Science.gov

Sample records for genetically increased antioxidative

  1. Antioxidants can increase melanoma metastasis in mice.

    PubMed

    Le Gal, Kristell; Ibrahim, Mohamed X; Wiel, Clotilde; Sayin, Volkan I; Akula, Murali K; Karlsson, Christin; Dalin, Martin G; Akyürek, Levent M; Lindahl, Per; Nilsson, Jonas; Bergo, Martin O

    2015-10-07

    Antioxidants in the diet and supplements are widely used to protect against cancer, but clinical trials with antioxidants do not support this concept. Some trials show that antioxidants actually increase cancer risk and a study in mice showed that antioxidants accelerate the progression of primary lung tumors. However, little is known about the impact of antioxidant supplementation on the progression of other types of cancer, including malignant melanoma. We show that administration of N-acetylcysteine (NAC) increases lymph node metastases in an endogenous mouse model of malignant melanoma but has no impact on the number and size of primary tumors. Similarly, NAC and the soluble vitamin E analog Trolox markedly increased the migration and invasive properties of human malignant melanoma cells but did not affect their proliferation. Both antioxidants increased the ratio between reduced and oxidized glutathione in melanoma cells and in lymph node metastases, and the increased migration depended on new glutathione synthesis. Furthermore, both NAC and Trolox increased the activation of the small guanosine triphosphatase (GTPase) RHOA, and blocking downstream RHOA signaling abolished antioxidant-induced migration. These results demonstrate that antioxidants and the glutathione system play a previously unappreciated role in malignant melanoma progression.

  2. Antioxidant value addition in human diets: genetic transformation of Brassica juncea with gamma-TMT gene for increased alpha-tocopherol content.

    PubMed

    Yusuf, Mohd Aslam; Sarin, Neera Bhalla

    2007-02-01

    Alpha-tocopherol, the most biologically active form of vitamin E, is implicated in decreasing the risk of several types of cancers, coronary heart disease and a number of degenerative human conditions, when taken in excess of the recommended daily allowance. Natural alpha-tocopherol has twice the bioavailability of the synthetic isomer. This study describes a successful attempt at fortifying human diets with natural alpha-tocopherol by taking recourse to genetic engineering of an important oilseed crop, Brassica juncea. Gamma-tocopherol methyl transferase cDNA from Arabidopsis thaliana, coding for the enzyme catalysing the conversion of the large gamma-tocopherol pool to alpha-tocopherol, was overexpressed in B. juncea plants. The successful integration of the transgene was confirmed by PCR and Southern blot analysis, while the enhanced transcript level was evident in the northern blot analysis. HPLC analysis of the seeds of the T1 transgenic lines showed a shift in tocopherol profile with the highest over-expressors having alpha-tocopherol levels as high as sixfold over the non-transgenic controls. This study discusses the production of a transgenic oilseed crop with high alpha-tocopherol levels, which can provide a feasible, innocuous, and inexpensive way of taking the beneficial effects of high alpha-tocopherol intake to the masses.

  3. Antioxidant assay using genetically engineered bioluminescent Escherichia coli

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Macalino, Bernadette; Pastoral, Ian Lemuel; Sevilla, Fortunato, III

    2006-02-01

    A new antioxidant activity assay based on the reactive oxygen species (ROS)-inducible bacterial strain (E. coli DPD2511) is described. The strain harbors the plasmid pKatG::luxCDABE and responds to hydrogen peroxide treatment by increasing light emission at 490 nm. Antioxidant capacity is evaluated through the ability of an agent to inhibit the hydrogen peroxide-induced bioluminescence of E. coli DPD2511. Applicability of the developed assay in detecting levels of antioxidants in various aqueous plant extracts is demonstrated. The assay was validated against 2,2-diphenylpicrylhydrazyl (DPPH) assay, a known antioxidant assay.

  4. A novel technology to increase antioxidant activity of an antioxidant by reducing volatility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During frying, an antioxidant is lost by reaction with radicals for its antioxidant activity, but it is also lost by decomposition and evaporation before it is able to exert antioxidant activity. Some low molecular weight antioxidants are often so volatile that they show much reduced antioxidant act...

  5. Increased oxidative stress and impaired antioxidant response in Lafora disease.

    PubMed

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2015-01-01

    Lafora disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxiredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD.

  6. Increased production of nutriments by genetically engineered crops.

    PubMed

    Sévenier, Robert; van der Meer, Ingrid M; Bino, Raoul; Koops, Andries J

    2002-06-01

    Plants are the basis of human nutrition and have been selected and improved to assure this purpose. Nowadays, new technologies such as genetic engineering and genomics approaches allow further improvement of plants. We describe here three examples for which these techniques have been employed. We introduced the first enzyme involved in fructan synthesis, the sucrose sucrose fructosyltransferase (isolated from Jerusalem artichoke), into sugar beet. The transgenic sugar beet showed a dramatic change in the nature of the accumulated sugar, 90% of the sucrose being converted into fructan. The use of transgenic sugar beet for the production and isolation of fructans will result in a more efficient plant production system of fructans and should promote their use in human food. The second example shows how the over-expression of the key enzyme of flavonoid biosynthesis could increase anti-oxidant levels in tomato. Introduction of a highly expressed chalcone isomerase led to a seventyfold increase of the amount of quercetin glucoside, which is a strong anti-oxidant in tomato. We were also able to modify the essential amino acid content of potato in order to increase its nutritional value. The introduction of a feedback insensitive bacterial gene involved in biosynthesis of aspartate family amino acids led to a sixfold increase of the lysine content. Because the use of a bacterial gene could appear to be controversial, we also introduced a mutated form of the plant key enzyme of lysine biosynthesis (dihydrodipicolinate synthase) in potato. This modification led to a 15 times increase of the lysine content of potato. This increase of the essential amino acid lysine influences the nutritional value of potato, which normally has low levels of several essential amino acids. These three examples show how the metabolism of primary constituents of the plant cell such as sugar or amino acids, but also of secondary metabolites such as flavonoids, can be modified by genetic

  7. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging.

    PubMed

    Umanskaya, Alisa; Santulli, Gaetano; Xie, Wenjun; Andersson, Daniel C; Reiken, Steven R; Marks, Andrew R

    2014-10-21

    Age-related skeletal muscle dysfunction is a leading cause of morbidity that affects up to half the population aged 80 or greater. Here we tested the effects of increased mitochondrial antioxidant activity on age-dependent skeletal muscle dysfunction using transgenic mice with targeted overexpression of the human catalase gene to mitochondria (MCat mice). Aged MCat mice exhibited improved voluntary exercise, increased skeletal muscle specific force and tetanic Ca(2+) transients, decreased intracellular Ca(2+) leak and increased sarcoplasmic reticulum (SR) Ca(2+) load compared with age-matched wild type (WT) littermates. Furthermore, ryanodine receptor 1 (the sarcoplasmic reticulum Ca(2+) release channel required for skeletal muscle contraction; RyR1) from aged MCat mice was less oxidized, depleted of the channel stabilizing subunit, calstabin1, and displayed increased single channel open probability (Po). Overall, these data indicate a direct role for mitochondrial free radicals in promoting the pathological intracellular Ca(2+) leak that underlies age-dependent loss of skeletal muscle function. This study harbors implications for the development of novel therapeutic strategies, including mitochondria-targeted antioxidants for treatment of mitochondrial myopathies and other healthspan-limiting disorders.

  8. Genetic markers for antioxidant capacity in a reef-building coral

    PubMed Central

    Jin, Young K.; Lundgren, Petra; Lutz, Adrian; Raina, Jean-Baptiste; Howells, Emily J.; Paley, Allison S.; Willis, Bette L.; van Oppen, Madeleine J. H.

    2016-01-01

    The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985–2012. We conducted a gene-by-environment association analysis across 12° latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs. PMID:27386515

  9. Genetic markers for antioxidant capacity in a reef-building coral.

    PubMed

    Jin, Young K; Lundgren, Petra; Lutz, Adrian; Raina, Jean-Baptiste; Howells, Emily J; Paley, Allison S; Willis, Bette L; van Oppen, Madeleine J H

    2016-05-01

    The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985-2012. We conducted a gene-by-environment association analysis across 12° latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs.

  10. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype.

    PubMed

    Talens, P; Mora, L; Bramley, Peter M; Fraser, Paul D

    2016-12-15

    The economic value, the ease of cultivation and processing, and the well-known health-promoting properties of tomato fruit, make the tomato an important target for genetic manipulation to increase its nutritional content. A transgenic variety, down-regulated in the DETIOLATED-1 (DET-1) gene, has been studied in comparison with the parental line, for antioxidant levels in fresh and hot break fruit, as well as the bioaccessibility of antioxidants from puree. Differences in the concentrations of antioxidants between the wild-type and the genetically modified raw tomatoes were confirmed, but antioxidant levels were maintained to a greater extent in the GM puree than in the parent. The bioaccessibility of the compounds, tested using an in vitro digestion model, showed an increase in the genetically modified samples.

  11. Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties.

    PubMed

    Pons, Elsa; Alquézar, Berta; Rodríguez, Ana; Martorell, Patricia; Genovés, Salvador; Ramón, Daniel; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit's health benefits. In this work, we have afforded enhancing the β-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous β-carotene hydroxylase gene (Csβ-CHX) that is involved in the conversion of β-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csβ-CHX gene resulted in oranges with a deep yellow ('golden') phenotype and significant increases (up to 36-fold) in β-carotene content in the pulp. The capacity of β-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the β-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.

  12. Genetics meets pathology - an increasingly important relationship.

    PubMed

    Bonthron, David T; Foulkes, William D

    2017-01-01

    The analytical power of modern methods for DNA analysis has outstripped our capability to interpret and understand the data generated. To make good use of this genomic data in a biomedical setting (whether for research or diagnosis), it is vital that we understand the mechanisms through which mutations affect biochemical pathways and physiological systems. This lies at the centre of what genetics is all about, and it is the reason why genetics and genomics should go hand in hand whenever possible. In this Annual Review Issue of The Journal of Pathology, we have assembled a collection of 16 expert reviews covering a wide range of topics. Through these, we illustrate the power of genetic analysis to improve our understanding of normal physiology and disease pathology, and thereby to think in rational ways about clinical management. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Effects of genetic, pre- and post-harvest factors on phenolic content and antioxidant capacity of white asparagus spears.

    PubMed

    Papoulias, Eleftherios; Siomos, Anastasios S; Koukounaras, Athanasios; Gerasopoulos, Dimitrios; Kazakis, Evangelos

    2009-12-16

    The effects of genetic, pre-harvest (season of harvest, spear diameter, spear portion and spear tip color) and post-harvest factors (storage and domestic preparation practices, e.g., peeling and cooking) on total phenolic, flavonoid and ascorbic acid content of white asparagus spears and their correlation with antioxidant capacity (DPPH and FRAP) were studied. Results showed that genetic material was important for the total phenolic content but not season of harvest, spear diameter or storage. Violet spear tips and apical spear portions showed the largest amount of total phenolics. Peeling did not affect total phenolics in fresh asparagus, whereas it reduced their content in stored asparagus, while cooking resulted in an increase in both fresh and stored asparagus. However, the soluble extract of total phenolics and flavonoids were minor and the missing significance of phenolics and flavonoids in antioxidant capacity of white asparagus spears depends on these small amounts.

  14. Effects of Genetic, Pre- and Post-Harvest Factors on Phenolic Content and Antioxidant Capacity of White Asparagus Spears

    PubMed Central

    Papoulias, Eleftherios; Siomos, Anastasios S.; Koukounaras, Athanasios; Gerasopoulos, Dimitrios; Kazakis, Evangelos

    2009-01-01

    The effects of genetic, pre-harvest (season of harvest, spear diameter, spear portion and spear tip color) and post-harvest factors (storage and domestic preparation practices, e.g., peeling and cooking) on total phenolic, flavonoid and ascorbic acid content of white asparagus spears and their correlation with antioxidant capacity (DPPH and FRAP) were studied. Results showed that genetic material was important for the total phenolic content but not season of harvest, spear diameter or storage. Violet spear tips and apical spear portions showed the largest amount of total phenolics. Peeling did not affect total phenolics in fresh asparagus, whereas it reduced their content in stored asparagus, while cooking resulted in an increase in both fresh and stored asparagus. However, the soluble extract of total phenolics and flavonoids were minor and the missing significance of phenolics and flavonoids in antioxidant capacity of white asparagus spears depends on these small amounts. PMID:20054475

  15. Antioxidants

    MedlinePlus

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  16. Genetic linkage between protein and DNA polymorphisms and antioxidant capacity of Cuminum cyminum L. accessions.

    PubMed

    Abdelhaliem, E; Al-Huqail, A A

    2016-10-06

    This study aimed to link the genetic variation observed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and random amplified polymorphic DNA (RAPD) analysis among 11 Cuminum cyminum L. accessions, collected from diverse ecogeographical areas in Saudi Arabia, with their antioxidant capacity to better identify potential genotypes for breeding programs for this medicinal spice. SDS-PAGE analysis revealed genetic variation among cumin germplasms and distinct polymorphisms (100%). Protein polymorphisms were identified based on the number of polypeptide bands (288) with molecular weights ranging from 13.85 to 350 kDa, band intensity, the appearance of new bands, and the absence of other bands. RAPD analysis revealed 363 amplified DNA products with a high polymorphism value (98.88%) based on DNA band type (unique, non-unique, and monomorphic), DNA 90 to 1085-bp long, and band intensity. The unweighted pair group method with arithmetic mean clustering based on SDS-PAGE or RAPD and Jaccard's similarity coefficient divided cumin accessions into similar but distinct clusters with respect to their location of collection. The antioxidant potential of cumin accessions based on 1, 1-diphenyl-2-picrylhydrazyl radical scavenging activity, the β-carotene-linoleate model system, and total phenolic and flavonoid contents revealed distinct variability. These data indicate that cumin is a valuable genetic resource with high antioxidant activity. Additionally, clustering based on antioxidant activity was not identical to that based on SDS-PAGE and RAPD. Data and clustering of SDS-PAGE and RAPD, combined with the high antioxidant capacity of cumin accessions, are important for the efficient use of genetic resources of cumin in breeding strategies and genetic improvement programs.

  17. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle.

    PubMed

    Lawler, John M; Song, Wook; Demaree, Scott R

    2003-07-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  18. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Lawler, John M.; Song, Wook; Demaree, Scott R.; Bloomfield, S. A. (Principal Investigator)

    2003-01-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  19. Genetic diversity increases insect herbivory on oak saplings.

    PubMed

    Castagneyrol, Bastien; Lagache, Lélia; Giffard, Brice; Kremer, Antoine; Jactel, Hervé

    2012-01-01

    A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.

  20. Altered Antioxidant Status and Increased Lipid Per-Oxidation in Seminal Plasma of Tunisian Infertile Men

    PubMed Central

    Atig, Fatma; Raffa, Monia; Ali, Habib Ben; Abdelhamid, Kerkeni; Saad, Ali; Ajina, Mounir

    2012-01-01

    Human seminal plasma is a natural reservoir of antioxidants that protect spermatozoa from oxidative damages. There is evidence in literature supports the fact that impairments in seminal antioxidant and lipid per-oxidation status play important roles in the physiopathology of male infertility. Our present study forms the first one which was carried out in Tunisia. We evaluated the antioxidant status in the seminal plasma of 120 infertile men programmed to In Vitro Fertilization (IVF) for the first tentative. Patients were characterized by an idiopathic infertility. They were divided into three groups: normozoospermics who were considered as controls (n=40), asthenozoospermics (Astheno; n=45) and oligoasthenoteratozoospermics (OAT; n=35). Seminal activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) and the levels of glutathione (GSH), zinc (Zn) and malondialdehyde (MDA) were measured. With the significant increase of the seminal activities of SOD and GPX in normozoospermics group, there were positive correlations observed between this enzymes and sperm quality. Also, significant elevated rates of seminal zinc and GSH were observed in control group, but there was contradictory associations reflecting the effects of these antioxidants on semen parameters. However, we noted significant increase of MDA levels in groups with abnormal seminogram. We showed negative associations between this per-oxidative marker and sperm parameters. These results obviously suggested that impairment on seminal antioxidants is an important risk factor for low sperm quality associated to idiopathic infertility and as a result can lead to poor IVF outcome. PMID:22211112

  1. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies.

    PubMed

    Zhu, Changfu; Sanahuja, Georgina; Yuan, Dawei; Farré, Gemma; Arjó, Gemma; Berman, Judit; Zorrilla-López, Uxue; Banakar, Raviraj; Bai, Chao; Pérez-Massot, Eduard; Bassie, Ludovic; Capell, Teresa; Christou, Paul

    2013-02-01

    Antioxidants are protective molecules that neutralize reactive oxygen species and prevent oxidative damage to cellular components such as membranes, proteins and nucleic acids, therefore reducing the rate of cell death and hence the effects of ageing and ageing-related diseases. The fortification of food with antioxidants represents an overlap between two diverse environments, namely fortification of staple foods with essential nutrients that happen to have antioxidant properties (e.g. vitamins C and E) and the fortification of luxury foods with health-promoting but non-essential antioxidants such as flavonoids as part of the nutraceuticals/functional foods industry. Although processed foods can be artificially fortified with vitamins, minerals and nutraceuticals, a more sustainable approach is to introduce the traits for such health-promoting compounds at source, an approach known as biofortification. Regardless of the target compound, the same challenges arise when considering the biofortification of plants with antioxidants, that is the need to modulate endogenous metabolic pathways to increase the production of specific antioxidants without affecting plant growth and development and without collateral effects on other metabolic pathways. These challenges become even more intricate as we move from the engineering of individual pathways to several pathways simultaneously. In this review, we consider the state of the art in antioxidant biofortification and discuss the challenges that remain to be overcome in the development of nutritionally complete and health-promoting functional foods.

  2. Antioxidant capacities and total phenolic contents increase with gamma irradiation in two types of Malaysian honey.

    PubMed

    Hussein, Saba Zuhair; Yusoff, Kamaruddin Mohd; Makpol, Suzana; Yusof, Yasmin Anum Mohd

    2011-07-27

    Two types of monofloral Malaysian honey (Gelam and Nenas) were analyzed to determine their antioxidant activities and total phenolic and flavonoid contents, with and without gamma irradiation. Our results showed that both types of honey can scavenge free radicals and exhibit high antioxidant-reducing power; however, Gelam honey exhibited higher antioxidant activity (p < 0.05) than Nenas honey, which is in good correlation (r = 0.9899) with its phenolic contents. Interestingly, we also noted that both irradiated honeys have higher antioxidant activities and total phenolic and flavonoid contents compared to nonirradiated honeys by Folin-Ciocalteu and UV-spectrophotometry methods, respectively. However, HPLC analysis for phenolic compounds showed insignificant increase between irradiated and nonirradiated honeys. The phenolic compounds such as: caffeic acid, chlorogenic acid, ellagic acid, p- coumaric acid, quercetin and hesperetin as indicated by HPLC method were found to be higher in Gelam honey versus Nenas honey. In conclusion, irradiation of honey causes enhanced antioxidant activities and flavonoid compounds.

  3. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Caspers, P. J.; van der Pol, A.; Richter, H.; Patzelt, A.; Zastrow, L.; Darvin, M.; Sterry, W.; Fluhr, J. W.

    2009-01-01

    In the present study, the distribution of the carotenoids as a marker for the complete antioxidative potential in human skin was investigated before and after the topical application of carotenoids by in vivo Raman spectroscopy with an excitation wavelength of 785 nm. The carotenoid profile was assessed after a short term topical application in 4 healthy volunteers. In the untreated skin, the highest concentration of natural carotenoids was detected in different layers of the stratum corneum (SC) close to the skin surface. After topical application of carotenoids, an increase in the antioxidative potential in the skin could be observed. Topically applied carotenoids penetrate deep into the epidermis down to approximately 24 μm. This study supports the hypothesis that antioxidative substances are secreted via eccrine sweat glands and/or sebaceous glands to the skin surface. Subsequently they penetrate into the different layers of the SC.

  4. Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome.

    PubMed

    Basu, Arpita; Betts, Nancy M; Mulugeta, Afework; Tong, Capella; Newman, Emily; Lyons, Timothy J

    2013-03-01

    Green tea, a popular polyphenol-containing beverage, has been shown to alleviate clinical features of the metabolic syndrome. However, its effects in endogenous antioxidant biomarkers are not clearly understood. Thus, we tested the hypothesis that green tea supplementation will upregulate antioxidant parameters (enzymatic and nonenzymatic) in adults with the metabolic syndrome. Thirty-five obese participants with the metabolic syndrome were randomly assigned to receive one of the following for 8 weeks: green tea (4 cups per day), control (4 cups water per day), or green tea extract (2 capsules and 4 cups water per day). Blood samples and dietary information were collected at baseline (0 week) and 8 weeks of the study. Circulating carotenoids (α-carotene, β-carotene, lycopene) and tocopherols (α-tocopherol, γ-tocopherol) and trace elements were measured using high-performance liquid chromatography and inductively coupled plasma mass spectroscopy, respectively. Serum antioxidant enzymes (glutathione peroxidase, glutathione, catalase) and plasma antioxidant capacity were measured spectrophotometrically. Green tea beverage and green tea extract significantly increased plasma antioxidant capacity (1.5 to 2.3 μmol/L and 1.2 to 2.5 μmol/L, respectively; P < .05) and whole blood glutathione (1783 to 2395 μg/g hemoglobin and 1905 to 2751 μg/g hemoglobin, respectively; P < .05) vs controls at 8 weeks. No effects were noted in serum levels of carotenoids and tocopherols and glutathione peroxidase and catalase activities. Green tea extract significantly reduced plasma iron vs baseline (128 to 92 μg/dL, P < .02), whereas copper, zinc, and selenium were not affected. These results support the hypothesis that green tea may provide antioxidant protection in the metabolic syndrome.

  5. Resources to increase genetics and genomics capacity of oncology nurses.

    PubMed

    Aiello, Lisa B

    2015-03-01

    Since the completion of the Human Genome Project (HGP) in 2003, the understanding of genetics and its influence on disease, particularly cancer, has increased dramatically. The initial focus after the completion of HGP was on identifying single-gene disorders, such as many hereditary cancer syndromes (e.g., BRCA1, BRCA2, HNPCC). As research continues, the major impact that genetics and genomics have across the healthcare continuum is only beginning to become clear.

  6. Reflections on the Field of Human Genetics: A Call for Increased Disease Genetics Theory

    PubMed Central

    Schrodi, Steven J.

    2016-01-01

    Development of human genetics theoretical models and the integration of those models with experiment and statistical evaluation are critical for scientific progress. This perspective argues that increased effort in disease genetics theory, complementing experimental, and statistical efforts, will escalate the unraveling of molecular etiologies of complex diseases. In particular, the development of new, realistic disease genetics models will help elucidate complex disease pathogenesis, and the predicted patterns in genetic data made by these models will enable the concurrent, more comprehensive statistical testing of multiple aspects of disease genetics predictions, thereby better identifying disease loci. By theoretical human genetics, I intend to encompass all investigations devoted to modeling the heritable architecture underlying disease traits and studies of the resulting principles and dynamics of such models. Hence, the scope of theoretical disease genetics work includes construction and analysis of models describing how disease-predisposing alleles (1) arise, (2) are transmitted across families and populations, and (3) interact with other risk and protective alleles across both the genome and environmental factors to produce disease states. Theoretical work improves insight into viable genetic models of diseases consistent with empirical results from linkage, transmission, and association studies as well as population genetics. Furthermore, understanding the patterns of genetic data expected under realistic disease models will enable more powerful approaches to discover disease-predisposing alleles and additional heritable factors important in common diseases. In spite of the pivotal role of disease genetics theory, such investigation is not particularly vibrant. PMID:27375680

  7. Genetic and Pharmacologic Targeting of Glycogen Synthase Kinase 3β Reinforces the Nrf2 Antioxidant Defense against Podocytopathy.

    PubMed

    Zhou, Sijie; Wang, Pei; Qiao, Yingjin; Ge, Yan; Wang, Yingzi; Quan, Songxia; Yao, Ricky; Zhuang, Shougang; Wang, Li Juan; Du, Yong; Liu, Zhangsuo; Gong, Rujun

    2016-08-01

    Evidence suggests that the glycogen synthase kinase 3 (GSK3)-dictated nuclear exclusion and degradation of Nrf2 is pivotal in switching off the self-protective antioxidant stress response after injury. Here, we examined the mechanisms underlying this regulation in glomerular disease. In primary podocytes, doxorubicin elicited cell death and actin cytoskeleton disorganization, concomitant with overactivation of GSK3β (the predominant GSK3 isoform expressed in glomerular podocytes) and minimal Nrf2 activation. SB216763, a highly selective small molecule inhibitor of GSK3, exerted a protective effect that depended on the potentiated Nrf2 antioxidant response, marked by increased Nrf2 expression and nuclear accumulation and augmented production of the Nrf2 target heme oxygenase-1. Ectopic expression of the kinase-dead mutant of GSK3β in cultured podocytes reinforced the doxorubicin-induced Nrf2 activation and prevented podocyte injury. Conversely, a constitutively active GSK3β mutant blunted the doxorubicin-induced Nrf2 response and exacerbated podocyte injury, which could be abolished by treatment with SB216763. In murine models of doxorubicin nephropathy or nephrotoxic serum nephritis, genetic targeting of GSK3β by doxycycline-inducible podocyte-specific knockout or pharmacologic targeting by SB216763 significantly attenuated albuminuria and ameliorated histologic signs of podocyte injury, including podocytopenia, loss of podocyte markers, podocyte de novo expression of desmin, and ultrastructural lesions of podocytopathy (such as foot process effacement). This beneficial outcome was likely attributable to an enhanced Nrf2 antioxidant response in glomerular podocytes because the selective Nrf2 antagonist trigonelline abolished the proteinuria-reducing and podocyte-protective effect. Collectively, our results suggest the GSK3β-regulated Nrf2 antioxidant response as a novel therapeutic target for protecting podocytes and treating proteinuric glomerulopathies.

  8. Cerebral antioxidant enzyme increase associated with learning deficit in type 2 diabetes rats.

    PubMed

    Suge, Rie; Shimazu, Tomokazu; Hasegawa, Hajime; Inoue, Ikuo; Hayashibe, Hidemasa; Nagasaka, Hironori; Araki, Nobuo; Katayama, Shigehiro; Nomura, Masahiko; Watanabe, Shu-Ichi

    2012-10-24

    In this study, we examined alterations in the enzymatic antioxidant defenses associated with learning deficits induced by type 2 diabetes, and studied the effects of the peroxisome proliferator-activated receptor γ agonist pioglitazone on these learning deficits. Learning ability was assessed by visual discrimination tasks in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, as a model of spontaneous type 2 diabetes. Levels of the antioxidant enzymes glutathione peroxidase (GPx), Cu(2+)-Zn(2+) superoxide dismutase (CuZn-SOD) and manganese SOD were measured in the cortex, hippocampus and striatum. Half the rats received oral pioglitazone (20mg/kg/day) from the early stage of diabetes (22 weeks old) to 27 weeks old. OLETF rats showed learning deficits compared with control, Long-Evans Tokushima Otsuka (LETO) rats. GPx levels in the cortex and hippocampus were increased in OLETF rats compared with LETO rats, with an inverse correlation between GPx in the hippocampus and learning score. CuZn-SOD levels were also increased in the hippocampus in OLETF rats. Pioglitazone reduced blood glucose and increased serum adiponectin levels, but had no effect on learning tasks or antioxidant enzymes, except for CuZn-SOD. These results suggest that an oxidative imbalance reflected by increased brain antioxidant enzymes plays an important role in the development of learning deficits in type 2 diabetes. Early pioglitazone administration partly ameliorated diabetic symptoms, but was unable to completely recover cerebral oxidative imbalance and functions. These results suggest that diabetes-induced brain impairment, which results in learning deficits, may have occurred before the appearance of the symptoms of overt diabetes.

  9. A high antioxidant spice blend attenuates postprandial insulin and triglyceride responses and increases some plasma measures of antioxidant activity in healthy, overweight men.

    PubMed

    Skulas-Ray, Ann C; Kris-Etherton, Penny M; Teeter, Danette L; Chen, C-Y Oliver; Vanden Heuvel, John P; West, Sheila G

    2011-08-01

    There is much interest in the potential of dietary antioxidants to attenuate in vivo oxidative stress, but little characterization of the time course of plasma effects exists. Culinary spices have demonstrated potent in vitro antioxidant properties. The objective of this study was to examine whether adding 14 g of a high antioxidant spice blend to a 5060-kJ (1200 kcal) meal exerted significant postprandial effects on markers of plasma antioxidant status and metabolism. Healthy overweight men (n = 6) consumed a control and spiced meal in a randomized crossover design with 1 wk between testing sessions. Blood was sampled prior to the meal and at 30-min intervals for 3.5 h (total of 8 samples). Mixed linear models demonstrated a treatment × time interaction (P < 0.05) for insulin and TG, corresponding with 21 and 31% reductions in postprandial levels with the spiced meal, respectively. Adding spices to the meal significantly increased the ferric reducing antioxidant power, such that postprandial increases following the spiced meal were 2-fold greater than after the control meal (P = 0.009). The hydrophilic oxygen radical absorbance capacity (ORAC) of plasma also was increased by spices (P = 0.02). There were no treatment differences in glucose, total thiols, lipophilic ORAC, or total ORAC. The incorporation of spices into the diet may help normalize postprandial insulin and TG and enhance antioxidant defenses.

  10. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa)

    PubMed Central

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham JJ; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  11. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    PubMed

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham Jj; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  12. BDNF increases with behavioral enrichment and an antioxidant diet in the aged dog.

    PubMed

    Fahnestock, Margaret; Marchese, Monica; Head, Elizabeth; Pop, Viorela; Michalski, Bernadeta; Milgram, William N; Cotman, Carl W

    2012-03-01

    The aged canine (dog) is an excellent model for investigating the neurobiological changes that underlie cognitive impairment and neurodegeneration in humans, as canines and humans undergo similar pathological and behavioral changes with aging. Recent evidence indicates that a combination of environmental enrichment and antioxidant-fortified diet can be used to reduce the rate of age-dependent neuropathology and cognitive decline in aged dogs, although the mechanisms underlying these changes have not been established. We examined the hypothesis that an increase in levels of brain-derived neurotrophic factor (BDNF) is one of the factors underlying improvements in learning and memory. Old, cognitively impaired animals that did not receive any treatment showed a significant decrease in BDNF mRNA in the temporal cortex when compared with the young group. Animals receiving either an antioxidant diet or environmental enrichment displayed intermediate levels of BDNF mRNA. However, dogs receiving both an antioxidant diet and environmental enrichment showed increased levels of BDNF mRNA when compared with untreated aged dogs, approaching levels measured in young animals. BDNF receptor TrkB mRNA levels did not differ between groups. BDNF mRNA levels were positively correlated with improved cognitive performance and inversely correlated with cortical Aβ((1-42)) and Aβ((1-40)) levels. These findings suggest that environmental enrichment and antioxidant diet interact to maintain brain levels of BDNF, which may lead to improved cognitive performance. This is the first demonstration in a higher animal that nonpharmacological changes in lifestyle in advanced age can upregulate BDNF to levels approaching those in the young brain.

  13. Genetic selection increases parthenogenesis in Chinese painted quail (Coturnix chinensis).

    PubMed

    Parker, H M; Kiess, A S; Wells, J B; Young, K M; Rowe, D; McDaniel, C D

    2010-07-01

    Parthenogenesis, embryonic development of an unfertilized egg, occurs naturally in turkey, chicken, and quail species. In fact, parthenogenesis in turkeys and chickens can be increased by genetic selection. However, it is unknown if genetic selection for parthenogenesis is effective in quail or if selection for parthenogenesis affects egg production. Therefore, the objectives of this study were to determine if the incidence of parthenogenesis in quail could be increased by genetic selection and if selection for this trait affects egg production. To prevent fertilization, 1,090 females were caged separately from males at 4 wk of age and then caged individually at 6 wk of age to monitor egg production. Eggs were collected daily, labeled, and stored for 0 to 3 d. After 10 d of incubation, 20 unfertilized eggs from each hen were examined for the occurrence of parthenogenesis and embryonic growth. In the parent (P) generation and subsequent generations (1 to 4), hens laying eggs containing parthenogenetic development and males whose sisters or mothers exhibited parthenogenesis were used for breeding. There was a linear increase in the percentage of hens exhibiting parthenogenesis as generation of selection increased. With each successive generation, there was a quadratic response in the percentage of eggs positive for parthenogenesis. When compared with the P generation, parthenogenesis was almost 3 times greater for eggs laid by the fourth generation (4.6 to 12.5%, respectively). Even when only hens exhibiting parthenogenesis were examined, the percentage of eggs demonstrating embryonic development responded quadratically with generation of selection. The embryonic size at 10 d of incubation was greater for each subsequent generation when compared with the P generation. There was a linear decrease in both egg production and the average position of an egg in a clutch as generation of selection increased. In conclusion, genetic selection for parthenogenesis increased the

  14. Reproducing butterflies do not increase intake of antioxidants when they could benefit from them

    PubMed Central

    Bischofberger, Ines; Lorenz, Isabel; Scheelen, Lucie; Fischer, Klaus

    2016-01-01

    The significance of dietary antioxidants may be limited by the ability of animals to exploit them. However, past studies have focused on the effects of dietary antioxidants after ‘antioxidant forced-feeding’, and have overlooked spontaneous antioxidant intake. Here, we found that reproducing female Bicyclus anynana butterflies had higher antioxidant defences and enhanced fecundity when forced to consume antioxidants (polyphenols). Interestingly, these positive effects were not constant across the oviposition period. When given the choice between food resources with and without antioxidants, reproducing butterflies did not target antioxidants when they could have benefited the most from them. Moreover, they did not consume more antioxidants than non-reproducing butterflies. These results emphasize that, despite potential positive effects of dietary antioxidants, the ability of animals to exploit them is likely to restrict their ecological significance. PMID:26911341

  15. Reproducing butterflies do not increase intake of antioxidants when they could benefit from them.

    PubMed

    Beaulieu, Michaël; Bischofberger, Ines; Lorenz, Isabel; Scheelen, Lucie; Fischer, Klaus

    2016-02-01

    The significance of dietary antioxidants may be limited by the ability of animals to exploit them. However, past studies have focused on the effects of dietary antioxidants after 'antioxidant forced-feeding', and have overlooked spontaneous antioxidant intake. Here, we found that reproducing female Bicyclus anynana butterflies had higher antioxidant defences and enhanced fecundity when forced to consume antioxidants (polyphenols). Interestingly, these positive effects were not constant across the oviposition period. When given the choice between food resources with and without antioxidants, reproducing butterflies did not target antioxidants when they could have benefited the most from them. Moreover, they did not consume more antioxidants than non-reproducing butterflies. These results emphasize that, despite potential positive effects of dietary antioxidants, the ability of animals to exploit them is likely to restrict their ecological significance.

  16. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation

    PubMed Central

    Boestfleisch, Christian; Wagenseil, Niko B.; Buhmann, Anne K.; Seal, Charlotte E.; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-01-01

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. PMID:25125698

  17. Edible bird's nest enhances antioxidant capacity and increases lifespan in Drosophila Melanogaster.

    PubMed

    Hu, Q; Li, G; Yao, H; He, S; Li, H; Liu, S; Wu, Y; Lai, X

    2016-04-30

    In this study, we aims to investigate the effects of edible bird's nest (EBN) on anti-aging efficacy. In order to investigate lifespan and mortality rate of flies, we treated flies with various doses of EBN. Besides, fecundity, water content and food are determined and heat-stress test is conducted after flies treating with different medium. Effects of EBN on total antioxidant activity (T-AOC), super-oxide dismutase activity (SOD), catalase activity (CAT), and malondialdehyde (MDA) were examined in drosophila melanogaster. Results indicated that flies in EBN treated group illustrated significantly lower mortality rates and longer median and maximum lifespan compared to control group (P<0.05). The fecundity in EBN-treated group was increased compared to control group. SOD levels and CAT activity were significantly increased, and MDA levels decreased in EBN-treated group compared to control group (P<0.01). In conclusion, EBN can extend lifespan, decrease mortality rate and increase survival rate in heat-stress test, and which can also promote SOD and CAT activity and reduce MDA levels. EBN is able to delay drosophila melanogaster aging, attributing to the increasing antioxidant enzyme activities and decreasing content of lipid peroxidation products in drosophila melanogaster.

  18. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    SciTech Connect

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.; Laskin, Debra L. Heck, Diane E.; Laskin, Jeffrey D.

    2008-09-15

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.

  19. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis).

    PubMed

    El-Mashad, Ali Abdel Aziz; Mohamed, Heba Ibrahim

    2012-07-01

    Soil salinity is one of the most severe factors limiting growth and physiological response in Vigna sinensis plants. Plant salt stress tolerance requires the activation of complex metabolic activities including antioxidative pathways, especially reactive oxygen species and scavenging systems within the cells which can contribute to continued growth under water stress. The present investigation was carried out to study the role of brassinolide in enhancing tolerance of cowpea plants to salt stress (NaCl). Treatment with 0.05 ppm brassinolide as foliar spray mitigated salt stress by inducing enzyme activities responsible for antioxidation, e.g., superoxide dismutase, peroxidase, polyphenol oxidase, and detoxification as well as by elevating contents of ascorbic acid, tocopherol, and glutathione. On the other hand, total soluble proteins decreased with increasing NaCl concentrations in comparison with control plants. However, lipid peroxidation increased with increasing concentrations of NaCl. In addition to, the high concentrations of NaCl (100 and 150 mM) decreased total phenol of cowpea plants as being compared with control plants. SDS-PAGE of protein revealed that NaCl treatments alone or in combination with 0.05 ppm brassinolide were associated with the disappearance of some bands or appearance of unique ones in cowpea plants. Electrophoretic studies of α-esterase, β-esterase, polyphenol oxidase, peroxidase, acid phosphatase, and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments.

  20. Enzyme-assisted processing increases antimicrobial and antioxidant activity of bilberry.

    PubMed

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Ammann, Sabine; Oksman-Caldentey, Kirsi-Marja; Buchert, Johanna

    2008-02-13

    The effects of nine cell wall-degrading enzymes on the antimicrobial and antioxidant activities of bilberry were studied. Antimicrobial activity was measured using the human pathogens Salmonella enterica sv. Typhimurium and Staphylococcus aureus as test strains. Enzyme treatments liberated phenolics from the cell wall matrix, which clearly increased the antimicrobial activity of berry juices, press cakes, and berry mashes on the basis of plate counts. Antibacterial effects were stronger against Salmonella than against Staphylococcus bacteria. In general, the increase in activity measured as colony-forming units per milliliter was 3-5 logarithmic units against Salmonella and 1-2 units against Staphylococcus bacteria. Increase in antimicrobial activity was observed only in acidic conditions, which is also the natural environment in various berry products, such as juices. The activity profile of the pectinase preparation affected the chemistry of the phenolics due to the presence of deglycosylating activities in some preparations. The difference in phenolic profiles was reflected in the antimicrobial effects. Bilberry mashes treated with Pectinex Ultra SP-L, Pectinex 3 XL, and Pectinex BE XXL were most efficient against Salmonella bacteria, whereas mashes treated with Pectinex Smash, Pectinex BE 3-L, and Biopectinase CCM showed the strongest antimicrobial activity against Staphylococcus bacteria. Due to the liberation of phenolics from the cell wall matrix the antioxidant activity measured as radical scavenging activity was also increased on average about 30% by the enzymatic treatments. The highest increase in phenolic compounds was about 40%. Highest increases in anthocyanins and in antioxidant activity were observed in berry mash treated with Pectinex Smash XXL enzyme, and the lowest increase was observed after treatment with Pectinex BE 3-L. Enzyme-assisted processing is traditionally used to improve berry and fruit juice yields. However, enzymatic treatments also

  1. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    PubMed

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  2. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  3. Genetic variants in CETP increase risk of intracerebral hemorrhage

    PubMed Central

    Falcone, Guido J.; Phuah, Chia‐Ling; Radmanesh, Farid; Brouwers, H. Bart; Battey, Thomas W. K.; Biffi, Alessandro; Peloso, Gina M.; Liu, Dajiang J.; Ayres, Alison M.; Goldstein, Joshua N.; Viswanathan, Anand; Greenberg, Steven M.; Selim, Magdy; Meschia, James F.; Brown, Devin L.; Worrall, Bradford B.; Silliman, Scott L.; Tirschwell, David L.; Flaherty, Matthew L.; Kraft, Peter; Jagiella, Jeremiasz M.; Schmidt, Helena; Hansen, Björn M.; Jimenez‐Conde, Jordi; Giralt‐Steinhauer, Eva; Elosua, Roberto; Cuadrado‐Godia, Elisa; Soriano, Carolina; van Nieuwenhuizen, Koen M.; Klijn, Catharina J. M.; Rannikmae, Kristiina; Samarasekera, Neshika; Salman, Rustam Al‐Shahi; Sudlow, Catherine L.; Deary, Ian J.; Morotti, Andrea; Pezzini, Alessandro; Pera, Joanna; Urbanik, Andrzej; Pichler, Alexander; Enzinger, Christian; Norrving, Bo; Montaner, Joan; Fernandez‐Cadenas, Israel; Delgado, Pilar; Roquer, Jaume; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Kidwell, Chelsea S.; Kittner, Steven J.; Waddy, Salina P.; Langefeld, Carl D.; Abecasis, Goncalo; Willer, Cristen J.; Kathiresan, Sekar; Woo, Daniel; Rosand, Jonathan

    2016-01-01

    Objective In observational epidemiologic studies, higher plasma high‐density lipoprotein cholesterol (HDL‐C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL‐C; as such, medicines that inhibit CETP and raise HDL‐C are in clinical development. Here, we test the hypothesis that CETP DNA sequence variants associated with higher HDL‐C also increase risk for ICH. Methods We performed 2 candidate‐gene analyses of CETP. First, we tested individual CETP variants in a discovery cohort of 1,149 ICH cases and 1,238 controls from 3 studies, followed by replication in 1,625 cases and 1,845 controls from 5 studies. Second, we constructed a genetic risk score comprised of 7 independent variants at the CETP locus and tested this score for association with HDL‐C as well as ICH risk. Results Twelve variants within CETP demonstrated nominal association with ICH, with the strongest association at the rs173539 locus (odds ratio [OR] = 1.25, standard error [SE] = 0.06, p = 6.0 × 10−4) with no heterogeneity across studies (I 2 = 0%). This association was replicated in patients of European ancestry (p = 0.03). A genetic score of CETP variants found to increase HDL‐C by ∼2.85mg/dl in the Global Lipids Genetics Consortium was strongly associated with ICH risk (OR = 1.86, SE = 0.13, p = 1.39 × 10−6). Interpretation Genetic variants in CETP associated with increased HDL‐C raise the risk of ICH. Given ongoing therapeutic development in CETP inhibition and other HDL‐raising strategies, further exploration of potential adverse cerebrovascular outcomes may be warranted. Ann Neurol 2016;80:730–740 PMID:27717122

  4. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  5. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain

    PubMed Central

    Nonato, L.F.; Rocha-Vieira, E.; Tossige-Gomes, R.; Soares, A.A.; Soares, B.A.; Freitas, D.A.; Oliveira, M.X.; Mendonça, V.A.; Lacerda, A.C.; Massensini, A.R.; Leite, H.R.

    2016-01-01

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain. PMID:27706439

  6. Moderate Weight Loss Decreases Oxidative Stress and Increases Antioxidant Status in Patients with Metabolic Syndrome

    PubMed Central

    Del Ben, Maria; Angelico, Francesco; Cangemi, Roberto; Loffredo, Lorenzo; Carnevale, Roberto; Augelletti, Teresa; Baratta, Francesco; Polimeni, Licia; Pignatelli, Pasquale; Violi, Francesco

    2012-01-01

    Background. Oxidative stress is enhanced in metabolic syndrome (MetS) and believed to contribute to accelerated atherosclerosis. Weight loss is associated with lowered oxidative stress. Methods. We performed a cross-sectional study in 92 consecutive patients with metabolic syndrome and 80 without. A dietary intervention with moderately low-calorie diet (600 calories/day negative energy balance) was carried out in 53 of metabolic syndrome patients. Oxidative stress, assessed by sNOX2-dp and urinary 8-iso-PGF2α, and antioxidant status, assessed by serum levels of vitamin E and adiponectin, were measured before and after 6 months. Results. Serum vitamin E/cholesterol ratio was significantly lower in metabolic syndrome compared to controls (P < 0.001) and decreased by increasing the number of metabolic syndrome components (P < 0.001). After six months, 23 and 30 patients showed >5% (group A) or <5% (group B) weight loss, respectively. Urinary 8-iso-PGF2α (−39.0%), serum sNOX2-dp (−22.2%), adiponectin (+125%), and vitamin E/cholesterol ratio (+129.8%) significantly changed only in A group. Changes in body weight and in serum adiponectin were independent predictors of vitamin E/cholesterol ratio variation. Conclusion. Our findings show that in metabolic syndrome moderate weight loss is associated with multiple health benefits including not only oxidative stress reduction but also enhancement of antioxidant status. PMID:24533215

  7. Increasing genetic variability in black oats using gamma irradiation.

    PubMed

    Silveira, G; Moliterno, E; Ribeiro, G; Costa, P M A; Woyann, L G; Tessmann, E W; Oliveira, A C; Cruz, C D

    2014-12-04

    The black oat (Avena strigosa Schreb) is commonly used for forage, soil cover, and green manure. Despite its importance, little improvement has been made to this species, leading to high levels of genotypic disuniformity within commercial cultivars. The objective of this study was to evaluate the efficiency of different doses of gamma rays [(60)Co] applied to black oat seeds on the increase of genetic variability of agronomic traits. We applied doses of 0, 10, 50, 100, and 200 Gy to the genotype ALPHA 94087 through exposure to [(60)Co]. Two experiments were conducted in the winter of 2008. The first aimed to test forage trait measurements such as plant height, dry matter yield, number of surviving tillers, and seedling stand. The second test assessed seed traits, such as yield and dormancy levels. Gamma irradiation seems not to increase seed yield in black oats, but it was effective in generating variability for the other traits. Tiller number and plant height are important selection traits to increase dry matter yield. Selection in advanced generations of mutant populations can increase the probability of identifying superior genotypes.

  8. Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures.

    PubMed

    Rueppell, Olav; Meier, Stephen; Deutsch, Roland

    2012-01-01

    Explaining the evolution of sex and recombination is particularly intriguing for some species of eusocial insects because they display exceptionally high mating frequencies and genomic recombination rates. Explanations for both phenomena are based on the notion that both increase colony genetic diversity, with demonstrated benefits for colony disease resistance and division of labor. However, the relative contributions of mating number and recombination rate to colony genetic diversity have never been simultaneously assessed. Our study simulates colonies, assuming different mating numbers, recombination rates, and genetic architectures, to assess their worker genotypic diversity. The number of loci has a strong negative effect on genotypic diversity when the allelic effects are inversely scaled to locus number. In contrast, dominance, epistasis, lethal effects, or limiting the allelic diversity at each locus does not significantly affect the model outcomes. Mating number increases colony genotypic variance and lowers variation among colonies with quickly diminishing returns. Genomic recombination rate does not affect intra- and inter-colonial genotypic variance, regardless of mating frequency and genetic architecture. Recombination slightly increases the genotypic range of colonies and more strongly the number of workers with unique allele combinations across all loci. Overall, our study contradicts the argument that the exceptionally high recombination rates cause a quantitative increase in offspring genotypic diversity across one generation. Alternative explanations for the evolution of high recombination rates in social insects are therefore needed. Short-term benefits are central to most explanations of the evolution of multiple mating and high recombination rates in social insects but our results also apply to other species.

  9. Pecans acutely increase plasma postprandial antioxidant capacity and catechins and decrease LDL oxidation in humans.

    PubMed

    Hudthagosol, Chatrapa; Haddad, Ella Hasso; McCarthy, Katie; Wang, Piwen; Oda, Keiji; Sabaté, Joan

    2011-01-01

    Bioactive constituents of pecan nuts such as γ-tocopherol and flavan-3-ol monomers show antioxidant properties in vitro, but bioavailability in humans is not known. We examined postprandial changes in plasma oxygen radical absorbance capacity (ORAC) and in concentrations of tocopherols, catechins, oxidized LDL, and malondialdehyde (MDA) in response to pecan test meals. Sixteen healthy men and women (23-44 y, BMI 22.7 ± 3.4) were randomly assigned to 3 sequences of test meals composed of whole pecans, blended pecans, or an isocaloric meal of equivalent macronutrient composition but formulated of refined ingredients in a crossover design with a 1-wk washout period between treatments. Blood was sampled at baseline and at intervals up to 24 h postingestion. Following the whole and blended pecan test meals, plasma concentrations of γ-tocopherols doubled at 8 h (P < 0.001) and hydrophilic- and lipophilic-ORAC increased 12 and 10% at 2 h, respectively. Post whole pecan consumption, oxidized LDL decreased 30, 33, and 26% at 2, 3, and 8 h, respectively (P < 0.05), and epigallocatechin-3-gallate concentrations at 1 h (mean ± SEM; 95.1 ± 30.6 nmol/L) and 2 h (116.3 ± 80.5 nmol/L) were higher than at baseline (0 h) and after the control test meal at 1 h (P < 0.05). The postprandial molar ratio of MDA:triglycerides decreased by 37, 36, and 40% at 3, 5, and 8 h, respectively (P < 0.05), only when whole and blended pecan data were pooled. These results show that bioactive constituent of pecans are absorbable and contribute to postprandial antioxidant defenses.

  10. Additives increasing antioxidant activity of sesamol in soybean oil at frying temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sesamol has drawn a considerable interest as an alternative to synthetic antioxidants due to its excellent radical scavenging ability at room temperature, low cost and additional health-promoting benefits. However, when it was evaluated for its antioxidant activity in soybean oil at frying temperatu...

  11. Genetically modified crops for biomass increase. Genes and strategies.

    PubMed

    Rojas, Cristian Antonio; Hemerly, Adrianna Silva; Ferreira, Paulo Cavalcanti Gomes

    2010-01-01

    Genetically modified crops (GMCs) have been developed to accelerate the creation of new varieties with improved characteristics such as disease resistance, stress tolerance and higher quality composition. However, agriculture, without minimizing its role in food, feed and fiber source, has become important for the energy matrix of many countries. GMCs are also attractive systems that could fulfill the requirements for these new necessities. An increase of crop yields in an environmental friendly system is a new goal for plant biology research in the twenty-first century. In particular, biomass yield improvement is needed to render the use of biofuels economically feasible. In this context, research directed toward increasing biomass production has attracted much attention and a considerable effort is being made to reach new goals. Nonetheless, in some cases differentiated strategies are needed, as biomass improvement requires approaches other than those employed with traditional crops. This review summarizes the various approaches applied so far to modulate plant growth applying molecular biology-based strategies and increase biomass production, and it highlights several outstanding issues about the developmental constraints that must be addressed.

  12. Garlic sprouting is associated with increased antioxidant activity and concomitant changes in the metabolite profile.

    PubMed

    Zakarova, Alexandra; Seo, Ji Yeon; Kim, Hyang Yeon; Kim, Jeong Hwan; Shin, Jung-Hye; Cho, Kye Man; Lee, Choong Hwan; Kim, Jong-Sang

    2014-02-26

    Although garlic (Allium sativum) has been extensively studied for its health benefits, sprouted garlic has received little attention. We hypothesized that sprouting garlic would stimulate the production of various phytochemicals that improve health. Ethanolic extracts from garlic sprouted for different periods had variable antioxidant activities when assessed with in vitro assays, including the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay and the oxygen radical absorbance capacity assay. Extracts from garlic sprouted for 5 days had the highest antioxidant activity, whereas extracts from raw garlic had relatively low antioxidant activity. Furthermore, sprouting changed the metabolite profile of garlic: the metabolite profile of garlic sprouted for 5-6 days was distinct from the metabolite profile of garlic sprouted for 0-4 days, which is consistent with the finding that garlic sprouted for 5 days had the highest antioxidant activity. Therefore, sprouting may be a useful way to improve the antioxidant potential of garlic.

  13. The increase in human plasma antioxidant capacity after acute coffee intake is not associated with endogenous non-enzymatic antioxidant components.

    PubMed

    Moura-Nunes, Nathália; Perrone, Daniel; Farah, Adriana; Donangelo, Carmen M

    2009-01-01

    This study evaluated the association between the main plasma endogenous non-enzymatic antioxidant components and the increase in human antioxidant capacity (AC) after acute coffee intake. Ten adults were tested before and 90 min after consumption of coffee or water, in a crossover design, with a 7-day interval between tests. AC (FRAP and TRAP), ascorbic acid, α-tocopherol and γ-tocopherol, albumin, bilirubin and uric acid were analyzed in plasma/serum. After coffee consumption FRAP and TRAP increased 2.6% and 7.6% (P<0.05), whereas after water consumption FRAP and TRAP decreased 2.5% and 1.0% (P <0.05), respectively. In general, AC assays correlated with uric acid and α-tocopherol (r >0.75; P <0.04), independently of treatment and time point. Changes in AC assays after coffee intake did not correlate with endogenous components, which remained unchanged. These results suggest that coffee components spare endogenous antioxidants or are themselves the main contributors to plasma AC increase after coffee intake.

  14. Genetic predisposition to schizophrenia associated with increased use of cannabis.

    PubMed

    Power, R A; Verweij, K J H; Zuhair, M; Montgomery, G W; Henders, A K; Heath, A C; Madden, P A F; Medland, S E; Wray, N R; Martin, N G

    2014-11-01

    Cannabis is the most commonly used illicit drug worldwide. With debate surrounding the legalization and control of use, investigating its health risks has become a pressing area of research. One established association is that between cannabis use and schizophrenia, a debilitating psychiatric disorder affecting ~1% of the population over their lifetime. Although considerable evidence implicates cannabis use as a component cause of schizophrenia, it remains unclear whether this is entirely due to cannabis directly raising risk of psychosis, or whether the same genes that increases psychosis risk may also increase risk of cannabis use. In a sample of 2082 healthy individuals, we show an association between an individual's burden of schizophrenia risk alleles and use of cannabis. This was significant both for comparing those who have ever versus never used cannabis (P=2.6 × 10(-4)), and for quantity of use within users (P=3.0 × 10(-3)). Although directly predicting only a small amount of the variance in cannabis use, these findings suggest that part of the association between schizophrenia and cannabis is due to a shared genetic aetiology. This form of gene-environment correlation is an important consideration when calculating the impact of environmental risk factors, including cannabis use.

  15. Multiple paternities increase genetic diversity of offspring in Brandt's voles.

    PubMed

    Huo, Ying-jun; Wan, Xin-rong; Wolff, Jerry O; Wang, Guiming; Thomas, Shawn; Iglay, Raymond B; Leopold, Bruce D; Liu, Wei

    2010-07-01

    Mating system and philopatry influence the genetic structure of a social group in mammals. Brandt's vole (Lasiopodomys brandtii) lives in social groups year-round and has male biased dispersal, which makes the vole a model system for studies of genetic consequences of mating system and philopatry. This study aimed to test the hypotheses that: (1) multiple paternity (MP) would exist in Brandt's voles, enhance offspring genetic diversity and reduce genetic relatedness between littermates; (2) promiscuity would occur in this species in that males and females mate with multiple partners; and (3) plural breeders of a social group would be genetically related because of philopatry of female juveniles in Brandt's voles. Paternity analysis indicated that MP occurred in 11 (46%) of 24 social groups examined and that promiscuity existed in this species. Multiple paternity litters had twice the offspring genetic diversity and half the average within-litter genetic relatedness of single paternity litters. We also found plural breeding females in six social groups. Average pairwise genetic relatedness of plural breeders ranged from 0.41 to 0.72 in four social groups, suggesting first-order kinship. Future studies need to investigate effects of reproductive skew and MP on population genetic structure of Brandt's voles.

  16. Seasonal foraging patterns of forest-grazing Japanese Black heifers with increased plasma total antioxidant capacity.

    PubMed

    Haga, Satoshi; Nakano, Miwa; Nakao, Seiji; Hirano, Kiyoshi; Yamamoto, Yoshito; Sasaki, Hiroyuki; Ishizaki, Hiroshi

    2016-02-01

    Forest-grazing enables the intake of high total antioxidant capacity (TAC) plants that might be beneficial for the TAC status of cattle. This study evaluated the relation between the seasonal foraging patterns of forest-grazing Japanese Black (JB) heifers or the TAC levels in shrubs and trees and the changes of plasma TAC. We examined 12 JB heifers, four each of which were allocated to forest-grazing (F), pasture-grazing, and pen-housed groups. The plasma TAC level in F heifers on July 26, August 13, 30 and September 17 were significantly higher than those on April 27 and June 4 (P < 0.05). In F group, the mean rates of foraging frequency (FF) of shrubs and trees during July 5-8 and September 13-16 were much higher than that during May 31-June 3 (P < 0.05). The rate of FF of grass significantly decreased later in the season (P < 0.05). The mean TAC levels in these shrubs and trees were higher than those in grasses, concentrates, and timothy hay. Results suggest that an important factor in the increase of plasma TAC in forest-grazing cattle might be the increased foraging of TAC-rich shrubs and trees during summer-fall.

  17. Allantoin Increases Cadmium Tolerance in Arabidopsis via Activation of Antioxidant Mechanisms.

    PubMed

    Nourimand, Maryam; Todd, Christopher D

    2016-12-01

    Plants apply various molecular, physiological and morphological strategies in response to undesirable environmental conditions. One of the possible responses which may contribute to surviving stressful conditions is the accumulation of ureides. Ureides are recognized as important nitrogen-rich compounds involved in recycling nitrogen in plants to support growth and reproduction. Amongst them, allantoin not only serves as a transportable nitrogen-rich compound, but has also been suggested to protect plants from abiotic stresses via minimizing oxidative damage. This work focuses on the effect of cadmium (Cd) on ureide metabolism in Arabidopsis, in order to clarify the potential role of allantoin in plant tolerance to heavy metals. In response to Cd treatment, allantoin levels increase in Arabidopsis thaliana, ecotype Col-0, due to reduced allantoinase (ALN) gene expression and enzyme activity. This coincides with increases in uricase (UO) transcripts. UO and ALN encode the enzymes for the production and degradation of allantoin, respectively. ALN-negative aln-3 Arabidopsis mutants with elevated allantoin levels demonstrate resistance to soil-applied CdCl2, up to 1,500 μM. Although aln-3 mutants take up and store more Cd within their leaf tissue, they contain less damaging superoxide radicals. The protective mechanism of aln-3 mutants appears to involve enhancing the activity of antioxidant enzymes such as superoxide dismutase and ascorbate peroxidase.

  18. Fermentation enhances the in vitro antioxidative effect of onion (Allium cepa) via an increase in quercetin content.

    PubMed

    Yang, Eun-Ju; Kim, Sang-In; Park, Sang-Yun; Bang, Han-Yeol; Jeong, Ji Hye; So, Jai-Hyun; Rhee, In-Koo; Song, Kyung-Sik

    2012-06-01

    Yellow onion (Allium cepa) extract showed enhanced antioxidative effects in 2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox equivalent antioxidant capacity (TEAC) and 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and acetyl ester (CM-H(2)DCFDA) assay after being treated with a crude enzyme extract from soybean paste fungi, Aspergillus kawachii. HPLC analysis showed two increased and two decreased peaks after enzyme treatment. The decreased peaks were identified as quercetin-3,4'-di-O-β-d-glucoside (1) and quercetin-4'-O-β-d-glucoside (2), and peaks that increased were quercetin-3-O-β-d-glucoside (3) and quercetin (4), respectively. It was expected that 3 and 4 were originated from the glucosidic cleavage of their glucosides, 1 and 2. Among the increased compounds, only quercetin (4) showed strong antioxidative activity in the DPPH assay. In addition, the protective effect against glutamate-induced neurotoxicity in HT22 cells was increased when treated with 25 μg/ml of fermented onion. The enhanced neuroprotective effect was also originated from the increased quercetin content. As a consequence, fermentation raised the quercetin content in onion, and subsequently increased the antioxidative and neuroprotective activities.

  19. Correlation of genetic variation among wild Trigonella foenum-graecum L. accessions with their antioxidant potential status.

    PubMed

    Haliem, E A; Al-Huqail, A A

    2014-12-12

    In this study, we analyzed the correlation between genetic variation based on random amplified polymorphic DNA (RAPD), acid phosphatase, and glutamate-oxaloacetate transaminase isozymes, and amino acid composition with the antioxidant potential status of 7 wild Trigonella foenum-graecum L. accessions collected from diverse ecogeographical regions. RAPD revealed that 90 DNA products had highly polymorphism value (94.12%) based on band numbers, with sizes ranging from 50-2100 base pairs, and band intensity. Of 49 DNA polymorphic bands, 31 unique and 3 monomorphic bands were scored. Acid phosphatase and glutamate-oxaloacetate transaminase showed total polymorphism values of 90.00 and 93.75%, respectively, based on zymogram number, relative front (Rf), and optical intensity. Because isozymes are composed of amino acids, they were analyzed using high-performance liquid chromatography, which revealed the presences of 16 amino acids of variable content ranging from 13.21-15.35%, 9 of which are essential amino acids in humans. RAPD and isozymes showed similarly high estimates of genetic variability. Genetic relationships revealed by unweighted pair group method with arithmetic mean clustering analysis based on data obtained from all primers of RAPD and each isozyme were very similar. The antioxidant potential based on free radical scavenging, 2, 2-diphenyl-1-picrylhydrazyl, b-carotene-linoleate, total phenolic, and flavonoid contents values were variable among accessions. We found that fenugreek is a valuable genetic resource with high antioxidant activity. Their genotypes, based on data and clustering of RAPD, isozymes, and variable amino acid contents, combined with their antioxidant potential statues are important in fenugreek breeding and improvement programs.

  20. Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase

    PubMed Central

    Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio

    2011-01-01

    Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a

  1. Did Genetic Drift Drive Increases in Genome Complexity?

    PubMed Central

    Whitney, Kenneth D.; Garland, Theodore

    2010-01-01

    Mechanisms underlying the dramatic patterns of genome size variation across the tree of life remain mysterious. Effective population size (Ne) has been proposed as a major driver of genome size: selection is expected to efficiently weed out deleterious mutations increasing genome size in lineages with large (but not small) Ne. Strong support for this model was claimed from a comparative analysis of Neu and genome size for ≈30 phylogenetically diverse species ranging from bacteria to vertebrates, but analyses at that scale have so far failed to account for phylogenetic nonindependence of species. In our reanalysis, accounting for phylogenetic history substantially altered the perceived strength of the relationship between Neu and genomic attributes: there were no statistically significant associations between Neu and gene number, intron size, intron number, the half-life of gene duplicates, transposon number, transposons as a fraction of the genome, or overall genome size. We conclude that current datasets do not support the hypothesis of a mechanistic connection between Ne and these genomic attributes, and we suggest that further progress requires larger datasets, phylogenetic comparative methods, more robust estimators of genetic drift, and a multivariate approach that accounts for correlations between putative explanatory variables. PMID:20865118

  2. Dietary quercetin supplementation increases serum antioxidant capacity and alters hepatic gene expression profile in rats.

