were only intended as a starting point and were motivated by a specific set of concerns. As new data became available, the guidelines and regulations should have been adapted to the new knowledge. Instead, other social drivers drove the development of regulations. For most species and most applications, the framework that was established has slowly allowed some products to reach the market. However, genetically engineered livestock that are intended for food have been left in a regulatory state of limbo. To date, no genetically engineered food animal is available in the marketplace. A short history and a U.S.-based genetic engineer's perspective are presented. In addition, a request to regulatory agencies is presented for consideration as regulation continues to evolve. Regulators appear to have shown preference for the slow, random progression of evolution over the efficiency of intentional design.
European Science Notes, Volume 40, Number 5.
1986-05-01
microbiology , genetic engineering, and genetic engineering of plants is reviewed. Environmental Sciences -: ") EUROMECH 201-Aplications of the Jchanics...Si"co lo with the research activities at the Lab- Soil Microbiology oratory of Genetics at the University of It is now well documented that a Ghent...spec- tesi , for succeeding in running dedica- tacular observation of SFPM up to four " ted research under incredibly hard Stokes orders in a 300-m
Survival differences among freeze-dried genetically engineered and wild-type bacteria.
Israeli, E; Shaffer, B T; Hoyt, J A; Lighthart, B; Ganio, L M
1993-01-01
Because the death mechanisms of freeze-dried and air-dried bacteria are thought to be similar, freeze-drying was used to investigate the survival differences between potentially airborne genetically engineered microorganisms and their wild types. To this end, engineered strains of Escherichia coli and Pseudomonas syringae were freeze-dried and exposed to air, visible light, or both. The death rates of all engineered strains were significantly higher than those of their parental strains. Light and air exposure were found to increase the death rates of all strains. Application of death rate models to freeze-dried engineered bacteria to be released into the environment is discussed. PMID:8434925
Adams, Bryn L; Finch, Amethist S; Hurley, Margaret M; Sarkes, Deborah A; Stratis-Cullum, Dimitra N
2013-09-06
The first-ever peptide biomaterial discovery using an unconstrained engineered bacterial display technology is reported. Using this approach, we have developed genetically engineered peptide binders for a bulk aluminum alloy and use molecular dynamics simulation of peptide conformational fluctuations to demonstrate sequence-dependent, structure-function relationships for metal and metal oxide interactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic Engineering--A Lesson on Bioethics for the Classroom.
ERIC Educational Resources Information Center
Armstrong, Kerri; Weber, Kurt
1991-01-01
A unit designed to cover the topic of genetic engineering and its ethical considerations is presented. Students are expected to learn the material while using a debate format. A list of objectives for the unit, the debate format, and the results from an opinion questionnaire are described. (KR)
Development and deregulation of the plum pox virus resistant transgenic plum 'HoneySweet'
USDA-ARS?s Scientific Manuscript database
We have demonstrated that genetic engineering can be an important source of high level and durable resistance against Plum pox virus (PPV). We have shown, through a number of field studies, the environmental safety of this genetically engineered plum. Nevertheless, the utilization of this demonstr...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... Soybean Genetically Engineered for Herbicide Resistance AGENCY: Animal and Plant Health Inspection Service... for resistance to the herbicides glyphosate and isoxaflutole, is no longer considered a regulated... for resistance to the herbicides glyphosate and isoxaflutole. The petition states that this soybean is...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... for Determination of Nonregulated Status of Soybean Genetically Engineered for Herbicide Tolerance... genetically engineered for resistance to the herbicides glyphosate and isoxaflutole. The petition has been... herbicides glyphosate and isoxaflutole. The petition states that this soybean is unlikely to pose a plant...
ERIC Educational Resources Information Center
Danielli, James F.
1972-01-01
Research in manipulation of genetic inheritance opens new vistas. Biologically-styled industrial synthesis is better in many respects than chemical engineering practices now in use. An approach for improving hereditary characters in living organisms without considering social implications is unwise. (PS)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
...] Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered for... are advising the public of our determination that a corn line developed by the Syngenta Biotechnology... evaluation of data submitted by Syngenta Biotechnology, Inc., in its petition for a determination of...
Silk Materials Functionalized via Genetic Engineering for Biomedical Applications
Deptuch, Tomasz
2017-01-01
The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications. PMID:29231863
Engineering species-like barriers to sexual reproduction.
Maselko, Maciej; Heinsch, Stephen C; Chacón, Jeremy M; Harcombe, William R; Smanski, Michael J
2017-10-12
Controlling the exchange of genetic information between sexually reproducing populations has applications in agriculture, eradication of disease vectors, control of invasive species, and the safe study of emerging biotechnology applications. Here we introduce an approach to engineer a genetic barrier to sexual reproduction between otherwise compatible populations. Programmable transcription factors drive lethal gene expression in hybrid offspring following undesired mating events. As a proof of concept, we target the ACT1 promoter of the model organism Saccharomyces cerevisiae using a dCas9-based transcriptional activator. Lethal overexpression of actin results from mating this engineered strain with a strain containing the wild-type ACT1 promoter.Genetic isolation of a genetically modified organism represents a useful strategy for biocontainment. Here the authors use dCas9-VP64-driven gene expression to construct a 'species-like' barrier to reproduction between two otherwise compatible populations.
Szlinder-Richert, Joanna; Cybulska, Barbara; Grzybowska, Jolanta; Bolard, Jacques; Borowski, Edward
2004-04-01
Amphotericin B (AMB) derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester (MFAME) retains the broad antifungal spectrum and potency of the parent antibiotic, whereas its toxicity towards mammalian cells is reduced by about two orders of magnitude. The purpose of this work was to find out whether the differences observed in the toxicity of MFAME and native AMB are due to the differential drugs affinity to fungal and mammalian cell membranes. Comparative studies on AMB and MFAME biological activity and their affinity to fungal, mammalian and bacterial cells were performed. The interaction of AMB and MFAME with cells have been studied by fluorescence method based on the energy transfer between membrane fluorescent probe (donor) and the polyenic chromophore of the antibiotic (acceptor) simultaneously present in the cell membrane. The amount of the antibiotic bound to cells was indicated by the extent of fluorescence quenching of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) or 1,6-diphenyl-1,3,5-hexatriene (DPH) by polyenic chromophore of the antibiotic. The results obtained indicate that binding extent and characteristics for both antibiotics are comparable in the three types of cells studied. Dramatically lower toxicity of MFAME as compared to AMB towards mammalian cells is not related to the antibiotic-cell affinity, but rather to different consequences of these interactions for cells, reflected in membrane permeabilization. MFAME is definitely less effective than parent AMB in the permeabilizing species formation in mammalian cell membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annaval, Thibault; Rudolf, Jeffrey D.; Chang, Chin-Yuan
Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Though the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. Here, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesismore » of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/β hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, our findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.« less
NASA Astrophysics Data System (ADS)
Glover, William J.; Mori, Toshifumi; Schuurman, Michael S.; Boguslavskiy, Andrey E.; Schalk, Oliver; Stolow, Albert; Martínez, Todd J.
2018-04-01
The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 11Bu (ππ*) state and non-adiabatically coupled dark 21Ag state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 11Bu state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1Bu or the dark 21Ag state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.
Santos-Aberturas, Javier; Vicente, Cláudia M.; Payero, Tamara D.; Martín-Sánchez, Lara; Cañibano, Carmen; Martín, Juan F.; Aparicio, Jesús F.
2012-01-01
Control of polyene macrolide production in Streptomyces natalensis is mediated by the transcriptional activator PimR. This regulator combines an N-terminal domain corresponding to the Streptomyces antibiotic regulatory protein (SARP) family of transcriptional activators with a C-terminal half homologous to guanylate cyclases and large ATP-binding regulators of the LuxR family. The PimR SARP domain (PimRSARP) was expressed in Escherichia coli as a glutathione S-transferase (GST)–fused protein. Electrophoretic mobility shift assays showed that GST-PimRSARP binds a single target, the intergenic region between the regulatory genes pimR and pimMs in the pimaricin cluster. The PimRSARP-binding site was investigated by DNaseI protection studies, revealing that it contains three heptameric direct repeats adjusting to the consensus 5′-CGGCAAG-3′. Transcription start points of pimM and pimR promoters were identified by 5′-RACE, revealing that unlike other SARPs, PimRSARP does not interact with the -35 region of its target promoter. Quantitative transcriptional analysis of these regulatory genes on mutants on each of them has allowed the identification of the pimM promoter as the transcriptional target for PimR. Furthermore, the constitutive expression of pimM restored pimaricin production in a pimaricin-deficient strain carrying a deletion mutant of pimR. These results reveal that PimR exerts its positive effect on pimaricin production by controlling pimM expression level, a regulator whose gene product activates transcription from eight different promoters of pimaricin structural genes directly. PMID:22693644
Annaval, Thibault; Rudolf, Jeffrey D.; Chang, Chin-Yuan; ...
2017-08-30
Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Though the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. Here, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesismore » of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/β hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, our findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.« less
Wu, Qilong; Zhang, Xihui; Cao, Guodong
2018-05-01
This study compared the effects of chemical aging on the polyvinylidene fluoride (PVDF) membranes fabricated with the methods of non-solvent induced phase separation (NIPS) (named NIPS-PVDF) and thermally induced phase separation (TIPS) (named TIPS-PVDF). The chemical solutions of sodium hypochlorite (NaClO) and sodium hydroxide (NaOH) were chosen at the concentration of 5000mg/L. The equivalence of 5 and 10years was respectively selected as the time of aging. The physicochemical evolutions of membrane aging are characterized on the base of morphology analysis, chemical components, permeation ability and mechanical properties. The aging of NIPS-PVDF membrane led to the elimination of surface hydrophilic additives, while NaOH focused on the dehydrofluorination process resulting in the formation of conjugated chains of polyene on the skeleton structure. The chemical components of the surface of TIPS-PVDF membrane were removed continuously during the aging processes of both NaClO and NaOH, which was caused by the saponification of surface additives and the chain scissions of skeleton structure, but without producing any obvious conjugated chains of polyene. All the aging processes led to the increase of contact angle and the decrease of mechanical properties, and the permeability was reduced first and increased later due to the enlargement of surface membrane pores and membrane block. With the influence of membrane aging, selectivity of membrane was decreased (except coliform bacteria). At the beginning of filtration, the turbidity and particle count were at relatively high levels and declined with the filtration process. Copyright © 2017. Published by Elsevier B.V.
Zhou, Yanli; Zhang, Chunhong; Qiu, Yuan; Liu, Lijia; Yang, Taotao; Dong, Hongxing; Satoh, Toshifumi; Okamoto, Yoshio
2016-11-21
A phenylacetylene containing the l-valine ethyl ester pendant (PAA-Val) was synthesized and polymerized by an organorhodium catalyst (Rh(nbd)BPh₄) to produce the corresponding one-handed helical cis -poly(phenylacetylene) (PPAA-Val). PPAA-Val showed a unique temperature-triggered switchable helix-sense in chloroform, while it was not observed in highly polar solvents, such as N , N '-dimethylformamide (DMF). By heating the solution of PPAA-Val in chloroform, the sign of the CD absorption became reversed, but recovered after cooling the solution to room temperature. Even after six cycles of the heating-cooling treatment, the helix sense of the PPAA-Val's backbone was still switchable without loss of the CD intensity. The PPAA-Val was then coated on silica gel particles to produce novel chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). These novel PPAA-Val based CSPs showed a high chiral recognition ability for racemic mandelonitrile ( α = 2.18) and racemic trans - N , N '-diphenylcyclohexane-1,2-dicarboxamide ( α = 2.60). Additionally, the one-handed helical cis -polyene backbone of PPAA-Val was irreversibly destroyed to afford PPAA-Val-H by heating in dimethyl sulfoxide (DMSO) accompanied by the complete disappearance of the Cotton effect. Although PPAA-Val-H had the same l-valine ethyl ester pendants as its cis -isomer PPAA-Val, it showed no chiral recognition. It was concluded that the one-handed helical cis -polyene backbone of PPAA-Val plays an important role in the chiral recognition ability.
Jiang, Baojie; Zhang, Ruiqin; Feng, Dan; Wang, Fangzhong; Liu, Kuimei; Jiang, Yi; Niu, Kangle; Yuan, Quanquan; Wang, Mingyu; Wang, Hailong; Zhang, Youming; Fang, Xu
2016-01-01
The lack of selective markers has been a key problem preventing multistep genetic engineering in filamentous fungi, particularly for industrial species such as the lignocellulose degrading Penicillium oxalicum JUA10-1(formerly named as Penicillium decumbens). To resolve this problem, we constructed a genetic manipulation system taking advantage of two established genetic systems: the Cre-loxP system and Tet-on system in P. oxalicum JUA10-1. This system is efficient and convenient. The expression of Cre recombinase was activated by doxycycline since it was controlled by Tet-on system. Using this system, two genes, ligD and bglI, were sequentially disrupted by loxP flanked ptrA. The successful application of this procedure will provide a useful tool for genetic engineering in filamentous fungi. This system will also play an important role in improving the productivity of interesting products and minimizing by-product when fermented by filamentous fungi. PMID:27148179
The role of genetically engineered pigs in xenotransplantation research.
Cooper, David K C; Ekser, Burcin; Ramsoondar, Jagdeece; Phelps, Carol; Ayares, David
2016-01-01
There is a critical shortage in the number of deceased human organs that become available for the purposes of clinical transplantation. This problem might be resolved by the transplantation of organs from pigs genetically engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in non-human primates (NHPs) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified, as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing five or six manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart and islet transplantation will become feasible in the near future. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Genetic engineering of cyanobacteria as biodiesel feedstock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffing, Anne.; Trahan, Christine Alexandra; Jones, Howland D. T.
2013-01-01
Algal biofuels are a renewable energy source with the potential to replace conventional petroleum-based fuels, while simultaneously reducing greenhouse gas emissions. The economic feasibility of commercial algal fuel production, however, is limited by low productivity of the natural algal strains. The project described in this SAND report addresses this low algal productivity by genetically engineering cyanobacteria (i.e. blue-green algae) to produce free fatty acids as fuel precursors. The engineered strains were characterized using Sandias unique imaging capabilities along with cutting-edge RNA-seq technology. These tools are applied to identify additional genetic targets for improving fuel production in cyanobacteria. This proof-of-concept studymore » demonstrates successful fuel production from engineered cyanobacteria, identifies potential limitations, and investigates several strategies to overcome these limitations. This project was funded from FY10-FY13 through the President Harry S. Truman Fellowship in National Security Science and Engineering, a program sponsored by the LDRD office at Sandia National Laboratories.« less
Genome engineering and plant breeding: impact on trait discovery and development.
Nogué, Fabien; Mara, Kostlend; Collonnier, Cécile; Casacuberta, Josep M
2016-07-01
New tools for the precise modification of crops genes are now available for the engineering of new ideotypes. A future challenge in this emerging field of genome engineering is to develop efficient methods for allele mining. Genome engineering tools are now available in plants, including major crops, to modify in a predictable manner a given gene. These new techniques have a tremendous potential for a spectacular acceleration of the plant breeding process. Here, we discuss how genetic diversity has always been the raw material for breeders and how they have always taken advantage of the best available science to use, and when possible, increase, this genetic diversity. We will present why the advent of these new techniques gives to the breeders extremely powerful tools for crop breeding, but also why this will require the breeders and researchers to characterize the genes underlying this genetic diversity more precisely. Tackling these challenges should permit the engineering of optimized alleles assortments in an unprecedented and controlled way.
Development of a Genetically Engineered Venezuelan Equine Encephalitis Virus Vaccine
1988-12-20
immunization, the horses will be returned to the large animal biocontainment facility to be challenged with equine virulent VEE virus. The animals will be...AD £IT FiLE C p DEVELOPMENT OF A GENETICALLY ENGINEERED VENEZUELAN EQUINE ENCEPHALITIS VIRUS VACCINE ANNUAL REPORT to DENNIS W. TRENT 0DECEMBER 20...Engineered Venezuelan Equine Encephalitis Virus Vaccine 12. PERSONAL AUTHOR(S) Dennis W. Trent 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT
Sequestration of carbon dioxide with hydrogen to useful products
Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan
2017-03-07
Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.
Our research objectives were to: (1) determine the persistence of an introduced surrogate (Cellulomonas sp NRC 2406) for a genetically engineered microorganism (GEM) in three streamlined habitats; sediments, growths of Cladophora (Chlorophyta), and leaf packs, (2) test ommunity a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... Genetically Engineered for Herbicide Tolerance AGENCY: Animal and Plant Health Inspection Service, USDA... herbicides in the imidazolinone family. The petition has been submitted in accordance with our regulations... event BPS-CV127-9, which has been genetically engineered for tolerance to herbicides in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... Assessment for Determination of Nonregulated Status of Soybean Genetically Engineered for Herbicide Tolerance... been genetically engineered for tolerance to broadleaf herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and the herbicide glufosinate. The petition has been submitted in accordance with...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... Genetically Engineered for Herbicide Tolerance AGENCY: Animal and Plant Health Inspection Service, USDA... broadleaf herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and the herbicides glyphosate...-44406-6, which has been genetically engineered for tolerance to broadleaf herbicides in the phenoxy...
Genetic Engineering of Animals for Medical Research: Students' Views.
