Science.gov

Sample records for genetically increased antioxidative

  1. Antioxidants can increase melanoma metastasis in mice.

    PubMed

    Le Gal, Kristell; Ibrahim, Mohamed X; Wiel, Clotilde; Sayin, Volkan I; Akula, Murali K; Karlsson, Christin; Dalin, Martin G; Akyürek, Levent M; Lindahl, Per; Nilsson, Jonas; Bergo, Martin O

    2015-10-01

    Antioxidants in the diet and supplements are widely used to protect against cancer, but clinical trials with antioxidants do not support this concept. Some trials show that antioxidants actually increase cancer risk and a study in mice showed that antioxidants accelerate the progression of primary lung tumors. However, little is known about the impact of antioxidant supplementation on the progression of other types of cancer, including malignant melanoma. We show that administration of N-acetylcysteine (NAC) increases lymph node metastases in an endogenous mouse model of malignant melanoma but has no impact on the number and size of primary tumors. Similarly, NAC and the soluble vitamin E analog Trolox markedly increased the migration and invasive properties of human malignant melanoma cells but did not affect their proliferation. Both antioxidants increased the ratio between reduced and oxidized glutathione in melanoma cells and in lymph node metastases, and the increased migration depended on new glutathione synthesis. Furthermore, both NAC and Trolox increased the activation of the small guanosine triphosphatase (GTPase) RHOA, and blocking downstream RHOA signaling abolished antioxidant-induced migration. These results demonstrate that antioxidants and the glutathione system play a previously unappreciated role in malignant melanoma progression.

  2. Short communication: Effect of genetic type on antioxidant activity of Caciocavallo cheese during ripening.

    PubMed

    Perna, Annamaria; Intaglietta, Immacolata; Simonetti, Amalia; Gambacorta, Emilio

    2015-06-01

    The aim of this work was to investigate the antioxidant activity of Caciocavallo cheese made from the milk of 2 breeds, Italian Brown and Italian Holstein, and ripened for 1, 30, 60, 90, and 150 d. The antioxidant activity of cheese was measured using the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric-reducing antioxidant power (FRAP), and thiol assays. Statistical analysis showed a significant effect of the studied factors. Italian Brown cheese had higher antioxidant activity than Italian Holstein cheese, and antioxidant activity increased during ripening of both cheeses types. Moreover, antioxidant activity varied during ripening depending on the rate of formation of soluble peptides. To date, few studies have evaluated the effect of genetic type on antioxidant capacity of the pasta filata cheeses; thus, this study forms the basis of new knowledge that could lead to the production of a pasta filata cheese with specific nutraceutical characteristics.

  3. [Genetic and biochemical mechanisms of involvement of antioxidant defense enzymes in the development of bronchial asthma].

    PubMed

    Polonikov, A V; Ivanov, V P; Bogomazov, A D; Solodilova, M A

    2015-01-01

    In the present review we have analyzed and summarized recent literature data on genetic and biochemical mechanisms responsible for involvement of antioxidant defense enzymes in the etiology and pathogenesis of bronchial asthma. It has been shown that the mechanisms of asthma development are linked with genetically determined abnormalities in the functioning of antioxidant defense enzymes. These alterations are accompanied by a systemic imbalance between oxidative and anti-oxidative reactions with the shift of the redox state toward increased free radical production and oxidative stress, a key element in the pathogenesis of bronchial asthma. PMID:26350733

  4. [Genetic and biochemical mechanisms of involvement of antioxidant defense enzymes in the development of bronchial asthma].

    PubMed

    Polonikov, A V; Ivanov, V P; Bogomazov, A D; Solodilova, M A

    2015-01-01

    In the present review we have analyzed and summarized recent literature data on genetic and biochemical mechanisms responsible for involvement of antioxidant defense enzymes in the etiology and pathogenesis of bronchial asthma. It has been shown that the mechanisms of asthma development are linked with genetically determined abnormalities in the functioning of antioxidant defense enzymes. These alterations are accompanied by a systemic imbalance between oxidative and anti-oxidative reactions with the shift of the redox state toward increased free radical production and oxidative stress, a key element in the pathogenesis of bronchial asthma.

  5. Antioxidant assay using genetically engineered bioluminescent Escherichia coli

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Macalino, Bernadette; Pastoral, Ian Lemuel; Sevilla, Fortunato, III

    2006-02-01

    A new antioxidant activity assay based on the reactive oxygen species (ROS)-inducible bacterial strain (E. coli DPD2511) is described. The strain harbors the plasmid pKatG::luxCDABE and responds to hydrogen peroxide treatment by increasing light emission at 490 nm. Antioxidant capacity is evaluated through the ability of an agent to inhibit the hydrogen peroxide-induced bioluminescence of E. coli DPD2511. Applicability of the developed assay in detecting levels of antioxidants in various aqueous plant extracts is demonstrated. The assay was validated against 2,2-diphenylpicrylhydrazyl (DPPH) assay, a known antioxidant assay.

  6. Vitamins, stress and growth: the availability of antioxidants in early life influences the expression of cryptic genetic variation.

    PubMed

    Kim, S-Y; Noguera, J C; Tato, A; Velando, A

    2013-06-01

    Environmental inputs during early development can shape the expression of phenotypes, which has long-lasting consequences in physiology and life history of an organism. Here, we study whether experimentally manipulated availability of dietary antioxidants, vitamins C and E, influences the expression of genetic variance for antioxidant defence, endocrine signal and body mass in yellow-legged gull chicks using quantitative genetic models based on full siblings. Our experimental study in a natural population reveals that the expression of genetic variance in total antioxidant capacity in plasma increased in chicks supplemented with vitamins C and E despite the negligible effects on the average phenotype. This suggests that individuals differ in their ability to capture and transport dietary antioxidants or to respond to these extra resources, and importantly, this ability has a genetic basis. Corticosterone level in plasma and body mass were negatively correlated at the phenotypic level. Significant genetic variance of corticosterone level appeared only in control chicks nonsupplemented with vitamins, suggesting that the genetic variation of endocrine system, which transmits environmental cues to adaptively control chick development, appeared in stressful conditions (i.e. poor antioxidant availability). Therefore, environmental inputs may shape evolutionary trajectories of antioxidant capacity and endocrine system by affecting the expression of cryptic genetic variation.

  7. Engineering flax plants to increase their antioxidant capacity and improve oil composition and stability.

    PubMed

    Zuk, Magdalena; Prescha, Anna; Stryczewska, Monika; Szopa, Jan

    2012-05-16

    The composition of polyunsaturated fatty acids in the tissues is very important to human health and strongly depends on dietary intake. Since flax seeds are the richest source of polyunsaturated acids, their consumption might be beneficial for human health. Unfortunately, they are highly susceptible to auto-oxidation, which generates toxic derivatives. The main goal of this study was the generation of genetically modified flax plants with increased antioxidant potential and stable and healthy oil production. Since among phenylpropanoid compounds those belonging to the flavonoid route have the lowest antioxidant capacity, the approach was to inhibit this route of the pathway, which might result in accumulation of other compounds more effective in antioxidation. The suppression of the chalcone synthase gene resulted in hydrolyzable tannin accumulation and thus increased antioxidant status of seeds of the transgenic plant. This was due to the partial redirecting of substrates for flavonoid biosynthesis to the other routes of the phenylpropanoid pathway. Consequently, transgenic plants produced more (20-45%) polyunsaturated fatty acids than the control and mainly α-linolenic acid. Thus, increasing the antioxidant potential of flax plants has benefits in terms of the yield of suitable oil for human dietary consumption.

  8. Increases in endogenous antioxidant enzymes during asbestos inhalation in rats.

    PubMed

    Janssen, Y M; Marsh, J P; Absher, M; Borm, P J; Mossman, B T

    1990-01-01

    Although the pathogenesis of asbestos-induced pulmonary damage is still not completely understood, an important role has been attributed to active oxygen species. In the present paper we present results of a study investigating the effect of crocidolite asbestos inhalation on different lung antioxidant enzymes in rats. During the development of pulmonary fibrosis induced by crocidolite asbestos, lung superoxide dismutase, catalase and selenium-dependent glutathione peroxidase activities increased, indicating an adaptive response to increased pulmonary oxidant stress. However, this adaptive response obviously is not sufficient to protect the lung from asbestos-induced pulmonary damage. Considering the role of active oxygen species in both the fibrotic process and tumor promotion, it is hypothesized that antioxidants may also protect the lung from chronic asbestos-induced pulmonary damage such as bronchogenic carcinoma. PMID:1963619

  9. A novel technology to increase antioxidant activity of an antioxidant by reducing volatility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During frying, an antioxidant is lost by reaction with radicals for its antioxidant activity, but it is also lost by decomposition and evaporation before it is able to exert antioxidant activity. Some low molecular weight antioxidants are often so volatile that they show much reduced antioxidant act...