    PubMed

    Zhao, Liting; Wu, Jianquan; Yang, Jijun; Wei, Jingyu; Gao, Weina; Guo, Changjiang

    2011-06-01

    The aim of this study was to determine the effect of quercetin on hepatic gene expression profile in rats. Twenty male Wistar rats were divided into the control group and the quercetin-treated group, in which a diet containing 0.5% quercetin was provided. After two weeks of feeding, serum and liver samples were collected. Biomarkers of oxidative stress, including serum ferric reducing antioxidant power (FRAP) values and levels of ascorbic acid, vitamin E (VE), glutathione (GSH) and malondialdehyde (MDA) were measured. The hepatic gene expression profile was examined using a microarray technique. The results showed that serum FRAP value, levels of ascorbic acid and VE were increased significantly, whereas serum levels of GSH and MDA were not changed significantly after quercetin supplementation. The microarray analysis revealed that some hepatic genes involved in phase 2 reaction, metabolism of cholesterol and homocysteine, and energy production were expressed differentially in response to quercetin administration. These findings provide a molecular basis for the elucidation of the actions played by quercetin in vivo.

  3. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches

    PubMed Central

    Balmus, Ioana Miruna; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context. PMID:27563374

  4. Kin discrimination increases with genetic distance in a social amoeba.

    PubMed

    Ostrowski, Elizabeth A; Katoh, Mariko; Shaulsky, Gad; Queller, David C; Strassmann, Joan E

    2008-11-25

    In the social amoeba Dictyostelium discoideum, thousands of cells aggregate upon starvation to form a multicellular fruiting body, and approximately 20% of them die to form a stalk that benefits the others. The aggregative nature of multicellular development makes the cells vulnerable to exploitation by cheaters, and the potential for cheating is indeed high. Cells might avoid being victimized if they can discriminate among individuals and avoid those that are genetically different. We tested how widely social amoebae cooperate by mixing isolates from different localities that cover most of their natural range. We show here that different isolates partially exclude one another during aggregation, and there is a positive relationship between the extent of this exclusion and the genetic distance between strains. Our findings demonstrate that D. discoideum cells co-aggregate more with genetically similar than dissimilar individuals, suggesting the existence of a mechanism that discerns the degree of genetic similarity between individuals in this social microorganism.

  5. Effect of Dose and Administration Period of Seed Cake of Genetically Modified and Non-Modified Flax on Selected Antioxidative Activities in Rats.

    PubMed

    Matusiewicz, Magdalena; Kosieradzka, Iwona; Zuk, Magdalena; Szopa, Jan

    2015-06-23

    Flaxseed cake containing antioxidants is a valuable dietary component. Its nutritional effect may be diminished by the presence of anti-nutrients. The work was aimed at determining the effect of different contents of flaxseed cake in diets and their administration period on the development of rats and selected parameters of their health status. Diets with 15% and 30% addition of genetically modified (GM) flax seed cake with enhanced synthesis of polyphenols, as well as Linola non-GM flax were administered in short-term (33 days) and long-term (90 days) experiments. The 30% addition of flaxseed cake reduced digestibility of dietary nutrients, GM flaxseed cake lowered body weight gains. The relative weight of selected organs, hematological blood markers and serum activities of aspartate and alanine aminotransferases (AST, ALT) were not affected. Flaxseed cake consumption reduced serum concentration of albumins and increased globulins. Administration of 30% flaxseed cake improved plasma total antioxidant status and 30% GM flaxseed cake lowered liver thiobarbituric acid reactive substances. The activities of superoxide dismutase in erythrocytes, glutathione peroxidase in plasma and the liver concentration of 8-oxo-2'-deoxyguanosine were not changed. Most morphometric parameters of the small intestine did not differ between feeding groups. The administration of diets with 30% addition of flaxseed cake for 90 days improved the antioxidant status in rats.

  6. Effect of Dose and Administration Period of Seed Cake of Genetically Modified and Non-Modified Flax on Selected Antioxidative Activities in Rats

    PubMed Central

    Matusiewicz, Magdalena; Kosieradzka, Iwona; Zuk, Magdalena; Szopa, Jan

    2015-01-01

    Flaxseed cake containing antioxidants is a valuable dietary component. Its nutritional effect may be diminished by the presence of anti-nutrients. The work was aimed at determining the effect of different contents of flaxseed cake in diets and their administration period on the development of rats and selected parameters of their health status. Diets with 15% and 30% addition of genetically modified (GM) flax seed cake with enhanced synthesis of polyphenols, as well as Linola non-GM flax were administered in short-term (33 days) and long-term (90 days) experiments. The 30% addition of flaxseed cake reduced digestibility of dietary nutrients, GM flaxseed cake lowered body weight gains. The relative weight of selected organs, hematological blood markers and serum activities of aspartate and alanine aminotransferases (AST, ALT) were not affected. Flaxseed cake consumption reduced serum concentration of albumins and increased globulins. Administration of 30% flaxseed cake improved plasma total antioxidant status and 30% GM flaxseed cake lowered liver thiobarbituric acid reactive substances. The activities of superoxide dismutase in erythrocytes, glutathione peroxidase in plasma and the liver concentration of 8-oxo-2′-deoxyguanosine were not changed. Most morphometric parameters of the small intestine did not differ between feeding groups. The administration of diets with 30% addition of flaxseed cake for 90 days improved the antioxidant status in rats. PMID:26110393

  7. Quinclorac-habituation of bean (Phaseolus vulgaris) cultured cells is related to an increase in their antioxidant capacity.

    PubMed

    Largo-Gosens, Asier; de Castro, María; Alonso-Simón, Ana; García-Angulo, Penélope; Acebes, José L; Encina, Antonio; Álvarez, Jesús M

    2016-10-01

    The habituation of bean cells to quinclorac did not rely on cell wall modifications, contrary to what it was previously observed for the well-known cellulose biosynthesis inhibitors dichlobenil or isoxaben. The aim of the present study was to investigate whether or not the bean cells habituation to quinclorac is related to an enhancement of antioxidant activities involved in the scavenging capacity of reactive oxygen species. Treating non-habituated bean calluses with 10 μM quinclorac reduced the relative growth rate and induced a two-fold increase in lipid peroxidation. However, the exposition of quinclorac-habituated cells to a concentration of quinclorac up to 30 μM neither affected their growth rate nor increased their lipid peroxidation levels. Quinclorac-habituated calluses had significantly higher constitutive levels of three antioxidant activities (class-III peroxidase, glutathione reductase, and superoxide dismutase) than those observed in non-habituated calluses, and the treatment of habituated calluses with 30 μM quinclorac significantly increased the level of class III-peroxidase and superoxide dismutase. The results reported here indicate that the process of habituation to quinclorac in bean callus-cultured cells is related, at least partially, to the development of a stable antioxidant capacity that enables them to cope with the oxidative stress caused by quinclorac. Class-III peroxidase and superoxide dismutase activities could play a major role in the quinclorac-habituation. Changes in the antioxidant status of bean cells were stable, since the increase in the antioxidant activities were maintained in quinclorac-dehabituated cells.

  8. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves.

    PubMed

    Shen, J; Jiang, C Q; Yan, Y F; Liu, B R; Zu, C L

    2017-03-08

    Carotenoids are important components of plant antioxidant systems, which protect photosystems from photooxidative destruction during ultraviolet-B (UV-B) exposure. The influence of carotenoids on total antioxidant capacity (TAC) of plants has rarely been studied. In this study, tobacco (Nicotiana tabacum L., 'K326') seedlings exposed to UV-B radiation were used in order to evaluate the effects of ambient levels of UV-B radiation on carotenoid accumulation. The aim was to investigate whether carotenoids could enhance TAC as a means of UV protection. Our results showed that leaf carotenoid content in the low UV-B exposure (+9.75 μW/cm(2)) plants was approximately 8% higher than that observed in control plants at 2-8 days of exposure. At high UV-B exposure (+20.76 μW/cm(2)), the carotenoid content increased rapidly after 1 day's exposure (10.41% higher than the control), followed by a return to the content as in control plants. Furthermore, carotenoid content positively correlated with TAC (P = 0.024). These results suggest that carotenoids have antioxidant properties and play an important role in the antioxidant system. UV-B exposure increased the carotenoid synthesis capability of plants. The plants could deplete the carotenoids to scavenge excess ROS at high UV-B radiation levels, which protects the tobacco plant from oxidative damage caused by UV-B stress.

  9. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    PubMed Central

    Vargas-Robles, Hilda; Rios, Amelia; Arellano-Mendoza, Monica; Escalante, Bruno A.; Schnoor, Michael

    2015-01-01

    Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion) would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD). Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications. PMID:25922641

  10. Mobile Phone Technology to Increase Genetic Counseling for Women with Ovarian Cancer and Their Families

    DTIC Science & Technology

    2015-06-01

    AWARD NUMBER: W81XWH-14-1-0102 TITLE: Mobile Phone Technology to Increase Genetic Counseling for Women with Ovarian Cancer and Their Families...11May2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mobile Phone Technology to Increase Genetic Counseling for Women with Ovarian Cancer and Their...Mobile Application for Genetic Information on Cancer (mAGIC) intervention to motivate ovarian cancer survivors to undergo genetic counseling. The

  11. A Chilean Berry Concentrate Protects against Postprandial Oxidative Stress and Increases Plasma Antioxidant Activity in Healthy Humans

    PubMed Central

    Ávila, Felipe; Echeverria, Guadalupe; Perez, Druso; Trejo, Sebastian; Leighton, Federico

    2017-01-01

    This study formulated and characterized an antioxidant-rich concentrate of berries (BPC-350) produced in Chile, which was used to perform a crossover study aimed at determining the effect of the berries on the modulation of plasma postprandial oxidative stress and antioxidant status. Healthy male volunteers (N = 11) were randomly assigned to three experimental meals: (1) 250 g of ground turkey burger (GTB) + 500 mL of water; (2) 250 g of GTB + 500 mL of 5% BPC-350; (3) 250 g of GTB prepared with 6% BPC-350 + 500 mL of 5% BPC-350. Venous blood samples were collected prior to meal intake and every hour for six hours after intake. Malondialdehyde (MDA), carbonyls in proteins, and DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity were quantified in plasma. Significant differences indicated that BPC-350 decreases MDA plasma concentration and protein carbonyls (p < 0.05). Additionally, a significant increase in the DPPH antioxidant capacity was observed in Meals 2 and 3 when compared to Meal 1 (p < 0.05). The results are discussed in terms of oxidative reactions that occur during digestion at the stomach level and the important effect of oxidative reactions that occur during the thermal processing of red meat. PMID:28243359

  12. Genetic Deficiency of Glutathione S-Transferase P Increases Myocardial Sensitivity to Ischemia-Reperfusion Injury

    PubMed Central

    Conklin, Daniel J.; Guo, Yiru; Jagatheesan, Ganapathy; Kilfoil, Peter; Haberzettl, Petra; Hill, Bradford G.; Baba, Shahid P.; Guo, Luping; Wetzelberger, Karin; Obal, Detlef; Rokosh, D. Gregg; Prough, Russell A.; Prabhu, Sumanth D.; Velayutham, Murugesan; Zweier, Jay L.; Hoetker, David; Riggs, Daniel W.; Srivastava, Sanjay; Bolli, Roberto; Bhatnagar, Aruni

    2016-01-01

    Rationale Myocardial ischemia-reperfusion (I/R) results in the generation of oxygen-derived free radicals and the accumulation of lipid peroxidation-derived unsaturated aldehydes. However, the contribution of aldehydes to myocardial I/R injury has not been assessed. Objective We tested the hypothesis that removal of aldehydes by glutathione S-transferase P (GSTP) diminishes I/R injury. Methods and Results In adult male C57BL/6 mouse hearts, Gstp1/2 was the most abundant GST transcript followed by Gsta4 and Gstm4.1, and GSTP activity was a significant fraction of the total GST activity. mGstp1/2 deletion reduced total GST activity, but no compensatory increase in GSTA and GSTM or major antioxidant enzymes was observed. Genetic deficiency of GSTP did not alter cardiac function, but in comparison with hearts from wild-type (WT) mice, the hearts isolated from GSTP-null mice were more sensitive to I/R injury. Disruption of the GSTP gene also increased infarct size after coronary occlusion in situ. Ischemia significantly increased acrolein in hearts, and GSTP deficiency induced significant deficits in the metabolism of the unsaturated aldehyde, acrolein, but not in the metabolism 4-hydroxy-trans-2-nonenal (HNE) or trans-2-hexanal; and, upon ischemia, the GSTP-null hearts accumulated more acrolein-modified proteins than WT hearts. GSTP-deficiency did not affect I/R-induced free radical generation, JNK activation or depletion of reduced glutathione. Acrolein-exposure induced a hyperpolarizing shift in INa, and acrolein-induced cell death was delayed by SN-6, a Na+/Ca++ exchange inhibitor. Cardiomyocytes isolated from GSTP-null hearts were more sensitive than WT myocytes to acrolein-induced protein crosslinking and cell death. Conclusions GSTP protects the heart from I/R injury by facilitating the detoxification of cytotoxic aldehydes such as acrolein. PMID:26169370

  13. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco.

    PubMed

    Zhang, Bing-Lin; Shang, Sheng-Hua; Zhang, Hai-Tao; Jabeen, Zahra; Zhang, Guo-Ping

    2013-06-01

    The effect of sodium chloride (NaCl) on cadmium (Cd) uptake, translocation, and oxidative stress was investigated using 2 tobacco cultivars differing in Cd tolerance. The growth inhibition of the tobacco plants exposed to Cd toxicity was in part alleviated by moderate addition of NaCl in the culture solution. Cadmium concentration of shoots and roots in the 2 cultivars increased with increasing Cd levels in the solution and decreased with the addition of NaCl. The addition of NaCl could alleviate the oxidative stress caused by Cd toxicity, as reflected by reduced production of malondialdehyde and recovered or enhanced activities of antioxidative enzymes catalase and glutathione peroxidase. The results also showed that the enhancement of antioxidative enzyme activity by NaCl for the tobacco plants exposed to Cd stress is related to induced Ca signaling.

  14. Is the titer of adipokinetic peptides in Leptinotarsa decemlineata fed on genetically modified potatoes increased by oxidative stress?

    PubMed

    Kodrík, Dalibor; Krishnan, Natraj; Habustová, Oxana

    2007-05-01

    The level of adipokinetic hormones (AKHs) (Peram-CAH-I and II) in the corpora cardiaca and the hemolymph of Leptinotarsa decemlineata enormously increases in the adults fed on genetically modified potatoes containing either GNA lectin or Cry 3Aa toxin concomitant with increased oxidative stress in gut tissues. A similar enhancement of the AKH titer is achieved when the adults are injected with paraquat that evokes oxidative stress. On the other hand, an injection of exogenous AKH reduces oxidative stress biomarkers in the hemolymph by reducing protein carbonyls and enhancing reduced glutathione levels. These facts indicate that there is a feedback regulation between an oxidative stressor action and the level of AKH in the insect body, and that AKHs might be involved in the activation of an antioxidant protection mechanism. These results are to our knowledge, the first evidence for the involvement of AKHs in oxidative stress mitigation, in addition to a plethora of other roles.

  15. Increased genetic risk for obesity in premature coronary artery disease.

    PubMed

    Cole, Christopher B; Nikpay, Majid; Stewart, Alexandre F R; McPherson, Ruth

    2016-04-01

    There is ongoing controversy as to whether obesity confers risk for CAD independently of associated risk factors including diabetes mellitus. We have carried out a Mendelian randomization study using a genetic risk score (GRS) for body mass index (BMI) based on 35 risk alleles to investigate this question in a population of 5831 early onset CAD cases without diabetes mellitus and 3832 elderly healthy control subjects, all of strictly European ancestry, with adjustment for traditional risk factors (TRFs). We then estimated the genetic correlation between these BMI and CAD (rg) by relating the pairwise genetic similarity matrix to a phenotypic covariance matrix between these two traits. GRSBMI significantly (P=2.12 × 10(-12)) associated with CAD status in a multivariate model adjusted for TRFs, with a per allele odds ratio (OR) of 1.06 (95% CI 1.042-1.076). The addition of GRSBMI to TRFs explained 0.75% of CAD variance and yielded a continuous net recombination index of 16.54% (95% CI=11.82-21.26%, P<0.0001). To test whether GRSBMI explained CAD status when adjusted for measured BMI, separate models were constructed in which the score and BMI were either included as covariates or not. The addition of BMI explained ~1.9% of CAD variance and GRSBMI plus BMI explained 2.65% of CAD variance. Finally, using bivariate restricted maximum likelihood analysis, we provide strong evidence of genome-wide pleiotropy between obesity and CAD. This analysis supports the hypothesis that obesity is a causal risk factor for CAD.

  16. The increasing role of genetics and genomics in women's health.

    PubMed

    Klein, Elisabeth Lisa Z

    2014-01-01

    Genetic and genomic testing are a clinical reality in health care today. Persons at risk for disease or who are simply curious about their genomes can have them analyzed. An individual's genome is a function of ancestry, family history and personal health and environmental exposures. Clinical and pharmacologic information can be obtained through genomic analysis. Genomic testing can be done by health care providers but some results can now be obtained through direct-to-consumer tests. Many ethical questions are being raised regarding genomic testing. Nurses can provide more optimal care by understanding the process of genomic testing as well as the implications of the results.

  17. Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2016-01-01

    Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurodegenerative diseases that are associated with oxidative stress. PMID:27737527

  18. Increased Antioxidant Quality Versus Lower Quantity of High Density Lipoprotein in Benign Prostatic Hyperplasia

    PubMed Central

    Aydin, Ozgur; Ellidag, Hamit Yasar; Eren, Esin; Ay, Nurullah; Yalçınkaya, Soner; Yilmaz, Necat

    2015-01-01

    Summary Background Oxidative stress may be involved in the pathogenesis of every human disease. To understand its possible role in benign prostatic hyperplasia (BPH), we measured the overall oxidative status of patients with BPH and the serum activity of the high density lipoprotein (HDL)-related antioxidant enzymes paraoxonase 1 (PON1) and arylesterase (ARE). Methods Fifty-six urology outpatient clinic patients with BPH (mean age 64±8.6 years) were prospectively included in the study. Forty volunteer healthy controls from the laboratory staff (mean age 62±10 years) were enrolled for comparison. Serum total antioxidant status (TAS), total oxidant status (TOS), PON1, ARE, and HDL levels were measured by commercially available, ready-to-use kits. Results Serum TAS and HDL levels were significantly lower in the BPH group than in the control group (P=0.004 and P=0.02, respectively). No significant between-group differences were observed for TOS levels or PON1 and ARE enzyme activities (P=0.30, P=0.89, and P=0.74, respectively). In the BPH group, the calculated parameters PON1/HDL and ARE/HDL were significantly higher (P=0.02 and P=0.04, respectively). Conclusions Our findings agree with the previous reports of impaired oxidant/antioxidant balance in BPH patients. The activities of HDL-related enzymes between groups with significantly different HDL levels may be deceptive; adjusted values may help to reach more accurate conclusions.

  19. Oxidation Stability of Pig Liver Pâté with Increasing Levels of Natural Antioxidants (Grape and Tea)

    PubMed Central

    Pateiro, Mirian; Lorenzo, José M.; Vázquez, José A.; Franco, Daniel

    2015-01-01

    The present study investigated the effect of the addition of increasing levels of the natural antioxidants tea (TEA) and grape seed extracts (GRA) on the physiochemical and oxidative stability of refrigerated stored pig pâtés. In addition, a synthetic antioxidant and a control batch were used, thus a total of eight batches of liver pâté were prepared: CON, BHT, TEA (TEA50, TEA200 and TEA1000) and GRA (GRA50, GRA200 and GRA1000). Pâté samples were analyzed following 0, 4, 8 and 24 weeks of storage. Color parameters were affected by storage period and level of antioxidant extract. Samples with TEA200 and GRA1000 levels of extracts showed lower total color difference between 0 and 24 weeks. At the end of storage period, the lower TBARs values were obtained in samples with the highest concentration on natural extract. Overall, the evolution of volatile compounds showed an increase in those ones that arise from the lipid oxidation and samples with TEA1000 extract showed the lowest values. PMID:26785340

  20. Oxidation Stability of Pig Liver Pâté with Increasing Levels of Natural Antioxidants (Grape and Tea).

    PubMed

    Pateiro, Mirian; Lorenzo, José M; Vázquez, José A; Franco, Daniel

    2015-01-27

    The present study investigated the effect of the addition of increasing levels of the natural antioxidants tea (TEA) and grape seed extracts (GRA) on the physiochemical and oxidative stability of refrigerated stored pig pâtés. In addition, a synthetic antioxidant and a control batch were used, thus a total of eight batches of liver pâté were prepared: CON, BHT, TEA (TEA50, TEA200 and TEA1000) and GRA (GRA50, GRA200 and GRA1000). Pâté samples were analyzed following 0, 4, 8 and 24 weeks of storage. Color parameters were affected by storage period and level of antioxidant extract. Samples with TEA200 and GRA1000 levels of extracts showed lower total color difference between 0 and 24 weeks. At the end of storage period, the lower TBARs values were obtained in samples with the highest concentration on natural extract. Overall, the evolution of volatile compounds showed an increase in those ones that arise from the lipid oxidation and samples with TEA1000 extract showed the lowest values.

  1. Rye and Wheat Bran Extracts Isolated with Pressurized Solvents Increase Oxidative Stability and Antioxidant Potential of Beef Meat Hamburgers.

    PubMed

    Šulniūtė, Vaida; Jaime, Isabel; Rovira, Jordi; Venskutonis, Petras Rimantas

    2016-02-01

    Rye and wheat bran extracts containing phenolic compounds and demonstrating high DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS(•+) (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) scavenging and oxygen radical absorbance capacities (ORAC) were tested in beef hamburgers as possible functional ingredients. Bran extracts significantly increased the indicators of antioxidant potential of meat products and their global antioxidant response (GAR) during physiological in vitro digestion. The extracts also inhibited the formation of oxidation products, hexanal and malondialdehyde, of hamburgers during their storage; however, they did not have significant effect on the growth of microorganisms. Hamburgers with 0.8% wheat bran extract demonstrated the highest antioxidant potential. Some effects of bran extracts on other quality characteristics such as pH, color, formation of metmyoglobin were also observed, however, these effects did not have negative influence on the overall sensory evaluation score of hamburgers. Consequently, the use of bran extracts in meat products may be considered as promising means of increasing oxidative product stability and enriching with functional ingredients which might possess health benefits.

  2. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry.

    PubMed

    Cao, Changyu; Zhao, Xia; Fan, Ruifeng; Zhao, Jinxin; Luan, Yilin; Zhang, Ziwei; Xu, Shiwen

    2016-07-01

    Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency.

  3. COPD: balancing oxidants and antioxidants

    PubMed Central

    Fischer, Bernard M; Voynow, Judith A; Ghio, Andrew J

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common chronic illnesses in the world. The disease encompasses emphysema, chronic bronchitis, and small airway obstruction and can be caused by environmental exposures, primarily cigarette smoking. Since only a small subset of smokers develop COPD, it is believed that host factors interact with the environment to increase the propensity to develop disease. The major pathogenic factors causing disease include infection and inflammation, protease and antiprotease imbalance, and oxidative stress overwhelming antioxidant defenses. In this review, we will discuss the major environmental and host sources for oxidative stress; discuss how oxidative stress regulates chronic bronchitis; review the latest information on genetic predisposition to COPD, specifically focusing on oxidant/antioxidant imbalance; and review future antioxidant therapeutic options for COPD. The complexity of COPD will necessitate a multi-target therapeutic approach. It is likely that antioxidant supplementation and dietary antioxidants will have a place in these future combination therapies. PMID:25673984

  4. Use of different spices as potential natural antioxidant additives on cooked beans (Phaseolus vulgaris). Increase of DPPH radical scavenging activity and total phenolic content.

    PubMed

    Pereira, Marina Pelincer; Tavano, Olga Luisa

    2014-12-01

    Herbs and spices, excellent sources of phenolic compounds, can be considered potential antioxidant additives. The use of spices must strike a balance between their potential antioxidant capabilities during preparation and the flavor acceptance, in order to avoid rejection of the food. The aimed of this study is to evaluate the influence of different spices and their concentrations on cooked common beans, focusing its potential as antioxidant additives. Onion, parsley, spring onion, laurel and coriander increased the antioxidant activity of preparation when used at 7.96 g of onion, 1.06 g parsley, 3.43 g spring onion, 0.25 g laurel (dry leaves), and 0.43 g coriander/100 g of cooked beans. Besides, these spices concentrations enhance total phenolics and alter the mixture protein digestibility minimally. For garlic samples it was not possible to establish a concentration that increases the antioxidant activity of cooked beans.

  5. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

    PubMed

    Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

    2014-04-16

    Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries.

  6. Sciatic nerve transection increases gluthatione antioxidant system activity and neuronal nitric oxide synthase expression in the spinal cord.

    PubMed

    Guedes, Renata Padilha; Dal Bosco, Lidiane; Araújo, Alex Sander da Rosa; Belló-Klein, Adriane; Ribeiro, Maria Flávia Marques; Partata, Wania Aparecida

    2009-12-16

    Glutathione (GSH) is a major non-enzymatic antioxidant which is present in all tissues. Its protective actions occur through different pathways such its role as a substrate of antioxidant enzymes, such as glutathione peroxidase (GPx) and glutathione-S-transferase (GST). Nitric oxide (NO) is involved in many physiological processes in the central nervous system, including nociception. In spite of much evidence concerning oxidative and nitrosative stress and neuropathic pain, the exact role of these molecules in pain processing is still unknown. Sciatic nerve transection (SNT) was employed to induce neuropathic pain in rats. Glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities, glutathione (GSH) content, GSH/GSSG ratio, nitric oxide metabolites (NOx) and neuronal nitric oxide synthase (nNOS) protein expression in the lumbosacral spinal cord were determined. All of these analyses were performed in the SNT and sham groups 1, 3, 7 and 15 days after surgery. There was an increase in GPx activity and in GSH content 3 days after surgery in both sham and SNT groups, but the GSH/GSSG ratio increased only in the SNT group in this time point. nNOS expression was upregulated 7 days post SNT. NOx was detected 1 day after surgery in sham and SNT groups, but at 7 and 15 days, the increase occurred only in SNT animals. These results support the role of the gluthatione system in pain physiology and highlight the involvement of NO as an important molecule related to nociception.

  7. Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds.

    PubMed

    Perales-Sánchez, Janitzio X K; Reyes-Moreno, Cuauhtémoc; Gómez-Favela, Mario A; Milán-Carrillo, Jorge; Cuevas-Rodríguez, Edith O; Valdez-Ortiz, Angel; Gutiérrez-Dorado, Roberto

    2014-09-01

    The aim of this study was to optimize the germination conditions of amaranth seeds that would maximize the antioxidant activity (AoxA), total phenolic (TPC), and flavonoid (TFC) contents. To optimize the germination bioprocess, response surface methodology was applied over three response variables (AoxA, TPC, TFC). A central composite rotable experimental design with two factors [germination temperature (GT), 20-45 ºC; germination time (Gt), 14-120 h] in five levels was used; 13 treatments were generated. The amaranth seeds were soaked in distilled water (25 °C/6 h) before germination. The sprouts from each treatment were dried (50 °C/8 h), cooled, and ground to obtain germinated amaranth flours (GAF). The best combination of germination bioprocess variables for producing optimized GAF with the highest AoxA [21.56 mmol trolox equivalent (TE)/100 g sample, dw], TPC [247.63 mg gallic acid equivalent (GAE)/100 g sample, dw], and TFC [81.39 mg catechin equivalent (CAE)/100 g sample, dw] was GT = 30 ºC/Gt = 78 h. The germination bioprocess increased AoxA, TPC, and TFC in 300-470, 829, and 213%, respectively. The germination is an effective strategy to increase the TPC and TFC of amaranth seeds for enhancing functionality with improved antioxidant activity.

  8. Antioxidative capacity in the fat body of Bombyx mori is increased following oral administration of 4-methylumbelliferone.

    PubMed

    Fang, Yan; Wang, Hua; Zhu, Wenjuan; Wang, Lu; Liu, Hengjiang; He, Yue; Xu, Xu; Yin, Weimin; Sima, Yanghu; Xu, Shiqing

    2014-01-01

    Plant sources of umbelliferones have tumor-inhibitory effects at the cellular level. However, their physiological functions in animals are largely unresolved. In this study, we provide evidence to show that 4-methylumbelliferone (4-MU) participates in the regulation of antioxidative capacity in the fat body of Bombyx mori, a tissue similar to mammalian liver in this model invertebrate. Larvae (3rd day of the 5th instar) were orally exposed to 4 mM 4-MU, an umbelliferone, which swiftly induced the generation of a large number of ROS (e.g. H2O2 increased 6 to 8-fold), and 4-MU was detected in the fat body 8 min after administration. In addition, the activities of CAT and GPx were up-regulated 4 to 11-fold and 2 to 16-fold, respectively, and were helpful in defending fat body cells against oxidative injury in combination with NADPH. Furthermore, significant increases in the contents of T-AOC (up to approx. 2-fold), antioxidants of ASAFR (by 2 to 4-fold) and GSH were detected.

  9. Age-dependent increase in the expression of antioxidant-like protein-1 in the gerbil hippocampus

    PubMed Central

    Park, Jin-A; Park, Joon Ha; Ahn, Ji Hyeon; Kim, Jong-Dai; Won, Moo-Ho; Lee, Choong-Hyun

    2016-01-01

    Antioxidant-like protein-1 (AOP-1) reduces the intracellular level of reactive oxygen species. In the present study, the age-related change in AOP-1 expression in the hippocampus among young, adult and aged gerbils was compared using western blot analysis and immunohistochemistry. The results demonstrated that the protein expression of AOP-1 was gradually and significantly increased in the hippocampus during the normal aging process. In addition, the age-dependent increase in AOP-1 immunoreactivity was also observed in pyramidal neurons of the hippocampus proper; however, in the dentate gyrus, AOP-1 immunoreactivity was not altered during the normal aging process. These results indicated that the expression of AOP-1 is significantly increased in the hippocampus proper, but not in the dentate gyrus, during the normal aging process. PMID:27511601

  10. Real-Time H2 O2 Measurements in Bone Marrow Mesenchymal Stem Cells (MSCs) Show Increased Antioxidant Capacity in Cells From Osteoporotic Women.

    PubMed

    Román, Flavia; Urra, Carla; Porras, Omar; Pino, Ana María; Rosen, Clifford J; Rodríguez, Juan Pablo

    2017-03-01

    Oxidative stress (OS) derived from an increase in intracellular reactive oxygen species (ROS) is a major determinant of aging and lifespan. It has also been associated with several age-related disorders, like postmenopausal osteoporosis of Mesenchymal stem cells (MSCs). MSCs are the common precursors for osteoblasts and adipocytes; appropriate commitment and differentiation of MSCs into a specific phenotype is modulated, among other factors, by ROS balance. MSCs have shown more resistance to ROS than differentiated cells, and their redox status depends on complex and abundant anti-oxidant mechanisms. The purpose of this work was to analyze in real time, H2 O2 signaling in individual h-MSCs, and to compare the kinetic parameters of H2 O2 management by cells derived from both control (c-) and osteoporotic (o-) women. For these purposes, cells were infected with a genetically encoded fluorescent biosensor named HyPer, which is specific for detecting H2 O2 inside living cells. Subsequently, cells were sequentially challenged with 50 and 500 μM H2 O2 pulses, and the cellular response was recorded in real time. The results demonstrated adequate expression of the biosensor allowing registering fluorescence from HyPer at a single cell level. Comparison of the response of c- and o-MSCs to the oxidant challenges demonstrated improved antioxidant activity in o-MSCs. This was further corroborated by measuring the relative expression of mRNAs for catalase, superoxide dismutase-1, thioredoxine, and peroxiredoxine, as well as by cell-surviving capacity under short-term H2 O2 treatment. We conclude that functional differences exist between healthy and osteoporotic human MSCs. The mechanism for these differences requires further study. J. Cell. Biochem. 118: 585-593, 2017. © 2016 Wiley Periodicals, Inc.

  11. Oxidative Stress Is Associated with an Increased Antioxidant Defense in Elderly Subjects: A Multilevel Approach

    PubMed Central

    Flores-Mateo, Gemma; Elosua, Roberto; Rodriguez-Blanco, Teresa; Basora-Gallisà, Josep; Bulló, Mònica; Salas-Salvadó, Jordi; Martínez-González, Miguel Ángel; Estruch, Ramon; Corella, Dolores; Fitó, Montserrat; Fiol, Miquel; Arós, Fernando; Gómez-Gracia, Enrique; Subirana, Isaac; Lapetra, José; Ruiz-Gutiérrez, Valentina; Sáez, Guillermo T.; Covas, Maria-Isabel

    2014-01-01

    Background Studies of associations between plasma GSH-Px activity and cardiovascular risk factors have been done in humans, and contradictory results have been reported. The aim of our study was to assess the association between the scavenger antioxidant enzyme glutathione peroxidase (GSH-Px) activity in plasma and the presence of novel and classical cardiovascular risk factors in elderly patients. Methods We performed a cross-sectional study with baseline data from a subsample of the PREDIMED (PREvención con DIeta MEDiterránea) study in Spain. Participants were 1,060 asymptomatic subjects at high risk for cardiovascular disease (CVD), aged 55 to 80, selected from 8 primary health care centers (PHCCs). We assessed classical CVD risk factors, plasma oxidized low-density lipoproteins (ox-LDL), and glutathione peroxidase (GSH-Px) using multilevel statistical procedures. Results Mean GSH-Px value was 612 U/L (SE: 12 U/L), with variation between PHCCs ranging from 549 to 674 U/L (Variance = 1013.5; P<0.001). Between-participants variability within a PHCC accounted for 89% of the total variation. Both glucose and oxidized LDL were positively associated with GSH-Px activity after adjustment for possible confounder variables (P = 0.03 and P = 0.01, respectively). Conclusion In a population at high cardiovascular risk, a positive linear association was observed between plasma GSH-Px activity and both glucose and ox-LDL levels. The high GSH-Px activity observed when an oxidative stress situation occurred, such as hyperglycemia and lipid oxidative damage, could be interpreted as a healthy defensive response against oxidative injury in our cardiovascular risk population. PMID:25269026

  12. Genetic factors that increase male facial masculinity decrease facial attractiveness of female relatives.

    PubMed

    Lee, Anthony J; Mitchem, Dorian G; Wright, Margaret J; Martin, Nicholas G; Keller, Matthew C; Zietsch, Brendan P

    2014-02-01

    For women, choosing a facially masculine man as a mate is thought to confer genetic benefits to offspring. Crucial assumptions of this hypothesis have not been adequately tested. It has been assumed that variation in facial masculinity is due to genetic variation and that genetic factors that increase male facial masculinity do not increase facial masculinity in female relatives. We objectively quantified the facial masculinity in photos of identical (n = 411) and nonidentical (n = 782) twins and their siblings (n = 106). Using biometrical modeling, we found that much of the variation in male and female facial masculinity is genetic. However, we also found that masculinity of male faces is unrelated to their attractiveness and that facially masculine men tend to have facially masculine, less-attractive sisters. These findings challenge the idea that facially masculine men provide net genetic benefits to offspring and call into question this popular theoretical framework.

  13. Genetic Factors That Increase Male Facial Masculinity Decrease Facial Attractiveness of Female Relatives

    PubMed Central

    Lee, Anthony J.; Mitchem, Dorian G.; Wright, Margaret J.; Martin, Nicholas G.; Keller, Matthew C.; Zietsch, Brendan P.

    2014-01-01

    For women, choosing a facially masculine man as a mate is thought to confer genetic benefits to offspring. Crucial assumptions of this hypothesis have not been adequately tested. It has been assumed that variation in facial masculinity is due to genetic variation and that genetic factors that increase male facial masculinity do not increase facial masculinity in female relatives. We objectively quantified the facial masculinity in photos of identical (n = 411) and nonidentical (n = 782) twins and their siblings (n = 106). Using biometrical modeling, we found that much of the variation in male and female facial masculinity is genetic. However, we also found that masculinity of male faces is unrelated to their attractiveness and that facially masculine men tend to have facially masculine, less-attractive sisters. These findings challenge the idea that facially masculine men provide net genetic benefits to offspring and call into question this popular theoretical framework. PMID:24379153

  14. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities.

    PubMed

    Wu, Qi; Su, Nana; Cai, Jiangtao; Shen, Zhenguo; Cui, Jin

    2015-03-01

    The aim of the present paper was to understand the specific mechanism of hydrogen-rich water (HRW) in alleviating cadmium (Cd) toxicity in Chinese cabbage (Brassica campestris spp. chinensis L.). Our results showed that the addition of 50% saturation HRW significantly alleviated the Cd toxic symptoms, including the improvement of both root elongation and seedling growth inhibition. These responses were consistent with a significant decrease of Cd accumulation in roots and shoots, which was further confirmed by the histochemical staining. Molecular evidence illustrated that Cd-induced up-regulations of IRT1 and Nramp1 genes, responsible for Cd absorption, were blocked by HRW. By contrast, Cd-induced up-regulation of the HMA3 gene, which regulates Cd sequestration into the root vacuoles, was substantially strengthened by HRW. Furthermore, compared with those in Cd stress alone, the expressions of HMA2 and HMA4, which function in the transportation of Cd to xylem, were repressed by co-treatment with HRW. HRW enhanced the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase. These results were further confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS) production. Taken together, these results suggest that the improvement of Cd tolerance by HRW was associated with reduced Cd uptake and increased antioxidant defense capacities. Therefore, the application of HRW may be a promising strategy to improve Cd tolerance of Chinese cabbage.

  15. Thermal treatment of eggplant (Solanum melongena L.) increases the antioxidant content and the inhibitory effect on human neutrophil burst.

    PubMed

    Lo Scalzo, Roberto; Fibiani, Marta; Mennella, Giuseppe; Rotino, Giuseppe L; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra; Braga, Pier Carlo

    2010-03-24

    The aim of this study was to compare the amount and activity of phytonutrients in raw, grilled, and boiled eggplant fruit using chemical measures and a biological assay of oxidative bursts in human neutrophils. The thermally treated samples showed various changes in their chemical composition (dry matter, soluble solids, acidity, and the amount of alcohol insoluble substances) due to the cooking processes and were much richer in the main phenolic compounds such as chlorogenic and caffeic acids, which are known to be antioxidants. Consequently, their free radical scavenging activity was significantly higher, especially that of superoxide anion. The biological assay of oxidative bursts from human neutrophils in the presence of N-formyl-methionyl-leucyl-phenylalanine confirmed the greater activity of extracts of the cooked eggplants with respect to raw eggplants. Successive extract dilutions showed a significant activity up to 1.25 microg/mL after cooking, while raw fruits resulted in an activity up to 10.00 microg/mL. These results showed that the thermal treatment commonly used before consumption can increase the content and biological activity of antioxidant compounds of eggplants.

  16. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis.

    PubMed

    Suryavanshi, Shweta; Sharma, Deepak; Checker, Rahul; Thoh, Maikho; Gota, Vikram; Sandur, Santosh K; Sainis, Krishna B

    2015-08-01

    Hematopoietic stem cells and progenitor cells (HSPC) are low in abundance and exhibit high radiosensitivity and their ability to divide dramatically decreases following exposure to ionizing radiation. Our earlier studies have shown antiapoptotic, immune-stimulatory, and antioxidant effects of chlorophyllin, a constituent of the over the counter drug derifil. Here we describe the beneficial effects of chlorophyllin against radiation-induced hematopoietic syndrome. Chlorophyllin administration significantly enhanced the abundance of HSPC in vivo. It induced a transient cell cycle arrest in lineage-negative cells in the bone marrow. However, the chlorophyllin-treated mice exposed to whole body irradiation (WBI) had a significantly higher proportion of actively dividing HSPC in the bone marrow as compared to only WBI-exposed mice. It significantly increased the number of colony forming units (CFUs) by bone marrow cells in vitro and spleen CFUs in irradiated mice in vivo. Pharmacokinetic study showed that chlorophyllin had a serum half-life of 141.8 min in mice. Chlorophyllin upregulated antiapoptotic genes and antioxidant machinery via activation of prosurvival transcription factors Nrf-2 and NF-κB and increased the survival and recovery of bone marrow cells in mice exposed to WBI. Chlorophyllin stimulated granulocyte production in bone marrow and increased the abundance of peripheral blood neutrophils by enhancing serum levels of granulocyte-colony stimulation factor (GCSF). Most importantly, prophylactic treatment of mice with chlorophyllin significantly abrogated radiation-induced mortality. Chlorophyllin mitigates radiation-induced hematopoietic syndrome by increasing the abundance of hematopoietic stem cells, enhancing granulopoiesis, and stimulating prosurvival pathways in bone marrow cells and lymphocytes.

  17. Dietary Curcumin Increases Antioxidant Defenses in Lung, Ameliorates Radiation-Induced Pulmonary Fibrosis, and Improves Survival in Mice

    PubMed Central

    Lee, James C.; Kinniry, Paul A.; Arguiri, Evguenia; Serota, Matthew; Kanterakis, Stathis; Chatterjee, Shampa; Solomides, Charalambos C.; Javvadi, Prashanthi; Koumenis, Constantinos; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2010-01-01

    The effectiveness of lung radiotherapy is limited by radiation tolerance of normal tissues and by the intrinsic radiosensitivity of lung cancer cells. The chemopreventive agent curcumin has known antioxidant and tumor cell radiosensitizing properties. Its usefulness in preventing radiation-induced pneumonopathy has not been tested previously. We evaluated dietary curcumin in radiation-induced pneumonopathy and lung tumor regression in a murine model. Mice were given 1%or 5%(w/w) dietary curcumin or control diet prior to irradiation and for the duration of the experiment. Lungs were evaluated at 3 weeks after irradiation for acute lung injury and inflammation by evaluating bronchoalveolar lavage (BAL) fluid content for proteins, neutrophils and at 4 months for pulmonary fibrosis. In a separate series of experiments, an orthotopic model of lung cancer using intravenously injected Lewis lung carcinoma (LLC) cells was used to exclude possible tumor radioprotection by dietary curcumin. In vitro, curcumin boosted antioxidant defenses by increasing heme oxygenase 1 (HO-1) levels in primary lung endothelial and fibroblast cells and blocked radiation-induced generation of reactive oxygen species (ROS). Dietary curcumin significantly increased HO-1 in lungs as early as after 1 week of feeding, coinciding with a steady-state level of curcumin in plasma. Although both 1% and 5% w/w dietary curcumin exerted physiological changes in lung tissues by significantly decreasing LPS-induced TNF-α production in lungs, only 5%dietary curcumin significantly improved survival of mice after irradiation and decreased radiation-induced lung fibrosis. Importantly, dietary curcumin did not protect LLC pulmonary metastases from radiation killing. Thus dietary curcumin ameliorates radiation-induced pulmonary fibrosis and increases mouse survival while not impairing tumor cell killing by radiation. PMID:20426658

  18. Plant genetic resources: What can they contribute toward increased crop productivity?

    PubMed Central

    Hoisington, David; Khairallah, Mireille; Reeves, Timothy; Ribaut, Jean-Marcel; Skovmand, Bent; Taba, Suketoshi; Warburton, Marilyn

    1999-01-01

    To feed a world population growing by up to 160 people per minute, with >90% of them in developing countries, will require an astonishing increase in food production. Forecasts call for wheat to become the most important cereal in the world, with maize close behind; together, these crops will account for ≈80% of developing countries’ cereal import requirements. Access to a range of genetic diversity is critical to the success of breeding programs. The global effort to assemble, document, and utilize these resources is enormous, and the genetic diversity in the collections is critical to the world’s fight against hunger. The introgression of genes that reduced plant height and increased disease and viral resistance in wheat provided the foundation for the “Green Revolution” and demonstrated the tremendous impact that genetic resources can have on production. Wheat hybrids and synthetics may provide the yield increases needed in the future. A wild relative of maize, Tripsacum, represents an untapped genetic resource for abiotic and biotic stress resistance and for apomixis, a trait that could provide developing world farmers access to hybrid technology. Ownership of genetic resources and genes must be resolved to ensure global access to these critical resources. The application of molecular and genetic engineering technologies enhances the use of genetic resources. The effective and complementary use of all of our technological tools and resources will be required for meeting the challenge posed by the world’s expanding demand for food. PMID:10339521

  19. Ultraviolet-B light treatment increases antioxidant capacity of carrot products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abiotic stresses such as cutting and ultraviolet (UV) light exposure of plant cells triggers an increased activity response by phenylalanine ammonia-lyase (PAL) and chalcone synthase resulting in increased synthesis of phenolic compounds, mainly anthocyanins and flavonoids. This study investigated ...

  20. Taurine chloramine protects RAW 264.7 macrophages against hydrogen peroxide-induced apoptosis by increasing antioxidants.

    PubMed

    Piao, Shuyu; Cha, Young-Nam; Kim, Chaekyun

    2011-07-01

    Taurine chloramine is the major chloramine generated in activated neutrophils via the reaction between the overproduced hypochlorous acid and the stored taurine. Taurine chloramine has anti-inflammatory and cytoprotective effects in inflamed tissues by inhibiting the production of inflammatory mediators. Taurine chloramine increases heme oxygenase activity and also protects against hydrogen peroxide (H(2)O(2))-derived necrosis in macrophages. In this study, we examined further whether taurine chloramine could protect RAW 264.7 macrophages from apoptosis caused by H(2)O(2). Macrophages treated with 0.4 mM H(2)O(2) underwent apoptosis without showing immediate signs of necrosis, and the cells pretreated with taurine chloramine were protected from the H(2)O(2)-derived apoptosis. Taurine chloramine increased heme oxygenase-1 expression and heme oxygenase activity. The taurine chloramine-derived upregulation of heme oxygenase-1 expression was blocked by inhibition of ERK phosphorylation. Taurine chloramine decreased cellular glutathione (GSH) levels initially, but the GSH level increased above the control level by 10 h. Taurine chloramine also increased catalase expression and protected macrophages from the apoptotic effect of H(2)O(2). Combined, these results indicate that the taurine chloramine, produced and released endogenously by the activated neutrophils, can protect the macrophages in inflamed tissues from the H(2)O(2)-derived apoptosis not only by increasing the expression of cytoprotective enzymes like heme oxygenase-1 and catalase, but also by increasing the intracellular antioxidant GSH level.

  1. High conjugated linoleic acid enriched ghee (clarified butter) increases the antioxidant and antiatherogenic potency in female Wistar rats

    PubMed Central

    2013-01-01

    Background Hypercholesterolemia and oxidative stress are the main stimulating factors responsible for coronary artery disease and progression of atherosclerosis. Dairy food products are rich in conjugated linoleic acid (CLA) which is considered as an important component due to its potential health benefits such as anticarcinogenic, antiatherogenic, antidiabetic and antiadipogenic properties. In the present study, the effect of CLA enriched ghee on the antioxidant enzyme system and antiatherogenic properties in Wistar rats has been studied. Methods Female Wistar rats of 21 days were taken for the study and fed with soybean diet (Control diet), low CLA diet and high CLA ghee diet (treatments) for thirty five days for studying antioxidative enzymes and sixteen weeks in case of antiatherogenic studies. Results Feeding of high CLA enhanced ghee during pubescent period in rats lead to an increase in catalase (CAT) and superoxide dismutase (SOD) enzyme activities in blood and increased CAT, SOD and glutathione transferase (GST) enzymes activities in liver by 27, 130 and 168 percent, respectively. Plasma nitrate concentration and Haemoglobin levels remained the same in all the treatments. Feeding of high CLA ghee resulted in lower (P < 0.01) plasma cholesterol & triglyceride level (52.17 and 30.27%), and higher high density lipoproteins (33.26%) than feeding of soybean oil (control group) and thus manifested in decreased (P < 0.05) atherogenic index (from 0.472 to 0.244). Lesser cholesterol and triglyceride levels were observed in the liver and aorta of high CLA fed rats than in those of the other groups. Histopathological studies of liver showed normal hepatic cords with portal triad in the high CLA ghee fed rats whereas fatty degeneration of hepatocytes containing fat vacuoles was observed in the liver of the other groups. Conclusion This paper is the first report of the antioxidant and antiatherogenic properties of the high CLA enriched ghee suggesting that

  2. Sperm antioxidant defences decrease during epididymal transit from caput to cauda in parallel with increases in epididymal fluid in the goat (Capra hircus).

    PubMed

    Rana, Mashidur; Roy, Sudhir C; Divyashree, Bannur C

    2016-09-28

    The status of antioxidant defences of both spermatozoa and their associated fluids during epididymal transit from the caput to cauda have not been studied so far in any species. Herein we report for the first time that sperm antioxidant defences, namely Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and catalase activity, decrease significantly (P<0.05) from the caput to cauda during epididymal transit in parallel with increases in Cu,Zn-SOD, total SOD and total glutathione peroxidase (GPx) activity in the luminal fluid of the respective segments. However, levels of GPX1 and GPX3 in epididymal fluid did not change significantly from the caput to cauda. Catalase was detected for the first time in goat spermatozoa. A significantly higher total antioxidant capacity of caudal fluid than of the caput suggests a requirement for a rich antioxidant environment for the storage of spermatozoa. The retention of cytoplasmic droplets in most of the caudal spermatozoa confirmed that these droplets do not contribute to the increased antioxidant defences of cauda epididymidal fluid. Thus, the antioxidant defences of the spermatozoa and their associated epididymal fluid are modulated from the caput to cauda in a region-specific manner. This may be one of the compensatory mechanisms of epididymal fluid to scavenge any excess reactive oxygen species produced in the microenvironment of spermatozoa.

  3. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome.

    PubMed

    Basu, Arpita; Betts, Nancy M; Ortiz, Jennifer; Simmons, Brandi; Wu, Mingyuan; Lyons, Timothy J

    2011-03-01

    Cranberries, high in polyphenols, have been associated with several cardiovascular health benefits, although limited clinical trials have been reported to validate these findings. We tested the hypothesis that commercially available low-energy cranberry juice (Ocean Spray Cranberries, Inc, Lakeville-Middleboro, Mass) will decrease surrogate risk factors of cardiovascular disease, such as lipid oxidation, inflammation, and dyslipidemia, in subjects with metabolic syndrome. In a randomized, double-blind, placebo-controlled trial, participants identified with metabolic syndrome (n = 15-16/group) were assigned to 1 of 2 groups: cranberry juice (480 mL/day) or placebo (480 mL/day) for 8 weeks. Anthropometrics, blood pressure measurements, dietary analyses, and fasting blood draws were conducted at screen and 8 weeks of the study. Cranberry juice significantly increased plasma antioxidant capacity (1.5 ± 0.6 to 2.2 ± 0.4 μmol/L [means ± SD], P < .05) and decreased oxidized low-density lipoprotein and malondialdehyde (120.4 ± 31.0 to 80.4 ± 34.6 U/L and 3.4 ± 1.1 to 1.7 ± 0.7 μmol/L, respectively [means ± SD], P < .05) at 8 weeks vs placebo. However, cranberry juice consumption caused no significant improvements in blood pressure, glucose and lipid profiles, C-reactive protein, and interleukin-6. No changes in these parameters were noted in the placebo group. In conclusion, low-energy cranberry juice (2 cups/day) significantly reduces lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome.

  4. The potential use of genetics to increase the effectiveness of treatment programs for criminal offenders.

    PubMed

    Beaver, Kevin M; Jackson, Dylan B; Flesher, Dillon

    2014-01-01

    During the past couple of decades, the amount of research examining the genetic underpinnings to antisocial behaviors, including crime, has exploded. Findings from this body of work have generated a great deal of information linking genetics to criminal involvement. As a partial result, there is now a considerable amount of interest in how these findings should be integrated into the criminal justice system. In the current paper, we outline the potential ways that genetic information can be used to increase the effectiveness of treatment programs designed to reduce recidivism among offenders. We conclude by drawing attention to how genetic information can be used by rehabilitation programs to increase program effectiveness, reduce offender recidivism rates, and enhance public safety.

  5. Enzymatic biotransformation of polyphenolics increases antioxidant activity of red and white grape pomace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grape pomace (GP) is a polyphenolic-rich byproduct of wine production. As most polyphenolics are either bound to cellular matrices or present as free polymeric forms, treatment with hydrolytic enzymes may act to increase GP functionalities. The aim of this study was to examine the impact of tannase ...

  6. Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in Nicotiana spp.

    PubMed

    Barna, B; Smigocki, A C; Baker, J C

    2008-11-01

    Responses of cytokinin overproducing transgenic Nicotiana plants to infections with compatible and incompatible Pseudomonas syringae pathovars were compared. Plants used were transformed with the ipt(isopentenyl transferase) gene that catalyzes the synthesis of cytokinin. In cytokinin overproducing lines that carry the ipt gene fused to the CaMV 35S (Nt+ipt), the wound-inducible proteinase inhibitor II (Ntx+ipt), or the light-inducible Rubisco small subunit protein (Npl+ipt) promoter, development of the hypersensitive response (HR) after infection with incompatible bacteria (P. syringae pv. tomato) was significantly inhibited as compared to the untransformed (Nt) controls. Over a 12 h period following inoculation, P. syrinage pv. tomato populations were slightly reduced in leaves of the cytokinin-overproducing Nt-ipt line compared with the Nt control. When the compatible P. syringae. pv. tabaci was used to infect the ipt transformed lines, slight or no significant differences in necrosis development were observed. Following infection, the titer of P. syringae pv. tabaci increased rapidly in both the transgenic and control lines but was higher in Nt+ipt plants. Leaf superoxide dismutase and catalase enzyme activities were about 60% higher in ipt leaf extracts than in the controls. This augmented antioxidant capacity likely decreased the amount of H(2)O(2) that may be associated with the higher tolerance of plants to pathogen-induced necrosis. In addition, the Nt+ipt lines had a significantly lower molar ratio of free sterols to phospholipids. The more stable membrane lipid composition and the higher antioxidant capacity likely contributed to the suppressed HR symptoms in the cytokinin overproducing Nt+ipt plants. In conclusion, the overproduction of cytokinins in tobacco appears to suppress the HR symptoms induced by incompatible bacteria.

  7. Genetic predisposition to higher blood pressure increases risk of incident hypertension and cardiovascular diseases in Chinese.

    PubMed

    Lu, Xiangfeng; Huang, Jianfeng; Wang, Laiyuan; Chen, Shufeng; Yang, Xueli; Li, Jianxin; Cao, Jie; Chen, Jichun; Li, Ying; Zhao, Liancheng; Li, Hongfan; Liu, Fangcao; Huang, Chen; Shen, Chong; Shen, Jinjin; Yu, Ling; Xu, Lihua; Mu, Jianjun; Wu, Xianping; Ji, Xu; Guo, Dongshuang; Zhou, Zhengyuan; Yang, Zili; Wang, Renping; Yang, Jun; Yan, Weili; Gu, Dongfeng

    2015-10-01

    Although multiple genetic markers associated with blood pressure have been identified by genome-wide association studies, their aggregate effect on risk of incident hypertension and cardiovascular disease is uncertain, particularly among East Asian who may have different genetic and environmental exposures from Europeans. We aimed to examine the association between genetic predisposition to higher blood pressure and risk of incident hypertension and cardiovascular disease in 26 262 individuals in 2 Chinese population-based prospective cohorts. A genetic risk score was calculated based on 22 established variants for blood pressure in East Asian. We found the genetic risk score was significantly and independently associated with linear increases in blood pressure and risk of incident hypertension and cardiovascular disease (P range from 4.57×10(-3) to 3.10×10(-6)). In analyses adjusted for traditional risk factors including blood pressure, individuals carrying most blood pressure-related risk alleles (top quintile of genetic score distribution) had 40% (95% confidence interval, 18-66) and 26% (6-45) increased risk for incident hypertension and cardiovascular disease, respectively, when compared with individuals in the bottom quintile. The genetic risk score also significantly improved discrimination for incident hypertension and cardiovascular disease and led to modest improvements in risk reclassification for cardiovascular disease (all the P<0.05). Our data indicate that genetic predisposition to higher blood pressure is an independent risk factor for blood pressure increase and incident hypertension and cardiovascular disease and provides modest incremental information to cardiovascular disease risk prediction. The potential clinical use of this panel of blood pressure-associated polymorphisms remains to be determined.

  8. Antibiotics Increase Gut Metabolism and Antioxidant Proteins and Decrease Acute Phase Response and Necrotizing Enterocolitis in Preterm Neonates

    PubMed Central

    Jiang, Pingping; Jensen, Michael Ladegaard; Cilieborg, Malene Skovsted; Thymann, Thomas; Wan, Jennifer Man-Fan; Sit, Wai-Hung; Tipoe, George L.; Sangild, Per Torp

    2012-01-01

    Background The appropriate use of antibiotics for preterm infants, which are highly susceptible to develop necrotizing enterocolitis (NEC), is not clear. While antibiotic therapy is commonly used in neonates with NEC symptoms and sepsis, it remains unknown how antibiotics may affect the intestine and NEC sensitivity. We hypothesized that broad-spectrum antibiotics, given immediately after preterm birth, would reduce NEC sensitivity and support intestinal protective mechanisms. Methodology/Principal Findings Preterm pigs were treated with antibiotics for 5 d (oral and systemic doses of gentamycin, ampicillin and metrodinazole; AB group) and compared with untreated pigs. Only the untreated pigs showed evidence of NEC lesions and reduced digestive function, as indicated by lowered villus height and activity of brush border enzymes. In addition, 53 intestinal and 22 plasma proteins differed in expression between AB and untreated pigs. AB treatment increased the abundance of intestinal proteins related to carbohydrate and protein metabolism, actin filaments, iron homeostasis and antioxidants. Further, heat shock proteins and the complement system were affected suggesting that all these proteins were involved in the colonization-dependent early onset of NEC. In plasma, acute phase proteins (haptoglobin, complement proteins) decreased, while albumin, cleaved C3, ficolin and transferrin increased. Conclusions/Significance Depressed bacterial colonization following AB treatment increases mucosal integrity and reduces bacteria-associated inflammatory responses in preterm neonates. The plasma proteins C3, ficolin, and transferrin are potential biomarkers of the colonization-dependent NEC progression in preterm neonates. PMID:23028687

  9. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    PubMed Central

    Ceretta, Luciane B.; Réus, Gislaine Z.; Abelaira, Helena M.; Ribeiro, Karine F.; Zappellini, Giovanni; Felisbino, Francine F.; Steckert, Amanda V.; Dal-Pizzol, Felipe; Quevedo, João

    2012-01-01

    Diabetes Mellitus (DM) is associated with pathological changes in the central nervous system (SNC) as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg), and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS) production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals' recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes. PMID:22645603

  10. Antioxidant capacity, total phenolic and ascorbate content as a function of the genetic diversity of leek (Allium ampeloprasum var. porrum).

    PubMed

    Bernaert, Nathalie; De Paepe, Domien; Bouten, Charlotte; De Clercq, Hervé; Stewart, Derek; Van Bockstaele, Erik; De Loose, Marc; Van Droogenbroeck, Bart

    2012-09-15

    Extracts of the white shaft and green leaves of 30 leek cultivars were investigated for their antioxidant properties, total phenolic (TP) and l-ascorbic acid (AA) content. The measured antioxidant properties included free radical scavenging activities against peroxyl (ORAC) and 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH) and their Fe(3+) reducing capacity (FRAP). The results from this study suggest that the green leek leaves generally have significantly stronger antioxidant properties than the white shaft. Correlation analysis between the TP and the AA content and the antioxidant activity showed that phenolics and ascorbic acid contribute significantly to the antioxidant activity of leek. The three antioxidant activity assays were all correlated for the extracts of the white shaft of the 30 leek cultivars. Principal component analysis (PCA) elucidated the influence of part and type of cultivar on the antioxidant capacity, TP, and l-ascorbic acid content, whilst the breeding strategy and seed company had no influence.

  11. Genetic vulnerability interacts with parenting and early care education to predict increasing externalizing behavior

    PubMed Central

    Lipscomb, Shannon T.; Laurent, Heidemarie; Neiderhiser, Jenae M.; Shaw, Daniel S.; Natsuaki, Misaki N.; Reiss, David; Leve, Leslie D.

    2014-01-01

    The current study examined interactions among genetic influences and children’s early environments on the development of externalizing behaviors from 18 months to 6 years of age. Participants included 233 families linked through adoption (birth parents and adoptive families). Genetic influences were assessed by birth parent temperamental regulation. Early environments included both family (overreactive parenting) and out-of-home factors (center-based Early Care and Education; ECE). Overreactive parenting predicted more child externalizing behaviors. Attending center-based ECE was associated with increasing externalizing behaviors only for children with genetic liability for dysregulation. Additionally, children who were at risk for externalizing behaviors due to both genetic variability and exposure to center-based ECE were more sensitive to the effects of overreactive parenting on externalizing behavior than other children. PMID:25067867

  12. Ethanol- and cocaine-induced locomotion are genetically related to increases in accumbal dopamine.

    PubMed

    Meyer, Paul J; Meshul, Charles K; Phillips, Tamara J

    2009-04-01

    Neuroanatomical research suggests that interactions between dopamine and glutamate within the mesolimbic dopamine system are involved in both drug-induced locomotor stimulation and addiction. Therefore, genetically determined differences in the locomotor responses to ethanol and cocaine may be related to differences in the effects of these drugs on this system. To test this, we measured drug-induced changes in dopamine and glutamate within the nucleus accumbens (NAcc), a major target of mesolimbic dopamine neurons, using in vivo microdialysis in selectively bred FAST and SLOW mouse lines, which were bred for extreme sensitivity (FAST) and insensitivity (SLOW) to the locomotor stimulant effects of ethanol. These mice also show a genetically correlated difference in stimulant response to cocaine (FAST > SLOW). Single injections of ethanol (2 g/kg) or cocaine (40 mg/kg) resulted in larger increases in dopamine within the NAcc in FAST compared with SLOW mice. There was no effect of either drug on NAcc glutamate levels. These experiments indicate that response of the mesolimbic dopamine system is genetically correlated with sensitivity to ethanol- and cocaine-induced locomotion. Because increased sensitivity to the stimulating effects of ethanol appears to be associated with greater risk for alcohol abuse, genetically determined differences in the mesolimbic dopamine response to ethanol may represent a critical underlying mechanism for increased genetic risk for alcoholism.