ERIC Educational Resources Information Center
Hill, Ruaraidh; Stanisstreet, Martin; O'Sullivan, Helen; Boyes, Edward
1999-01-01
Reports on the results of a survey meant to ascertain the views of 16- to 18-year-old students (n=778) on using animals in medical research. Suggests that students have no greater objection to the use of genetically engineered animals over naturally bred animals in medical research. Contains 16 references. (Author/WRM)
David N. Wear; Ernest Dixon IV; Robert C. Abt; Navinder Singh
2015-01-01
Development of commercial Eucalyptus plantations has been limited in the United States because of the speciesâ sensitivity to freezing temperatures. Recently developed genetically engineered clones of a Eucalyptus hybrid, which confer freeze tolerance, could expand the range of commercial plantations. This study explores how...
[The application of genetic engineering to the petroleum biodesulfurization].
Tong, M Y; Fang, X C; Ma, T; Zhang, Q
2001-11-01
The developed course and reaction mechanisms of petroleum biodesulfurization were introduced. The recent development of genetic engineering technology, which used in desulfuration strain's construction, reconstruction and other fields, was summarized emphatically. Its current research situation internal and overseas and the developing prospect were simply analyzed, and our research designs were submitted.
'HoneySweet' plum - a valuable genetically engineered fruit-tree cultivar and germplasm resource
USDA-ARS?s Scientific Manuscript database
‘HoneySweet’ is a plum variety developed through genetic engineering to be highly resistant to plum pox potyvirus (PPV), the causal agent of sharka disease, that threatens stone-fruit industries world-wide and most specifically, in Europe. Field testing for over 15 years in Europe has demonstrated ...
Programmable cells: Interfacing natural and engineered gene networks
NASA Astrophysics Data System (ADS)
Kobayashi, Hideki; Kærn, Mads; Araki, Michihiro; Chung, Kristy; Gardner, Timothy S.; Cantor, Charles R.; Collins, James J.
2004-06-01
Novel cellular behaviors and characteristics can be obtained by coupling engineered gene networks to the cell's natural regulatory circuitry through appropriately designed input and output interfaces. Here, we demonstrate how an engineered genetic circuit can be used to construct cells that respond to biological signals in a predetermined and programmable fashion. We employ a modular design strategy to create Escherichia coli strains where a genetic toggle switch is interfaced with: (i) the SOS signaling pathway responding to DNA damage, and (ii) a transgenic quorum sensing signaling pathway from Vibrio fischeri. The genetic toggle switch endows these strains with binary response dynamics and an epigenetic inheritance that supports a persistent phenotypic alteration in response to transient signals. These features are exploited to engineer cells that form biofilms in response to DNA-damaging agents and cells that activate protein synthesis when the cell population reaches a critical density. Our work represents a step toward the development of "plug-and-play" genetic circuitry that can be used to create cells with programmable behaviors. heterologous gene expression | synthetic biology | Escherichia coli
Lee, Kang-Hoon; Lim, Debora; Chiu, Sophia; Greenhalgh, David; Cho, Kiho
2016-04-01
Laboratory strains of mice, both conventional and genetically engineered, have been introduced as critical components of a broad range of studies investigating normal and disease biology. Currently, the genetic identity of laboratory mice is primarily confirmed by surveying polymorphisms in selected sets of "conventional" genes and/or microsatellites in the absence of a single completely sequenced mouse genome. First, we examined variations in the genomic landscapes of transposable repetitive elements, named the TREome, in conventional and genetically engineered mouse strains using murine leukemia virus-type endogenous retroviruses (MLV-ERVs) as a probe. A survey of the genomes from 56 conventional strains revealed strain-specific TREome landscapes, and certain families (e.g., C57BL) of strains were discernible with defined patterns. Interestingly, the TREome landscapes of C3H/HeJ (toll-like receptor-4 [TLR4] mutant) inbred mice were different from its control C3H/HeOuJ (TLR4 wild-type) strain. In addition, a CD14 knock-out strain had a distinct TREome landscape compared to its control/backcross C57BL/6J strain. Second, an examination of superantigen (SAg, a "TREome gene") coding sequences of mouse mammary tumor virus-type ERVs in the genomes of the 46 conventional strains revealed a high diversity, suggesting a potential role of SAgs in strain-specific immune phenotypes. The findings from this study indicate that unexplored and intricate genomic variations exist in laboratory mouse strains, both conventional and genetically engineered. The TREome-based high-resolution genetics surveillance system for laboratory mice would contribute to efficient study design with quality control and accurate data interpretation. This genetics system can be easily adapted to other species ranging from plants to humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Kharchenko, Maria S; Teslya, Petr N; Babaeva, Maria N; Zakataeva, Natalia P
2018-05-01
Bacillus subtilis pheS was genetically modified to obtain a counter-selection marker with high selection efficiency in Bacillus amyloliquefaciens. The application of the new replication-thermosensitive integrative vector pNZTM1, containing this marker, pheS BsT255S/A309G , with a two-step replacement recombination procedure provides an effective tool for the genetic engineering of industrially important Bacillus species. Copyright © 2018. Published by Elsevier B.V.
Current biotechnological developments in Belgium.
Masschelein, C A; Callegari, J P; Laurent, M; Simon, J P; Taeymans, D
1989-01-01
In recent years, actions have been undertaken by the Belgian government to promote process innovation and technical diversification. Research programs are initiated and coordinated by the study committee for biotechnology setup within the Institute for Scientific Research in Industry and Agriculture (IRSIA). As a result of this action, the main areas where biotechnological processes are developed or commercially exploited include plant genetics, protein engineering, hybridoma technology, biopesticides, production by genetic engineering of vaccines and drugs, monoclonal detection of human and animal deseases, process reactors for aerobic and anaerobic wastewater treatment, and genetic modification of yeast and bacteria as a base for biomass and energy. Development research also includes new fermentation technologies principally based on immobilization of microorganisms, reactor design, and optimization of unit operations involved in downstream processing. Food, pharmaceutical, and chemical industries are involved in genetic engineering and biotechnology and each of these sectors is overviewed in this paper.
Genetic engineering of mesenchymal stem cells and its application in human disease therapy.
Hodgkinson, Conrad P; Gomez, José A; Mirotsou, Maria; Dzau, Victor J
2010-11-01
The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.
Cooper, Caitlin A; Maga, Elizabeth A; Murray, James D
2015-08-01
Genetic engineering, which was first developed in the 1980s, allows for specific additions to animals' genomes that are not possible through conventional breeding. Using genetic engineering to improve agricultural animals was first suggested when the technology was in the early stages of development by Palmiter et al. (Nature 300:611-615, 1982). One of the first agricultural applications identified was generating transgenic dairy animals that could produce altered or novel proteins in their milk. Human milk contains high levels of antimicrobial proteins that are found in low concentrations in the milk of ruminants, including the antimicrobial proteins lactoferrin and lysozyme. Lactoferrin and lysozyme are both part of the innate immune system and are secreted in tears, mucus, and throughout the gastrointestinal (GI) tract. Due to their antimicrobial properties and abundance in human milk, multiple lines of transgenic dairy animals that produce either human lactoferrin or human lysozyme have been developed. The focus of this review is to catalogue the different lines of genetically engineered dairy animals that produce either recombinant lactoferrin or lysozyme that have been generated over the years as well as compare the wealth of research that has been done on the in vitro and in vivo effects of the milk they produce. While recent advances including the development of CRISPRs and TALENs have removed many of the technical barriers to predictable and efficient genetic engineering in agricultural species, there are still many political and regulatory hurdles before genetic engineering can be used in agriculture. It is important to consider the substantial amount of work that has been done thus far on well established lines of genetically engineered animals evaluating both the animals themselves and the products they yield to identify the most effective path forward for future research and acceptance of this technology.
Foundations and Emerging Paradigms for Computing in Living Cells.
Ma, Kevin C; Perli, Samuel D; Lu, Timothy K
2016-02-27
Genetic circuits, composed of complex networks of interacting molecular machines, enable living systems to sense their dynamic environments, perform computation on the inputs, and formulate appropriate outputs. By rewiring and expanding these circuits with novel parts and modules, synthetic biologists have adapted living systems into vibrant substrates for engineering. Diverse paradigms have emerged for designing, modeling, constructing, and characterizing such artificial genetic systems. In this paper, we first provide an overview of recent advances in the development of genetic parts and highlight key engineering approaches. We then review the assembly of these parts into synthetic circuits from the perspectives of digital and analog logic, systems biology, and metabolic engineering, three areas of particular theoretical and practical interest. Finally, we discuss notable challenges that the field of synthetic biology still faces in achieving reliable and predictable forward-engineering of artificial biological circuits. Copyright © 2016. Published by Elsevier Ltd.
Directed evolution and synthetic biology applications to microbial systems.
Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T
2016-06-01
Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Engineering Delivery Vehicles for Genome Editing.
Nelson, Christopher E; Gersbach, Charles A
2016-06-07
The field of genome engineering has created new possibilities for gene therapy, including improved animal models of disease, engineered cell therapies, and in vivo gene repair. The most significant challenge for the clinical translation of genome engineering is the development of safe and effective delivery vehicles. A large body of work has applied genome engineering to genetic modification in vitro, and clinical trials have begun using cells modified by genome editing. Now, promising preclinical work is beginning to apply these tools in vivo. This article summarizes the development of genome engineering platforms, including meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas9, and their flexibility for precise genetic modifications. The prospects for the development of safe and effective viral and nonviral delivery vehicles for genome editing are reviewed, and promising advances in particular therapeutic applications are discussed.
Minami, Atsushi; Oguri, Hiroki; Watanabe, Kenji; Oikawa, Hideaki
2013-08-01
Diversity of natural polycyclic polyethers originated from very simple yet versatile strategy consisting of epoxidation of linear polyene followed by epoxide opening cascade. To understand two-step enzymatic transformations at molecular basis, a flavin containing monooxygenase (EPX) Lsd18 and an epoxide hydrolase (EH) Lsd19 were selected as model enzymes for extensive investigation on substrate specificity, catalytic mechanism, cofactor requirement and crystal structure. This pioneering study on prototypical lasalocid EPX and EH provides insight into detailed mechanism of ionophore polyether assembly machinery and clarified remaining issues for polyether biosynthesis. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kompaneets, V. V.; Vasilieva, I. A.
2017-08-01
We have quantitatively analyzed the vibronic parameters of two cross-conjugated δ-dimethylaminoketones. The presence of the -N(CH3)2, C=O, and -NO2 groups in the benzene ring has been shown to affect the manifestation of the vibronic parameters of characteristic bands that describe the state (vibrations, types of deformation upon excitation) of polyene systems with aromatic rings. Data on the influence of the nature of the substituent on the parameters of intra- and intermolecular interactions in the examined compounds have been presented.
Li, Junqi; Grillo, Anthony S; Burke, Martin D
2015-08-18
The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules using a linear-to-cyclized strategy, in which Csp(3) boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform has been automated. The synthesis of 14 distinct classes of small molecules, including pharmaceuticals, materials components, and polycyclic natural products, has been achieved using this new synthesis machine. It is anticipated that the scope of small molecules accessible by this platform will continue to expand via further developments in building block synthesis, Csp(3) cross-coupling methodologies, and cyclization strategies. Achieving these goals will enable the more generalized synthesis of small molecules and thereby help shift the rate-limiting step in small molecule science from synthesis to function.
Kumar, Pankaj; Srivastava, Dinesh Kumar
2016-07-01
With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.
Genetic engineering of a mouse: Dr. Frank Ruddle and somatic cell genetics.
Jones, Dennis
2011-06-01
Genetic engineering is the process of modifying an organism's genetic composition by adding foreign genes to produce desired traits or evaluate function. Dr. Jon W. Gordon and Sterling Professor Emeritus at Yale Dr. Frank H. Ruddle were pioneers in mammalian gene transfer research. Their research resulted in production of the first transgenic animals, which contained foreign DNA that was passed on to offspring. Transgenic mice have revolutionized biology, medicine, and biotechnology in the 21st century. In brief, this review revisits their creation of transgenic mice and discusses a few evolving applications of their transgenic technology used in biomedical research.
USDA-ARS?s Scientific Manuscript database
Surrogate species have a long history of use in research and regulatory settings to understand the potentially harmful effects of toxic substances including pesticides. More recently, surrogate species have been used to evaluate the potential effects of proteins contained in genetically engineered ...
ERIC Educational Resources Information Center
Djerassi, Carl
1972-01-01
Manipulation of genes in human beings on a large scale is not possible under present conditions because it lacks economic potential and other attractions for industry. However, preventive'' genetic engineering may be a field for vast research in the future and will perhaps be approved by governments, parishes, people and industry. (PS)
ERIC Educational Resources Information Center
Leach, C. K.; And Others
1997-01-01
Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant... into the environment) of organisms and products altered or produced through genetic engineering that... CP4 EPSPS expression in male reproductive tissues (i.e., pollen). Enhanced CP4 EPSPS expression in the...
Finding Patterns of Emergence in Science and Technology
2012-09-24
formal evaluation scheduled – Case Studies, Eight Examples: Tissue Engineering, Cold Fusion, RF Metamaterials, DNA Microarrays, Genetic Algorithms, RNAi...emerging capabilities Case Studies, Eight Examples: • Tissue Engineering, Cold Fusion, RF Metamaterials, DNA Microarrays, Genetic Algorithms...Evidence Quality (i.e., the rubric ) and deliver comprehensible evidential support for nomination • Demonstrate proof-of-concept nomination for Chinese
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... for Tolerance to the Herbicide Glyphosate AGENCY: Animal and Plant Health Inspection Service, USDA... engineered for tolerance to the herbicide glyphosate, designated as H7-1, is no longer considered a regulated... as event H7-1, which has been genetically engineered for tolerance to the herbicide glyphosate. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... genetically engineered to produce stearidonic acid, an omega-3 fatty acid not found in conventional soybean... genetically engineered to produce stearidonic acid, an omega-3 fatty acid not found in conventional soybean... parts 1500-1508), (3) USDA regulations implementing NEPA (7 CFR part 1b), and (4) APHIS' NEPA...
Genetic engineering of syringyl-enriched lignin in plants
Chiang, Vincent Lee; Li, Laigeng
2004-11-02
The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.
USDA-ARS?s Scientific Manuscript database
Two decades have passed since the commercialization in the U. S. of crops with genetically engineered (GE) traits. Today more than 80% of corn, soybean, canola, sugar beet and cotton acreage in the United States is planted to transgenic cultivars, but concerns exist regarding how best to manage the ...
USDA-ARS?s Scientific Manuscript database
‘HoneySweet’ plum was released by the U.S. Department of Agriculture, Agricultural Research Service, to provide U.S. growers and P. domestica plum breeders with a high fruit quality plum cultivar resistant to Plum pox virus (PPV). ‘HoneySweet’ was developed through genetic engineering utilizing the...
Treating Cancer with Genetically Engineered T Cells
Park, Tristen S.; Rosenberg, Steven A.; Morgan, Richard A.
2011-01-01
Administration of ex-vivo cultured, naturally occurring tumor-infiltrating lymphocytes (TILs) have been shown to mediate durable regression of melanoma tumors. However, the generation of TIL is not possible in all patients and there has been limited success in generating TIL in other cancers. Advances in genetic engineering have overcome these limitations by introducing tumor-antigen-targeting receptors into human T lymphocytes. Physicians can now genetically engineer lymphocytes to express highly active T-cell receptors (TCRs) or chimeric antigen receptors (CARs) targeting a variety of tumor antigens expressed in cancer patients. In this review we discuss the development of TCR and CAR gene transfer technology and the expansion of these therapies into different cancers with the recent demonstration of the clinical efficacy of these treatments. PMID:21663987
Genetic engineering of somatic cells to study and improve cardiac function.
Kirkton, Robert D; Bursac, Nenad
2012-11-01
To demonstrate the utility of genetically engineered excitable cells for studies of basic electrophysiology and cardiac cell therapy. 'Zig-zag' networks of neonatal rat ventricular myocytes (NRVMs) were micropatterned onto thin elastomeric films to mimic the slow action potential (AP) conduction found in fibrotic myocardium. Addition of genetically engineered excitable human embryonic kidney cells (HEK-293 cells) ('Ex-293' cells stably expressing Kir2.1, Na(v)1.5, and Cx43 channels) increased both cardiac conduction velocity by 370% and twitch force amplitude by 64%. Furthermore, we stably expressed mutant Na(v)1.5 [A1924T (fast sodium channel mutant (substitution of alanine by threonine at amino acid 1924)] channels with hyperpolarized steady-state activation and showed that, despite a 71.6% reduction in peak I(Na), these cells propagated APs at the same velocity as the wild-type Na(v)1.5-expressing Ex-293 cells. Stable expression of Ca(v)3.3 (T-type voltage-gated calcium) channels in Ex-293 cells (to generate an 'ExCa-293' line) significantly increased their AP duration and reduced repolarization gradients in cocultures of these cells and NRVMs. Additional expression of an optogenetic construct [ChIEF (light-gated Channelrhodopsin mutant)]enabled light-based control of AP firing in ExCa-293 cells. We show that, despite being non-contractile, genetically engineered excitable cells can significantly improve both electrical and mechanical function of engineered cardiac tissues in vitro. We further demonstrate the utility of engineered cells for tissue-level studies of basic electrophysiology and cardiac channelopathies. In the future, this novel platform could be utilized in the high-throughput design of new genetically encoded indicators of cell electrical function, validation, and improvement of computer models of AP conduction, and development of novel engineered somatic cell therapies for the treatment of cardiac infarction and arrhythmias.