  10. Increased oxidative stress and impaired antioxidant response in Lafora disease.

    PubMed

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2014-10-01

    Lafora Disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxirredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD. PMID:26461389

  11. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging.

    PubMed

    Umanskaya, Alisa; Santulli, Gaetano; Xie, Wenjun; Andersson, Daniel C; Reiken, Steven R; Marks, Andrew R

    2014-10-21

    Age-related skeletal muscle dysfunction is a leading cause of morbidity that affects up to half the population aged 80 or greater. Here we tested the effects of increased mitochondrial antioxidant activity on age-dependent skeletal muscle dysfunction using transgenic mice with targeted overexpression of the human catalase gene to mitochondria (MCat mice). Aged MCat mice exhibited improved voluntary exercise, increased skeletal muscle specific force and tetanic Ca(2+) transients, decreased intracellular Ca(2+) leak and increased sarcoplasmic reticulum (SR) Ca(2+) load compared with age-matched wild type (WT) littermates. Furthermore, ryanodine receptor 1 (the sarcoplasmic reticulum Ca(2+) release channel required for skeletal muscle contraction; RyR1) from aged MCat mice was less oxidized, depleted of the channel stabilizing subunit, calstabin1, and displayed increased single channel open probability (Po). Overall, these data indicate a direct role for mitochondrial free radicals in promoting the pathological intracellular Ca(2+) leak that underlies age-dependent loss of skeletal muscle function. This study harbors implications for the development of novel therapeutic strategies, including mitochondria-targeted antioxidants for treatment of mitochondrial myopathies and other healthspan-limiting disorders. PMID:25288763

  12. Genetic markers for antioxidant capacity in a reef-building coral.

    PubMed

    Jin, Young K; Lundgren, Petra; Lutz, Adrian; Raina, Jean-Baptiste; Howells, Emily J; Paley, Allison S; Willis, Bette L; van Oppen, Madeleine J H

    2016-05-01

    The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985-2012. We conducted a gene-by-environment association analysis across 12° latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs. PMID:27386515

  13. Genetic markers for antioxidant capacity in a reef-building coral

    PubMed Central

    Jin, Young K.; Lundgren, Petra; Lutz, Adrian; Raina, Jean-Baptiste; Howells, Emily J.; Paley, Allison S.; Willis, Bette L.; van Oppen, Madeleine J. H.

    2016-01-01

    The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985–2012. We conducted a gene-by-environment association analysis across 12° latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs. PMID:27386515

  14. Genetic markers for antioxidant capacity in a reef-building coral.

    PubMed

    Jin, Young K; Lundgren, Petra; Lutz, Adrian; Raina, Jean-Baptiste; Howells, Emily J; Paley, Allison S; Willis, Bette L; van Oppen, Madeleine J H

    2016-05-01

    The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985-2012. We conducted a gene-by-environment association analysis across 12° latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs.

  15. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype.

    PubMed

    Talens, P; Mora, L; Bramley, Peter M; Fraser, Paul D

    2016-12-15

    The economic value, the ease of cultivation and processing, and the well-known health-promoting properties of tomato fruit, make the tomato an important target for genetic manipulation to increase its nutritional content. A transgenic variety, down-regulated in the DETIOLATED-1 (DET-1) gene, has been studied in comparison with the parental line, for antioxidant levels in fresh and hot break fruit, as well as the bioaccessibility of antioxidants from puree. Differences in the concentrations of antioxidants between the wild-type and the genetically modified raw tomatoes were confirmed, but antioxidant levels were maintained to a greater extent in the GM puree than in the parent. The bioaccessibility of the compounds, tested using an in vitro digestion model, showed an increase in the genetically modified samples.

  16. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype.

    PubMed

    Talens, P; Mora, L; Bramley, Peter M; Fraser, Paul D

    2016-12-15

    The economic value, the ease of cultivation and processing, and the well-known health-promoting properties of tomato fruit, make the tomato an important target for genetic manipulation to increase its nutritional content. A transgenic variety, down-regulated in the DETIOLATED-1 (DET-1) gene, has been studied in comparison with the parental line, for antioxidant levels in fresh and hot break fruit, as well as the bioaccessibility of antioxidants from puree. Differences in the concentrations of antioxidants between the wild-type and the genetically modified raw tomatoes were confirmed, but antioxidant levels were maintained to a greater extent in the GM puree than in the parent. The bioaccessibility of the compounds, tested using an in vitro digestion model, showed an increase in the genetically modified samples. PMID:27451242

  17. Coffee component 3-caffeoylquinic acid increases antioxidant capacity but not polyphenol content in experimental cerebral infarction.

    PubMed

    Ruiz-Crespo, Silvia; Trejo-Gabriel-Galan, Jose M; Cavia-Saiz, Monica; Muñiz, Pilar

    2012-05-01

    Although coffee has antioxidant capacity, it is not known which of its bioactive compounds is responsible for it, nor has it been analyzed in experimental cerebral infarction. We studied the effect one of its compounds, 3-caffeoylquinic acid (3-CQA), at doses of 4, 25 and 100 μg on plasma antioxidant capacity and plasma polyphenol content, measuring the differences before and after inducing a cerebral infarction in an experimental rat model. We compared them with 3-caffeoylquinic-free controls. The increase in total antioxidant capacity was only higher than in controls in 3-CQA treated animals with the highest dose. This increase in antioxidant capacity was not due to an increase in polyphenols. No differences between the experimental and control group were found regarding polyphenol content and cerebral infarction volume. In conclusion, this increase in antioxidant capacity in the group that received the highest dose of 3-CQA was not able to reduce experimental cerebral infarction.

  18. Effects of genetic, pre- and post-harvest factors on phenolic content and antioxidant capacity of white asparagus spears.

    PubMed

    Papoulias, Eleftherios; Siomos, Anastasios S; Koukounaras, Athanasios; Gerasopoulos, Dimitrios; Kazakis, Evangelos

    2009-12-16

    The effects of genetic, pre-harvest (season of harvest, spear diameter, spear portion and spear tip color) and post-harvest factors (storage and domestic preparation practices, e.g., peeling and cooking) on total phenolic, flavonoid and ascorbic acid content of white asparagus spears and their correlation with antioxidant capacity (DPPH and FRAP) were studied. Results showed that genetic material was important for the total phenolic content but not season of harvest, spear diameter or storage. Violet spear tips and apical spear portions showed the largest amount of total phenolics. Peeling did not affect total phenolics in fresh asparagus, whereas it reduced their content in stored asparagus, while cooking resulted in an increase in both fresh and stored asparagus. However, the soluble extract of total phenolics and flavonoids were minor and the missing significance of phenolics and flavonoids in antioxidant capacity of white asparagus spears depends on these small amounts.

  19. Antioxidants

    MedlinePlus

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  20. Genetic Diversity Increases Insect Herbivory on Oak Saplings

    PubMed Central

    Castagneyrol, Bastien; Lagache, Lélia; Giffard, Brice; Kremer, Antoine; Jactel, Hervé

    2012-01-01

    A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores. PMID:22937168

  1. Genetic diversity increases insect herbivory on oak saplings.

    PubMed

    Castagneyrol, Bastien; Lagache, Lélia; Giffard, Brice; Kremer, Antoine; Jactel, Hervé

    2012-01-01

    A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.

  2. Increased antioxidant content in juice enriched with dried extract of pomegranate (Punica granatum) peel.

    PubMed

    Mastrodi Salgado, Jocelem; Baroni Ferreira, Tânia Rachel; de Oliveira Biazotto, Fúvia; Dos Santos Dias, Carlos Tadeu

    2012-03-01

    Antioxidants are compounds responsible for free radical scavenging in the body. They protect the organism from oxidative modification of cells and tissues. These modifications have been associated with degenerative diseases, atherosclerosis and carcinogenesis. Punica granatum displays high antioxidant potential due to the presence of phenolic compounds, which are capable of disease prevention. The present study showed the highest antioxidant activity in pomegranate peel than in seeds and pulp. Based on these results, pomegranate peel was used to produce dried extract that was added to commercial tomato juice and orange juice with strawberries. Analysis to determine the content of phenolic compounds and antioxidant activity was performed on pomegranate pulp, seeds and peel and in juices enriched with dried extract of pomegranate peel. The dried extract was responsible for a significant increase in antioxidant activity of the juices, proportional to the concentrations added. However, although both flavors of enriched juices displayed high antioxidant levels, the samples with higher dried extract concentrations received the lowest scores from sensory analysis participants due to the characteristic astringent flavor of pomegranate peels. Therefore, to obtain greater acceptance in the consumer market, we concluded that the maximum addition of dried pomegranate peel extract is 0.5% in tomato juice and orange juice with strawberries.