  13. Loss of Genetic Diversity and Increased Subdivision in an Endemic Alpine Stonefly Threatened by Climate Change

    PubMed Central

    Jordan, Steve; Giersch, J. Joseph; Muhlfeld, Clint C.; Hotaling, Scott; Fanning, Liz; Tappenbeck, Tyler H.; Luikart, Gordon

    2016-01-01

    Much remains unknown about the genetic status and population connectivity of high-elevation and high-latitude freshwater invertebrates, which often persist near snow and ice masses that are disappearing due to climate change. Here we report on the conservation genetics of the meltwater stonefly Lednia tumana (Ricker) of Montana, USA, a cold-water obligate species. We sequenced 1530 bp of mtDNA from 116 L. tumana individuals representing “historic” (>10 yr old) and 2010 populations. The dominant haplotype was common in both time periods, while the second-most-common haplotype was found only in historic samples, having been lost in the interim. The 2010 populations also showed reduced gene and nucleotide diversity and increased genetic isolation. We found lower genetic diversity in L. tumana compared to two other North American stonefly species, Amphinemura linda (Ricker) and Pteronarcys californica Newport. Our results imply small effective sizes, increased fragmentation, limited gene flow, and loss of genetic variation among contemporary L. tumana populations, which can lead to reduced adaptive capacity and increased extinction risk. This study reinforces concerns that ongoing glacier loss threatens the persistence of L. tumana, and provides baseline data and analysis of how future environmental change could impact populations of similar organisms. PMID:27348125

  14. Loss of genetic diversity and increased subdivision in an endemic Alpine Stonefly threatened by climate change

    USGS Publications Warehouse

    Jordan, Steve; Giersch, J. Joseph; Muhlfeld, Clint C.; Hotalling, Scott; Fanning, Liz; Tappenbeck, Tyler H.; Luikart, Gordon

    2016-01-01

    Much remains unknown about the genetic status and population connectivity of high-elevation and high-latitude freshwater invertebrates, which often persist near snow and ice masses that are disappearing due to climate change. Here we report on the conservation genetics of the meltwater stonefly Lednia tumana (Ricker) of Montana, USA, a cold-water obligate species. We sequenced 1530 bp of mtDNA from 116 L. tumana individuals representing “historic” (>10 yr old) and 2010 populations. The dominant haplotype was common in both time periods, while the second-most-common haplotype was found only in historic samples, having been lost in the interim. The 2010 populations also showed reduced gene and nucleotide diversity and increased genetic isolation. We found lower genetic diversity in L. tumana compared to two other North American stonefly species, Amphinemura linda (Ricker) and Pteronarcys californica Newport. Our results imply small effective sizes, increased fragmentation, limited gene flow, and loss of genetic variation among contemporary L. tumana populations, which can lead to reduced adaptive capacity and increased extinction risk. This study reinforces concerns that ongoing glacier loss threatens the persistence of L. tumana, and provides baseline data and analysis of how future environmental change could impact populations of similar organisms.

  15. Treatment of β-Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State

    PubMed Central

    Yanpanitch, Orn-uma; Hatairaktham, Suneerat; Charoensakdi, Ratiya; Panichkul, Narumol; Fucharoen, Suthat; Siritanaratkul, Noppadol; Kalpravidh, Ruchaneekorn W.

    2015-01-01

    Studies on the antioxidant treatment for thalassemia have reported variable outcomes. However, treatment of thalassemia with a combination of hydrophobic and hydrophilic antioxidants and an iron chelator has not been studied. This study investigated the effects of antioxidant cocktails for the treatment of β-thalassemia/hemoglobin E (HbE), which is the most common form of β-thalassemia in Southeast Asia. Sixty patients were divided into two groups receiving N-acetylcysteine, deferiprone, and either curcuminoids (CUR) or vitamin E (Vit-E), and their hematological parameters, iron load, oxidative stress, and blood coagulation potential were evaluated. Patients were classified as responders if they showed the improvements of the markers of iron load and oxidative stress, otherwise as nonresponders. During treatment, the responders in both groups had significantly decreased iron load, oxidative stress, and coagulation potential and significantly increased antioxidant capacity and hemoglobin concentration. The significantly maximum increase (P < 0.01) in hemoglobin concentration was 11% at month 4 in CUR group responders and 10% at month 10 in Vit-E group responders. In conclusion, the two antioxidant cocktails can improve anemia, iron overload, oxidative stress, and hypercoagulable state in β-thalassemia/HbE. PMID:26078808

  16. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans.

  17. Parenting Moderates a Genetic Vulnerability Factor in Longitudinal Increases in Youths' Substance Use

    ERIC Educational Resources Information Center

    Brody, Gene H.; Beach, Steven R. H.; Philibert, Robert A.; Chen, Yi-fu; Lei, Man-Kit; Murry, Velma McBride; Brown, Anita C.

    2009-01-01

    The authors used a longitudinal, prospective design to investigate a moderation effect in the association between a genetic vulnerability factor, a variable nucleotide repeat polymorphism in the promoter region of "5HTT" (5-HTTLPR), and increases in youths' substance use. The primary study hypothesis predicted that involved-supportive…

  18. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line.

    PubMed

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  19. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    PubMed Central

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders. PMID:27340504

  20. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia.

    PubMed

    Mistry, Hiten D; Gill, Carolyn A; Kurlak, Lesia O; Seed, Paul T; Hesketh, John E; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2-7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag-single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both P<0.001) compared to controls (median (IQR), copper, 1957.4 (1787, 2177.5) vs 1850.0 (1663.5, 2051.5) µg/L; ceruloplasmin, 2.5 (1.4, 3.2) vs 2.2 (1.2, 3.0) µg/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for SNPs and antioxidant enzyme activity. This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks׳ gestation that subsequently

  1. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia

    PubMed Central

    Mistry, Hiten D.; Gill, Carolyn A.; Kurlak, Lesia O.; Seed, Paul T.; Hesketh, John E.; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C.; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2–7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag–single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both P<0.001) compared to controls (median (IQR), copper, 1957.4 (1787, 2177.5) vs 1850.0 (1663.5, 2051.5) µg/L; ceruloplasmin, 2.5 (1.4, 3.2) vs 2.2 (1.2, 3.0) µg/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for SNPs and antioxidant enzyme activity. This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks׳ gestation that subsequently

  2. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

    PubMed

    Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania

    2016-11-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress.

  3. Antioxidant supplementation enhances the exercise-induced increase in mitochondrial uncoupling protein 3 and endothelial nitric oxide synthase mRNA content in human skeletal muscle.

    PubMed

    Hellsten, Ylva; Nielsen, Jens J; Lykkesfeldt, Jens; Bruhn, Maria; Silveira, Leonardo; Pilegaard, Henriette; Bangsbo, Jens

    2007-08-01

    The effects of acute exercise on the mRNA content of selected genes were examined during control conditions and after oral intake of antioxidants. In addition, to provide evidence for formation of reactive oxygen species (ROS) in human skeletal muscle during exercise, cytochrome c reduction was measured in microdialysate from the muscle. For the study on the effects of antioxidants on mRNA content, seven healthy, habitually active, male subjects participated in a double-blinded experimental design in which they, on one occasion, received a placebo and, on another, a mixture of antioxidants containing 1500 mg vitamin C, 120 mg coenzyme Q, and 345 mg alpha-tocopherol every day for 7 days before the experiment. On the experimental day the subjects cycled for 90 min and muscle biopsies were taken preexercise and at 1, 3, and 5 h after exercise. Exercise induced an increase in the eNOS, UCP3, PGC-1alpha, VEGF, Hsp72, and HO-1 mRNA content (p < 0.001), whereas there was no change in the Hsc70 mRNA level. Prior antioxidant treatment further enhanced (p < 0.05) the eNOS and UCP3 mRNA content after exercise. Moreover, the overall level of Hsc70 mRNA tended (p = 0.07) to be higher after antioxidant treatment. In another group of healthy male subjects, cytochrome c reduction was determined in microdialysate from the thigh muscle at rest and during knee extensor exercise to determine ROS formation. There was a significant increase in cytochrome c reduction with exercise both at 14 ( approximately 25%) and at 30 W ( approximately 50%). The data show that ROS are formed within skeletal muscle during exercise and that oral intake of antioxidants can enhance the exercise-induced adaptive mRNA responses of eNOS and UCP3.

  4. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis.

    PubMed

    Gu, Junfei; Yin, Xinyou; Stomph, Tjeerd-Jan; Struik, Paul C

    2014-01-01

    Rice productivity can be limited by available photosynthetic assimilates from leaves. However, the lack of significant correlation between crop yield and leaf photosynthetic rate (A) is noted frequently. Engineering for improved leaf photosynthesis has been argued to yield little increase in crop productivity because of complicated constraints and feedback mechanisms when moving up from leaf to crop level. Here we examined the extent to which natural genetic variation in A can contribute to increasing rice productivity. Using the mechanistic model GECROS, we analysed the impact of genetic variation in A on crop biomass production, based on the quantitative trait loci for various photosynthetic components within a rice introgression line population. We showed that genetic variation in A of 25% can be scaled up equally to crop level, resulting in an increase in biomass of 22-29% across different locations and years. This was probably because the genetic variation in A resulted not only from Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase)-limited photosynthesis but also from electron transport-limited photosynthesis; as a result, photosynthetic rates could be improved for both light-saturated and light-limited leaves in the canopy. Rice productivity could be significantly improved by mining the natural variation in existing germ-plasm, especially the variation in parameters determining light-limited photosynthesis.

  5. Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi.

    PubMed

    Schoberle, Taylor J; Nguyen-Coleman, C Kim; May, Gregory S

    2013-01-01

    Fungal species are continuously being studied to not only understand disease in humans and plants but also to identify novel antibiotics and other metabolites of industrial importance. Genetic manipulations, such as gene deletion, gene complementation, and gene over-expression, are common techniques to investigate fungal gene functions. Although advances in transformation efficiency and promoter usage have improved genetic studies, some basic steps in vector construction are still laborious and time-consuming. Gateway cloning technology solves this problem by increasing the efficiency of vector construction through the use of λ phage integrase proteins and att recombination sites. We developed a series of Gateway-compatible vectors for use in genetic studies in a range of fungal species. They contain nutritional and drug-resistance markers and can be utilized to manipulate different filamentous fungal genomes.

  6. Liposome-containing Hibiscus sabdariffa calyx extract formulations with increased antioxidant activity, improved dermal penetration and reduced dermal toxicity.

    PubMed

    Pinsuwan, Sirirat; Amnuaikit, Thanaporn; Ungphaiboon, Suwipa; Itharat, Arunporn

    2010-12-01

    Hibiscus sabdariffa Linn, or Roselle, is a medicinal plant used extensively in traditional Thai medicine since ancient times. The extracts of Roselle calyces possess antioxidant activity and have potential for development as active ingredients in cosmetic products. However the limitations of using Roselle extracts in cosmetics are its low skin permeation and dermal irritation. Liposome technology is an obvious approach that might overcome these problems. Liposome formulations of standardized Roselle extracts were developed with various lipid components. The formulation showing the highest entrapment efficiency was selected for stability, skin permeation and dermal irritability studies. The liposome formulation with the highest entrapment efficiency (83%) and smalôlest particle size (332 mm) was formulated with phosphatidylcholine from soybean (SPC): Tween 80: deoxycholic acid (DA); 84:16:2.5 weight ratio, total lipid of 200 g/mL and 10% w/v Roselle extract in final liposomal preparation. This liposome formulation was found to be stable after storage at 4 degrees C, protected from light, for 2 months. The in vitro skin permeation studies, using freshly excised pig skin and modified Franz-diffusion cells, showed that the liposome formulation was able to considerably increased the rate of permeation of active compounds in Roselle extracts compared to the Roselle extract solution. The in vivo dermal irritability testing on rabbit skin showed that the liposome formulation dramatically decreased skin irritability compared to the unformulated extract. These results showed that the liposomes containing Roselle extracts had good stability, high entrapment efficacy, increased skin permeation and low skin irritation.

  7. Increased blood oxidative stress in experimental menopause rat model: the effects of vitamin A low-dose supplementation upon antioxidant status in bilateral ovariectomized rats.

    PubMed

    Behr, Guilherme Antônio; Schnorr, Carlos Eduardo; Moreira, José Cláudio Fonseca

    2012-04-01

    Menopause has been reported to be associated with increased oxidative stress and metabolic disorders among women worldwide. Disarrangements in the redox state similar to those observed in women during the decline of ovarian hormonal activity can be obtained experimentally through rat bilateral ovariectomy. The search for alternative treatments to improve life quality in postmenopausal woman is really important. The aim of this study was to evaluate biochemical and oxidative stress parameters that distinguish sham-operated female rats from Wistar rats bilaterally ovariectomized (OVX). Additionally, we have also investigated the effects of retinol palmitate (a vitamin A supplement) low-dose supplementation (500 or 1500 IU/kg/day, during 30 days) upon blood and plasma antioxidant status in OVX rats. Ovariectomy caused an increase in body weight gain, pronounced uterine atrophy, decreased plasma triglycerides and increased total cholesterol levels, and reduced acid uric content. Moreover, we found increased blood peroxidase activities (catalase and glutathione peroxidase), decreased plasma non-enzymatic antioxidant defenses total reactive antioxidant potential and total antioxidant reactivity, decreased protein and non-protein SH levels, accompanied by increased protein oxidative damage (carbonyl). In addition, vitamin A low-dose supplementation was capable to ameliorate antioxidant status in OVX rats, restoring both enzymatic and non-enzymatic defenses, promoting reduction in plasma SH content, and decreasing protein oxidative damage levels. This is the first work in the literature showing that vitamin A at low dose may be beneficial in the treatment of menopause symptoms. Further studies will be made to better understand the effects of vitamin A supplementation in menopause rat model.

  8. Addition of strawberries to the usual diet increases postprandial but not fasting non-urate plasma antioxidant activity in healthy subjects.

    PubMed

    Prymont-Przyminska, Anna; Bialasiewicz, Piotr; Zwolinska, Anna; Sarniak, Agata; Wlodarczyk, Anna; Markowski, Jaroslaw; Rutkowski, Krzysztof P; Nowak, Dariusz

    2016-11-01

    Strawberries can augment plasma antioxidant activity, but this may be confounded by selection of methods, time of blood sampling and concomitant dietary restrictions. We examined the effect of strawberry consumption on ferric reducing ability (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (DPPH-test) of native and non-urate plasma in healthy subjects on their usual diet. Eleven subjects consumed strawberries (500 g daily) for 9 days. Fasting and 3-h postprandial plasma and 24-h urine collection were obtained before, during and after strawberry course for FRAP, DPPH-test and polyphenols determination. Fifteen subjects served as a control in respect to plasma antioxidant activity changes and effect of 300 mg of oral ascorbate. First, 5th and 9th strawberry dose increased 3-h postprandial DPPH-test by 17.4, 17.6 and 12.6%, and FRAP by 15.5, 25.6 and 21.4% in comparison to fasting values in non-urate plasma (p<0.05). In native plasma only a trend was observed to higher postprandial values for both tests. Strawberries increased urinary urolithin A and 4-hydroxyhippuric acid whereas plasma polyphenols were stable. No changes of FRAP and DPPH-test were noted in controls and after ascorbate intake. Strawberries transiently increased non-urate plasma antioxidant activity but this cannot be attributed to direct antioxidant effect of polyphenols and ascorbate.

  9. Addition of strawberries to the usual diet increases postprandial but not fasting non-urate plasma antioxidant activity in healthy subjects

    PubMed Central

    Prymont-Przyminska, Anna; Bialasiewicz, Piotr; Zwolinska, Anna; Sarniak, Agata; Wlodarczyk, Anna; Markowski, Jaroslaw; Rutkowski, Krzysztof P.; Nowak, Dariusz

    2016-01-01

    Strawberries can augment plasma antioxidant activity, but this may be confounded by selection of methods, time of blood sampling and concomitant dietary restrictions. We examined the effect of strawberry consumption on ferric reducing ability (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (DPPH-test) of native and non-urate plasma in healthy subjects on their usual diet. Eleven subjects consumed strawberries (500 g daily) for 9 days. Fasting and 3-h postprandial plasma and 24-h urine collection were obtained before, during and after strawberry course for FRAP, DPPH-test and polyphenols determination. Fifteen subjects served as a control in respect to plasma antioxidant activity changes and effect of 300 mg of oral ascorbate. First, 5th and 9th strawberry dose increased 3-h postprandial DPPH-test by 17.4, 17.6 and 12.6%, and FRAP by 15.5, 25.6 and 21.4% in comparison to fasting values in non-urate plasma (p<0.05). In native plasma only a trend was observed to higher postprandial values for both tests. Strawberries increased urinary urolithin A and 4-hydroxyhippuric acid whereas plasma polyphenols were stable. No changes of FRAP and DPPH-test were noted in controls and after ascorbate intake. Strawberries transiently increased non-urate plasma antioxidant activity but this cannot be attributed to direct antioxidant effect of polyphenols and ascorbate. PMID:27895386

  10. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium.

    PubMed

    Osanai, Takashi; Shirai, Tomokazu; Iijima, Hiroko; Nakaya, Yuka; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Y

    2015-01-01

    Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.

  11. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium

    PubMed Central

    Osanai, Takashi; Shirai, Tomokazu; Iijima, Hiroko; Nakaya, Yuka; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Y.

    2015-01-01

    Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique. PMID:26500619

  12. Anticipating issues related to increasing preimplantation genetic diagnosis use: a research agenda.

    PubMed

    Klitzman, Robert; Appelbaum, Paul S; Chung, Wendy; Sauer, Mark

    2008-01-01

    Increasing use of preimplantation genetic diagnosis (PGD) poses numerous clinical, social, psychological, ethical, legal and policy dilemmas, many of which have received little attention. Patients and providers are now considering and using PGD for a widening array of genetic disorders, and patients may increasingly seek 'designer babies.' In the USA, although governmental oversight policies have been discussed, few specific guidelines exist. Hence, increasingly, patients and providers will face challenging ethical and policy questions of when and for whom to use PGD, and how it should be financed. These issues should be better clarified and addressed through collection of data concerning the current use of PGD in the USA, including factors involved in decision making about PGD use, as well as the education of the various communities that are, and should be, involved in its implementation. Improved understanding of these issues will ultimately enhance the development and implementation of future clinical guidelines and policies.

  13. Dietary Probiotic Bacillus subtilis Strain fmbj Increases Antioxidant Capacity and Oxidative Stability of Chicken Breast Meat during Storage

    PubMed Central

    Bai, Wen Kai; Zhang, Fei Jing; He, Tian Jin; Su, Peng Wei; Ying, Xiong Zhi; Zhang, Li Li; Wang, Tian

    2016-01-01

    This study was aimed to measure the dietary effects of probiotic Bacillus subtilis strain fmbj (BS fmbj) on antioxidant capacity and oxidative stability of chicken breast meat during storage. Treatment groups were fed the basal diet with BS fmbj at 0 g/kg (CON), 0.2 g/kg (BS-1), 0.3 g/kg (BS-2), or 0.4 g/kg (BS-3) doses without antibiotics. During 8 days of storage at 4°C, BS-2 group showed a significant improvement (P < 0.05) on meat quality (pH, Drip loss, Cooking loss, Shear force, color L*, a*, b*), free radical scavenging activity (DPPH, ABTS+, H2O2), tissues antioxidant enzyme capacity (SOD, CAT, GSH-Px, GSH, T-SH), mitochondria antioxidant enzyme capacity (MnSOD, GPx, GSH), mRNA expression of antioxidant genes (Nrf2, HO-1, SOD, CAT, GSH-Px) and mitochondrial function genes (avUCP, NRF1, NRF2, TFAM, PGC-1α), oxidative damage index (MDA, ROS, PC, 8-OHdG), and MMP level in chicken breast meat as compared to the CON group. These results indicate that dietary BS fmbj in broiler diets can protect breast meat against the storage-induced oxidative stress by improving their free radical scavenging capacity and antioxidant activity during 8 days of storage at 4°C. PMID:27907152

  14. Early maternal, genetic and environmental components of antioxidant protection, morphology and immunity of yellow-legged gull (Larus michahellis) chicks.

    PubMed

    Rubolini, D; Romano, M; Bonisoli Alquati, A; Saino, N

    2006-09-01

    Maternal effects mediated by egg quality are important sources of offspring phenotypic variation and can influence the course of evolutionary processes. Mothers allocate to the eggs diverse antioxidants that protect the embryo from oxidative stress. In the yellow-legged gull (Larus michahellis), yolk antioxidant capacity varied markedly among clutches and declined considerably with egg laying date. Analysis of bioptic yolk samples from clutches that were subsequently partially cross-fostered revealed a positive effect of yolk antioxidant capacity on embryonic development and chick growth, but not on immunity and begging behaviour, while controlling for parentage and common environment effects. Chick plasma antioxidant capacity varied according to rearing environment, after statistically partitioning out maternal influences mediated by egg quality. Thus, the results of this study indicate that egg antioxidants are important mediators of maternal effects also in wild bird populations, especially during the critical early post-hatching phase.

  15. Rapid increase in southern elephant seal genetic diversity after a founder event.

    PubMed

    de Bruyn, Mark; Pinsky, Malin L; Hall, Brenda; Koch, Paul; Baroni, Carlo; Hoelzel, A Rus

    2014-03-22

    Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population.

  16. Juniperus communis Linn oil decreases oxidative stress and increases antioxidant enzymes in the heart of rats administered a diet rich in cholesterol.

    PubMed

    Gumral, Nurhan; Kumbul, Duygu Doguc; Aylak, Firdevs; Saygin, Mustafa; Savik, Emin

    2015-01-01

    It has been asserted that consumption of dietary cholesterol (Chol) raises atherosclerotic cardiovascular diseases and that Chol causes an increase in free radical production. Hypercholesterolemic diet has also been reported to cause changes in the antioxidant system. In our study, different doses of Juniperus communis Linn (JCL) oil, a tree species growing in Mediterranean and Isparta regions and having aromatic characteristics, were administered to rats; and the levels of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and thiobarbituric acid reactive substances assay (TBARS) were examined in the heart tissue of rats. In this study, 35 Wistar Albino male adult rats weighing approximately 250-300 g were used. The rats were divided into five groups of seven each. The control group was administered normal pellet chow, and the Chol group was administered pellet chow including 2% Chol, while 50 JCL, 100 JCL, and 200 JCL groups were administered 50, 100, and 200 mg/kg JCL oil dissolved in 0.5% sodium carboxy methyl cellulose, respectively, in addition to the pellet chow containing 2% Chol, by gavage. After 30 days, the experiment was terminated and the antioxidant enzyme activities were examined in the heart tissue of rats. While consumption of dietary Chol decreases the activities of SOD, GSH-Px, and CAT in heart tissue of rats (not significant), administeration of 200 mg/kg JCL oil in addition to Chol led to a significant increase in the activity of antioxidant enzymes. Administering Chol led to a significant increase in TBARS level. Administering 100 and 200 mg/kg JCL oil together with Chol prevented significantly the increase in lipid peroxides. As a result of the study, JCL oil showed oxidant-antioxidant effect in the heart tissue of rats.

  17. Protective effect of Tuscan black cabbage sprout extract against serum lipid increase and perturbations of liver antioxidant and detoxifying enzymes in rats fed a high-fat diet.

    PubMed

    Melega, S; Canistro, D; De Nicola, G R; Lazzeri, L; Sapone, A; Paolini, M

    2013-09-28

    A diet rich in fat is considered a primary risk factor for CVD, cancer and failures in metabolism and endocrine functions. Hyperlipidaemia generates oxidative stress and weakens antioxidant defences as well as metabolic detoxification systems. Brassicaceae are vegetables rich in glucosinolates and isothiocyanates, affecting enzymatic antioxidant as well as phase II enzymes and conceivably counteracting high-fat diet (HFD)-associated pathologies. The protective role of Tuscan black cabbage (a variety of kale) sprout extract (TBCSE) intake against HFD alterations was here studied. The effects on rat hepatic antioxidant as well as detoxifying enzymes, and serum lipid- and body weightlowering properties of TBCSE, were investigated. Feeding the animals with a HFD for 21 d increased body as well as liver weights, and induced hyperlipidaemia, as confirmed by a higher serum lipid profile v. control diet. Daily intragastric administration of TBCSE to HFD-fed rats lowered serum total cholesterol, TAG and NEFA. Body and liver weight gains were also reduced. Antioxidant (catalase, NAD(P)H:quinone reductase, oxidised glutathione reductase and superoxide dismutase) and phase II (glutathione S-transferase and uridine diphosphate glucuronosyl transferase) enzymes were down-regulated by the HFD, while the extract restored normal levels in most groups. Generation of toxic intermediates, and membrane fatty acid composition changes by the HFD, might account for the altered hepatic antioxidant and detoxifying enzyme functions. The recovering effects of TBCSE could be attributed to high flavonoid, phenolic and organosulphur compound content, which possess free-radical-scavenging properties, enhance the antioxidant status and stimulate lipid catabolism. TBCSE intake emerges to be an effective alimentary strategy to counteract the perturbations associated with a diet rich in fat.

  18. Variations in Antioxidant Genes and Male Infertility

    PubMed Central

    Yu, Bolan; Huang, Zhaofeng

    2015-01-01

    Oxidative stress and reactive oxygen species (ROS) are generated from both endogenous and environmental resources, which in turn may cause defective spermatogenesis and male infertility. Antioxidant genes, which include catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST), nitric oxide synthase (NOS), nuclear factor erythroid 2-related factor 2 (NRF2), and superoxide dismutase (SOD), play important roles in spermatogenesis and normal sperm function. In this review, we discuss the association between variations in major antioxidant genes and male infertility. Numerous studies have suggested that genetic disruption or functional polymorphisms in these antioxidant genes are associated with a higher risk for male infertility, which include low sperm quality, oligoasthenoteratozoospermia, oligozoospermia, and subfertility. The synergistic effects of environmental ROS and functional polymorphisms on antioxidant genes that result in male infertility have also been reported. Therefore, variants in antioxidant genes, which independently or synergistically occur with environmental ROS, affect spermatogenesis and contribute to the occurrence of male infertility. Large cohort and multiple center-based population studies to identify new antioxidant genetic variants that increase susceptibility to male infertility as well as validate its potential as genetic markers for diagnosis and risk assessment for male infertility for precise clinical approaches are warranted. PMID:26618172

  19. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches.

    PubMed

    Beamonte-Barrientos, Rene; Verhulst, Simon

    2013-07-01

    Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is therefore often assumed that oxidative stress is proportional to energy consumption. In mammals, an increased metabolic rate induced by cold exposure generally increases oxidative stress. However, compared to mammals, birds generate fewer free radicals per ATP produced and hence it is not obvious that, in birds, a cold-induced increase of metabolic rate increase oxidative stress. We tested whether cold-induced increase in metabolic rate increased oxidative stress in zebra finches by exposing individuals to cold and warm overnight temperatures. We registered metabolic rate and plasma levels of non-enzymatic antioxidants and reactive oxygen metabolites (ROMs), a measure of oxidative damage. Metabolic rate was on average 88 % higher in cold compared to warm temperature, with females being stronger affected than males. However, temperature had no effect on plasma antioxidants or our measure of oxidative damage. Middle-age birds had higher levels of plasma antioxidants than younger and older birds, but age was unrelated to ROMs. Birds showed repeatability of plasma ROMs across temperatures but not of non-enzymatic antioxidants. In contrast to similar studies in mammals, our results do not show evidence of increased oxidative stress in plasma after an acute cold-induced increase of metabolic rate but research in more bird species is needed to assess the generality of this pattern.

  20. Antioxidant defenses in the rat placenta in late gestation: increased labyrinthine expression of superoxide dismutases, glutathione peroxidase 3, and uncoupling protein 2.

    PubMed

    Jones, Megan L; Mark, Peter J; Lewis, Jessica L; Mori, Trevor A; Keelan, Jeffery A; Waddell, Brendan J

    2010-08-01

    Placental oxidative stress plays a key role in the pathophysiology of placenta-related disorders, most notably preeclampsia (PE) and intrauterine growth restriction (IUGR). Oxidative stress occurs when accumulation of reactive oxygen species (ROS) damages DNA, proteins and lipids, an outcome that is limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) may also limit oxidative stress by reducing ROS production. Here we characterized placental antioxidant defenses during normal gestation and following glucocorticoid-induced IUGR. Placentas were collected on Days 16 and 22 of normal rat pregnancy (term = Day 23) and at Day 22 after dexamethasone treatment from Day 13. Expression of several genes encoding antioxidant enzymes (Sod1, Sod2, Sod3, Cat, Gpx3, Txn1, Txnrd1, Txnrd2, and Txnrd3) and Ucp2 was measured by quantitative RT-PCR in the labyrinth (LZ) and junctional zones (JZ) of the placenta. Expression of Sod1 and Ucp2 mRNAs and the activity of xanthine oxidase, a source of ROS, all increased from Days 16 to 22 in both placental zones, whereas Sod2 and Gpx3 increased only in the rapidly growing LZ. In contrast, Sod3 and Txnrd1 expression fell in the LZ over this period, whereas total superoxide dismutase activity remained stable. Dexamethasone treatment reduced fetal-placental growth and LZ expression of Ucp2 but increased JZ expression of Txn1. Indices of placental oxidative damage (TBARS, F(2)-isoprostanes, and 8-OHdG) did not change with gestational age or dexamethasone, indicative of adequate antioxidant protection. Overall, our data suggest that the rat placenta is protected from oxidative stress by the dynamic zone- and stage-dependent expression of antioxidant defense genes.

  1. Maternal omega-3 fatty acid intake increases placental labyrinthine antioxidant capacity but does not protect against fetal growth restriction induced by placental ischaemia-reperfusion injury.

    PubMed

    Jones, Megan L; Mark, Peter J; Waddell, Brendan J

    2013-12-01

    Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders. Oxidative stress occurs when excess reactive oxygen species (ROS) damages cellular components, an outcome limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) also limits ROS production. We recently reported that maternal dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation reduced placental oxidative damage and enhanced fetal and placental growth in the rats. Here, we examined the effect of n-3 PUFAs on placental antioxidant defences and whether n-3 PUFA supplementation could prevent growth restriction induced by placental ischaemia-reperfusion (IR), a known inducer of oxidative stress. Rats were fed either standard or high-n-3 PUFA diets from day 1 of pregnancy. Placentas were collected on days 17 and 22 in untreated pregnancies (term=day 23) and at day 22 following IR treatment on day 17. Expression of several antioxidant enzyme genes (Sod1, Sod2, Sod3, Cat, Txn1 and Gpx3) and Ucp2 was measured by quantitative RT-PCR in the placental labyrinth zone (LZ) and junctional zone (JZ). Cytosolic superoxide dismutase (SOD), mitochondrial SOD and catalase (CAT) activities were also analyzed. Maternal n-3 PUFA supplementation increased LZ mRNA expression of Cat at both gestational days (2- and 1.5-fold respectively; P<0.01) and female Sod2 at day 22 (1.4-fold, P<0.01). Cytosolic SOD activity increased with n-3 PUFA supplementation at day 22 (1.3-fold, P<0.05). Sod1 and Txn1 expression decreased marginally (30 and 22%, P<0.05). JZ antioxidant defences were largely unaffected by diet. Despite increased LZ antioxidant defences, maternal n-3 PUFA supplementation did not protect against placental IR-induced growth restriction of the fetus and placental LZ.

  2. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    NASA Astrophysics Data System (ADS)

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-04-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a ``tetraploid-dihaploid-tetraploid'' series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  3. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    PubMed Central

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-01-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a “tetraploid-dihaploid-tetraploid” series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003–2007) to reach levels of 85–90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements. PMID:24710346

  4. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid.

    PubMed

    Zappacosta, Diego C; Ochogavía, Ana C; Rodrigo, Juan M; Romero, José R; Meier, Mauro S; Garbus, Ingrid; Pessino, Silvina C; Echenique, Viviana C

    2014-04-08

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a "tetraploid-dihaploid-tetraploid" series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  5. Genomic testing interacts with reproductive surplus in reducing genetic lag and increasing economic net return.

    PubMed

    Hjortø, L; Ettema, J F; Kargo, M; Sørensen, A C

    2015-01-01

    Until now, genomic information has mainly been used to improve the accuracy of genomic breeding values for breeding animals at a population level. However, we hypothesize that the use of information from genotyped females also opens up the possibility of reducing genetic lag in a dairy herd, especially if genomic tests are used in combination with sexed semen or a high management level for reproductive performance, because both factors provide the opportunity for generating a reproductive surplus in the herd. In this study, sexed semen is used in combination with beef semen to produce high-value crossbred beef calves. Thus, on average there is no surplus of and selection among replacement heifers whether to go into the herd or to be sold. In this situation, the selection opportunities arise when deciding which cows to inseminate with sexed semen, conventional semen, or beef semen. We tested the hypothesis by combining the results of 2 stochastic simulation programs, SimHerd and ADAM. SimHerd estimates the economic effect of different strategies for use of sexed semen and beef semen at 3 levels of reproductive performance in a dairy herd. Besides simulating the operational return, SimHerd also simulates the parity distribution of the dams of heifer calves. The ADAM program estimates genetic merit per year in a herd under different strategies for use of sexed semen and genomic tests. The annual net return per slot was calculated as the sum of operational return and value of genetic lag minus costs of genomic tests divided by the total number of slots. Our results showed that the use of genomic tests for decision making decreases genetic lag by as much as 0.14 genetic standard deviation units of the breeding goal and that genetic lag decreases even more (up to 0.30 genetic standard deviation units) when genomic tests are used in combination with strategies for increasing and using a reproductive surplus. Thus, our hypothesis was supported. We also observed that

  6. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor.

    PubMed

    Truong, Sandra K; McCormick, Ryan F; Rooney, William L; Mullet, John E

    2015-11-01

    The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance.

  7. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor

    PubMed Central

    Truong, Sandra K.; McCormick, Ryan F.; Rooney, William L.; Mullet, John E.

    2015-01-01

    The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance. PMID:26323882

  8. Subspecies genetic assignments of worldwide captive tigers increase conservation value of captive populations.

    PubMed

    Luo, Shu-Jin; Johnson, Warren E; Martenson, Janice; Antunes, Agostinho; Martelli, Paolo; Uphyrkina, Olga; Traylor-Holzer, Kathy; Smith, James L D; O'Brien, Stephen J

    2008-04-22

    Tigers (Panthera tigris) are disappearing rapidly from the wild, from over 100,000 in the 1900s to as few as 3000. Javan (P.t. sondaica), Bali (P.t. balica), and Caspian (P.t. virgata) subspecies are extinct, whereas the South China tiger (P.t. amoyensis) persists only in zoos. By contrast, captive tigers are flourishing, with 15,000-20,000 individuals worldwide, outnumbering their wild relatives five to seven times. We assessed subspecies genetic ancestry of 105 captive tigers from 14 countries and regions by using Bayesian analysis and diagnostic genetic markers defined by a prior analysis of 134 voucher tigers of significant genetic distinctiveness. We assigned 49 tigers to one of five subspecies (Bengal P.t. tigris, Sumatran P.t. sumatrae, Indochinese P.t. corbetti, Amur P.t. altaica, and Malayan P.t. jacksoni tigers) and determined 52 had admixed subspecies origins. The tested captive tigers retain appreciable genomic diversity unobserved in their wild counterparts, perhaps a consequence of large population size, century-long introduction of new founders, and managed-breeding strategies to retain genetic variability. Assessment of verified subspecies ancestry offers a powerful tool that, if applied to tigers of uncertain background, may considerably increase the number of purebred tigers suitable for conservation management.

  9. Genetically Determined Amerindian Ancestry Correlates with Increased Frequency of Risk Alleles for Systemic Lupus Erythematosus

    PubMed Central

    Sanchez, E; Webb, R; Rasmussen, A.; Kelly, J.A; Riba, L.; Kaufman, K.M.; Garcia-de la Torre, I.; Moctezuma, J.F.; Maradiaga-Ceceña, M.A.; Cardiel, M.; Acevedo, E.; Cucho-Venegas, M.; Garcia, M.A.; Gamron, S.; Pons-Estel, B.A.; Vasconcelos, C.; Martin, J.; Tusié-Luna, T.; Harley, J.B.; Richardson, B.; Sawalha, A.H.; Alarcón-Riquelme, M.E.

    2011-01-01

    Objectives To analyze if genetically determined Amerindian ancestry predicts the increased presence of risk alleles of known susceptibility genes for systemic lupus erythematosus. Methods Single nucleotide polymorphisms within 16 confirmed genetic susceptibility loci for SLE were genotyped in a set of 804 Mestizo lupus patients and 667 Mestizo normal healthy controls. In addition, 347 admixture informative markers were genotyped. Individual ancestry proportions were determined using STRUCTURE. Association analysis was performed using PLINK, and correlation of the presence of risk alleles with ancestry was done using linear regression. Results A meta-analysis of the genetic association of the 16 SNPs across populations showed that TNFSF4, STAT4, PDCD1, ITGAM, and IRF5 were associated with lupus in a Hispanic-Mestizo cohort enriched for European and Amerindian ancestry. In addition, two SNPs within the MHC region, previously associated in a genome-wide association study in Europeans, were also associated in Mestizos. Using linear regression we predict an average increase of 2.34 risk alleles when comparing a lupus patient with 100% Amerindian ancestry to an SLE patient with 0% American Indian Ancestry (p<0.0001). SLE patients with 43% more Amerindian ancestry are predicted to carry one additional risk allele. Conclusion Amerindian ancestry increased the number of risk alleles for lupus. PMID:20848568

  10. Dietary non-tocopherol antioxidants present in extra virgin olive oil increase the resistance of low density lipoproteins to oxidation in rabbits.

    PubMed

    Wiseman, S A; Mathot, J N; de Fouw, N J; Tijburg, L B

    1996-02-01

    Consumption of a range of dietary antioxidants may be beneficial in protecting low density lipoprotein (LDL) against oxidative modification, as studies have demonstrated that antioxidants other than vitamin E may also function against oxidation of LDL in vitro. In the present study, the effect of polyphenol antioxidants on the susceptibility of LDL to copper-mediated oxidation was investigated after feeding semi-purified diets to 3 groups of New Zealand white (NZW) rabbits. All diets comprised 40% energy as fat with 17% energy as oleic acid. Dietary fatty acid compositions were identical. Oils with different polyphenol contents were used to provide the dietary source of oleic acid-refined olive oil, extra virgin olive oil and Trisun high oleic sunflower seed oil. Polyphenolic compounds (hydroxytyrosol and p-tyrosol) could only be detected in the extra virgin olive oil. Vitamin E was equalised in all diets. LDL oxidizability in vitro was determined by continuously monitoring the copper-induced formation of conjugated dienes after 6 weeks of experimental diet feeding. The lag phase before demonstrable oxidation occurred was significantly increased in the high polyphenol, extra virgin olive oil group (P < 0.05) when compared with combined results from the low polyphenol group (refined olive oil and Trisun), even though the LDL vitamin E concentration in the high polyphenol group was significantly lower. The rate of conjugated diene formation was not influenced by the presence of dietary polyphenols. Results demonstrate that antioxidants, possibly phenolic compounds which are present only in extra virgin olive oil, may contribute to the endogenous antioxidant capacity of LDL, resulting in an increased resistance to oxidation as determined in vitro.

  11. Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo.

    PubMed

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Sajid, Moniba; Kayani, Waqas Khan; Mirza, Bushra

    2016-12-01

    Lettuce is an important edible crop which possesses various medicinal properties. In this study Lactuca sativa L. (cv Grand Rapids) was transformed by Agrobacterium-mediated transformation with rol C gene. Transgene integration and expression was confirmed through PCR and semiquantitative RT-PCR. The transformed extracts were evaluated for their in vitro antioxidant and in vivo analgesic, anti-inflammatory and antidepressant activities in rats. The transformed plants showed 53-98 % increase in total phenolic and 45-58 % increase in total flavonoid contents compared with untransformed plants. Results of total reducing power and total antioxidant capacity exhibited 90-118 and 61-75 % increase in transformed plants, respectively. In contrast to control, DPPH, lipid peroxidation and DNA protection assay showed up to 37, 20 and 50 % enhancement in transformed plants, respectively. The extracts showed similar but significant enhancement behavior in hot plate analgesic and carrageenan-induced hind paw edema test. The transformed extracts showed 72.1 and 78.5 % increase for analgesic and anti-inflammatory activities, respectively. The transformants of rol C gene exhibited prominent antidepressant activity with 64-73 % increase compared with untransformed plants. In conclusion, the present work suggests that transformation with rol C gene can be used to generate lettuce with enhanced medicinally important properties, such as antioxidant, analgesic, anti-inflammatory and antidepressant potential.

  12. Raman spectroscopic analysis of the increase of the carotenoid antioxidant concentration in human skin after a 1-week diet with ecological eggs

    NASA Astrophysics Data System (ADS)

    Hesterberg, Karoline; Lademann, Jürgen; Patzelt, Alexa; Sterry, Wolfram; Darvin, Maxim E.

    2009-03-01

    Skin aging is mainly caused by the destructive action of free radicals, produced by the UV light of the sun. The human skin has developed a protection system against these highly reactive molecules in the form of the antioxidative potential. Carotenoids are one of the main components of the antioxidants of the human skin. From former studies, it is known that skin aging is reduced in individuals with high levels of carotenoids. Because most of the antioxidants cannot be produced by the human organism, they must be up taken by nutrition. Using noninvasive Raman spectroscopic measurements it is demonstrated that not only fruits and vegetables but also eggs contain high concentrations of antioxidants including carotenoids, which are even doubled in the case of ecological eggs. After a 1-week diet with ecological eggs performed by six volunteers, it is found that the concentration of the carotenoids in the skin of the volunteers increased by approx. 20%. Our study does not intend to recommend exorbitant egg consumption, as eggs also contain harmful cholesterol. But in the case of egg consumption, ecological eggs from hens kept on pasture should be preferred to also receive a benefit for the skin.

  13. Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer's disease.

    PubMed

    Venkateshappa, C; Harish, G; Mahadevan, Anita; Srinivas Bharath, M M; Shankar, S K

    2012-08-01

    Oxidative stress and mitochondrial damage are implicated in the evolution of neurodegenerative diseases. Increased oxidative damage in specific brain regions during aging might render the brain susceptible to degeneration. Previously, we demonstrated increased oxidative damage and lowered antioxidant function in substantia nigra during aging making it vulnerable to degeneration associated with Parkinson's disease. To understand whether aging contributes to the vulnerability of brain regions in Alzheimer's disease, we assessed the oxidant and antioxidant markers, glutathione (GSH) metabolic enzymes, glial fibrillary acidic protein (GFAP) expression and mitochondrial complex I (CI) activity in hippocampus (HC) and frontal cortex (FC) compared with cerebellum (CB) in human brains with increasing age (0.01-80 years). We observed significant increase in protein oxidation (HC: p = 0.01; FC: p = 0.0002) and protein nitration (HC: p = 0.001; FC: p = 0.02) and increased GFAP expression (HC: p = 0.03; FC: p = 0.001) with a decreasing trend in CI activity in HC and FC compared to CB with increasing age. These changes were associated with a decrease in antioxidant enzyme activities, such as superoxide dismutase (HC: p = 0.005), catalase (HC: p = 0.02), thioredoxin reductase (FC: p = 0.04), GSH reductase (GR) (HC: p = 0.005), glutathione-s-transferase (HC: p = 0.0001; FC: p = 0.03) and GSH (HC: p = 0.01) with age. However, these parameters were relatively unaltered in CB. We suggest that the regions HC and FC are subjected to widespread oxidative stress, loss of antioxidant function and enhanced GFAP expression during aging which might make them more susceptible to deranged physiology and selective neuronal degeneration.

  14. Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).

    PubMed

    El Sayed, Salah Mohamed; Mahmoud, Ahmed Alamir; El Sawy, Samer Ahmed; Abdelaal, Esam Abdelrahim; Fouad, Amira Murad; Yousif, Reda Salah; Hashim, Marwa Shaban; Hemdan, Shima Badawy; Kadry, Zainab Mahmoud; Abdelmoaty, Mohamed Ahmed; Gabr, Adel Gomaa; Omran, Faten M; Nabo, Manal Mohamed Helmy; Ahmed, Nagwa Sayed

    2013-11-01

    Cancer cells undergo an increased steady-state ROS condition compared to normal cells. Among the major metabolic differences between cancer cells and normal cells is the dependence of cancer cells on glycolysis as a major source of energy even in the presence of oxygen (Warburg effect). In Warburg effect, glucose is catabolized to lactate that is extruded through monocarboxylate transporters to the microenvironment of cancer cells, while in normal cells, glucose is metabolized into pyruvate that is not extruded. Pyruvate is a potent antioxidant, while lactate has no antioxidant effect. Pyruvate in normal cells may be further metabolized to acetyl CoA and then through Krebs cycle with production of antioxidant intermediates e.g. citrate, malate and oxaloacetate together with the reducing equivalents (NADH.H+). Through activity of mitochondrial transhydrogenase, NADH.H+ replenishes NADPH.H+, coenzyme of glutathione reductase which replenishes reduced form of glutathione (potent antioxidant). This enhances antioxidant capacities of normal cells, while cancer cells exhibiting Warburg effect may be deprived of all that antioxidant capabilities due to loss of extruded lactate (substrate for Krebs cycle). Although intrinsic oxidative stress in cancer cells is high, it may be prevented from reaching progressively increasing levels that are cytotoxic to cancer cells. This may be due to some antioxidant effects exerted by hexokinase II (HK II) and NADPH.H+ produced through HMP shunt. Glycolytic phenotype in cancer cells maintains a high non-toxic oxidative stress in cancer cells and may be responsible for their malignant behavior. Through HK II, glycolysis fuels the energetic arm of malignancy, the mitotic arm of malignancy (DNA synthesis through HMP shunt pathway) and the metastatic arm of malignancy (hyaluronan synthesis through uronic acid pathway) in addition to the role of phosphohexose isomerase (autocrine motility factor). All those critical three arms start with the

  15. Placental genetic variations in circadian clock-related genes increase the risk of placental abruption

    PubMed Central

    Qiu, Chunfang; Gelaye, Bizu; Denis, Marie; Tadesse, Mahlet G; Enquobahrie, Daniel A; Ananth, Cande V; Pacora, Percy N; Salazar, Manuel; Sanchez, Sixto E; Williams, Michelle A

    2016-01-01

    The genetic architecture of placental abruption (PA) remains poorly understood. We examined variations in SNPs of circadian clock-related genes in placenta with PA risk. We also explored placental and maternal genomic contributions to PA risk. Placental genomic DNA samples were isolated from 280 PA cases and 244 controls. Genotyping was performed using the Illumina Cardio-MetaboChip. We examined 116 SNPs in 13 genes known to moderate circadian rhythms. Logistic regression models were fit to estimate odds ratios (ORs). The combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score. We examined independent and joint associations of wGRS derived from placental and maternal genomes with PA. Seven SNPs in five genes (ARNTL2, CRY2, DEC1, PER3 and RORA), in the placental genome, were associated with PA risk. Each copy of the minor allele (G) of a SNP in the RORA gene (rs2899663) was associated with a 30% reduced odds of PA (95% CI 0.52-0.95). The odds of PA increased with increasing placental-wGRS (Ptrend<0.001). The ORs were 1.00, 2.16, 3.24 and 4.48 across quartiles. Associations persisted after the maternal-wGRS was included in the model. There was evidence of an additive contribution of placental and maternal genetic contributions to PA risk. Participants with placental- and maternal-wGRS in the highest quartile, compared with those in the lowest quartile, had a 15.57-fold (95% CI 3.34-72.60) increased odds of PA. Placental variants in circadian clock-related genes are associated with PA risk; and the association persists after control of genetic variants in the maternal genome. PMID:27186326

  16. THE RELATIONSHIP BETWEEN OZONE-INDUCED LUNG INJURY, ANTIOXIDANT COMPENSATION AND UNDERLYING CARDIOVASCULAR DISEASE (CVD).

    EPA Science Inventory

    Increased levels of oxidants and compromised compensatory response are associated with CVD susceptibility. We hypothesized that rat strains demonstrating genetic CVD will have lower levels of antioxidants and greater ozone-induced pulmonary injury relative to healthy strains. Mal...

  17. Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes.

    PubMed

    Machiela, Mitchell J; Lan, Qing; Slager, Susan L; Vermeulen, Roel C H; Teras, Lauren R; Camp, Nicola J; Cerhan, James R; Spinelli, John J; Wang, Sophia S; Nieters, Alexandra; Vijai, Joseph; Yeager, Meredith; Wang, Zhaoming; Ghesquières, Hervé; McKay, James; Conde, Lucia; de Bakker, Paul I W; Cox, David G; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R; De Roos, Anneclaire J; Brooks-Wilson, Angela R; Giles, Graham G; Melbye, Mads; Gu, Jian; Jackson, Rebecca D; Kane, Eleanor; Purdue, Mark P; Vajdic, Claire M; Albanes, Demetrius; Kelly, Rachel S; Zucca, Mariagrazia; Bertrand, Kimberly A; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M; Link, Brian K; Novak, Anne J; Dogan, Ahmet; Asmann, Yan W; Liebow, Mark; Thompson, Carrie A; Ansell, Stephen M; Witzig, Thomas E; Tilly, Hervé; Haioun, Corinne; Molina, Thierry J; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans-Olov; Roos, Göran; Bracci, Paige M; Riby, Jacques; Smith, Martyn T; Holly, Elizabeth A; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M; Severson, Richard K; Tinker, Lesley F; North, Kari E; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J; Villano, Danylo J; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R; Turner, Jenny; Southey, Melissa C; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Boeing, Heiner; Tjønneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; De Vivo, Immaculata; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Liang, Liming; Park, Ju-Hyun; Chung, Charles C; Weisenburger, Dennis D; Fraumeni, Joseph F; Salles, Gilles; Glenn, Martha; Cannon-Albright, Lisa; Curtin, Karen; Wu, Xifeng; Smedby, Karin E; de Sanjose, Silvia; Skibola, Christine F; Berndt, Sonja I; Birmann, Brenda M; Chanock, Stephen J; Rothman, Nathaniel

    2016-04-15

    Evidence from a small number of studies suggests that longer telomere length measured in peripheral leukocytes is associated with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation, confounded by unmeasured environmental exposures and might miss time points for which prospective telomere measurement would best reveal a relationship between telomere length and NHL risk. We performed an analysis of genetically inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562 controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated variant alleles an individual carries with the published change in kb of telomere length. The analysis of the telomere length GRS resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds ratio (OR) = 1.49, 95% CI 1.22-1.82,P-value = 8.5 × 10(-5)]. Subtype-specific analyses indicated that chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI 1.93-3.51,P-value = 4.0 × 10(-10)). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that favors longer telomere length may increase NHL risk, particularly risk of CLL/SLL, and are consistent with earlier studies relating longer telomere length with increased NHL risk.

  18. Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish.

    PubMed

    Fang, Lu; Bai, Chenglian; Chen, Yuanhong; Dai, Jun; Xiang, Yang; Ji, Xiaoping; Huang, Changjiang; Dong, Qiaoxiang

    2014-12-01

    Reactive oxygen species (ROS) are one of the main causes for decreased viability in cryopreserved sperm. Many studies have reported the beneficial effect of antioxidant supplements in freezing media for post-thaw sperm quality. In the present study, we explored two new approaches of ROS inhibition in sperm cryopreservation of yellow catfish, namely mitochondrial-targeted antioxidant and metabolic modulator targeting mitochondrial uncoupling pathways. Our study revealed that addition of MitoQ, a compound designed to deliver ubiquinone into mitochondria, significantly decreased ROS production, as well as lipid peroxidation, and increased post-thaw viability. Similarly, sperm incubated with 2,4-dinitrophenol (DNP), a chemical protonophore that induces mitochondrial uncoupling, also had reduced ROS production, as well as lipid peroxidation, and increased post-thaw sperm viability. Conversely, activation of uncoupling protein (UCP2) by 4-hydroxynonenal (HNE) neither reduced ROS production nor increased post-thaw sperm viability. Our findings indicate that ROS inhibition through mitochondrial-targeted antioxidant or mild mitochondrial uncoupling is beneficial for sperm cryopreservation in yellow catfish. Our study provides novel methods to mitigate oxidative stress induced damage in cryopreserved sperm for future applications.

  19. Increase in antioxidant activity by sheep/goat whey protein through nuclear factor-like 2 (Nrf2) is cell type dependent.

    PubMed

    Kerasioti, Efthalia; Stagos, Dimitrios; Tzimi, Aggeliki; Kouretas, Dimitrios

    2016-11-01

    The aim of the present study was to investigate the molecular mechanisms through which sheep/goat whey protein exerts its antioxidant activity. Thus, it was examined whey protein's effects on the expression of transcription factor, nuclear factor-like 2 (Nrf2) and on the expression and activity of a number of antioxidant and phase II enzymes, superoxide dismutase (SOD), catalase (CAT), heme oxygenase 1 (HO-1), synthase glutamyl cysteine (GCS) and glutathione-s-transferase (GST), in muscle C2C12 and EA.hy926 endothelial cells. C2C12 and EA.hy926 cells were treated with sheep/goat whey protein (0.78 and 3.12 mg/ml) and incubated for 3, 6, 12, 18 and 24 h. Whey protein increased significantly the expression of Nrf2 only in EA.hy926 cells. Also, the expression of SOD, HO-1, CAT and the activity of SOD, CAT and GST were increased significantly in both cells types. The expression of GCS was increased significantly only in C2C12 cells. Sheep/goat whey protein was shown for the first time to exert its antioxidant activity through Nrf2-dependent mechanism in endothelial cells and Nrf2-independent mechanism in muscle cells. Thus, Nrf2 could be a target for food supplements containing whey protein in order to prevent oxidative stress damages and diseases related to endothelium.

  20. Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep.

    PubMed

    López-Andrés, Patricia; Luciano, Giuseppe; Vasta, Valentina; Gibson, Trevor M; Biondi, Luisa; Priolo, Alessandro; Mueller-Harvey, Irene

    2013-08-01

    A total of sixteen lambs were divided into two groups and fed two different diets. Of these, eight lambs were fed a control diet (C) and eight lambs were fed the C diet supplemented with quebracho tannins (C+T). The objective of the present study was to assess whether dietary quebracho tannins can improve the antioxidant capacity of lamb liver and plasma and if such improvement is due to a direct transfer of phenolic compounds or their metabolites, to the animal tissues. Feed, liver and plasma samples were purified by solid-phase extraction (SPE) and analysed by liquid chromatography-MS for phenolic compounds. Profisitinidin compounds were identified in the C+T diet. However, no phenolic compounds were found in lamb tissues. The liver and the plasma from lambs fed the C+T diet displayed a greater antioxidant capacity than tissues from lambs fed the C diet, but only when samples were not purified with SPE. Profisetinidin tannins from quebracho seem not to be degraded or absorbed in the gastrointestinal tract. However, they induced antioxidant effects in animal tissues.

  1. The effect of increased genetic risk for Alzheimer's disease on hippocampal and amygdala volume.

    PubMed

    Lupton, Michelle K; Strike, Lachlan; Hansell, Narelle K; Wen, Wei; Mather, Karen A; Armstrong, Nicola J; Thalamuthu, Anbupalam; McMahon, Katie L; de Zubicaray, Greig I; Assareh, Amelia A; Simmons, Andrew; Proitsi, Petroula; Powell, John F; Montgomery, Grant W; Hibar, Derrek P; Westman, Eric; Tsolaki, Magda; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Velas, Bruno; Lovestone, Simon; Brodaty, Henry; Ames, David; Trollor, Julian N; Martin, Nicholas G; Thompson, Paul M; Sachdev, Perminder S; Wright, Margaret J

    2016-04-01

    Reduction in hippocampal and amygdala volume measured via structural magnetic resonance imaging is an early marker of Alzheimer's disease (AD). Whether genetic risk factors for AD exert an effect on these subcortical structures independent of clinical status has not been fully investigated. We examine whether increased genetic risk for AD influences hippocampal and amygdala volumes in case-control and population cohorts at different ages, in 1674 older (aged >53 years; 17% AD, 39% mild cognitive impairment [MCI]) and 467 young (16-30 years) adults. An AD polygenic risk score combining common risk variants excluding apolipoprotein E (APOE), and a single nucleotide polymorphism in TREM2, were both associated with reduced hippocampal volume in healthy older adults and those with MCI. APOE ε4 was associated with hippocampal and amygdala volume in those with AD and MCI but was not associated in healthy older adults. No associations were found in young adults. Genetic risk for AD affects the hippocampus before the clinical symptoms of AD, reflecting a neurodegenerative effect before clinical manifestations in older adults.

  2. The effect of increased genetic risk for Alzheimer’s disease on hippocampal and amygdala volume

    PubMed Central

    Lupton, Michelle K.; Strike, Lachlan; Hansell, Narelle K.; Wen, Wei; Mather, Karen A.; Armstrong, Nicola J.; Thalamuthu, Anbupalam; McMahon, Katie L.; de Zubicaray, Greig I.; Assareh, Amelia A.; Simmons, Andrew; Proitsi, Petroula; Powell, John F.; Montgomery, Grant W.; Hibar, Derrek P.; Westman, Eric; Tsolaki, Magda; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Velas, Bruno; Lovestone, Simon; Brodaty, Henry; Ames, David; Trollor, Julian N.; Martin, Nicholas G.; Thompson, Paul M.; Sachdev, Perminder S.; Wright, Margaret J.

    2016-01-01

    Reduction in hippocampal and amygdala volume measured via structural magnetic resonance imaging is an early marker of Alzheimer’s disease (AD). Whether genetic risk factors for AD exert an effect on these subcortical structures independent of clinical status has not been fully investigated. We examine whether increased genetic risk for AD influences hippocampal and amygdala volumes in case-control and population cohorts at different ages, in 1674 older (aged >53 years; 17% AD, 39% mild cognitive impairment [MCI]) and 467 young (16–30 years) adults. An AD polygenic risk score combining common risk variants excluding apolipoprotein E (APOE), and a single nucleotide polymorphism in TREM2, were both associated with reduced hippocampal volume in healthy older adults and those with MCI. APOE ɛ4 was associated with hippocampal and amygdala volume in those with AD and MCI but was not associated in healthy older adults. No associations were found in young adults. Genetic risk for AD affects the hippocampus before the clinical symptoms of AD, reflecting a neurodegenerative effect before clinical manifestations in older adults. PMID:26973105

  3. Genetic selection for increased mean and reduced variance of twinning rate in Belclare ewes.

    PubMed

    Cottle, D J; Gilmour, A R; Pabiou, T; Amer, P R; Fahey, A G

    2016-04-01

    It is sometimes possible to breed for more uniform individuals by selecting animals with a greater tendency to be less variable, that is, those with a smaller environmental variance. This approach has been applied to reproduction traits in various animal species. We have evaluated fecundity in the Irish Belclare sheep breed by analyses of flocks with differing average litter size (number of lambs per ewe per year, NLB) and have estimated the genetic variance in environmental variance of lambing traits using double hierarchical generalized linear models (DHGLM). The data set comprised of 9470 litter size records from 4407 ewes collected in 56 flocks. The percentage of pedigreed lambing ewes with singles, twins and triplets was 30, 54 and 14%, respectively, in 2013 and has been relatively constant for the last 15 years. The variance of NLB increases with the mean in this data; the correlation of mean and standard deviation across sires is 0.50. The breeding goal is to increase the mean NLB without unduly increasing the incidence of triplets and higher litter sizes. The heritability estimates for lambing traits were NLB, 0.09; triplet occurrence (TRI) 0.07; and twin occurrence (TWN), 0.02. The highest and lowest twinning flocks differed by 23% (75% versus 52%) in the proportion of ewes lambing twins. Fitting bivariate sire models to NLB and the residual from the NLB model using a double hierarchical generalized linear model (DHGLM) model found a strong genetic correlation (0.88 ± 0.07) between the sire effect for the magnitude of the residual (VE ) and sire effects for NLB, confirming the general observation that increased average litter size is associated with increased variability in litter size. We propose a threshold model that may help breeders with low litter size increase the percentage of twin bearers without unduly increasing the percentage of ewes bearing triplets in Belclare sheep.

  4. Genetic modulation of RNA metabolism in Drosophilia. I. Increased rate of ribosomal RNA synthesis.

    PubMed

    Clark, S H; Strausbaugh, L D; Kiefer, B I

    1977-08-01

    It has been suggested that a particular Y chromosome which is rDNA-deficient (YbbSuVar-5) may be associated with an increased utilization of rDNA template in adult testes (Shermoen and Kiefer 1975). To extend the observations on this chromosome, experiments were designed to determine if the chromosome has an effect on rRNA synthesis in bobbed adults and on classic bobbed phenotypes (shortened and thinner scutellar bristles and delayed development). Specific activity measurements were made on rRNA extracted from adult males of the genotypes car bb/YbbSuVar-5, which are rDNA-deficient to the same extent, and from Samarkand+ isogenic (Sam+ iso), which is a wild-type stock. The resulting data demonstrated that the presence of the YbbSuVar-5 chromosome increases the rate of ribosomal RNA synthesis in adult flies. In addition, it was found that the presence of this particular Y chromosome restores wild-type bristle phenotype and development time. Appropriate genetic crosses indicate that the observed effects (increased rRNA synthesis, restoration of wild-type phenotype) are a function of this particular Y chromosome, and are not due to autosomal factors. The results of these experiments suggest that the rate of rRNA accumulation is under genetic control.

  5. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes

    PubMed Central

    Chen, Bai Hui; Park, Joon Ha; Ahn, Ji Hyeon; Cho, Jeong Hwi; Kim, In Hye; Lee, Jae Chul; Won, Moo-Ho; Lee, Choong-Hyun; Hwang, In Koo; Kim, Jong-Dai; Kang, Il Jun; Cho, Jun Hwi; Shin, Bich Na; Kim, Yang Hee; Lee, Yun Lyul; Park, Seung Min

    2017-01-01

    Quercetin (QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.

  6. Noise-induced hearing loss (NIHL) as a target of oxidative stress-mediated damage: cochlear and cortical responses after an increase in antioxidant defense.