Genetic Engineering and the Amelioration of Genetic Defect
ERIC Educational Resources Information Center
Lederberg, Joshua
1970-01-01
Discusses the claims for a brave new world of genetic manipulation" and concludes that if we could agree upon applying genetic (or any other effective) remedies to global problems we probably would need no rescourse to them. Suggests that effective methods of preventing genetic disease are prevention of mutations and detection and…
Environmental risk assessment of a genetically-engineered microorganism: Erwinia carotovora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orvos, D.R.
1989-01-01
Environmental use of genetically-engineered microorganisms (GEMs) has raised concerns over potential ecological impact. Development of microcosm systems useful in preliminary testing for risk assessment will provide useful information for predicting potential structural, functional, and genetic effects of GEM release. This study was executed to develop techniques that may be useful in risk assessment and microbial ecology, to ascertain which parameters are useful in determining risk and to predict risk from releasing an engineered strain of Erwinia carotovora. A terrestrial microcosm system for use in GEM risk assessment studies was developed for use in assessing alterations of microbial structure and functionmore » that may be caused by introducing the engineered strain of E. carotovora. This strain is being developed for use as a biological control agent for plant soft rot. Parameters that were monitored included survival and intraspecific competition of E. carotovora, structural effects upon both total bacterial populations and numbers of selected bacterial genera, effects upon activities of dehydrogenase and alkaline phosphatase, effects upon soil nutrients, and potential for gene transfer into or out of the engineered strain.« less
A Brighter Side of the New Genetics
ERIC Educational Resources Information Center
Glowienka, Emerine
1975-01-01
Discusses the positive side of genetic technology advances and the implications for human beings, both from a sociological viewpoint and the point of view of a social philosopher. Genetic engineering, technology and counseling are discussed. (BR)
A Simple Interactive Introduction to Teaching Genetic Engineering
ERIC Educational Resources Information Center
Child, Paula
2013-01-01
In the UK, at key stage 4, students aged 14-15 studying GCSE Core Science or Unit 1 of the GCSE Biology course are required to be able to describe the process of genetic engineering to produce bacteria that can produce insulin. The simple interactive introduction described in this article allows students to consider the problem, devise a model and…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... an Extension of a Determination of Nonregulated Status of Cotton Genetically Engineered for Herbicide... to extend to cotton event T303-3, which has been genetically engineered to be tolerant to the... of TwinLink TM cotton (event T304-40). We are making available for public comment our finding of no...
[Vaccine application of recombinant herpesviruses].
Yokoyama, N; Xuan, X; Mikami, T
2000-04-01
Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses.
De-Problematizing 'GMOs': Suggestions for Communicating about Genetic Engineering.
Blancke, Stefaan; Grunewald, Wim; De Jaeger, Geert
2017-03-01
The public debates concerning genetic engineering (GE) involve many non-scientific issues. The ensuing complexity is one reason why biotechnologists are reluctant to become involved. By sharing our personal experiences in science communication and suggesting ways to de-problematize GE, we aim to inspire our colleagues to engage with the public. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali
2011-11-11
Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.
Yan, Qiang; Fong, Stephen S.
2017-01-01
Metabolic diversity in microorganisms can provide the basis for creating novel biochemical products. However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either heterologously express novel genes or directly utilize non-model organisms. Genetic manipulation of non-model microorganisms is still challenging due to organism-specific nuances that hinder universal molecular genetic tools and translatable knowledge of intracellular biochemical pathways and regulatory mechanisms. However, in the past several years, unprecedented progress has been made in synthetic biology, molecular genetics tools development, applications of omics data techniques, and computational tools that can aid in developing non-model hosts in a systematic manner. In this review, we focus on concerns and approaches related to working with non-model microorganisms including developing molecular genetics tools such as shuttle vectors, selectable markers, and expression systems. In addition, we will discuss: (1) current techniques in controlling gene expression (transcriptional/translational level), (2) advances in site-specific genome engineering tools [homologous recombination (HR) and clustered regularly interspaced short palindromic repeats (CRISPR)], and (3) advances in genome-scale metabolic models (GSMMs) in guiding design of non-model species. Application of these principles to metabolic engineering strategies for consolidated bioprocessing (CBP) will be discussed along with some brief comments on foreseeable future prospects. PMID:29123506
Safe genetically engineered plants
NASA Astrophysics Data System (ADS)
Rosellini, D.; Veronesi, F.
2007-10-01
The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.
Jiang, Qikun; Liu, Wanjun; Li, Xiaoting; Zhang, Tianhong; Wang, Yongjun; Liu, Xiaohong
2016-01-01
Supercritical fluid chromatography with tandem mass spectrometry was used to comprehensively profile polyene phosphatidyl choline (PPC) extracted from soybean. We achieved an efficient chromatographic analysis using a BEH-2EP column (3 × 100 mm(2) , 1.7 μm) with a mobile phase consisting of CO2 and a cosolvent in gradient combination at a flow rate of 1.0 mL/min. The cosolvent consisted of methanol, acetonitrile, and water (containing 10 mM ammonium acetate and 0.2% formic acid). The total single-run time was 7 min. We used this method to accurately detect ten different phospholipids (PLs) during extraction. The limits of quantification for phosphatidyl choline, lyso-phosphatidylcholine (LPC), phosphatidic acid (PA), sphingomyelin, phosphatidyl glycerol, phosphatidyl inositol (PI), cholesterol, cardiolipin, phosphatidyl serine, and phosphatidyl ethanolamine (PE) were 20.6, 19.52, 1.21, 2.38, 0.50, 2.28, 54.3, 0.60, 0.65, and 4.85 ng/mL, respectively. However, adopting the high-performance liquid chromatography with evaporative light scattering detection method issued by the China Food and Drug Administration, only PA, LPC, PE, PI, and PPC could be analyzed accurately, and the limits of quantification were 33.89, 60.5, 30.3, 10.9, and 61.79 μg/mL, respectively. The total single-run time was at the least 20 min. Consequently, the supercritical fluid chromatography with tandem mass spectrometry method was more suitable for the analysis of related PLs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glover, William J.; Mori, Toshifumi; Schuurman, Michael S.
The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1 1B u (ππ*) state and non-adiabatically coupled dark 2 1A g state of BD. Importantly, AIMS allows formore » on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 1 1B u state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1B u or the dark 2 1A g state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.« less
NASA Astrophysics Data System (ADS)
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; Glover, William J.; Mori, Toshifumi; Schultz, Thomas; Schuurman, Michael S.; Martínez, Todd J.; Stolow, Albert
2018-04-01
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1Bu (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us to report the direct observation of the famously elusive S1(21Ag) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 11Bu and 21Ag states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S2(11Bu) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1Bu surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. In Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.
Weesepoel, Yannick; Vincken, Jean-Paul; Pop, Raluca Maria; Liu, Kun; Gruppen, Harry
2013-07-01
The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono- and diesters. For rapid fingerprinting of these esters, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono- and diester palmitate standards in MALDI-TOF/TOF-MS showed that sodium adduct parent masses [M + Na](+) gave much simpler MS(2) spectra than radical / protonated [M](+●) / [M + H](+) parents. [M + Na](+) fragments yielded diagnostic polyene-specific eliminations and fatty acid neutral losses, whereas [M](+●) / [M + H](+) fragmentation resulted in a multitude of non-diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M + Na](+) ionization by addition of sodium acetate, and best signal-to-noise ratios were obtained in the 0.1 to 1.0 mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI-TOF/TOF-MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono- and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all-trans esterified esters found in LC were identified with MALDI-TOF/TOF-MS, with the exception of two minor monoesters. Copyright © 2013 John Wiley & Sons, Ltd.
Glover, William J; Mori, Toshifumi; Schuurman, Michael S; Boguslavskiy, Andrey E; Schalk, Oliver; Stolow, Albert; Martínez, Todd J
2018-04-28
The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1 1 B u (ππ*) state and non-adiabatically coupled dark 2 1 A g state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 1 1 B u state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1 B u or the dark 2 1 A g state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1B u (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans’ correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us tomore » report the direct observation of the famously elusive S 1(2 1A g) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 1 1B u and 2 1A g states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S 2(1 1B u) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1B u surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. Lastly, in Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.« less
Mechanism of acetaldehyde-induced deactivation of microbial lipases
2011-01-01
Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of the enzymes from buffer at pH 6.0 can provide an easy and effective way to stabilize lipases toward inactivation by acetaldehyde. PMID:21342514
Glover, William J.; Mori, Toshifumi; Schuurman, Michael S.; ...
2018-04-28
The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1 1B u (ππ*) state and non-adiabatically coupled dark 2 1A g state of BD. Importantly, AIMS allows formore » on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 1 1B u state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1B u or the dark 2 1A g state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.« less
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; ...
2018-04-27
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1B u (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans’ correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us tomore » report the direct observation of the famously elusive S 1(2 1A g) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 1 1B u and 2 1A g states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S 2(1 1B u) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1B u surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. Lastly, in Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.« less
Ma, Yong-Jian; Zhang, Hou-De; Wu, Chuang-Hong; Zhu, Guo-Liang; Ji, Yong-Qiang; Huang, Jia-Liang; Du, Li-Tao; Cao, Ping; Zang, De-Yue; Ji, Kun-Mei
2016-08-10
Hemolytic anemia is a major side effect of ribavirin antiviral treatment for chronic hepatitis C. Ribavirin dose reduction may compromise the antiviral response and erythropoietin can take several weeks to alleviate anemia. The purpose of the present study was to screen potentially protective drugs against ribavirin-induced hemolytic anemia in a rabbit model, using our modified CO breath test for measuring erythrocyte (RBC) lifespan, the gold standard diagnostic index of hemolysis. Fifteen rabbits were divided randomly into five groups (N = 3/group): one vehicle control group, one ribavirin (only)-treated (RBV) group, and three groups initially treated with ribavirin only, followed by a combination of ribavirin with prednisone (RBV + Pred), polyene phosphatidyl choline (RBV + PPC), or reduced glutathione (RBV + GSH). RBC lifespan was calculated from accumulated CO measured in a closed rebreath apparatus, blood volume measured by the Evan's blue dye (EBD) dilution test, and hemoglobin concentration data. The RBC lifespan was normal in the vehicle control group (44-60 d), but reduced significantly in all of the ribavirin-treated groups before the addition of screened drugs (17-35 d). RBC lifespan rebounded significantly with the addition of glutathione, but not with the addition of prednisone or polyene phosphatidyl choline. A similar overall drug effect pattern was seen in the hemoglobin concentration and reticulocyte count data. In conclusion, the results of this pilot study indicate that reduced glutathione can attenuate ribavirin-induced hemolytic anemia, and that the RBC lifespan measured with our modified rapid CO breath test is feasible and reliable for use in animal studies.
Progress in Metabolic Engineering of Saccharomyces cerevisiae
Nevoigt, Elke
2008-01-01
Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282
Genetic Engineering: A Possible Strategy for Protein-Energy Malnutrition Regulation.
Guleria, Praveen; Kumar, Vineet; Guleria, Shiwani
2017-12-01
Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.
Cell transplantation and genetic engineering: new approaches to cardiac pathology.
Leor, Jonathan; Barbash, Israel M
2003-10-01
The remarkable progress in experimental cell transplantation, stem cell biology and genetic engineering promise new therapy and hopefully a cure for patients with end stage heart failure. Engineering of viable cardiac grafts with the potential to grow and remodel will provide new solutions to the serious problems of heart donor shortage. The ability to replace the injured heart muscle will have a dramatic influence on medicine, especially with the increasing number of patients with heart failure. This innovative research, now tested in human patients, still faces significant problems that need to be solved before it can be considered as an established therapeutic tool. The present review will focus on selected topics related to the promise and obstacles associated with cell transplantation, with and without genetic manipulation, for myocardial repair.
Genetically engineered mouse models for epithelial ovarian cancer: are we there yet?
Howell, Viive M
2014-03-01
The development of preclinical spontaneous genetically engineered mouse models (GEMMs) requires an understanding of the genetic basis of the human disease. Such robust models have proven invaluable for increasing understanding of human malignancies as well as identifying new biomarkers and testing new therapies for these diseases. While GEMMs have been reported for ovarian cancer, the majority have proven disappointing overall in their recapitulation of paired genetic and histological features especially for serous ovarian epithelial cancer. This review describes GEMMs for ovarian cancer, in particular, high grade serous ovarian cancer and assesses these in light of recent changes in our understanding of the human malignancy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Recent Advances in Algal Genetic Tool Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Dahlin, Lukas; T. Guarnieri, Michael
The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less
Recent Advances in Algal Genetic Tool Development
R. Dahlin, Lukas; T. Guarnieri, Michael
2016-06-24
The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less
Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom
2016-01-01
Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386
Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom
2016-06-14
Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.
Kim, Won-Geun; Song, Hyerin; Kim, Chuntae; Moon, Jong-Sik; Kim, Kyujung; Lee, Seung-Wuk; Oh, Jin-Woo
2016-11-15
Here, we describe a highly sensitive and selective surface plasmon resonance sensor system by utilizing self-assembly of genetically engineered M13 bacteriophage. About 2700 copies of genetically expressed peptide copies give superior selectivity and sensitivity to M13 phage-based SPR sensor. Furthermore, the sensitivity of the M13 phage-based SPR sensor was enhanced due to the aligning of receptor matrix in specific direction. Incorporation of specific binding peptide (His Pro Gln: HPQ) gives M13 bacteriophage high selectivity for the streptavidin. Our M13 phage-based SPR sensor takes advantage of simplicity of self-assembly compared with relatively complex photolithography techniques or chemical conjugations. Additionally, designed structure which is composed of functionalized M13 bacteriophage can simultaneously improve the sensitivity and selectivity of SPR sensor evidently. By taking advantages of the genetic engineering and self-assembly, we propose the simple method for fabricating novel M13 phage-based SPR sensor system which has a high sensitivity and high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Biotechnology: History shapes German opinion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, P.
Some 80% of the Germany people harbor a deep mistrust of genetic engineering - a fact that the author blames in part on the crimes that took place during the Nazi era. In Germany, words such as genetic selection' echo the rhetoric of the Nazi era. The connection to this dark period becomes evident when critics use the term molecular Auschwitz' to describe gene technology. Nazi crimes nourished a broad and emotional prejudice against scientists and industrialists on the part of the Germany people. Nevertheless, Germany adopted regulatory legislation, and the first field test of genetically engineered plants took placemore » in 1990. While Germany hesitates, other European nations are moving ahead to evaluate proposals for the deliberate release of genetically engineered organisms. Before the debate in Germany can be moved from emotional to rational grounds, scientists, who have preferred the laboratory to the public forum, must become actively involved. Politicians must stimulate such a debate and defend the results.« less
A versatile modular vector system for rapid combinatorial mammalian genetics.
Albers, Joachim; Danzer, Claudia; Rechsteiner, Markus; Lehmann, Holger; Brandt, Laura P; Hejhal, Tomas; Catalano, Antonella; Busenhart, Philipp; Gonçalves, Ana Filipa; Brandt, Simone; Bode, Peter K; Bode-Lesniewska, Beata; Wild, Peter J; Frew, Ian J
2015-04-01
Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases.
Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland
2014-01-01
The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.
Automated multiplex genome-scale engineering in yeast
Si, Tong; Chao, Ran; Min, Yuhao; Wu, Yuying; Ren, Wen; Zhao, Huimin
2017-01-01
Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast. PMID:28469255
Generation of genetically-engineered animals using engineered endonucleases.
Lee, Jong Geol; Sung, Young Hoon; Baek, In-Jeoung
2018-05-17
The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.
Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.
Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara
2015-10-01
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Bution, Murillo L; Molina, Gustavo; Abrahão, Meissa R E; Pastore, Gláucia M
2015-01-01
Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aromas in industry. Terpenes belong to the largest class of natural compounds, are produced by all living organisms and play a fundamental role in human nutrition, cosmetics and medicine. Recent advances in systems biology and synthetic biology are allowing us to perform metabolic engineering at the whole-cell level, thus enabling the optimal design of microorganisms for the efficient production of drugs, cosmetic and food additives. This review describes the recent advances made in the genetic and metabolic engineering of the terpenes pathway with a particular focus on systems biotechnology.
Site-Specific Genome Engineering in Human Pluripotent Stem Cells.
Merkert, Sylvia; Martin, Ulrich
2016-06-24
The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.
Hwang, In Young; Koh, Elvin; Wong, Adison; March, John C.; Bentley, William E.; Lee, Yung Seng; Chang, Matthew Wook
2017-01-01
Bacteria can be genetically engineered to kill specific pathogens or inhibit their virulence. We previously developed a synthetic genetic system that allows a laboratory strain of Escherichia coli to sense and kill Pseudomonas aeruginosa in vitro. Here, we generate a modified version of the system, including a gene encoding an anti-biofilm enzyme, and use the probiotic strain Escherichia coli Nissle 1917 as host. The engineered probiotic shows in vivo prophylactic and therapeutic activity against P. aeruginosa during gut infection in two animal models (Caenorhabditis elegans and mice). These findings support the further development of engineered microorganisms with potential prophylactic and therapeutic activities against gut infections. PMID:28398304
Engineering microbes for efficient production of chemicals
Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers
2015-04-28
This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.
State-of-the-Art Opportunities. Hispanic Special Report: Careers in Engineering.