  3. Increased antioxidant content in juice enriched with dried extract of pomegranate (Punica granatum) peel.

    PubMed

    Mastrodi Salgado, Jocelem; Baroni Ferreira, Tânia Rachel; de Oliveira Biazotto, Fúvia; Dos Santos Dias, Carlos Tadeu

    2012-03-01

    Antioxidants are compounds responsible for free radical scavenging in the body. They protect the organism from oxidative modification of cells and tissues. These modifications have been associated with degenerative diseases, atherosclerosis and carcinogenesis. Punica granatum displays high antioxidant potential due to the presence of phenolic compounds, which are capable of disease prevention. The present study showed the highest antioxidant activity in pomegranate peel than in seeds and pulp. Based on these results, pomegranate peel was used to produce dried extract that was added to commercial tomato juice and orange juice with strawberries. Analysis to determine the content of phenolic compounds and antioxidant activity was performed on pomegranate pulp, seeds and peel and in juices enriched with dried extract of pomegranate peel. The dried extract was responsible for a significant increase in antioxidant activity of the juices, proportional to the concentrations added. However, although both flavors of enriched juices displayed high antioxidant levels, the samples with higher dried extract concentrations received the lowest scores from sensory analysis participants due to the characteristic astringent flavor of pomegranate peels. Therefore, to obtain greater acceptance in the consumer market, we concluded that the maximum addition of dried pomegranate peel extract is 0.5% in tomato juice and orange juice with strawberries. PMID:22392496

  4. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Lawler, John M.; Song, Wook; Demaree, Scott R.; Bloomfield, S. A. (Principal Investigator)

    2003-01-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  5. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance.

    PubMed

    Zhang, Xiao-Yi; Hu, Chun-Gen; Yao, Jia-Ling

    2010-01-15

    Polyploidy is reported to show increased tolerance to environmental stress. In this work, tetraploid plants of Dioscorea zingiberensis were obtained by colchicine treatment of shoots propagated in vitro. The highest tetraploid induction rate was achieved by treatment with 0.15% colchicine for 24h. Diploid and tetraploid plants were exposed to normal (28 degrees C) and high temperature (42 degrees C) for 5d during which physiological indices were measured. Compared with diploid plants, relative electrolyte leakage and contents of malondialdehyde, superoxide anions and hydrogen peroxide were lower in tetraploids, while activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and glutathione reductase, were stimulated and antioxidants (ascorbic acid and glutathione) were maintained at high concentrations. These results indicate that tetraploid plants possess a stronger antioxidant defense system and increased heat tolerance. PMID:19692145

  6. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies.

    PubMed

    Zhu, Changfu; Sanahuja, Georgina; Yuan, Dawei; Farré, Gemma; Arjó, Gemma; Berman, Judit; Zorrilla-López, Uxue; Banakar, Raviraj; Bai, Chao; Pérez-Massot, Eduard; Bassie, Ludovic; Capell, Teresa; Christou, Paul

    2013-02-01

    Antioxidants are protective molecules that neutralize reactive oxygen species and prevent oxidative damage to cellular components such as membranes, proteins and nucleic acids, therefore reducing the rate of cell death and hence the effects of ageing and ageing-related diseases. The fortification of food with antioxidants represents an overlap between two diverse environments, namely fortification of staple foods with essential nutrients that happen to have antioxidant properties (e.g. vitamins C and E) and the fortification of luxury foods with health-promoting but non-essential antioxidants such as flavonoids as part of the nutraceuticals/functional foods industry. Although processed foods can be artificially fortified with vitamins, minerals and nutraceuticals, a more sustainable approach is to introduce the traits for such health-promoting compounds at source, an approach known as biofortification. Regardless of the target compound, the same challenges arise when considering the biofortification of plants with antioxidants, that is the need to modulate endogenous metabolic pathways to increase the production of specific antioxidants without affecting plant growth and development and without collateral effects on other metabolic pathways. These challenges become even more intricate as we move from the engineering of individual pathways to several pathways simultaneously. In this review, we consider the state of the art in antioxidant biofortification and discuss the challenges that remain to be overcome in the development of nutritionally complete and health-promoting functional foods.

  7. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Caspers, P. J.; van der Pol, A.; Richter, H.; Patzelt, A.; Zastrow, L.; Darvin, M.; Sterry, W.; Fluhr, J. W.

    2009-01-01

    In the present study, the distribution of the carotenoids as a marker for the complete antioxidative potential in human skin was investigated before and after the topical application of carotenoids by in vivo Raman spectroscopy with an excitation wavelength of 785 nm. The carotenoid profile was assessed after a short term topical application in 4 healthy volunteers. In the untreated skin, the highest concentration of natural carotenoids was detected in different layers of the stratum corneum (SC) close to the skin surface. After topical application of carotenoids, an increase in the antioxidative potential in the skin could be observed. Topically applied carotenoids penetrate deep into the epidermis down to approximately 24 μm. This study supports the hypothesis that antioxidative substances are secreted via eccrine sweat glands and/or sebaceous glands to the skin surface. Subsequently they penetrate into the different layers of the SC.

  8. Increased antioxidant efficacy of tocopherols by surfactant solubilization in oil-in-water emulsions.

    PubMed

    Kiralan, S Sezer; Doğu-Baykut, Esra; Kittipongpittaya, Ketinun; McClements, David Julian; Decker, Eric A

    2014-10-29

    The physical location of antioxidants in oil-in-water emulsions can have significant influence on their free radical scavenging activity and ability to inhibit lipid oxidation. We aimed to determine the effect of the surfactant concentration on the partitioning behavior of tocopherols (α, γ, and δ) in oil-in-water emulsions. Tween 20 (0.1, 0.5, and 1%) increased the partitioning of the tocopherols into the aqueous phase via the formation of Tween 20-tocopherol comicelles. Partitioning behavior of antioxidants was dependent upon the number of methyl groups and, thus, polarity of the tocopherols. δ-Tocopherol (one methyl group) exhibited the most partitioning into the aqueous phase, while α-tocopherol (three methyl groups) had the lowest partitioning. Lipid oxidation studies showed that the antioxidant activity of δ- and α-tocopherols was enhanced by adding Tween 20 to oil-in-water emulsions. This work suggests that surfactant micelles could increase the antioxidant activity of tocopherols by changing their physical location.

  9. Management increases genetic diversity of honey bees via admixture.

    PubMed

    Harpur, Brock A; Minaei, Shermineh; Kent, Clement F; Zayed, Amro

    2012-09-01

    The process of domestication often brings about profound changes in levels of genetic variation in animals and plants. The honey bee, Apis mellifera, has been managed by humans for centuries for both honey and wax production and crop pollination. Human management and selective breeding are believed to have caused reductions in genetic diversity in honey bee populations, thereby contributing to the global declines threatening this ecologically and economically important insect. However, previous studies supporting this claim mostly relied on population genetic comparisons of European and African (or Africanized) honey bee races; such conclusions require reassessment given recent evidence demonstrating that the honey bee originated in Africa and colonized Europe via two independent expansions. We sampled honey bee workers from two managed populations in North America and Europe as well as several old-world progenitor populations in Africa, East and West Europe. Managed bees had highly introgressed genomes representing admixture between East and West European progenitor populations. We found that managed honey bees actually have higher levels of genetic diversity compared with their progenitors in East and West Europe, providing an unusual example whereby human management increases genetic diversity by promoting admixture. The relationship between genetic diversity and honey bee declines is tenuous given that managed bees have more genetic diversity than their progenitors and many viable domesticated animals.

  10. Reflections on the Field of Human Genetics: A Call for Increased Disease Genetics Theory

    PubMed Central

    Schrodi, Steven J.

    2016-01-01

    Development of human genetics theoretical models and the integration of those models with experiment and statistical evaluation are critical for scientific progress. This perspective argues that increased effort in disease genetics theory, complementing experimental, and statistical efforts, will escalate the unraveling of molecular etiologies of complex diseases. In particular, the development of new, realistic disease genetics models will help elucidate complex disease pathogenesis, and the predicted patterns in genetic data made by these models will enable the concurrent, more comprehensive statistical testing of multiple aspects of disease genetics predictions, thereby better identifying disease loci. By theoretical human genetics, I intend to encompass all investigations devoted to modeling the heritable architecture underlying disease traits and studies of the resulting principles and dynamics of such models. Hence, the scope of theoretical disease genetics work includes construction and analysis of models describing how disease-predisposing alleles (1) arise, (2) are transmitted across families and populations, and (3) interact with other risk and protective alleles across both the genome and environmental factors to produce disease states. Theoretical work improves insight into viable genetic models of diseases consistent with empirical results from linkage, transmission, and association studies as well as population genetics. Furthermore, understanding the patterns of genetic data expected under realistic disease models will enable more powerful approaches to discover disease-predisposing alleles and additional heritable factors important in common diseases. In spite of the pivotal role of disease genetics theory, such investigation is not particularly vibrant. PMID:27375680

  11. The increase in human plasma antioxidant capacity after apple consumption is due to the metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids.