    PubMed

    Fetoni, Anna Rita; De Bartolo, Paola; Eramo, Sara Letizia Maria; Rolesi, Rolando; Paciello, Fabiola; Bergamini, Christian; Fato, Romana; Paludetti, Gaetano; Petrosini, Laura; Troiani, Diana

    2013-02-27

    This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q10 analog (Qter) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of coenzymes Q9 and Q10 (CoQ9 and CoQ10, respectively) as indicators of endogenous antioxidant capability. We report three main results. First, hearing loss and damage in hair cells and spiral ganglion was determined by noise-induced oxidative stress. Second, the acoustic trauma altered dendritic morphology and decreased spine number of II-III and V-VI layer pyramidal neurons of auditory cortices. Third, the systemic administration of the water-soluble CoQ10 analog reduced oxidative-induced cochlear damage, hearing loss, and cortical dendritic injury. Furthermore, cochlear levels of CoQ9 and CoQ10 content increased. These findings indicate that antioxidant treatment restores auditory cortical neuronal morphology and hearing function by reducing the noise-induced redox imbalance in the cochlea and the deafferentation effects upstream the acoustic pathway.

  7. Skeletal muscle uncoupling-induced longevity in mice is linked to increased substrate metabolism and induction of the endogenous antioxidant defense system.

    PubMed

    Keipert, S; Ost, M; Chadt, A; Voigt, A; Ayala, V; Portero-Otin, M; Pamplona, R; Al-Hasani, H; Klaus, S

    2013-03-01

    Ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) mitochondria increases lifespan considerably in high-fat diet-fed UCP1 Tg mice compared with wild types (WT). To clarify the underlying mechanisms, we investigated substrate metabolism as well as oxidative stress damage and antioxidant defense in SM of low-fat- and high-fat-fed mice. Tg mice showed an increased protein expression of phosphorylated AMP-activated protein kinase, markers of lipid turnover (p-ACC, FAT/CD36), and an increased SM ex vivo fatty acid oxidation. Surprisingly, UCP1 Tg mice showed elevated lipid peroxidative protein modifications with no changes in glycoxidation or direct protein oxidation. This was paralleled by an induction of catalase and superoxide dismutase activity, an increased redox signaling (MAPK signaling pathway), and increased expression of stress-protective heat shock protein 25. We conclude that increased skeletal muscle mitochondrial uncoupling in vivo does not reduce the oxidative stress status in the muscle cell. Moreover, it increases lipid metabolism and reactive lipid-derived carbonyls. This stress induction in turn increases the endogenous antioxidant defense system and redox signaling. Altogether, our data argue for an adaptive role of reactive species as essential signaling molecules for health and longevity.

  8. Differences in seminal plasma and spermatozoa antioxidative systems and seminal plasma lipid and protein levels among boar breeds and hybrid genetic traits.

    PubMed

    Žura Žaja, Ivona; Samardžija, Marko; Vince, Silvijo; Vilić, Marinko; Majić-Balić, Ivanka; Đuričić, Dražen; Milinković-Tur, Suzana

    2016-07-01

    The objectives of this study were to determine the influence of breed and hybrid genetic traits of boars on lipid and protein concentrations and antioxidative system variables in seminal plasma (SP) and spermatozoa and their correlations with semen quality variables. Semen samples from 27 boars: Swedish Landraces (SL), German Landraces (GL), Large Whites (LW), Pietrains (P) and Pig Improvement Company hybrids (PIC-hybrid), aged from 1.5 to 3 years old, were collected. SP was spectrophotometrically analyzed to determine total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triacylglycerol (TAG), total protein (TP), albumin, and zinc concentrations. The antioxidative system in SP and spermatozoa was established spectrophotometrically by determining total antioxidative status (TAS), total superoxide dismutase (TSOD) and glutathione peroxidase (GSH-Px) parameters, as well as copper-zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) activity in spermatozoa. The hybrid boars had higher (P<0.05) SP concentrations of: TC, LDL-C and TAG than P and GL; HDL-C than P, GL and SL; and TP than P and LW. PIC-hybrid had lower values (P<0.05) in spermatozoa of: TAS and CuZnSOD than SL; TSOD and GSH-Px than SL and P; and MnSOD than SL and LW. Differences in SP and spermatozoa antioxidative system variables and the significant differences in SP protein and lipid variables exist among boars of different breeds and hybrid. Novel data and observed differences in semen variables among boar breeds and hybrids and their correlations with semen quality parameters in this study could contribute to better assessment of boar semen quality.

  9. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity.

    PubMed

    Viggiano, Davide

    2008-12-01

    The large number of transgenic mice realized thus far with different purposes allows addressing new questions, such as which animals, over the entire set of transgenic animals, show a specific behavioural abnormality. In the present study, we have used a metanalytical approach to organize a database of genetic modifications, brain lesions and pharmacological interventions that increase locomotor activity in animal models. To further understand the resulting data set, we have organized a second database of the alterations (genetic, pharmacological or brain lesions) that reduce locomotor activity. Using this approach, we estimated that 1.56% of the genes in the genome yield to hyperactivity and 0.75% of genes produce hypoactivity when altered. These genes have been classified into genes for neurotransmitter systems, hormonal, metabolic systems, ion channels, structural proteins, transcription factors, second messengers and growth factors. Finally, two additional classes included animals with neurodegeneration and inner ear abnormalities. The analysis of the database revealed several unexpected findings. First, the genes that, when mutated, induce hyperactive behaviour do not pertain to a single neurotransmitter system. In fact, alterations in most neurotransmitter systems can give rise to a hyperactive phenotype. In contrast, fewer changes can decrease locomotor activity. Specifically, genetic and pharmacological alterations that enhance the dopamine, orexin, histamine, cannabinoids systems or that antagonize the cholinergic system induce an increase in locomotor activity. Similarly, imbalances in the two main neurotransmitters of the nervous system, GABA and glutamate usually result in hyperactive behaviour. It is remarkable that no genetic alterations pertaining to the GABA system have been reported to reduce locomotor behaviour. Other neurotransmitters, such as norepinephrine and serotonin, have a more complex influence. For instance, a decrease in norepinephrine

  10. Role of HLA-DR Alleles to Increase Genetic Susceptibility to Onychomycosis in Nail Psoriasis

    PubMed Central

    Carrillo-Meléndrez, Hilda; Ortega-Hernández, Esteban; Granados, Julio; Arroyo, Sara; Barquera, Rodrigo; Arenas, Roberto

    2016-01-01

    Background Patients with nail psoriasis have an increased risk of onychomycosis. Previous studies suggest it may be due to structural changes of the nails. However, a genetic predisposition seems to be also at play. Objective To determine a genetic susceptibility for onychomycosis in nails with changes of psoriasis. Methods This is a prospective case-control study of patients with suggestive changes of nail psoriasis with onychomycosis (cases) and without onychomycosis (controls) confirmed by mycological tests. HLA typing was performed in all of them by sequence-specific primers. Results Twenty-five patients and 20 controls with a mean age of 50 years (range 37-72 years) were studied. HLA-DRB1*08 was found in 12 cases (48%) and only 3 controls (15%) [p < 0.033, odds ratio (OR) = 3.8, 95% confidence interval (CI): 0.9-19]. HLA-DR1 was found in 9 cases (36%) and only 1 control (5%) (p < 0.023, OR = 8.5, 95% CI: 1-188). Conclusion HLA-DR*08 and HLA-DR*01 probably increase the susceptibility to fungal infection in psoriasis-affected nails, but larger studies are required to confirm this observation. PMID:27843918

  11. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.

    PubMed

    Wally, Owen; Punja, Zamir K

    2010-01-01

    We review the current and future potential of genetic engineering strategies used to make fungal and bacterial pathogen-resistant GM crops, illustrating different examples of the technologies and the potential benefits and short-falls of the strategies. There are well- established procedures for the production of transgenic plants with resistance towards these pathogens and considerable progress has been made using a range of new methodologies. There are no current commercially available transgenic plant species with increased resistance towards fungal and bacterial pathogens; only plants with increased resistance towards viruses are available. With an improved understanding of plant signaling pathways in response to a range of other pathogens, such as fungi, additional candidate genes for achieving resistance are being investigated. The potential for engineering plants for resistance against individual devastating diseases or for plants with resistance towards multiple pathogens is discussed in detail.

  12. Pulmonary function response and effects of antioxidant genetic polymorphisms in healthy young adults exposed to low concentration ozone.

    EPA Science Inventory

    Rational: Ozone is known to induce a variety of pulmonary effects including decrement of spirometric lung function and inflammatory reaction, and antioxidant genes are known to play an important role in modulating the effects. It is unclear, however, if such effects may occur at...

  13. Genome-wide association study dissects the genetic architecture of polyphenols and antioxidant capacity in a sorghum diversified collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of polyphenol-rich food is associated with decreased risk of several oxidative stress-related chronic diseases. Sorghum, a major cereal crop grown worldwide, has many polyphenol-containing accessions with high antioxidant activity in the grain. However, many of these polyphenol-containin...

  14. Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants.

    PubMed

    Rocha-Frigoni, Nathália A S; Leão, Beatriz C S; Nogueira, Ériklis; Accorsi, Mônica F; Mingoti, Gisele Z

    2014-01-01

    The effects of intracellular (cysteine and β-mercaptoethanol) and extracellular (catalase) antioxidant supplementation at different times during in vitro production (IVM and/or in vitro culture (IVC)) on bovine embryo development, intracellular reactive oxygen species (ROS) levels, apoptosis and re-expansion rates after a vitrification-thawing process were examined. Blastocyst frequencies were not affected by either antioxidant supplementation (40.5%-56.4%) or the timing of supplementation (41.7%-55.4%) compared with control (48.7%; P>0.05). Similarly, antioxidants and the moment of supplementation did not affect (P>0.05) the total number of blastomeres (86.2-90.5 and 84.4-90.5, respectively) compared with control (85.7). However, the percentage of apoptotic cells was reduced (P<0.05) in groups supplemented during IVM (1.7%), IVC (2.0%) or both (1.8%) compared with control (4.3%). Intracellular ROS levels measured in Day 7 blastocysts were reduced (P<0.05) in all groups (0.60-0.78), with the exception of the group supplemented with β-mercaptoethanol during IVC (0.88), which did not differ (P>0.05) from that in the control group (1.00). Re-expansion rates were not affected (P>0.05) by the treatments (50.0%-93.0%). In conclusion, antioxidant supplementation during IVM and/or IVC reduces intracellular ROS and the rate of apoptosis; however, supplementation does not increase embryonic development and survival after vitrification.

  15. Essential Genes Embody Increased Mutational Robustness to Compensate for the Lack of Backup Genetic Redundancy

    PubMed Central

    Cohen, Osher; Oberhardt, Matthew; Yizhak, Keren; Ruppin, Eytan

    2016-01-01

    Genetic robustness is a hallmark of cells, occurring through many mechanisms and at many levels. Essential genes lack the common robustness mechanism of genetic redundancy (i.e., existing alongside other genes with the same function), and thus appear at first glance to leave cells highly vulnerable to genetic or environmental perturbations. Here we explore a hypothesis that cells might protect against essential gene loss through mechanisms that occur at various cellular levels aside from the level of the gene. Using Escherichia coli and Saccharomyces cerevisiae as models, we find that essential genes are enriched over non-essential genes for properties we call “coding efficiency” and “coding robustness”, denoting respectively a gene’s efficiency of translation and robustness to non-synonymous mutations. The coding efficiency levels of essential genes are highly positively correlated with their evolutionary conservation levels, suggesting that this feature plays a key role in protecting conserved, evolutionarily important genes. We then extend our hypothesis into the realm of metabolic networks, showing that essential metabolic reactions are encoded by more “robust” genes than non-essential reactions, and that essential metabolites are produced by more reactions than non-essential metabolites. Taken together, these results testify that robustness at the gene-loss level and at the mutation level (and more generally, at two cellular levels that are usually treated separately) are not decoupled, but rather, that cellular vulnerability exposed due to complete gene loss is compensated by increased mutational robustness. Why some genes are backed up primarily against loss and others against mutations still remains an open question. PMID:27997585

  16. The dipteran parasitoid Exorista bombycis induces pro- and anti-oxidative reactions in the silkworm Bombyx mori: Enzymatic and genetic analysis.

    PubMed

    Makwana, Pooja; Pradeep, Appukuttan Nair R; Hungund, Shambhavi P; Ponnuvel, Kangayam M; Trivedy, Kanika

    2017-02-01

    Hymenopteran parasitoids inject various factors including polydnaviruses along with their eggs into their host insects that suppress host immunity reactions to the eggs and larvae. Less is known about the mechanisms evolved in dipteran parasitoids that suppress host immunity. Here we report that the dipteran, Exorista bombycis, parasitization leads to pro-oxidative reactions and activation of anti-oxidative enzymes in the silkworm Bombyx mori larva. We recorded increased activity of oxidase, superoxide dismutase, thioredoxin peroxidase, catalase, glutathione-S-transferase (GST), and peroxidases in the hemolymph plasma, hemocytes, and fat body collected from B. mori after E. bombycis parasitization. Microarray and qPCR showed differential expression of genes encoding pro- and anti-oxidant enzymes in the hemocytes. The significance of this work lies in increased understanding of dipteran parasitoid biology.

  17. Chard (Beta vulgaris L. var. cicla) extract ameliorates hyperglycemia by increasing GLUT2 through Akt2 and antioxidant defense in the liver of rats.

    PubMed

    Gezginci-Oktayoglu, Selda; Sacan, Ozlem; Bolkent, Sehnaz; Ipci, Yesim; Kabasakal, Levent; Sener, Goksel; Yanardag, Refiye

    2014-01-01

    Chard is a plant used as an alternative hypoglycemic agent by diabetic people in Turkey. The aim of this study was to examine the molecular mechanism of hypoglycemic effects of chard extract. Male Sprague-Dawley rats (6-7 months old) were divided into five groups for this investigation: (1) control, (2) hyperglycemic, (3) hyperglycemic+chard, (4) hyperglycemic+insulin, (5) hyperglycemic+chard+insulin. Fourteen days after animals were rendered hyperglycemic by intraperitoneal injection of 60 mg/kg streptozotocin, the chard water extract (2 g/kg/day) or/and insulin (6 U/kg/day) was administered for 45 days. Hypoglycemic effect of chard extract was demonstrated by a significant reduction in the fasting blood glucose and increased glycogen levels in liver of chard extract-treated hyperglycemic rats. Moreover, activity of adenosine deaminase, which is suggested as an important enzyme for modulating the bioactivity of insulin, was decreased by chard treatment. Immunostaining analysis showed increased nuclear translocation of Akt2 and synthesis of GLUT2 in the hepatocytes of chard or/and insulin-treated hyperglycemic rats. The oxidative stress was decreased and antioxidant defense was increased by chard extract or/and insulin treatment to hyperglycemic rats according to the decreased malondialdehyde formation, the activities of catalase, superoxide dismutase, myeloperoxidase and increased glutathione levels. These findings suggest that chard extract might improve glucose response by increasing GLUT2 through Akt2 and antioxidant defense in the liver.

  18. Landscape genetics indicate recently increased habitat fragmentation in African forest-associated chafers.

    PubMed

    Eberle, Jonas; Rödder, Dennis; Beckett, Marc; Ahrens, Dirk

    2017-01-07

    Today, indigenous forests cover less than 0.6% of South Africa's land surface and are highly fragmented. Most forest relicts are very small and typically occur in fire-protected gorges along the eastern Great Escarpment. Yet, they hold a unique and valuable fauna with high endemism and ancient phylogenetic lineages, fostered by long-term climatic stability and complex microclimates. Despite numerous studies on southern African vegetation cover, the current state of knowledge about the natural extension of indigenous forests is rather fragmentary. We use an integrated approach of population-level phylogeography and climatic niche modeling of forest-associated chafer species to assess connectivity and extent of forest habitats since the last glacial maximum. Current and past species distribution models ascertained potential fluctuations of forest distribution and supported a much wider potential current extension of forests based on climatic data. Considerable genetic admixture of mitochondrial and nuclear DNA among many populations and an increase in mean population mutation rate in Extended Bayesian Skyline Plots of all species indicated more extended or better connected forests in the recent past (<5 kya). Genetic isolation of certain populations, as revealed by population differentiation statistics (GST'), as well as landscape connectivity statistics and habitat succession scenarios suggests considerable loss of habitat connectivity. As major anthropogenic influence is likely, conservational actions need to be considered.

  19. A High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases the Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice

    PubMed Central

    Jearapong, Nattharat; Pimson, Charinya; Chatuphonprasert, Waranya

    2016-01-01

    Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD), associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD) on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD. PMID:27019761

  20. Increasing water-use efficiency directly through genetic manipulation of stomatal density.

    PubMed

    Franks, Peter J; W Doheny-Adams, Timothy; Britton-Harper, Zoe J; Gray, Julie E

    2015-07-01

    Improvement in crop water-use efficiency (WUE) is a critical priority for regions facing increased drought or diminished groundwater resources. Despite new tools for the manipulation of stomatal development, the engineering of plants with high WUE remains a challenge. We used Arabidopsis epidermal patterning factor (EPF) mutants exhibiting altered stomatal density to test whether WUE could be improved directly by manipulation of the genes controlling stomatal density. Specifically, we tested whether constitutive overexpression of EPF2 reduced stomatal density and maximum stomatal conductance (gw(max) ) sufficiently to increase WUE. We found that a reduction in gw(max) via reduced stomatal density in EPF2-overexpressing plants (EPF2OE) increased both instantaneous and long-term WUE without altering significantly the photosynthetic capacity. Conversely, plants lacking both EPF1 and EPF2 expression (epf1epf2) exhibited higher stomatal density, higher gw(max) and lower instantaneous WUE, as well as lower (but not significantly so) long-term WUE. Targeted genetic modification of stomatal conductance, such as in EPF2OE, is a viable approach for the engineering of higher WUE in crops, particularly in future high-carbon-dioxide (CO2 ) atmospheres.

  1. An uncertain revolution: why the rise of a genetic model of mental illness has not increased tolerance.

    PubMed

    Schnittker, Jason

    2008-11-01

    This study uses the 2006 replication of the 1996 General Social Survey Mental Health Module to explore trends in public beliefs about mental illness in the USA. Drawing on three models related to the framing of genetic arguments in popular media, the study attempts to address why tolerance of the mentally ill has not increased, despite the growing popularity of a biomedical view. The key to resolving this paradox lies in understanding how genetic arguments interact with other beliefs about mental illness, as well as the complex ideational implications of genetic frameworks. Genetic arguments have contingent relationships with tolerance. When applied to schizophrenia, genetic arguments are positively associated with fears regarding violence. Indeed, in this regard, attributing schizophrenia to genes is no different from attributing schizophrenia to bad character. However, when applied to depression, genetic arguments are positively associated with social acceptance. In addition to these contingencies, genetic explanations have discontinuous relationships with beliefs regarding treatment. Although genetic arguments are positively associated with recommending medical treatment, they are not associated with the perceived likelihood of improvement. The net result of these assorted relationships is little change in overall levels of tolerance over time. Because of the blunt nature of the forces propelling a biomedical view--including the growing popularity of psychiatric medications--altering beliefs about the etiology of mental illness is unlikely, on its own, to increase tolerance.

  2. Antioxidant defence-related genetic variants are not associated with higher risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence

    PubMed Central

    Vodusek, Ana Lina; Goricar, Katja; Gazic, Barbara; Dolzan, Vita

    2016-01-01

    Background Thyroid cancer is one of the most common secondary cancers after treatment of malignancy in childhood or adolescence. Thyroid gland is very sensitive to the carcinogenic effect of ionizing radiation, especially in children. Imbalance between pro- and anti-oxidant factors may play a role in thyroid carcinogenesis. Our study aimed to assess the relationship between genetic variability of antioxidant defence-related genes and the risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence. Patients and methods In a retrospective study, we compared patients with childhood or adolescence primary malignancy between 1960 and 2006 that developed a secondary thyroid cancer (cases) with patients (controls), with the same primary malignancy but did not develop any secondary cancer. They were matched for age, gender, primary diagnosis and treatment (especially radiotherapy) of primary malignancy. They were all genotyped for SOD2 p.Ala16Val, CAT c.-262C>T, GPX1 p.Pro200Leu, GSTP1 p.Ile105Val, GSTP1 p.Ala114Val and GSTM1 and GSTT1 deletions. The influence of polymorphisms on occurrence of secondary cancer was examined by McNemar test and Cox proportional hazards model. Results Between 1960 and 2006 a total of 2641 patients were diagnosed with primary malignancy before the age of 21 years in Slovenia. Among them 155 developed a secondary cancer, 28 of which were secondary thyroid cancers. No significant differences in the genotype frequency distribution were observed between cases and controls. Additionally we observed no significant influence of investigated polymorphisms on time to the development of secondary thyroid cancer. Conclusions We observed no association of polymorphisms in antioxidant genes with the risk for secondary thyroid cancer after treatment of malignancy in childhood or adolescence. However, thyroid cancer is one of the most common secondary cancers in patients treated for malignancy in childhood or adolescence and

  3. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  4. [Genetic counseling and DNA testing in patients with increased risks for malignant melanoma].

    PubMed

    Itin, P H; Fistarol, S K

    2003-08-01

    There are numerous risk factors for the development of malignant melanoma. It has been documented that genetic predisposition exists but exogenous factors are also very important. In familial melanomas it has been well established that mutation in the CDKN2A gene which is located at chromosome 9 leads to a marked risk for malignant melanoma. This tumor-suppressor gene is important for the regulation of the cell cycle and mutation in this gene is associated also with an increased rate of pancreas cancer. The penetrance of this mutation is influenced by UV-energy. In addition it has been shown that a second cluster for the familial atypical nevus syndrome is located at chromosome 1p36. Patients with the rare disease xeroderma pigmentosum have a defect in the DNA-repair mechanism inherited in an autosomal recessive trait and therefore develop within the first 20 years of life numerous malignant skin tumours including malignant melanomas. But also in non-syndromic patients a decrease of DNA-repair ability may occur. It has been shown recently that reduced DNA-repair ability is an independent risk factor for malignant melanoma and may contribute to susceptibility to sunlight-induced melanoma among the general population. Other constitutional risk factors for the development of malignant melanoma are fair skin, red hair and blue eyes. The most important exogenous risk factor is UV-exposition. Extensive and repetitive sunburns before the age of 15 years are especially predisposing to malignant melanoma. The most important preventive measures are continuous sun-protection including avoidance of sun in noon time on tropical and subtropical places, wearing a hut and sunglasses and application of sun-screens with high sun-protection factor. Furthermore a regular check for changing moles is indicated in persons with multiple atypical nevi or a familial melanoma syndrome. Nowadays molecular genetic screenings are available within research projects for members of melanoma

  5. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs

    PubMed Central

    Marsden, Clare D.; Ortega-Del Vecchyo, Diego; O’Brien, Dennis P.; Taylor, Jeremy F.; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D.; Wayne, Robert K.; Lohmueller, Kirk E.

    2016-01-01

    Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2–3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants. PMID:26699508

  6. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs.

    PubMed

    Marsden, Clare D; Ortega-Del Vecchyo, Diego; O'Brien, Dennis P; Taylor, Jeremy F; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D; Wayne, Robert K; Lohmueller, Kirk E

    2016-01-05

    Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2-3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants.

  7. Increased Genetic Vulnerability to Smoking at CHRNA5 in Early-Onset Smokers

    PubMed Central

    Hartz, Sarah M.; Short, Susan E.; Saccone, Nancy L.; Culverhouse, Robert; Chen, LiShiun; Schwantes-An, Tae-Hwi; Coon, Hilary; Han, Younghun; Stephens, Sarah H.; Sun, Juzhong; Chen, Xiangning; Ducci, Francesca; Dueker, Nicole; Franceschini, Nora; Frank, Josef; Geller, Frank; Guđbjartsson, Daniel; Hansel, Nadia N.; Jiang, Chenhui; Keskitalo-Vuokko, Kaisu; Liu, Zhen; Lyytikäinen, Leo-Pekka; Michel, Martha; Rawal, Rajesh; Hum, Sc; Rosenberger, Albert; Scheet, Paul; Shaffer, John R.; Teumer, Alexander; Thompson, John R.; Vink, Jacqueline M.; Vogelzangs, Nicole; Wenzlaff, Angela S.; Wheeler, William; Xiao, Xiangjun; Yang, Bao-Zhu; Aggen, Steven H.; Balmforth, Anthony J.; Baumeister, Sebastian E.; Beaty, Terri; Bennett, Siiri; Bergen, Andrew W.; Boyd, Heather A.; Broms, Ulla; Campbell, Harry; Chatterjee, Nilanjan; Chen, Jingchun; Cheng, Yu-Ching; Cichon, Sven; Couper, David; Cucca, Francesco; Dick, Danielle M.; Foroud, Tatiana; Furberg, Helena; Giegling, Ina; Gu, Fangyi; Hall, Alistair S.; Hällfors, Jenni; Han, Shizhong; Hartmann, Annette M.; Hayward, Caroline; Heikkilä, Kauko; Lic, Phil; Hewitt, John K.; Hottenga, Jouke Jan; Jensen, Majken K.; Jousilahti, Pekka; Kaakinen, Marika; Kittner, Steven J.; Konte, Bettina; Korhonen, Tellervo; Landi, Maria-Teresa; Laatikainen, Tiina; Leppert, Mark; Levy, Steven M.; Mathias, Rasika A.; McNeil, Daniel W.; Medland, Sarah E.; Montgomery, Grant W.; Muley, Thomas; Murray, Tanda; Nauck, Matthias; North, Kari; Pergadia, Michele; Polasek, Ozren; Ramos, Erin M.; Ripatti, Samuli; Risch, Angela; Ruczinski, Ingo; Rudan, Igor; Salomaa, Veikko; Schlessinger, David; Styrkársdóttir, Unnur; Terracciano, Antonio; Uda, Manuela; Willemsen, Gonneke; Wu, Xifeng; Abecasis, Goncalo; Barnes, Kathleen; Bickeböller, Heike; Boerwinkle, Eric; Boomsma, Dorret I.; Caporaso, Neil; Duan, Jubao; Edenberg, Howard J.; Francks, Clyde; Gejman, Pablo V.; Gelernter, Joel; Grabe, Hans Jörgen; Hops, Hyman; Jarvelin, Marjo-Riitta; Viikari, Jorma; Kähönen, Mika; Kendler, Kenneth S.; Lehtimäki, Terho; Levinson, Douglas F.; Marazita, Mary L.; Marchini, Jonathan; Melbye, Mads; Mitchell, Braxton D.; Murray, Jeffrey C.; Nöthen, Markus M.; Penninx, Brenda W.; Raitakari, Olli; Rietschel, Marcella; Rujescu, Dan; Samani, Nilesh J.; Sanders, Alan R.; Schwartz, Ann G.; Shete, Sanjay; Shi, Jianxin; Spitz, Margaret; Stefansson, Kari; Swan, Gary E.; Thorgeirsson, Thorgeir; Völzke, Henry; Wei, Qingyi; Wichmann, H.-Erich; Amos, Christopher I.; Breslau, Naomi; Cannon, Dale S.; Ehringer, Marissa; Grucza, Richard; Hatsukami, Dorothy; Heath, Andrew; Johnson, Eric O.; Kaprio, Jaakko; Madden, Pamela; Martin, Nicholas G.; Stevens, Victoria L.; Stitzel, Jerry A.; Weiss, Robert B.; Kraft, Peter; Bierut, Laura J.

    2012-01-01

    Context Recent studies have shown an association between cigarettes per day (CPD) and a nonsynonymous single-nucleotide polymorphism in CHRNA5, rs16969968. Objective To determine whether the association between rs16969968 and smoking is modified by age at onset of regular smoking. Data Sources Primary data. Study Selection Available genetic studies containing measures of CPD and the genotype of rs16969968 or its proxy. Data Extraction Uniform statistical analysis scripts were run locally. Starting with 94 050 ever-smokers from 43 studies, we extracted the heavy smokers (CPD >20) and light smokers (CPD ≤10) with age-at-onset information, reducing the sample size to 33 348. Each study was stratified into early-onset smokers (age at onset ≤16 years) and late-onset smokers (age at onset >16 years), and a logistic regression of heavy vs light smoking with the rs16969968 genotype was computed for each stratum. Meta-analysis was performed within each age-at-onset stratum. Data Synthesis Individuals with 1 risk allele at rs16969968 who were early-onset smokers were significantly more likely to be heavy smokers in adulthood (odds ratio [OR]=1.45; 95% CI, 1.36–1.55; n=13 843) than were carriers of the risk allele who were late-onset smokers (OR = 1.27; 95% CI, 1.21–1.33, n = 19 505) (P = .01). Conclusion These results highlight an increased genetic vulnerability to smoking in early-onset smokers. PMID:22868939

  8. Intake of up to 3 Eggs per Day Is Associated with Changes in HDL Function and Increased Plasma Antioxidants in Healthy, Young Adults.

    PubMed

    DiMarco, Diana M; Norris, Gregory H; Millar, Courtney L; Blesso, Christopher N; Fernandez, Maria Luz

    2017-03-01

    Background: HDL function may be more important than HDL concentration in determining risk for cardiovascular disease. In addition, HDL is a carrier of carotenoids and antioxidant enzymes, which protect HDL and LDL particles against oxidation.Objective: The goal of this study was to determine the impact of consuming 0-3 eggs/d on LDL and HDL particle size, HDL function, and plasma antioxidants in a young, healthy population.Methods: Thirty-eight healthy men and women [age 18-30 y, body mass index (in kg/m(2)) 18.5-29.9] participated in this 14-wk crossover intervention. Subjects underwent a 2-wk washout (0 eggs/d) followed by sequentially increasing intake of 1, 2, and 3 eggs/d for 4 wk each. After each period, fasting blood was collected for analysis of lipoprotein subfractions, plasma apolipoprotein (apo) concentration, lutein and zeaxanthin concentration, and activities of lecithin-cholesterol acyltransferase, cholesteryl ester transfer protein, and paraoxonase-1.Results: Compared with intake of 0 eggs/d, consuming 1-3 eggs/d resulted in increased large-LDL (21-37%) and large-HDL (6-13%) particle concentrations, plasma apoAI (9-15%), and lecithin-cholesterol acyltransferase activity (5-15%) (P < 0.05 for all biomarkers). Intake of 2-3 eggs/d also promoted an 11% increase in apoAII (P < 0.05) and a 20-31% increase in plasma lutein and zeaxanthin (P < 0.05), whereas intake of 3 eggs/d resulted in a 9-16% increase in serum paraoxonase-1 activity compared with intake of 1-2 eggs/d (P < 0.05). Egg intake did not affect cholesteryl ester transfer protein activity.Conclusions: Intake of 1 egg/d was sufficient to increase HDL function and large-LDL particle concentration; however, intake of 2-3 eggs/d supported greater improvements in HDL function as well as increased plasma carotenoids. Overall, intake of ≤3 eggs/d favored a less atherogenic LDL particle profile, improved HDL function, and increased plasma antioxidants in young, healthy adults. This trial was

  9. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy

    PubMed Central

    Elshahabi, Adham; Klamer, Silke; Sahib, Ashish Kaul; Lerche, Holger; Braun, Christoph; Focke, Niels K.

    2015-01-01

    Idiopathic/genetic generalized epilepsy (IGE/GGE) is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease. PMID:26368933

  10. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar–ductal metaplasia

    PubMed Central

    Liu, Xin; Pitarresi, Jason R.; Cuitiño, Maria C.; Kladney, Raleigh D.; Woelke, Sarah A.; Sizemore, Gina M.; Nayak, Sunayana G.; Egriboz, Onur; Schweickert, Patrick G.; Yu, Lianbo; Trela, Stefan; Schilling, Daniel J.; Halloran, Shannon K.; Li, Maokun; Dutta, Shourik; Fernandez, Soledad A.; Rosol, Thomas J.; Lesinski, Gregory B.; Shakya, Reena; Ludwig, Thomas; Konieczny, Stephen F.; Leone, Gustavo; Wu, Jinghai; Ostrowski, Michael C.

    2016-01-01

    The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo. Additionally, Smo-deleted fibroblasts stimulated the growth of KrasG12D/Tp53R172H pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating KrasG12D-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts. PMID:27633013

  11. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    NASA Astrophysics Data System (ADS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-04-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  12. Genetic variants and increased risk of meningioma: an updated meta-analysis

    PubMed Central

    Han, Xiao-Yong; Wang, Wei; Wang, Lei-Lei; Wang, Xi-Rui; Li, Gang

    2017-01-01

    Purpose Various genetic variants have been reported to be linked to an increased risk of meningioma. However, no confirmed conclusion has been obtained. The purpose of the study was to investigate potential meningioma-associated gene polymorphisms, based on published evidence. Materials and methods An updated meta-analysis was performed in September 2016. After electronic database searching and study screening, we selected eligible case-control studies and extracted data for meta-analysis, using Mantel–Haenszel statistics. P-values, pooled odds ratios (ORs), and 95% confidence intervals were calculated. Results We finally selected eight genes with ten polymorphisms: MLLT10 rs12770228, CASP8 rs1045485, XRCC1 rs1799782, rs25487, MTHFR rs1801133, rs1801131, MTRR rs1801394, MTR rs1805087, GSTM1 null/present, and GSTT1 null/present. Results of meta-analyses showed that there was increased meningioma risk in case groups under all models of MLLT10 rs12770228 (all OR >1, P<0.001), compared with control groups. Similar results were observed under the allele, homozygote, dominant, and recessive models of MTRR rs1801394 (all OR >1, P<0.05), and the heterozygote and dominant models of MTHFR rs1801131 in the Caucasian population (all OR >1, P<0.05). However, no significantly increased meningioma risks were observed for CASP8 rs1045485, XRCC1 rs25487, rs1799782, MTHFR rs1801133, MTR rs1805087, or GSTM1/GSTT1 null mutations. Conclusion Our updated meta-analysis provided statistical evidence for the role of MLLT10 rs12770228, MTRR rs1801394, and MTHFR rs1801131 in increased susceptibility to meningioma.

  13. Co-occurring increases of calcium and organellar reactive oxygen species determine differential activation of antioxidant and defense enzymes in Ulva compressa (Chlorophyta) exposed to copper excess.

    PubMed

    Gonzalez, Alberto; Vera, Jeannette; Castro, Jorge; Dennett, Geraldine; Mellado, Macarena; Morales, Bernardo; Correa, Juan A; Moenne, Alejandra

    2010-10-01

    In order to analyse copper-induced calcium release and (reactive oxygen species) ROS accumulation and their role in antioxidant and defense enzymes activation, the marine alga Ulva compressa was exposed to 10 µM copper for 7 d. The level of calcium, extracellular hydrogen peroxide (eHP), intracellular hydrogen peroxide (iHP) and superoxide anions (SA) as well as the activities of ascorbate peroxidase (AP), glutathione reductase (GR), glutathione-S-transferase (GST), phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were determined. Calcium release showed a triphasic pattern with peaks at 2, 3 and 12 h. The second peak was coincident with increases in eHP and iHP and the third peak with the second increase of iHP. A delayed wave of SA occurred after day 3 and was not accompanied by calcium release. The accumulation of iHP and SA was mainly inhibited by organellar electron transport chains inhibitors (OETCI), whereas calcium release was inhibited by ryanodine. AP activation ceased almost completely after the use of OETCI. On the other hand, GR and GST activities were partially inhibited, whereas defense enzymes were not inhibited. In contrast, PAL and LOX were inhibited by ryanodine, whereas AP was not inhibited. Thus, copper stress induces calcium release and organellar ROS accumulation that determine the differential activation of antioxidant and defense enzymes.

  14. Effects of Increasing Doses of UV-B on Main Phenolic Acids Content, Antioxidant Activity and Estimated Biomass in Lavandin (Lavandula x intermedia).

    PubMed

    Usano-Alemany, Jaime; Panjai, Lachinee

    2015-07-01

    Lavandin is a well-known aromatic plant cultivated mainly for its valuable essential oil. Nonetheless, little attention has been paid so far to the quantification of other natural products such as polyphenols. Accordingly, we examined the effect of increasing doses of UV-B radiation on the main phenolic content, antioxidant activity and estimated biomass of one year old lavandin pots compared with pots grown outdoors. Significantly higher total phenolic content and concentration of main polyphenols have been found in outdoor plants. Rosmarinic acid has been described as the major phenolic compound in methanolic extracts (max. 25.9 ± 9.7 mg/g(-1) DW). Furthermore, we found that increasing doses of UV-B promote the plant growth of this species as well as the accumulation of phenolic compounds although with less antioxidant capacity in scavenging DPPH radicals. On the other hand, our results showed a remarkable variability among individual plants regarding the content of major phenolic acids. The application of UV-B doses during plant growth could be a method to promote biomass in this species along with the promotion of higher content of valuable secondary metabolites.

  15. Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts.

    PubMed

    Mendoza-Sánchez, Magdalena; Guevara-González, Ramón G; Castaño-Tostado, Eduardo; Mercado-Silva, Edmundo M; Acosta-Gallegos, Jorge A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2016-12-01

    The aim of this study was to determine the effect of chitosan (CH), salicylic acid (SA) and hydrogen peroxide (H2O2) at different concentrations on the antinutritional and nutraceutical content, as well as the antioxidant capacity of bean sprouts (cv Dalia). All elicitors at medium and high concentrations reduced the antinutritional content of lectins (48%), trypsin inhibitor (57%), amylase inhibitor (49%) and phytic acid (56%). Sprouts treated with CH, SA and H2O2 (7μM; 1 and 2mM, and 30mM respectively) increased the content of phenolic compounds (1.8-fold), total flavonoids (3-fold), saponins (1.8-fold) and antioxidant capacity (37%). Furthermore, the UPLC-ESI-MS/MS analysis showed an increase of several nutraceutical compounds in bean sprouts treated with SA such as coumaric (8.5-fold), salicylic (115-fold), gallic (25-fold) and caffeic (1.7-fold) acids, as well as epigallocatechin (63-fold), rutin (41-fold) and quercetin (16.6-fold) flavonoids. The application of elicitors in bean seed during sprouting enhances their nutraceutical properties.

  16. Genetic variations in the osteopontin promoters T-443C and G-156GG increase carotid intima–media thickness

    PubMed Central

    Yueniwati, Yuyun; Yurina, Valentina; Sobah, Nurus; Rahayu, Endang

    2016-01-01

    Carotid intima–media thickness (CIMT) is a clear predictor of atherosclerosis. The increase of CIMT is affected by mutations in the osteopontin (OPN) promoters. The purpose of this study was to examine genetic variations in OPN promoters T-443C and G-156GG, identified in Javanese children with ischemic stroke parents, and to investigate their relationship with the increase of CIMT. A case–control analytic study was performed on 20 case and 12 control samples. Case samples were Javanese children aged between 10 to 21 years with ischemic stroke parents. Control samples were children with healthy parents. Mutations of T-443C and G-156GG were determined by employing polymerase chain reaction. Results of sequencing were analyzed using CLC Main Workbench 6.0. CIMT was defined using ultrasound. Genetic variations of T-443C were identified in six samples. Likewise, genetic variations of G-156GG were identified in six samples. Genetic variations in the OPN promoters T-443C and G-156GG were not potential risk factors in an increase of CIMT (P=0.654 and P=0.654). This study proves that genetic variations could be identified at the points of T-443C and G-156GG in children with ischemic stroke parents. Although statistically insignificant, the tendency to increase CIMT occurs in children with genetic variations. Children with ischemic stroke parents have thicker CIMT than children of healthy parents. PMID:27274305

  17. Genetic increase in brain-derived neurotrophic factor levels enhances learning and memory.

    PubMed

    Nakajo, Yukako; Miyamoto, Susumu; Nakano, Yoshikazu; Xue, Jing-Hui; Hori, Takuya; Yanamoto, Hiroji

    2008-11-19

    Brain-derived neurotrophic factor (BDNF), a neurotrophin, is known to promote neuronal differentiation stimulating neurite outgrowth in the developing CNS, and is also known to modulate synaptic plasticity, thereby contributing to learning and memory in the mature brain. Here, we investigated the role of increased levels of intracerebral BDNF in learning and memory function. Using genetically engineered transgenic BDNF overexpressing mice (RTG-BDNF), young adult, homozygous (+/+), heterozygous (+/-), or wild-type (-/-) littermates, we analyzed escape latency to a hidden-platform and swimming velocity in the Morris Water Maze test (MWM) with modifications for the mice. The MWM comprised 4 trials per day over 5 consecutive days (sessions) without prior or subsequent training. In a separate set of animals, BDNF protein levels in the cortex, thalamostriatum and the hippocampus were measured quantitatively using ELISA. In the BDNF (+/-) mice, the BDNF levels in the cortex, the thalamostriatum and the hippocampus were significantly high, compared to the wild-type littermates; 238%, 158%, and 171%, respectively (P<0.01, one-way ANOVA and a post-hoc test in each region). The BDNF levels in the BDNF (+/+) mice were not elevated. The BDNF (+/-), but not the (+/+) mice, demonstrated significantly shorter escape latency, shorter total path length in the MWM, and more frequent arrivals at the location where the platform had been placed previously in the probe trial, compared with the wild-type littermates (P<0.05, at each time pint). Because the maximum swimming velocity was not affected in the BDNF-transgenic mice, increased BDNF levels in the brain were found to enhance spatial learning and memory function. Although it has been postulated that excessive BDNF is deteriorating for neuronal survival or neurite outgrowth, further investigations are needed to clarify the mechanism of paradoxical lack of increase in BDNF levels in the (+/+) mouse brain.

  18. Genetic Vulnerability Interacts with Parenting and Early Care and Education to Predict Increasing Externalizing Behavior

    ERIC Educational Resources Information Center

    Lipscomb, Shannon T.; Laurent, Heidemarie; Neiderhiser, Jenae M.; Shaw, Daniel S.; Natsuaki, Misaki N.; Reiss, David; Leve, Leslie D.

    2014-01-01

    The current study examined interactions among genetic influences and children's early environments on the development of externalizing behaviors from 18 months to 6 years of age. Participants included 233 families linked through adoption (birth parents and adoptive families). Genetic influences were assessed by birth parent temperamental…

  19. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways

    PubMed Central

    Aldebasi, Yousef H; Aly, Salah M; Rahmani, Arshad H

    2013-01-01

    Diabetic Retinopathy (DR) is one of the most common complications of diabetes mellitus that affects the blood vessels of the retina, leading to blindness. The current approach of treatment based on anti-inflammatory, anti-angiogenesis drugs and laser photocoagulation are effective but also shows adverse affect in retinal tissues and that can even worsen the visual abilities. Thus, a safe and effective mode of treatment is needed to control or delaying the DR. Based on the earlier evidence of the potentiality of natural products as anti-oxidants, anti-diabetic and antitumor, medicinal plants may constitute a good therapeutic approach in the prevention of DR. Curcumin, constituents of dietary spice turmeric, has been observed to have therapeutic potential in the inhibition or slow down progression of DR. In this review, we summarize the therapeutic potentiality of curcumin in the delaying the DR through antioxidant, anti-inflammatory, inhibition of Vascular Endothelial Growth and nuclear transcription factors. The strength of involvement of curcumin in the modulation of genes action creates a strong optimism towards novel therapeutic strategy of diabetic retinopathy and important mainstay in the management of diabetes and its complications DR. PMID:24379904

  20. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    PubMed

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop.

  1. Hyperferritinaemia-cataract syndrome: Worldwide mutations and phenotype of an increasingly diagnosed genetic disorder

    PubMed Central

    2010-01-01

    The hereditary hyperferritinaemia-cataract syndrome (HHCS) is characterised by an autosomal dominant cataract and high levels of serum ferritin without iron overload. The cataract develops due to L-ferritin deposits in the lens and its pulverulent aspect is pathognomonic. The syndrome is caused by mutations within the iron-responsive element of L-ferritin. These mutations prevent efficient binding of iron regulatory proteins 1 and 2 to the IRE in L-ferritin mRNA, resulting in an unleashed ferritin translation. This paper reviews all 31 mutations (27 single nucleotide transitions and four deletions) that have been described since 1995. Laboratory test showing hyperferritinaemia, normal serum iron and normal transferrin saturation are indicative for HHCS after exclusion of other causes of increased ferritin levels (inflammation, malignancy, alcoholic liver disease) and should prompt an ophthalmological consultation for diagnostic confirmation. Invasive diagnostics such as liver biopsy are not indicated. HHCS is an important differential diagnosis of hyperferritinaemia. Haematologists, gastroenterologists and ophthalmologists should be aware of this syndrome to spare patients from further invasive diagnosis (liver biopsy), and also from a false diagnosis of hereditary haemochromatosis followed by venesections. Patients diagnosed with HHCS should be counselled regarding the relative harmlessness of this genetic disease, with early cataract surgery as the only clinical consequence. PMID:20511138

  2. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients.

    PubMed

    Babizhayev, Mark A; Strokov, Igor A; Nosikov, Valery V; Savel'yeva, Ekaterina L; Sitnikov, Vladimir F; Yegorov, Yegor E; Lankin, Vadim Z

    2015-04-01

    Diabetic neuropathy (DN) represents the main cause of morbidity and mortality among diabetic patients. Clinical data support the conclusion that the severity of DN is related to the frequency and duration of hyperglycemic periods. The presented experimental and clinical evidences propose that changes in cellular function resulting in oxidative stress act as a leading factor in the development and progression of DN. Hyperglycemia- and dyslipidemia-driven oxidative stress is a major contributor, enhanced by advanced glycation end product (AGE) formation and polyol pathway activation. There are several polymorphous pathways that lead to oxidative stress in the peripheral nervous system in chronic hyperglycemia. This article demonstrates the origin of oxidative stress derived from glycation reactions and genetic variations within the antioxidant genes which could be implicated in the pathogenesis of DN. In the diabetic state, unchecked superoxide accumulation and resultant increases in polyol pathway activity, AGEs accumulation, protein kinase C activity, and hexosamine flux trigger a feed-forward system of progressive cellular dysfunction. In nerve, this confluence of metabolic and vascular disturbances leads to impaired neural function and loss of neurotrophic support, and over the long term, can mediate apoptosis of neurons and Schwann cells, the glial cells of the peripheral nervous system. In this article, we consider AGE-mediated reactive oxygen species (ROS) generation as a pathogenesis factor in the development of DN. It is likely that oxidative modification of proteins and other biomolecules might be the consequence of local generation of superoxide on the interaction of the residues of L-lysine (and probably other amino acids) with α-ketoaldehydes. This phenomenon of non-enzymatic superoxide generation might be an element of autocatalytic intensification of pathophysiological action of carbonyl stress. Glyoxal and methylglyoxal formed during metabolic

  3. Tai Chi Exercise Increases SOD Activity and Total Antioxidant Status in Saliva and Is Linked to an Improvement of Periodontal Disease in the Elderly

    PubMed Central

    Hernández-Monjaraz, Beatriz; Santiago-Osorio, Edelmiro; Betancourt-Rule, José Miguel; Ruiz-Ramos, Mirna

    2014-01-01

    The aim of this study was to determine the effect of Tai Chi on biological markers of oxidative stress in saliva and its relationship with periodontal disease (PD) in older adults. We carried out a quasi-experimental study with a sample of 71 sedentary volunteers with PD who were divided into a control group of 34 subjects and an experimental group of 37 subjects who performed Tai Chi 5 days a week for a period of 6 months. PD status was characterized using the Periodontal Disease Index (PDI). Superoxide dismutase (SOD), total antioxidant status (TAS), and TBARS levels of both groups were measured by spectrophotometric methods. In addition, inflammation markers (TNF-α, IL-1β, IL-6, IL-8, and IL-10) were measured by flow cytometry. We found a statistically significant increase in SOD activity (P < 0.001) and TAS concentration (P < 0.05), whereas levels of IL-1β were significantly lower (P < 0.01). Likewise, a statistically significant decrease in the PDI (P < 0.05) was observed in subjects who performed Tai Chi during a period of 6 months. Our findings suggest that the practice of Tai Chi has both antioxidant and anti-inflammatory effects that are linked to the improvement of PD in older adults. PMID:24790703

  4. Assessing genetically modified crops to minimize the risk of increased food allergy: a review.

    PubMed

    Goodman, Richard E; Hefle, Susan L; Taylor, Steven L; van Ree, Ronald

    2005-06-01

    The first genetically modified (GM) crops approved for food use (tomato and soybean) were evaluated for safety by the United States Food and Drug Administration prior to commercial production. Among other factors, those products and all additional GM crops that have been grown commercially have been evaluated for potential increases in allergenic properties using methods that are consistent with the current understanding of food allergens and knowledge regarding the prediction of allergenic activity. Although there have been refinements, the key aspects of the evaluation have not changed. The allergenic properties of the gene donor and the host (recipient) organisms are considered in determining the appropriate testing strategy. The amino acid sequence of the encoded protein is compared to all known allergens to determine whether the protein is a known allergen or is sufficiently similar to any known allergen to indicate an increased probability of allergic cross-reactivity. Stability of the protein in the presence of acid with the stomach protease pepsin is tested as a risk factor for food allergenicity. In vitro or in vivo human IgE binding are tested when appropriate, if the gene donor is an allergen or the sequence of the protein is similar to an allergen. Serum donors and skin test subjects are selected based on their proven allergic responses to the gene donor or to material containing the allergen that was matched in sequence. While some scientists and regulators have suggested using animal models, performing broadly targeted serum IgE testing or extensive pre- or post-market clinical tests, current evidence does not support these tests as being predictive or practical. Based on the evidence to date, the current assessment process has worked well to prevent the unintended introduction of allergens in commercial GM crops.

  5. Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability

    PubMed Central

    Greenbury, Sam F.; Schaper, Steffen; Ahnert, Sebastian E.; Louis, Ard A.

    2016-01-01

    Mutational neighbourhoods in genotype-phenotype (GP) maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps—a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure—to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i) If a particular (non-neutral) phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii) If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii) If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i) and ii) reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii) may instead facilitate evolutionary exploration and so

  6. Improving the cytoplasmic maturation of bovine oocytes matured in vitro with intracellular and/or extracellular antioxidants is not associated with increased rates of embryo development.

    PubMed

    Rocha-Frigoni, Nathália A S; Leão, Beatriz C S; Dall'Acqua, Priscila Chediek; Mingoti, Gisele Z

    2016-11-01

    The production of reactive oxygen species (ROS) is a normal process that occurs in the cellular mitochondrial respiratory chain. However, an increase in ROS levels during in vitro production of bovine embryos induces oxidative stress, leading to failed embryonic development. Therefore, we investigated whether supplementation of IVM medium with intracellular (cysteine and cysteamine; C + C) and/or extracellular (catalase; CAT) antioxidants improves the culture system, affects the mitochondrial membrane potential, affects the intracellular levels of ROS and glutathione (GSH) in the bovine oocytes at the end of maturation, and thereby affects the subsequent embryonic development. At the end of IVM, the metaphase II rates were unaffected by the treatments (76.7 ± 1.7% to 80.6 ± 5.2%; P > 0.05). The intracellular ROS levels, expressed in arbitrary fluorescence units, found in the oocytes treated with intracellular antioxidants (C + C and C + C + CAT groups; 1.06, averaged) were as low as those observed in immature oocytes (0 hour: 1.00 ± 0.12). Among mature oocytes, higher (P < 0.05) ROS levels were found in the control group (1.91 ± 0.10) when compared to the ROS levels found in oocytes treated with antioxidants. Intracellular GSH levels in all groups were lower (0.17 ± 0.09 to 0.51 ± 0.05; P < 0.05) than those in immature oocytes (1.00 ± 0.08), although GSH levels in the C + C group (0.51 ± 0.05) were greater (P < 0.05) than in the control, CAT, and C + C + CAT groups (0.23; averaged). The mitochondrial membrane potential in all groups was improved (1.6; averaged; P < 0.05) compared to the membrane potential observed in the immature oocytes (1.00 ± 0.05), with the exception of the C + C group (0.94 ± 0.03). There was no effect (P > 0.05) of antioxidant supplementation on embryonic development to the blastocyst stage (36.1%; averaged); however, there was an increased tendency (P = 0.0689) to obtain a higher

  7. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    SciTech Connect

    Ishikado, Atsushi; Nishio, Yoshihiko; Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime; Makino, Taketoshi; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  8. Genetic factors associated with population size may increase extinction risks and decrease colonization potential in a keystone tropical pine

    PubMed Central

    del Castillo, Rafael F; Trujillo-Argueta, Sonia; Sánchez-Vargas, Nahúm; Newton, Adrian C

    2011-01-01

    Pioneer species are essential for forest regeneration and ecosystem resilience. Pinus chiapensis is an endangered pioneer key species for tropical montane cloud forest regeneration in Mesoamerica. Human activities have severely reduced some P. chiapensis populations, which exhibited a small or null colonization potential suggesting the involvement of genetic factors associated with small populations. We explored the relationships between (i) population genetic diversity (allozymes) and population size, including sampling size effects, (ii) fitness estimates associated with colonization potential (seed viability and seedling performance) in a common environment and population size, and (iii) fitness estimates and observed heterozygosity in populations with sizes spanning five orders of magnitude. All the estimates of genetic diversity and fitness increased significantly with population size. Low fitness was detected in progenies of small populations of disturbed and undisturbed habitats. Progenies with the lowest observed heterozygosity displayed the lowest fitness estimates, which, in turn, increased with heterozygosity, but seed viability peaked at intermediate heterozygosity values suggesting inbreeding and outbreeding depression. Inbreeding depression appears to be the most immediate genetic factor in population decline. Conservation efforts should try to maintain large and genetically diverse populations, enhance gene flow by restoring connectivity between adjacent populations, and avoid genetically distant individuals. PMID:25568006

  9. Genetic polymorphisms associated with increased risk of developing chronic myelogenous leukemia

    PubMed Central

    Bruzzoni-Giovanelli, Heriberto; González, Juan R.; Sigaux, François; Villoutreix, Bruno O.; Cayuela, Jean Michel; Guilhot, Joëlle; Preudhomme, Claude; Guilhot, François; Poyet, Jean-Luc; Rousselot, Philippe

    2015-01-01

    Little is known about inherited factors associated with the risk of developing chronic myelogenous leukemia (CML). We used a dedicated DNA chip containing 16 561 single nucleotide polymorphisms (SNPs) covering 1 916 candidate genes to analyze 437 CML patients and 1 144 healthy control individuals. Single SNP association analysis identified 139 SNPs that passed multiple comparisons (1% false discovery rate). The HDAC9, AVEN, SEMA3C, IKBKB, GSTA3, RIPK1 and FGF2 genes were each represented by three SNPs, the PSM family by four SNPs and the SLC15A1 gene by six. Haplotype analysis showed that certain combinations of rare alleles of these genes increased the risk of developing CML by more than two or three-fold. A classification tree model identified five SNPs belonging to the genes PSMB10, TNFRSF10D, PSMB2, PPARD and CYP26B1, which were associated with CML predisposition. A CML-risk-allele score was created using these five SNPs. This score was accurate for discriminating CML status (AUC: 0.61, 95%CI: 0.58–0.64). Interestingly, the score was associated with age at diagnosis and the average number of risk alleles was significantly higher in younger patients. The risk-allele score showed the same distribution in the general population (HapMap CEU samples) as in our control individuals and was associated with differential gene expression patterns of two genes (VAPA and TDRKH). In conclusion, we describe haplotypes and a genetic score that are significantly associated with a predisposition to develop CML. The SNPs identified will also serve to drive fundamental research on the putative role of these genes in CML development. PMID:26474455

  10. Biological mechanisms associated with increased perseveration and hyperactivity in a genetic mouse model of neurodevelopmental disorder.

    PubMed

    Trent, Simon; Dean, Rachel; Veit, Bonnie; Cassano, Tommaso; Bedse, Gaurav; Ojarikre, Obah A; Humby, Trevor; Davies, William

    2013-08-01

    Chromosomal deletions at Xp22.3 appear to influence vulnerability to the neurodevelopmental disorders attention deficit hyperactivity disorder (ADHD) and autism. 39,X(Y*)O mice, which lack the murine orthologue of the Xp22.3 ADHD candidate gene STS (encoding steroid sulfatase), exhibit behavioural phenotypes relevant to such disorders (e.g. hyperactivity), elevated hippocampal serotonin (5-HT) levels, and reduced serum levels of dehydroepiandrosterone (DHEA). Here we initially show that 39,X(Y*)O mice are also deficient for the recently-characterised murine orthologue of the Xp22.3 autism candidate gene ASMT (encoding acetylserotonin-O-methyltransferase). Subsequently, to specify potential behavioural correlates of elevated hippocampal 5-HT arising due to the genetic lesion, we compared 39,X(Y*)O MF1 mice to 40,XY MF1 mice on behavioural tasks taxing hippocampal and/or 5-HT function (a 'foraging' task, an object-location task, and the 1-choice serial reaction time task of impulsivity). Although Sts/Asmt deficiency did not influence foraging behaviour, reactivity to familiar objects in novel locations, or 'ability to wait', it did result in markedly increased response rates; these rates correlated with hippocampal 5-HT levels and are likely to index behavioural perseveration, a frequent feature of neurodevelopmental disorders. Additionally, we show that whilst there was no systematic relationship between serum DHEA levels and hippocampal 5-HT levels across 39,X(Y*)O and 40,XY mice, there was a significant inverse linear correlation between serum DHEA levels and activity. Our data suggest that deficiency for genes within Xp22.3 could influence core behavioural features of neurodevelopmental disorders via dissociable effects on hippocampal neurochemistry and steroid hormone levels, and that the mediating neurobiological mechanisms may be investigated in the 39,X(Y*)O model.

  11. Oral administration of Polypodium leucotomos delays skin tumor development and increases epidermal p53 expression and the anti-oxidant status of UV-irradiated hairless mice.

    PubMed

    Rodríguez-Yanes, Esperanza; Cuevas, Jesús; González, Salvador; Mallol, Jordi

    2014-07-01

    Chronic exposure to ultraviolet radiation (UVR) induces skin tumors in hairless mice. Daily oral administration of a Polypodium leucotomos (PL) extract significantly delayed tumor development in PL-treated versus non-PL-treated mice. UVR and/or PL treatment modified several oxidative stress markers. In all irradiated mice, erythrocytic glutathione S-transferase (GST) activity and glutathione disulphide (GSSG) content increased and in all PL-treated mice GSSG content decreased, specially in non-irradiated animals, and total plasma anti-oxidant capacity (ORAC) increased. In dorsolateral non-tumoral skin of all irradiated mice, glutathione reductase (GR) and glutathione peroxidase (GPx) activities increased and GSSG decreased in non-irradiated PL-treated animals. UVR induced a steep increase of p53 expression in epidermal cells. In non-tumoral skin, this increase was significantly higher in PL-treated animals than in non-treated mice and can contribute in delaying tumor development, either by repairing the damaged DNA or by increasing apoptosis. These results reinforce the usefulness of PL as systemic photoprotective agent, especially in patients highly sensitive to UVR.

  12. Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L.), subjected to short-term low temperature stress.

    PubMed

    He, J; Qiang, J; Yang, H; Xu, P; Zhu, Z X; Yang, R Q

    2015-10-01

    We evaluated the effect of cold shock on the fatty acid composition, antioxidant enzymes, and physiological responses of genetically improved farmed tilapia (GIFT). Experimental GIFT tilapia, a warm-water teleost, were initially acclimated at 28°C and then transferred directly to 13°C. Stress responses were monitored for 120h. There was a significant change in all parameters in response to the cold stressor (P<0.05). Serum cortisol levels increased from 336.93ng/ml to a peak of 1165.31ng/ml 24h after the initial cold shock, and declined rapidly thereafter. Serum glucose and cholesterol levels were significantly lower in the low temperature group than the control group at 120h (P<0.05). Acute low temperature stress enhanced superoxide dismutase, glutathione peroxidase, catalase, and glutathione levels in the liver of GIFT tilapia. The GIFT tilapia were able to selectively metabolize fatty acids for energy needs during the early period of exposure to low-temperature stress. During this time, they primarily used saturated fatty acids for energy. However as the duration of the stressor and loss of muscle fat increased, the fish began to metabolize long-chain polyunsaturated fatty acids. Increased malondialdehyde was produced by oxidation of these fatty acids leading to oxidative damage. Our results provide insight into the changes in fatty acid metabolism physiology that allow GIFT tilapia juveniles to adapt to short-term cold stress.

  13. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    PubMed

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  14. Iridoid extracts from Ajuga iva increase the antioxidant enzyme activities in red blood cells of rats fed a cholesterol-rich diet.

    PubMed

    Bouderbala, Sherazede; Prost, Josiane; Lacaille-Dubois, Marie Aleth; Bouchenak, Malika

    2010-05-01

    The lyophilized aqueous extract of Ajuga iva (Ai) is able to reduce oxidative stress, which may prevent lipid peroxidation in hypercholesterolemic rats. Iridoids (I) were isolated from Ai. We hypothesized that the antioxidant defense status in red blood cells (RBC) and tissues in rats fed a cholesterol-rich diet and treated with Ai may be correlated to these compounds. Male Wistar rats (n = 32) weighing 120 +/- 5 g were fed a diet containing 1% cholesterol for 15 days. After this phase, hypercholesterolemic (HC) rats were divided into groups, fed the same diet, and received either the same or different doses (5, 10, or 15 mg/kg body weight by intraperitoneal injection) of I for 15 days. Compared with the HC group, total cholesterol value was 1.4- and 1.2-fold lower in the I(5)-HC and I(10)-HC groups. Serum thiobarbituric acid reactive substance content was 2.3-, 2.9-, and 3-fold lower in the I(5)-HC, I(10)-HC, and I(15)-HC groups compared with the HC group. In RBC, glutathione peroxidase, glutathione reductase, and superoxide dismutase activities were significantly higher in the I(5)-HC, I(10)-HC, and I(15)-HC groups than the HC group. Liver, heart, and muscle glutathione peroxidase and superoxide dismutase activities were significantly higher in the groups treated with I than the HC group. Muscle glutathione reductase activity was increased 1.4-fold in the I(5)-HC, 1.5-fold in the I(10)-HC, and 1.5-fold in the I(15)-HC group. In HC rats, different doses of I increase the antioxidant enzyme activities in RBC and act differently in tissues. Treatment with I may play an important role in suppressing oxidative stress caused by dietary cholesterol and, thus, may be useful for the prevention and/or early treatment of hypercholesterolemia.

  15. The degree of extra-pair paternity increases with genetic variability.

    PubMed

    Petrie, M; Doums, C; Moller, A P

    1998-08-04

    The amount of extra-pair paternity in socially monogamous bird species varies from 0% to 76% extra-pair offspring. The causes of this remarkable interspecific variation are largely unknown, although intraspecific analyses suggest that females seek extra-pair matings to improve the genetic quality of their offspring. If this is a general explanation for the occurrence of extra-pair matings, then proportionally more females should seek to modify the paternity of their clutch when there is more variation among males in their genetic quality. Here we test this prediction in birds and show that interspecific variation in the proportion of extra-pair offspring is positively related to the proportion of polymorphic loci as measured by protein electrophoresis, even when controlling for potentially confounding variables. Genetic variability was also assessed, for sister pairs of species and populations differing significantly in extra-pair paternity, by using random priming, which provides an estimate of genome-wide diversity. We found that genetic diversity was higher in the populations with a higher level of extra-pair paternity. These results suggest that the amount of genetic variability in a population may be an important factor influencing mating patterns.