ERIC Educational Resources Information Center
Heller, Michele
1992-01-01
Although the demand for electrical, defense, and computer science engineers has dropped sharply, opportunities exist for Hispanics in computer communication and integration, miniaturization of electronic components, environmental, and genetic and biomedical engineering. Engineers should diversify their skills to adapt to the changing field. (KS)
Wisniewski, Jean-Pierre; Frangne, Nathalie; Massonneau, Agnès; Dumas, Christian
2002-11-01
Maize is a major crop plant with essential agronomical interests and a model plant for genetic studies. With the development of plant genetic engineering technology, many transgenic strains of this monocotyledonous plant have been produced over the past decade. In particular, field-cultivated insect-resistant Bt-maize hybrids are at the centre of an intense debate between scientists and organizations recalcitrant to genetically modified organisms (GMOs). This debate, which addresses both safety and ethical aspects, has raised questions about the impact of genetically modified (GM) crops on the biodiversity of traditional landraces and on the environment. Here, we review some of the key points of maize genetic history as well as the methods used to stably transform this cereal. We describe the genetically engineered Bt-maizes available for field cultivation and we investigate the controversial reports on their impacts on non-target insects such as the monarch butterfly and on the flow of transgenes into Mexican maize landraces.
2006 Joint Chemical Biological, Radiological and Nuclear (CBRN) Conference and Exhibition
2006-06-28
methods that might counter or cancel our current military advantages • Defeat terrorist networks • Defend homeland in depth • Prevent acquisition or...Systems approach to the detection of chemical and biological agents with a focus on genetically engineered organisms ( GMOs )/genetically engineered...and possessing breakthrough technological capabilities intended to supplant U.S. advantages in particular operational domains. (capsize our power
American chestnut: A test case for genetic engineering?
Leila Pinchot
2014-01-01
The thought of genetically engineered (GE) trees might conjure images of mutant trees with unnatural and invasive tendencies, but there is much more to the story. GE trees are a new reality that, like it or not, will probably be part of the future of forestry. The basic inclination of most Forest Guild stewards is to reject GE trees as violating our principle to...
Smart, Injury-Triggered Therapy for Ocular Trauma
2015-10-01
attachment surgery. We genetically engineered “protease activity sensor” (PAS) as chimeric transmembrane protein that can respond to increase in...results or key outcomes We genetically engineered “protease activity sensor” (PAS) as chimeric transmembrane protein that can respond to increase in...6 A B Fig. 1. The effects of ionomycin on the shedding of chimeric fractalkine constructs from HEK293 cells in vitro. (A
J. Chou Photo of Katherine J. Chou Katherine Chou Microbial Physiology & Engineering , Clostridium thermocellum, through metabolic engineering. "Biological Electron Transfer and Catalysis principles governing substrate utilization. "Advance Biofuels from Cellulose via Genetic Engineering of
Collagen mimetic peptide engineered M13 bacteriophage for collagen targeting and imaging in cancer.
Jin, Hyo-Eon; Farr, Rebecca; Lee, Seung-Wuk
2014-11-01
Collagens are over-expressed in various human cancers and subsequently degraded and denatured by proteolytic enzymes, thus making them a target for diagnostics and therapeutics. Genetically engineered bacteriophage (phage) is a promising candidate for the development of imaging or therapeutic materials for cancer collagen targeting due to its promising structural features. We genetically engineered M13 phages with two functional peptides, collagen mimetic peptide and streptavidin binding peptide, on their minor and major coat proteins, respectively. The resulting engineered phage functions as a therapeutic or imaging material to target degraded and denatured collagens in cancerous tissues. We demonstrated that the engineered phages are able to target and label abnormal collagens expressed on A549 human lung adenocarcinoma cells after the conjugation with streptavidin-linked fluorescent agents. Our engineered collagen binding phage could be a useful platform for abnormal collagen imaging and drug delivery in various collagen-related diseases. Published by Elsevier Ltd.
Hernández-Terán, Alejandra; Wegier, Ana; Benítez, Mariana; Lira, Rafael; Escalante, Ana E.
2017-01-01
Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest consequences of genetic modification beyond the target trait(s). PMID:29259610
Yin, Yufang; Wang, Qian; Xiao, Li; Wang, Fengjiao; Song, Zhuo; Zhou, Cuilan; Liu, Xuan; Xing, Chungen; He, Nongyue; Li, Kai; Feng, Yan; Zhang, Jia
2018-03-01
In the past decades, significant progresses have been achieved in genetic engineering of nucleases. Among the genetically engineered nucleases, zinc finger nucleases, transcription activator-like (TAL) effector nucleases, and CRIPSPR/Cas9 system form a new field of gene editing. The gene editing efficiency or targeting effect and the off-target effect are the two major determinant factors in evaluating the usefulness of a new enzyme. Engineering strategies in improving these gene editing enzymes, particularly in minimizing their off-target effects, are the focus of this paper. Examples of using these genetically engineered enzymes in genome modification are discussed in order to better understand the requirement of engineering efforts in obtaining more powerful and useful gene editing enzymes. In addition, the identification of naturally existed anti-Cas proteins has been employed in minimizing off-target effects. Considering the future application in human gene therapy, optimization of these well recognized gene editing enzymes and exploration of more novel enzymes are both required. Before people find an ideal gene editing system having virtually no off-target effect, technologies used to screen and identify off-target effects are of importance in clinical trials employing gene therapy.
The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors.
Boudry, Maarten; Pigliucci, Massimo
2013-12-01
The scientific study of living organisms is permeated by machine and design metaphors. Genes are thought of as the "blueprint" of an organism, organisms are "reverse engineered" to discover their functionality, and living cells are compared to biochemical factories, complete with assembly lines, transport systems, messenger circuits, etc. Although the notion of design is indispensable to think about adaptations, and engineering analogies have considerable heuristic value (e.g., optimality assumptions), we argue they are limited in several important respects. In particular, the analogy with human-made machines falters when we move down to the level of molecular biology and genetics. Living organisms are far more messy and less transparent than human-made machines. Notoriously, evolution is an opportunistic tinkerer, blindly stumbling on "designs" that no sensible engineer would come up with. Despite impressive technological innovation, the prospect of artificially designing new life forms from scratch has proven more difficult than the superficial analogy with "programming" the right "software" would suggest. The idea of applying straightforward engineering approaches to living systems and their genomes-isolating functional components, designing new parts from scratch, recombining and assembling them into novel life forms-pushes the analogy with human artifacts beyond its limits. In the absence of a one-to-one correspondence between genotype and phenotype, there is no straightforward way to implement novel biological functions and design new life forms. Both the developmental complexity of gene expression and the multifarious interactions of genes and environments are serious obstacles for "engineering" a particular phenotype. The problem of reverse-engineering a desired phenotype to its genetic "instructions" is probably intractable for any but the most simple phenotypes. Recent developments in the field of bio-engineering and synthetic biology reflect these limitations. Instead of genetically engineering a desired trait from scratch, as the machine/engineering metaphor promises, researchers are making greater strides by co-opting natural selection to "search" for a suitable genotype, or by borrowing and recombining genetic material from extant life forms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Experiential Engineering through iGEM--An Undergraduate Summer Competition in Synthetic Biology
ERIC Educational Resources Information Center
Mitchell, Rudolph; Dori, Yehudit Judy; Kuldell, Natalie H.
2011-01-01
Unlike students in other engineering disciplines, undergraduates in biological engineering typically have limited opportunity to develop design competencies, and even fewer chances to implement their designed projects. The international Genetically Engineered Machines (iGEM) competition is a student Synthetic Biology competition that, in 2009,…
Brown, J Lynne; Ping, Yanchao
2003-02-01
To determine whether perceived benefit alters personal risk perception associated with eating genetically engineered soybeans, consumer desire for labeling, preferred phrase on a label symbol, and desired information in an educational brochure. Comparison of responses of two consumer groups who completed one of two survey versions. One hundred fifty supermarket shoppers, age 21 years and older, for each survey or n=300 total. Focus groups and a pilot test were used to develop the final survey in which consumers read a description of a genetically engineered soybean with either no obvious consumer benefit or an obvious consumer benefit and then completed a set of attitude questions and evaluated a voluntary label design and educational brochure content. Main outcome measures were mean opinion scores of personal risk and desire for labeling and ranking of desired label phrase and brochure topics. Chi;(2) and t Tests were used. Consumers reading about the soybean with obvious consumer benefit were significantly more comfortable eating these than those reading about the soybean with no obvious consumer benefit (2.9+/-1.1 vs 3.4+/-1.0, respectively; P=.001). However, the groups did not differ in desire for labeling of foods made with these soybeans or preferred brochure content. They did differ significantly in preferred phrase on the symbol (P=.05). Dietitians can use descriptions of genetic engineering applications such as those in this study to help consumers assess these applications. Dietitians can play a critical role in explaining labeling terms and designing educational materials when the FDA finalizes voluntary labeling regulations for genetically engineered foods.
Microfluidics and microbial engineering.
Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming
2016-02-07
The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.
Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak
2013-01-08
Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.
Gene targeting and cloning in pigs using fetal liver derived cells.
Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph
2011-12-01
Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.
Nature of Science and Decision-Making
NASA Astrophysics Data System (ADS)
Khishfe, Rola
2012-01-01
The study investigated the relationship of nature of science (NOS) instruction and students' decision-making (DM) related to a controversial socioscientific issue about genetically modified food. Participants were ninth-grade students in four intact sections (two regulars and two honors) in a public high school in the Midwest. All four groups were taught by their regular science teacher. The treatment comprised a four-week unit about genetic engineering. Two groups (one regular and one honors), referred to as comparison groups, received instruction in genetic engineering and how to formulate arguments and make decisions related to this controversial issue. The other two groups (one regular and one honors), referred to as treatment groups, received instruction in genetic engineering and how to apply NOS aspects as they formulate arguments and make decisions in relation to this controversial issue. Chi-square analyses showed significant differences between the comparison and the treatment groups in relation to the understandings of four NOS aspects. There were no differences in their decisions, but there were differences in their DM factors in the context of the controversial socioscientific issue about genetically modified food. These results are discussed in light of the relationship between students' understandings of NOS and their DM related to controversial socioscientific issues.
Genetic Design Automation: engineering fantasy or scientific renewal?
Lux, Matthew W.; Bramlett, Brian W.; Ball, David A.; Peccoud, Jean
2013-01-01
Synthetic biology aims to make genetic systems more amenable to engineering, which has naturally led to the development of Computer-Aided Design (CAD) tools. Experimentalists still primarily rely on project-specific ad-hoc workflows instead of domain-specific tools, suggesting that CAD tools are lagging behind the front line of the field. Here, we discuss the scientific hurdles that have limited the productivity gains anticipated from existing tools. We argue that the real value of efforts to develop CAD tools is the formalization of genetic design rules that determine the complex relationships between genotype and phenotype. PMID:22001068
Enhanced energy transport in genetically engineered excitonic networks.
Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F; Lloyd, Seth; Belcher, Angela M
2016-02-01
One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.
Genetic engineering of microbial pesticides
Bruce C. Carlton
1985-01-01
Recent advances in genetics and molecular biology make possible the cloning and genetic manipulation of genes for insecticidal activities from natural insect pathogens. Using recombinant DNA methods and site-directed mutagenesis of specific gene regions, production of new and improved biorationals should be possible.
Awareness of Societal Issues among High School Biology Teachers Teaching Genetics
ERIC Educational Resources Information Center
Lazarowitz, Reuven; Bloch, Ilit
2005-01-01
The purpose of this study was to investigate how aware high school biology teachers are of societal issues (values, moral, ethic, and legal issues) while teaching genetics, genetics engineering, molecular genetics, human heredity, and evolution. The study includes a short historical review of World War II atrocities during the Holocaust when…
Escherichia Coli--Key to Modern Genetics.
ERIC Educational Resources Information Center
Bregegere, Francois
1982-01-01
Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…
Oxidized forms of polyene antibiotic amphotericin B
NASA Astrophysics Data System (ADS)
Gagoś, Mariusz; Czernel, Grzegorz
2014-04-01
Amphotericin B (AmB) is one of the most important drug for the medical treatment of internal fungal infections. In this work we study electronic absorption and fluorescence properties of AmB in aqueous solution upon adding strong oxidizing agent. Particularly, we focus on the origin of the emission band ˜470 nm, which has been previously assigned to either formation of AmB dimers or to tetraene and pentaenes impurities. We find clear correlation between appearance of this band and oxidation of AmB, therefore, we conclude that the emission with maximum ˜470 nm is mainly related to the oxidation of AmB chromophore.
Genetically engineered livestock: ethical use for food and medical models.
Garas, Lydia C; Murray, James D; Maga, Elizabeth A
2015-01-01
Recent advances in the production of genetically engineered (GE) livestock have resulted in a variety of new transgenic animals with desirable production and composition changes. GE animals have been generated to improve growth efficiency, food composition, and disease resistance in domesticated livestock species. GE animals are also used to produce pharmaceuticals and as medical models for human diseases. The potential use of these food animals for human consumption has prompted an intense debate about food safety and animal welfare concerns with the GE approach. Additionally, public perception and ethical concerns about their use have caused delays in establishing a clear and efficient regulatory approval process. Ethically, there are far-reaching implications of not using genetically engineered livestock, at a detriment to both producers and consumers, as use of this technology can improve both human and animal health and welfare.
[The use of genetic angiogenesis inductors in surgical treatment of chronic lower limb ischemia].
Gavrilenko, A V; Voronov, D A; Bochkov, N P
2013-01-01
The efficacy and safety of gene-engineering recombinant constructions with endothelial growth factor gene and angiogenin for the treatment of the chronic lower limb ischemia were studied. 134 patients were included in prospective controlled study. The main group, who received both traditional treatment and genetic therapy, consisted of 74 patients. The rest 60 patients were included into the control group. Of 74 patients from the main group, genetic therapy was used together with conservative means in 39 patients and with reconstructive vascular operations in 35 patients. The gene-engineering angiogenesis stimulation therapy proved to be effective and safe. The combination of angiogenesis genetic stimulation with reconstructive vascular surgery demonstrated significantly better results, then monotherapy.
Genetic Engineering of Algae for Enhanced Biofuel Production ▿
Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.
2010-01-01
There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239
Conditions for success of engineered underdominance gene drive systems.
Edgington, Matthew P; Alphey, Luke S
2017-10-07
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Metabolic engineering of biosynthetic pathway for production of renewable biofuels.
Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar
2014-02-01
Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.
A genetically engineered microorganism, Pseudomonas putida PPO301 (pRO103), and the plasmidless parent strain, PPO301, were added at approximately 10 7 CFU/g of soil amended with 500 ppm of 2,4-dichlorophenoxyacete (2,4-D)(500 ug/g). he degradation of 2,4-D and the accumulation o...
Monsanto may bypass NIH in microbe test.
Sun, Marjorie
1985-01-11
The Monsanto Company is planning to ask the Environmental Protection Agency for clearance to field test a genetically engineered microbial pesticide, bypassing the traditional approval process of the National Institutes of Health. Although only federally funded institutions are required to obtain NIH approval for genetic engineering tests, Monsanto is the first company to bypass the NIH regulatory process, which has become mired in a lawsuit brought by Jeremy Rifkin.
Genetically Engineered Natural Killer Cells as a Means for Adoptive Tumor Immunotherapy.
Michen, Susanne; Temme, Achim
2016-01-01
Natural killer (NK) cells are lymphoid cells of the innate immune system; they stand at the first defense line against viruses and transformed cells. NK cells use an array of germline-encoded activating and inhibitory receptors that sense virus-infected cells or malignant cells displaying altered surface expression of activating and inhibitory NK cell ligands. They exert potent cytotoxic responses to cellular targets and thus are candidate effector cells for immunotherapy of cancer. In particular, the genetic engineering of NK cells with chimeric antigen receptors (CARs) against surface-expressed tumor-associated antigens (TAAs) seems promising. In the allogeneic context, gene-modified NK cells compared to T cells may be superior because they are short-lived effector cells and do not cause graft-versus-host disease. Furthermore, their anti-tumoral activity can be augmented by combinatorial use with therapeutic antibodies, chemotherapeutics, and radiation. Today, efforts are being undertaken for large-scale NK-cell expansion and their genetic engineering for adoptive cell transfer. With the recent advances in understanding the complex biological interactions that regulate NK cells, it is expected that the genetic engineering of NK cells and a combinatorial blockade of immune evasion mechanisms are required to exploit the full potential of NK-cell-based immunotherapies.
Unraveling the neurobiology of nicotine dependence using genetically engineered mice.
Stoker, Astrid K; Markou, Athina
2013-08-01
This review article provides an overview of recent studies of nicotine dependence and withdrawal that used genetically engineered mice. Major progress has been made in recent years with mutant mice that have knockout and gain-of-function of specific neuronal nicotinic acetylcholine receptor (nAChR) subunit genes. Nicotine exerts its actions by binding to neuronal nAChRs that consist of five subunits. The different nAChR subunits that combine to compose a receptor determine the distinct pharmacological and kinetic properties of the specific nAChR. Recent findings in genetically engineered mice have indicated that while α4-containing and β2-containing nAChRs are involved in the acquisition of nicotine self-administration and initial stages of nicotine dependence, α7 homomeric nAChRs appear to be involved in the later stages of nicotine dependence. In the medial habenula, α5-containing, α3-containing, and β4-containing nAChRs were shown to be crucially important in the regulation of the aversive aspects of nicotine. Studies of the involvement of α6 nAChR subunits in nicotine dependence have only recently emerged. The use of genetically engineered mice continues to vastly improve our understanding of the neurobiology of nicotine dependence and withdrawal. Copyright © 2013 Elsevier Ltd. All rights reserved.
Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping
2017-11-01
Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.
Metabolic Engineering of Probiotic Saccharomyces boulardii.
Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E; Rao, Christopher V; Jin, Yong-Su
2016-04-01
Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Genetic engineering and sustainable production of ornamentals: current status and future directions.
Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate
2012-07-01
Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.
ERIC Educational Resources Information Center
Hoagland, Hudson
1972-01-01
Biological evolution can be carried out in the laboratory. With new knowledge available in genetics, possibilities are raised that genetic characters can be transferred in the future to embryos according to a predetermined plan. (PS)
Metabolic engineering of yeast for production of fuels and chemicals.
Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack
2013-06-01
Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
Kiro, Ruth; Shitrit, Dror; Qimron, Udi
2014-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.
Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin
2015-01-01
The impact of particular microbes on genetically engineered mice depends on the genotype and the environment. Infections resulting in clinical disease have an obvious impact on animal welfare and experimentation. In this study, we investigated the bacterial and fungal aetiology of spontaneous clinical disease of infectious origin among the genetically engineered mice from our institution in relation to their genotype. A total of 63 mice belonging to 33 different mice strains, from severe immunodeficient to wild-type, were found to display infections as the primary cause leading to their euthanasia. The necropsies revealed abscesses localized subcutaneously as well as in the kidney, preputial glands, seminal vesicles, in the uterus, umbilicus or in the lung. In addition, pneumonia, endometritis and septicaemia cases were recorded. Escherichia coli was involved in 21 of 44 (47.72%) of the lesions of bacterial origin, whereas [Pasteurella] pneumotropica was isolated from 19 of 44 (43.18%) cases. The infections with the two agents mentioned above included three cases of mixed infection with both pathogens. Staphylococcus aureus was considered responsible for five of 44 (11.36%) cases whereas Enterobacter cloacae was found to cause lesions in two of 44 (4.54%) mice. Overall, 16 of the 44 (36.36%) cases of bacterial aetiology affected genetically engineered mice without any explicit immunodeficiency or wild-type strains. The remaining 19 cases of interstitial pneumonia were caused by Pneumocystis murina. In conclusion, the susceptibility of genetically modified mice to opportunistic infections has to be regarded with precaution, regardless of the type of genetic modification performed. Beside the classical opportunists, such as [Pasteurella] pneumotropica and Staphylococcus aureus, Escherichia coli should as well be closely monitored to evaluate whether it represents an emerging pathogen in the laboratory mouse.
The Sociology of the Gene: Genetics and Education on the Eve of the Biotech Century.
ERIC Educational Resources Information Center
Rifkin, Jeremy
1998-01-01
Researchers in molecular biology are discovering an increasing genetic basis for a wide range of mental diseases, moods, behaviors, and personality traits. Findings are creating the context for a new sociobiology favoring a genetic interpretation of human motivations and drives. Genetic engineering will give some people unprecedented power over…
A synthetic genetic edge detection program.
Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D
2009-06-26
Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.
Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations.
Affifi, Ramsey
2017-01-01
This paper describes some likely semiotic consequences of genetic engineering on what Gregory Bateson has called "the mental ecology" (1979) of future humans, consequences that are less often raised in discussions surrounding the safety of GMOs (genetically modified organisms). The effects are as follows: an increased 1) habituation to the presence of GMOs in the environment, 2) normalization of empirically false assumptions grounding genetic reductionism, 3) acceptance that humans are capable and entitled to decide what constitutes an evolutionary improvement for a species, 4) perception that the main source of creativity and problem solving in the biosphere is anthropogenic. Though there are some tensions between them, these effects tend to produce self-validating webs of ideas, actions, and environments, which may reinforce destructive habits of thought. Humans are unlikely to safely develop genetic technologies without confronting these escalating processes directly. Intervening in this mental ecology presents distinct challenges for educators, as will be discussed.
A Synthetic Genetic Edge Detection Program
Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.
2009-01-01
Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759
Pelled, Gadi; Snedeker, Jess G; Ben-Arav, Ayelet; Rigozzi, Samuela; Zilberman, Yoram; Kimelman-Bleich, Nadav; Gazit, Zulma; Müller, Ralph; Gazit, Dan
2012-12-01
Tendon tissue regeneration is an important goal for orthopedic medicine. We hypothesized that implantation of Smad8/BMP2-engineered MSCs in a full-thickness defect of the Achilles tendon (AT) would induce regeneration of tissue with improved biomechanical properties. A 2 mm defect was created in the distal region of murine ATs. The injured tendons were then sutured together or given implants of genetically engineered MSCs (GE group), non-engineered MSCs (CH3 group), or fibrin gel containing no cells (FG group). Three weeks later the mice were killed, and their healing tendons were excised and processed for histological or biomechanical analysis. A biomechanical analysis showed that tendons that received implants of genetically engineered MSCs had the highest effective stiffness (>70% greater than natural healing, p < 0.001) and elastic modulus. There were no significant differences in either ultimate load or maximum stress among the treatment groups. Histological analysis revealed a tendon-like structure with elongated cells mainly in the GE group. ATs that had been implanted with Smad8/BMP2-engineered stem cells displayed a better material distribution and functional recovery than control groups. While additional study is required to determine long-term effects of GE MSCs on tendon healing, we conclude that genetically engineered MSCs may be a promising therapeutic tool for accelerating short-term functional recovery in the treatment of tendon injuries. Copyright © 2012 Orthopaedic Research Society.
Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview.
Grabundzija, Ivana; Izsvák, Zsuzsanna; Ivics, Zoltán
2011-01-01
Novel genetic tools and mutagenesis strategies based on the Sleeping Beauty (SB) transposable element are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of its inherent capacity to insert into DNA, the SB transposon can be developed into powerful tools for chromosomal manipulations. Mutagenesis screens based on SB have numerous advantages including high throughput and easy identification of mutated alleles. Forward genetic approaches based on insertional mutagenesis by engineered SB transposons have the advantage of providing insight into genetic networks and pathways based on phenotype. Indeed, the SB transposon has become a highly instrumental tool to induce tumors in experimental animals in a tissue-specific -manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with SB transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models.
Insights into wild-type and mutant p53 functions provided by genetically engineered mice.
Donehower, Lawrence A
2014-06-01
Recent whole-exome sequencing studies of numerous human cancers have now conclusively shown that the TP53 tumor-suppressor gene is the most frequently mutated gene in human cancers. Despite extensive studies of the TP53 gene and its encoded protein (p53), our understanding of how TP53 mutations contribute to cancer initiation and progression remain incomplete. Genetically engineered mice with germline or inducible Trp53 somatic mutations have provided important insights into the mechanisms by which different types of p53 mutation influence cancer development. Trp53 germline mutations that alter specific p53 structural domains or posttranslation modification sites have benefitted our understanding of wild-type p53 functions in a whole organism context. Moreover, genetic approaches to reestablish functional wild-type p53 to p53-deficient tissues and tumors have increased our understanding of the therapeutic potential of restoring functional p53 signaling to cancers. This review outlines many of the key insights provided by the various categories of Trp53 mutant mice that have been generated by multiple genetic engineering approaches. © 2014 WILEY PERIODICALS, INC.
USDA-ARS?s Scientific Manuscript database
The genetically engineered plum 'HoneySweet' (aka C5) has proven to be highly resistant to Plum pox virus (PPV) for over 10 years in field trials. The original vector used for transformation to develop 'HoneySweet' carried a single sense sequence of the full length PPV coat protein (ppv-cp) gene, y...
[Genetic engineering of forest woody plants].
Mashkina, O S; Butorina, A K
2003-03-01
The present state of genetic engineering (GE) of forest woody plants is considered with special reference to the materials of the International Conference "Wood, Breeding, Biotechnology and Industrial Expectations" held in France in June, 2001. Main tree species subjected to GE are listed, aims of constructing transgenic plants discussed, and methods described. Major achievements in the field are considered along with the problems associated with the employment of GE in the breeding of forest woody plants.
Fate and transport of bacteria injected into aquifers
Harvey, Ronald W.
1993-01-01
Advances in our understanding of the fate and transport of bacteria introduced into aquifers, including the potential use of genetically engineered bacteria for biorestoration, are highlighted by new findings in the following areas: modeling of bacterial attachment during transport through porous media, the long-term survival of a chlorobenzoate-degrading bacterium injected into a contaminated sandy aquifer, and molecular techniques that may be used in tracking genetically engineered bacteria in groundwater environments.
A Genetically Engineered Mouse Model of Sporadic Colorectal Cancer.
Betzler, Alexander M; Kochall, Susan; Blickensdörfer, Linda; Garcia, Sebastian A; Thepkaysone, May-Linn; Nanduri, Lahiri K; Muders, Michael H; Weitz, Jürgen; Reissfelder, Christoph; Schölch, Sebastian
2017-07-06
Despite the advantages of easy applicability and cost-effectiveness, colorectal cancer mouse models based on tumor cell injection have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Genetically engineered mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in large organs such as the colon in which only a single tumor is desired. As a result, an immunocompetent, genetically engineered mouse model of colorectal cancer was developed which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor development is initiated by surgical, segmental infection of the distal colon with adeno-cre virus in compound conditionally mutant mice. The tumors can be easily detected and monitored via colonoscopy. We here describe the surgical technique of segmental adeno-cre infection of the colon, the surveillance of the tumor via high-resolution colonoscopy and present the resulting colorectal tumors.
Targeted drug delivery using genetically engineered diatom biosilica.
Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H
2015-11-10
The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.
Genetic engineering of woody plants: current and future targets in a stressful environment.
Osakabe, Yuriko; Kajita, Shinya; Osakabe, Keishi
2011-06-01
Abiotic stress is a major factor in limiting plant growth and productivity. Environmental degradation, such as drought and salinity stresses, will become more severe and widespread in the world. To overcome severe environmental stress, plant biotechnologies, such as genetic engineering in woody plants, need to be implemented. The adaptation of plants to environmental stress is controlled by cascades of molecular networks including cross-talk with other stress signaling mechanisms. The present review focuses on recent studies concerning genetic engineering in woody plants for the improvement of the abiotic stress responses. Furthermore, it highlights the recent advances in the understanding of molecular responses to stress. The review also summarizes the basis of a molecular mechanism for cell wall biosynthesis and the plant hormone responses to regulate tree growth and biomass in woody plants. This would facilitate better understanding of the control programs of biomass production under stressful conditions. Copyright © Physiologia Plantarum 2011.
Impact of accelerated plant growth on seed variety development
NASA Astrophysics Data System (ADS)
Christophersen, Eric
1998-01-01
The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.
Application of genetically engineered microbial whole-cell biosensors for combined chemosensing.
He, Wei; Yuan, Sheng; Zhong, Wen-Hui; Siddikee, Md Ashaduzzaman; Dai, Chuan-Chao
2016-02-01
The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.
Shi, Zhenyu; Vickers, Claudia E
2016-12-01
Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.
Not all GMOs are crop plants: non-plant GMO applications in agriculture.
Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J
2014-12-01
Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.
Genetic design automation: engineering fantasy or scientific renewal?
Lux, Matthew W; Bramlett, Brian W; Ball, David A; Peccoud, Jean
2012-02-01
The aim of synthetic biology is to make genetic systems more amenable to engineering, which has naturally led to the development of computer-aided design (CAD) tools. Experimentalists still primarily rely on project-specific ad hoc workflows instead of domain-specific tools, which suggests that CAD tools are lagging behind the front line of the field. Here, we discuss the scientific hurdles that have limited the productivity gains anticipated from existing tools. We argue that the real value of efforts to develop CAD tools is the formalization of genetic design rules that determine the complex relationships between genotype and phenotype. Copyright © 2011 Elsevier Ltd. All rights reserved.
Commodifying animals: ethical issues in genetic engineering of animals.
Almond, B
2000-03-01
The genetic modification of living beings raises special ethical concerns which go beyond general discussion of animal rights or welfare. Although the goals may be similar, biotechnology has accelerated the process of modification of types traditionally carried out by cross-breeding. These changes are discussed in relation to two areas: biomedicine, and animal husbandry. Alternative ethical approaches are reviewed, and it is argued that the teleological thesis underlying virtue ethics has special relevance here. The case for and the case against genetic engineering and patenting of life-forms are examined, and conclusions are drawn which favour regulation, caution and respect for animals and animal species.
Production of amino acids - Genetic and metabolic engineering approaches.
Lee, Jin-Ho; Wendisch, Volker F
2017-12-01
The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement
USDA-ARS?s Scientific Manuscript database
Genetic modification of dedicated bioenergy crops is in its infancy; however, there are numerous advantages to the use of these tools to improve crops used for biofuels. Potential improved traits through genetic engineering (GE) include herbicide resistance, pest, drought, cold and salt tolerance, l...
Not all GMOs are crop plants: non-plant GMO applications in agriculture
USDA-ARS?s Scientific Manuscript database
In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...
Mechanisms, applications, and perspectives of antiviral RNA silencing in plants
Garcia-Ruiz, Hernan; Ruiz, Mayra Teresa Garcia; Peralta, Sergio Manuel Gabriel; Gabriel, Cristina Betzabeth Miravel; El-Mounadi, Kautar
2017-01-01
Viral diseases of plants cause important economic losses due to reduction in crop quality and quantity to the point of threatening food security in some countries. Given the reduced availability of natural sources, genetic resistance to viruses has been successfully engineered for some plant-virus combinations. A sound understanding of the basic mechanisms governing plant-virus interactions, including antiviral RNA silencing, is the foundation to design better management strategies and biotechnological approaches to engineer and implement antiviral resistance in plants. In this review, we present current molecular models to explain antiviral RNA silencing and its application in basic plant research, biotechnology and genetic engineering. PMID:28890589
Roper, Jatin; Martin, Eric S; Hung, Kenneth E
2014-06-16
Preclinical models for colorectal cancer (CRC) are critical for translational biology and drug development studies to characterize and treat this condition. Mouse models of human cancer are particularly popular because of their relatively low cost, short life span, and ease of use. Genetically engineered mouse models (GEMMs) of CRC are engineered from germline or somatic modification of critical tumor suppressor genes and/or oncogenes that drive mutations in human disease. Detailed in this overview are the salient features of several useful colorectal cancer GEMMs and their value as tools for translational biology and preclinical drug development. Copyright © 2014 John Wiley & Sons, Inc.
Department of Defense In-House RDT&E Activities
1980-10-30
FOPCeS;C TO ,DEVELOP PRFVFNTIVE & THERAPEUTIC METHO"DS TO PROTECT PERSONNFL FROnM SUCH rnRCFS, .,,CURRENT IMPOPTANT PROGRAMS LONG-TERM EcEFCTS OF...Plant Quarantine & Pest 819 Sanitary Engineering Control 830 Mechanical Engineering 437 Horticulture 840 Nuclear Engineering 440 Genetics 850
Precision genome engineering in lactic acid bacteria
2014-01-01
Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700
Genetically engineered plants with increased vegetative oil content
Benning, Christoph
2017-05-23
The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.
40 CFR 158.2110 - Microbial pesticides data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: genetic engineering techniques used; the identity of the inserted or deleted gene segment (base sequence... evaluate genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...
40 CFR 158.2110 - Microbial pesticides data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: genetic engineering techniques used; the identity of the inserted or deleted gene segment (base sequence... evaluate genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...
40 CFR 158.2110 - Microbial pesticides data requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: genetic engineering techniques used; the identity of the inserted or deleted gene segment (base sequence... evaluate genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...
40 CFR 158.2110 - Microbial pesticides data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: genetic engineering techniques used; the identity of the inserted or deleted gene segment (base sequence... evaluate genetic stability and exchange; and selected Tier II environmental expression and toxicology tests. ...
Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok
2016-06-01
Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
The regulation of agricultural biotechnology: science shows a better way.
Miller, Henry I
2010-11-30
National and international regulation of recombinant DNA-modified, or 'genetically engineered' (also referred to as 'genetically modified' or GM), organisms is unscientific and illogical, a lamentable illustration of the maxim that bad science makes bad law. Instead of regulatory scrutiny that is proportional to risk, the degree of oversight is actually inversely proportional to risk. The current approach to regulation, which captures for case-by-case review organisms to be field tested or commercialized according to the techniques used to construct them rather than their properties, flies in the face of scientific consensus. This approach has been costly in terms of economic losses and human suffering. The poorest of the poor have suffered the most because of hugely inflated development costs of genetically engineered plants and food. A model for regulation of field trials known as the 'Stanford Model' is designed to assess risks of new agricultural introductions - whether or not the organisms are genetically engineered, and independent of the genetic modification techniques employed. It offers a scientific, rational, risk-based basis for field trial regulations. Using this sort of model for regulatory review would not only better protect human health and the environment, but would also permit more expeditious development and more widespread use of new plants and seeds. Copyright © 2010 Elsevier B.V. All rights reserved.
Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.
Ul Ain, Qurrat; Chung, Jee Young; Kim, Yong-Hee
2015-05-10
Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonucleases (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects. Copyright © 2014 Elsevier B.V. All rights reserved.
Engineering microbial hosts for production of bacterial natural products.
Zhang, Mingzi M; Wang, Yajie; Ang, Ee Lui; Zhao, Huimin
2016-08-27
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Plant genetics, sustainable agriculture and global food security.
Ronald, Pamela
2011-05-01
The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.