    PubMed

    Lotito, Silvina B; Frei, Balz

    2004-07-15

    Regular fruit consumption lowers the risk of cardiovascular diseases and certain cancers, which has been attributed in part to fruit-derived antioxidant flavonoids. However, flavonoids are poorly absorbed by humans, and the increase in plasma antioxidant capacity observed after consumption of flavonoid-rich foods often greatly exceeds the increase in plasma flavonoids. In the present study, six healthy subjects consumed five Red Delicious apples (1037 +/- 38 g), plain bagels (263.1 +/- 0.9 g) and water matching the carbohydrate content and mass of the apples, and fructose (63.9 +/- 2.9 g) in water matching the fructose content and mass of the apples. The antioxidant capacity of plasma was measured before and up to 6 h after food consumption as ferric reducing antioxidant potential (FRAP), without or with ascorbate oxidase treatment (FRAPAO) to estimate the contribution of ascorbate. Baseline plasma FRAP and FRAPAO were 445 +/- 35 and 363 +/- 35 microM trolox equivalents, respectively. Apple consumption caused an acute, transient increase in both plasma FRAP and FRAPAO, with increases after 1 h of 54.6 +/- 8.7 and 61.3 = 17.2 microM trolox equivalents, respectively. This increase in plasma antioxidant capacity was paralleled by a large increase in plasma urate, a metabolic antioxidant, from 271 +/- 39 microM at baseline to 367 +/- 43 microM after 1 h. In contrast, FRAP and FRAPAO time-dependently decreased after bagel consumption, together with urate. Consumption of fructose mimicked the effects of apples with respect to increased FRAP, FRAPAO, and urate, but not ascorbate. Taken together, our data show that the increase in plasma antioxidant capacity in humans after apple consumption is due mainly to the well-known metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids.

  12. Reduced antioxidant level and increased oxidative damage in intact liver lobes during ischaemia-reperfusion

    PubMed Central

    Váli, László; Taba, Gabriella; Szentmihályi, Klára; Fébel, Hedvig; Kurucz, Tímea; Pallai, Zsolt; Kupcsulik, Péter; Blázovics, Anna

    2006-01-01

    AIM: To determine whether increased blood flow of the liver can cause oxidative stress and hepatocyte damage, and to elaborate methods suitable for measuring the antioxidant defence during hepatic surgery on rat model. METHODS: In nembutal narcosis, the left lateral and the medial lobes of the liver were clipped for 45 min to make the total blood supply flow through the other lobes. Total antioxidant status, glutathione peroxidase and superoxide dysmutase activity, as well as the concentrations of diene conjugates and free sulphydril groups, H-donating ability and reducing power of the liver samples were determined. Chemiluminescent intensity of the liver was also measured. Metal ions (Al, Ca, Cu, Fe, Mg, Mn, Zn) and P and S concentrations of the liver were determined with an inductively coupled plasma optical emission spectrometer and Se content was measured by cathodic stripping voltammetry. RESULTS: Glutathione peroxidase and superoxide dysmutase activities of the liver decreased significantly in the hyperemia group compared to those observed in the sham operated group. The level of total antioxidant status was also significantly lower in the hyperemia group. H-donating ability, reducing power and free sulphydril group concentration showed the same tendency. A significant correlation (P<0.05) was found between the changes in non-specific antioxidant activities. This pointed to simultaneous activity of the antioxidant defence system. Al, Cu, Mn, Zn, and S were lower in the hyperemia group than in the sham operated group when the levels of Ca, Fe, Mg, Se and P ions were higher during hyperemia. CONCLUSION: Oxidative stress is one of the main factors for the injury of intact liver lobes during ischaemia-reperfusion. PMID:16534850

  13. Increased sensitivity of heat-stressed Saccharomyces cerevisiae cells to food-grade antioxidants.

    PubMed Central

    Eubanks, V L; Beuchat, L R

    1982-01-01

    Unheated and heat-stressed Saccharomyces cerevisiae cells were examined for their relative sensitivities to butylated hydroxyanisole (BHA), tertiary butylhydroquinone (TBHQ), and propyl gallate. Heated cells had significant (P less than or equal to 0.05) increases in sensitivity to 50 micrograms of BHA, 100 micrograms of TBHQ, and 1,000 micrograms of propyl gallate per ml as compared with unheated cells when surface plated on antioxidant-supplemented recovery agar. The rate of increase in size of colonies developed by heated cells was slower than that of unheated cells, and the presence of antioxidants in recovery agar enhanced this effect. Heat-stressed cells also had increased sensitivity to ethanol. Incubation temperatures of 15, 21, 30, and 37 degrees C for enumerating unheated cells had no significant effect on the numbers of colonies formed on unsupplemented recovery agar; however, incorporation of 100 micrograms of BHA, 200 micrograms of TBHQ, or 1,000 micrograms of propyl gallate per ml into agar resulted in significant decreases in the number of colonies formed by heated cells at various incubation temperatures. The detrimental effects of TBHQ and propyl gallate on repair of heat-injured cells are apparently expressed at a temperature higher than that observed for BHA. It is suggested that the adverse effects of antioxidants on repair of heat-injured S. cerevisiae cells may be associated with oxygen availability. PMID:6753745

  14. A High Antioxidant Spice Blend Attenuates Postprandial Insulin and Triglyceride Responses and Increases Some Plasma Measures of Antioxidant Activity in Healthy, Overweight Men123

    PubMed Central

    Skulas-Ray, Ann C.; Kris-Etherton, Penny M.; Teeter, Danette L.; Chen, C-Y. Oliver; Vanden Heuvel, John P.; West, Sheila G.

    2011-01-01

    There is much interest in the potential of dietary antioxidants to attenuate in vivo oxidative stress, but little characterization of the time course of plasma effects exists. Culinary spices have demonstrated potent in vitro antioxidant properties. The objective of this study was to examine whether adding 14 g of a high antioxidant spice blend to a 5060-kJ (1200 kcal) meal exerted significant postprandial effects on markers of plasma antioxidant status and metabolism. Healthy overweight men (n = 6) consumed a control and spiced meal in a randomized crossover design with 1 wk between testing sessions. Blood was sampled prior to the meal and at 30-min intervals for 3.5 h (total of 8 samples). Mixed linear models demonstrated a treatment × time interaction (P < 0.05) for insulin and TG, corresponding with 21 and 31% reductions in postprandial levels with the spiced meal, respectively. Adding spices to the meal significantly increased the ferric reducing antioxidant power, such that postprandial increases following the spiced meal were 2-fold greater than after the control meal (P = 0.009). The hydrophilic oxygen radical absorbance capacity (ORAC) of plasma also was increased by spices (P = 0.02). There were no treatment differences in glucose, total thiols, lipophilic ORAC, or total ORAC. The incorporation of spices into the diet may help normalize postprandial insulin and TG and enhance antioxidant defenses. PMID:21697300

  15. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa)

    PubMed Central

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham JJ; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  16. Vegetables- and antioxidant-related nutrients, genetic susceptibility, and non-Hodgkin lymphoma risk

    PubMed Central

    Kelemen, Linda E.; Wang, Sophia S.; Lim, Unhee; Cozen, Wendy; Schenk, Maryjean; Hartge, Patricia; Li, Yan; Rothman, Nathaniel; Davis, Scott; Chanock, Stephen J.; Ward, Mary H.

    2009-01-01

    Genetic susceptibility to DNA oxidation, carcinogen metabolism, and altered DNA repair may increase non-Hodgkin lymphoma (NHL) risk, whereas vegetables-and antioxidant-related nutrients may decrease risk. We evaluated the interaction of a priori-defined dietary factors with 28 polymorphisms in these metabolic pathways. Incident cases (n = 1,141) were identified during 1998–2000 from four cancer registries and frequency-matched to population-based controls (n = 949). We estimated diet-gene joint effects using two-phase semi-parametric maximum-likelihood methods, which utilized genotype data from all subjects as well as 371 cases and 311 controls with available diet information. Adjusted odds ratios (95% confidence intervals) were lower among common allele carriers with higher dietary intakes. For the GSTM3 3-base insertion and higher total vegetable intake, the risk was 0.56 (0.35–0.92, p interaction = 0.03); for GSTP1 A114V and higher cruciferous vegetable intake, the risk was 0.52 (0.34–0.81, p interaction = 0.02); for OGG1 S326C and higher daily zinc intake, the risk was 0.71 (0.47–1.08, p interaction = 0.04) and for XRCC3 T241M and higher green leafy vegetable intake, the risk was 0.63 (0.41–0.97, p interaction = 0.03). Calculation of the false positive report probability determined a high likelihood of falsely positive associations. Although most associations have not been examined previously with NHL, our results suggest the examined polymorphisms are not modifiers of the association between vegetable and zinc intakes and NHL risk. PMID:18204928

  17. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    PubMed

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham Jj; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  18. Drinking orange juice increases total antioxidant status and decreases lipid peroxidation in adults.