  16. Reduced Genetic Diversity and Increased Structure in American Mink on the Swedish Coast following Invasive Species Control

    PubMed Central

    Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz

    2016-01-01

    Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates. PMID:27333328

  17. Reduced Genetic Diversity and Increased Structure in American Mink on the Swedish Coast following Invasive Species Control.

    PubMed

    Zalewski, Andrzej; Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz

    2016-01-01

    Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates.

  18. Catastrophic floods may pave the way for increased genetic diversity in endemic artesian spring snail populations.

    PubMed

    Wilmer, Jessica Worthington; Murray, Lynde; Elkin, Ché; Wilcox, Chris; Niejalke, Darren; Possingham, Hugh

    2011-01-01

    The role of disturbance in the promotion of biological heterogeneity is widely recognised and occurs at a variety of ecological and evolutionary scales. However, within species, the impact of disturbances that decimate populations are neither predicted nor known to result in conditions that promote genetic diversity. Directly examining the population genetic consequences of catastrophic disturbances however, is rarely possible, as it requires both longitudinal genetic data sets and serendipitous timing. Our long-term study of the endemic aquatic invertebrates of the artesian spring ecosystem of arid central Australia has presented such an opportunity. Here we show a catastrophic flood event, which caused a near total population crash in an aquatic snail species (Fonscochlea accepta) endemic to this ecosystem, may have led to enhanced levels of within species genetic diversity. Analyses of individuals sampled and genotyped from the same springs sampled both pre (1988-1990) and post (1995, 2002-2006) a devastating flood event in 1992, revealed significantly higher allelic richness, reduced temporal population structuring and greater effective population sizes in nearly all post flood populations. Our results suggest that the response of individual species to disturbance and severe population bottlenecks is likely to be highly idiosyncratic and may depend on both their ecology (whether they are resilient or resistant to disturbance) and the stability of the environmental conditions (i.e. frequency and intensity of disturbances) in which they have evolved.

  19. When invasion increases population genetic structure: A study with Centaurea diffusa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological invasions offer excellent systems to study the evolutionary processes involved in introductions of species to new ranges. Molecular markers can reveal invasion histories and the effects of introductions on amounts and structuring of genetic variation. We used five polymorphic microsatelli...

  20. Postnatal exposure to chromium through mother's milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes.

    PubMed

    Stanley, Jone A; Sivakumar, Kirthiram K; Nithy, Thamizh K; Arosh, Joe A; Hoyer, Patricia B; Burghardt, Robert C; Banu, Sakhila K

    2013-08-01

    Hexavalent chromium, CrVI, is a heavy metal endocrine disruptor, known as a mutagen, teratogen, and a group A carcinogen. Environmental contamination with CrVI, including drinking water, has been increasing in more than 30 cities in the United States. CrVI is rapidly converted to CrIII intracellularly, and CrIII can cause DNA strand breaks and cancer or apoptosis through different mechanisms. Our previous study demonstrated that lactational exposure to chromium results in a delay or arrest in follicle development and a decrease in steroid hormone levels in F1 female rats, both of which are mitigated (partial inhibition) by vitamin C. The current study tested the hypothesis that lactational exposure to CrIII accelerates follicle atresia in F1 offspring by increasing reactive oxygen species (ROS) and decreasing cellular antioxidants. Results showed that lactational exposure to CrIII dose-dependently increased follicular atresia and decreased steroidogenesis in postnatal day 25, 45, and 65 rats. Vitamin C mitigated or inhibited the effects of CrIII at all doses. CrIII increased hydrogen peroxide and lipid hydroperoxide in plasma and ovary; decreased the antioxidant enzymes (AOXs) GPx1, GR, SOD, and catalase; and increased glutathione S-transferase in plasma and ovary. To understand the effects of CrVI on ROS and AOXs in granulosa (GC) and theca (TC) cell compartments in the ovary, ROS levels and mRNA expression of cytosolic and mitochondrial AOXs, such as SOD1, SOD2, catalase, GLRX1, GSTM1, GSTM2, GSTA4, GR, TXN1, TXN2, TXNRD2, and PRDX3, were studied in GCs and TCs and in a spontaneously immortalized granulosa cell line (SIGC). Overall, CrVI downregulated each of the AOXs; and vitamin C mitigated the effects of CrVI on these enzymes in GCs and SIGCs, but failed to mitigate CrVI effects on GSTM1, GSTM2, TXN1, and TXN2 in TCs. Thus, these data for the first time reveal that lactational exposure to CrIII accelerated follicular atresia and decreased steroidogenesis in F1

  1. Postnatal exposure to chromium through mother’s milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes

    PubMed Central

    Stanley, Jone A.; Sivakumar, Kirthiram K.; Nithy, Thamizh K.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.; Banu, Sakhila K.

    2013-01-01

    Hexavalent chromium, CrVI, is a heavy metal endocrine disruptor, known as a mutagen, teratogen, and a group A carcinogen. Environmental contamination with CrVI, including drinking water, has been increasing in more than 30 cities in the United States. CrVI is rapidly converted to CrIII intracellularly, and CrIII can cause DNA strand breaks and cancer or apoptosis through different mechanisms. Our previous study demonstrated that lactational exposure to chromium results in a delay or arrest in follicle development and a decrease in steroid hormone levels in F1 female rats, both of which are mitigated (partial inhibition) by vitamin C. The current study tested the hypothesis that lactational exposure to CrIII accelerates follicle atresia in F1 offspring by increasing reactive oxygen species (ROS) and decreasing cellular antioxidants. Results showed that lactational exposure to CrIII dose-dependently increased follicular atresia and decreased steroidogenesis in postnatal day 25, 45, and 65 rats. Vitamin C mitigated or inhibited the effects of CrIII at all doses. CrIII increased hydrogen peroxide and lipid hydroperoxide in plasma and ovary; decreased the antioxidant enzymes (AOXs) GPx1, GR, SOD, and catalase; and increased glutathione S-transferase in plasma and ovary. To understand the effects of CrVI on ROS and AOXs in granulosa (GC) and theca (TC) cell compartments in the ovary, ROS levels and mRNA expression of cytosolic and mitochondrial AOXs, such as SOD1, SOD2, catalase, GLRX1, GSTM1, GSTM2, GSTA4, GR, TXN1, TXN2, TXNRD2, and PRDX3, were studied in GCs and TCs and in a spontaneously immortalized granulosa cell line (SIGC). Overall, CrVI downregulated each of the AOXs; and vitamin C mitigated the effects of CrVI on these enzymes in GCs and SIGCs, but failed to mitigate CrVI effects on GSTM1, GSTM2, TXN1, and TXN2 in TCs. Thus, these data for the first time reveal that lactational exposure to CrIII accelerated follicular atresia and decreased steroidogenesis in F1

  2. Antioxidants of Edible Mushrooms.

    PubMed

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M; van Griensven, Leo

    2015-10-27

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  3. Antioxidant vitamins C and E supplementation increases markers of haemolysis in sickle cell anaemia patients: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Arruda, Martha M; Mecabo, Grazielle; Rodrigues, Celso A; Matsuda, Sandra S; Rabelo, Iara B; Figueiredo, Maria S

    2013-03-01

    Erythrocytes from sickle cell anaemia (SCA) patients continuously produce larger amounts of pro-oxidants than normal cells. Oxidative stress seems to primarily affect the membrane and results in haemolysis. The use of antioxidants in vitro reduces the generation of pro-oxidants. To evaluate the impact of vitamins C (VitC) and E (VitE) supplementation in SCA patients, patients over 18 years were randomly assigned to receive VitC 1400 mg + VitE 800 mg per day or placebo orally for 180 d. Eighty-three patients were enrolled (44 vitamins, 39 placebo), median age 27 (18-68) years, 64% female. There were no significant differences between the two groups regarding clinical complications or baseline laboratorial tests. Sixty percent of the patients were VitC deficient, 70% were VitE deficient. Supplementation significantly increased serum VitC and E. However, no significant changes in haemoglobin levels were observed, and, unexpectedly, there was a significant increase in haemolytic markers with vitamin supplementation. In conclusion, VitC + VitE supplementation did not improve anaemia and, surprisingly, increased markers of haemolysis in patients with SCA and S-β(0) -thalassaemia. The exact mechanisms to explain this findings and their clinical significance remain to be determined.

  4. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice.

    PubMed

    Garratt, Michael; Pichaud, Nicolas; King, Edith D Aloise; Brooks, Robert C

    2013-08-01

    Life history theory suggests that investment in reproduction can trade off against growth, longevity and both reproduction and performance later in life. One possible reason for this trade-off is that reproduction directly causes somatic damage. Oxidative stress, an overproduction of reactive oxygen species in relation to cellular defences, can correlate with reproductive investment and has been implicated as a pathway leading to senescence. This has led to the suggestion that this aspect of physiology could be an important mechanism underlying the trade-off between reproduction and lifespan. We manipulated female reproductive investment to test whether oxidative stress increases with reproduction in mice. Each female's pups were cross-fostered to produce litters of either two or eight, representing low and high levels of reproductive investment for wild mice. No differences were observed between reproductive groups at peak lactation for several markers of oxidative stress in the heart and gastrocnemius muscle. Surprisingly, oxidative damage to proteins was lower in the livers of females with a litter size of eight than in females with two pups or non-reproductive control females. While protein oxidation decreased, activity levels of the antioxidant enzyme superoxide dismutase increased in the liver, suggesting this may be one pathway used to protect against oxidative stress. Our results highlight the need for caution when interpreting correlative relationships and suggest that oxidative stress does not increase with enhanced reproductive effort during lactation.

  5. Genetic typing of bovine viral diarrhoea virus: evidence of an increasing number of variants in Italy.

    PubMed

    Ciulli, Sara; Galletti, Elena; Battilani, Mara; Scagliarini, Alessandra; Gentile, Arcangelo; Morganti, Luigi; Prosperi, Santino

    2008-04-01

    Bovine Viral Diarrhoea Virus (BVDV) is responsible worldwide for severe economic losses on cattle farms. BVDV is an RNA virus with a high genome variability having practical consequences on epidemiology, diagnosis and disease control. Genetic monitoring was suggested as the first step in BVDV control. Thirty-seven Bovine Viral Diarrhoea Viruses were identified in persistently infected cattle, mucosal disease-affected animals and in bulk milk, and were characterised genetically. The 5'UTR region was amplified and sequenced, and a phylogenetic analysis was carried out comparing all the Italian sequences of BVDV available from the Genbank database. An unusual number of persistent infected animals was evidenced on more than one farm. Phylogenetic analysis attributed all our viruses to BVDV type I and distinguished four different subgroups inside this genotype. Analysis of old and new viruses revealed the circulation of viruses classified in subgroups BVDV Ia and Ij never reported in Italy.

  6. Advances in the Development of Gene-Targeting Vectors to Increase the Efficiency of Genetic Modification.

    PubMed

    Saito, Shinta; Adachi, Noritaka

    2016-01-01

    Gene targeting via homologous recombination, albeit highly inefficient in human cells, is considered a powerful tool for analyzing gene functions. Despite recent progress in the application of artificial nucleases for genome editing, safety issues remain a concern, particularly when genetic modification is used for therapeutic purposes. Therefore, the development of gene-targeting vectors is necessary for safe and sophisticated genetic modification. In this paper, we describe the effect of vector structure on random integration, which is a major obstacle in efficient gene targeting. In addition, we focus on the features of exon-trapping-type gene-targeting vectors, and discuss a novel strategy for negative selection to enhance gene targeting in human cells.

  7. A genomewide association study of autism using the Simons Simplex Collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity?

    PubMed Central

    Chaste, Pauline; Klei, Lambertus; Sanders, Stephan J.; Hus, Vanessa; Murtha, Michael T.; Lowe, Jennifer K.; Willsey, A. Jeremy; Moreno-De-Luca, Daniel; Yu, Timothy W.; Fombonne, Eric; Geschwind, Daniel; Grice, Dorothy E.; Ledbetter, David H.; Mane, Shrikant M.; Martin, Donna M.; Morrow, Eric M.; Walsh, Christopher A.; Sutcliffe, James S.; Martin, Christa Lese; Beaudet, Arthur L.; Lord, Catherine; State, Matthew W.; Cook, Edwin H.; Devlin, Bernie

    2014-01-01

    Background Phenotypic heterogeneity in autism has long been conjectured to be a major hindrance to the discovery of genetic risk factors, leading to numerous attempts to stratify children based on phenotype to increase power of discovery studies. This approach, however, is based on the hypothesis that phenotypic heterogeneity closely maps to genetic variation, which has not been tested. Our study examines the impact of sub-phenotyping of a well-characterized ASD sample on genetic homogeneity and the ability to discover common genetic variants conferring liability to ASD. Methods Genome-wide genotypic data of 2576 families from the Simons Simplex Collection (SSC) were analyzed in the overall sample and phenotypic subgroups defined on the basis of diagnosis, IQ, and symptom profiles. We conducted a family-based association study as well as estimating heritability and evaluating allele scores for each phenotypic subgroup. Results Association analyses revealed no genome-wide significant association signal. Sub-phenotyping did not increase power substantially. Moreover, allele scores built from the most associated SNPs, based on the odds ratio in the full sample, predicted case status in subsets of the sample equally well and heritability estimates were very similar for all subgroups. Conclusions In genome-wide association analysis of the SSC sample, reducing phenotypic heterogeneity had at most a modest impact on genetic homogeneity. Our results are based on a relatively small sample, one with greater homogeneity than the entire population; if they apply more broadly, they imply that analysis of sub-phenotypes is not a productive path forward for discovering genetic risk variants in ASD. PMID:25534755

  8. Effect of substituting increasing levels of organic Zn for inorganic Zn on performance, hematological and serum biochemical constituents, antioxidant status and immune response in rat

    PubMed Central

    Nagalakshmi, D.; Sridhar, K.; Swain, P. S.; Reddy, A. G.

    2016-01-01

    The effect of replacing dietary Zn supplemented from inorganic (ZnCO3) source with organic Zn (Zn methionine; Zn-met) was investigated in 72 rats (98.42 ± 1.483 g) by randomly allotting to 4 diets (6 replicates/diet, 3 rats/replicate). Basal diet was prepared with purified ingredients without Zn. The control diet (AIN-76A) contained 12 ppm of Zn from ZnCO3 (100-I). In the other diets ZnCO3 was replaced with Zn-met at the rates of 50 (50I:50O), 75 (25I:75O) or 100% (100-O). Weekly body weight and daily feed intake were recorded for 14 weeks. Blood was collected by retro-orbital puncture on the 70th and 80th day to determine haematological and various serum biochemical constituents, and antioxidant enzyme activities in haemolysate, respectively. Rats were antigenically challenged with sheep RBC on day 73 to assess humoral immune response (HIR), and on day 95 for cell mediated immune response (CMIR) and rats were sacrificed at the end of rearing period to collect liver, muscle, pancreas and kidneys for Zn estimation and oxidative stress markers in liver. The data were analysed using completely randomized design. Weight gain and feed intake, hematological and serum biochemical constituents, Zn content in organs (except liver) were not influenced by replacing ZnCO3 with Zn-met. Zinc concentrations in the serum and liver were higher (P<0.05) with 50% replacement of ZnCO3 with Zn-met compared to 0 or 100% replacement. Lower (P<0.05) lipid peroxidation and higher (P<0.05) glutathione peroxidase and glutathione reductase activities were observed with 50 and 75% replacement of ZnCO3 with Zn-met compared to 0 or 100% replacement. Protein carbonyls and reduced glutathione in liver were not affected, while TBARS decreased (P<0.05) with substituting Zn-met (50-100%) for ZnCO3. The HIR and CMIR increased with increasing Zn-met supplementation and the highest response was observed with 75-100% replacement of ZnCO3 with Zn-met. It is concluded that replacement of 50 or 75% of Zn

  9. Effect of substituting increasing levels of organic Zn for inorganic Zn on performance, hematological and serum biochemical constituents, antioxidant status and immune response in rat.

    PubMed

    Nagalakshmi, D; Sridhar, K; Swain, P S; Reddy, A G

    2016-01-01

    The effect of replacing dietary Zn supplemented from inorganic (ZnCO3) source with organic Zn (Zn methionine; Zn-met) was investigated in 72 rats (98.42 ± 1.483 g) by randomly allotting to 4 diets (6 replicates/diet, 3 rats/replicate). Basal diet was prepared with purified ingredients without Zn. The control diet (AIN-76A) contained 12 ppm of Zn from ZnCO3 (100-I). In the other diets ZnCO3 was replaced with Zn-met at the rates of 50 (50I:50O), 75 (25I:75O) or 100% (100-O). Weekly body weight and daily feed intake were recorded for 14 weeks. Blood was collected by retro-orbital puncture on the 70th and 80th day to determine haematological and various serum biochemical constituents, and antioxidant enzyme activities in haemolysate, respectively. Rats were antigenically challenged with sheep RBC on day 73 to assess humoral immune response (HIR), and on day 95 for cell mediated immune response (CMIR) and rats were sacrificed at the end of rearing period to collect liver, muscle, pancreas and kidneys for Zn estimation and oxidative stress markers in liver. The data were analysed using completely randomized design. Weight gain and feed intake, hematological and serum biochemical constituents, Zn content in organs (except liver) were not influenced by replacing ZnCO3 with Zn-met. Zinc concentrations in the serum and liver were higher (P<0.05) with 50% replacement of ZnCO3 with Zn-met compared to 0 or 100% replacement. Lower (P<0.05) lipid peroxidation and higher (P<0.05) glutathione peroxidase and glutathione reductase activities were observed with 50 and 75% replacement of ZnCO3 with Zn-met compared to 0 or 100% replacement. Protein carbonyls and reduced glutathione in liver were not affected, while TBARS decreased (P<0.05) with substituting Zn-met (50-100%) for ZnCO3. The HIR and CMIR increased with increasing Zn-met supplementation and the highest response was observed with 75-100% replacement of ZnCO3 with Zn-met. It is concluded that replacement of 50 or 75% of Zn

  10. OVEREXPRESSION OF ANTIOXIDANT ENZYMES UPREGULATES ARYL HYDROCARBON RECEPTOR EXPRESSION VIA INCREASED SP1 DNA-BINDING ACTIVITY

    PubMed Central

    Tang, Tian; Lin, Xinghua; Yang, Hong; Zhou, LiChun; Wang, Zefen; Shan, Guang; Guo, ZhongMao

    2010-01-01

    We previously reported up-regulation of aryl hydrocarbon receptor (AhR) expression as a mechanism by which overexpression of Cu/Zn-superoxide dismutase (SOD) and/or catalase accelerates benzo(a)pyrene (BaP) detoxification in mouse aorta endothelial cells (MAECs). The objective of this study was to investigate the regulatory role of specificity protein-1 (Sp1) in AhR expression in MAECs that overexpress Cu/Zn-SOD and/or catalase. Our data demonstrated comparable levels of nuclear Sp1 protein in the transgenic and wild-type MAECs; however, binding of Sp1 protein to the AhR promoter region was more than 2-fold higher in MAECs overexpressing Cu/Zn-SOD and/or catalase than in wild-type cells. Inhibition of Sp1 binding to the AhR promoter by mithramycin A reduced AhR expression and eliminated the differences between wild-type MAECs, and three lines of transgenic cells. Functional promoter analysis indicated that AhR promoter activity was significantly higher in MAECs overexpressing catalase than in wild-type cells. Mutation of an AhR promoter Sp1-binding site or addition of hydrogen peroxide to the culture medium reduced AhR promoter activity, and decreased the differences between wild-type MAECs and transgenic cells overexpressing catalase. These results suggest that increased Sp1 binding to the AhR promoter region is an underlying mechanism for up-regulation of AhR expression in MAECs that overexpress Cu/Zn-SOD and/or catalase. PMID:20478378

  11. Cyclodextrins and antioxidants.

    PubMed

    López-Nicolás, José Manuel; Rodríguez-Bonilla, Pilar; García-Carmona, Francisco

    2014-01-01

    In recent years, the growth of the functional foods industry has increased research into new compounds with high added value for use in the fortification of traditional products. One of the most promising functional food groups is those enriched in antioxidant compounds of a lipophilic nature. In spite of the numerous advantages reported for such antioxidant molecules, they may also have disadvantages that impede their use in functional foods, although these problems may well avoided by the use of encapsulant agents such as cyclodextrins. This explains the recent increase in the number of research papers dealing with the complexation of different guest molecules possesing important antioxidant properties using natural and modified cyclodextrins. This paper presents a review of the most recent studies on the complexes formed between several important types of antioxidant compounds and cyclodextrins, focusing on the contradictory data reported in the literature concerning to the antioxidant activity of the host/guest molecule complexes, the different complexation constants reported for identical complexes, the bioavailability of the antioxidant compound in the presence of cyclodextrins and recommendation concerning the use of natural or modified cyclodextrins. Moreover, the use of cyclodextrins as antibrowning agents to prevent enzymatic browning in different foods is revised. Finally, we look at studies which suggest that cyclodextrins act as ''secondary antioxidants," enhancing the ability of traditional antioxidants to prevent enzymatic browning.

  12. Role of oxidative stress and antioxidants in neurodegenerative diseases.

    PubMed

    Rao, A V; Balachandran, B

    2002-10-01

    Neurodegenerative diseases (NDD) are a group of illness with diverse clinical importance and etiologies. NDD include motor neuron disease such as amyotrophic lateral sclerosis (ALS), cerebellar disorders, Parkinson's disease (PD), Huntington's disease (HD), cortical destructive Alzheimer's disease (AD) and Schizophrenia. Numerous epidemiological and experimental studies provide many risk factors such as advanced age, genetic defects, abnormalities of antioxidant enzymes, excitotoxicity, cytoskeletal abnormalities, autoimmunity, mineral deficiencies, oxidative stress, metabolic toxicity, hypertension and other vascular disorders. Growing body of evidence implicates free radical toxicity, radical induced mutations and oxidative enzyme impairment and mitochondrial dysfunction due to congenital genetic defects in clinical manifestations of NDD. Accumulation of oxidative damage in neurons either primarily or secondarily may account for the increased incidence of NDD such as AD, ALS and stroke in aged populations. The molecular mechanisms of neuronal degeneration remain largely unknown and effective therapies are not currently available. Recent interest has focused on antioxidants such as carotenoids and in particular lycopene, a potent antioxidant in tomatoes and tomato products, flavonoids and vitamins as potentially useful agents in the management of human NDD. The pathobiology of neurodegenerative disorders with emphasis on genetic origin and its correlation with oxidative stress of neurodegenerative disorders will be reviewed and the reasons as to why brain constitutes a vulnerable site of oxidative damage will be discussed. The article will also discuss the potential free radical scavenger, mechanism of antioxidant action of lycopene and the need for the use of antioxidants in the prevention of NDD.

  13. Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV-Vis spectra as a marker.

    PubMed

    Phan-Thi, Hanh; Waché, Yves

    2014-08-01

    Momordica cochinchinensis (gac) is a plant rich in lycopene. This pigment tends to solubilize in oil and get damaged during extraction. The impact of heating on cis-isomerization of oil-free lycopene in hexane was studied at 50 and 80°C during 240min with UV-Vis spectrometry, DAD-HPLC and TEAC test. The initial all-trans-form isomerized to the 13-cis isomer more rapidly at 80°C. After this treatment, 16% of the lycopene compounds were in the 9-cis-form. This isomer triggered an increase in the antioxidant properties which was detectable from concentrations above 9% and resulted in a change from 2.4 to 3.7μmol Trolox equivalent. It is thus possible to increase the bioactivity of lycopene samples by controlling heating. The evolution of ratios calculated from the global UV-Vis spectrum was representative of cis-isomerization and spectrometry can thus be a simple way to evaluate the state of isomerization of lycopene solutions.

  14. Increasing The Genetic Admixture of Available Lines of Human Pluripotent Stem Cells

    PubMed Central

    Tofoli, Fabiano A.; Dasso, Maximiliano; Morato-Marques, Mariana; Nunes, Kelly; Pereira, Lucas Assis; da Silva, Giselle Siqueira; Fonseca, Simone A. S.; Costas, Roberta Montero; Santos, Hadassa Campos; da Costa Pereira, Alexandre; Lotufo, Paulo A.; Bensenor, Isabela M.; Meyer, Diogo; Pereira, Lygia Veiga

    2016-01-01

    Human pluripotent stem cells (hPSCs) may significantly improve drug development pipeline, serving as an in vitro system for the identification of novel leads, and for testing drug toxicity. Furthermore, these cells may be used to address the issue of differential drug response, a phenomenon greatly influenced by genetic factors. This application depends on the availability of hPSC lines from populations with diverse ancestries. So far, it has been reported that most lines of hPSCs derived worldwide are of European or East Asian ancestries. We have established 23 lines of hPSCs from Brazilian individuals, and we report the analysis of their genomic ancestry. We show that embryo-derived PSCs are mostly of European descent, while induced PSCs derived from participants of a national-wide Brazilian cohort study present high levels of admixed European, African and Native American genomic ancestry. Additionally, we use high density SNP data and estimate local ancestries, particularly those of CYP genes loci. Such information will be of key importance when interpreting variation among cell lines with respect to cellular phenotypes of interest. The availability of genetically admixed lines of hPSCs will be of relevance when setting up future in vitro studies of drug response. PMID:27708369

  15. Increasing public involvement in enriching our fish stocks through genetic enhancement.

    PubMed

    Halvorson, H O; Quezada, F

    1999-11-01

    A total of 70%, of the world's conventional commercial fish species are now fully exploited, overexploited, depleted or recovering from depletion. This dramatic crash in the capture world fisheries production has led to problems in foods distribution, balance of payments, employment, and ecological depletion. Public support for breeding programs with terrestrial farm animals and plants in agriculture have revolutionized this industry over the past few hundred years. However, new genetic rearing technologies to improve marine animal production through aquaculture that utilize modern biology to obtain sustainable aquaculture and preserve biodiversity provide a promise to address these problems. However aquaculture has not been subject to public discussion and approval. Public involvement, not necessarily acquiescence, provide value added in the decision making process. Public understanding and involvement involves three stages. (i) Public concern over the pool of genetic information; (ii) if aquaculture is to respond to the fisheries crises with innovation, the knowledge gap between public understanding and scientific information must be bridged; and (iii) strategies must be developed for achieving this. Release of recombinant DNA to the environment, and handling exotic species, are useful case studies. Illustrations will be given of communication bridges to the public and ways to involve the public in making policy decisions.

  16. Supplementation of Superfine Powder Prepared from Chaenomeles speciosa Fruit Increases Endurance Capacity in Rats via Antioxidant and Nrf2/ARE Signaling Pathway

    PubMed Central

    Chen, Ka; You, Jia; Tang, Yong; Zhou, Yong; Liu, Peng; Zou, Dan; Zhou, Qicheng; Zhang, Ting; Zhu, Jundong; Mi, Mantian

    2014-01-01

    Chaenomeles speciosa fruit is a traditional herb medicine widely used in China. In this study, superfine powder of C. speciosa fruit (SCE), ground by supersonic nitrogen airflow at −140°C, was investigated to assess its in vitro antioxidant activity and in vivo antiphysical fatigue activity. SCE was homogenous (d < 10 μm) and rich in antioxidants like polyphenols, saponins, oleanolic acid, ursolic acid, ascorbic acid, and SOD. According to the in vitro experiments, SCE displayed promising antioxidant activity with powerful FARP, SC-DPPH, and SC-SAR activities. According to the in vivo experiments, rats supplemented with SCE had prolonged exhaustive swimming time (57%) compared to the nonsupplemented rats. Meanwhile, compared to the nonsupplemented rats, the SCE-supplemented rats had higher levels of blood glucose and liver and muscular glycogen and lower levels of LA and BUN. Lower MDA, higher antioxidant enzymes (SOD, CAT, and GSH-Px) activities, and upregulated Nrf2/ARE mediated antioxidant enzymes (HO-1, Trx, GCLM, and GCLC) expression were also detected in the supplemented group. This study indicates that SCE is a potent antioxidant and antifatigue agent, and SCE could be a promising raw material for the food and pharmaceutical industries. PMID:25610489

  17. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation

    NASA Astrophysics Data System (ADS)

    McNally, Luke; Bernardy, Eryn; Thomas, Jacob; Kalziqi, Arben; Pentz, Jennifer; Brown, Sam P.; Hammer, Brian K.; Yunker, Peter J.; Ratcliff, William C.

    2017-02-01

    By nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas. Genetic assortment is the only general solution stabilizing cooperation, but all known mechanisms structuring microbial populations depend on the availability of free space, an often unrealistic constraint. Here we describe a class of self-organization that operates within densely packed bacterial populations. Through mathematical modelling and experiments with Vibrio cholerae, we show how killing adjacent competitors via the Type VI secretion system (T6SS) precipitates phase separation via the `Model A' universality class of order-disorder transition mediated by killing. We mathematically demonstrate that T6SS-mediated killing should favour the evolution of public goods cooperation, and empirically support this prediction using a phylogenetic comparative analysis. This work illustrates the twin role played by the T6SS, dealing death to local competitors while simultaneously creating conditions potentially favouring the evolution of cooperation with kin.

  18. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate.

    PubMed

    Morris, Jay; Nakata, Paul A; McConn, Michele; Brock, Amanda; Hirschi, Kendal D

    2007-07-01

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the model forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 M. truncatula mutant was identified which contains identical calcium concentrations to wild-type, but contains no oxalate crystals. In this study, equal number of male and female mice were randomly grouped and then fed one of four 45Ca-containing diets: M. truncatula extrinsically or intrinsically labeled, and cod5 extrinsically or intrinsically labeled. Absorption of the tracer was determined in the legs one day after consumption. The absorption was similar in the M. truncatula and cod5 extrinsically labeled diets; however, in the intrinsically labeled diets, calcium absorption was 22.87% (P < 0.001) higher in mice fed cod5. Our study presents the first genetic evidence demonstrating the nutritional impact of removing oxalate crystals from foods.

  19. A Survey of the Protective Effects of Some Commercially available antioxidant supplements in genetic and chemically induced models of oxidative stress in Drosophila melanogaster

    PubMed Central

    Vrailas-Mortimer, Alysia; Gomez, Rosy; Dowse, Harold; Sanyal, Subhabrata

    2012-01-01

    Oxidative stress remains one of the most well studied, albeit somewhat contentious, causes of aging-related changes in humans. Consequently, a large number of putative antioxidant compounds are freely available in myriad formulations that are often not tested for their efficacy or regulated for quality control. Following the development of a Drosophila model of oxidative-stress dependent aging (p38 MAP Kinase (p38K) mutants) in our laboratory, we attempted to test the protective effect of some of these commonly available formulations against oxidative stress, stress induced motor defects and reduced life span in the p38K model. As environmental exposure to oxidizing toxins has been linked to a variety of human diseases, we also tested the efficacy of these supplements on chemically-induced models of oxidative stress (Paraquat and Hydrogen Peroxide exposure). Our results suggest that when added as a dietary supplement, some of these over-the-counter compounds, notably containing Açai extracts, confer significant protection for both the p38K-dependent genetic model as well as the toxin-induced model. These products were also remarkably effective at dampening stress-induced expression of the detoxifying enzyme GSTD1 and eliminating Paraquat induced circadian rhythm deficits. Overall, our results suggest potential benefits of dietary supplementation with some of these compounds, especially under conditions of elevated oxidative stress. These findings should be assessed in the context of other studies that seek to identify active principles in these extracts, determine their effective dosage for human consumption and evaluate the safety of long-term prophylactic applications. PMID:22790021

  20. A Genetic Mouse Model of Parkinson's Disease Shows Involuntary Movements and Increased Postsynaptic Sensitivity to Apomorphine.

    PubMed

    Brehm, N; Bez, F; Carlsson, T; Kern, B; Gispert, S; Auburger, G; Cenci, M A

    2015-12-01

    Alpha-synuclein (SNCA) protein aggregation plays a causal role in Parkinson's disease (PD). The SNCA protein modulates neurotransmission via the SNAP receptor (SNARE) complex assembly and presynaptic vesicle trafficking. The striatal presynaptic dopamine deficit is alleviated by treatment with levodopa (L-DOPA), but postsynaptic plastic changes induced by this treatment lead to a development of involuntary movements (dyskinesia). While this process is currently modeled in rodents harboring neurotoxin-induced lesions of the nigrostriatal pathway, we have here explored the postsynaptic supersensitivity of dopamine receptor-mediated signaling in a genetic mouse model of early PD. To this end, we used mice with prion promoter-driven overexpression of A53T-SNCA in the nigrostriatal and corticostriatal projections. At a symptomatic age (18 months), mice were challenged with apomorphine (5 mg/kg s.c.) and examined using both behavioral and molecular assays. After the administration of apomorphine, A53T-transgenic mice showed more severe stereotypic and dystonic movements in comparison with wild-type controls. Molecular markers of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and dephosphorylation, and Fos messenger RNA (mRNA), were examined in striatal tissue at 30 and 100 min after apomorphine injection. At 30 min, wild-type and transgenic mice showed a similar induction of phosphorylated ERK1/2, Dusp1, and Dusp6 mRNA (two MAPK phosphatases). At the same time point, Fos mRNA was induced more strongly in mutant mice than in wild-type controls. At 100 min after apomorphine treatment, the induction of both Fos, Dusp1, and Dusp6 mRNA was significantly larger in mutant mice than wild-type controls. At this time point, apomorphine caused a reduction in phospho-ERK1/2 levels specifically in the transgenic mice. Our results document for the first time a disturbance of ERK1/2 signaling regulation associated with apomorphine-induced involuntary movements

  1. Saikosaponin-D attenuates heat stress-induced oxidative damage in LLC-PK1 cells by increasing the expression of anti-oxidant enzymes and HSP72.

    PubMed

    Zhang, Bao-Zhen; Guo, Xiao-Tong; Chen, Jian-Wei; Zhao, Yuan; Cong, Xia; Jiang, Zhong-Ling; Cao, Rong-Feng; Cui, Kai; Gao, Shan-Song; Tian, Wen-Ru

    2014-01-01

    Heat stress stimulates the production of reactive oxygen species (ROS), which cause oxidative damage in the kidney. This study clarifies the mechanism by which saikosaponin-d (SSd), which is extracted from the roots of Bupleurum falcatum L, protects heat-stressed pig kidney proximal tubular (LLC-PK1) cells against oxidative damage. SSd alone is not cytotoxic at concentrations of 1 or 3 μg/mL as demonstrated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To assess the effects of SSd on heat stress-induced cellular damage, LLC-PK1 cells were pretreated with various concentrations of SSd, heat stressed at 42°C for 1 h, and then returned to 37°C for 9 h. DNA ladder and MTT assays demonstrated that SSd helped to prevent heat stress-induced cellular damage when compared to untreated cells. Additionally, pretreatment with SSd increased the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) but decreased the concentration of malondialdehyde (MDA) in a dose-dependent manner when compared to controls. Furthermore, real-time PCR and Western blot analysis demonstrated that SSd significantly increased the expression of copper and zinc superoxide dismutase (SOD-1), CAT, GPx-1 and heat shock protein 72 (HSP72) at both the mRNA and protein levels. In conclusion, these results are the first to demonstrate that SSd ameliorates heat stress-induced oxidative damage by modulating the activity of anti-oxidant enzymes and HSP72 in LLC-PK1 cells.

  2. Supplementation with Japanese bunching onion (Allium fistulosum L.) expressing a single alien chromosome from shallot increases the antioxidant activity of Kamaboko fish jelly paste in vitro.

    PubMed

    Harada, Kazuki; Wada, Ritsuko; Yaguchi, Shigenori; Maeda, Toshimichi; Date, Rie; Tokunaga, Takushi; Kazumura, Kimiko; Shimada, Kazuko; Matsumoto, Misato; Wako, Tadayuki; Yamauchi, Naoki; Shigyo, Masayoshi

    2013-05-01

    Kamaboko is a traditional type of processed seafood made from fish jelly paste that is unique to Japan. We supplemented Kamaboko with Japanese bunching onion (Allium fistulosum L.) with an alien monosome from shallot (Allium cepa L. Aggregatum group) and we measured in vitro the oxygen radical absorbance capacity (ORAC) value, an index of antioxidant activity. We also evaluated the results of sensory testing. The ORAC value of plain Kamaboko was 166±14 μmol trolox equivalent (TE)/100 g fresh weight (FW). The values of the edible Alliaceae powder, i.e., Japanese bunching onion (JBO, genome FF, 2n=2x=16) and the alien addition line of JBO carrying the 6A chromosome from shallot (FF+6A, 2n=2x+1=17), were 6,659±238 and 14,096±635 μmol TE/100 g dry weight (DW). We hypothesized that the 6A chromosome encoded the enhancement of polyphenol production. Subsequently, we created Kamaboko containing 4.8% JBO powder or 4.8% FF+6A powder. The ORAC value of each modified Kamaboko product was increased to 376±24 μmol TE/100 g FW for the JBO powder and to 460±16 μmol TE/100 g FW for the FF+6A powder, respectively. We next created Kamaboko containing 9.0% JBO powder or 9.0% FF+6A powder and the ORAC values of the respective modified Kamaboko products was increased to 671±16 and 740±21 μmol TE/100 g FW, i.e., 4.1- and 4.5-times the value of plain Kamaboko. Consequently, taking into consideration the sensory evaluation regarding taste and appearance as well, the use of Kamaboko supplemented with 4.8% FF+6A powder is recommended.

  3. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch

    NASA Astrophysics Data System (ADS)

    Earnest, Tyler M.; Roberts, Elijah; Assaf, Michael; Dahmen, Karin; Luthey-Schulten, Zaida

    2013-04-01

    Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application.

  4. Mitochondrial genetic background plays a role in increasing risk to asthma.

    PubMed

    Zifa, Emily; Daniil, Zoe; Skoumi, Eleutheria; Stavrou, Maria; Papadimitriou, Kostantinos; Terzenidou, Marini; Kostikas, Konstantinos; Bagiatis, Vasileios; Gourgoulianis, Konstantinos I; Mamuris, Zissis

    2012-04-01

    A number of studies suggest that mitochondrial dysfunction plays a role in the pathogenesis of asthma. To shed light for the first time on the role of the mitochondrial genome in the etiology of asthma we analyzed the mitochondrial tRNA genes and part of their flanking regions in patients with asthma compared with a set of healthy controls. We found a total of 10 mutations in 56 out of 76 asthmatic patients. Four of these mutations were not found in the control group, five were observed at a significantly lower frequency in controls, but none of the combinations of mutations detected in asthma patients was observed in the controls. Furthermore, we observed that 27.6% of the asthma patients (vs. 4% of the controls) belonged to the haplogroup U (Fisher test P = 0.00) and a positive significant correlation was found between the occurrence of the haplogroup U and the severity of the disease (Fisher test P = 0.02). Whereas further studies in larger cohorts are needed to confirm these observations we suggest that the mitochondrial genetic background plays a key role in asthma development.

  5. Can a Six-Letter Alphabet Increase the Likelihood of Photochemical Assault to the Genetic Code?

    PubMed

    Ashwood, Brennan; Pollum, Marvin; Crespo-Hernández, Carlos E

    2016-11-07

    In 2014, two unnatural nucleosides, d5SICS and dNaM, were shown to selectively base pair and replicate with high fidelity in a modified strain of E. coli, thus effectively expanding its genetic alphabet from four to six letters. More recently, a significant reduction in cell proliferation was reported in cells cultured with d5SICS, and putatively with dNaM, upon exposure to brief periods of near-visible radiation. The photosensitizing properties of the lowest-energy excited triplet state of both d5SICS and dNaM were implicated in their cytotoxicity. Importantly, however, the excited-state mechanisms by which near-visible excitation populates the triplet states of d5SICS and dNaM are currently unknown. In this study, steady-state and time-resolved spectroscopies are combined with quantum-chemical calculations in order to reveal the excited-state relaxation mechanisms leading to efficient population of the triplet states in these unnatural nucleosides in solution. It is shown that excitation of d5SICS or dNaM with near-visible light leads overwhelmingly to ultrafast population of their triplet states on the femtosecond time scale. The results presented in this work lend strong support to the proposal that photoexcitation of these unnatural nucleosides can accelerate oxidatively generated damage to DNA and other biomolecules within the cellular environment.

  6. Reduced genetic distance and high replication levels increase the RNA recombination rate of hepatitis delta virus.

    PubMed

    Lin, Chia-Chi; Yang, Zhi-Wei; Iang, Shan-Bei; Chao, Mei

    2015-01-02

    Hepatitis delta virus (HDV) replication is carried out by host RNA polymerases. Since homologous inter-genotypic RNA recombination is known to occur in HDV, possibly via a replication-dependent process, we hypothesized that the degree of sequence homology and the replication level should be related to the recombination frequency in cells co-expressing two HDV sequences. To confirm this, we separately co-transfected cells with three different pairs of HDV genomic RNAs and analyzed the obtained recombinants by RT-PCR followed by restriction fragment length polymorphism and sequencing analyses. The sequence divergence between the clones ranged from 24% to less than 0.1%, and the difference in replication levels was as high as 100-fold. As expected, significant differences were observed in the recombination frequencies, which ranged from 0.5% to 47.5%. Furthermore, varying the relative amounts of parental RNA altered the dominant recombinant species produced, suggesting that template switching occurs frequently during the synthesis of genomic HDV RNA. Taken together, these data suggest that during the host RNA polymerase-driven RNA recombination of HDV, both inter- and intra-genotypic recombination events are important in shaping the genetic diversity of HDV.

  7. Increased genetic diversity of BVDV-1: recent findings and implications thereof.

    PubMed

    Giammarioli, Monica; Ceglie, Letizia; Rossi, Elisabetta; Bazzucchi, Moira; Casciari, Cristina; Petrini, Stefano; De Mia, Gian Mario

    2015-02-01

    Sequence-based genotyping was recently used to distinguish between the BVDV-1 and BVDV-2 species of the bovine viral diarrhoea virus (BVDV). Quite recently, a new putative species, BVDV-3, was also detected. The phylogenetic analysis of the 5'-untranslated region (UTR) and Npro region has revealed at least 17 distinct subtypes for BVDV-1 to date. The aim of this study was to further investigate the genetic heterogeneity of BVDV-1 in Italy, by analysing 173 virus sequences from isolates collected over an 18-year period (1997-2014). Viral RNA was extracted from the original biological samples identified as BVDV-1-positive. Reverse transcription (RT) and polymerase chain reaction (PCR) assays targeting a 288-base pair (bp) region of the 5'-UTR and a 428-bp region encoding the autoprotease Npro were performed, and the RT-PCR products were sequenced. The phylogenetic analysis of the 5'-UTR and Npro sequences re-confirmed the circulation of ten out of eleven subtypes previously discovered in Italy. Interestingly, four isolates differed significantly from all of the bovine pestiviruses identified so far, thereby providing evidence for the circulation of three novel subtypes that have not been documented so far. The growing number of reports on BVDV-1 heterogeneity, including the recent findings reported herein, raises concern related to the emergence and spread of new BVDV variants, with possible implications for animal health and disease control. This global issue needs to be addressed with the highest priority.

  8. Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2.

    PubMed

    Rolland, Morgane; Edlefsen, Paul T; Larsen, Brendan B; Tovanabutra, Sodsai; Sanders-Buell, Eric; Hertz, Tomer; deCamp, Allan C; Carrico, Chris; Menis, Sergey; Magaret, Craig A; Ahmed, Hasan; Juraska, Michal; Chen, Lennie; Konopa, Philip; Nariya, Snehal; Stoddard, Julia N; Wong, Kim; Zhao, Hong; Deng, Wenjie; Maust, Brandon S; Bose, Meera; Howell, Shana; Bates, Adam; Lazzaro, Michelle; O'Sullivan, Annemarie; Lei, Esther; Bradfield, Andrea; Ibitamuno, Grace; Assawadarachai, Vatcharain; O'Connell, Robert J; deSouza, Mark S; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Robb, Merlin L; McLellan, Jason S; Georgiev, Ivelin; Kwong, Peter D; Carlson, Jonathan M; Michael, Nelson L; Schief, William R; Gilbert, Peter B; Mullins, James I; Kim, Jerome H

    2012-10-18

    The RV144 trial demonstrated 31% vaccine efficacy at preventing human immunodeficiency virus (HIV)-1 infection. Antibodies against the HIV-1 envelope variable loops 1 and 2 (Env V1 and V2) correlated inversely with infection risk. We proposed that vaccine-induced immune responses against V1/V2 would have a selective effect against, or sieve, HIV-1 breakthrough viruses. A total of 936 HIV-1 genome sequences from 44 vaccine and 66 placebo recipients were examined. We show that vaccine-induced immune responses were associated with two signatures in V2 at amino acid positions 169 and 181. Vaccine efficacy against viruses matching the vaccine at position 169 was 48% (confidence interval 18% to 66%; P = 0.0036), whereas vaccine efficacy against viruses mismatching the vaccine at position 181 was 78% (confidence interval 35% to 93%; P = 0.0028). Residue 169 is in a cationic glycosylated region recognized by broadly neutralizing and RV144-derived antibodies. The predicted distance between the two signature sites (21 ± 7 Å) and their match/mismatch dichotomy indicate that multiple factors may be involved in the protection observed in RV144. Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2-binding antibodies and reduced risk of HIV-1 acquisition, and provide evidence that vaccine-induced V2 responses plausibly had a role in the partial protection conferred by the RV144 regimen.

  9. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch.

    PubMed

    Earnest, Tyler M; Roberts, Elijah; Assaf, Michael; Dahmen, Karin; Luthey-Schulten, Zaida

    2013-04-01

    Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application.

  10. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation

    PubMed Central

    McNally, Luke; Bernardy, Eryn; Thomas, Jacob; Kalziqi, Arben; Pentz, Jennifer; Brown, Sam P.; Hammer, Brian K.; Yunker, Peter J.; Ratcliff, William C.

    2017-01-01

    By nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas. Genetic assortment is the only general solution stabilizing cooperation, but all known mechanisms structuring microbial populations depend on the availability of free space, an often unrealistic constraint. Here we describe a class of self-organization that operates within densely packed bacterial populations. Through mathematical modelling and experiments with Vibrio cholerae, we show how killing adjacent competitors via the Type VI secretion system (T6SS) precipitates phase separation via the ‘Model A' universality class of order-disorder transition mediated by killing. We mathematically demonstrate that T6SS-mediated killing should favour the evolution of public goods cooperation, and empirically support this prediction using a phylogenetic comparative analysis. This work illustrates the twin role played by the T6SS, dealing death to local competitors while simultaneously creating conditions potentially favouring the evolution of cooperation with kin. PMID:28165005

  11. Increased Virulence in Sunflower Broomrape (Orobanche cumana Wallr.) Populations from Southern Spain Is Associated with Greater Genetic Diversity.

    PubMed

    Martín-Sanz, Alberto; Malek, Jebri; Fernández-Martínez, José M; Pérez-Vich, Begoña; Velasco, Leonardo

    2016-01-01

    Orobanche cumana Wallr. (sunflower broomrape) is a holoparasitic weed that infects roots of sunflower in large areas of Europe and Asia. Two distant O. cumana gene pools have been identified in Spain, one in Cuenca province in the Center and another one in the Guadalquivir Valley in the South. Race F has been hypothesized to have arisen by separate mutational events in both gene pools. In the Guadalquivir Valley, race F spread in the middle 1990's to become predominant and contained so far with race F hybrids. Recently, enhanced virulent populations of O. cumana have been observed in commercial fields parasitizing race F resistant hybrids. From them, we collected four independent populations and conducted virulence and SSR marker-based genetic diversity analysis. Virulence essays confirmed that the four populations studied can parasitize most of the race F resistant hybrids tested, but they cannot parasitize the differential inbred lines DEB-2, carrying resistance to race F and G, and P-96, resistant to F but susceptible to races G from other countries. Accordingly, the new populations have been classified as race GGV to distinguish them from other races G. Cluster analysis with a set of populations from the two Spanish gene pools and from other areas, mainly Eastern Europe, confirmed that race GGV populations maintain close genetic relatedness with the Guadalquivir Valley gene pool. This suggested that increased virulence was not caused by new introductions from other countries. Genetic diversity parameters revealed that the four populations had much greater genetic diversity than conventional populations of the same area, containing only alleles present in the Guadalquivir Valley and Cuenca gene pools. The results suggested that increased virulence may have resulted from admixture of populations from the Guadalquivir Valley and Cuenca followed by recombination of avirulence genes.

  12. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  13. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

  14. Saccharomyces cerevisiae FLO1 Gene Demonstrates Genetic Linkage to Increased Fermentation Rate at Low Temperatures.

    PubMed

    Deed, Rebecca C; Fedrizzi, Bruno; Gardner, Richard C

    2017-03-10

    Low fermentation temperatures are of importance to food and beverage industries working with Saccharomyces cerevisiae Therefore, the identification of genes demonstrating a positive impact on fermentation kinetics is of significant interest. A set of 121 mapped F1 progeny, derived from a cross between haploid strains BY4716 (a derivative of the laboratory yeast S288C) and wine yeast RM11-1a, were fermented in New Zealand Sauvignon Blanc grape juice at 12.5°. Analyses of five key fermentation kinetic parameters among the F1 progeny identified a quantitative trait locus (QTL) on chromosome I with a significant degree of linkage to maximal fermentation rate (Vmax) at low temperature. Independent deletions of two candidate genes within the region, FLO1 and SWH1, were constructed in the parental strains (with S288C representing BY4716). Fermentation of wild-type and deletion strains at 12.5 and 25° confirmed that the genetic linkage to Vmax corresponds to the S288C version of the FLO1 allele, as the absence of this allele reduced Vmax by ∼50% at 12.5°, but not at 25°. Reciprocal hemizygosity analysis (RHA) between S288C and RM11-1a FLO1 alleles did not confirm the prediction that the S288C version of FLO1 was promoting more rapid fermentation in the opposing strain background, suggesting that the positive effect on Vmax derived from S288C FLO1 may only provide an advantage in haploids, or is dependent on strain-specific cis or trans effects. This research adds to the growing body of evidence demonstrating the role of FLO1 in providing stress tolerance to S. cerevisiae during fermentation.

  15. Saccharomyces cerevisiae FLO1 Gene Demonstrates Genetic Linkage to Increased Fermentation Rate at Low Temperatures

    PubMed Central

    Deed, Rebecca C.; Fedrizzi, Bruno; Gardner, Richard C.

    2017-01-01

    Low fermentation temperatures are of importance to food and beverage industries working with Saccharomyces cerevisiae. Therefore, the identification of genes demonstrating a positive impact on fermentation kinetics is of significant interest. A set of 121 mapped F1 progeny, derived from a cross between haploid strains BY4716 (a derivative of the laboratory yeast S288C) and wine yeast RM11-1a, were fermented in New Zealand Sauvignon Blanc grape juice at 12.5°. Analyses of five key fermentation kinetic parameters among the F1 progeny identified a quantitative trait locus (QTL) on chromosome I with a significant degree of linkage to maximal fermentation rate (Vmax) at low temperature. Independent deletions of two candidate genes within the region, FLO1 and SWH1, were constructed in the parental strains (with S288C representing BY4716). Fermentation of wild-type and deletion strains at 12.5 and 25° confirmed that the genetic linkage to Vmax corresponds to the S288C version of the FLO1 allele, as the absence of this allele reduced Vmax by ∼50% at 12.5°, but not at 25°. Reciprocal hemizygosity analysis (RHA) between S288C and RM11-1a FLO1 alleles did not confirm the prediction that the S288C version of FLO1 was promoting more rapid fermentation in the opposing strain background, suggesting that the positive effect on Vmax derived from S288C FLO1 may only provide an advantage in haploids, or is dependent on strain-specific cis or trans effects. This research adds to the growing body of evidence demonstrating the role of FLO1 in providing stress tolerance to S. cerevisiae during fermentation. PMID:28143947

  16. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants

    PubMed Central

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments

  17. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    PubMed

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments

  18. [Biodiesel from microalgae: ways of increasing effectiveness of lipids accumulation by genetic engineering methods].

    PubMed

    Korkhovoĭ, V I; Blium, Ia B

    2013-01-01

    Microalgae are viewed as one of the most perspective producer of lipids for biodiesel production. The review shows the results of researches of genes' expression increase actually included in fatty acids biosynthesis. The increase of effectiveness of solar energy absorption and carbon dioxide fixation influences the microalgae productivity. Blocking expression of genes that are responsible for starch synthesis, changes the balance towards the quantity growth of lipids in the cell. The change of the length in fatty acids carbon backbone chain towards its shortening is important in the technology of biodiesel production. Operating processes of lipids' catabolism is another way of increasing their quantity. And at last using the methods of transcription analysis allows us to get deeper into the process of intensive accumulation of lipids in stressful conditions for the purpose of directing these processes.

  19. Genetic ablation and short-duration inhibition of lipoxygenase results in increased macroautophagy

    SciTech Connect

    Jang, Insook; Park, Sujin; Cho, Jin Won; Yigitkanli, Kazim; Leyen, Klaus van; Roth, Jürgen

    2014-02-15

    12/15-lipoxygenase (12/15-LOX) is involved in organelle homeostasis by degrading mitochondria in maturing red blood cells and by eliminating excess peroxisomes in liver. Furthermore, 12/15-LOX contributes to diseases by exacerbating oxidative stress-related injury, notably in stroke. Nonetheless, it is unclear what the consequences are of abolishing 12/15-LOX activity. Mice in which the alox15 gene has been ablated do not show an obvious phenotype, and LOX enzyme inhibition is not overtly detrimental. We show here that liver histology is also unremarkable. However, electron microscopy demonstrated that 12/15-LOX knockout surprisingly leads to increased macroautophagy in the liver. Not only macroautophagy but also mitophagy and pexophagy were increased in hepatocytes, which otherwise showed unaltered fine structure and organelle morphology. These findings were substantiated by immunofluorescence showing significantly increased number of LC3 puncta and by Western blotting demonstrating a significant increase for LC3-II protein in both liver and brain homogenates of 12/15-LOX knockout mice. Inhibition of 12/15-LOX activity by treatment with four structurally different inhibitors had similar effects in cultured HepG2 hepatoma cells and SH-SY5Y neuroblastoma cells with significantly increased autophagy discernable already after 2 hours. Hence, our study reveals a link between ablation or inhibition of 12/15-LOX and stimulation of macroautophagy. The enhanced macroautophagy may be related to the known tissue-protective effects of LOX ablation or inhibition under various diseased conditions caused by oxidative stress and ischemia. This could provide an important cleaning mechanism of cells and tissues to prevent accumulation of damaged mitochondria and other cellular components. - Highlights: • A relationship between lipoxygenases and autophagy is disclosed. • 12/15-lipoxygenase knockout increases autophagy in mice liver and brain. • Lipoxygenase inhibition boosts

  20. Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection.

    PubMed

    Pedersen, Niels C; Liu, Hongwei; Durden, Monica; Lyons, Leslie A

    2016-03-01

    A previous study demonstrated the existence of a natural resistance to feline infectious peritonitis virus (FIPV) among 36% of randomly bred laboratory cats. A genome wide association study (GWAS) on this population suggested that resistance was polygenic but failed to identify any strong specific associations. In order to enhance the power of GWAS or whole genome sequencing to identify strong genetic associations, a decision was made to positively select for resistance over three generations. The inbreeding experiment began with a genetically related parental (P) population consisting of three toms and four queens identified from among the survivors of the earlier study and belonging to a closely related subgroup (B). The subsequent effects of inbreeding were measured using 42 genome-wide STR markers. P generation cats produced 57 first filial (F1) kittens, only five of which (9.0%) demonstrated a natural resistance to FIPV infection. One of these five F1 survivors was then used to produce six F1/P-backcrosses kittens, only one of which proved resistant to FIP. Six of eight of the F1 and F1/P survivors succumbed to a secondary exposure 4-12 months later. Therefore, survival after both primary and secondary infection was decreased rather than increased by positive selection for resistance. The common genetic factor associated with this diminished resistance was a loss of heterozygosity.

  1. Within Host Evolution Selects for a Dominant Genotype of Mycobacterium tuberculosis while T Cells Increase Pathogen Genetic Diversity

    PubMed Central

    Copin, Richard; Louie, Eddie; Escuyer, Vincent; Gagneux, Sebastien; Palmer, Guy H.

    2016-01-01

    Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis. PMID:27973588

  2. Statistics of Scientific Procedures on Living Animals 2012: another increase in experimentation - genetically-altered animals dominate again.

    PubMed

    Hudson-Shore, Michelle

    2013-09-01

    The Annual Statistics of Scientific Procedures on Living Animals Great Britain 2012 reveal that the level of animal experimentation in Great Britain continues to rise, with just over 4.1 million procedures being started in that year. Despite the previous year's indication that the dominance of the production and use of genetically-altered (GA, i.e. genetically-modified animals plus animals with harmful genetic defects) animal might be abating, it returned with a vengeance in 2012. Breeding increased from 43% to 48% of all procedures, and GA animals were involved in 59% of all the procedures. Indeed, if the breeding of these animals were removed from the statistics, the total number of procedures would actually decline by 2%. In order to honour their pledge to reduce animal use in science, the Coalition Government will have to address this issue. The general trends in the species used, and the numbers and types of procedures, are also reviewed. Finally, forthcoming changes to the statistics are discussed.

  3. Developmentally dynamic genome: Evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence.

    PubMed

    Pingault, Jean-Baptiste; Rijsdijk, Frühling; Zheng, Yao; Plomin, Robert; Viding, Essi

    2015-05-06

    The development of conduct problems in childhood and adolescence is associated with adverse long-term outcomes, including psychiatric morbidity. Although genes constitute a proven factor of stability in conduct problems, less is known regarding their role in conduct problems' developmental course (i.e. systematic age changes, for instance linear increases or decreases).Mothers rated conduct problems from age 4 to 16 years in 10,038 twin pairs from the Twins Early Development Study. Individual differences in the baseline level (.78; 95% CI: .68-.88) and the developmental course of conduct problems (.73; 95% CI: .60-.86) were under high and largely independent additive genetic influences. Shared environment made a small contribution to the baseline level but not to the developmental course of conduct problems. These results show that genetic influences not only contribute to behavioural stability but also explain systematic change in conduct problems. Different sets of genes may be associated with the developmental course versus the baseline level of conduct problems. The structure of genetic and environmental influences on the development of conduct problems suggests that repeated preventive interventions at different developmental stages might be necessary to achieve a long-term impact.

  4. Increased genetic risk or protection for canine autoimmune lymphocytic thyroiditis in Giant Schnauzers depends on DLA class II genotype.

    PubMed

    Wilbe, M; Sundberg, K; Hansen, I R; Strandberg, E; Nachreiner, R F; Hedhammar, A; Kennedy, L J; Andersson, G; Björnerfeldt, S

    2010-06-01

    Dogs represent an excellent comparative model for autoimmune thyroiditis as several dog breeds develop canine lymphocytic thyroiditis (CLT), which is clinically similar to Hashimoto's thyroiditis in human. We obtained evidence that dog leukocyte antigen (DLA) class II genotype function as either genetic risk factor that predisposes for CLT or as protective factor against the disease. Genetic diversity at their DLA-DRB1, -DQA1, and -DQB1 loci were defined and potential association to major histocompatibility complex II haplotypes and alleles was analyzed. Giant Schnauzers carrying the DLA-DRB1*01201/DQA1*00101/DQB1*00201 haplotype showed an increased risk (odds ratio of 6.5) for developing CLT. The same risk haplotype has, to date, been observed in three different breeds affected by this disease, Giant Schnauzer, Dobermann, and Labrador Retriever, indicating that it is a common genetic risk factor in a variety of breeds affected by this disease. Importantly, protection for development of the disease was found in dogs carrying the DLA-DRB1*01301/DQA1*00301/DQB1*00501 haplotype (odds ratio of 0.3).

  5. Antioxidants in Translational Medicine

    PubMed Central

    Schmidt, Harald H.H.W.; Stocker, Roland; Vollbracht, Claudia; Paulsen, Gøran; Riley, Dennis

    2015-01-01

    Abstract Significance: It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. Recent Advances: The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. Critical Issues: Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. Future Directions: Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities. Antioxid. Redox Signal. 23, 1130–1143. PMID:26154592

  6. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses

    SciTech Connect

    Hoffmann, A.A.; Parsons, P.A. )

    1989-08-01

    Previously we found that Drosophila melanogaster lines selected for increased desiccation resistance have lowered metabolic rate and behavioral activity levels, and show correlated responses for resistance to starvation and a toxic ethanol level. These results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure. Here we present experiments on the genetic basis of the selection response and extend the study of correlated responses to other stresses. The response to selection was not sex-specific and involved X-linked and autosomal genes acting additively. Activity differences contributed little to differences in desiccation resistance between selected and control lines. Selected lines had lower metabolic rates than controls in darkness when activity was inhibited. Adults from selected lines showed increased resistance to a heat shock, {sup 60}Co-gamma-radiation, and acute ethanol and acetic acid stress. The desiccation, ethanol and starvation resistance of isofemale lines set up from the F2s of a cross between one of the selected and one of the control lines were correlated. Selected and control lines did not differ in ether-extractable lipid content or in resistance to acetone, ether or a cold shock.

  7. Genetically engineered flavonol enriched tomato fruit modulates chondrogenesis to increase bone length in growing animals.

    PubMed

    Choudhary, Dharmendra; Pandey, Ashutosh; Adhikary, Sulekha; Ahmad, Naseer; Bhatia, Chitra; Bhambhani, Sweta; Trivedi, Prabodh Kumar; Trivedi, Ritu

    2016-02-26

    Externally visible body and longitudinal bone growth is a result of proliferation of chondrocytes. In growth disorder, there is delay in the age associated increase in height. The present study evaluates the effect of extract from transgenic tomato fruit expressing AtMYB12 transcription factor on bone health including longitudinal growth. Constitutive expression of AtMYB12 in tomato led to a significantly enhanced biosynthesis of flavonoids in general and the flavonol biosynthesis in particular. Pre-pubertal ovary intact BALB/c mice received daily oral administration of vehicle and ethanolic extract of wild type (WT-TOM) and transgenic AtMYB12-tomato (MYB12-TOM) fruits for six weeks. Animal fed with MYB12-TOM showed no inflammation in hepatic tissues and normal sinusoidal Kupffer cell morphology. MYB12-TOM extract significantly increased tibial and femoral growth and subsequently improved the bone length as compared to vehicle and WT-TOM. Histomorphometry exhibited significantly wider distal femoral and proximal tibial growth plate, increased number and size of hypertrophic chondrocytes in MYB12-TOM which corroborated with micro-CT and expression of BMP-2 and COL-10, marker genes for hypertrophic cells. We conclude that metabolic reprogramming of tomato by AtMYB12 has the potential to improve longitudinal bone growth thus helping in achievement of greater peak bone mass during adolescence.