Open Field Release of Genetically Engineered Sterile Male Aedes aegypti in Malaysia
Raduan, Norzahira; Kwee Wee, Lim; Hong Ming, Wong; Guat Ney, Teoh; Rahidah A.A., Siti; Salman, Sawaluddin; Subramaniam, Selvi; Nordin, Oreenaiza; Hanum A.T., Norhaida; Angamuthu, Chandru; Marlina Mansor, Suria; Lees, Rosemary S.; Naish, Neil; Scaife, Sarah; Gray, Pam; Labbé, Geneviève; Beech, Camilla; Nimmo, Derric; Alphey, Luke; Vasan, Seshadri S.; Han Lim, Lee; Wasi A., Nazni; Murad, Shahnaz
2012-01-01
Background Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field. Methodology/Principal Findings Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered ‘genetically sterile’ (OX513A) and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m), but mean distance travelled of the OX513A strain was lower (52 vs. 100 m). Life expectancy was similar (2.0 vs. 2.2 days). Recapture rates were high for both strains, possibly because of the uninhabited nature of the site. Conclusions/Significance After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains. PMID:22970102
Engineering plants for spaceflight environments
NASA Technical Reports Server (NTRS)
Bugbee, B.
1999-01-01
The conversion efficiency of radiation into biomass and yield has steadily increased for centuries because of continued improvement in both plant genetics and environmental control. Considerable effort has gone into improving the environment for plant growth in space, but work has only begun to engineer plants for spaceflight. Genetic manipulation offers tremendous potential to improve our ability to study gravitational effects. Genetic manipulation will also be necessary to build an efficient regenerative life support system. We cannot fully characterize plant response to the spaceflight environment without understanding and manipulating their genetic composition. Identification and selection of the existing germplasm is the first step. There are thousands of cultivars of each of our major crop plants, each specifically adapted to a unique environment on our planet. Thousands of additional lines are held in national germplasm collections to maintain genetic diversity. Spaceflight imposes the need to tap this diversity. Existing lines need to be evaluated in the environment that is characteristic of closed-system spaceflight conditions. Many of the plant growth challenges we confront in space can be better solved through genetic change than by hardware engineering. Ten thousand years of plant breeding has demonstrated the value of matching genetics with the environment. For example, providing continuous light can increase plant growth in space, but this often induces calcium deficiencies because Ca is not supplied by guttation during a dark period. This deficiency cannot be eliminated through increased root-zone and foliar Ca applications. It can be solved, in wheat, through genetic selection of lines that do not have the deficiency. Subsequent comparison of lines with and without the Ca deficiency has also helped us understand the nature of the problem.
Pertussis toxins, other antigens become likely targets for genetic engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marwick, C.
1990-11-14
Genetically engineered pertussis vaccines have yet to be fully tested clinically. But early human, animal, and in vitro studies indicate effectiveness in reducing toxic effects due to Bordetella pertussis. The licensed pertussis vaccines consists of inactivated whole cells of the organism. Although highly effective, they have been associated with neurologic complications. While the evidence continues to mount that these complications are extremely rare, if they occur at all, it has affected the public's acceptance of pertussis immunization.
Constructs and methods for genome editing and genetic engineering of fungi and protists
Hittinger, Christopher Todd; Alexander, William Gerald
2018-01-30
Provided herein are constructs for genome editing or genetic engineering in fungi or protists, methods of using the constructs and media for use in selecting cells. The construct include a polynucleotide encoding a thymidine kinase operably connected to a promoter, suitably a constitutive promoter; a polynucleotide encoding an endonuclease operably connected to an inducible promoter; and a recognition site for the endonuclease. The constructs may also include selectable markers for use in selecting recombinations.
Biotechnology; Managing the Risks of Field Testing Genetically Engineered Organisms
1988-06-01
jurisdictional lines. The agencies’ principal regulatory tool for managing the risks of field testing genetically engineered organisms is the authority to...Regulatory authority has been established in numerous federal statutes designed to prevent the occurrence of harm to the environment and public health...would not be reviewed or regulated at all. According to the Insti- tute, "there are numerous organisms outside the confines of t he plant ST~( Iflt l l l
Metabolic Engineering of Probiotic Saccharomyces boulardii
Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N.; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E.; Rao, Christopher V.
2016-01-01
Saccharomyces boulardii is a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae. Therefore, S. boulardii is an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2, ura3, his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools for S. cerevisiae. We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome of S. boulardii. We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii. Our results suggest that more sophisticated genetic perturbations to improve S. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineered S. boulardii. PMID:26850302
[Synthetic biology and rearrangements of microbial genetic material].
Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng
2011-10-01
As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.
Synthetic biology and metabolic engineering.
Stephanopoulos, Gregory
2012-11-16
Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.
Greule, Anja; Intra, Bungonsiri; Flemming, Stephan; Rommel, Marcel G E; Panbangred, Watanalai; Bechthold, Andreas
2016-11-23
We report the draft genome sequence of Actinokineospora bangkokensis 44EHW T , the producer of the antifungal polyene compounds, thailandins A and B. The sequence contains 7.45 Mb, 74.1% GC content and 35 putative gene clusters for the biosynthesis of secondary metabolites. There are three gene clusters encoding large polyketide synthases of type I. Annotation of the ORF functions and targeted gene disruption enabled us to identify the cluster for thailandin biosynthesis. We propose a plausible biosynthetic pathway for thailandin, where the unusual butylmalonyl-CoA extender unit is incorporated and results in an untypical side chain.
NASA Astrophysics Data System (ADS)
Schweig, Armin; Diehl, Frank; Kesper, Karl; Meyer, Hermann
1989-07-01
The electronic absorption spectra of benzo[b]thiete ( 1) and of transient o-thiobenzoquinonemethide ( 2) have been obtained. Semiempirical valence-electron calculations using the CNDO/S SECI, CNDO/S PERTCI and LNDO/S PERTCI methods and correlation diagrams using suitable reference compounds ad aniline, thiophenol, thioanisole, all-trans-octatetraene and o-xylylene are applied to the interpretation of the spectra. The results clearly reveal 1 as a typically donor-substituted benzene derivative and 2 as a polyene-like system closely related to o-xylylene.
NASA Astrophysics Data System (ADS)
Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas
1996-04-01
The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds. In this method, Huckel-type MO's of higher polyenes are constructed by energy rules of linear combination of atomic orbitals. One additional rule is obeyed: bonding molecular orbitals overlap only with bonding molecular orbitals, and antibonding molecular orbitals overlap only with antibonding molecular orbitals.
[Antifungals cellular targets and mechanisms of resistance].
Accoceberry, Isabelle; Noël, Thierry
2006-01-01
Antifungals of systemic use for the treatment of invasive fungal infections belong to four main chemical families which have globally three cellular targets in fungal cells: fluorinated pyrimidines act on deoxyribonucleic acid (DNA) replication and protein synthesis; polyenes and azoles are toxic for ergosterol and its biosynthetic pathway; lipopeptides inhibit the synthesis of cell wall beta glucans. The resistance mechanisms that are developed by some fungi begin to be well understood particularly in Candida yeasts. The underlying bases of these mechanisms are either mutations that modify the antifungal target, or that block access to the target, and, on the other hand, the overexpression of genes encoding the target, or some membrane proteins involved in the active efflux of antifungal drugs.
Spectroscopy of carotenoids and its application to the investigation of autoxidation
NASA Astrophysics Data System (ADS)
Finkelshtein, E. I.; Krasnokutskaya, I. S.; Vakulova, L. A.
1999-05-01
The electronic and attenuated total reflection IR spectra of β-carotene, canthaxanthin, lycopene, axerophtene, retinyl acetate, methyl retinoate, and retinal were recorded and investigated. The main specimens were thin (thickness of about 0.1 μ) amorphous films on the optically transparent supports. In most cases the electronic spectra of the films differ from the solution ones. Alterations of the spectra during the exposing of the films to oxygen permit to propose the sequence of the oxidation products formation. The compounds with short polyenic chains conjugated with β-ionone ring are formed. Polyperoxides are the primary oxidation products, and they gradually transform firstly into epoxy and then into carbonyl compounds.
Germline modification of domestic animals
Tang, L.; González, R.; Dobrinski, I.
2016-01-01
Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation. As the genetic change is introduced into the male germ line just before the onset of spermatogenesis, the time required for the production of genetically modified sperm is significantly shorter using germ cell transplantation compared to cloning or embryonic stem (ES) cell based technology. Moreover, the GSC-mediated germline modification circumvents problems associated with embryo manipulation and nuclear reprogramming. Currently, engineering targeted mutations in domestic animals using GSCs remains a challenge as GSCs from those animals are difficult to maintain in vitro for an extended period of time. Recent advances in genome editing techniques such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) greatly enhance the efficiency of engineering targeted genetic change in domestic animals as demonstrated by the generation of several gene knock-out pig and cattle models using those techniques. The potential of GSC-mediated germline modification in making targeted genetic modifications in domestic animal models will be maximized if those genome editing techniques can be applied in GSCs. PMID:27390591
García-Remesal, Miguel; Maojo, Victor; Crespo, José
2010-01-01
In this paper we present a knowledge engineering approach to automatically recognize and extract genetic sequences from scientific articles. To carry out this task, we use a preliminary recognizer based on a finite state machine to extract all candidate DNA/RNA sequences. The latter are then fed into a knowledge-based system that automatically discards false positives and refines noisy and incorrectly merged sequences. We created the knowledge base by manually analyzing different manuscripts containing genetic sequences. Our approach was evaluated using a test set of 211 full-text articles in PDF format containing 3134 genetic sequences. For such set, we achieved 87.76% precision and 97.70% recall respectively. This method can facilitate different research tasks. These include text mining, information extraction, and information retrieval research dealing with large collections of documents containing genetic sequences.
ERIC Educational Resources Information Center
Dixon, James; Kuldell, Natalie
2012-01-01
Genetic engineering is taught in biology--but as a scientific tool and not as a means to explore engineering design. Yet, given the clever behaviors and patterns that can be found when examining living systems, biology classes seem well positioned to teach foundational engineering design principles (Kuldell 2007). This article examines a new,…
NASA Astrophysics Data System (ADS)
Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong
2014-03-01
A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.
Amplifying Riboswitch Signal Output using Cellular Wiring
2017-01-30
riboswitches are developed within a specific genetic context. This becomes challenging when using a riboswitch to control a reporter gene that it was...survive well outside of controlled environmental conditions. Biological circuits utilize molecules that connect different genetic ‘components’, so that the...engineering to construct genetic logic gates to form genetic programs within and between cells.8-10,12-14 We have applied biological circuitry to
Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life.
Matas, Antonio J; Gapper, Nigel E; Chung, Mi-Young; Giovannoni, James J; Rose, Jocelyn K C
2009-04-01
Commercial regulation of ripening is currently achieved through early harvest, by controlling the postharvest storage atmosphere and genetic selection for slow or late ripening varieties. Although these approaches are often effective, they are not universally applicable and often result in acceptable, but poor quality, products. With increased understanding of the molecular biology underlying ripening and the advent of genetic engineering technologies, researchers have pursued new strategies to address problems in fruit shelf-life and quality. These have been guided by recent insights into mechanisms by which ethylene and a complex network of transcription factors regulate ripening, and by an increased appreciation of factors that contribute to shelf-life, such as the fruit cuticle.
NASA Astrophysics Data System (ADS)
Stern, Arthur M.
1986-07-01
Economic incentives have spurred numerous applications of genetically engineered organisms in manufacture of pharmaceuticals and industrial chemicals. These successes, involving a variety of methods of genetic manipulation, have dispelled early fears that genetic engineering could not be handled safely, even in the laboratory. Consequently, the potential for applications in the wider environment without physical containment is being considered for agriculture, mining, pollution control, and pest control. These proposed applications range from modest extensions of current plant breeding techniques for new disease-resistant species to radical combinations of organisms (for example, nitrogen-fixing corn plants). These applications raise concerns about potential ecological impacts (see chapter 5), largely because of adverse experiences with both deliberate and inadvertent introductions of nonindigenous species.
The Plant Genetic Engineering Laboratory For Desert Adaptation
NASA Astrophysics Data System (ADS)
Kemp, John D.; Phillips, Gregory C.
1985-11-01
The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.
Attaran, Neda; Eshghi, Hossein; Rahimizadeh, Mohammad; Mashreghi, Mansour; Bakavoli, Mehdi
2014-08-04
The effect of different genetically engineered bacteria, Pseudomonas syringae, Pseudomonas savastanoi, and Ralostonia solanacerum and also a natural marine bacterial species, Vibrio fischeri NRRL B-11177, is studied in producing gold nanoparticles. This is the first report about the biosynthesis of gold nanoparticles by natural and genetically engineered luminescent bacteria. These microorganisms reduced gold ions and produced fairly monodisperse nanoparticles. TEM analysis indicated that spherical nano gold particles in the different diameters and shapes were obtained at pH values of 6.64. In this biosynthesis protocol, the gold nanoparticles with desired shape and size can be prepared.
2012-01-01
Hammond, A. M. Belcher, Nat. Nanotechnol. 2011. [19] C. F. Barbass III, D. R. Burton, J. K. Scott, G. J. Silverman, Phage display : a laboratory manual...with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...19b. TELEPHONE NUMBER (Include area code) New Reprint Graphene Sheets Stabilized on Genetically Engineered M13 Viral Templates as Conducting
2005-01-21
integrated moving average ( ARIMA ) model [15,19]. Fore- casted values for the postexposure time periods were based on the training model extrapolated...Smith JF. Genetically engineered, live attenuated vaccines or Venezuelan equine encephalitis: testing in animal models . Vaccine 2003;21(25–26):3854–62...encephalitis: testing in animal models . Vaccine 2003;21(25-26):3854-62] and IE strains of VEE viruses. 15. SUBJECT TERMS Venezuelan equine
[Biosafety assessment of genetically engineered animals: a review].
Xu, Jianxiang; Li, Ning
2012-03-01
With the research and development of genetically engineered animals (GEAs) in breeding of new variety, xenotransplantation, bioreactor and disease model, biosafety issues of GEAs have attracted widespread attentions worldwide. So far, governments and agencies have established corresponding laws and regulations to regulate research and application of GEAs or their derived products. We reviewed research contents, evaluated principles, policies and procedures for biosafety of GEAs, also enumerated upcoming approved products of GEAs. Finally, we suggested perspectives of research and application of GEAs or their derived products.
Genetic-evolution-based optimization methods for engineering design
NASA Technical Reports Server (NTRS)
Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.
1990-01-01
This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.
2015-10-01
xenograft models . 12-36 Dr. Engelman Subtask 3: Analyze CTCs for P-4EBP1, P-S6, BIM , Bcl-2, Bcl-xL, and Mcl-1 using ISH and IHC We propose...Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions
USDA-ARS?s Scientific Manuscript database
Knowledge of the impact of genetic variability and diverse environments on the protein composition of crop seed is of value for the comparative safety assessments in the development of genetically engineered (GMO) crops. The objective of this study was to determine the role of genotype (G), environ...
Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology.
Daniell, Henry; Khan, Muhammad S; Allison, Lori
2002-02-01
Chloroplast genomes defied the laws of Mendelian inheritance at the dawn of plant genetics, and continue to defy the mainstream approach to biotechnology, leading the field in an environmentally friendly direction. Recent success in engineering the chloroplast genome for resistance to herbicides, insects, disease and drought, and for production of biopharmaceuticals, has opened the door to a new era in biotechnology. The successful engineering of tomato chromoplasts for high-level transgene expression in fruits, coupled to hyper-expression of vaccine antigens, and the use of plant-derived antibiotic-free selectable markers, augur well for oral delivery of edible vaccines and biopharmaceuticals that are currently beyond the reach of those who need them most.
Expanding the Scope of Site-Specific Recombinases for Genetic and Metabolic Engineering
Gaj, Thomas; Sirk, Shannon J.; Barbas, Carlos F.
2014-01-01
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. PMID:23982993
Genetics and the unity of biology. Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-31
International Congresses of Genetics, convened just once every five years, provide a rare opportunity for overview in the field of genetic engineering. The Congress, held August 20-27, 1988 in Toronto, Canada focused on the theme Genetics and the Unity of Biology, which was chosen because the concepts of modern genetics have provided biology with a unifying theoretical structure. This program guide contains a schedule of all Congress activities and a listing of all Symposia, Workshops and Poster Sessions held.
Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives.
Liu, Shuang Ping; Zhang, Liang; Mao, Jian; Ding, Zhong Yang; Shi, Gui Yang
2015-11-01
Phenylpyruvate derivatives (PPD), such as phenylpropanoids, DL-phenylglycine, dl-phenylalanine, and styrene, are biosynthesized using phenylpyruvate as the precursor. They are widely used in human health and nutrition products. Recently, metabolic engineering provides effective strategies to develop PPD producers. Based on phenylpyruvate-producing chassis, genetically defined PPD producers have been successfully constructed. In this work, the most recent information on genetics and on the molecular mechanisms regulating phenylpyruvate synthesis pathways in Escherichia coli are summarized, and the engineering strategies to construct the PPD producers are also discussed. The enzymes and pathways are proposed for PPD-producer constructions, and potential difficulties in strain construction are also identified and discussed. With respect to recent advances in synthetic biology, future strategies to construct efficiently producers are discussed. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Islet xenotransplantation from genetically engineered pigs.
Nagaraju, Santosh; Bottino, Rita; Wijkstrom, Martin; Hara, Hidetaka; Trucco, Massimo; Cooper, David K C
2013-12-01
Pigs have emerged as potential sources of islets for clinical transplantation. Wild-type porcine islets (adult and neonatal) transplanted into the portal vein have successfully reversed diabetes in nonhuman primates. However, there is a rapid loss of the transplanted islets on exposure to blood, known as the instant blood-mediated inflammatory reaction (IBMIR), as well as a T-cell response that leads to rejection of the graft. Genetically modified pig islets offer a number of potential advantages, particularly with regard to reducing the IBMIR-related graft loss and protecting the islets from the primate immune response. Emerging data indicate that transgenes specifically targeted to pig β cells using an insulin promoter (in order to maximize target tissue expression while limiting host effects) can be achieved without significant effects on the pig's glucose metabolism. Experience with the transplantation of islets from genetically engineered pigs into nonhuman primates is steadily increasing, and has involved the deletion of pig antigenic targets to reduce the primate humoral response, the expression of transgenes for human complement-regulatory and coagulation-regulatory proteins, and manipulations to reduce the effect of the T-cell response. There is increasing evidence of the advantages of using genetically engineered pigs as sources of islets for future clinical trials.