    PubMed

    Foroudi, Shahrzad; Potter, Andrew S; Stamatikos, Alexis; Patil, Bhimanagouda S; Deyhim, Farzad

    2014-05-01

    Cardiovascular disease (CVD) is the leading cause of death in the world and is the primary cause of mortality among Americans. One of the many reasons for the pathogenesis of CVD is attributed to eating diets high in saturated fat and refined carbohydrates and low in fruits and vegetables. Epidemiological evidence has supported a strong association between eating diets rich in fruits and vegetables and cardiovascular health. An experiment was conducted utilizing 24 adults with hypercholesterolemia and hypertriglyceridemia to evaluate the impact of drinking 20 fl oz of freshly squeezed orange juice daily for 90 days on blood pressure, lipid panels, plasma antioxidant capacity, metabolic hormones, lipid peroxidation, and inflammatory markers. Except for addition of drinking orange juice, subjects did not modify their eating habits. The findings suggested that drinking orange juice does not affect (P>.1) blood pressure, lipid panels, metabolic hormones, body fat percentage, or inflammatory markers. However, total plasma antioxidant capacity was significantly increased (P<.05) and lipid peroxidation was significantly decreased (P<.05) after orange juice consumption. Drinking orange juice may protect the cardiovascular system by increasing total plasma antioxidant status and by lowering lipid peroxidation independent of other cardiovascular risk markers evaluated in this study.

  19. Antioxidant supplementation increases retinal responses and decreases refractive error changes in dogs.

    PubMed

    Wang, Wei; Hernandez, Jerome; Moore, Cecil; Jackson, Janet; Narfström, Kristina

    2016-01-01

    The objective of the study was to examine whether a nutritional antioxidant supplementation could improve visual function in healthy dogs as measured by electroretinography (ERG) and autorefraction. A total of twelve Beagles, 6 to 8 years of age, with normal eyes upon indirect ophthalmoscopy and slit lamp biomicroscopy, were age and sex matched and randomly assigned to receive a feeding regimen for 6 months with or without a daily antioxidant supplementation. Portable, mini-Ganzfeld ERG and a Welch Allyn hand-held autorefractor were used to test retinal response and refractive error in the dogs at baseline and at the end of the supplementation period. All ERG a-wave amplitudes obtained were increased in the treatment group compared with those of dogs in the control group, with significant improvements in the scotopic high and photopic single flash cone ERG responses (P < 0·05 for both). For the b-wave amplitudes, all responses were similarly increased, with significant improvements in responses for the scotopic high light intensity stimulation (P < 0·05), and for photopic single flash cone and 30 Hz flicker (P < 0·01 for both) recordings. Change in refractive error was significantly less in the treatment group compared with that of the control group during the 6-month study (P < 0·05). Compared with the control group, the antioxidant-supplemented group showed improvement to varying degrees for retinal function and significantly less decline in refractive error. Dogs, like humans, experience retinal and lens functional decline with age. Antioxidant supplementation as demonstrated may be beneficial and effective in the long-term preservation and improvement of various functions of the canine eye. PMID:27293555

  20. Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women.

    PubMed

    Cao, G; Russell, R M; Lischner, N; Prior, R L

    1998-12-01

    It is often assumed that antioxidant nutrients contribute to the protection afforded by fruits, vegetables, and red wine against diseases of aging. However, the effect of fruit, vegetable and red wine consumption on the overall antioxidant status in human is unclear. In this study we investigated the responses in serum total antioxidant capacity following comsumption of strawberries (240 g), spinach (294 g), red wine (300 ml) or vitamin C (1250 mg) in eight elderly women. Total antioxidant capacity was determined using different methods: oxygen radical absorbance capacity (ORAC) assay, Trolox equivalent antioxidant capacity (TEAC) assay and ferric reducing ability (FRAP) assay. The results showed that the total antioxidant capacity of serum determined as ORAC, TEAC and FRAP, using the area under the curve, increased significantly by 7-25% during the 4-h period following consumption of red wine, strawberries, vitamin C or spinach. The total antioxidant capacity of urine determined as ORAC increased (P < 0.05) by 9.6, 27.5, and 44.9% for strawberries, spinach, and vitamin C, respectively, during the 24-h period following these treatments. The plasma vitamin C level after the strawberry drink, and the serum urate level after the strawberry and spinach treatments, also increased significantly. However, the increased vitamin C and urate levels could not fully account for the increased total antioxidant capacity in serum following the consumption of strawberries, spinach or red wine. We conclude that the consumption of strawberries, spinach or red wine, which are rich in antioxidant phenolic compounds, can increase the serum antioxidant capacity in humans. J. Nutr. 2383-2390, 1998 PMID:9868185

  1. Reproducing butterflies do not increase intake of antioxidants when they could benefit from them.

    PubMed

    Beaulieu, Michaël; Bischofberger, Ines; Lorenz, Isabel; Scheelen, Lucie; Fischer, Klaus

    2016-02-01

    The significance of dietary antioxidants may be limited by the ability of animals to exploit them. However, past studies have focused on the effects of dietary antioxidants after 'antioxidant forced-feeding', and have overlooked spontaneous antioxidant intake. Here, we found that reproducing female Bicyclus anynana butterflies had higher antioxidant defences and enhanced fecundity when forced to consume antioxidants (polyphenols). Interestingly, these positive effects were not constant across the oviposition period. When given the choice between food resources with and without antioxidants, reproducing butterflies did not target antioxidants when they could have benefited the most from them. Moreover, they did not consume more antioxidants than non-reproducing butterflies. These results emphasize that, despite potential positive effects of dietary antioxidants, the ability of animals to exploit them is likely to restrict their ecological significance.

  2. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation

    PubMed Central

    Boestfleisch, Christian; Wagenseil, Niko B.; Buhmann, Anne K.; Seal, Charlotte E.; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-01-01

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. PMID:25125698

  3. Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity.

    PubMed

    Payton, P; Webb, R; Kornyeyev, D; Allen, R; Holaday, A S

    2001-12-01

    This study examined the effect of increasing chloroplastic superoxide dismutase (SOD), ascorbate peroxidase (APX), or glutathione reductase (GR) activity via plant transformation of cotton on the initial recovery of photosynthesis following exposures to 10 degrees C and high photon flux density (PFD). Growing wild-type or non-expressing segregate plants (controls) and transformants at two PFDs (600 micromol m(-2) s(-1) and full sun) resulted in a range of total antioxidant enzyme activities. Total SOD activities above that for control leaves grown in full sun did not substantially improve the recoveries of CO(2)-saturated photosynthesis, especially for stress treatments lasting more than 1 h, while elevated APX or GR activity did improve recoveries after 1-3 h of the chilling treatment. No synergistic effects were noted when the activities of more than one antioxidant enzyme were elevated in transgenic hybrids. Although these results suggest that the protection of photosynthesis can be realized by reducing either superoxide or H(2)O(2) levels, thereby reducing the possibility of hydroxyl radical formation, the situation is complicated, since elevated APX or GR activity can improve recoveries even when additional SOD activity has no effect. In conclusion, to enhance the protection of photosynthesis using stroma-targeted antioxidant enzymes, enhancing metabolism associated with H(2)O(2) is more effective than enhancing the capacity for superoxide scavenging. Although small, the improvement in the protection of photosynthetic capacity may be sufficient to improve cotton yield in temperate regions with large diurnal temperature fluctuations.

  4. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation.

    PubMed

    Boestfleisch, Christian; Wagenseil, Niko B; Buhmann, Anne K; Seal, Charlotte E; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-01-01

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. PMID:25125698

  5. Increasing global participation in genetics research through DNA barcoding.

    PubMed

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources. PMID:26642251

  6. Edible bird's nest enhances antioxidant capacity and increases lifespan in Drosophila Melanogaster.

    PubMed

    Hu, Q; Li, G; Yao, H; He, S; Li, H; Liu, S; Wu, Y; Lai, X

    2016-01-01

    In this study, we aims to investigate the effects of edible bird's nest (EBN) on anti-aging efficacy. In order to investigate lifespan and mortality rate of flies, we treated flies with various doses of EBN. Besides, fecundity, water content and food are determined and heat-stress test is conducted after flies treating with different medium. Effects of EBN on total antioxidant activity (T-AOC), super-oxide dismutase activity (SOD), catalase activity (CAT), and malondialdehyde (MDA) were examined in drosophila melanogaster. Results indicated that flies in EBN treated group illustrated significantly lower mortality rates and longer median and maximum lifespan compared to control group (P<0.05). The fecundity in EBN-treated group was increased compared to control group. SOD levels and CAT activity were significantly increased, and MDA levels decreased in EBN-treated group compared to control group (P<0.01). In conclusion, EBN can extend lifespan, decrease mortality rate and increase survival rate in heat-stress test, and which can also promote SOD and CAT activity and reduce MDA levels. EBN is able to delay drosophila melanogaster aging, attributing to the increasing antioxidant enzyme activities and decreasing content of lipid peroxidation products in drosophila melanogaster. PMID:27188745

  7. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    SciTech Connect

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.; Laskin, Debra L. Heck, Diane E.; Laskin, Jeffrey D.