  8. Genetically engineered flavonol enriched tomato fruit modulates chondrogenesis to increase bone length in growing animals

    PubMed Central

    Choudhary, Dharmendra; Pandey, Ashutosh; Adhikary, Sulekha; Ahmad, Naseer; Bhatia, Chitra; Bhambhani, Sweta; Trivedi, Prabodh Kumar; Trivedi, Ritu

    2016-01-01

    Externally visible body and longitudinal bone growth is a result of proliferation of chondrocytes. In growth disorder, there is delay in the age associated increase in height. The present study evaluates the effect of extract from transgenic tomato fruit expressing AtMYB12 transcription factor on bone health including longitudinal growth. Constitutive expression of AtMYB12 in tomato led to a significantly enhanced biosynthesis of flavonoids in general and the flavonol biosynthesis in particular. Pre-pubertal ovary intact BALB/c mice received daily oral administration of vehicle and ethanolic extract of wild type (WT-TOM) and transgenic AtMYB12-tomato (MYB12-TOM) fruits for six weeks. Animal fed with MYB12-TOM showed no inflammation in hepatic tissues and normal sinusoidal Kupffer cell morphology. MYB12-TOM extract significantly increased tibial and femoral growth and subsequently improved the bone length as compared to vehicle and WT-TOM. Histomorphometry exhibited significantly wider distal femoral and proximal tibial growth plate, increased number and size of hypertrophic chondrocytes in MYB12-TOM which corroborated with micro-CT and expression of BMP-2 and COL-10, marker genes for hypertrophic cells. We conclude that metabolic reprogramming of tomato by AtMYB12 has the potential to improve longitudinal bone growth thus helping in achievement of greater peak bone mass during adolescence. PMID:26917158

  9. An altered redox balance and increased genetic instability characterize primary fibroblasts derived from xeroderma pigmentosum group A patients.

    PubMed

    Parlanti, Eleonora; Pietraforte, Donatella; Iorio, Egidio; Visentin, Sergio; De Nuccio, Chiara; Zijno, Andrea; D'Errico, Mariarosaria; Simonelli, Valeria; Sanchez, Massimo; Fattibene, Paola; Falchi, Mario; Dogliotti, Eugenia

    2015-12-01

    Xeroderma pigmentosum (XP)-A patients are characterized by increased solar skin carcinogenesis and present also neurodegeneration. XPA deficiency is associated with defective nucleotide excision repair (NER) and increased basal levels of oxidatively induced DNA damage. In this study we search for the origin of increased levels of oxidatively generated DNA lesions in XP-A cell genome and then address the question of whether increased oxidative stress might drive genetic instability. We show that XP-A human primary fibroblasts present increased levels and different types of intracellular reactive oxygen species (ROS) as compared to normal fibroblasts, with O₂₋• and H₂O₂ being the major reactive species. Moreover, XP-A cells are characterized by decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios as compared to normal fibroblasts. The significant increase of ROS levels and the alteration of the glutathione redox state following silencing of XPA confirmed the causal relationship between a functional XPA and the control of redox balance. Proton nuclear magnetic resonance (¹H NMR) analysis of the metabolic profile revealed a more glycolytic metabolism and higher ATP levels in XP-A than in normal primary fibroblasts. This perturbation of bioenergetics is associated with different morphology and response of mitochondria to targeted toxicants. In line with cancer susceptibility, XP-A primary fibroblasts showed increased spontaneous micronuclei (MN) frequency, a hallmark of cancer risk. The increased MN frequency was not affected by inhibition of ROS to normal levels by N-acetyl-L-cysteine.

  10. A yeast-based genetic screening to identify human proteins that increase homologous recombination.

    PubMed

    Collavoli, Anita; Comelli, Laura; Rainaldi, Giuseppe; Galli, Alvaro

    2008-05-01

    To identify new human proteins implicated in homologous recombination (HR), we set up 'a papillae assay' to screen a human cDNA library using the RS112 strain of Saccharomyces cerevisiae containing an intrachromosomal recombination substrate. We isolated 23 cDNAs, 11 coding for complete proteins and 12 for partially deleted proteins that increased HR when overexpressed in yeast. We characterized the effect induced by the overexpression of the complete human proteasome subunit beta 2, the partially deleted proteasome subunits alpha 3 and beta 8, the ribosomal protein L12, the brain abundant membrane signal protein (BASP1) and the human homologue to v-Ha-RAS (HRAS), which elevated HR by 2-6.5-fold over the control. We found that deletion of the RAD52 gene, which has a key role in most HR events, abolished the increase of HR induced by the proteasome subunits and HRAS; by contrast, the RAD52 deletion did not affect the high level of HR due to BASP1 and RPL12. This suggests that the proteins stimulated yeast HR via different mechanisms. Overexpression of the complete beta 2 human proteasome subunit or the partially deleted alpha 3 and beta 8 subunits increased methyl methanesulphonate (MMS) resistance much more in the rad52 Delta mutant than in the wild-type. Overexpression of RPL12 and BASP1 did not affect MMS resistance in both the wild-type and the rad52 Delta mutant, whereas HRAS decreased MMS resistance in the rad52 Delta mutant. The results indicate that these proteins may interfere with the pathway(s) involved in the repair of MMS-induced DNA damage. Finally, we provide further evidence that yeast is a helpful tool to identify human proteins that may have a regulatory role in HR.

  11. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children

    PubMed Central

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C.; Reyes-López, Miguel A.; Quiñones, Luis A.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11–5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62–78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42–191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94–31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05–6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19–31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  12. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease

    PubMed Central

    Coelho, Rosa; Grácio, Daniela; Silva, Marco; Peixoto, Armando; Lago, Paula; Pereira, Márcia; Catarino, Telmo; Pinho, Salomé; Teixeira, João Paulo; Macedo, Guilherme; Annese, Vito

    2017-01-01

    Inflammation is the driving force in inflammatory bowel disease (IBD) and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn’s disease (CD) and ulcerative colitis (UC). Single nucleotide polymorphisms (SNPs) in the antioxidant genes SOD2 (rs4880) and GPX1 (rs1050450) were genotyped in a Portuguese population comprising 436 Crohn’s disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037). Moreover, we found nominal significant associations between SOD2 and Crohn’s disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies. PMID:28052094

  13. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease.

    PubMed

    Costa Pereira, Cristiana; Durães, Cecília; Coelho, Rosa; Grácio, Daniela; Silva, Marco; Peixoto, Armando; Lago, Paula; Pereira, Márcia; Catarino, Telmo; Pinho, Salomé; Teixeira, João Paulo; Macedo, Guilherme; Annese, Vito; Magro, Fernando

    2017-01-01

    Inflammation is the driving force in inflammatory bowel disease (IBD) and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn's disease (CD) and ulcerative colitis (UC). Single nucleotide polymorphisms (SNPs) in the antioxidant genes SOD2 (rs4880) and GPX1 (rs1050450) were genotyped in a Portuguese population comprising 436 Crohn's disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037). Moreover, we found nominal significant associations between SOD2 and Crohn's disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies.

  14. New evidence of genetic factors influencing sexual orientation in men: female fecundity increase in the maternal line.

    PubMed

    Iemmola, Francesca; Camperio Ciani, Andrea

    2009-06-01

    There is a long-standing debate on the role of genetic factors influencing homosexuality because the presence of these factors contradicts the Darwinian prediction according to which natural selection should progressively eliminate the factors that reduce individual fecundity and fitness. Recently, however, Camperio Ciani, Corna, and Capiluppi (Proceedings of the Royal Society of London, Series B: Biological Sciences, 271, 2217-2221, 2004), comparing the family trees of homosexuals with heterosexuals, reported a significant increase in fecundity in the females related to the homosexual probands from the maternal line but not in those related from the paternal one. This suggested that genetic factors that are partly linked to the X-chromosome and that influence homosexual orientation in males are not selected against because they increase fecundity in female carriers, thus offering a solution to the Darwinian paradox and an explanation of why natural selection does not progressively eliminate homosexuals. Since then, new data have emerged suggesting not only an increase in maternal fecundity but also larger paternal family sizes for homosexuals. These results are partly conflicting and indicate the need for a replication on a wider sample with a larger geographic distribution. This study examined the family trees of 250 male probands, of which 152 were homosexuals. The results confirmed the study of Camperio Ciani et al. (2004). We observed a significant fecundity increase even in primiparous mothers, which was not evident in the previous study. No evidence of increased paternal fecundity was found; thus, our data confirmed a sexually antagonistic inheritance partly linked to the X-chromosome that promotes fecundity in females and a homosexual sexual orientation in males.

  15. Genetic ablation of IP3 receptor 2 increases cytokines and decreases survival of SOD1G93A mice

    PubMed Central

    Staats, Kim A.; Humblet-Baron, Stephanie; Bento-Abreu, Andre; Scheveneels, Wendy; Nikolaou, Alexandros; Deckers, Kato; Lemmens, Robin; Goris, An; Van Ginderachter, Jo A.; Van Damme, Philip; Hisatsune, Chihiro; Mikoshiba, Katsuhiko; Liston, Adrian; Robberecht, Wim; Van Den Bosch, Ludo

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease characterized by the selective death of motor neurons. Disease pathophysiology is complex and not yet fully understood. Higher gene expression of the inositol 1,4,5-trisphosphate receptor 2 gene (ITPR2), encoding the IP3 receptor 2 (IP3R2), was detected in sporadic ALS patients. Here, we demonstrate that IP3R2 gene expression was also increased in spinal cords of ALS mice. Moreover, an increase of IP3R2 expression was observed in other models of chronic and acute neurodegeneration. Upregulation of IP3R2 gene expression could be induced by lipopolysaccharide (LPS) in murine astrocytes, murine macrophages and human fibroblasts indicating that it may be a compensatory response to inflammation. Preventing this response by genetic deletion of ITPR2 from SOD1G93A mice had a dose-dependent effect on disease duration, resulting in a significantly shorter lifespan of these mice. In addition, the absence of IP3R2 led to increased innate immunity, which may contribute to the decreased survival of the SOD1G93A mice. Besides systemic inflammation, IP3R2 knockout mice also had increased IFNγ, IL-6 and IL1α expression. Altogether, our data indicate that IP3R2 protects against the negative effects of inflammation, suggesting that the increase in IP3R2 expression in ALS patients is a protective response. PMID:27378687

  16. Pulmonary antioxidants

    SciTech Connect

    Massaro, E.J.; Grose, E.C.; Hatch, G.E.; Slade, R.

    1987-05-01

    One of the most vital of the cellular defenses against pollution is an antioxidant armanentarium which consists of oxidant scavenging molecules such as vitamin E, glutathione, vitamin C, and uric acid as well as a number of enzymes (superoxide dismutase, semidehydroascorbate reductase, catalase, GSH synthetase, GSH peroxidase, GSH reductase, and GSH transferase) and appears to function in keeping oxidant forces under control. Pollutants can upset the oxidant/antioxidant balance of cells by inhibiting vital enzymes, by reacting with oxidant scavengers, or by forming free radical intermediates which initiate uncontrolled tissue reactions with molecular oxygen. The book chapter reviews possible interactions between pollutants and the oxidant/antioxidant balance.

  17. Impaired oxidant/antioxidant status and LDL-fatty acid composition are associated with increased susceptibility to peroxidation of LDL in diabetic patients.

    PubMed

    Merzouk, S; Hichami, A; Sari, A; Madani, S; Merzouk, H; Yahia Berrouiguet, A; Lenoir-Rousseaux, J J; Chabane-Sari, N; Khan, N A

    2004-12-01

    This study was carried out to determine the relationships between oxidant/antioxidant status, in vitro LDL oxidizability and LDL-fatty acid composition in diabetes mellitus. Plasma total antioxidant capacity (oxygen radical absorbance capacity, ORAC) and LDL-cholesteryl ester fatty acids were investigated in type 1 and type 2 diabetic subjects with and without complications. The degree of LDL oxidation was determined by the measurement of hydroperoxide levels before and after in vitro peroxidative stress with CuSO4. ORAC values were decreased in diabetic subjects who showed high basal hydroperoxide levels. Oxidizability of LDL in these subjects was higher than in control subjects and it was unrelated to LDL-fatty acid composition. However, in type 2 diabetic subjects with complications, alterations in LDL-fatty acid composition were associated with their enhanced oxidative susceptibility. LDL-fatty acid alterations might be an additional factor that influences LDL oxidizability especially in type 2 diabetes. In conclusion, diabetes mellitus is associated with enhanced oxidative stress and defective antioxidant/oxidant balance regardless the type of diabetes and presence of complications.

  18. Increased virulence of rabbit haemorrhagic disease virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus).

    PubMed

    Elsworth, Peter; Cooke, Brian D; Kovaliski, John; Sinclair, Ronald; Holmes, Edward C; Strive, Tanja

    2014-09-01

    The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution.

  19. Increased virulence of Rabbit Haemorrhagic Disease Virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus)

    PubMed Central

    Elsworth, Peter; Cooke, Brian D.; Kovaliski, John; Sinclair, Ronald; Holmes, Edward C.; Strive, Tanja

    2015-01-01

    The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution. PMID:25146599

  20. Increasing live birth rate by preimplantation genetic screening of pooled polar bodies using array comparative genomic hybridization.

    PubMed

    Feichtinger, Michael; Stopp, Tina; Göbl, Christian; Feichtinger, Elisabeth; Vaccari, Enrico; Mädel, Ulrike; Laccone, Franco; Stroh-Weigert, Monika; Hengstschläger, Markus; Feichtinger, Wilfried; Neesen, Jürgen

    2015-01-01

    Meiotic errors during oocyte maturation are considered the major contributors to embryonic aneuploidy and failures in human IVF treatment. Various technologies have been developed to screen polar bodies, blastomeres and trophectoderm cells for chromosomal aberrations. Array-CGH analysis using bacterial artificial chromosome (BAC) arrays is widely applied for preimplantation genetic diagnosis (PGD) using single cells. Recently, an increase in the pregnancy rate has been demonstrated using array-CGH to evaluate trophectoderm cells. However, in some countries, the analysis of embryonic cells is restricted by law. Therefore, we used BAC array-CGH to assess the impact of polar body analysis on the live birth rate. A disadvantage of polar body aneuploidy screening is the necessity of the analysis of both the first and second polar bodies, resulting in increases in costs for the patient and complex data interpretation. Aneuploidy screening results may sometimes be ambiguous if the first and second polar bodies show reciprocal chromosomal aberrations. To overcome this disadvantage, we tested a strategy involving the pooling of DNA from both polar bodies before DNA amplification. We retrospectively studied 351 patients, of whom 111 underwent polar body array-CGH before embryo transfer. In the group receiving pooled polar body array-CGH (aCGH) analysis, 110 embryos were transferred, and 29 babies were born, corresponding to live birth rates of 26.4% per embryo and 35.7% per patient. In contrast, in the control group, the IVF treatment was performed without preimplantation genetic screening (PGS). For this group, 403 embryos were transferred, and 60 babies were born, resulting in live birth rates of 14.9% per embryo and 22.7% per patient. In conclusion, our data show that in the aCGH group, the use of aneuploidy screening resulted in a significantly higher live birth rate compared with the control group, supporting the benefit of PGS for IVF couples in addition to the

  1. Genetic predisposition increases the tic severity, rate of comorbidities, and psychosocial and educational difficulties in children with Tourette syndrome.

    PubMed

    Eysturoy, Absalon Niclas; Skov, Liselotte; Debes, Nanette Mol

    2015-03-01

    This study aimed to examine whether there are differences in tic severity, comorbidities, and psychosocial and educational consequences in children with Tourette syndrome and genetic predisposition to Tourette syndrome compared with children with Tourette syndrome without genetic predisposition to Tourette syndrome. A total of 314 children diagnosed with Tourette syndrome participated in this study. Validated diagnostic tools were used to assess tic severity, comorbidities, and cognitive performance. A structured interview was used to evaluate psychosocial and educational consequences related to Tourette syndrome. The children with Tourette syndrome and genetic predisposition present with statistically significant differences in terms of severity of tics, comorbidities, and a range of psychosocial and educational factors compared with the children with Tourette syndrome without genetic predisposition. Professionals need to be aware of genetic predisposition to Tourette syndrome, as children with Tourette syndrome and genetic predisposition have more severe symptoms than those children with Tourette syndrome who are without genetic predisposition.

  2. Genetic polymorphisms (rs10636 and rs28366003) in metallothionein 2A increase breast cancer risk in Chinese Han population

    PubMed Central

    Wang, Xi-Jing; Kang, Hua-Feng; Jin, Tian-Bo; Zhang, Shu-Qun; Guan, Hai-Tao; Yang, Peng-Tao; Liu, Kang; Liu, Xing-Han; Xu, Peng; Zheng, Yi; Dai, Zhi-Jun

    2017-01-01

    Genetic polymorphisms of MT2A are frequently observed in many different cancers. We performed this case-control study, including 459 breast cancer (BC) patients and 549 healthy controls from Northwest China, to evaluate the associations between two common MT2A polymorphisms (rs10636 and rs28366003) and BC risk. The MT2A polymorphisms were genotyped via Sequenom MassARRAY. The individuals with the rs28366003 A/G, A/G-G/G genotypes underwent a higher risk of BC (P<0.0001). And, the minor allele G of rs28366003 was related to an increased BC risk (P<0.0001). We also found a significantly increased BC risk with rs10636 polymorphism among homozygote and recessive models (P<0.05). Further subgroup analysis by clinical characteristics of BC patients showed that Scarff, Bloom and Richardson tumor grade (SBR) 1-2 have a higher expression of the minor allele of these two MT2A loci than SBR 3. Our results indicated that the rs10636 and rs28366003 polymorphisms in MT2A increased BC risk in Northwest Chinese Han population.   PMID:28228606

  3. Genetic fate mapping of type-1 stem cell-dependent increase in newborn hippocampal neurons after electroconvulsive seizures.

    PubMed

    Weber, Tillmann; Baier, Vera; Lentz, Katharina; Herrmann, Elke; Krumm, Bertram; Sartorius, Alexander; Kronenberg, Golo; Bartsch, Dusan

    2013-12-01

    Electroconvulsive therapy (ECT) is a uniquely effective treatment for major depressive disorder. An increase in hippocampal neurogenesis is implicated in the recovery from depression. We used an inducible genetic mouse model in which only GFAP-expressing stem-like cells (type-1 cells) and their progeny are selectively labeled with the reporter protein β-galactosidase to track the process of neurogenesis in the dentate gyrus over 3 months following electroconvulsive seizures (ECS), the mouse equivalent of ECT. All ECS protocols tested induced a transient increase in type-1 cell divisions. While this led to an expansion of the type-1 cell pool after high-frequency ECS sessions for 5 consecutive days (5-ECS), asymmetric divisions drove neurogenesis by giving rise to Doublecortin (DCX)-expressing neuroblasts that matured into NeuN+ neurons. Significantly, the increase in newly generated DCX+ and NeuN+ cells after 5-ECS could be traced back to proliferating type-1 cells. Low-frequency continuation ECS (c-ECS) consisting of five single ECS sessions administered every 2 weeks resulted in a similar increase in newborn neurons as the high-frequency 5-ECS protocol. Moreover, the combination of 5-ECS and c-ECS led to a further significant increase in newborn neurons, suggesting a cellular mechanism responsible for the propitious effects of high-frequency ECT followed by continuation ECT in severely depressed patients. The ability of high- and low-frequency ECS to induce normally quiescent type-1 cells to proliferate and generate new neurons sets it apart from other antidepressant treatments and may underlie the superior clinical efficacy of ECT.

  4. Copper, zinc-superoxide dismutase protects from ultraviolet B-induced apoptosis of SV40-transformed human keratinocytes: the protection is associated with the increased levels of antioxidant enzymes.

    PubMed

    Takahashi, H; Hashimoto, Y; Aoki, N; Kinouchi, M; Ishida-Yamamoto, A; Iizuka, H

    2000-05-01

    It has been reported that cellular oxidative stress induces apoptosis. Ultraviolet radiation that generates reactive oxygen intermediates (ROIs) also induces apoptosis. Superoxide dismutase (SOD) is among the most active scavengers of ROIs, providing defense against the cellular oxidative stress. Mammalian cells express two isozymes of SOD, copper, zinc-SOD (Cu, Zn-SOD) and manganese-SOD (Mn-SOD). Using SV40-transformed human keratinocytes (SVHK cells), we investigated the role of SODs in the ultraviolet B (UVB) irradiation-induced apoptosis. UVB irradiation decreased transiently Cu, Zn- and Mn-SOD activities and their protein levels, with subsequent recovery to the basal levels by 24 h. The UVB-induced decrease in SOD activity was dose-dependent and the maximal effect was obtained at 75 mJ/cm(2). The decrease in Cu, Zn-SOD was more marked than that in Mn-SOD. The cell death assay, annexin-V/propidium iodide flow cytometry, and DNA fragmentation analysis revealed that UVB irradiation induces apoptosis in SVHK cells. The UVB-induced apoptosis was suppressed by the treatment of antioxidants, catalase, glutathione, and alpha-tochopherol. The stable transfection of Cu, Zn-SOD expression vectors into SVHK cells was accompanied by the increased activities of antioxidant enzymes, catalase, and glutathione reductase, as well as glutathione and the cells were shown to be more resistant to UVB-induced apoptosis. In contrast, the transfection of Mn-SOD affected neither activities of antioxidant enzymes nor the UVB-induced apoptosis. The transfection of Cu, Zn-SOD antisense oligomers but not sense oligomers into SVHK or Cu, Zn-SOD cDNA-transfected SVHK (C2) cells significantly decreased the antioxidant enzyme activities and increased the UVB-induced apoptosis. On the other hand, the transfection of Mn-SOD antisense oligomers did not affect the UVB-induced apoptosis. These results suggest that the transfection of Cu, Zn-SOD expression vector, which is accompanied by the

  5. Antioxidant status, lipid and color stability of aged beef from grazing steers supplemented with corn grain and increasing levels of flaxseed.

    PubMed

    Pouzo, L B; Descalzo, A M; Zaritzky, N E; Rossetti, L; Pavan, E

    2016-01-01

    Angus steers were grazed on unsupplemented pasture (CNTRL), pasture supplemented with 0.7% BW cracked corn (FLAX-0), FLAX-0 with 0.125% and 0.250% BW of whole flaxseed (FLAX-1 and FLAX-2). Six steers were grazed per treatment for 70 days, with start and finish weights of 458 and 508 kg. At 24 h post slaughter, longissimus thoracis were harvested, and steaks assigned to treatments of postmortem aging time under vacuum (PM; 3, 14 and 56 days) with or without five days of aerobic exposure (AE). Meat antioxidant status was higher (P<0.05) when feeding CNTRL and FLAX-1 than FLAX-0 and FLAX-2. Under AE, lipid oxidation was highest for FLAX-2 (P<0.05), and lowest for FLAX-1. Greatest TBARs and lowest antioxidant capacity and redness values were obtained with AE and the longer PM (P<0.05). Beef oxidative stability through AE improved by adding a low flaxseed level to supplemented corn grain, but deteriorated by adding a high flaxseed level or by extending PM.

  6. Germination and extrusion as combined processes for reducing phytates and increasing phenolics content and antioxidant capacity of Oryza sativa L. whole grain flours.

    PubMed

    Albarracín, M; De Greef, D M; González, R J; Drago, S R

    2015-01-01

    Whole rice (WR) products with low phytic acid (PA) content and enhanced bio-functional components were obtained by the combination of germination and extrusion processes. Germination conditions (24 h - 35 °C), with a previous soaking process (24 h - 20 °C), were chosen according to the remnant PA content and germination rate. Specific mechanical energy consumption, expansion, sensorial and mechanical hardness, specific volume, solubility, water absorption, free phenolic content (FPC) and antioxidant capacity were evaluated. Results indicated that 175 °C and 14 g 100 g(-1) of moisture were the most appropriate conditions to obtain expanded products and precooked flours based on germinated WR. Selected extruded product presented less PA content (821.6 9 ± 10.3 versus 695.2 0 ± 1.6 mg 100 g(-1)) and higher Fe bio-accessibility, FPC (45.2 9 ± 1.61 versus 66.3 5 ± 3.35 mg GAE g(-1)) and antioxidant capacity compared with WR (34.9 5 ± 0.8 versus 54.6 3 ± 1.6 µmol trolox g(-1)). Combining germination-extrusion processes could be a strategy to obtain expanded products or precooked flours based on WR with enhanced health benefits.

  7. Using Public Control Genotype Data to Increase Power and Decrease Cost of Case-Control Genetic Association Studies

    PubMed Central

    Ho, Lindsey A.; Lange, Ethan M.

    2011-01-01

    Genome-wide association (GWA) studies are a powerful approach for identifying novel genetic risk factors associated with human disease. A GWA study typically requires the inclusion of thousands of samples to have sufficient statistical power to detect single nucleotide polymorphisms (SNPs) that are associated with only modest increases in risk of disease given the heavy burden of a multiple test correction that is necessary to maintain valid statistical tests. Low statistical power and the high financial cost of performing a GWA study remains prohibitive for many scientific investigators anxious to perform such a study using their own samples. A number of remedies have been suggested to increase statistical power and decrease cost, including the utilization of free publicly available genotype data and multi-stage genotyping designs. Herein, we compare the statistical power and relative costs of alternative association study designs that use cases and screened controls to study designs that are based only on, or additionally include, free public control genotype data. We describe a novel replication-based two-stage study design, which uses free public control genotype data in the first stage and follow-up genotype data on case-matched controls in the second stage, that preserves many of the advantages inherent when using only an epidemiologically matched set of controls. Specifically, we show that our proposed two-stage design can substantially increase statistical power and decrease cost of performing a GWA study while controlling the type I error rate that can be inflated when using public controls due to differences in ancestry and batch genotype effects. PMID:20821337

  8. Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry

    SciTech Connect

    Van Dyke, M. V.; Martyny, John W.; Mroz, M. M.; Silveira, L. J.; Strand, M.; Cragle, D. L.; Tankersley, W. G.; Wells, S. M.; Newman, L. S.; Maier, L. A.

    2011-04-02

    Beryllium sensitisation (BeS) and chronic beryllium disease (CBD) are caused by exposure to beryllium with susceptibility affected by at least one well-studied genetic host factor, a glutamic acid residue at position 69 (E69) of the HLA-DPb chain (DPbE69). However, the nature of the relationship between exposure and carriage of the DPbE69 genotype has not been well studied. The goal of this study was to determine the relationship between DP{beta}E69 and exposure in BeS and CBD. Current and former workers (n=181) from a US nuclear weapons production facility, the Y-12 National Security Complex (Oak Ridge, Tennessee, USA), were enrolled in a case-control study including 35 individuals with BeS and 19 with CBD. HLA-DPB1 genotypes were determined by PCR-SSP. Beryllium exposures were assessed through worker interviews and industrial hygiene assessment of work tasks. After removing the confounding effect of potential beryllium exposure at another facility, multivariate models showed a sixfold (OR 6.06, 95% CI 1.96 to 18.7) increased odds for BeS and CBD combined among DP{beta}E69 carriers and a fourfold (OR 3.98, 95% CI 1.43 to 11.0) increased odds for those exposed over an assigned lifetime-weighted average exposure of 0.1 {micro}g/m{sup 3}. Those with both risk factors had higher increased odds (OR 24.1, 95% CI 4.77 to 122). DP{beta}E69 carriage and high exposure to beryllium appear to contribute individually to the development of BeS and CBD. Among workers at a beryllium-using facility, the magnitude of risk associated with either elevated beryllium exposure or carriage of DP{beta}E69 alone appears to be similar.

  9. Using public control genotype data to increase power and decrease cost of case-control genetic association studies.

    PubMed

    Ho, Lindsey A; Lange, Ethan M

    2010-12-01

    Genome-wide association (GWA) studies are a powerful approach for identifying novel genetic risk factors associated with human disease. A GWA study typically requires the inclusion of thousands of samples to have sufficient statistical power to detect single nucleotide polymorphisms that are associated with only modest increases in risk of disease given the heavy burden of a multiple test correction that is necessary to maintain valid statistical tests. Low statistical power and the high financial cost of performing a GWA study remains prohibitive for many scientific investigators anxious to perform such a study using their own samples. A number of remedies have been suggested to increase statistical power and decrease cost, including the utilization of free publicly available genotype data and multi-stage genotyping designs. Herein, we compare the statistical power and relative costs of alternative association study designs that use cases and screened controls to study designs that are based only on, or additionally include, free public control genotype data. We describe a novel replication-based two-stage study design, which uses free public control genotype data in the first stage and follow-up genotype data on case-matched controls in the second stage that preserves many of the advantages inherent when using only an epidemiologically matched set of controls. Specifically, we show that our proposed two-stage design can substantially increase statistical power and decrease cost of performing a GWA study while controlling the type-I error rate that can be inflated when using public controls due to differences in ancestry and batch genotype effects.

  10. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study

    PubMed Central

    Yadav, Viveka Nand; Zamler, Daniel; Baker, Gregory J.; Kadiyala, Padma; Erdreich-Epstein, Anat; DeCarvalho, Ana C.; Mikkelsen, Tom; Castro, Maria G.; Lowenstein, Pedro R.

    2016-01-01

    Glioblastoma (GBM) is a highly invasive brain tumor. Perivascular invasion, autovascularization and vascular co-option occur throughout the disease and lead to tumor invasion and progression. The molecular basis for perivascular invasion, i.e., the interaction of glioma tumor cells with endothelial cells is not well characterized. Recent studies indicate that glioma cells have increased expression of CXCR4. We investigated the in-vivo role of CXCR4 in perivascular invasion of glioma cells using shRNA-mediated knock down of CXCR4. We show that primary cultures of human glioma stem cells HF2303 and mouse glioma GL26-Cit cells exhibit significant migration towards human (HBMVE) and mouse (MBVE) brain microvascular endothelial cells. Blocking CXCR4 on tumor cells with AMD3100 in-vitro, inhibits migration of GL26-Cit and HF2303 toward MBVE and HBMVE cells. Additionally, genetic down regulation of CXCR4 in mouse glioma GL26-Cit cells inhibits their in-vitro migration towards MBVE cells; in an in-vivo intracranial mouse model, these cells display reduced tumor growth and perivascular invasion, leading to increased survival. Quantitative analysis of brain sections showed that CXCR4 knockdown tumors are less invasive. Lastly, we tested the effects of radiation on CXCR4 knock down GL26-Cit cells in an orthotopic brain tumor model. Radiation treatment increased apoptosis of CXCR4 downregulated tumor cells and prolonged median survival. In summary, our data suggest that CXCR4 signaling is critical for perivascular invasion of GBM cells and targeting this receptor makes tumors less invasive and more sensitive to radiation therapy. Combination of CXCR4 knock down and radiation treatment might improve the efficacy of GBM therapy. PMID:27863376

  11. Antioxidants and vascular health.

    PubMed

    Bielli, Alessandra; Scioli, Maria Giovanna; Mazzaglia, Donatella; Doldo, Elena; Orlandi, Augusto

    2015-12-15

    Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies.

  12. Will Genetic Testing for Complex Diseases Increase Motivation to Quit Smoking? Anticipated Reactions in a Survey of Smokers

    ERIC Educational Resources Information Center

    Sanderson, Saskia C.; Wardle, Jane

    2005-01-01

    The aim of this study was to improve understanding of smokers' potential reactions to genetic testing for smoking-related diseases. One thousand twenty-four respondents completed a postal survey; 186 were smokers. Questions addressed anticipated psychological and behavioral reactions to genetic test results using hypothetical scenarios. Of…

  13. Genetically Epilepsy-Prone Rats Have Increased Brain Regional Activity of an Enzyme Which Liberates Glutamate from N-acetyl-aspartyl-glutamate

    DTIC Science & Technology

    1992-01-01

    genetically epilepsy -prone iats "was 11-26% greater than control in brain regions, including the amygdala, hippocarrpus and cerebellum, as well as the...9 -0 3 Genetically epilepsy -prone rats have increased brain regional activity of an enzyme which liberates glutamate from N-acetyl-aspartyl...in genctically epilepsy -prone rats was 11-~261; greater than control in brain regions. including the amygdala. hippocampus and cerebellum, as well as

  14. Desalinated underground seawater of Jeju Island (Korea) improves lipid metabolism in mice fed diets containing high fat and increases antioxidant potential in t-BHP treated HepG2 cells.

    PubMed

    Noh, Jung-Ran; Gang, Gil-Tae; Kim, Yong-Hoon; Yang, Keum-Jin; Lee, Chul-Ho; Na, O-Su; Kim, Gi-Ju; Oh, Won-Keun; Lee, Young-Don

    2010-02-01

    This study was performed to investigate the effect of desalinated underground seawater (named as 'magma seawater', MSW) of Jeju Island in Korea on lipid metabolism and antioxidant activity. MSW was collected from underground of Han-Dong in Jeju Island, and freely given to high fat diet (HFD)-fed C57BL/6 mice for 10 weeks. Although there were no significant differences in the body weight changes and plasma lipid levels, hepatic triglyceride levels were significantly lower in the MSW group than in the normal tap water (TW)-drunken control group. Furthermore, the activity of fatty acid synthase (FAS) was significantly decreased and carnitine palmitoyltransferase (CPT) activity was increased in MSW group compared to TW group. Similarly, real-time PCR analysis revealed that mRNA expressions of lipogenic genes were lowered in MSW groups compared to the control group. In a morphometric observation on the liver tissue, accumulation of fats was remarkably reduced in MSW group. Meanwhile, in vitro assay, free radical scavenging activity measured by using diphenylpicrylhydrazyl (DPPH) was increased in MSW group. The 2'-7'-dichlorofluorescein diacetate (DCF-DA) staining followed with fluorescent microscopy showed a low intensity of fluorescence in MSW-treated HepG2 cells, compared to TW-treated HepG2 cells, which indicated that the production of reactive oxygen species by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was decreased by MSW treatment. The antioxidant effect of MSW on t-BHP-induced oxidative stress in HepG2 cells was supported by the increased activities of intracellular antioxidant enzymes such as catalase and glutathione reductase. From these results, we speculate that MSW has an inhibitory effect on lipogenesis in liver and might play a protective role against cell damage by t-BHP-induced oxidative stress.

  15. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women

    PubMed Central

    Rink, Stephanie M.; Mendola, Pauline; Mumford, Sunni L.; Poudrier, Jill K.; Browne, Richard W.; Wactawski-Wende, Jean; Perkins, Neil J.; Schisterman, Enrique F.

    2013-01-01

    Background Oxidative stress has been associated with a variety of chronic diseases and reproductive disorders. Fruits and vegetables may contribute to antioxidant vitamin and micronutrient levels and reduce oxidative stress. Objective To investigate the effect of meeting the 5 A Day recommendation for fruit and vegetable consumption on biomarkers of oxidative damage and antioxidant defense. Design In this longitudinal study, healthy premenopausal women (n=258) were followed for ≤2 menstrual cycles with ≤16 oxidative stress measures timed to cycle phase. Main outcome measures Plasma concentrations of F2-isoprostane, 9-hydroxyoctadecadieneoic acid (9-HODE), and 13-hydroxyoctadecadieneoic acid (13-HODE), erythrocyte activity of superoxide dismutase (SOD), glutathione reductase (GSHR), and glutathione peroxidase (GPx), as well as blood micronutrient concentrations were measured. Dietary intake was assessed by Food Frequency Questionnaires (FFQ, 1/cycle) and 24-hour recalls (≤4/cycle). Statistical analyses performed Fruit and vegetable servings were dichotomized based on the 5 A Day recommendation. Linear mixed models with repeated measures were used to analyze lipid peroxidation markers, antioxidant vitamins, and antioxidant enzymes by cycle phase and in association with usual fruit and vegetable intake. Results For both 24-hour recall (timed to cycle phase) and cycle-specific FFQ, meeting the 5 A Day recommendation was associated with decreased F2-isoprostanes (24-hour recall β= −0.10 (95% CI: −0.12, −0.07); FFQ β= −0.14 (95% CI: −0.18, −0.11)). GSHR was lower in association with typical 5A Day consumption by FFQ but not in the phase-specific analysis. Higher levels of ascorbic acid, lutein, β-carotene and β-cryptoxanthin were observed with both 5 A Day measures. Conclusions Meeting the 5 A Day recommendation was associated with lower oxidative stress and improved antioxidant status in analyses of typical diet (FFQ) and in menstrual cycle phase

  16. Antioxidant gene therapy against neuronal cell death

    PubMed Central

    Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2014-01-01

    Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264

  17. Metabolic Biosynthesis of Potato (Solanum tuberosum l.) Antioxidants and Implications for Human Health.

    PubMed

    Lovat, Christie; Nassar, Atef M K; Kubow, Stan; Li, Xiu-Qing; Donnelly, Danielle J

    2016-10-25

    Potato (Solanum tuberosum L.) is common, affordable, readily stored, easily prepared for consumption, and nutritious. For these reasons, potato has become one of the top five crops consumed worldwide. Consequently, it is important to understand its contribution to both our daily and long-term health. Potato is one of the most important sources of antioxidants in the human diet. As such, it supports the antioxidant defense network in our bodies that reduces cellular and tissue toxicities that result from free radical-induced protein, lipid, carbohydrate, and DNA damage. In this way, potato antioxidants may reduce the risk for cancers, cardiovascular diseases, diabetes, and even radiation damage. A better understanding of these components of potato is needed by the food industry, health professionals, and consumers. This review provides referenced summaries of all of the antioxidant groups present in potato tubers and updated schematics including genetic regulation for the major antioxidant biosynthesis pathways. This review complements current knowledge on the role of potato in human health. We hope it will provide impetus toward breeding efforts to develop cultivars with increased antioxidant capacity as 'functional foods' and encourage potato consumers and processors to work toward preservation of antioxidant capacity in cooked potato and potato products.

  18. Synergistic exposure of rice seeds to different doses of γ-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway.

    PubMed

    Macovei, Anca; Garg, Bharti; Raikwar, Shailendra; Balestrazzi, Alma; Carbonera, Daniela; Buttafava, Armando; Bremont, Juan Francisco Jiménez; Gill, Sarvajeet Singh; Tuteja, Narendra

    2014-01-01

    Recent reports have underlined the potential of gamma (γ)-rays as tools for seed priming, a process used in seed industry to increase seed vigor and to enhance plant tolerance to biotic/abiotic stresses. However, the impact of γ -rays on key aspects of plant metabolism still needs to be carefully evaluated. In the present study, rice seeds were challenged with different doses of γ -rays and grown in absence/presence of NaCl to assess the impact of these treatments on the early stages of plant life. Enhanced germination efficiency associated with increase in radicle and hypocotyl length was observed, while at later stages no increase in plant tolerance to salinity stress was evident. APX, CAT, and GR were enhanced at transcriptional level and in terms of enzyme activity, indicating the activation of antioxidant defence. The profiles of DNA damage accumulation were obtained using SCGE and the implication of TC-NER pathway in DNA damage sensing and repair mechanisms is discussed. OsXPB2, OsXPD, OsTFIIS, and OsTFIIS-like genes showed differential modulation in seedlings and plantlets in response to γ -irradiation and salinity stress. Altogether, the synergistic exposure to γ -rays and NaCl resulted in enhanced oxidative stress and proper activation of antioxidant mechanisms, thus being compatible with plant survival.

  19. [Role of genetic blood markers (ABO-HLA systems) in the formation of increased sensitivity to occupational allergen epichlorohydrin].

    PubMed

    Davydova, N S; Bodienkova, G M

    2002-01-01

    The authors demonstrated that genetic factors play the certain role in hypersensitivity to occupational allergen epichlorohydrin. The sensibilized workers demonstrated higher incidence of individuals with OB (III) blood group and having phenotypic B8 antigen of HLA-system.

  20. Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression.

    PubMed

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers; Nyengaard, Jens R

    2010-12-01

    The aim was to investigate treatment effects of the antidepressant imipramine on the markers of neuronal plasticity. We investigated changes in neuron and synapse numbers in a rat strain that displays a genetic susceptibility to depressive behavior, the Flinders Sensitive and Resistant Lines (FSL/FRL). All rats were treated with imipramine (15 mg/kg) or saline (i.p) once daily for 25 days. The volume, neuron and synapse numbers in the hippocampus were estimated using design-based stereological methods. Under untreated conditions, the volume and the number of neurons and synapses were significantly smaller in the FSL saline group (untreated "depressed" rats) compared with the FRL saline group (normal rats), showing correlation to the observed decreased immobility in the forced swim test. Imipramine treatment significantly increased the number of neurons in the granule cell layer (GCL) and spine synapses in the CA1 in the FSL imipramine group (treated "depressed" rats) compared with the FSL saline group. The neuron numbers in the GCL and Hilus showed no differences in the FSL imipramine group compared to the FRL saline group. In conclusion, baseline levels of the volume and the number of neurons and spine synapses in hippocampus were significantly smaller in the untreated FSL rats. Our findings indicate that chronic imipramine treatment reverses the suppression of neurogenesis and synaptogenesis in the hippocampus of the "depressed" FSL rats, and this occurs in correlation with behavioral effects. Our results support the neuronal plasticity hypothesis that depressive disorders may be related to impairments of structural plasticity and neuronal viability in hippocampus, furthermore, antidepressant treatment counteracts the structural impairments.

  1. Genetic and physiological alterations occurring in a yeast population continuously propagated at increasing temperatures with cell recycling.

    PubMed

    Souza, Crisla S; Thomaz, Daniel; Cides, Elaine R; Oliveira, Karen F; Tognolli, João O; Laluce, Cecilia

    2007-12-01

    This work investigated the effects of increasing temperature from 30°C to 47°C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30°C, and then the temperature of the system was raised so it ranged from 35°C in the last reactor to 43°C in the first reactor or feeding reactor with a 2°C difference between reactors. After 15 days at steady state, the temperature was raised from 37°C to 45°C for 25 days at steady state, then from 39°C to 47°C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/α, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40°C, weak growth at 41°C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. Of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40°C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39-47°C, but no isolates showing growth above 41°C were obtained.

  2. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS.

    PubMed

    Alin, Jonas; Hakkarainen, Minna

    2011-05-25

    Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.

  3. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis.

    PubMed

    Ganz, Ariel B; Shields, Kelsey; Fomin, Vlad G; Lopez, Yusnier S; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie A; Vitiello, Gerardo A; Malysheva, Olga V; Mudrak, Erika; Caudill, Marie A

    2016-10-01

    ., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis.

  4. Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer

    PubMed Central

    Latifa, Khlifi; Sondess, Sahli; Hajer, Graiet; Manel, Ben-Hadj-Mohamed; Souhir, Khelil; Nadia, Bouzidi; Abir, Jaballah; Salima, Ferchichi; Abdelhedi, Miled

    2016-01-01

    Pressure ulcer (PU) remains a common worldwide problem in all health care settings, it is synonymous with suffering. PU is a complex disease that is dependent on a number of interrelated factors. It involves multiple mechanisms such as physiological risk factors, chronic inflammation, oxidant–antioxidant imbalance and proteolytic attack on extracellular matrix by matrix metalloproteinases (MMP). Therefore, we propose that these wounds lead to molecular variations that can be detected by assessing biomarkers. In this study, we aimed to evaluate the major clinical elements and biological scars in Tunisian patients suffering from PU. Consistently, non-healing wound remains a challenging clinical problem. The complex challenges of the wound environment, involving nutrient deficiencies, bacterial infection, as well as the critical role played by inflammatory cells, should be considered because of their negative impact on wound healing. In addition, an imbalance between pro-oxidants and antioxidant systems seems to be more aggravated in patients with PU compared to healthy subjects. Of interest, this study provides further evidence to support a core role of the biological activity of MMP-9 in the pathogenesis of PU and indicates that the MMP9-1562 C/T (rs 3918242) functional polymorphism is associated with protection against this disease. PMID:27405842

  5. Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer.

    PubMed

    Latifa, Khlifi; Sondess, Sahli; Hajer, Graiet; Manel, Ben-Hadj-Mohamed; Souhir, Khelil; Nadia, Bouzidi; Abir, Jaballah; Salima, Ferchichi; Abdelhedi, Miled

    2016-07-11

    Pressure ulcer (PU) remains a common worldwide problem in all health care settings, it is synonymous with suffering. PU is a complex disease that is dependent on a number of interrelated factors. It involves multiple mechanisms such as physiological risk factors, chronic inflammation, oxidant-antioxidant imbalance and proteolytic attack on extracellular matrix by matrix metalloproteinases (MMP). Therefore, we propose that these wounds lead to molecular variations that can be detected by assessing biomarkers. In this study, we aimed to evaluate the major clinical elements and biological scars in Tunisian patients suffering from PU. Consistently, non-healing wound remains a challenging clinical problem. The complex challenges of the wound environment, involving nutrient deficiencies, bacterial infection, as well as the critical role played by inflammatory cells, should be considered because of their negative impact on wound healing. In addition, an imbalance between pro-oxidants and antioxidant systems seems to be more aggravated in patients with PU compared to healthy subjects. Of interest, this study provides further evidence to support a core role of the biological activity of MMP-9 in the pathogenesis of PU and indicates that the MMP9-1562 C/T (rs 3918242) functional polymorphism is associated with protection against this disease.

  6. ANTIOXIDANT THERAPEUTIC ADVANCES IN COPD

    PubMed Central

    Rahman, Irfan

    2009-01-01

    Chronic obstructive pulmonary disease (COPD) is associated with high incidence of morbidity and mortality. Oxidative stress is intimately associated with the progression and exacerbation of COPD and therefore targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to have beneficial outcome in the treatment of COPD. Among the various antioxidants tried so far, thiol antioxidants and mucolytic agents, such as glutathione, N-acetyl-L-cysteine, N-acystelyn, erdosteine, fudosteine, and carbocysteine; Nrf2 activators, and dietary polyphenols (curcumin, resveratrol, green tea, and catechins/quercetin) have been reported to increase intracellular thiol status alongwith induction of GSH biosynthesis. Such an elevation in the thiol status in turn leads to detoxification of free radicals and oxidants as well as inhibition of ongoing inflammatory responses. In addition, specific spin traps, such as a-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a SOD mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo in the lung. Since a variety of oxidants, free radicals and aldehydes are implicated in the pathogenesis of COPD; it is possible that therapeutic administration of multiple antioxidants and mucolytics will be effective in management of COPD. However, a successful outcome will critically depend upon the choice of antioxidant therapy for a particular clinical phenotype of COPD, whose pathophysiology should be first properly understood. This article will review the various approaches adopted to enhance lung antioxidant levels, antioxidant therapeutic advances and recent past clinical trials of antioxidant compounds in COPD. PMID:19124382

  7. ANTIOXIDANT PHARMACOLOGIAL THERAPIES FOR COPD

    PubMed Central

    Rahman, Irfan; MacNee, William

    2013-01-01

    Increased oxidative stress occurs in the lungs and systemically in COPD, which plays a role in many of the pathogenic mechanisms in COPD. Hence, targeting local lung and systemic oxidative stress with agents that modulate the antioxidants/redox system or boost endogenous antioxidants would be a useful therapeutic approach in COPD. Thiol antioxidants (N-acetyl-L-cysteine and N-acystelyn, carbocysteine, erdosteine, and fudosteine have been used to increase lung thiol content. Modulation of cigarette smoke induced oxidative stress and its consequent cellular changes have also been reported to be effected by synthetic molecules, such as spin traps (α-phenyl-N-tert-butyl nitrone), catalytic antioxidants (superoxide dismutase [ECSOD] mimetics), porphyrins, and lipid peroxidation and protein carbonylation blockers/inhibitors (edaravone and lazaroids/tirilazad). Pre-clinical and clinical trials have shown that these antioxidants can reduce oxidative stress, affect redox and glutathione biosynthesis genes, and pro-inflammatory gene expression. In this review the approaches to enhance lung antioxidants in COPD and the potential beneficial effects of antioxidant therapy on the course of the disease are discussed. PMID:22349417

  8. Interactions between demography, genetics, and landscape connectivity increase extinction probability for a small population of large carnivores in a major metropolitan area.

    PubMed

    Benson, John F; Mahoney, Peter J; Sikich, Jeff A; Serieys, Laurel E K; Pollinger, John P; Ernest, Holly B; Riley, Seth P D

    2016-08-31

    The extinction vortex is a theoretical model describing the process by which extinction risk is elevated in small, isolated populations owing to interactions between environmental, demographic, and genetic factors. However, empirical demonstrations of these interactions have been elusive. We modelled the dynamics of a small mountain lion population isolated by anthropogenic barriers in greater Los Angeles, California, to evaluate the influence of demographic, genetic, and landscape factors on extinction probability. The population exhibited strong survival and reproduction, and the model predicted stable median population growth and a 15% probability of extinction over 50 years in the absence of inbreeding depression. However, our model also predicted the population will lose 40-57% of its heterozygosity in 50 years. When we reduced demographic parameters proportional to reductions documented in another wild population of mountain lions that experienced inbreeding depression, extinction probability rose to 99.7%. Simulating greater landscape connectivity by increasing immigration to greater than or equal to one migrant per generation appears sufficient to largely maintain genetic diversity and reduce extinction probability. We provide empirical support for the central tenet of the extinction vortex as interactions between genetics and demography greatly increased extinction probability relative to the risk from demographic and environmental stochasticity alone. Our modelling approach realistically integrates demographic and genetic data to provide a comprehensive assessment of factors threatening small populations.

  9. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO2 between genetically mod...

  10. "Chromoseratops Meiosus": A Simple, Two-Phase Exercise to Represent the Connection between Meiosis & Increased Genetic Diversity

    ERIC Educational Resources Information Center

    Eliyahu, Dorit

    2014-01-01

    I present an activity to help students make the connection between meiosis and genetic variation. The students model meiosis in the first phase of the activity, and by that process they produce gametes of a fictitious reptilobird species, "Chromoseratops meiosus." Later on, they will "mate" their gametes and produce a zygote…

  11. Increased 8-hydroxy-2'-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus.

    PubMed

    Lee, H-T; Lin, C-S; Lee, C-S; Tsai, C-Y; Wei, Y-H

    2014-04-01

    We measured plasma levels of the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) and leucocyte mRNA expression levels of the genes encoding the 8-OHdG repair enzyme human 8-oxoguanine DNA glycosylase 1 (hOGG1), the anti-oxidant enzymes copper/zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase-1 (GPx-1), GPx-4, glutathione reductase (GR) and glutathione synthetase (GS), the mitochondrial biogenesis-related proteins mtDNA-encoded ND 1 polypeptide (ND1), ND6, ATPase 6, mitochondrial transcription factor A (Tfam), nuclear respiratory factor 1(NRF-1), pyruvate dehydrogenase E1 component alpha subunit (PDHA1), pyruvate dehydrogenase kinase isoenzyme 1 (PDK-1) and hypoxia inducible factor-1α (HIF-1α) and the glycolytic enzymes hexokinase-II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase A (LDHa). We analysed their relevance to oxidative damage in 85 systemic lupus erythematosus (SLE) patients, four complicated SLE patients undergoing rituximab treatment and 45 healthy individuals. SLE patients had higher plasma 8-OHdG levels (P < 0·01) but lower leucocyte expression of the genes encoding hOGG1(P < 0·01), anti-oxidant enzymes (P < 0·05), mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) than healthy individuals. The increase in plasma 8-OHdG was correlated positively with the elevation of leucocyte expression of the genes encoding hOGG1 (P < 0·05), anti-oxidant enzymes (P < 0·05), several mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) in lupus patients. The patients, whose leucocyte mtDNA harboured D310 heteroplasmy, exhibited a positive correlation between the mtDNA copy number and expression of ND1, ND6 and ATPase 6 (P < 0·05) and a negative correlation between mt

  12. Patterns of genetic diversity and migration in increasingly fragmented and declining orang-utan (Pongo pygmaeus) populations from Sabah, Malaysia.

    PubMed

    Goossens, B; Chikhi, L; Jalil, M F; Ancrenaz, M; Lackman-Ancrenaz, I; Mohamed, M; Andau, P; Bruford, M W

    2005-02-01

    We investigated the genetic structure within and among Bornean orang-utans (Pongo pygmaeus) in forest fragments of the Lower Kinabatangan flood plain in Sabah, Malaysia. DNA was extracted from hair and faecal samples for 200 wild individuals collected during boat surveys on the Kinabatangan River. Fourteen microsatellite loci were used to characterize patterns of genetic diversity. We found that genetic diversity was high in the set of samples (mean H(E) = 0.74) and that genetic differentiation was significant between the samples (average F(ST) = 0.04, P < 0.001) with F(ST) values ranging from low (0.01) to moderately large (0.12) values. Pairwise F(ST) values were significantly higher across the Kinabatangan River than between samples from the same river side, thereby confirming the role of the river as a natural barrier to gene flow. The correlation between genetic and geographical distance was tested by means of a series of Mantel tests based on different measures of geographical distance. We used a Bayesian method to estimate immigration rates. The results indicate that migration is unlikely across the river but cannot be completely ruled out because of the limited F(ST) values. Assignment tests confirm the overall picture that gene flow is limited across the river. We found that migration between samples from the same side of the river had a high probability indicating that orang-utans used to move relatively freely between neighbouring areas. This strongly suggests that there is a need to maintain migration between isolated forest fragments. This could be done by restoring forest corridors alongside the river banks and between patches.

  13. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  14. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    PubMed Central

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  15. Increased Risk of Genetic and Epigenetic Instability in Human Embryonic Stem Cells Associated with Specific Culture Conditions

    PubMed Central

    Garitaonandia, Ibon; Amir, Hadar; Boscolo, Francesca Sesillo; Wambua, Gerald K.; Schultheisz, Heather L.; Sabatini, Karen; Morey, Robert; Waltz, Shannon; Wang, Yu-Chieh; Tran, Ha; Leonardo, Trevor R.; Nazor, Kristopher; Slavin, Ileana; Lynch, Candace; Li, Yingchun; Coleman, Ronald; Gallego Romero, Irene; Altun, Gulsah; Reynolds, David; Dalton, Stephen; Parast, Mana; Loring, Jeanne F.; Laurent, Louise C.

    2015-01-01

    The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs) make them a promising source of material for cell transplantation therapy, drug development, and studies of cellular differentiation and development. However, the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures, a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging, and feeder-free vs. mouse embryonic fibroblast feeder substrate, on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages, we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability, higher rates of cell proliferation, and persistence of OCT4/POU5F1-positive cells in teratomas, with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers, we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53, which was associated with decreased mRNA expression of TP53, as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures, we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies. PMID:25714340

  16. Recent and Projected Increases in Atmospheric CO2 Concentration Can Enhance Gene Flow between Wild and Genetically Altered Rice (Oryza sativa)

    PubMed Central

    Ziska, Lewis H.; Gealy, David R.; Tomecek, Martha B.; Jackson, Aaron K.; Black, Howard L.

    2012-01-01

    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO2 from an early 20th century concentration (300 µmol mol−1) to current (400 µmol mol−1) and projected, mid-21st century (600 µmol mol−1) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol−1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems. PMID:22649533

  17. Stringent mating-type-regulated auxotrophy increases the accuracy of systematic genetic interaction screens with Saccharomyces cerevisiae mutant arrays.

    PubMed

    Singh, Indira; Pass, Rebecca; Togay, Sine Ozmen; Rodgers, John W; Hartman, John L

    2009-01-01

    A genomic collection of haploid Saccharomyces cerevisiae deletion strains provides a unique resource for systematic analysis of gene interactions. Double-mutant haploid strains can be constructed by the synthetic genetic array (SGA) method, wherein a query mutation is introduced by mating to mutant arrays, selection of diploid double mutants, induction of meiosis, and selection of recombinant haploid double-mutant progeny. The mechanism of haploid selection is mating-type-regulated auxotrophy (MRA), by which prototrophy is restricted to a particular haploid genotype generated only as a result of meiosis. MRA escape leads to false-negative genetic interaction results because postmeiotic haploids that are supposed to be under negative selection instead proliferate and mate, forming diploids that are heterozygous at interacting loci, masking phenotypes that would be observed in a pure haploid double-mutant culture. This work identified factors that reduce MRA escape, including insertion of terminator and repressor sequences upstream of the MRA cassette, deletion of silent mating-type loci, and utilization of alpha-type instead of a-type MRA. Modifications engineered to reduce haploid MRA escape reduced false negative results in SGA-type analysis, resulting in >95% sensitivity for detecting gene-gene interactions.

  18. A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation.

    PubMed

    Gomez-Mestre, Ivan; Jovani, Roger

    2013-11-22

    An ongoing new synthesis in evolutionary theory is expanding our view of the sources of heritable variation beyond point mutations of fixed phenotypic effects to include environmentally sensitive changes in gene regulation. This expansion of the paradigm is necessary given ample evidence for a heritable ability to alter gene expression in response to environmental cues. In consequence, single genotypes are often capable of adaptively expressing different phenotypes in different environments, i.e. are adaptively plastic. We present an individual-based heuristic model to compare the adaptive dynamics of populations composed of plastic or non-plastic genotypes under a wide range of scenarios where we modify environmental variation, mutation rate and costs of plasticity. The model shows that adaptive plasticity contributes to the maintenance of genetic variation within populations, reduces bottlenecks when facing rapid environmental changes and confers an overall faster rate of adaptation. In fluctuating environments, plasticity is favoured by selection and maintained in the population. However, if the environment stabilizes and costs of plasticity are high, plasticity is reduced by selection, leading to genetic assimilation, which could result in species diversification. More broadly, our model shows that adaptive plasticity is a common consequence of selection under environmental heterogeneity, and hence a potentially common phenomenon in nature. Thus, taking adaptive plasticity into account substantially extends our view of adaptive evolution.

  19. Brain Structure and Function Changes During the Development of Schizophrenia: The Evidence From Studies of Subjects at Increased Genetic Risk

    PubMed Central

    Lawrie, Stephen M.; McIntosh, Andrew M.; Hall, Jeremy; Owens, David G.C.; Johnstone, Eve C.

    2008-01-01

    This article reviews the evidence for changes in the structure and function of the brain in subjects at high risk of schizophrenia for genetic reasons during the genesis of the disorder. We first highlight the structural and functional abnormalities in schizophrenia and whether any similar or lesser abnormalities are apparent in unaffected relatives. There is good evidence for subtle abnormalities of hippocampal and ventricle volume in relatives that are not as marked as the deficits in schizophrenia. In addition, the functional imaging literature suggests that prefrontal cortex function may deteriorate in those at risk who go on to develop the disorder. We then review the findings from longitudinal imaging studies of those at high risk, particularly the Edinburgh High-Risk Study, which report gray matter density reductions in medial and lateral temporal lobe because people develop schizophrenia, as well as functional abnormalities which precede onset. We conclude by quoting our own and others’ imaging studies of the associations of genetic and other risk factors for schizophrenia, including stressful life events and cannabis use, which provide mechanistic examples of how these changes may be brought about. Overall, the literature supports the view that there are measurable changes in brain structure and function during the genesis of the disorder, which provide opportunities for early detection and intervention. PMID:18227083

  20. Antioxidant Impregnated Ultra-High Molecular Weight Polyethylene Wear Debris Particles Display Increased Bone Remodeling and a Superior Osteogenic:Osteolytic Profile vs. Conventional UHMWPE Particles in a Murine Calvaria Model

    PubMed Central

    Chen, Yu; Hallab, Nadim J.; Liao, Yen-Shuo; Narayan, Venkat; Schwarz, Edward M.; Xie, Chao

    2015-01-01

    Periprosthetic osteolysis remains a major limitation of long-term successful total hip replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. As intra and extracellular reactive oxygen species are know to contribute to wear debris-induced osteoclastic bone resorption and decreased osteoblastic bone formation, antioxidant doped UHMWPE has emerged as an approach to reduce the osteolytic potential of wear debris and maintain coupled bone remodeling. To test this hypothesis in vivo, we evaluated the effects of crosslinked UHMWPE wear debris particles (AltrX™), versus similar wear particles made from COVERNOX™ containing UHMWPE (AOX™), in an established murine calvaria model. Eight-week-old female C57B/6 mice (n=10/Group) received a pre-op micro-CT scan prior to surgical implantation of the UHMWPE particles (2mg), or surgery without particles (sham). Dynamic labeling was performed by intraperitoneal injection of calcein on day 7 and alizarin on day 9, and the calvaria were harvested for micro-CT and histology on day 10. Surprisingly, we found that AOX particles induced significantly more bone resorption (1.72-fold) and osteoclast numbers (1.99-fold) vs. AltrX (p<0.001). However, AOX also significantly induced 1.64-fold more new bone formation vs. AltrX (p<0.01). Moreover, while the osteolytic:osteogenic ratio of both particles was very close to 1.0, which is indicative of coupled remodeling, AOX was more osteogenic (Slope=1.13±0.10 vs. 0.97±0.10). Histomorphometry of the metabolically labeled undecalcified calvaria revealed a consistent trend of greater MAR in AOX vs. AltrX. Collectively, these results demonstrate that anti-oxidant impregnated UHMWPE particles have decreased osteolytic potential due to their increased osteogenic properties that support coupled bone remodeling. PMID:26495749

  1. Genetic perturbations that impair functional trait interactions lead to reduced bone strength and increased fragility in mice.

    PubMed

    Smith, Lauren M; Bigelow, Erin M R; Nolan, Bonnie T; Faillace, Meghan E; Nadeau, Joseph H; Jepsen, Karl J

    2014-10-01

    Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J-Chr(A/J)/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i=the substituted chromosome) showed changes in mechanical function on the order of -26.6 to +11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by

  2. Increased wheel-running activity in the genetically skeletal muscle fast-twitch fiber-dominant rats.

    PubMed

    Suwa, Masataka; Nakano, Hiroshi; Higaki, Yasuki; Nakamura, Tomohiro; Katsuta, Shigeru; Kumagai, Shuzo

    2003-01-01

    The purpose of the present study was to investigate whether genetic differences in muscle histochemical characteristics were related to the voluntary wheel-running activity level by using genetically fast-twitch fiber-dominant rats (FFDR) and control rats (CR). The rats were divided into four groups; sedentary CR (Sed-CR), wheel-running CR (WR-CR), sedentary FFDR (Sed-FFDR), and wheel-running FFDR (WR-FFDR). Wheel access was started at age 9 wk and lasted for 7 days. The FFDR showed a lower percentage of type I fibers of the deep portion of gastrocnemius and soleus muscles and a higher percentage of both type IIX fibers of the gastrocnemius muscle and type IIA fibers of the soleus muscle compared with CR. A higher capillary density and smaller fiber cross-sectional area were also observed in FFDR. The daily running distance in WR-FFDR was higher than in WR-CR for each 7 days. The total running distance for 7 days in WR-FFDR was 3.2-fold higher than in WR-CR. On day 7 of the 7-day test, the total number of active 1-min intervals for 24 h, the average rpm when they were active, and the maximum rpm for any single 1-min period in the WR-FFDR were significantly higher than in the WR-CR (1.5-, 2.9-, and 2.0-fold, respectively). These results suggest that mechanical or physiological muscle characteristics may thus affect the wheel-running activity level.