Yang, Bo; Liu, Jin; Jiang, Yue; Chen, Feng
2016-10-01
The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Redel, Bethany K; Prather, Randall S
2016-04-01
Animal models of human diseases are critically necessary for developing an in-depth knowledge of disease development and progression. In addition, animal models are vital to the development of potential treatments or even cures for human diseases. Pigs are exceptional models as their size, physiology, and genetics are closer to that of humans than rodents. In this review, we discuss the use of pigs in human translational research and the evolving technology that has increased the efficiency of genetically engineering pigs. With the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system technology, the cost and time it takes to genetically engineer pigs has markedly decreased. We will also discuss the use of another meganuclease, the transcription activator-like effector nucleases , to produce pigs with severe combined immunodeficiency by developing targeted modifications of the recombination activating gene 2 (RAG2).RAG2mutant pigs may become excellent animals to facilitate the development of xenotransplantation, regenerative medicine, and tumor biology. The use of pig biomedical models is vital for furthering the knowledge of, and for treating human, diseases. © The Author(s) 2015.
Engineering genetic circuit interactions within and between synthetic minimal cells
NASA Astrophysics Data System (ADS)
Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.
2017-05-01
Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.
Naert, Thomas; Van Nieuwenhuysen, Tom; Vleminckx, Kris
2017-01-01
The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research. © 2017 Wiley Periodicals, Inc.
Vanegas, Katherina García; Lehka, Beata Joanna; Mortensen, Uffe Hasbro
2017-02-08
The yeast Saccharomyces cerevisiae is increasingly used as a cell factory. However, cell factory construction time is a major obstacle towards using yeast for bio-production. Hence, tools to speed up cell factory construction are desirable. In this study, we have developed a new Cas9/dCas9 based system, SWITCH, which allows Saccharomyces cerevisiae strains to iteratively alternate between a genetic engineering state and a pathway control state. Since Cas9 induced recombination events are crucial for SWITCH efficiency, we first developed a technique TAPE, which we have successfully used to address protospacer efficiency. As proof of concept of the use of SWITCH in cell factory construction, we have exploited the genetic engineering state of a SWITCH strain to insert the five genes necessary for naringenin production. Next, the naringenin cell factory was switched to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell factory construction.
Gomaa, M A; Al-Haj, L; Abed, R M M
2016-10-01
A lot of research has been performed on Cyanobacteria and microalgae with the aim to produce numerous biotechnological products. However, native strains have a few shortcomings, like limitations in cultivation, harvesting and product extraction, which prevents reaching optimal production value at lowest costs. Such limitations require the intervention of genetic engineering to produce strains with superior properties. Promising advancements in the cultivation of Cyanobacteria and microalgae have been achieved by improving photosynthetic efficiency through increasing RuBisCO activity and truncation of light-harvesting antennae. Genetic engineering has also contributed to final product extraction by inducing autolysis and product secretory systems, to enable direct product recovery without going through costly extraction steps. In this review, we summarize the different enzymes and pathways that have been targeted thus far for improving cultivation aspects, harvesting and product extraction in Cyanobacteria and microalgae. With synthetic biology advancements, genetically engineered strains can be generated to resolve demanding process issues and achieve economic practicality. This comprehensive overview of gene modifications will be useful to researchers in the field to employ on their strains to increase their yields and improve the economic feasibility of the production process. © 2016 The Society for Applied Microbiology.
New insights and current tools for genetically engineered (GE) sheep and goats.
Menchaca, A; Anegon, I; Whitelaw, C B A; Baldassarre, H; Crispo, M
2016-07-01
Genetically engineered sheep and goats represent useful models applied to proof of concepts, large-scale production of novel products or processes, and improvement of animal traits, which is of interest in biomedicine, biopharma, and livestock. This disruptive biotechnology arose in the 80s by injecting DNA fragments into the pronucleus of zygote-staged embryos. Pronuclear microinjection set the transgenic concept into people's mind but was characterized by inefficient and often frustrating results mostly because of uncontrolled and/or random integration and unpredictable transgene expression. Somatic cell nuclear transfer launched the second wave in the late 90s, solving several weaknesses of the previous technique by making feasible the transfer of a genetically modified and fully characterized cell into an enucleated oocyte, capable of cell reprogramming to generate genetically engineered animals. Important advances were also achieved during the 2000s with the arrival of new techniques like the lentivirus system, transposons, RNA interference, site-specific recombinases, and sperm-mediated transgenesis. We are now living the irruption of the third technological wave in which genome edition is possible by using endonucleases, particularly the CRISPR/Cas system. Sheep and goats were recently produced by CRISPR/Cas9, and for sure, cattle will be reported soon. We will see new genetically engineered farm animals produced by homologous recombination, multiple gene editing in one-step generation and conditional modifications, among other advancements. In the following decade, genome edition will continue expanding our technical possibilities, which will contribute to the advancement of science, the development of clinical or commercial applications, and the improvement of people's life quality around the world. Copyright © 2016 Elsevier Inc. All rights reserved.
Occupational and genetic risk factors associated with intervertebral disc disease.
Virtanen, Iita M; Karppinen, Jaro; Taimela, Simo; Ott, Jürg; Barral, Sandra; Kaikkonen, Kaisu; Heikkilä, Olli; Mutanen, Pertti; Noponen, Noora; Männikkö, Minna; Tervonen, Osmo; Natri, Antero; Ala-Kokko, Leena
2007-05-01
Cross-sectional epidemiologic study. To evaluate the interaction between known genetic risk factors and whole-body vibration for symptomatic intervertebral disc disease (IDD) in an occupational sample. Risk factors of IDD include, among others, whole-body vibration and heredity. In this study, the importance of a set of known genetic risk factors and whole-body vibration was evaluated in an occupational sample of train engineers and sedentary controls. Eleven variations in 8 genes (COL9A2, COL9A3, COL11A2, IL1A, IL1B, IL6, MMP-3, and VDR) were genotyped in 150 male train engineers with an average of 21-year exposure to whole-body vibration and 61 male paper mill workers with no exposure to vibration. Subjects were classified into IDD-phenotype and asymptomatic groups, based on the latent class analysis. The number of individuals belonging to the IDD-phenotype was significantly higher among train engineers (42% of train engineers vs. 17.5% of sedentary workers; P = 0.005). IL1A -889T allele represented a significant risk factor for the IDD-phenotype both in the single marker allelic association test (P = 0.043) and in the logistic regression analysis (P = 0.01). None of the other allele markers was significantly associated with symptoms when analyzed independently. However, for all the SNP markers considered, whole-body vibration represents a nominally significant risk factor. The results suggest that whole-body vibration is a risk factor for symptomatic IDD. Moreover, whole-body vibration had an additive effect with genetic risk factors increasing the likelihood of belonging to the IDD-phenotype group. Of the independent genetic markers, IL1A -889T allele had strongest association with IDD-phenotype.
Kurome, Mayuko; Geistlinger, Ludwig; Kessler, Barbara; Zakhartchenko, Valeri; Klymiuk, Nikolai; Wuensch, Annegret; Richter, Anne; Baehr, Andrea; Kraehe, Katrin; Burkhardt, Katinka; Flisikowski, Krzysztof; Flisikowska, Tatiana; Merkl, Claudia; Landmann, Martina; Durkovic, Marina; Tschukes, Alexander; Kraner, Simone; Schindelhauer, Dirk; Petri, Tobias; Kind, Alexander; Nagashima, Hiroshi; Schnieke, Angelika; Zimmer, Ralf; Wolf, Eckhard
2013-05-20
Somatic cell nuclear transfer (SCNT) using genetically engineered donor cells is currently the most widely used strategy to generate tailored pig models for biomedical research. Although this approach facilitates a similar spectrum of genetic modifications as in rodent models, the outcome in terms of live cloned piglets is quite variable. In this study, we aimed at a comprehensive analysis of environmental and experimental factors that are substantially influencing the efficiency of generating genetically engineered pigs. Based on a considerably large data set from 274 SCNT experiments (in total 18,649 reconstructed embryos transferred into 193 recipients), performed over a period of three years, we assessed the relative contribution of season, type of genetic modification, donor cell source, number of cloning rounds, and pre-selection of cloned embryos for early development to the cloning efficiency. 109 (56%) recipients became pregnant and 85 (78%) of them gave birth to offspring. Out of 318 cloned piglets, 243 (76%) were alive, but only 97 (40%) were clinically healthy and showed normal development. The proportion of stillborn piglets was 24% (75/318), and another 31% (100/318) of the cloned piglets died soon after birth. The overall cloning efficiency, defined as the number of offspring born per SCNT embryos transferred, including only recipients that delivered, was 3.95%. SCNT experiments performed during winter using fetal fibroblasts or kidney cells after additive gene transfer resulted in the highest number of live and healthy offspring, while two or more rounds of cloning and nuclear transfer experiments performed during summer decreased the number of healthy offspring. Although the effects of individual factors may be different between various laboratories, our results and analysis strategy will help to identify and optimize the factors, which are most critical to cloning success in programs aiming at the generation of genetically engineered pig models.
Telos, conservation of welfare, and ethical issues in genetic engineering of animals.
Rollin, Bernard E
2015-01-01
The most long-lived metaphysics or view of reality in the history of Western thought is Aristotle's teleology, which reigned for almost 2,000 years. Biology was expressed in terms of function or telos, and accorded perfectly with common sense. The rise of mechanistic, Newtonian science vanquished teleological explanations. Understanding and accommodating animal telos was essential to success in animal husbandry, which involved respect for telos, and was presuppositional to our "ancient contract" with domestic animals. Telos was further abandoned with the rise of industrial agriculture, which utilized "technological fixes" to force animal into environments they were unsuited for, while continuing to be productive. Loss of husbandry and respect for telos created major issues for farm animal welfare, and forced the creation of a new ethic demanding respect for telos. As genetic engineering developed, the notion arose of modifying animals to fit their environment in order to avoid animal suffering, rather than fitting them into congenial environments. Most people do not favor changing the animals, rather than changing the conditions under which they are reared. Aesthetic appreciation of husbandry and virtue ethics militate in favor of restoring husbandry, rather than radically changing animal teloi. One, however, does not morally wrong teloi by changing them-one can only wrong individuals. In biomedical research, we do indeed inflict major pain, suffering and disease on animals. And genetic engineering seems to augment our ability to create animals to model diseases, particularly more than 3,000 known human genetic diseases. The disease, known as Lesch-Nyhan's syndrome or HPRT deficiency, which causes self-mutilation and mental retardation, provides us with a real possibility for genetically creating "animal models" of this disease, animals doomed to a life of great and unalleviable suffering. This of course creates a major moral dilemma. Perhaps one can use the very genetic engineering which creates this dilemma to ablate consciousness in such animal models, thereby escaping a moral impasse.
The ecological risks of transgenic plants.
Giovannetti, Manuela
2003-01-01
Biotechnologies have been utilized "ante litteram" for thousands of years to produce food and drink and genetic engineering techniques have been widely applied to produce many compounds for human use, from insulin to other medicines. The debate on genetically modified (GM) organisms broke out all over the world only when GM crops were released into the field. Plant ecologists, microbiologists and population geneticists carried out experiments aimed at evaluating the environmental impact of GM crops. The most significant findings concern: the spread of transgenes through GM pollen diffusion and its environmental impact after hybridisation with closely related wild species or subspecies; horizontal gene transfer from transgenic plants to soil microbes; the impact of insecticide proteins released into the soil by transformed plants on non-target microbial soil communities. Recent developments in genetic engineering produced a technology, dubbed "Terminator", which protects patented genes introduced in transgenic plants by killing the seeds in the second generation. This genetic construct, which interferes so heavily with fundamental life processes, is considered dangerous and should be ex-ante evaluated taking into account the data on "unexpected events", as here discussed, instead of relying on the "safe until proven otherwise" claim. Awareness that scientists, biotechnologists and genetic engineers cannot answer the fundamental question "how likely is that transgenes will be transferred from cultivated plants into the natural environment?" should foster long-term studies on the ecological risks and benefits of transgenic crops.
Carretta, Marco; de Boer, Bauke; Jaques, Jenny; Antonelli, Antonella; Horton, Sarah J; Yuan, Huipin; de Bruijn, Joost D; Groen, Richard W J; Vellenga, Edo; Schuringa, Jan Jacob
2017-07-01
Recently, NOD-SCID IL2Rγ -/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34 + hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34 + cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34 + cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis. Copyright © 2017 ISEH - International Society for Experimental Hematology. All rights reserved.
Huang, Jianguo; Chen, Mark; Whitley, Melodi Javid; Kuo, Hsuan-Cheng; Xu, Eric S.; Walens, Andrea; Mowery, Yvonne M.; Van Mater, David; Eward, William C.; Cardona, Diana M.; Luo, Lixia; Ma, Yan; Lopez, Omar M.; Nelson, Christopher E.; Robinson-Hamm, Jacqueline N.; Reddy, Anupama; Dave, Sandeep S.; Gersbach, Charles A.; Dodd, Rebecca D.; Kirsch, David G.
2017-01-01
Genetically engineered mouse models that employ site-specific recombinase technology are important tools for cancer research but can be costly and time-consuming. The CRISPR-Cas9 system has been adapted to generate autochthonous tumours in mice, but how these tumours compare to tumours generated by conventional recombinase technology remains to be fully explored. Here we use CRISPR-Cas9 to generate multiple subtypes of primary sarcomas efficiently in wild type and genetically engineered mice. These data demonstrate that CRISPR-Cas9 can be used to generate multiple subtypes of soft tissue sarcomas in mice. Primary sarcomas generated with CRISPR-Cas9 and Cre recombinase technology had similar histology, growth kinetics, copy number variation and mutational load as assessed by whole exome sequencing. These results show that sarcomas generated with CRISPR-Cas9 technology are similar to sarcomas generated with conventional modelling techniques and suggest that CRISPR-Cas9 can be used to more rapidly generate genotypically and phenotypically similar cancers. PMID:28691711
Genetically Engineered Plants and Foods: A Scientist's Analysis of the Issues (Part I).
Lemaux, Peggy G
2008-01-01
Through the use of the new tools of genetic engineering, genes can be introduced into the same plant or animal species or into plants or animals that are not sexually compatible-the latter is a distinction with classical breeding. This technology has led to the commercial production of genetically engineered (GE) crops on approximately 250 million acres worldwide. These crops generally are herbicide and pest tolerant, but other GE crops in the pipeline focus on other traits. For some farmers and consumers, planting and eating foods from these crops are acceptable; for others they raise issues related to safety of the foods and the environment. In Part I of this review some general and food issues raised regarding GE crops and foods will be addressed. Responses to these issues, where possible, cite peer-reviewed scientific literature. In Part II to appear in 2009, issues related to environmental and socioeconomic aspects of GE crops and foods will be covered.
RNAi-mediated resistance to viruses in genetically engineered plants.
Ibrahim, Abdulrazak B; Aragão, Francisco J L
2015-01-01
RNA interference (RNAi) has emerged as a leading technology in designing genetically modified crops engineered to resist viral infection. The last decades have seen the development of a large number of crops whose inherent posttranscriptional gene silencing mechanism has been exploited to target essential viral genes through the production of dsRNA that triggers an endogenous RNA-induced silencing complex (RISC), leading to gene silencing in susceptible viruses conferring them with resistance even before the onset of infection. Selection and breeding events have allowed for establishing this highly important agronomic trait in diverse crops. With improved techniques and the availability of new data on genetic diversity among several viruses, significant progress is being made in engineering plants using RNAi with the release of a number of commercially available crops. Biosafety concerns with respect to consumption of RNAi crops, while relevant, have been addressed, given the fact that experimental evidence using miRNAs associated with the crops shows that they do not pose any health risk to humans and animals.
Neurodevelopmental Malformations of the Cerebellar Vermis in Genetically Engineered Rats.
Ramos, Raddy L; Van Dine, Sarah E; Gilbert, Mary E; Leheste, Joerg R; Torres, German
2015-12-01
The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformations are almost exclusively found along the primary fissure and are indicative of deficits of neuronal migration during cerebellar development. In the present report, we test the prediction that genetically engineered rats on Sprague-Dawley or Long-Evans backgrounds will also exhibit the same cerebellar malformations. Consistent with our hypothesis, we found that three different transgenic lines on two different backgrounds had cerebellar malformations. Heterotopia in transgenic rats had identical cytoarchitecture as that observed in wild-type rats including altered morphology of Bergmann glia. In light of the possibility that heterotopia could affect results from behavioral studies, these data suggest that histological analyses be performed in studies of cerebellar function or development when using genetically engineered rats on these backgrounds in order to have more careful interpretation of experimental findings.