    2008-09-15

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.

  8. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    PubMed Central

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.; Laskin, Debra L.; Heck, Diane E.; Laskin, Jeffrey D.

    2008-01-01

    Paraquat (1,1’-dimethyl-4,4’-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST’s, mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquatmediated cytotoxicity. PMID:18620719

  9. Genetic variants in antioxidant genes are associated with sperm DNA damage and risk of male infertility in a Chinese population.

    PubMed

    Ji, Guixiang; Gu, Aihua; Wang, Yubang; Huang, Cong; Hu, Fan; Zhou, Yong; Song, Ling; Wang, Xinru

    2012-02-15

    To test the hypothesis that polymorphisms in antioxidant genes are more susceptible to sperm DNA damage and male infertility, we examined 11 single-nucleotide polymorphisms from six antioxidant genes (GPX1, CAT, PON1, NQO1, SOD2/MnSOD, and SOD3) in 580 infertility cases and 580 controls from a Chinese population-based case-control study (NJMU Infertility Study). Genotypes were determined using the OpenArray platform. Sperm DNA fragmentation was detected using the Tdt-mediated dUTP nick-end labeling assay, and the level of 8-hydroxydeoxyguanosine (8-OHdG) in sperm DNA was measured using immunofluorescence. The adjusted odds ratio and 95% confidence interval (CI) were estimated using unconditional logistic regression. The results indicated that the PON1 Arg192Glu (rs662) and SOD2 Val16Ala (rs4880) variant genotypes were associated with a significantly higher risk of male infertility. In addition, subjects carrying variant genotypes of both loci had a twofold (95% CI, 1.42-2.90) increase in the risk of male infertility, indicating a significant gene-gene interaction between these two loci (P for multiplicative interaction=0.045). Moreover, linear regression analysis showed that individuals carrying the PON1 Arg192Glu (rs662) or SOD2 Val16Ala (rs4880) variants have significantly higher levels of sperm DNA fragmentation and 8-OHdG. These data suggest that genetic variations in antioxidant genes may contribute to oxidative sperm DNA damage and male infertility.

  10. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis).

    PubMed

    El-Mashad, Ali Abdel Aziz; Mohamed, Heba Ibrahim

    2012-07-01

    Soil salinity is one of the most severe factors limiting growth and physiological response in Vigna sinensis plants. Plant salt stress tolerance requires the activation of complex metabolic activities including antioxidative pathways, especially reactive oxygen species and scavenging systems within the cells which can contribute to continued growth under water stress. The present investigation was carried out to study the role of brassinolide in enhancing tolerance of cowpea plants to salt stress (NaCl). Treatment with 0.05 ppm brassinolide as foliar spray mitigated salt stress by inducing enzyme activities responsible for antioxidation, e.g., superoxide dismutase, peroxidase, polyphenol oxidase, and detoxification as well as by elevating contents of ascorbic acid, tocopherol, and glutathione. On the other hand, total soluble proteins decreased with increasing NaCl concentrations in comparison with control plants. However, lipid peroxidation increased with increasing concentrations of NaCl. In addition to, the high concentrations of NaCl (100 and 150 mM) decreased total phenol of cowpea plants as being compared with control plants. SDS-PAGE of protein revealed that NaCl treatments alone or in combination with 0.05 ppm brassinolide were associated with the disappearance of some bands or appearance of unique ones in cowpea plants. Electrophoretic studies of α-esterase, β-esterase, polyphenol oxidase, peroxidase, acid phosphatase, and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments.

  11. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis.

    PubMed

    Zaidi, Ikram; Ebel, Chantal; Belgaroui, Nibras; Ghorbel, Mouna; Amara, Imène; Hanin, Moez

    2016-04-01

    Mitogen-activated protein kinase phosphatases (MKPs) are important negative regulators in the MAPK signaling pathways, which play crucial roles in plant growth, development and stress responses. We have previously shown that the heterologous expression of a durum wheat MKP, TMKP1, results in increased tolerance to salt stress in yeast but its particular contribution in salt stress tolerance in plants was not investigated. Here, TMKP1 was overexpressed in Arabidopsis thaliana and physiological changes were assessed in transgenic plants exposed to stress conditions. Under salt stress and especially LiCl, the TMKP1 overexpressors displayed higher germination rates in comparison to wild type plants. The enhancement of salt stress tolerance was accompanied by increased antioxidant enzyme activities, namely superoxide dismutase, catalase and peroxydases. Such increases in antioxidant activities were concomitant with lower malondialdehyde, superoxide anion O2(-) and hydrogen peroxide levels in the TMKP1 transgenic seedlings. Moreover, we provide evidence that, in contrast to the Arabidopsis ortholog AtMKP1, TMKP1 acts as a positive regulator of salt stress tolerance via its ectopic expression in the Arabidopsis mkp1 mutant. PMID:26927025

  12. Homogeneous case subgroups increase power in genetic association studies.

    PubMed

    Traylor, Matthew; Markus, Hugh; Lewis, Cathryn M

    2015-06-01

    Genome-wide association studies of clinically defined cases against controls have transformed our understanding of the genetic causes of many diseases. However, there are limitations to the simple clinical definitions used in these studies, and GWAS analyses are beginning to explore more refined phenotypes in subgroups of the existing data sets. These analyses are often performed ad hoc without considering the power requirements to justify such analyses. Here we derive expressions for the relative power of such subgroup analyses and determine the genotypic relative risks (GRRs) required to achieve equivalent power to a full analysis for relevant scenarios. We show that only modest increases in GRRs may be required to offset the reduction in power from analysing fewer cases, implying that analyses of more genetically homogenous case subgroups may have the potential to identify further associations. We find that, for lower genotypic relative risks in the full sample, subgroup analyses of more homogeneous cases have relatively more power than for higher index genotypic relative risks and that this effect is stronger for rare as opposed to common variants. As GWA studies are likely to have now identified the majority of SNPs with stronger effects, these results strongly advocate a renewed effort to identify phenotypically homogeneous disease groups, in which power to detect genetic variants with small effects will be greater. These results suggest that analysis of case subsets could be a powerful strategy to uncover some of the hidden heritability for common complex disorders, particularly in identifying rarer variants of modest effect.

  13. Environmental Adversity Increases Genetic Risk for Externalizing Disorders

    PubMed Central

    Hicks, Brian M.; South, Susan C.; DiRago, Ana C.; Iacono, William G.; McGue, Matt

    2008-01-01

    Background Studies of gene-environment (G-E) interplay in the development of psychiatric and substance use disorders are rapidly accumulating. However, few attempts have been made to integrate findings and articulate general mechanisms of G-E influence in the emergence of psychopathology. Objective Identify patterns of G-E interplay between externalizing (EXT; antisocial behavior and substance use) disorders and several environmental risk factors. Design We used quantitative genetic models to examine how genetic and environmental risk for EXT disorders changes as a function of environmental context. Setting Participants were recruited from the community and took part in a day-long assessment at a university laboratory. Participants The sample consisted of 1315 male and female twin pairs participating in the age 17 assessment of the Minnesota Twin Family Study. Main Outcome Measures Multiple measures and informants were employed to construct a composite of EXT disorders and composite measures of 6 environmental risk factors including academic achievement and engagement, antisocial and prosocial peer affiliation, mother-child and father-child relationship problems, and stressful life events. Results A significant G × E interaction was detected between each environmental risk factor and EXT such that greater environmental adversity was associated with increased genetic risk in EXT. Conclusion Our findings demonstrate that in the context of environmental adversity, genetic factors become more important in the etiology of EXT disorders. The consistency of the results further suggests a general mechanism of environmental influence on EXT disorders regardless of the specific form of the environmental risk. PMID:19487629

  14. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  15. Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis.

    PubMed

    Gardi, C; Bauerova, K; Stringa, B; Kuncirova, V; Slovak, L; Ponist, S; Drafi, F; Bezakova, L; Tedesco, I; Acquaviva, A; Bilotto, S; Russo, G L

    2015-10-01

    Novel therapies for rheumatoid arthritis also include the use of naturally occurring compounds possessing antioxidant properties. In the present work, the effects of oral administration of quercetin were investigated in a rat model of adjuvant arthritis. Arthritis was induced by a single intradermal injection of heat-inactivated Mycobacterium butyricum in incomplete Freund's adjuvant. The experimental groups were treated with an oral daily dose of 150 mg/kg b.w. of quercetin for 28 days. Results indicated that quercetin was able to ameliorate all markers of inflammation and oxidative stress measured. Quercetin lowered levels of interleukin-1β, C-reactive protein, and monocyte chemotactic protein-1 and restored plasma antioxidant capacity. In addition, quercetin inhibited the enzymatic activity of pro-inflammatory 12/15-lipoxygenase in lung and liver and increased the expression of heme oxygenase-1 in joint and lung of arthritic rats. Finally, quercetin inhibited the 2-fold increase of NF-қB activity observed in lung, liver and joint after induction of arthritis. PMID:26297952

  16. Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants.