  3. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs?

    PubMed

    Kara, Yusuf; Doguc, Duygu Kumbul; Kulac, Esin; Gultekin, Fatih

    2014-05-01

    Chronic inflammation occurs systematically in the central nervous system during ageing, it has been shown that neuroinflammation plays an important role in the pathogenesis of many neurodegenerative disorders. Aspirin, a nonselective COX inhibitor, as well as ascorbic acid, has been purported to protect cerebral tissue. We investigated the effects of subchronic aspirin and ascorbic acid usage on spatial learning, oxidative stress and expressions of NR2A, NR2B, nAChRα7, α4 and β2. Forty male rats (16-18 months) were divided into 4 groups, namely, control, aspirin-treated, ascorbic acid-treated, aspirin+ascorbic acid-treated groups. Following 10-weeks administration period, rats were trained and tested in the Morris water maze. 8-Hydroxy-2-deoxyguanosine and malondialdehyde were evaluated by ELISA and HPLC, respectively. Receptor expressions were assessed by western blotting of hippocampi. Spatial learning performance improved partially in the aspirin group, but significant improvement was seen in the aspirin+ascorbic acid group (p < 0.05). While 8-hydroxy-2-deoxyguanosine and malondialdehyde levels were significantly decreased, NR2B and nAChRα7 expressions were significantly increased in the aspirin+ascorbic acid group as compared to the control group (p < 0.05). Subchronic treatment with aspirin+ascorbic acid in aged rats was shown to enhance cognitive performance and increase the expressions of several receptors related to learning and memory process.

  4. Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules.

    PubMed

    Feng, Lin; Li, Wen; Liu, Yang; Jiang, Wei-Dan; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Wu, Pei; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    The present work evaluated the effects of dietary phenylalanine (Phe) on the intestinal immune response, tight junction proteins transcript abundance, and the gene expression of immune- and antioxidant-related signalling molecules in the intestine. In addition, the dietary Phe (and Phe + Tyr) requirement of young grass carp (Ctenopharyngodon idella) was also estimated. Fish were fed fish meal-casein-gelatin based diets (302.3 g crude protein kg(-1)) containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g Phe kg(-1) with a fixed amount of 10.7 g tyrosine kg(-1) for 8 weeks. The results showed that Phe deficiency or excess Phe reduced the lysozyme and acid phosphatase activities and complement C 3 content in the intestine (P < 0.05). Moreover, zonula occludens-1 (ZO-1), occludin and claudin c mRNA levels were highest in the fish fed the diet containing 11.5 g Phe kg(-1) (P < 0.05). However, claudin 12 and claudin b mRNA levels were not significantly affected by dietary Phe (P > 0.05). Gene expression of interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), target of rapamycin (TOR) and inhibitor of nuclear factor κBα (IκBα) in proximal intestine (PI), mid intestine (MI) and distal intestine (DI) increased as dietary Phe increased up to 6.1, 9.1, 11.5 and 14.0 g kg(-1), respectively (P < 0.05). However, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and nuclear factor-κB p65 (NF-κB p65) mRNA levels showed opposite tendencies. In addition, the mRNA level of superoxide dismutase (SOD) was significantly lower in the intestinal tissue of the group fed a diet with Phe levels of 16.8 g kg(-1) than in those of other groups (P < 0.05). The expression of NF-E2-related factor 2 (Nrf2) gene was increased as dietary Phe increased up to 9.1 g kg(-1) (P < 0.05). In conclusion, Phe improved intestinal immune status, and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes, NF-κB p65, IκBα, TOR, and Nrf2 in the fish

  5. Functional analysis of genetic polymorphism in Wuchereria bancrofti glutathione S-transferase antioxidant gene: impact on protein structure and enzyme catalysis.

    PubMed

    Sakthidevi, Moorthy; Prabhu, Prince Rajaiah; Chowdhary, Swati; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2013-01-01

    Wuchereria bancrofti glutathione S-transferase (Wb-GST) is referred as a promising chemotherapeutic target for lymphatic filariasis. GST represents the major class of detoxifying enzymes of the tissue dwelling parasitic helminths. Though many inhibition studies were carried out for Wb-GST, understanding its genetic distribution in parasite population is necessary to develop ideal inhibitor. Our genetic polymorphic studies exposed the existence of three variant Wb-GST alleles in the four endemic regions of India. Moreover, it also revealed the variability in the distribution of Wb-GST alleles in the studied population. Therefore we cloned, expressed and purified the recombinant variant Wb-GST proteins to study the mutation impact on its structure and hence on its catalysis. Among the studied mutations, the I60F/G78S substitutions in the N-terminal domain and loop region connecting the two domains of Wb-GST lowered the affinity for glutathione and its analog, S-hexyl glutathione. Moreover, molecular modeling and docking studies revealed that the I60F/G78S mutations affected the proximity of Trp38 and Arg95 in glutathione binding site resulting in weaker interaction with S-hexyl glutathione. Besides, the variants also had lower affinity (Ki) and higher IC50 values for well-known GST inhibitors. Interestingly, the Wb-GST variant proteins showed enhanced catalytic efficiency for lipid peroxidation products which are produced due to oxidative stress. Thus, our study provides evidence for the functional impact of mutations on Wb-GST protein and also spotlights the mechanisms of parasite survival against the host oxidative stress environment.

  6. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases.

    PubMed

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A

    2016-02-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.

  7. Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens).

    PubMed

    Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Eagar, Christopher

    2008-06-01

    In fall (November 2005) and winter (February 2006), we collected current-year foliage of native red spruce (Picea rubens Sarg.) growing in a reference watershed and in a watershed treated in 1999 with wollastonite (CaSiO(3), a slow-release calcium source) to simulate preindustrial soil calcium concentrations (Ca-addition watershed) at the Hubbard Brook Experimental Forest (Thornton, NH). We analyzed nutrition, soluble sugar concentrations, ascorbate peroxidase (APX) activity and cold tolerance, to evaluate the basis of recent (2003) differences between watersheds in red spruce foliar winter injury. Foliar Ca and total sugar concentrations were significantly higher in trees in the Ca-addition watershed than in trees in the reference watershed during both fall (P=0.037 and 0.035, respectively) and winter (P=0.055 and 0.036, respectively). The Ca-addition treatment significantly increased foliar fructose and glucose concentrations in November (P=0.013 and 0.007, respectively) and foliar sucrose concentrations in winter (P=0.040). Foliar APX activity was similar in trees in both watersheds during fall (P=0.28), but higher in trees in the Ca-addition watershed during winter (P=0.063). Cold tolerance of foliage was significantly greater in trees in the Ca-addition watershed than in trees in the reference watershed (P<0.001). Our results suggest that low foliar sugar concentrations and APX activity, and reduced cold tolerance in trees in the reference watershed contributed to their high vulnerability to winter injury in 2003. Because the reference watershed reflects forest conditions in the region, the consequences of impaired physiological function caused by soil Ca depletion may have widespread implications for forest health.

  8. Carotenoids, birdsong and oxidative status: administration of dietary lutein is associated with an increase in song rate and circulating antioxidants (albumin and cholesterol) and a decrease in oxidative damage.

    PubMed

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits.

  9. Carotenoids, Birdsong and Oxidative Status: Administration of Dietary Lutein Is Associated with an Increase in Song Rate and Circulating Antioxidants (Albumin and Cholesterol) and a Decrease in Oxidative Damage

    PubMed Central

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336

  10. The role of the cellular antioxidant defense in oxidant carcinogenesis.

    PubMed Central

    Cerutti, P; Ghosh, R; Oya, Y; Amstad, P

    1994-01-01

    Oxidant carcinogens interact with multiple cellular targets including membranes, proteins, and nucleic acids. They cause structural damage to DNA and have the potential to mutate cancer-related genes. At the same time, oxidants activate signal transduction pathways and alter the expression of growth- and differentiation-related genes. Indeed, the carcinogenic action of oxidants results from the superposition of these genetic and epigenetic effects. All cells possess elaborate antioxidant defense systems that consist of interacting low and high molecular weight components. Among them, superoxide dismutases (SOD), glutathione peroxidases (GPx), and catalase (CAT) play a central role. Our studies with mouse epidermal cells demonstrate that the balance between several antioxidant enzymes rather than the activity of a single component determines the degree of protection. Unexpectedly, increased levels of Cu,Zn-SOD alone in stable transfectants resulted in sensitization to oxidative chromosomal aberrations and DNA strand breaks. However, a concomitant increase in CAT or GPx in double transfectants corrected or overcorrected the hypersensitivity of the SOD clones depending on the ratios of activities CAT/SOD or GPx/SOD. The cellular antioxidant capacity also affected oxidant induction of the growth-related immediate early protooncogene c-fos. Increases in CAT or SOD reduced the accumulation of c-fos message, albeit for different reasons. The cellular antioxidant defense also affects the action of UVB light (290-320 nm) that represents the most potent carcinogenic wavelength range of the solar spectrum. UVB light is known to exert its action in part through oxidative mechanisms. Increases in CAT and GPx protected mouse epidermal cells from UVB-induced DNA breakage.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2. PMID:7705286

  11. Therapeutics role of olive fruits/oil in the prevention of diseases via modulation of anti-oxidant, anti-tumour and genetic activity

    PubMed Central

    Rahmani, Arshad H; Albutti, Aqel S; Aly, Salah M

    2014-01-01

    The current mode of treatment for various diseases is based on synthetic drugs are effective but they show adverse effect and also alter the genetic and metabolic activity. Moreover, some drugs prepared from plants and their constituents show potentiality with more efficacy than synthetic agents used in clinical therapy. Earlier report has shown that regular consumption of fruits and vegetables is strongly related with reduced risk of developing various diseases. Several epidemiological studies has shown that, the incidence heart disease and cancers is lowest in the Mediterranean basin as compared to the part of the world because of their diet rich in olives and olive products. Olives are commonly consumed in Mediterranean and Arabian Peninsula and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that, the constituents from olive such as oleuropein, squalene and hydroxytyrosol modulate the genes functions and other activities. In this review, the medicinal value of olives and their constituents are summarized in terms of therapeutic approach in the diseases management through regulation of various activities. PMID:24955148

  12. Mitochondrial Targeted Antioxidant in Cerebral Ischemia.

    PubMed

    Ahmed, Ejaz; Donovan, Tucker; Yujiao, Lu; Zhang, Quanguang

    There has been much evidence suggesting that reactive oxygen species (ROS) generated in mitochondria during cerebral ischemia play a major role in programming the senescence of organism. Antioxidants dealing with mitochondria slow down the appearance and progression of symptoms in cerebral ischemia and increase the life span of organisms. The mechanisms of mitochondrial targeted antioxidants, such as SKQ1, Coenzyme Q10, MitoQ, and Methylene blue, include increasing adenosine triphosphate (ATP) production, decreasing production of ROS and increasing antioxidant defenses, providing benefits in neuroprotection following cerebral ischemia. A number of studies have shown the neuroprotective role of these mitochondrial targeted antioxidants in cerebral ischemia. Here in this short review we have compiled the literature supporting consequences of mitochondrial dysfunction, and the protective role of mitochondrial targeted antioxidants.

  13. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.

    PubMed

    Weselake, Randall J; Shah, Saleh; Tang, Mingguo; Quant, Patti A; Snyder, Crystal L; Furukawa-Stoffer, Tara L; Zhu, Weiming; Taylor, David C; Zou, Jitao; Kumar, Arvind; Hall, Linda; Laroche, Andre; Rakow, Gerhard; Raney, Phillip; Moloney, Maurice M; Harwood, John L

    2008-01-01

    Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.

  14. Antioxidant activities from different rosemary clonal lines.

    PubMed

    Ban, Lan; Narasimhamoorthy, Brindha; Zhao, Liuqing; Greaves, John A; Schroeder, William D

    2016-06-15

    Rosemary extract is widely used in food industry and carnosic acid is reported to be the major component that is responsible for its antioxidant activities. However, it is unclear how the numerous plant metabolites interact and contribute to the overall antioxidant activity. In this study, with poultry fat as the model food system, rosemary extract from six clonal lines were evaluated that each represented a different genetic variant. As expected, rosemary extract with higher carnosic acid content had higher antioxidant activity. However, rosemary extract which had carnosic acid removed retained a significant amount of activity. Furthermore, when the individual contributions of carnosic acid and the portion without carnosic acid were evaluated separately, neither was shown to be responsible for the overall level of its stabilization effect from rosemary extract as a whole entity. The interactions among different plant metabolites have a major impact on the overall antioxidant capabilities of rosemary extract.

  15. From Observation to Intervention: Development of a Psychoeducational Intervention to Increase Uptake of BRCA Genetic Counseling Among High-Risk Breast Cancer Survivors

    PubMed Central

    Malo, Teri L.; Nam, Kelli M.; Nelson, Alison; de la Cruz, Cara Z.; Quinn, Gwendolyn P.

    2015-01-01

    We describe the development of a psychoeducational intervention (PEI) to increase uptake of genetic counseling targeted to high-risk breast cancer survivors. Based on previous research, scientific literature, and a review of cancer education websites, we identified potential PEI content. We then assessed the initial acceptability and preference of two booklets of identical content but different layouts, by presenting the booklets to individuals with a personal or family history of breast cancer (n=57). The preferred booklet was evaluated by two focus groups of ten breast cancer patients who had not attended genetic counseling. The booklet was refined based on participants' feedback at each stage. Focus group participants generally found the booklet visually appealing, informative, and helpful, but some thought that it was too long. Final changes were made based on learner verification principles of attraction, comprehension, cultural acceptability, and persuasion. This project produced an interventional tool to present key constructs that may facilitate decision making about risk-appropriate genetic counseling uptake among high-risk breast cancer survivors. The process described for creating, testing, and adapting materials from a patient perspective can be used for developing other PEIs. This newly developed, unique PEI can be used in many clinical settings. PMID:24706196

  16. From observation to intervention: development of a psychoeducational intervention to increase uptake of BRCA genetic counseling among high-risk breast cancer survivors.

    PubMed

    Vadaparampil, Susan T; Malo, Teri L; Nam, Kelli M; Nelson, Alison; de la Cruz, Cara Z; Quinn, Gwendolyn P

    2014-12-01

    We describe the development of a psychoeducational intervention (PEI) to increase uptake of genetic counseling targeted to high-risk breast cancer survivors. Based on previous research, scientific literature, and a review of cancer education websites, we identified potential PEI content. We then assessed the initial acceptability and preference of two booklets of identical content but different layouts, by presenting the booklets to individuals with a personal or family history of breast cancer (n = 57). The preferred booklet was evaluated by two focus groups of ten breast cancer patients who had not attended genetic counseling. The booklet was refined based on participants' feedback at each stage. Focus group participants generally found the booklet visually appealing, informative, and helpful, but some thought that it was too long. Final changes were made based on learner verification principles of attraction, comprehension, cultural acceptability, and persuasion. This project produced an interventional tool to present key constructs that may facilitate decision making about risk-appropriate genetic counseling uptake among high-risk breast cancer survivors. The process described for creating, testing, and adapting materials from a patient perspective can be used for developing other PEIs. This newly developed, unique PEI can be used in many clinical settings.

  17. Rare Genetic Variation at Zea mays crtRB1 Increases B-Carotene in Maize Grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding to increase b-carotene levels in cereal grains, termed Provitamin A biofortification, is an economical approach to address the challenge of dietary vitamin A deficiency in the developing world. We draw upon experimental evidence from DNA sequence, transcriptional expression, and recombinant...

  18. Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients: Increased Genetic Load of Islet-Expressed and Cytokine-Regulated Candidate Genes Predicts Poorer Glycemic Control

    PubMed Central

    Brorsson, Caroline A.; Nielsen, Lotte B.; Andersen, Marie Louise; Kaur, Simranjeet; Bergholdt, Regine; Hansen, Lars; Mortensen, Henrik B.; Pociot, Flemming; Størling, Joachim; Hvidoere Study Group on Childhood Diabetes

    2016-01-01

    Genome-wide association studies (GWAS) have identified over 40 type 1 diabetes risk loci. The clinical impact of these loci on β-cell function during disease progression is unknown. We aimed at testing whether a genetic risk score could predict glycemic control and residual β-cell function in type 1 diabetes (T1D). As gene expression may represent an intermediate phenotype between genetic variation and disease, we hypothesized that genes within T1D loci which are expressed in islets and transcriptionally regulated by proinflammatory cytokines would be the best predictors of disease progression. Two-thirds of 46 GWAS candidate genes examined were expressed in human islets, and 11 of these significantly changed expression levels following exposure to proinflammatory cytokines (IL-1β + IFNγ + TNFα) for 48 h. Using the GWAS single nucleotide polymorphisms (SNPs) from each locus, we constructed a genetic risk score based on the cumulative number of risk alleles carried in children with newly diagnosed T1D. With each additional risk allele carried, HbA1c levels increased significantly within first year after diagnosis. Network and gene ontology (GO) analyses revealed that several of the 11 candidate genes have overlapping biological functions and interact in a common network. Our results may help predict disease progression in newly diagnosed children with T1D which can be exploited for optimizing treatment. PMID:26904692

  19. Increased synovial expression of nuclear receptors correlates with arthritis protection: a possible novel genetically-regulated homeostatic mechanism

    PubMed Central

    Brenner, Max; Linge, Carl P.; Li, Wentian; Gulko, Pércio S.

    2011-01-01

    Objective To use microarray analyses of gene expression to characterize the synovial molecular pathways regulated by the arthritis regulatory locus Cia25, and how it operates to control disease severity and joint damage. Methods Synovial tissues from DA and DA.ACI(Cia25) rats obtained 21 days post-induction of pristane-induced arthritis were used for RNA extraction and hybridization to Illumina Rat-Ref 12 Beadchips (22,228 genes). A p-value ≤0.01 plus a fold-difference ≥1.5 were considered significant. Results IL-1β (7-fold), IL-6 (67-fold), Ccl2, Cxcl10, Mmp3, Mmp14, and innate immunity genes were expressed in increased levels in DA and in significantly lower levels in congenics. DA.ACI(Cia25) had increased expression of ten nuclear receptors (NR) genes, including those known to interfere with NFκB activity and cytokine expression, such as Lxrα, Pparγ, and Rxrγ. DA.ACI(Cia25) also had increased expression of NR targets suggesting increased NR activity. While the Vdr was not differentially expressed, a Vdr expression signature was detected in congenics, along with up-regulation of mediators of vitamin D synthesis. Conclusions This is the first description of the association between increased synovial levels of NRs and arthritis protection. The expression of NRs was inversely correlated with the expression of key mediators of arthritis suggesting reciprocally opposing effects either via NFκB or at the genomic level in the synovial tissue. We consider that the NR signature may have an important role in maintaining synovial homeostasis and an inflammation-free tissue. These processes are regulated by the Cia25 gene and suggest a new function for this gene. PMID:21702016

  20. Rare Genetic Variant in SORL1 May Increase Penetrance of Alzheimer’s Disease in a Family with Several Generations of APOE-ɛ4 Homozygosity

    PubMed Central

    Louwersheimer, Eva; Cohn-Hokke, Petra E.; Pijnenburg, Yolande A.L.; Weiss, Marjan M.; Sistermans, Erik A.; Rozemuller, Annemieke J.; Hulsman, Marc; van Swieten, John C.; van Duijn, Cock M.; Barkhof, Frederik; Koene, Teddy; Scheltens, Philip; Van der Flier, Wiesje M.; Holstege, Henne

    2016-01-01

    Background: The major genetic risk factor for late onset Alzheimer’s disease (AD) is the APOE-ɛ4 allele. However, APOE-ɛ4 homozygosity is not fully penetrant, suggesting co-occurrence of additional genetic variants. Objective: To identify genetic factors that, next to APOE-ɛ4 homozygosity, contribute to the development of AD. Methods: We identified a family with nine AD patients spanning four generations, with an inheritance pattern suggestive of autosomal dominant AD, with no variants in PSEN1, PSEN2, or APP. We collected DNA from four affected and seven unaffected family members and performed exome sequencing on DNA from three affected and one unaffected family members. Results: All affected family members were homozygous for the APOE-ɛ4 allele. Statistical analysis revealed that AD onset in this family was significantly earlier than could be expected based on APOE genotype and gender. Next to APOE-ɛ4 homozygosity, we found that all four affected family members carried a rare variant in the VPS10 domain of the SORL1 gene, associated with AβPP processing and AD risk. Furthermore, three of four affected family members carried a rare variant in the TSHZ3 gene, also associated with AβPP processing. Affected family members presented between 61 and 74 years, with variable presence of microbleeds/cerebral amyloid angiopathy and electroencephalographic abnormalities. Conclusion: We hypothesize that next to APOE-ɛ4 homozygosity, impaired SORL1 protein function, and possibly impaired TSHZ3 function, further disturbed Aβ processing. The convergence of these genetic factors over several generations might clarify the increased AD penetrance and the autosomal dominant-like inheritance pattern of AD as observed in this family. PMID:27911290

  1. Therapeutic Antioxidant Medical Gas

    PubMed Central

    Nakao, Atsunori; Sugimoto, Ryujiro; Billiar, Timothy R; McCurry, Kenneth R

    2009-01-01

    Medical gases are pharmaceutical gaseous molecules which offer solutions to medical needs and include traditional gases, such as oxygen and nitrous oxide, as well as gases with recently discovered roles as biological messenger molecules, such as carbon monoxide, nitric oxide and hydrogen sulphide. Medical gas therapy is a relatively unexplored field of medicine; however, a recent increasing in the number of publications on medical gas therapies clearly indicate that there are significant opportunities for use of gases as therapeutic tools for a variety of disease conditions. In this article, we review the recent advances in research on medical gases with antioxidant properties and discuss their clinical applications and therapeutic properties. PMID:19177183

  2. Antioxidant impregnated ultra-high molecular weight polyethylene wear debris particles display increased bone remodeling and a superior osteogenic:osteolytic profile vs. conventional UHMWPE particles in a murine calvaria model.

    PubMed

    Chen, Yu; Hallab, Nadim J; Liao, Yen-Shuo; Narayan, Venkat; Schwarz, Edward M; Xie, Chao

    2016-05-01

    Periprosthetic osteolysis remains a major limitation of long-term successful total hip replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. As intra and extracellular reactive oxygen species are know to contribute to wear debris-induced osteoclastic bone resorption and decreased osteoblastic bone formation, antioxidant doped UHMWPE has emerged as an approach to reduce the osteolytic potential of wear debris and maintain coupled bone remodeling. To test this hypothesis in vivo, we evaluated the effects of crosslinked UHMWPE wear debris particles (AltrX(™) ), versus similar wear particles made from COVERNOX(™) containing UHMWPE (AOX(™) ), in an established murine calvaria model. Eight-week-old female C57B/6 mice (n = 10/Group) received a pre-op micro-CT scan prior to surgical implantation of the UHMWPE particles (2mg), or surgery without particles (sham). Dynamic labeling was performed by intraperitoneal injection of calcein on day 7 and alizarin on day 9, and the calvaria were harvested for micro-CT and histology on day 10. Surprisingly, we found that AOX particles induced significantly more bone resorption (1.72-fold) and osteoclast numbers (1.99-fold) vs. AltrX (p < 0.001). However, AOX also significantly induced 1.64-fold more new bone formation vs. AltrX (p < 0.01). Moreover, while the osteolytic:osteogenic ratio of both particles was very close to 1.0, which is indicative of coupled remodeling, AOX was more osteogenic (Slope = 1.13 ± 0.10 vs. 0.97 ± 0.10). Histomorphometry of the metabolically labeled undecalcified calvaria revealed a consistent trend of greater MAR in AOX vs. AltrX. Collectively, these results demonstrate that anti-oxidant impregnated UHMWPE particles have decreased osteolytic potential due to their increased osteogenic properties that support coupled bone remodeling. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:845-851, 2016.

  3. Antioxidants accelerate lung cancer progression in mice.

    PubMed

    Sayin, Volkan I; Ibrahim, Mohamed X; Larsson, Erik; Nilsson, Jonas A; Lindahl, Per; Bergo, Martin O

    2014-01-29

    Antioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. We show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by disrupting the ROS-p53 axis. Because somatic mutations in p53 occur late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production.

  4. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia.

    PubMed

    Rieg, Timo; Masuda, Takahiro; Gerasimova, Maria; Mayoux, Eric; Platt, Kenneth; Powell, David R; Thomson, Scott C; Koepsell, Hermann; Vallon, Volker

    2014-01-01

    In the kidney, the sodium-glucose cotransporters SGLT2 and SGLT1 are thought to account for >90 and ∼3% of fractional glucose reabsorption (FGR), respectively. However, euglycemic humans treated with an SGLT2 inhibitor maintain an FGR of 40-50%, mimicking values in Sglt2 knockout mice. Here, we show that oral gavage with a selective SGLT2 inhibitor (SGLT2-I) dose dependently increased urinary glucose excretion (UGE) in wild-type (WT) mice. The dose-response curve was shifted leftward and the maximum response doubled in Sglt1 knockout (Sglt1-/-) mice. Treatment in diet with the SGLT2-I for 3 wk maintained 1.5- to 2-fold higher urine glucose/creatinine ratios in Sglt1-/- vs. WT mice, associated with a temporarily greater reduction in blood glucose in Sglt1-/- vs. WT after 24 h (-33 vs. -11%). Subsequent inulin clearance studies under anesthesia revealed free plasma concentrations of the SGLT2-I (corresponding to early proximal concentration) close to the reported IC50 for SGLT2 in mice, which were associated with FGR of 64 ± 2% in WT and 17 ± 2% in Sglt1-/-. Additional intraperitoneal application of the SGLT2-I (maximum effective dose in metabolic cages) increased free plasma concentrations ∼10-fold and reduced FGR to 44 ± 3% in WT and to -1 ± 3% in Sglt1-/-. The absence of renal glucose reabsorption was confirmed in male and female Sglt1/Sglt2 double knockout mice. In conclusion, SGLT2 and SGLT1 account for renal glucose reabsorption in euglycemia, with 97 and 3% being reabsorbed by SGLT2 and SGLT1, respectively. When SGLT2 is fully inhibited by SGLT2-I, the increase in SGLT1-mediated glucose reabsorption explains why only 50-60% of filtered glucose is excreted.

  5. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint.

    PubMed

    Kingston-Smith, A H; Marshall, A H; Moorby, J M

    2013-03-01

    Animal production is a fundamental component of the food supply chain, and with an increasing global population production levels are set to increase. Ruminant animals in particular are valuable in their ability to convert a fibre-rich forage diet into a high-quality protein product for human consumption, although this benefit is offset by inefficiencies in rumen fermentation that contribute to emission of significant quantities of methane and nitrogenous waste. Through co-operation between plant and animal sciences, we can identify how the nutritional requirements of ruminants can be satisfied by high-quality forages for the future. Selective forage plant breeding has supported crop improvement for nearly a century. Early plant breeding programmes were successful in terms of yield gains (4% to 5% per decade), with quality traits becoming increasingly important breeding targets (e.g. enhanced disease resistance and digestibility). Recently, demands for more sustainable production systems have required high yielding, high-quality forages that enable efficient animal production with minimal environmental impact. Achieving this involves considering the entire farm system and identifying opportunities for maximising nutrient use efficiency in both forage and animal components. Forage crops of the future must be able to utilise limited resources (water and nutrients) to maximise production on a limited land area and this may require us to consider alternative plant species to those currently in use. Furthermore, new breeding targets will be identified as the interactions between plants and the animals that consume them become better understood. This will ensure that available resources are targeted at delivering maximum benefits to the animal through enhanced transformation efficiency.

  6. Genetically Enhanced Sorghum and Sugarcane: Engineering Hydrocarbon Biosynthesis and Storage together with Increased Photosynthetic Efficiency into the Saccharinae

    SciTech Connect

    2012-02-15

    PETRO Project: UIUC is working to convert sugarcane and sorghum—already 2 of the most productive crops in the world—into dedicated bio-oil crop systems. Three components will be engineered to produce new crops that have a 50% higher yield, produce easily extractable oils, and have a wider growing range across the U.S. This will be achieved by modifying the crop canopy to better distribute sunlight and increase its cold tolerance. By directly producing oil in the shoots of these plants, these biofuels could be easily extracted with the conventional crushing techniques used today to extract sugar.

  7. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery.

    PubMed

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2013-11-15

    Converting T cells into tumor cell killers by grafting them with a chimeric antigen receptor (CAR) has shown promise as a cancer immunotherapeutic. However, the inability of these cells to actively migrate and extravasate into tumor parenchyma has limited their effectiveness in vivo. Here we report the construction of a CAR containing an echistatin as its targeting moiety (eCAR). As echistatin has high binding affinity to αvβ3 integrin that is highly expressed on the surface of endothelial cells of tumor neovasculature, T cells engrafted with eCAR (T-eCAR) can efficiently lyse human umbilical vein endothelial cells and tumor cells that express αvβ3 integrin when tested in vitro. Systemic administration of T-eCAR led to extensive bleeding in tumor tissues with no evidence of damage to blood vessels in normal tissues. Destruction of tumor blood vessels by T-eCAR significantly inhibited the growth of established bulky tumors. Moreover, when T-eCAR was codelivered with nanoparticles in a strategically designed temporal order, it dramatically increased nanoparticle deposition in tumor tissues, pointing to the possibility that it may be used together with nanocarriers to increase their capability to selectively deliver antineoplastic drugs to tumor tissues.

  8. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors, and increase nanoparticle delivery

    PubMed Central

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2013-01-01

    Converting T cells into tumor cell killers by grafting them with a chimeric antigen receptor (CAR) has shown promise as a cancer immunotherapeutic. However, the inability of these cells to actively migrate and extravasate into tumor parenchyma has limited their effectiveness in vivo. Here we report the construction of a chimeric antigen receptor containing an echistatin as its targeting moiety (eCAR). As echistatin has high binding affinity to αvβ3 integrin that is highly expressed on the surface of endothelial cells of tumor neovasculature, T cells engrafted with eCAR (T-eCAR) can efficiently lyse human umbilical vein endothelial cells and tumor cells that express αvβ3 integrin when tested in vitro. Systemic administration of T-eCAR led to extensive bleeding in tumor tissues with no evidence of damage to blood vessels in normal tissues. Destruction of tumor blood vessels by T-eCAR significantly inhibited the growth of established bulky tumors. Moreover, when T-eCAR was co-delivered with nanoparticles in a strategically designed temporal order, it dramatically increased nanoparticle deposition in tumor tissues, pointing to the possibility that it may be used together with nanocarriers to increase their capability to selectively deliver antineoplastic drugs to tumor tissues. PMID:23661285

  9. The antioxidant paradox in diabetes mellitus.

    PubMed

    Sheikh-Ali, Mae; Chehade, Joe M; Mooradian, Arshag D

    2011-05-01

    There is ample empiric evidence to indicate that oxidative stress contributes to the pathogenesis of coronary artery disease and has a key role in the onset and progression of diabetes and its complications. Diabetes leads to depletion of the cellular antioxidant defense system and is associated with an increase in the production of free radicals. Oxidative stress can be the result of multiple pathways. Some of these are related to substrate-driven overproduction of mitochondrial reactive oxygen species, advanced glycation end product formation, glucose autoxidation, and depletion of micronutrients and cellular elements with antioxidative properties. There are numerous observational studies in the literature showing a beneficial outcome of the consumption of antioxidant vitamins. However, the interventional trials portray a different picture. The divide between the robust experimental evidence of the pathogenetic role of increased oxidative load in diabetes and the overwhelming failure of antioxidants to show any health benefits in clinical trials may well be characterized as the "antioxidant paradox."

  10. Maximizing Antioxidants in Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits contain high levels of antioxidant compounds, such as carotenoids, flavonoids, vitamins, and phenols. These antioxidants are capable of performing a number of functions including free radical scavengers, peroxide decomposers, singlet and triplet oxygen quenchers, enzyme inhibitors, and synerg...

  11. Maximizing Antioxidants in Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits contain high levels of antioxidant compounds, such as carotenoids, flavonoids, vitamins, and phenols. These antioxidants are capable of performing a number of functions including free radical scavengers, peroxide decomposers, singlet and triplet oxygen quenchers, enzyme inhibitors, and syner...

  12. Genetic inactivation of PERK signaling in mouse oligodendrocytes: normal developmental myelination with increased susceptibility to inflammatory demyelination.

    PubMed

    Hussien, Yassir; Cavener, Douglas R; Popko, Brian

    2014-05-01

    The immune-mediated central nervous system (CNS) demyelinating disorder multiple sclerosis (MS) is the most common neurological disease in young adults. One important goal of MS research is to identify strategies that will preserve oligodendrocytes (OLs) in MS lesions. During active myelination and remyelination, OLs synthesize large quantities of membrane proteins in the endoplasmic reticulum (ER), which may result in ER stress. During ER stress, pancreatic ER kinase (PERK) phosphorylates eukaryotic translation initiation factor 2α (elF2α), which activates the integrated stress response (ISR), resulting in a stress-resistant state. Previous studies have shown that PERK activity is increased in OLs within the demyelinating lesions of experimental autoimmune encephalomyelitis (EAE), a model of MS. Moreover, our laboratory has shown that PERK protects OLs from the adverse effects of interferon-γ, a key mediator of the CNS inflammatory response. Here, we have examined the role of PERK signaling in OLs during development and in response to EAE. We generated OL-specific PERK knockout (OL-PERK(ko/ko) ) mice that exhibited a lower level of phosphorylated elF2α in the CNS, indicating that the ISR is impaired in the OLs of these mice. Unexpectedly, OL-PERK(ko/ko) mice develop normally and show no myelination defects. Nevertheless, EAE is exacerbated in these mice, which is correlated with increased OL loss, demyelination, and axonal degeneration. These data indicate that although not needed for developmental myelination, PERK signaling provides protection to OLs against inflammatory demyelination and suggest that the ISR in OLs could be a valuable target for future MS therapeutics.

  13. [Antioxidant therapy in ischemic stroke].

    PubMed

    Suslina, Z A; Federova, T N; Maksimova, M Iu; Riasina, T V; Stvolinskiĭ, S L; Khrapova, E V; Boldyrev, A A

    2000-01-01

    The paper presents the results of investigation of emoxipin, an antioxidant synthetic drug, for treatment of patients with ischemic disorders of cerebral circulation. The drug produced a beneficial clinical effect in patients with lacunar and cardioembolic strokes of moderate severity. Therapy with emoxipin increased endogenic antioxidant activity and improved a clinical status of the patients. The protective effect of carnosine was demonstrated in experimental acute hypobaric hypoxia and cerebral ischemia in rats. The results obtained permit to recommend an inclusion of both emoxipin and carnosine in a combined treatment of ischemic disorders of cerebral circulation.

  14. Oxidative stress, circulating antioxidants, and dietary preferences in songbirds.

    PubMed

    Alan, Rebecca R; McWilliams, Scott R

    2013-03-01

    Oxidative stress is an unavoidable consequence of metabolism and increases during intensive exercise. This is especially problematic for migratory birds that metabolize fat to fuel long-distance flight. Birds can mitigate damage by increasing endogenous antioxidants (e.g. uric acid) or by consuming dietary antioxidants (e.g. tocopherol). During flight, birds may increase protein catabolism of lean tissue which may increase circulating uric acid and many birds also consume an antioxidant-rich frugivorous diet during autumn migration. We evaluated three related hypotheses in a migratory passerine: (1) protein consumption is positively related to circulating antioxidants, (2) a dietary oxidative stressor [i.e. polyunsaturated fatty acid (PUFA)] influences antioxidant capacity and oxidative damage, and (3) oxidative stress influences dietary antioxidant preferences. White-throated Sparrows (Zonotrichia albicollis) consuming a high protein diet increased circulating uric acid; however, uric acid, antioxidant capacity, and oxidative stress did not differ between birds consuming a high PUFA versus a low PUFA diet, despite increased oxidative damage in high PUFA birds. Birds did not prefer antioxidant-rich diets even when fed high PUFA, low protein. We conclude that White-throated Sparrows successfully mitigated oxidative damage associated with a high PUFA diet and mounted an endogenous antioxidant response independent of uric acid, other circulating antioxidants, and dietary antioxidants.

  15. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    SciTech Connect

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya; Challapalli, Srinivas; Chandraguthi, Shrinidhi Gururajarao; Jain, Navya; Krishnamurthy, Hanumanthappa; Kumar, Pratap; Adiga, Satish Kumar

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  16. Antioxidant protection of edible oils.

    PubMed

    Cheung, Sabrina Ching Man; Szeto, Yim Tong; Benzie, Iris F F

    2007-03-01

    The ability of different cooking oils to withstand oxidation was investigated in relation to their native antioxidant capacity [measured as the Ferric Reducing/Antioxidant Power (FRAP) value]. The antiperoxidation effect of the presence of the Chinese herbs, du-zhong (Cortex Eucommia ulmoides) and ginseng (Panax ginseng C.A. Mayer) in corn oil was also investigated over 26 days' storage at 55 degrees C. Results showed that sesame oil had the highest FRAP value (803 microM), followed by canola oil (400 microM), and sunflower, peanut, corn and olive oils (100-153 microM). Oils with higher intrinsic antioxidant content showed higher resistance to oxidation, although this was not statistically significant. Corn oil to which was added the herbs du-zhong, ginseng or both had increased resistance to oxidation (conjugated diene level and lipid peroxide formation) over 26 days. FRAP values of the oil/herb mixtures decreased during this time, implying utilisation of herbal antioxidants. Results have implications for increasing the shelf-life and usage time of cooking oils by addition of herbs which can increase resistance of the oil to oxidation. Results have implications also for health, as it is possible that ingestion of these herbs could increase resistance of polyunsaturated fatty acids of cell membranes and lipoproteins to oxidation within the body.

  17. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylationa

    PubMed Central

    Chow, Jenny D.Y.; Lawrence, Robert T.; Healy, Marin E.; Dominy, John E.; Liao, Jason A.; Breen, David S.; Byrne, Frances L.; Kenwood, Brandon M.; Lackner, Carolin; Okutsu, Saeko; Mas, Valeria R.; Caldwell, Stephen H.; Tomsig, Jose L.; Cooney, Gregory J.; Puigserver, Pere B.; Turner, Nigel; James, David E.; Villén, Judit; Hoehn, Kyle L.

    2014-01-01

    Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-mitochondrial space. PMID:24944901

  18. Genetic variation in DNMT3B and increased global DNA methylation is associated with suicide attempts in psychiatric patients.

    PubMed

    Murphy, T M; Mullins, N; Ryan, M; Foster, T; Kelly, C; McClelland, R; O'Grady, J; Corcoran, E; Brady, J; Reilly, M; Jeffers, A; Brown, K; Maher, A; Bannan, N; Casement, A; Lynch, D; Bolger, S; Buckley, A; Quinlivan, L; Daly, L; Kelleher, C; Malone, K M

    2013-02-01

    Recently, a significant epigenetic component in the pathology of suicide has been realized. Here we investigate candidate functional SNPs in epigenetic-regulatory genes, DNMT1 and DNMT3B, for association with suicide attempt (SA) among patients with co-existing psychiatric illness. In addition, global DNA methylation levels [5-methyl cytosine (5-mC%)] between SA and psychiatric controls were quantified using the Methylflash Methylated DNA Quantification Kit. DNA was obtained from blood of 79 suicide attempters and 80 non-attempters, assessed for DSM-IV Axis I disorders. Functional SNPs were selected for each gene (DNMT1; n = 7, DNMT3B; n = 10), and genotyped. A SNP (rs2424932) residing in the 3' UTR of the DNMT3B gene was associated with SA compared with a non-attempter control group (P = 0.001; Chi-squared test, Bonferroni adjusted P value = 0.02). Moreover, haplotype analysis identified a DNMT3B haplotype which differed between cases and controls, however this association did not hold after Bonferroni correction (P = 0.01, Bonferroni adjusted P value = 0.56). Global methylation analysis showed that psychiatric patients with a history of SA had significantly higher levels of global DNA methylation compared with controls (P = 0.018, Student's t-test). In conclusion, this is the first report investigating polymorphisms in DNMT genes and global DNA methylation quantification in SA risk. Preliminary findings suggest that allelic variability in DNMT3B may be relevant to the underlying diathesis for suicidal acts and our findings support the hypothesis that aberrant DNA methylation profiles may contribute to the biology of suicidal acts. Thus, analysis of global DNA hypermethylation in blood may represent a biomarker for increased SA risk in psychiatric patients.

  19. A common NOS1AP genetic polymorphism is associated with increased cardiovascular mortality in users of dihydropyridine calcium channel blockers

    PubMed Central

    Becker, Matthijs L; Visser, Loes E; Newton-Cheh, Christopher; Hofman, Albert; Uitterlinden, André G; Witteman, Jacqueline C M; Stricker, Bruno H Ch

    2009-01-01

    AIM Recently, a polymorphism in the NOS1AP gene (rs10494366), a regulator of neuronal nitric oxide synthase (nNOS), was associated with QTc prolongation. Both nNOS and calcium channel blockers (CCBs) regulate intracellular calcium levels and have an important role in cardiovascular homeostasis. The aim was to investigate whether this polymorphism is associated with cardiovascular mortality in users of CCBs. METHODS The data from the Rotterdam study, a population-based closed cohort study of Caucasian individuals of ≥55 years of age, were used. We identified 1113 participants in the Rotterdam Study who were prescribed CCBs for the first time between 1991 and 2005. All-cause and cardiovascular mortality was assessed in participants who were prescribed CCBs with different NOS1AP rs10494366 genotypes using Cox proportional hazard models. RESULTS In participants starting on dihydropyridine CCBs (amlodipine, nifedipine and others) all-cause mortality (n = 79) risks were higher in participants with the TG [hazard ratio (HR) 2.57, 95% confidence interval (CI) 1.24, 5.34] or the GG genotype (HR 3.18, 95% CI 1.18, 8.58) than in participants with the referent TT genotype. Cardiovascular mortality (n = 54) risks were 3.51 (95% CI 1.41, 8.78) for the TG genotype and 6.00 (95% CI 1.80, 20.0) for the GG genotype. No differences in all-cause mortality or cardiovascular mortality were seen in participants starting with the nondihydropyridine CCBs verapamil or diltiazem. CONCLUSION The minor G allele of rs10494366 in the NOS1AP gene is associated with increased all-cause and cardiovascular mortality in Caucasian users of dihydropyridine CCBs. The mechanism underlying the observed association is unknown. PMID:19076153

  20. No Increases in Biomarkers of Genetic Damage or Pathological Changes in Heart and Brain Tissues in Male Rats Administered Methylphenidate Hydrochloride (Ritalin) for 28 Days

    PubMed Central

    Witt, Kristine L.; Malarkey, David E.; Hobbs, Cheryl A.; Davis, Jeffrey P.; Kissling, Grace E.; Caspary, William; Travlos, Gregory; Recio, Leslie

    2009-01-01

    Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. 2007) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats. PMID:19634155

  1. No increases in biomarkers of genetic damage or pathological changes in heart and brain tissues in male rats administered methylphenidate hydrochloride (Ritalin) for 28 days.

    PubMed

    Witt, Kristine L; Malarkey, David E; Hobbs, Cheryl A; Davis, Jeffrey P; Kissling, Grace E; Caspary, William; Travlos, Gregory; Recio, Leslie

    2010-01-01

    Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. [2007]: Prog Neuropsychopharmacol Biol Psychiatry 31:1282-1288) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats.

  2. Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women.

    PubMed

    Petry, Nicolai; Egli, Ines; Campion, Bruno; Nielsen, Erik; Hurrell, Richard

    2013-08-01

    Iron bioavailability from common beans is negatively influenced by phytic acid (PA) and polyphenols (PPs). Newly developed low-PA (lpa) beans with 90% less PA and variable PPs might improve iron bioavailability. The aim of this study was to evaluate the influence of lpa beans on iron bioavailability in women (n = 20). We compared iron absorption from 4 different beans using a paired, double meal, crossover design. Iron absorption was measured as erythrocyte incorporation of stable iron isotopes (Fe(57), Fe(58)) from 2 lpa bean lines, one high in PPs (means ± SDs; PA = 124 ± 10 mg/100 g; PPs = 462 ± 25 mg/100 g) and one low in PPs (PA = 70 ± 10 mg/100 g; PPs = 54 ± 2 mg/100 g). The other 2 beans used were their parents with a normal PA concentration, one high in PPs (PA = 1030 ± 30 mg/100 g; PPs = 676 ± 19 mg/100 g) and one low in PPs (PA = 1360 ± 10 mg/100 g; PPs = 58 ± 1 mg/100 g). Fractional iron absorption from the lpa bean high in PPs was 6.1% (95% CI: 2.6, 14.7), which was 60 and 130% higher compared with the parent high in PPs (P < 0.001) and low in PPs (P < 0.001), respectively. The total amount of iron absorbed per test meal from the lpa bean high in PPs (372 μg; 95% CI: 160, 890) was 60 and 163% higher compared with the parent high in PPs (P < 0.001) and low in PPs (P < 0.001), respectively. Fractional iron absorption from the lpa line low in PPs (4%; 95% CI: 1.8, 8.7) was 50% higher and the total amount of iron absorbed per test meal (261 μg; 95% CI: 120, 570) was 85% higher than iron from the parent low in PPs (P < 0.001). There was no difference between the lpa beans high or low in PPs or between the parents high or low in PPs. A 90% reduction in PA leads to an increase in bioavailable iron from beans, independent of the PP concentration. The lpa mutation could be a key tool for improving iron bioavailability from beans.

  3. Cutaneous delivery of natural antioxidants: the enhancement approaches.

    PubMed

    Aljuffali, Ibrahim A; Hsu, Ching-Yun; Lin, Yin-Ku; Fang, Jia-You

    2015-01-01

    Topically applied natural antioxidants can be an effective treatment for inhibiting oxidative damage and photoaging of the skin. Due to the barrier function of the stratum corneum (SC), it is necessary to use an enhancement approach to promote the cutaneous absorption of natural antioxidants. Some factors that should be considered when developing delivery systems for natural antioxidants include increased solubility, enhanced storage stability, improved permeability and bioavailability, skin targeting, and minimal side effects. This review describes the skin delivery systems for natural antioxidant permeation that have been developed during the last decade. The antioxidants introduced include vitamins, polyphenols, and carotenoids. Various types of formulations are employed to improve the skin penetration of the antioxidants, such as hydrogels, cyclodextrin, microemulsions, nanoparticles, liposomes and niosomes. This review focuses on the introduction of natural antioxidants used in skin protection, the mechanisms of antioxidant activity on the skin, and formulation designs for enhancing absorption and efficacy.

  4. Recent patents on the use of antioxidant agents in food.

    PubMed

    Bonilla, Jeannine; Atarés, Lorena; Chiralt, Amparo; Vargas, Maria

    2011-05-01

    The application of antioxidant ingredients is one of the most common ways to delay and prevent the detrimental effect of oxygen in foods. Some of the most widely used and studied antioxidants are carboxylic acids, tocopherols and thiol-containing compounds. However, consumer trends towards healthier and safer foods, together with the increasing concern for the potential toxicity of some antioxidants are leading research efforts towards the use of antioxidants obtained from natural sources, such as plant phenols, essential oils and chitosan. This paper reviews the latest published studies and issued patents on the use of antioxidants agents in foodstuffs. The properties of the most commonly used antioxidants as well as natural antioxidants are revised. Moreover, examples of recent patents on the application of antioxidants to different foodstuffs (meat, fish, vegetables, fruits and beverages) are given.

  5. Enhancement of antioxidant properties and increase of content of vitamin D2 and non-volatile components in fresh button mushroom, Agaricus bisporus (higher Basidiomycetes) by γ-irradiation.

    PubMed

    Tsai, Shu-Yao; Mau, Jeng-Leun; Huang, Shih-Jeng

    2014-01-01

    Agaricus bisporus is a popular culinary-medicinal mushroom in Taiwan, and γ-irradiation could extend its shelf life. Our objective was to study the content of vitamin D2 and the taste components and antioxidant properties of ethanolic extracts from A. bisporus with various doses of γ-irradiation. After irradiation, the vitamin D2 content of 5-10 kGy irradiated mushrooms was in the range of 5.22-7.90 µg/g, higher than that of the unirradiated control (2.24 µg/g). For all treatments, the total content of soluble sugars and polyols ranged from 113 to 142 mg/g, and the monosodium glutamate-like components ranged from 6.57 to 13.50 mg/g, among which the 2.5 kGy irradiated sample has the highest content of flavor 5'-nucleotide. About antioxidant properties, 10 kGy irradiated samples exhibited lower EC50 values than did other samples. EC50 values were less than 5 mg/mL for ethanolic extracts. Total phenols were the major antioxidant components and the total content was 13.24-22.78 mg gallic acid equivalents/g. Based on the results obtained, γ-irradiation could be used to improve the vitamin D2 content and intensity of umami taste in fresh mushrooms. In addition, γ-irradiation not only maintained the antioxidant properties of mushrooms but also enhanced the antioxidant properties to some extent.

  6. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    PubMed Central

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  7. Increase in linkage information by stratification of pedigree data into gold-standard and standard diagnoses: application to the NIMH Alzheimer Disease Genetics Initiative Dataset.

    PubMed

    Gordon, Derek; Haynes, Chad; Finch, Stephen J; Brown, Abraham M

    2006-01-01

    Patients diagnosed with a standard clinical method (subject to misclassification error) are often combined with patients diagnosed with a gold-standard method (with zero or very small misclassification error) in family-based studies of complex disease. For example, non-autopsied patients (NAP) are often included along with autopsy-proven (AP) patients in family-based studies of complex diseases, such as Alzheimer's disease (AD). Theoretical and simulation studies suggest that certain misclassification errors can result in severe reduction of power in genetic linkage and association analyses and that phenotype (or diagnostic) error can produce misleading results. Morton's test for heterogeneity can identify genomic regions where error may have led to loss in power. We applied this test to pedigree data from the NIMH Alzheimer's Disease Genetics Initiative Database separated into AP and NAP pedigrees. Morton's test identified one highly significant region of heterogeneity on chromosome 2. The source of the heterogeneity was due to significant indication of linkage in the AP pedigrees at position 109 cM (p value = 6.68 x 10(-5)) with no indication in the NAP pedigrees. Furthermore, Morton's test showed no evidence for heterogeneity on chromosome 19 in early-onset pedigrees that showed highly significant evidence for linkage in other published reports. These results suggest that supplementing linkage analysis with Morton's test can be usefully applied to genetic data sets that have AP and NAP samples, or other sample mixtures that include a 'gold standard' subgroup with reduced error rate, to increase power to detect linkage in the presence of diagnostic misclassification.

  8. Impact of NGS in the medical sciences: Genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies.

    PubMed

    Lapunzina, Pablo; López, Rocío Ortiz; Rodríguez-Laguna, Lara; García-Miguel, Purificación; Martínez, Augusto Rojas; Martínez-Glez, Víctor

    2014-03-01

    The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Currently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform complete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole genome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk. The purpose of this work is to review these syndromes as an example of a group of disorders that has been included in a panel of genes for NGS analysis. We also highlight the relationship between development and cancer and underline the connections between these syndromes.

  9. Replication of a gene-environment interaction Via Multimodel inference: additive-genetic variance in adolescents' general cognitive ability increases with family-of-origin socioeconomic status.

    PubMed

    Kirkpatrick, Robert M; McGue, Matt; Iacono, William G

    2015-03-01

    The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES-an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research.

  10. Replication of a Gene-Environment Interaction via Multimodel Inference: Additive-Genetic Variance in Adolescents’ General Cognitive Ability Increases with Family-of-Origin Socioeconomic Status

    PubMed Central

    Kirkpatrick, Robert M.; McGue, Matt; Iacono, William G.

    2015-01-01

    The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES—an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research. PMID:25539975

  11. Impact of NGS in the medical sciences: Genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies

    PubMed Central

    Lapunzina, Pablo; López, Rocío Ortiz; Rodríguez-Laguna, Lara; García-Miguel, Purificación; Martínez, Augusto Rojas; Martínez-Glez, Víctor

    2014-01-01

    The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Currently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform complete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole genome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk. The purpose of this work is to review these syndromes as an example of a group of disorders that has been included in a panel of genes for NGS analysis. We also highlight the relationship between development and cancer and underline the connections between these syndromes. PMID:24764758

  12. Antioxidants in liver health

    PubMed Central

    Casas-Grajales, Sael; Muriel, Pablo

    2015-01-01

    Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals (FR). However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leads to deleterious processes in the liver and produces liver diseases. Therefore, restoring antioxidants is essential to maintain homeostasis. One method of restoring antioxidants is to consume natural compounds with antioxidant capacity. The objective of this review is to provide information pertaining to various antioxidants found in food that have demonstrated utility in improving liver diseases. PMID:26261734

  13. Differentiation-inducing potency of the seco-steroid JK-1624F2-2 can be increased by combination with an antioxidant and a p38MAPK inhibitor which upregulates the JNK pathway.

    PubMed

    Zhang, Jing; Posner, Gary H; Danilenko, Michael; Studzinski, George P

    2007-01-01

    Low calcemic analogs of vitamin D are candidates for differentiation therapy of human myeloid leukemias. We report here that the seco-steroid synthesized to have resistance to intracellular degradation and low calcemia-inducing activity, 1alpha-hydroxymethyl-3beta-16-ene-24,24-difluoro-25-hydroxy-vitamin D(3) (JKF), induces monocytic differentiation in four established human myeloid leukemia cell lines, HL60, U937, THP-1, NB-4, and murine myeloid leukemia cells WEHI-3B D(-). JKF has differentiation-inducing potency which is slightly lower than the physiologically active form of vitamin D, 1,25(OH)(2)vitamin D(3) (1,25D). However, simultaneous addition of carnosic acid (CA), an antioxidant, and SB20190 (SB), an inhibitor of p38MAP kinase, increases the differentiation efficiency of JKF to a level similar to the level observed when 1,25D is used in such combinations. We also show for the first time that SB inhibits the phosphorylation of MAPKAPK2, a downstream target of p38MAPK, but upregulates the phosphorylation of at least one of the isoforms of JNK (p46 JNK1) and of c-jun in all four human myeloid cell lines studied here. These studies indicate that the JNK1 pathway is positively associated with monocytic differentiation of several subtypes of myeloid leukemia cells arrested at different developmental stages. Further, since JKF is less calcemic than 1,25D, the data suggest that JKF combined with CA and SB is likely to have a therapeutic advantage over 1,25D-based experimental regimens for myeloid leukemias.

  14. Hydroxycinnamic acid antioxidants: an electrochemical overview.

    PubMed

    Teixeira, José; Gaspar, Alexandra; Garrido, E Manuela; Garrido, Jorge; Borges, Fernanda

    2013-01-01

    Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure. The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants. The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far.

  15. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    PubMed Central

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  16. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  17. Genetic heterogeneity of primary open angle glaucoma and ocular hypertension: linkage to GLC1A associated with an increased risk of severe glaucomatous optic neuropathy.

    PubMed Central

    Brézin, A P; Béchetoille, A; Hamard, P; Valtot, F; Berkani, M; Belmouden, A; Adam, M F; Dupont de Dinechin, S; Bach, J F; Garchon, H J

    1997-01-01

    The GLC1A locus for autosomal dominant juvenile and middle age onset primary open angle glaucoma (OAG) has been mapped to chromosome 1q21-q31. OAG, however, is a heterogeneous disease. We tested linkage of OAG and ocular hypertension (OHT), a major risk factor for OAG, to GLC1A in eight French families with multiple cases of juvenile and middle age onset OAG. There was strong evidence of genetic heterogeneity, four families being linked to GLC1A and two or three others being unlinked, depending on whether the complete OAG phenotype was analysed alone or jointly with OHT. Peak intraocular pressure (IOP) did not differ significantly between the two groups of families, while linkage to GLC1A conferred a highly increased risk of developing OAG and of having severe glaucomatous optic neuropathy. Testing linkage of familial OAG to GLC1A may therefore have prognostic value too. PMID:9222961

  18. Increased population sampling confirms low genetic divergence among Pteropus (Chiroptera: Pteropodidae) fruit bats of Madagascar and other western Indian Ocean islands

    PubMed Central

    Chan, Lauren M.; Goodman, Steven M.; Nowak, Michael D.; Weisrock, David W.; Yoder, Anne D.

    2011-01-01

    Fruit bats of the genus Pteropus occur throughout the Austral-Asian region west to islands off the eastern coast of Africa. Recent phylogenetic analyses of Pteropus from the western Indian Ocean found low sequence divergence and poor phylogenetic resolution among several morphologically defined species. We reexamine the phylogenetic relationships of these taxa by using multiple individuals per species. In addition, we estimate population genetic structure in two well-sampled taxa occurring on Madagascar and the Comoro Islands (P. rufus and P. seychellensis comorensis). Despite finding a similar pattern of low sequence divergence among species, increased sampling provides insight into the phylogeographic history of western Indian Ocean Pteropus, uncovering high levels of gene flow within species. PMID:21479256

  19. Simultaneous Activation of Nrf2 and Elevation of Dietary and Endogenous Antioxidant Chemicals for Cancer Prevention in Humans.

    PubMed

    Prasad, Kedar N

    2016-01-01

    Despite extensive studies in cancer prevention, the incidence of cancer is increasing. We review studies that have identified several biochemical and genetic defects as well as potential carcinogens in the diet, environmental factors, and lifestyle-related habits. Two of the biochemical abnormalities increased oxidative stress and chronic inflammation, and chronic exposure to carcinogens and mutagens play a significant role in the initiation of multistage carcinogenesis. Therefore, attenuation of these biochemical defects may be useful in reducing the incidence of cancer. Activation of the transcriptional factor called nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which enhances the levels of antioxidant enzymes and phase-2-detoxifying enzymes by complex mechanisms, may be one of the ways to reduce oxidative stress and chronic inflammation. Antioxidant enzymes destroy free radicals by catalysis, whereas phase-2-detoxifying enzymes remove potential carcinogens by converting them to harmless compounds for elimination from the body. However, increasing the levels of antioxidant enzymes by activating Nrf2 may not be sufficient to decrease oxidative stress and chronic inflammation optimally, because antioxidant chemicals, which are decreased in a high oxidative environment, must also be elevated. This review discusses the regulation of activation of Nrf2 and proposes a hypothesis that an elevation of the levels of antioxidant enzymes and dietary and endogenous antioxidant chemicals simultaneously may reduce the incidence of cancer by decreasing oxidative stress and chronic inflammation. The levels of antioxidant chemicals can be increased by supplementation, but increasing the levels of antioxidant enzymes requires activation of Nrf2 by reactive oxygen species (ROS)-dependent and-independent mechanisms. Several phytochemicals and antioxidant chemicals that activate Nrf2 have been identified. This review also describes clinical studies on antioxidants in cancer

  20. The Polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity

    PubMed Central

    Chatoo, Wassim; Abdouh, Mohamed; David, Jocelyn; Champagne, Marie-Pier; Ferreira, José; Rodier, Francis; Bernier, Gilbert

    2009-01-01

    Aging may be determined by a genetic program and/or by the accumulation rate of molecular damages. Reactive oxygen species (ROS) generated by the mitochondrial metabolism have been postulated to be the central source of molecular damages and imbalance between levels of intracellular ROS and antioxidant defenses is a characteristic of the aging brain. How aging modifies free radicals concentrations and increases the risk to develop most neurodegenerative diseases is poorly understood, however. Here we show that the Polycomb group and oncogene Bmi1 is required in neurons to suppress apoptosis and the induction of a premature aging-like program characterized by reduced antioxidant defenses. Before weaning, Bmi1−/− mice display a progeroid-like ocular and brain phenotype while Bmi1+/− mice, although apparently normal, have reduced lifespan. Bmi1 deficiency in neurons results in increased p19Arf/p53 levels, abnormally high ROS concentrations and hypersensitivity to neurotoxic agents. Most Bmi1 functions on neurons oxidative metabolism are genetically linked to repression of p53 pro-oxidant activity, which also operates in physiological conditions. In Bmi1−/− neurons, p53 and co-repressors accumulate at antioxidant gene promoters, correlating with a repressed chromatin state and antioxidant genes downregulation. These findings provide a molecular mechanism explaining how Bmi1 regulates free radical concentrations and reveal the biological impact of Bmi1 deficiency on neuronal survival and aging. PMID:19144853

  1. Assessment of first and second degree relatives of individuals with bipolar disorder shows increased genetic risk scores in both affected relatives and young At‐Risk Individuals

    PubMed Central

    Koller, Daniel L.; Edenberg, Howard J.; Foroud, Tatiana; Liu, Hai; Glowinski, Anne L.; McInnis, Melvin G.; Wilcox, Holly C.; Frankland, Andrew; Roberts, Gloria; Schofield, Peter R.; Mitchell, Philip B.; Nurnberger, John I.

    2015-01-01

    Recent studies have revealed the polygenic nature of bipolar disorder (BP), and identified common risk variants associated with illness. However, the role of common polygenic risk in multiplex families has not previously been examined. The present study examined 249 European‐ancestry families from the NIMH Genetics Initiative sample, comparing subjects with narrowly defined BP (excluding bipolar II and recurrent unipolar depression; n = 601) and their adult relatives without BP (n = 695). Unrelated adult controls (n = 266) were from the NIMH TGEN control dataset. We also examined a prospective cohort of young (12–30 years) offspring and siblings of individuals with BPI and BPII disorder (at risk; n = 367) and psychiatrically screened controls (n = 229), ascertained from five sites in the US and Australia and assessed with standardized clinical protocols. Thirty‐two disease‐associated SNPs from the PGC‐BP Working Group report (2011) were genotyped and additive polygenic risk scores (PRS) derived. We show increased PRS in adult cases compared to unrelated controls (P = 3.4 × 10−5, AUC = 0.60). In families with a high‐polygenic load (PRS score ≥32 in two or more subjects), PRS distinguished cases with BPI/SAB from other relatives (P = 0.014, RR = 1.32). Secondly, a higher PRS was observed in at‐risk youth, regardless of affected status, compared to unrelated controls (GEE‐χ2 = 5.15, P = 0.012). This report is the first to explore common polygenic risk in multiplex families, albeit using only a small number of robustly associated risk variants. We show that individuals with BP have a higher load of common disease‐associated variants than unrelated controls and first‐degree relatives, and illustrate the potential utility of PRS assessment in a family context. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. PMID

  2. Irradiation influence on the phenoloxidase pathway and an anti-oxidant defense mechanism in Spodoptera litura (Lepidoptera: Noctuidae) and its implication in radio-genetic 'F 1 sterility' and biorational pest suppression tactics.