Chen, Bailing; Wan, Chun; Mehmood, Muhammad Aamer; Chang, Jo-Shu; Bai, Fengwu; Zhao, Xinqing
2017-11-01
Microalgae have promising potential to produce lipids and a variety of high-value chemicals. Suitable stress conditions such as nitrogen starvation and high salinity could stimulate synthesis and accumulation of lipids and high-value products by microalgae, therefore, various stress-modification strategies were developed to manipulate and optimize cultivation processes to enhance bioproduction efficiency. On the other hand, advancements in omics-based technologies have boosted the research to globally understand microalgal gene regulation under stress conditions, which enable further improvement of production efficiency via genetic engineering. Moreover, integration of multi-omics data, synthetic biology design, and genetic engineering manipulations exhibits a tremendous potential in the betterment of microalgal biorefinery. This review discusses the process manipulation strategies and omics studies on understanding the regulation of metabolite biosynthesis under various stressful conditions, and proposes genetic engineering of microalgae to improve bioproduction via manipulating stress tolerance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology.
Wang, Baojun; Kitney, Richard I; Joly, Nicolas; Buck, Martin
2011-10-18
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ(54)-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts. © 2011 Macmillan Publishers Limited. All rights reserved.
Systems metabolic engineering of Escherichia coli for L-threonine production.
Lee, Kwang Ho; Park, Jin Hwan; Kim, Tae Yong; Kim, Hyun Uk; Lee, Sang Yup
2007-01-01
Amino-acid producers have traditionally been developed by repeated random mutagenesis owing to the difficulty in rationally engineering the complex and highly regulated metabolic network. Here, we report the development of the genetically defined L-threonine overproducing Escherichia coli strain by systems metabolic engineering. Feedback inhibitions of aspartokinase I and III (encoded by thrA and lysC, respectively) and transcriptional attenuation regulations (located in thrL) were removed. Pathways for Thr degradation were removed by deleting tdh and mutating ilvA. The metA and lysA genes were deleted to make more precursors available for Thr biosynthesis. Further target genes to be engineered were identified by transcriptome profiling combined with in silico flux response analysis, and their expression levels were manipulated accordingly. The final engineered E. coli strain was able to produce Thr with a high yield of 0.393 g per gram of glucose, and 82.4 g/l Thr by fed-batch culture. The systems metabolic engineering strategy reported here may be broadly employed for developing genetically defined organisms for the efficient production of various bioproducts.
Genetically modified (GM) crops: milestones and new advances in crop improvement.
Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis
2016-09-01
New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.
Floares, Alexandru George
2008-01-01
Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.
Transporter engineering in biomass utilization by yeast.
Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko
2017-11-01
Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Natural and Genetically Engineered Proteins for Tissue Engineering
Gomes, Sílvia; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.
2011-01-01
To overcome the limitations of traditionally used autografts, allografts and, to a lesser extent, synthetic materials, there is the need to develop a new generation of scaffolds with adequate mechanical and structural support, control of cell attachment, migration, proliferation and differentiation and with bio-resorbable features. This suite of properties would allow the body to heal itself at the same rate as implant degradation. Genetic engineering offers a route to this level of control of biomaterial systems. The possibility of expressing biological components in nature and to modify or bioengineer them further, offers a path towards multifunctional biomaterial systems. This includes opportunities to generate new protein sequences, new self-assembling peptides or fusions of different bioactive domains or protein motifs. New protein sequences with tunable properties can be generated that can be used as new biomaterials. In this review we address some of the most frequently used proteins for tissue engineering and biomedical applications and describe the techniques most commonly used to functionalize protein-based biomaterials by combining them with bioactive molecules to enhance biological performance. We also highlight the use of genetic engineering, for protein heterologous expression and the synthesis of new protein-based biopolymers, focusing the advantages of these functionalized biopolymers when compared with their counterparts extracted directly from nature and modified by techniques such as physical adsorption or chemical modification. PMID:22058578
Wang, Baojun; Barahona, Mauricio; Buck, Martin
2013-01-01
Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411
... insert that gene into a cell of another plant or animal. ... Bioengineered foods; GMOs; Genetically modified foods ... also be moved from an animal to a plant or vice versa. Another ... organisms, or GMOs. The process to create GE foods is different ...
Moral and Legal Decisions in Reproductive and Genetic Engineering
ERIC Educational Resources Information Center
Heim, Werner G.
1972-01-01
Discusses the moral and ethical issues raised by the imminent possibilities for genetic and reproductive manipulation of humans, the responsibilities of scientists, moralists, and social scientists, and the role of teachers in public information. (AL)
ERIC Educational Resources Information Center
Discover, 1982
1982-01-01
Highlights scientific accomplishments in 1981. Focuses on space sciences, medicine, geology, chemistry, physics, zoology, paleontology, environmental problems, and genetics including such topics as the Space Shuttle, Mount St. Helen's endangered species, genetic engineering, and the scientists associated with these accomplishments. (JN)
Orzechowski, Krystyna L; Swain, Marla D; Robl, Martin G; Tinaza, Constante A; Swaim, Heidi L; Jones, Yolanda L; Myers, Michael J; Yancy, Haile F
2012-09-01
To develop in genetically engineered mice an alternative screening method for evaluation of P-glycoprotein substrate toxicosis in ivermectin-sensitive Collies. 14 wild-type C57BL/6J mice (controls) and 21 genetically engineered mice in which the abcb1a and abcb1b genes were disrupted and the mutated canine ABCB1 gene was inserted. Mice were allocated to receive 10 mg of ivermectin/kg via SC injection (n = 30) or a vehicle-only formulation of propylene glycol and glycerol formal (5). Each was observed for clinical signs of toxic effects from 0 to 7 hours following drug administration. After ivermectin administration, considerable differences were observed in drug sensitivity between the 2 types of mice. The genetically engineered mice with the mutated canine ABCB1 gene had signs of severe sensitivity to ivermectin, characterized by progressive lethargy, ataxia, and tremors, whereas the wild-type control mice developed no remarkable effects related to the ivermectin. The ivermectin sensitivity modeled in the transgenic mice closely resembled the lethargy, stupor, disorientation, and loss of coordination observed in ivermectin-sensitive Collies with the ABCB1-1Δ mutation. As such, the model has the potential to facilitate toxicity assessments of certain drugs for dogs that are P-glycoprotein substrates, and it may serve to reduce the use of dogs in avermectin derivative safety studies that are part of the new animal drug approval process.
Transgenic oil palm: production and projection.
Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C
2000-12-01
Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.
Czajka, Jeffrey; Wang, Qinhong; Wang, Yechun; Tang, Yinjie J
2017-10-01
Genetically modified microbes have had much industrial success producing protein-based products (such as antibodies and enzymes). However, engineering microbial workhorses for biomanufacturing of commodity compounds remains challenging. First, microbes cannot afford burdens with both overexpression of multiple enzymes and metabolite drainage for product synthesis. Second, synthetic circuits and introduced heterologous pathways are not yet as "robust and reliable" as native pathways due to hosts' innate regulations, especially under suboptimal fermentation conditions. Third, engineered enzymes may lack channeling capabilities for cascade-like transport of metabolites to overcome diffusion barriers or to avoid intermediate toxicity in the cytoplasmic environment. Fourth, moving engineered hosts from laboratory to industry is unreliable because genetic mutations and non-genetic cell-to-cell variations impair the large-scale fermentation outcomes. Therefore, synthetic biology strains often have unsatisfactory industrial performance (titer/yield/productivity). To overcome these problems, many different species are being explored for their metabolic strengths that can be leveraged to synthesize specific compounds. Here, we provide examples of non-conventional and genetically amenable species for industrial manufacturing, including the following: Corynebacterium glutamicum for its TCA cycle-derived biosynthesis, Yarrowia lipolytica for its biosynthesis of fatty acids and carotenoids, cyanobacteria for photosynthetic production from its sugar phosphate pathways, and Rhodococcus for its ability to biotransform recalcitrant feedstock. Finally, we discuss emerging technologies (e.g., genome-to-phenome mapping, single cell methods, and knowledge engineering) that may facilitate the development of novel cell factories.
Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants.
Li, Yuanyuan; Heckmann, David; Lercher, Martin J; Maurino, Veronica G
2017-01-01
To feed a world population projected to reach 9 billion people by 2050, the productivity of major crops must be increased by at least 50%. One potential route to boost the productivity of cereals is to equip them genetically with the 'supercharged' C 4 type of photosynthesis; however, the necessary genetic modifications are not sufficiently understood for the corresponding genetic engineering programme. In this opinion paper, we discuss a strategy to solve this problem by developing a new paradigm for plant breeding. We propose combining the bioengineering of well-understood traits with subsequent evolutionary engineering, i.e. mutagenesis and artificial selection. An existing mathematical model of C 3 -C 4 evolution is used to choose the most promising path towards this goal. Based on biomathematical simulations, we engineer Arabidopsis thaliana plants that express the central carbon-fixing enzyme Rubisco only in bundle sheath cells (Ru-BSC plants), the localization characteristic for C 4 plants. This modification will initially be deleterious, forcing the Ru-BSC plants into a fitness valley from where previously inaccessible adaptive steps towards C 4 photosynthesis become accessible through fitness-enhancing mutations. Mutagenized Ru-BSC plants are then screened for improved photosynthesis, and are expected to respond to imposed artificial selection pressures by evolving towards C 4 anatomy and biochemistry. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Tipping Points in Seaweed Genetic Engineering: Scaling Up Opportunities in the Next Decade
Lin, Hanzhi; Qin, Song
2014-01-01
Seaweed genetic engineering is a transgenic expression system with unique features compared with those of heterotrophic prokaryotes and higher plants. This study discusses several newly sequenced seaweed nuclear genomes and the necessity that research on vector design should consider endogenous promoters, codon optimization, and gene copy number. Seaweed viruses and artificial transposons can be applied as transformation methods after acquiring a comprehensive understanding of the mechanism of viral infections in seaweeds and transposon patterns in seaweed genomes. After cultivating transgenic algal cells and tissues in a photobioreactor, a biosafety assessment of genetically modified (GM) seaweeds must be conducted before open-sea application. We propose a set of programs for the evaluation of gene flow from GM seaweeds to local/geographical environments. The effective implementation of such programs requires fundamentally systematic and interdisciplinary studies on algal physiology and genetics, marine hydrology, reproductive biology, and ecology. PMID:24857961
Tipping points in seaweed genetic engineering: scaling up opportunities in the next decade.
Lin, Hanzhi; Qin, Song
2014-05-22
Seaweed genetic engineering is a transgenic expression system with unique features compared with those of heterotrophic prokaryotes and higher plants. This study discusses several newly sequenced seaweed nuclear genomes and the necessity that research on vector design should consider endogenous promoters, codon optimization, and gene copy number. Seaweed viruses and artificial transposons can be applied as transformation methods after acquiring a comprehensive understanding of the mechanism of viral infections in seaweeds and transposon patterns in seaweed genomes. After cultivating transgenic algal cells and tissues in a photobioreactor, a biosafety assessment of genetically modified (GM) seaweeds must be conducted before open-sea application. We propose a set of programs for the evaluation of gene flow from GM seaweeds to local/geographical environments. The effective implementation of such programs requires fundamentally systematic and interdisciplinary studies on algal physiology and genetics, marine hydrology, reproductive biology, and ecology.
Biotechnology, Genetic Engineering and Society. Monograph Series: III.
ERIC Educational Resources Information Center
Kieffer, George H.
New techniques have expanded the field of biotechnology and awarded scientists an unprecedented degree of control over the genetic constitutions of living things. The knowledge of DNA science is the basis for this burgeoning industry which may be a major force in human existence. Just as it is possible to move genetic material from one organism to…
Food biotechnology's challenge to cultural integrity and individual consent.
Thompson, P B
1997-01-01
Consumer response to genetically altered foods has been mixed in the United States. While transgenic crops have entered the food supply with little comment, other foods, such as the bioengineered tomato, have caused considerable controversy. Objections to genetically engineered food are varied, ranging from the religious to the aesthetic. One need not endorse these concerns to conclude that food biotechnology violates procedural protections of consumer sovereignty and religious liberty. Consumer sovereignty, a principle especially valued in this country, requires that information be made available so each individual or group may make food choices based on their own values. And as yet, there is no policy provision for informing consumers about the degree to which food has been genetically engineered.
Yeast diversity and native vigor for flavor phenotypes.
Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S
2015-03-01
Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genetically Engineered Microelectronic Infrared Filters
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
1998-01-01
A genetic algorithm is used for design of infrared filters and in the understanding of the material structure of a resonant tunneling diode. These two components are examples of microdevices and nanodevices that can be numerically simulated using fundamental mathematical and physical models. Because the number of parameters that can be used in the design of one of these devices is large, and because experimental exploration of the design space is unfeasible, reliable software models integrated with global optimization methods are examined The genetic algorithm and engineering design codes have been implemented on massively parallel computers to exploit their high performance. Design results are presented for the infrared filter showing new and optimized device design. Results for nanodevices are presented in a companion paper at this workshop.
Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.
Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash
2018-01-01
Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria.
Nozzi, Nicole E; Atsumi, Shota
2015-11-20
Cyanobacteria have gained popularity among the metabolic engineering community as a tractable photosynthetic host for renewable chemical production. However, though a number of successfully engineered production systems have been reported, long-term genetic stability remains an issue for cyanobacterial systems. The genetic engineering toolbox for cyanobacteria is largely lacking inducible systems for expression control. The characterization of tight regulation systems for use in cyanobacteria may help to alleviate this problem. In this work we explore the function of the IPTG inducible promoter P(L)lacO1 in the model cyanobacterium Synechococcus elongatus PCC 7942 as well as the effect of gene order within an operon on pathway expression. According to our experiments, P(L)lacO1 functions well as an inducible promoter in S. elongatus. Additionally, we found that gene order within an operon can strongly influence control of expression of each gene.
Toward scalable parts families for predictable design of biological circuits.
Lucks, Julius B; Qi, Lei; Whitaker, Weston R; Arkin, Adam P
2008-12-01
Our current ability to engineer biological circuits is hindered by design cycles that are costly in terms of time and money, with constructs failing to operate as desired, or evolving away from the desired function once deployed. Synthetic biologists seek to understand biological design principles and use them to create technologies that increase the efficiency of the genetic engineering design cycle. Central to the approach is the creation of biological parts--encapsulated functions that can be composited together to create new pathways with predictable behaviors. We define five desirable characteristics of biological parts--independence, reliability, tunability, orthogonality and composability, and review studies of small natural and synthetic biological circuits that provide insights into each of these characteristics. We propose that the creation of appropriate sets of families of parts with these properties is a prerequisite for efficient, predictable engineering of new function in cells and will enable a large increase in the sophistication of genetic engineering applications.
Optimization of a Turboprop UAV for Maximum Loiter and Specific Power Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Dinc, Ali
2016-09-01
In this study, a genuine code was developed for optimization of selected parameters of a turboprop engine for an unmanned aerial vehicle (UAV) by employing elitist genetic algorithm. First, preliminary sizing of a UAV and its turboprop engine was done, by the code in a given mission profile. Secondly, single and multi-objective optimization were done for selected engine parameters to maximize loiter duration of UAV or specific power of engine or both. In single objective optimization, as first case, UAV loiter time was improved with an increase of 17.5% from baseline in given boundaries or constraints of compressor pressure ratio and burner exit temperature. In second case, specific power was enhanced by 12.3% from baseline. In multi-objective optimization case, where previous two objectives are considered together, loiter time and specific power were increased by 14.2% and 9.7% from baseline respectively, for the same constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The books selected for this review could serve to establish or strengthen the background of the chemical engineer who seeks to enter the field of biotechnology, which is described as a field linking three different branches of science - microbiology, biochemistry and engineering. Nineteen books on biotechnology under the headings Science, Genetic Engineering, Biochemical Engineering, Biomass Energy, Directories and sourcebook are reviewed and titles of five other books received too late for comment given.
Engineer Novel Anticancer Bioagents
2010-10-01
selection (hence to create marker-free genetically modified organism – GMO as required by FDA regulations) have failed. The overall transformation...free genetically modified organism – GMO , as required by FDA regulations). Key Research Status 1. Reconstitution of a complete FK228 biosynthetic
Mammary cancer in humans and mice: a tutorial for comparative pathology. The CD-ROM.
Cardiff, R D; Wagner, U; Hennighausen, L
2000-04-01
This article introduces a CD-ROM containing whole-mount and histological images of normal growth and development of both the mouse mammary gland and the human breast. It also covers nonneoplastic lesions and neoplasias in both species including a catalog of lesions in genetically engineered mice. Instructions, with examples, on techniques such as whole-mount preparation, immunohistochemistry, in situ hybridization, and common histological stains are provided. The images are based on full-scale 1996 x 1640 pixel images at 300 pixels/ inch and are annotated. Every genetically engineered model has one or more accompanying citations. Tables are provided for orientation and organization. The CD includes zoom capabilities, a search engine, and a help mode.
Therapeutic uses of microencapsulated genetically engineered cells.
Chang, T M; Prakash, S
1998-05-01
Microencapsulated genetically engineered cells have the potential to treat a wide range of diseases. For example, in experimental animals, implanted microencapsulated cells have been used to secrete growth hormone to treat dwarfism, neurotrophic factors for amyotrophic lateral sclerosis, beta-endorphin to decrease pain, factor XI for hemophilia B, and nerve growth factors to protect axotomized neurons. For some applications, microencapsulated cells can even be given orally. They can be engineered to remove unwanted molecules from the body as they travel through the intestine, and are finally excreted in the stool without being retained in the body. This application has enormous potential for the removal of urea in kidney failure, ammonia in liver failure and amino acids such as phenylalanine in phenylketonuria and other inborn errors of metabolism.
Breakthrough in chloroplast genetic engineering of agronomically important crops
Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie
2012-01-01
Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001