    PubMed

    Golan, Talila; Müller-Moulé, Patricia; Niyogi, Krishna K

    2006-05-01

    Biochemical and physiological acclimation to different light environments is crucial for plant growth and survival. In high light (HL), feedback de-excitation (qE) is a well-known photoprotective mechanism that dissipates excess excitation energy in the light-harvesting antenna of photosystem II (PSII) and relieves excitation pressure in the photosynthetic electron transport chain. The xanthophylls zeaxanthin (Z) and lutein (L) function in qE, but also have roles as antioxidants. Although several studies have shown that qE is important during short-term fluctuations in light intensity, here we show that it is not required for the growth of Arabidopsis thaliana in prolonged HL conditions in the laboratory. Mutants that are deficient in qE alone, qE and Z synthesis, or in qE, Z synthesis and also L synthesis were able to grow at 1800 micromol photons m(-2) s(-1) and exhibited no major symptoms of photooxidative stress. The mutants (and wild type) acclimated to HL by increasing photosynthetic capacity and decreasing light harvesting, which together rendered qE less important for photoprotection. At a metabolite level, the HL-grown mutants appeared to compensate for their remaining qE deficit with increased alpha-tocopherol and ascorbate levels compared to the wild type. The specificity of this response provides insight into the relationship between qE and the antioxidant network in plants.

  17. Red and black rice decrease atherosclerotic plaque formation and increase antioxidant status in rabbits.

    PubMed

    Ling, W H; Cheng, Q X; Ma, J; Wang, T

    2001-05-01

    The influence of white, red and black rice consumption on atherosclerotic plaque formation induced by hypercholesterolemia was investigated in rabbits. Male rabbits (n = 36) were divided into five groups. They were fed a normal laboratory purified diet (normal group, n = 6), a high cholesterol (0.5 g/100 g) diet (HC group, n = 6), a high cholesterol diet with 30 g/100 g white rice (WR group, n = 8), 30 g/100 g red rice (RR group, n = 8), or 30 g/100 g black rice (BR group, n = 8) for 10 wk. Blood samples were collected for lipid measurements and aorta were removed for assessment of atherosclerotic plaques at the end of the protocol. The oxidant and antioxidant status of blood, erythrocytes, liver and aorta was evaluated. The area of atherosclerotic plaque was 50% lower in rabbits fed the red or black rice diets than in those fed the white rice diet. Compared with the HC and WR groups, serum HDL cholesterol and apolipoprotein (apo) A-I concentration were greater (P < 0.05) in the RR and BR groups. Liver reactive oxygen species (ROS) and aortic malondialdehyde (MDA) were significantly lower, and the liver total antioxidative capacity (TAC) and erythrocyte superoxide dismutase (SOD) activity were significantly higher in the RR and BR groups compared with the HC and WR groups. Red or black rice consumption reduced or retarded the progression of atherosclerotic plaque development induced by dietary cholesterol. The enhanced serum HDL cholesterol and apo A-I concentrations, and the increased antioxidant and decreased oxidative status may be mechanisms of the antiatherogenic effect of red or black rice. PMID:11340093

  18. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species.

    PubMed

    Haque, Mohammad S; Kjaer, Katrine H; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    Cultivated tomato species develop leaf injury while grown in continuous light (CL). Growth, photosynthesis, carbohydrate metabolism and antioxidative enzyme activities of a cultivated (Solanum lycopersicum L. 'Aromata') and a wild tomato species (Solanum pimpinellifolium L.) were compared in this study aiming to analyze the species-specific differences and thermoperiod effects in responses to CL. The species were subjected to three photoperiodic treatments for 12 days in climate chambers: 16-h photoperiod with a light/dark temperature of 26/16°C (P16D10 or control); CL with a constant temperature of 23°C (P24D0); CL with a variable temperature of 26/16°C (P24D10). The results showed that both species grown in CL had higher dry matter production due to the continuous photosynthesis and a subsequent increase in carbon gain. In S. lycopersicum, the rate of photosynthesis and the maximum photochemical efficiency of photosystem II declined in CL with the development of leaf chlorosis, reduction in the leaf chlorophyll content and a higher activity of antioxidative enzymes. The normal diurnal patterns of starch and sugar were only present under control conditions. The results demonstrated that CL conditions mainly affected the photosynthetic apparatus of a cultivated species (S. lycopersicum), and to a less degree to the wild species (S. pimpinellifolium). The negative effects of the CL could be alleviated by diurnal temperature variations, but the physiological mechanisms behind these are less clear. The results also show that the genetic potential for reducing the negative effects of CL does exist in the tomato germplasm. PMID:26217371

  19. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species

    PubMed Central

    Haque, Mohammad S.; Kjaer, Katrine H.; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    Cultivated tomato species develop leaf injury while grown in continuous light (CL). Growth, photosynthesis, carbohydrate metabolism and antioxidative enzyme activities of a cultivated (Solanum lycopersicum L. ‘Aromata’) and a wild tomato species (Solanum pimpinellifolium L.) were compared in this study aiming to analyze the species-specific differences and thermoperiod effects in responses to CL. The species were subjected to three photoperiodic treatments for 12 days in climate chambers: 16-h photoperiod with a light/dark temperature of 26/16°C (P16D10 or control); CL with a constant temperature of 23°C (P24D0); CL with a variable temperature of 26/16°C (P24D10). The results showed that both species grown in CL had higher dry matter production due to the continuous photosynthesis and a subsequent increase in carbon gain. In S. lycopersicum, the rate of photosynthesis and the maximum photochemical efficiency of photosystem II declined in CL with the development of leaf chlorosis, reduction in the leaf chlorophyll content and a higher activity of antioxidative enzymes. The normal diurnal patterns of starch and sugar were only present under control conditions. The results demonstrated that CL conditions mainly affected the photosynthetic apparatus of a cultivated species (S. lycopersicum), and to a less degree to the wild species (S. pimpinellifolium). The negative effects of the CL could be alleviated by diurnal temperature variations, but the physiological mechanisms behind these are less clear. The results also show that the genetic potential for reducing the negative effects of CL does exist in the tomato germplasm. PMID:26217371

  20. Spirogyra varians mutant generated by high dose gamma-irradiation shows increased antioxidant properties

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Jyung; Yoon, Minchul; Sung, Nak-Yun; Choi, Jong-il

    2012-08-01

    The aim of this study was to evaluate the antioxidant properties of a Spirogyra varians mutant (Mut) produced by gamma irradiation. Methanol extracts were prepared from Spirogyra varians wild-type and Mut plants, and their antioxidant activities and total phenolic content (TPC) were determined. Antioxidant parameters, including the 2-diphenyl-1-picrylhydrazyl radical-scavenging activity and ferric-reducing/antioxidant power, were higher in the Mut extract. Moreover, the TPC level was higher (P<0.05) in the Mut methanol extract. Therefore, these results suggest that gamma irradiation-induced S. varians Mut has superior antioxidant properties.

  1. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain

    PubMed Central

    Nonato, L.F.; Rocha-Vieira, E.; Tossige-Gomes, R.; Soares, A.A.; Soares, B.A.; Freitas, D.A.; Oliveira, M.X.; Mendonça, V.A.; Lacerda, A.C.; Massensini, A.R.; Leite, H.R.

    2016-01-01

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain. PMID:27706439

  2. Papillary Thyroid Carcinoma: A Malignant Tumor with Increased Antioxidant Defense Capacity.

    PubMed

    Rovcanin, Branislav R; Gopcevic, Kristina R; Kekic, Dusan Lj; Zivaljevic, Vladan R; Diklic, Aleksandar Dj; Paunovic, Ivan R

    2016-01-01

    Papillary thyroid carcinoma (PTC) is the commonest thyroid malignancy worldwide for which the radiation exposure is the most influential risk factor. The levels of oxidative stress in PTC are not well characterized on the tissue level. The objective of this study was to evaluate total oxidant status (TOS) and total antioxidant status (TAS) in PTC and benign goiter (BG) tissues and to examine their association with clinicopathological characteristics. Tumor and normal thyroid tissue samples were collected from 59 PTC patients, and goiter tissues were collected from 50 BG patients. TOS and TAS were quantified in the tissue homogenates by spectrophotometric assays. TOS values in tumor tissues did not differ significantly from normal and goiter tissues; however, PTC tissues have significantly higher TAS values than normal and goiter tissues. TOS values correlated with retrosternal growth in BG patients. The significant correlations were found between TOS and TAS values and thyroid function parameters. In 17 PTC patients with multiple tumor foci (multicentric phenotype), TAS values were significantly lower, compared to 42 patients with unicentric PTC. TAS and TOS are the most useful predictors of thyroid capsular invasion by PTC. The age, sex, body mass index, smoking, familial history of thyroid disease and nodule size did not influence TOS and TAS in PTC or BG patients. In conclusion, we show the profiles of TOS and TAS in PTC and BG tissues. Importantly, PTC tissues possess increased antioxidant capacity. The redox status influences the parameters of the thyroid function and tumor's biological behavior. PMID:27615359