    PubMed

    Sachdev, B; Khan, Z; Zarin, M; Malhotra, P; Seth, R K; Bhatnagar, R K

    2017-01-31

    The present study was conducted to appraise the ontogenic radio-sensitivity of a serious tropical pest, Spodoptera litura (Fabr.). The molecular responses pertaining to the phenoloxidase (PO) pathway and an anti-oxidant defense mechanism were evaluated in order to understand its implication in pest control at pre-harvest and post-harvest intervals. Irradiation exhibited an inverse relationship with age with respect to impact on developmental and transcriptional responses. Transcript abundance of PO cascade enzymes, prophenoloxidase (slppo-2), its activating enzyme (slppae-1) and free-radical scavenging enzymes, superoxide dismutase (slsod) and catalase (slcat) was evaluated upon gamma irradiation alone and the dual-stress of radiation plus microbial challenge. The slppo-2, slppae-1, slsod and slcat transcripts were significantly up-regulated in F 1 L6 larvae (6th-instar) resulting from 100 Gy sub-sterilized male adults and unirradiated female moths. The extent of upregulation was relatively higher in comparison with L6 survivors (6th-instar larvae) developed from irradiated neonates (L1) treated with 100 Gy. Upon Photorhabdus challenge, the transcripts were down-regulated in irradiated L1 suggesting increased larval susceptibility to bacterial infections. Radioresistance increased with the age of the insect, and molecular responses (transcript abundance) of insect defense mechanism were less influenced when older age (F 1 progeny) were irradiated. These findings will help to optimize the gamma dose to be employed in inherited sterility technique for (pre-harvest) pest suppression and (post-harvest) phytosanitation and quarantine, and suggest compatible integration of biorational tactics including nuclear technology.

  3. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13.

    PubMed

    Noverr, Mairi C; Falkowski, Nicole R; McDonald, Rod A; McKenzie, Andrew N; Huffnagle, Gary B

    2005-01-01

    Lending support to the hygiene hypothesis, epidemiological studies have demonstrated that allergic disease correlates with widespread use of antibiotics and alterations in fecal microbiota ("microflora"). Antibiotics also lead to overgrowth of the yeast Candida albicans, which can secrete potent prostaglandin-like immune response modulators, from the microbiota. We have recently developed a mouse model of antibiotic-induced gastrointestinal microbiota disruption that is characterized by stable increases in levels of gastrointestinal enteric bacteria and Candida. Using this model, we have previously demonstrated that microbiota disruption can drive the development of a CD4 T-cell-mediated airway allergic response to mold spore challenge in immunocompetent C57BL/6 mice without previous systemic antigen priming. The studies presented here address important questions concerning the universality of the model. To investigate the role of host genetics, we tested BALB/c mice. As with C57BL/6 mice, microbiota disruption promoted the development of an allergic response in the lungs of BALB/c mice upon subsequent challenge with mold spores. In addition, this allergic response required interleukin-13 (IL-13) (the response was absent in IL-13(-/-) mice). To investigate the role of antigen, we subjected mice with disrupted microbiota to intranasal challenge with ovalbumin (OVA). In the absence of systemic priming, only mice with altered microbiota developed airway allergic responses to OVA. The studies presented here demonstrate that the effects of microbiota disruption are largely independent of host genetics and the nature of the antigen and that IL-13 is required for the airway allergic response that follows microbiota disruption.

  4. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system

    PubMed Central

    Ebert, Antje D.; Kodo, Kazuki; Liang, Ping; Wu, Haodi; Huber, Bruno C.; Riegler, Johannes; Churko, Jared; Lee, Jaecheol; de Almeida, Patricia; Lan, Feng; Diecke, Sebastian; Burridge, Paul W.; Gold, Joseph D.; Mochly-Rosen, Daria; Wu, Joseph C.

    2014-01-01

    Nearly 8% of the human population carries an inactivating point mutation in the gene that encodes the cardioprotective enzyme aldehyde dehydrogenase 2 (ALDH2). This genetic polymorphism (ALDH2*2) is linked to more severe outcomes from ischemic heart damage and an increased risk of coronary artery disease (CAD), but the underlying molecular bases are unknown. We investigated the ALDH2*2 mechanisms in a human model system of induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) generated from individuals carrying the most common heterozygous form of the ALDH2*2 genotype. We showed that the ALDH2*2 mutation gave rise to elevated amounts of reactive oxygen species and toxic aldehydes, thereby inducing cell cycle arrest and activation of apoptotic signaling pathways, especially during ischemic injury. We established that ALDH2 controls cell survival decisions by modulating oxidative stress levels and that this regulatory circuitry was dysfunctional in the loss-of-function ALDH2*2 genotype, causing up-regulation of apoptosis in cardiomyocytes after ischemic insult. These results reveal a new function for the metabolic enzyme ALDH2 in modulation of cell survival decisions. Insight into the molecular mechanisms that mediate ALDH2*2-related increased ischemic damage is important for the development of specific diagnostic methods and improved risk management of CAD and may lead to patient-specific cardiac therapies. PMID:25253673

  5. Genetic predisposition and induced pro-inflammatory/pro-oxidative status may play a role in increased atherothrombotic events in nilotinib treated chronic myeloid leukemia patients.

    PubMed

    Bocchia, Monica; Galimberti, Sara; Aprile, Lara; Sicuranza, Anna; Gozzini, Antonella; Santilli, Francesca; Abruzzese, Elisabetta; Baratè, Claudia; Scappini, Barbara; Fontanelli, Giulia; Trawinska, Monika Malgorzata; Defina, Marzia; Gozzetti, Alessandro; Bosi, Alberto; Petrini, Mario; Puccetti, Luca

    2016-11-01

    Several reports described an increased risk of cardiovascular (CV) events, mainly atherothrombotic, in Chronic Myeloid Leukemia (CML) patients receiving nilotinib. However, the underlying mechanism remains elusive. The objective of the current cross-sectional retrospective study is to address a potential correlation between Tyrosine Kinase Inhibitors (TKIs) treatment and CV events. One hundred and 10 chronic phase CML patients in complete cytogenetic response during nilotinib or imatinib, were screened for CV events and evaluated for: traditional CV risk factors, pro/anti-inflammatory biochemical parameters and detrimental ORL1 gene polymorphisms (encoding for altered oxidized LDL receptor-1). Multivariate analysis of the whole cohort showed that the cluster of co-existing nilotinib treatment, dyslipidaemia and G allele of LOX-1 polymorphism was the only significant finding associated with CV events. Furthermore, multivariate analysis according to TKI treatment confirmed IVS4-14 G/G LOX-1 polymorphism as the strongest predictive factor for a higher incidence of CV events in nilotinib patients. Biochemical assessment showed an unbalanced pro-inflammatory cytokines network in nilotinib vs imatinib patients. Surprisingly, pre-existing traditional CV risk factors were not always predictive of CV events. We believe that in nilotinib patients an induced "inflammatory/oxidative status", together with a genetic pro-atherothrombotic predisposition, may favour the increased incidence of CV events. Prospective studies focused on this issue are ongoing.

  6. Influence of Roasting Treatment on the Antioxidant Activities and Color of Burdock Root Tea

    PubMed Central

    Lee, Darye; Kim, Choon Young

    2017-01-01

    The major trend in the antioxidant market is the growing consumer demand for natural antioxidants. Tea, one of the most widely consumed beverages in the world, is an easy way to obtain antioxidant components from a natural source. Our objective was to develop burdock root tea (BRT) with potent antioxidant activity and good color quality. In order to obtain maximum antioxidant activity and quality, the effect of roasting was determined. The antioxidant capacities and total phenolic contents of BRT increased as roasting increased. The color of BRT became darker with increased roasting, extraction time, and amount of burdock roots. Color of BRT was also positively correlated with total antioxidant capacity. Roasting significantly enhanced the total antioxidant activities and color quality of BRT. These results suggest that roasting BRT increases beneficial antioxidant components from burdock roots.

  7. Antioxidant properties of fermented mango leaf extracts.

    PubMed

    Park, Anna; Ku, Taekyu; Yoo, Ilsou

    2015-01-01

    Antioxidant properties of mango (Mangifera indica) leaves were evaluated. Hydroalcoholic leaf extracts that were lyophilized were subsequently fermented with either Lactobacillus casei or effective microorganisms (EM) such as probiotic bacteria and/or other anaerobic organisms. Antioxidant properties were measured as a function of the mango leaf extract concentration in the fermentation broth. Tests for radical scavenging using the 1,1-diphenyl-2-picrylhydrazyl radical showed higher antioxidant activity for Lactobacillus- and EM-fermented mango leaf extracts than for the synthetic antioxidant butylated hydroxytoluene. Antioxidant activity generally increased with increasing fermented extract concentration as did the fermented extracts' polyphenol and flavonoid contents. Fermented extracts reduced reactive oxygen species generation by lipopolysaccharide in RAW 264.7 cells when measured via fluorescence of dichlorodihydrofluorescein acetate treated cells using flow cytometry. RAW 264.7 cells also showed a concentration-dependent cytotoxic effect of the fermented extracts using the 3-(4,5-dimethylthialol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Inhibition of mushroom tyrosinase activity as well as nitrite scavenging by the fermented extracts increased as fermented extract concentrations increased. Tyrosinase activity was assayed with 3,4-dihydroxyphenylalanine as substrate. Nitrite scavenging was assessed via measurement of inhibition of chromophore production from nitrite-naphthylamine-sulfanilic acid mixtures. The antioxidant properties of fermented mango leaf extracts suggest the fermented extracts may be useful in developing health food and fermentation-based beauty products.

  8. Free radicals, antioxidant defense systems, and schizophrenia.

    PubMed

    Wu, Jing Qin; Kosten, Thomas R; Zhang, Xiang Yang

    2013-10-01

    The etiopathogenic mechanisms of schizophrenia are to date unknown, although several hypotheses have been suggested. Accumulating evidence suggests that excessive free radical production or oxidative stress may be involved in the pathophysiology of schizophrenia as evidenced by increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. This review aims to summarize the basic molecular mechanisms of free radical metabolism, the impaired antioxidant defense system and membrane pathology in schizophrenia, their interrelationships with the characteristic clinical symptoms and the implications for antipsychotic treatments. In schizophrenia, there is accumulating evidence of altered antioxidant enzyme activities and increased levels of lipid peroxidation, as well as altered levels of plasma antioxidants. Moreover, free radical-mediated abnormalities may contribute to specific aspects of schizophrenic symptomatology and complications of its treatment with antipsychotic drugs, as well as the development of tardive dyskinesia (TD). Finally, the potential therapeutic strategies implicated by the accumulating data on oxidative stress mechanisms for the treatment of schizophrenia are discussed.

  9. Antioxidant activity of Hypericum hookerianum Wight and Arn.

    PubMed

    Raghu Chandrashekhar, H; Venkatesh, P; Ponnusankar, S; Vijayan, P

    2009-01-01

    Methanolic extracts of leaf, root, flower and aerial parts of Hypericum hookerianum were assessed for in vitro antioxidant activity using eight different models. Total antioxidant capacity, phenol and flavanol content of the extracts were determined to correlate between their antioxidant activity and constituents present therein. Results of in vitro antioxidant study suggest that extracts from leaf and flower have strong antioxidant potential. Leaf extract (100 & 200 mg kg(-1) b.w. p.o.) that showed maximum activity was selected for in vivo antioxidant studies using a CCl(4)-intoxicated rat model. The effects of extracts on lipid peroxidation (LPO), superoxide dismutase (SOD) and catalase (CAT) in serum and liver homogenate were analysed. CCl(4) treatment caused a significant increase in the level of CAT and SOD and a significant decrease in the level of LPO in a dose-dependent manner when compared to CCl(4) treated control. The results indicate the strong antioxidant nature of H. hookerianum leaf extract.

  10. Identification and evaluation of antioxidants in Japanese parsley.

    PubMed

    Ogita, Tasuku; Vallejo Manaois, Rosaly; Wakagi, Manabu; Oki, Tomoyuki; Takano Ishikawa, Yuko; Watanabe, Jun

    2016-06-01

    Two cultivars of Japanese parsley were harvested in different seasons; their antioxidant capacities were evaluated by oxygen radical absorbance capacity (ORAC) methods, and the contents of hydrophilic and lipophilic antioxidants were compared. Japanese parsley possessed potent antioxidant capacities both in hydrophilic and lipophilic extracts when evaluated by ORAC methods. LC/MS/MS analyses revealed that chlorogenic acid and four kinds of quercetin glycosides were major antioxidants in the hydrophilic extract. Lutein was the main contributor to the antioxidant capacity of the lipophilic extract. Antioxidant capacities of the hydrophilic extracts of both cultivars tended to be higher in winter because of the increase in the contents of chlorogenic acid and quercetin glycosides. An obvious trend in the lipophilic antioxidant capacities or lutein contents was not observed irrespective of the cultivar.

  11. Plant extracts as natural antioxidants in meat and meat products.

    PubMed

    Shah, Manzoor Ahmad; Bosco, Sowriappan John Don; Mir, Shabir Ahmad

    2014-09-01

    Antioxidants are used to minimize the oxidative changes in meat and meat products. Oxidative changes may have negative effects on the quality of meat and meat products, causing changes in their sensory and nutritional properties. Although synthetic antioxidants have already been used but in recent years, the demand for natural antioxidants has been increased mainly because of adverse effects of synthetic antioxidants. Thus most of the recent investigations have been directed towards the identification of natural antioxidants from various plant sources. Plant extracts have been prepared using different solvents and extraction methods. Grape seed, green tea, pine bark, rosemary, pomegranate, nettle and cinnamon have exhibited similar or better antioxidant properties compared to some synthetic ones. This review provides the recent information on plant extracts used as natural antioxidants in meat and meat products, specifically red meat.

  12. Gamma Radiation Effects on Peanut Skin Antioxidants

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

  13. Gamma radiation effects on peanut skin antioxidants.

    PubMed

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.

  14. Genetic Variations in the Flanking Regions of miR-101-2 Are Associated with Increased Risk of Breast Cancer

    PubMed Central

    Chen, Jiaping; Qin, Zhenzhen; Jiang, Yue; Wang, Yanru; He, Yisha; Dai, Juncheng; Jin, Guangfu; Ma, Hongxia; Hu, Zhibin; Yin, Yongmei; Shen, Hongbing

    2014-01-01

    Genetic variants in human microRNA (miRNA) genes may alter mature miRNA processing and/or target selection, and likely contribute to cancer susceptibility and disease progression. Previous studies have suggested that miR-101 may play important roles in the development of cancer by regulating key tumor-associated genes. However, the role of single nucleotide polymorphisms (SNPs) of miR-101 in breast cancer susceptibility remains unclear. In this study, we genotyped 11 SNPs of the miR-101 genes (including miR-101-1 and miR-101-2) in a case-control study of 1064 breast cancer cases and 1073 cancer-free controls. The results revealed that rs462480 and rs1053872 in the flank regions of pre-miR-101-2 were significantly associated with increased risk of breast cancer (rs462480 AC/CC vs AA: adjusted OR = 1.182, 95% CI: 1.030–1.357, P = 0.017; rs1053872 CG/GG vs CC: adjusted OR = 1.179, 95% CI: 1.040–1.337, P = 0.010). However, the remaining 9 SNPs were not significantly associated with risk of breast cancer. Additionally, combined analysis of the two high-risk SNPs revealed that subjects carrying the variant genotypes of rs462480 and rs1053872 had increased risk of breast cancer in a dose-response manner (Ptrend = 0.002). Compared with individuals with “0–1” risk allele, those carrying “2–4” risk alleles had 1.29-fold risk of breast cancer. In conclusion, these findings suggested that the SNPs rs462480 and rs1053872 residing in miR-101-2 gene may have a solid impact on genetic susceptibility to breast cancer, which may improve our understanding of the potential contribution of miRNA SNPs to cancer pathogenesis. PMID:24475105

  15. Estrogens as Antioxidant Modulators in Human Fertility

    PubMed Central

    Mancini, A.; Raimondo, S.; Persano, M.; Di Segni, C.; Cammarano, M.; Gadotti, G.; Silvestrini, A.; Pontecorvi, A.; Meucci, E.

    2013-01-01

    Among treatments proposed for idiopathic male infertility, antiestrogens, like tamoxifen, play a possible role. On the other hand, oxidative stress is a mechanism well recognized for deleterious effects on spermatozoa function. After reviewing the literature on the effects of estrogens in modulation of antioxidant systems, in both sexes, and in different in vivo and in vitro models, we suggest, also on the basis of personal data, that a tamoxifen treatment could be active via an increase in seminal antioxidants. PMID:24363671

  16. Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells

    PubMed Central

    Anantachoke, Natthinee; Lomarat, Pattamapan; Praserttirachai, Wasin; Khammanit, Ruksinee

    2016-01-01

    The cellular antioxidant enzymes play the important role of protecting the cells and organisms from the oxidative damage. Natural antioxidants contained in fruits have attracted considerable interest because of their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals contained in fruits on the induction of antioxidant enzymes in the cells have not been fully defined. In this study, we showed that extracts from Antidesma ghaesembilla, Averrhoa bilimbi, Malpighia glabra, Mangifera indica, Sandoricum koetjape, Syzygium malaccense, and Ziziphus jujuba inhibited H2O2-induced intracellular reactive oxygen species production in HEK-293 cells. Additionally, these Thai fruit extracts increased the mRNA and protein expressions of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase. The consumption of Thai fruits rich in phenolic compounds may reduce the risk of oxidative stress. PMID:28074103

  17. Antioxidants, inflammation and cardiovascular disease.

    PubMed

    Mangge, Harald; Becker, Kathrin; Fuchs, Dietmar; Gostner, Johanna M

    2014-06-26

    Multiple factors are involved in the etiology of cardiovascular disease (CVD). Pathological changes occur in a variety of cell types long before symptoms become apparent and diagnosis is made. Dysregulation of physiological functions are associated with the activation of immune cells, leading to local and finally systemic inflammation that is characterized by production of high levels of reactive oxygen species (ROS). Patients suffering from inflammatory diseases often present with diminished levels of antioxidants either due to insufficient dietary intake or, and even more likely, due to increased demand in situations of overwhelming ROS production by activated immune effector cells like macrophages. Antioxidants are suggested to beneficially interfere with diseases-related oxidative stress, however the interplay of endogenous and exogenous antioxidants with the overall redox system is complex. Moreover, molecular mechanisms underlying oxidative stress in CVD are not fully elucidated. Metabolic dybalances are suggested to play a major role in disease onset and progression. Several central signaling pathways involved in the regulation of immunological, metabolic and endothelial function are regulated in a redox-sensitive manner. During cellular immune response, interferon γ-dependent pathways are activated such as tryptophan breakdown by the enzyme indoleamine 2,3-dioxygenase (IDO) in monocyte-derived macrophages, fibroblasts, endothelial and epithelial cells. Neopterin, a marker of oxidative stress and immune activation is produced by GTP-cyclohydrolase I in macrophages and dendritic cells. Nitric oxide synthase (NOS) is induced in several cell types to generate nitric oxide (NO). NO, despite its low reactivity, is a potent antioxidant involved in the regulation of the vasomotor tone and of immunomodulatory signaling pathways. NO inhibits the expression and function of IDO. Function of NOS requires the cofactor tetrahydrobiopterin (BH4), which is produced in

  18. Evolution of dietary antioxidants.

    PubMed

    Benzie, Iris F F

    2003-09-01

    Oxygen is vital for most organisms but, paradoxically, damages key biological sites. Oxygenic threat is met by antioxidants that evolved in parallel with our oxygenic atmosphere. Plants employ antioxidants to defend their structures against reactive oxygen species (ROS; oxidants) produced during photosynthesis. The human body is exposed to these same oxidants, and we have also evolved an effective antioxidant system. However, this is not infallible. ROS breach defences, oxidative damage ensues, accumulates with age, and causes a variety of pathological changes. Plant-based, antioxidant-rich foods traditionally formed the major part of the human diet, and plant-based dietary antioxidants are hypothesized to have an important role in maintaining human health. This hypothesis is logical in evolutionary terms, especially when we consider the relatively hypoxic environment in which humans may have evolved. In this paper, the human diet is discussed briefly in terms of its evolutionary development, different strategies of antioxidant defence are outlined, and evolution of dietary antioxidants is discussed from the perspectives of plant need and our current dietary requirements. Finally, possibilities in regard to dietary antioxidants, evolution, and human health are presented, and an evolutionary cost-benefit analysis is presented in relation to why we lost the ability to make ascorbic acid (vitamin C) although we retained an absolute requirement for it.

  19. [Carotenoids as natural antioxidants].

    PubMed

    Igielska-Kalwat, Joanna; Gościańska, Joanna; Nowak, Izabela

    2015-04-07

    Human organisms have many defence mechanisms able to neutralise the harmful effects of the reactive species of oxygen. Antioxidants play an important role in reducing the oxidative damage to the human organism. Carotenoids are among the strongest antioxidants. They have 11 coupled double bonds, so they can be classified as polyisoprenoids, show low polarity and can occur in acyclic, monocyclic or bicyclic forms. The carotenoids of the strongest antioxidant properties are lycopene, lutein, astaxanthin and β-carotene. Carotenoids with strong antioxidant properties have found wide application in medical, pharmaceutical and cosmetic industries. These compounds are highly active against both reactive oxygen species and free radicals. Comparing β-carotene, astaxanthin and lycopene with other antioxidants (e.g. vitamin C and E), it can be concluded that these compounds have higher antioxidant activity, e.g. against singlet oxygen. Astaxanthin is a stronger antioxidant compared to β-carotene, vitamin E and vitamin C, respectively 54, 14 and 65 times. Carotenoids have a salutary effect on our body, making it more resistant and strong to fight chronic diseases. The purpose of this article is to review the literature concerning free radicals and their adverse effects on the human body and carotenoids, as strong, natural antioxidants.

  20. Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids

    PubMed Central

    Ameur, Adam; Enroth, Stefan; Johansson, Åsa; Zaboli, Ghazal; Igl, Wilmar; Johansson, Anna C.V.; Rivas, Manuel A.; Daly, Mark J.; Schmitz, Gerd; Hicks, Andrew A.; Meitinger, Thomas; Feuk, Lars; van Duijn, Cornelia; Oostra, Ben; Pramstaller, Peter P.; Rudan, Igor; Wright, Alan F.; Wilson, James F.; Campbell, Harry; Gyllensten, Ulf

    2012-01-01

    Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LC-PUFAs) are essential for the development and function of the human brain. They can be obtained directly from food, e.g., fish, or synthesized from precursor molecules found in vegetable oils. To determine the importance of genetic variability to fatty-acid biosynthesis, we studied FADS1 and FADS2, which encode rate-limiting enzymes for fatty-acid conversion. We performed genome-wide genotyping (n = 5,652 individuals) and targeted resequencing (n = 960 individuals) of the FADS region in five European population cohorts. We also analyzed available genomic data from human populations, archaic hominins, and more distant primates. Our results show that present-day humans have two common FADS haplotypes—defined by 28 closely linked SNPs across 38.9 kb—that differ dramatically in their ability to generate LC-PUFAs. No independent effects on FADS activity were seen for rare SNPs detected by targeted resequencing. The more efficient, evolutionarily derived haplotype appeared after the lineage split leading to modern humans and Neanderthals and shows evidence of positive selection. This human-specific haplotype increases the efficiency of synthesizing essential long-chain fatty acids from precursors and thereby might have provided an advantage in environments with limited access to dietary LC-PUFAs. In the modern world, this haplotype has been associated with lifestyle-related diseases, such as coronary artery disease. PMID:22503634

  1. Genetic deletion of synapsin II reduces neuropathic pain due to reduced glutamate but increased GABA in the spinal cord dorsal horn.

    PubMed

    Schmidtko, Achim; Luo, Ceng; Gao, Wei; Geisslinger, Gerd; Kuner, Rohini; Tegeder, Irmgard

    2008-10-31

    The synaptic vesicle protein synapsin II is specifically expressed in synaptic terminals of primary afferent nociceptive neurons and regulates transmitter release in the spinal cord dorsal horn. Here, we assessed its role in nerve injury-evoked molecular and behavioral adaptations in models of peripheral neuropathic pain using mice genetically lacking synapsin II. Deficiency of synapsin II resulted in reduced mechanical and cold allodynia in two models of peripheral neuropathic pain. This was associated with decreased glutamate release in the dorsal horn of the spinal cord upon sciatic nerve injury or capsaicin application onto the sciatic nerve and reduced calcium signals in spinal cord slices upon persistent activation of primary afferents. In addition, the expression of the vesicular glutamate transporters, VGLUT1 and VGLUT2, was strongly reduced in synapsin II knockout mice in the spinal cord. Conversely, synapsin II knockout mice showed a stronger and longer-lasting increase of GABA in lamina II of the dorsal horn after nerve injury than wild type mice. These results suggest that synapsin II is involved in the regulation of glutamate and GABA release in the spinal cord after nerve injury, and that a imbalance between glutamatergic and GABAergic synaptic transmission contributes to the manifestation of neuropathic pain.

  2. Increased Autoimmune Diabetes in pIgR-Deficient NOD Mice Is Due to a "Hitchhiking" Interval that Refines the Genetic Effect of Idd5.4

    PubMed Central

    Simpfendorfer, Kim R.; Strugnell, Richard A.

    2015-01-01

    Selective breeding to introduce a gene mutation from one mouse strain onto the genetic background of another strain invariably produces “hitchhiking” (i.e. flanking) genomic intervals, which may independently affect a disease trait of interest. To investigate a role for the polymeric Ig receptor in autoimmune diabetes, a congenic nonobese diabetic (NOD) mouse strain was generated that harbors a Pigr null allele derived from C57BL/6 (B6) mice. These pIgR-deficient NOD mice exhibited increased serum IgA along with an increased diabetes incidence. However, the Pigr null allele was encompassed by a relatively large “hitchhiking” genomic interval that was derived from B6 mice and overlaps Idd5.4, a susceptibility locus for autoimmune diabetes. Additional congenic NOD mouse strains, harboring smaller B6-derived intervals, confirmed Idd5.4 independently of the other three known susceptibility loci on chromosome 1, and further localized Idd5.4 to an interval proximal to Pigr. Moreover, these congenic NOD mice showed that B6 mice harbor a more diabetogenic allele than NOD mice for this locus. The smallest B6-derived interval encompassing the Pigr null allele may, however, confer a small degree of protection against diabetes, but this protection appears to be dependent on the absence of the diabetogenic B6 allele for Idd5.4. This study provides another example of the potential hidden effects of “hitchhiking" genomic intervals and how such intervals can be used to localize disease susceptibility loci. PMID:25835383

  3. Antioxidants, metabolic rate and aging in Drosophila

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Fleming, J.; Economos, A. C.

    1982-01-01

    The metabolic rate-of-living theory of aging was investigated by determining the effect of several life-prolonging antioxidants on the metabolic rate and life span of Drosophila. The respiration rate of groups of continuously agitated flies was determined in a Gilson respirometer. Vitamin E, 2,4-dinitrophenol, nordihydroguaiaretic acid, and thiazolidine carboxylic acid were employed as antioxidants. Results show that all of these antioxidants reduced the oxygen consumption rate and increased the mean life span, and a significant negative linear correlation was found between the mean life span and the metabolic rate. It is concluded that these findings indicate that some antioxidants may inhibit respiration rate in addition to their protective effect against free radical-induced cellular damage.

  4. Antioxidants and its Properties as Affected by Extrusion Process: A Review.

    PubMed

    Wani, Sajad A; Kumar, Pradyuman

    2015-01-01

    Antioxidants are important for plant and animal's life or health. These are the substances that protect them from the damage produced by unstable molecules called as free radicals. There are various types of antioxidants to be reported both natural as well as synthetic such as melatonin, Vitamin C, glutathione, tocopherols and tocotrienols, BHA and BHT, etc. A new antioxidant 5-O-[6˝-(3- hydroxy-3methyl glutarate) β-D-glucodise was found while studying bioactive antioxidants from plant foods for nutraceutical product development. Antioxidants have been used for increasing shelf life of various food products including extruded product. Antioxidants, their beneficial advantages and the effect of extrusion on antioxidants were reviewed and found to be effective in increasing the shelf life. This review article discusses recent patents, presents importance of antioxidant, phytochemicals and effect of process of extrusion on antioxidants.

  5. Antioxidant therapies in COPD

    PubMed Central

    Rahman, Irfan

    2006-01-01

    Oxidative stress is an important feature in the pathogenesis of COPD. Targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to be beneficial in the treatment of COPD. Antioxidant agents such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn), dietary polyphenols (curcumin, resveratrol, green tea, catechins/quercetin), erdosteine, and carbocysteine lysine salt, all have been reported to control nuclear factor-kappaB (NF-κ B) activation, regulation of glutathione biosynthesis genes, chromatin remodeling, and hence inflammatory gene expression. Specific spin traps such as α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo. Since a variety of oxidants, free radicals, and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic administration of multiple antioxidants will be effective in the treatment of COPD. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in COPD are discussed. PMID:18046899

  6. Queuine promotes antioxidant defence system by activating cellular antioxidant enzyme activities in cancer.

    PubMed

    Pathak, Chandramani; Jaiswal, Yogesh K; Vinayak, Manjula

    2008-04-01

    Constant generation of Reactive oxygen species (ROS) during normal cellular metabolism of an organism is generally balanced by similar rate of consumption by antioxidants. Imbalance between ROS production and antioxidant defense results in increased level of ROS causing oxidative stress which leads to promotion of malignancy. Queuine is a hyper modified base analogue of guanine, found at first anti-codon position of Q- family of tRNAs. These tRNAs are completely modified with respect to queuosine in terminally differentiated somatic cells, however hypomodification of Q-tRNAs is close association with cell proliferation. Q-tRNA modification is essential for normal development, differentiation and cellular functions. Queuine is a nutrient factor to eukaryotes. It is found to promote cellular antioxidant defense system and inhibit tumorigenesis. The activities of antioxidant enzymes like catalase, SOD, glutathione peroxidase and glutathione reductase are found to be low in Dalton's lymphoma ascites transplanted (DLAT) mouse liver compared to normal. However, exogenous administration of queuine to DLAT mouse improves the activities of antioxidant enzymes. The results suggest that queuine promotes antioxidant defense system by increasing antioxidant enzyme activities and in turn inhibits oxidative stress and tumorigenesis.

  7. Assessment of first and second degree relatives of individuals with bipolar disorder shows increased genetic risk scores in both affected relatives and young At-Risk Individuals.

    PubMed

    Fullerton, Janice M; Koller, Daniel L; Edenberg, Howard J; Foroud, Tatiana; Liu, Hai; Glowinski, Anne L; McInnis, Melvin G; Wilcox, Holly C; Frankland, Andrew; Roberts, Gloria; Schofield, Peter R; Mitchell, Philip B; Nurnberger, John I

    2015-10-01

    Recent studies have revealed the polygenic nature of bipolar disorder (BP), and identified common risk variants associated with illness. However, the role of common polygenic risk in multiplex families has not previously been examined. The present study examined 249 European-ancestry families from the NIMH Genetics Initiative sample, comparing subjects with narrowly defined BP (excluding bipolar II and recurrent unipolar depression; n = 601) and their adult relatives without BP (n = 695). Unrelated adult controls (n = 266) were from the NIMH TGEN control dataset. We also examined a prospective cohort of young (12-30 years) offspring and siblings of individuals with BPI and BPII disorder (at risk; n = 367) and psychiatrically screened controls (n = 229), ascertained from five sites in the US and Australia and assessed with standardized clinical protocols. Thirty-two disease-associated SNPs from the PGC-BP Working Group report (2011) were genotyped and additive polygenic risk scores (PRS) derived. We show increased PRS in adult cases compared to unrelated controls (P = 3.4 × 10(-5) , AUC = 0.60). In families with a high-polygenic load (PRS score ≥32 in two or more subjects), PRS distinguished cases with BPI/SAB from other relatives (P = 0.014, RR = 1.32). Secondly, a higher PRS was observed in at-risk youth, regardless of affected status, compared to unrelated controls (GEE-χ(2) = 5.15, P = 0.012). This report is the first to explore common polygenic risk in multiplex families, albeit using only a small number of robustly associated risk variants. We show that individuals with BP have a higher load of common disease-associated variants than unrelated controls and first-degree relatives, and illustrate the potential utility of PRS assessment in a family context.

  8. Age at first introduction to complementary foods is associated with sociodemographic factors in children with increased genetic risk of developing type 1 diabetes.

    PubMed

    Andrén Aronsson, Carin; Uusitalo, Ulla; Vehik, Kendra; Yang, Jimin; Silvis, Katherine; Hummel, Sandra; Virtanen, Suvi M; Norris, Jill M

    2015-10-01

    Infant's age at introduction to certain complementary foods (CF) has in previous studies been associated with islet autoimmunity, which is an early marker for type 1 diabetes (T1D). Various maternal sociodemographic factors have been found to be associated with early introduction to CF. The aims of this study were to describe early infant feeding and identify sociodemographic factors associated with early introduction to CF in a multinational cohort of infants with an increased genetic risk for T1D. The Environmental Determinants of Diabetes in the Young study is a prospective longitudinal birth cohort study. Infants (N = 6404) screened for T1D high risk human leucocyte antigen-DQ genotypes (DR3/4, DR4/4, DR4/8, DR3/3, DR4/4, DR4/1, DR4/13, DR4/9 and DR3/9) were followed for 2 years at six clinical research centres: three in the United States (Colorado, Georgia/Florida, Washington) and three in Europe (Sweden, Finland, Germany). Age at first introduction to any food was reported at clinical visits every third month from the age of 3 months. Maternal sociodemographic data were self-reported through questionnaires. Age at first introduction to CF was primarily associated with country of residence. Root vegetables and fruits were usually the first CF introduced in Finland and Sweden and cereals were usually the first CF introduced in the United States. Between 15% and 20% of the infants were introduced to solid foods before the age of 4 months. Young maternal age (<25 years), low educational level (<12 years) and smoking during pregnancy were significant predictors of early introduction to CF in this cohort. Infants with a relative with T1D were more likely to be introduced to CF later.

  9. Increased rodenticide exposure rate and risk of toxicosis in barn owls (Tyto alba) from southwestern Canada and linkage with demographic but not genetic factors.

    PubMed

    Huang, Andrew C; Elliott, John E; Hindmarch, Sofi; Lee, Sandi L; Maisonneuve, France; Bowes, Victoria; Cheng, Kimberly M; Martin, Kathy

    2016-08-01

    Among many anthropogenic drivers of population decline, continual rapid urbanization and industrialization pose major challenges for the survival of wildlife species. Barn owls (Tyto alba) in southwestern British Columbia (BC) face a multitude of threats ranging from habitat fragmentation to vehicle strikes. They are also at risk from secondary poisoning of second-generation anticoagulant rodenticides (SGARs), a suite of toxic compounds which at high doses results in a depletion of blood clotting factors leading to internal bleeding and death. Here, using long-term data (N = 119) for the hepatic residue levels of SGAR, we assessed the risk of toxicosis from SGAR for the BC barn owl population over the past two decades. We also investigated whether sensitivity to SGAR is associated with genetic factors, namely Single Nucleotide Polymorphisms (SNPs) found in the CYP2C45 gene of barn owls. We found that residue concentration for total SGAR was significantly higher in 2006-2013 (141 ng/g) relative to 1992-2003 (57 ng/g). The proportion of owls exposed to multiple SGAR types was also significantly higher in 2006-2013. Those measures accordingly translate directly into an increase in toxicosis risk level. We also detected demographic differences, where adult females showed on average lower concentration of total SGAR (64 ng/g) when compared to adult males (106 ng/g). Juveniles were overall more likely to show signs of toxicosis than adults (33.3 and 6.9 %, respectively), and those symptoms were positively predicted by SGAR concentrations. We found no evidence that SNPs in the CYP2C45 gene of barn owls were associated with intraspecific variation in SGAR sensitivity. We recommend several preventative measures be taken to minimize wildlife exposure to SGAR.

  10. Increased responsiveness and failure of habituation in neurons of the external nucleus of inferior colliculus associated with audiogenic seizures of the genetically epilepsy-prone rat.

    PubMed

    Chakravarty, D N; Faingold, C L

    1996-10-01

    Initiation of audiogenic seizures (AGS) emanates from the inferior colliculus (IC) to other IC subnuclei in the genetically epilepsy-prone rat (GEPR). The external nucleus of IC (ICx) is a suggested site of convergence of the auditory output onto the sensorimotor integration network components for AGS in the brainstem. Neuronal firing was recorded from the ICx of the awake, freely moving GEPR and normal Sprague-Dawley rats using microwire electrodes in the present study. Auditory stimuli consisted of 12-kHz tones (100 ms, 5-ms rise-fall at rates of 1/4s, 1/2s, and 1/s). AGS incidence in the GEPR is highest at 12 kHz. In the GEPR, ICx neuronal responses to acoustic stimuli were significantly greater than those seen in normal rats. This increased ICx firing was observed at relatively high acoustic intensities (> 80 dB SPL), which are near the threshold for AGS induction. Repetition-induced response attenuation (habituation) is commonly observed in ICx neurons, which appears to be overcome in the GEPR during AGS initiation. Tonic, acoustically evoked ICx neuronal firing was observed just prior to wild running. ICx firing was suppressed during the tonic and postictal phases of AGS. Recovery of ICx responses occurred when the animal regained postural control. Abnormal, intense output has previously been observed in the GEPR IC central nucleus (ICc) neurons. The neuronal firing pattern changes observed in the ICx in the present study may result from this intense ICc output. Diminished efficacy of GABA, which has been observed in several regions of the GEPR brain, including the IC, in a number of previous studies, may be involved in the exaggerated ICx responses to acoustic stimuli in the GEPR. Participation of the ICx in the AGS neuronal network may be subserved by this acoustic hyperresponsiveness.

  11. A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus)

    PubMed Central

    2013-01-01

    Background Genomic resources for plant and animal species that are under exploitation primarily for human consumption are increasingly important, among other things, for understanding physiological processes and for establishing adequate genetic selection programs. Current available techniques for high-throughput sequencing have been implemented in a number of species, including fish, to obtain a proper description of the transcriptome. The objective of this study was to generate a comprehensive transcriptomic database in turbot, a highly priced farmed fish species in Europe, with potential expansion to other areas of the world, for which there are unsolved production bottlenecks, to understand better reproductive- and immune-related functions. This information is essential to implement marker assisted selection programs useful for the turbot industry. Results Expressed sequence tags were generated by Sanger sequencing of cDNA libraries from different immune-related tissues after several parasitic challenges. The resulting database (“Turbot 2 database”) was enlarged with sequences generated from a 454 sequencing run of brain-hypophysis-gonadal axis-derived RNA obtained from turbot at different development stages. The assembly of Sanger and 454 sequences generated 52,427 consensus sequences (“Turbot 3 database”), of which 23,661 were successfully annotated. A total of 1,410 sequences were confirmed to be related to reproduction and key genes involved in sex differentiation and maturation were identified for the first time in turbot (AR, AMH, SRY-related genes, CYP19A, ZPGs, STAR FSHR, etc.). Similarly, 2,241 sequences were related to the immune system and several novel key immune genes were identified (BCL, TRAF, NCK, CD28 and TOLLIP, among others). The number of genes of many relevant reproduction- and immune-related pathways present in the database was 50–90% of the total gene count of each pathway. In addition, 1,237 microsatellites and 7,362 single

  12. Antioxidant assays for plant and food components.

    PubMed

    Moon, Joon-Kwan; Shibamoto, Takayuki

    2009-03-11

    Recently, research on natural antioxidants has become increasingly active in various fields. Accordingly, numerous articles on natural antioxidants, including polyphenols, flavonoids, vitamins, and volatile chemicals, have been published. Assays developed to evaluate the antioxidant activity of plants and food constituents vary. Therefore, to investigate the antioxidant activity of chemical(s), choosing an adequate assay based on the chemical(s) of interest is critical. There are two general types of assays widely used for different antioxidant studies. One is an assay associated with lipid peroxidations, including the thiobarbituric acid assay (TBA), malonaldehyde/high-performance liquid chromatography (MA/HPLC) assay, malonaldehyde/gas chromatography (MA/GC) assay, beta-carotene bleaching assay, and conjugated diene assay. Other assays are associated with electron or radical scavenging, including the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, ferric reducing/antioxidant power (FRAP) assay, ferrous oxidation-xylenol orange (FOX) assay, ferric thiocyanate (FTC) assay, and aldehyde/carboxylic acid (ACA) assay. In this review, assays used recently were selected for extended discussion, including discussion of the mechanisms underlying each assay and its application to various plants and foods.

  13. A genetic engineering approach to genetic algorithms.

    PubMed

    Gero, J S; Kazakov, V

    2001-01-01

    We present an extension to the standard genetic algorithm (GA), which is based on concepts of genetic engineering. The motivation is to discover useful and harmful genetic materials and then execute an evolutionary process in such a way that the population becomes increasingly composed of useful genetic material and increasingly free of the harmful genetic material. Compared to the standard GA, it provides some computational advantages as well as a tool for automatic generation of hierarchical genetic representations specifically tailored to suit certain classes of problems.

  14. Rapid evolution of antioxidant defence in a natural population of Daphnia magna.

    PubMed

    Oexle, S; Jansen, M; Pauwels, K; Sommaruga, R; De Meester, L; Stoks, R

    2016-07-01

    Natural populations can cope with rapid changes in stressors by relying on sets of physiological defence mechanisms. Little is known onto what extent these physiological responses reflect plasticity and/or genetic adaptation, evolve in the same direction and result in an increased defence ability. Using resurrection ecology, we studied how a natural Daphnia magna population adjusted its antioxidant defence to ultraviolet radiation (UVR) during a period with increasing incident UVR reaching the water surface. We demonstrate a rapid evolution of the induction patterns of key antioxidant enzymes under UVR exposure in the laboratory. Notably, evolutionary changes strongly differed among enzymes and mainly involved the evolution of UV-induced plasticity. Whereas D. magna evolved a strong plastic up-regulation of glutathione peroxidase under UVR, it evolved a lower plastic up-regulation of glutathione S-transferase and superoxide dismutase and a plastic down-regulation of catalase. The differentially evolved antioxidant strategies were collectively equally effective in dealing with oxidative stress because they resulted in the same high levels of oxidative damage (to lipids, proteins and DNA) and lowered fitness (intrinsic growth rate) under UVR exposure. The lack of better protection against UVR may suggest that the UVR exposure did not increase between both periods. Predator-induced evolution to migrate to lower depths that occurred during the same period may have contributed to the evolved defence strategy. Our results highlight the need for a multiple trait approach when focusing on the evolution of defence mechanisms.

  15. Salinity and drought induced antioxidant responses in different cultivars of safflower (Carthamus tinctorius L.).

    PubMed

    Javed, Sadia; Ashraf, Muhammad Yasin; Meraj, Munazzah; Bukhari, Shazia Anwer; Zovia, Iram

    2013-01-01

    Six cultivars of safflower which were (PI-387820, PI-251978, PI-170274, PI-387821, PI-386174 and Thori-78) grown in net house of NIAB under salinity (10 ds m⁻¹) and drought (60% field capacity) conditions and compared to their oxidative damage and antioxidative responses. Plant samples (leaves) were collected for the determination of malonidialdehyde (MDA), antioxidative enzymes (catalase, ascorbate peroxidase, glutathione reductase, and peroxidase), proline, and photosynthetic pigments. Salinity and drought decreased the chlorophyll a and b contents but a decrease in chlorophyll a and b was less in safflower variety (THORI-78) which could be a useful marker for selecting a stress tolerant variety. Both stresses considerable increases the accumulation of proline in PI-251978, PI-170274, PI-387821, PI-386174 and THORI-78 varieties of safflower whereas the proline accumulation did not appear to be an essential part of the protection mechanism against salinity and drought in variety PI-387820. Enzyme activity measurements revealed that THORI-78 can tolerate salinity and drought stress well by increasing the activity of catalase and APX enzymes whereas variety PI- 386174 showed increased activity of glutathione reductase enzyme under salinity and drought and appear to be very crucial antioxidative defenses during intense stress conditions. The results indicate that the photosynthetic pigments, proline and activities of the enzymes are important mechanism for the stress tolerance in safflower plant and can be considered as genetic improvement for the plant in salinity and drought soil conditions.

  16. Antioxidant content of foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-based foods, especially fruits, vegetables, and nuts, contain bioactive components which have various biological functions, including free radical scavenging and metal chelating (antioxidant), inhibition of lipid peroxidation, anti-inflammatory properties, etc. Oxidative stress may contribute...

  17. Higher frequency of genetic variants conferring increased risk for ADRs for commonly used drugs treating cancer, AIDS and tuberculosis in persons of African descent.

    PubMed

    Aminkeng, F; Ross, C J D; Rassekh, S R; Brunham, L R; Sistonen, J; Dube, M-P; Ibrahim, M; Nyambo, T B; Omar, S A; Froment, A; Bodo, J-M; Tishkoff, S; Carleton, B C; Hayden, M R

    2014-04-01

    There is established clinical evidence for differences in drug response, cure rates and survival outcomes between different ethnic populations, but the causes are poorly understood. Differences in frequencies of functional genetic variants in key drug response and metabolism genes may significantly influence drug response differences in different populations. To assess this, we genotyped 1330 individuals of African (n=372) and European (n=958) descent for 4535 single-nucleotide polymorphisms in 350 key drug absorption, distribution, metabolism, elimination and toxicity genes. Important and remarkable differences in the distribution of genetic variants were observed between Africans and Europeans and among the African populations. These could translate into significant differences in drug efficacy and safety profiles, and also in the required dose to achieve the desired therapeutic effect in different populations. Our data points to the need for population-specific genetic variation in personalizing medicine and care.

  18. The Antioxidants Changes in Ornamental Flowers during Development and Senescence

    PubMed Central

    Cavaiuolo, Marina; Cocetta, Giacomo; Ferrante, Antonio

    2013-01-01

    The concentration of antioxidant compounds is constitutive and variable from species to species and is also variable considering the development of the plant tissue. In this review, we take into consideration the antioxidant changes and the physiological, biochemical and molecular factors that are able to modulate the accumulation of antioxidant compounds in ornamental flowers during the whole development process until the senescence. Many ornamental flowers are natural sources of very important bioactive compounds with benefit to the human health and their possible role as dietary components has been reported. The most part of antioxidants are flower pigments such as carotenoids and polyphenols, often present in higher concentration compared with the most common fruits and vegetables. The antioxidants content changes during development and during senescence many biochemical systems and molecular mechanisms are activated to counteract the increase of reactive oxygen species and free radicals. There is a tight correlation between antioxidants and senescence processes and this aspect is detailed and appropriately discussed. PMID:26784342

  19. Antioxidant therapeutics for schizophrenia.

    PubMed

    Reddy, Ravinder; Reddy, Rajiv

    2011-10-01

    Pharmaceutical treatment for millions worldwide who have schizophrenia is limited to a handful of antipsychotics. Despite the proven efficacy of these drugs, the overall outcome for schizophrenia remains suboptimal. Thus, alternative treatment options are urgently needed. One possible approach may be antioxidant therapy. The extant evidence for the role of oxidative stress in the pathophysiology of schizophrenia offers a hypothesis-derived therapeutic approach in the form of antioxidants. Vitamins C and E, for example, are suitable for human clinical trials because they are readily available, inexpensive, and relatively safe. Research into the therapeutic use of antioxidants in schizophrenia can be grouped into two main clusters: for psychopathology and for side effects. Of these studies, some have been carefully conducted, but majority are open label. Use of antioxidants for treatment-related side effects has been more extensively investigated. The totality of the evidence to date suggests that specific antioxidants, such as N-acetyl cysteine, may offer tangible benefits for the clinical syndrome of schizophrenia, and vitamin E may offer salutary effects on glycemic effects of antipsychotics. However, a great deal of fundamental clinical research remains to be done before antioxidants can be routinely used therapeutically for schizophrenia and treatment-related complications.

  20. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet

    PubMed Central

    Mier-Cabrera, Jennifer; Aburto-Soto, Tania; Burrola-Méndez, Soraya; Jiménez-Zamudio, Luis; Tolentino, Mari C; Casanueva, Esther; Hernández-Guerrero, César

    2009-01-01

    Background Oxidative stress has been identified in the peritoneal fluid and peripheral blood of women with endometriosis. However, there is little information on the antioxidant intake for this group of women. The objectives of this work were 1) to compare the antioxidant intake among women with and without endometriosis and 2) to design and apply a high antioxidant diet to evaluate its capacity to reduce oxidative stress markers and improve antioxidant markers in the peripheral blood of women with endometriosis. Methods Women with (WEN, n = 83) and without endometriosis (WWE, n = 80) were interviewed using a Food Frequency Questionnaire to compare their antioxidant intake (of vitamins and minerals). Then, the WEN participated in the application of a control (n = 35) and high antioxidant diet (n = 37) for four months. The high antioxidant diet (HAD) guaranteed the intake of 150% of the suggested daily intake of vitamin A (1050 μg retinol equivalents), 660% of the recommended daily intake (RDI) of vitamin C (500 mg) and 133% of the RDI of vitamin E (20 mg). Oxidative stress and antioxidant markers (vitamins and antioxidant enzymatic activity) were determined in plasma every month. Results Comparison of antioxidant intake between WWE and WEN showed a lower intake of vitamins A, C, E, zinc, and copper by WEN (p < 0.05, Mann Whitney Rank test). The selenium intake was not statistically different between groups. During the study, the comparison of the 24-hour recalls between groups showed a higher intake of the three vitamins in the HAD group. An increase in the vitamin concentrations (serum retinol, alpha-tocopherol, leukocyte and plasma ascorbate) and antioxidant enzyme activity (superoxide dismutase and glutathione peroxidase) as well as a decrease in oxidative stress markers (malondialdehyde and lipid hydroperoxides) were observed in the HAD group after two months of intervention. These phenomena were not observed in the control group. Conclusion WEN had a lower

  1. Antioxidative activity of barley hordein and its loss by deamidation.

    PubMed

    Chiue, H; Kusano, T; Iwami, K

    1997-02-01

    Barley hordein was comparable to maize zein in antioxidation under a powder model system. Various deamidated "hordein" preparations were obtained and examined for their molecular-size distribution (by Sephacryl S-100 gel filtration), hydrophobicity (by fluorescence measurement using fluorescent probes) and antioxidative activity (by the ferric thiocyanate method). Deamidation caused fragmentation of the hordein molecule and simultaneously lowered its fatty acid-binding capacity rather than its surface hydrophobicity. Then, the antioxidative activity diminished with increasing deamidation. When the fatty acid-binding capacity was plotted against the antioxidative activity, a high correlation (r2 = 0.92) was observed between these two events.

  2. Critical Evaluation of Ayurvedic Plants for Stimulating Intrinsic Antioxidant Response

    PubMed Central

    Shukla, Sunil Dutt; Bhatnagar, Maheep; Khurana, Sukant

    2012-01-01

    Oxidative damage caused by free radicals plays an important role in the causation and progression of many diseases, including aging. Free-radical damage is countered by many mechanisms, including both active antioxidant enzymatic activity in our body and passive antioxidants. Antioxidant response of our body can accommodate increased oxidative damage in diseased states to a level but beyond that level, additional antioxidants are required to combat the increased stress. Apart from the regular dietary sources of antioxidants, many traditional herbal medicines demonstrate a potential to boost antioxidant activity. Rasayana chikitsa that deals with rejuvenation and revitalization is a branch of the Indian traditional medical system of ayurveda. We review some select herbs described in rasayana chikitsa that have been assessed by modern means for stimulating intrinsic antioxidant responses in humans. A critical evaluation of rasayana chikitsa will likely provide urgently needed, actual stimulants of our physiological antioxidant responses and not just more passive antioxidants to add to an already large catalog. PMID:22855669

  3. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses.

    PubMed

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2016-08-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8J/cm(2)) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway.

  4. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    PubMed Central

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  5. Genetics and genomic medicine.

    PubMed

    Bogaard, Kali; Johnson, Marlene

    2009-01-01

    Genetics is playing an increasingly important role in the diagnosis, monitoring and treatment of diseases, and the expansion of genetics into health care has generated the field of genomic medicine. Health care delivery is shifting away from general diagnostic evaluation toward a generation of therapeutics based on a patient's genetic makeup. Meanwhile, the scientific community debates how best to incorporate genetics and genomic medicine into practice. While obstacles remain, the ultimate goal is to use information generated from the study of human genetics to improve disease treatment, cure and prevention. As the use of genetics in medical diagnosis and treatment increases, health care workers will require an understanding of genetics and genomic medicine.

  6. µ-Calpain, calpastatin, and growth hormone receptor genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in Angus cattle selected to increase minor haplotype ... frequencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic marker effects and interactions are estimated with poor precision when minor marker allele frequencies are low. An Angus population was subjected to marker assisted selection for multiple years to increase divergent haplotype and minor marker allele frequencies to 1) estimate effect size an...

  7. Antioxidant responses of wheat plants under stress

    PubMed Central

    Caverzan, Andréia; Casassola, Alice; Brammer, Sandra Patussi

    2016-01-01

    Abstract Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals. PMID:27007891

  8. Antioxidant action of Andrographis paniculata on lymphoma.

    PubMed

    Verma, Nibha; Vinayak, Manjula

    2008-12-01

    Regulation of the balance between production of reactive oxygen species (ROS) by cellular processes and its removal by antioxidant defense system maintains normal physiological processes. Any condition leading to increased ROS results in oxidative stress which has been related with a number of diseases including cancer. Improvement in antioxidant defense system is required to overcome the damaging effects of oxidative stress. Therefore in the present study, effect of the aqueous extract of a medicinal plant Andrographis paniculata (AP) on antioxidant defense system in liver is investigated in lymphoma bearing AKR mice. Estimating catalase, superoxide dismutase and glutathione S transferase monitored the antioxidant action. Oral administration of the aqueous extract of A. paniculata in different doses causes a significant elevation of catalase, superoxide dismutase and glutathione S transferase activities. It reveals the antioxidant action of the aqueous extract of AP, which may play a role in the anticarcinogenic activity by reducing the oxidative stress. LDH activity is known to increase in various cancers due to hypoxic condition. Lactate dehydrogenase is used as tumor marker. We find a significant decrease in LDH activity on treatment with AP, which indicates a decrease in carcinogenic activity. A comparison with Doxorubicin (DOX), an anticancerous drug, indicates that the aqueous extract of AP is more effective than DOX with respect to its effect on catalase, superoxide dismutase, glutathione S transferase as well as on lactate dehydrogenase activities in liver of lymphoma bearing mice.

  9. Antioxidant Supplementation in the Treatment of Aging-Associated Diseases

    PubMed Central

    Conti, Valeria; Izzo, Viviana; Corbi, Graziamaria; Russomanno, Giusy; Manzo, Valentina; De Lise, Federica; Di Donato, Alberto; Filippelli, Amelia

    2016-01-01

    Oxidative stress is generally considered as the consequence of an imbalance between pro- and antioxidants species, which often results into indiscriminate and global damage at the organismal level. Elderly people are more susceptible to oxidative stress and this depends, almost in part, from a decreased performance of their endogenous antioxidant system. As many studies reported an inverse correlation between systemic levels of antioxidants and several diseases, primarily cardiovascular diseases, but also diabetes and neurological disorders, antioxidant supplementation has been foreseen as an effective preventive and therapeutic intervention for aging-associated pathologies. However, the expectations of this therapeutic approach have often been partially disappointed by clinical trials. The interplay of both endogenous and exogenous antioxidants with the systemic redox system is very complex and represents an issue that is still under debate. In this review a selection of recent clinical studies concerning antioxidants supplementation and the evaluation of their influence in aging-related diseases is analyzed. The controversial outcomes of antioxidants supplementation therapies, which might partially depend from an underestimation of the patient specific metabolic demand and genetic background, are presented. PMID:26903869

  10. Skin and antioxidants.

    PubMed

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  11. Application of Lignin as Antioxidant in Styrene Butadiene Rubber Composite

    NASA Astrophysics Data System (ADS)

    Liu, Shusheng; Cheng, Xiansu

    2010-11-01

    Lignin isolated from enzymatic hydrolyzed cornstalks (EHL) is a renewable natural polymer, and rubber is one of the most important polymer materials. The application of EHL in rubber industry is of great significance. The influence of EHL and antioxidant RD on the vulcanizing characteristics, thermal oxidative aging stability under free condition, and water extraction resistance of styrene-butadiene rubber (SBR) were investigated. The effect of EHL/antioxidant D composite antioxidant on the thermal oxidative ageing of SBR was also evaluated. Results showed that the protection of SBR from thermal oxidative aging by EHL/antioxidant D composite antioxidant was superior to that of antioxidant D. This is because EHL molecules have hindered phenol group and have excellent auxiliary antioxidant role with antioxidant D. Moreover, the influence of EHL on the vulcanizing characteristics of SBR compounds was better than that of antioxidant RD, and EHL can reduce the cure rate and increase the optimum cure time. It is because that the EHL molecules have hindered phenol group and methoxy group, which can form a special structure to capture free radical and terminate the chain reaction. The retained tensile strength of SBR compounds with EHL was similar to that of the samples with antioxidant RD, while the retained elongation at break of SBR compounds with EHL was higher than that of the samples with antioxidant RD. In addition, the SBR compounds with EHL have a good water extraction resistance property, which was similar to the samples with antioxidant RD. This is because EHL have large molecular weight, good stability and low solubility in water. In conclusion, due to the low price, abundant resources, non-toxic and pollution-free, etc., EHL will have broad application prospect.

  12. Increased prevalence of human cutaneous leishmaniasis in Israel and the Palestinian Authority caused by the recent emergence of a population of genetically similar strains of Leishmania tropica.

    PubMed

    Azmi, Kifaya; Krayter, Lena; Nasereddin, Abedelmajeed; Ereqat, Suheir; Schnur, Lionel F; Al-Jawabreh, Amer; Abdeen, Ziad; Schönian, Gabriele

    2016-08-04

    Twelve unlinked microsatellite markers were used to determine the microsatellite profiles of 50 newly and 46 previously typed strains of L. tropica from various Israeli and Palestinian foci. Their microsatellite profiles were compared to those of 99 previously typed strains of L. tropica from 15 countries. Israeli and Palestinian strains of L. tropica fell into three different groups, one of which contained 75 of the 96 Israeli and Palestinian strains. This population separated from all the others at the first hierarchical level by Bayesian statistics and formed a distinct monophyletic group on applying genetic distance and allele frequency analyses. The second cluster contained ten Israeli strains from a specific focus north of the Sea of Galilee, which were previously shown to differ from all other strains of L. tropica in their serological, biochemical and molecular biological parameters. This cluster was closely related to clusters comprising strains of L. tropica from Africa. Four Israeli and five Palestinian strains fell into different genetic entities mostly related to strains from Asian foci of CL. Importation during numerous migrations of humans and, perhaps, infected reservoir animals in the past and, now, through modern travel is the most likely explanation for the existence of so many locally encountered genetic variants of L. tropica in the Israeli-Palestinian region. Geographical and ecological variation may play a role in expanding the genetic heterogeneity once given importations had become established in different foci. Currently, one population is expanding in the area comprising almost all of the Palestinian and Israeli strains of L. tropica isolated since 1996 and investigated in this study, which differ clearly from all other strains of whatsoever origin. This population seems to result from the re-emergence of a previously existing genotype owing to environmental changes and human activities.

  13. Genetic variants of the IL22 promoter associate to onset of psoriasis before puberty and increased IL-22 production in T cells.

    PubMed

    Nikamo, Pernilla; Cheuk, Stanley; Lysell, Josefin; Enerbäck, Charlotta; Bergh, Kerstin; Xu Landén, Ning; Eidsmo, Liv; Ståhle, Mona

    2014-06-01

    Most psoriasis susceptibility genes were identified in cohorts of mixed clinical phenotypes and the exploration of genes in clinical subtypes is scarce. IL-22 has an established role in host defense and in psoriasis skin pathology, reflecting the delicate balance between control of infection and immunopathology. In a case-control study, we compared the genetic association to IL22 in psoriasis onset in patients between 0-9 (n=207), 10-20 (n=394), and 21-40 (n=468) years with healthy controls (n=1,529). Logistic regression analysis revealed association to regulatory elements in the IL22 promoter confined to onset of psoriasis before puberty (odds ratio=1.45, P<0.0007). The associated variants contain putative binding sites for AhR, a potent inducer of IL-22 expression. In a luciferase assay, transcriptional activity of a high-risk gene variant resulted in 80% higher promoter activity (P=0.012) compared with a low-risk variant. Ex vivo stimulated T cells from peripheral blood were analyzed with flow cytometry. Children with psoriasis carrying a high-risk variant produced 1.7 times more IL-22 compared with low-risk variants (P=0.042). Our combined genetic and functional data support the notion that a genetic IL22 variant that promotes epithelial barrier defense is preferentially enriched in and may precipitate the onset of psoriasis at an early age.

  14. Antioxidants, metabolic rate and aging in Drosophila.

    PubMed

    Miquel, J; Fleming, J; Economos, A C

    1982-09-01

    In line with the (metabolic) rate-of-living theory of aging, previous work from this laboratory showed that the life-prolonging effect of the antioxidant thiazolidine carboxylic acid (TCA) in Drosophila was paralleled by a similar reduction of the oxygen consumption rate of the flies. To assess the generality of this phenomenon, several life-prolonging antioxidants were dietarily administered to the flies (in standard medium with 1% w/v of tocopherol-stripped corn oil) and their effects on metabolic rate and life span were determined. Respiration rate of groups of continuously agitated flies was measured in the Gilson respirometer. The studied antioxidants were as follows: (the numbers in parentheses are consecutively the antioxidant concentration in the medium in % wt/vol.; mean life span in days; and metabolic rate in microliter O2/mg fly per 24 h): vitamin E (0.4; 46.3; 58.5); 2,4-dinitrophenol (0.1; 45.7; 66.2); nordihydroguaiaretic acid (0.5; 45.6; 69.1); thiazolidine carboxylic acid (0.3; 53.1; 55.8); and control with no antioxidant added (0; 40.7; 73.3). All of these antioxidants at the tested concentrations reduced oxygen consumption rate and increased mean life span; there was a significant negative linear correlation (r = -0.87) between mean life span and metabolic rate. These data suggest that some antioxidants may inhibit respiration rate in addition to their protective effect against free radical-induced cellular damage.

  15. Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and implications of antioxidant therapy.