  3. Antioxidant vitamins intake, ataxia telangiectasia mutated (ATM) genetic polymorphisms, and breast cancer risk.

    PubMed

    Lee, Sang-Ah; Lee, Kyoung-Mu; Lee, Seung-Joon; Yoo, Keun-Young; Park, Sue Kyung; Noh, Dong-Young; Ahn, Sei-Hyun; Kang, Daehee

    2010-01-01

    Ataxia telangiectasia mutated (ATM) cells exist under a constant state of oxidative stress with high levels of reactive oxygen species, which are removed by cellular antioxidant vitamins. We investigated the independent and combined effect of antioxidant vitamins intake and the ATM genotype or diplotype on the breast cancer risk. Analyses included 323 cases and age-matched controls who participated in the Korean Breast Cancer Study during 2001-2003 with complete dietary information. The vitamin A (P < 0.01) and α-tocopherol (P < 0.01) were associated with lower breast cancer risk as well as some water-soluble vitamins including vitamin B(2) (P = 0.01), vitamin C (P < 0.01), and folic acid (P = 0.02) intake. No five single nucleotide polymorphisms (ATM-5144A > T (rs228589), IVS21 + 1049T > C (rs664677), IVS33-55T > C (rs664982), IVS34+60G > A (rs664143), and 3393T > G (rs4585)) studied showed significant differences in their allele frequencies between the cases and controls. On the other hand, compared with the diploid of ATTGT/ATTGT, as the number of ATTGT haplotype decreased, the risk of breast cancer increased (P = 0.04). The association between ATM diplotype and the breast cancer risk was predominantly among women with low intake of antioxidant vitamins including vitamin A, vitamin C, and folic acid. This study suggested that some antioxidant vitamins intake may modify the effect of ATM diplotype on the breast cancer risk among Korean women.

  4. Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: a cohort study

    PubMed Central

    Abilés, Jimena; de la Cruz, Antonio Pérez; Castaño, José; Rodríguez-Elvira, Manuel; Aguayo, Eduardo; Moreno-Torres, Rosario; Llopis, Juan; Aranda, Pilar; Argüelles, Sandro; Ayala, Antonio; de la Quintana, Alberto Machado; Planells, Elena Maria

    2006-01-01

    Introduction Critically ill patients suffer from oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Although ROS/RNS are constantly produced under normal circumstances, critical illness can drastically increase their production. These patients have reduced plasma and intracellular levels of antioxidants and free electron scavengers or cofactors, and decreased activity of the enzymatic system involved in ROS detoxification. The pro-oxidant/antioxidant balance is of functional relevance during critical illness because it is involved in the pathogenesis of multiple organ failure. In this study the objective was to evaluate the relation between oxidative stress in critically ill patients and antioxidant vitamin intake and severity of illness. Methods Spectrophotometry was used to measure in plasma the total antioxidant capacity and levels of lipid peroxide, carbonyl group, total protein, bilirubin and uric acid at two time points: at intensive care unit (ICU) admission and on day seven. Daily diet records were kept and compliance with recommended dietary allowance (RDA) of antioxidant vitamins (A, C and E) was assessed. Results Between admission and day seven in the ICU, significant increases in lipid peroxide and carbonyl group were associated with decreased antioxidant capacity and greater deterioration in Sequential Organ Failure Assessment score. There was significantly greater worsening in oxidative stress parameters in patients who received antioxidant vitamins at below 66% of RDA than in those who received antioxidant vitamins at above 66% of RDA. An antioxidant vitamin intake from 66% to 100% of RDA reduced the risk for worsening oxidative stress by 94% (ods ratio 0.06, 95% confidence interval 0.010 to 0.39), regardless of change in severity of illness (Sequential Organ Failure Assessment score). Conclusion The critical condition of patients admitted to the ICU is associated with worsening oxidative stress. Intake of

  5. Increasing discordant antioxidant protein levels and enzymatic activities contribute to increasing redox imbalance observed during human prostate cancer progression

    PubMed Central

    Chaiswing, Luksana; Zhong, Weixiong; Oberley, Terry D.

    2014-01-01

    A metabolomics study demonstrated a decrease in glutathione and an increase in cysteine (Cys) levels in human prostate cancer (PCa) tissues as Gleason scores increased, indicating redox imbalance with PCa progression. These results were extended in the present study by analyzing redox state of the protein thioredoxin 1 (Trx1) and sulfinylation (SO3) of peroxiredoxins (Prxs) (PrxsSO3) in PCa tissues and cell lines. Lysates of paired human PCa tissues with varying degree of aggressiveness and adjacent benign (BN) tissues were used for analysis. Redox western blot analysis of Trx1 demonstrated low levels of reduced and high levels of oxidized Trx1 (functional and non-functional, respectively) in high grade PCa (Gleason scores 4+4 to 4+5) in comparison to intermediate grade PCa (Gleason scores 3+3 to 3+4) or BN tissues. PrxsSO3 were increased in high grade PCa. Oxidized Trx1 and PrxsSO3 are indicators of oxidative stress. To study whether redox imbalance may potentially affect enzyme activities of antioxidant proteins (AP), we determined levels of selected AP in PCa tissues by western blot analysis and found that mitochondrial manganese superoxide dismutase (MnSOD), Prx 3, and Trx1 were increased in high grade PCa tissues when compared with BN tissues. Enzyme activities of MnSOD in high grade PCa tissues were significantly increased but at a lower magnitude when compared with the levels of MnSOD protein (0.5 folds vs. 2 folds increase). Trx1 activity was not changed in high grade PCa tissues despite a large increase in Trx1 protein expression. Further studies demonstrated a significant increase in posttranslational modifications of tyrosine and lysine residues in MnSOD protein and oxidation of Cys at active site (Cys 32 and Cys 35) and regulatory site (Cys 62 and Cys 69) of Trx1 in high grade PCa compared to BN tissues. These discordant changes between protein levels and enzyme activities are consistent with protein inactivation by redox imbalance and

  6. Saengshik, a formulated health food, prevents liver damage in CCl4-induced mice and increases antioxidant activity in elderly women.

    PubMed

    Kim, Hwa-young; Kim, Joong-Hark; Lee, Seong-Ae; Chang, Hey-eun; Park, Mi-hyoun; Hwang, Sung-joo; Lee, Ju-yeon; Mok, Chulkyoon; Hong, Seong-gil

    2008-06-01

    Saengshik is a Korean noncooked food made with of more than 30 different whole gains, vegetables, fruits, mushrooms, and seaweeds. All of these ingredients are frozen and dried to minimize the loss of nutrients. Saengshik has become popular among health-conscious people in the Republic of Korea. The study aims to investigate antioxidant effects of Saengshik by in vivo and human experiments. In in vivo tests, mice were fed Saengshik for 4 weeks, and oxidative damage was induced by CCl(4). Then the effects of Saengshik on oxidative damage were examined. It was found that plasma lipid hydroperoxide and protein oxidative damages were significantly suppressed and antioxidants, glutathione, and thiol groups were increased. The activity of the antioxidant enzyme superoxide dismutase was increased, and the level of glutamate pyruvate transaminase was decreased. In a human study, elderly people were given Saengshik for 24 weeks, and changes in antioxidant defense of the body were examined. Antioxidant activities in plasma were enhanced, although the difference was not significant. Therefore, it is expected that Saengshik is effective at removing oxidants from body tissues, preventing oxidative damage, and eventually boosting the antioxidant capacity of the body.

  7. Increasing genetic variability in black oats using gamma irradiation.

    PubMed

    Silveira, G; Moliterno, E; Ribeiro, G; Costa, P M A; Woyann, L G; Tessmann, E W; Oliveira, A C; Cruz, C D

    2014-12-04

    The black oat (Avena strigosa Schreb) is commonly used for forage, soil cover, and green manure. Despite its importance, little improvement has been made to this species, leading to high levels of genotypic disuniformity within commercial cultivars. The objective of this study was to evaluate the efficiency of different doses of gamma rays [(60)Co] applied to black oat seeds on the increase of genetic variability of agronomic traits. We applied doses of 0, 10, 50, 100, and 200 Gy to the genotype ALPHA 94087 through exposure to [(60)Co]. Two experiments were conducted in the winter of 2008. The first aimed to test forage trait measurements such as plant height, dry matter yield, number of surviving tillers, and seedling stand. The second test assessed seed traits, such as yield and dormancy levels. Gamma irradiation seems not to increase seed yield in black oats, but it was effective in generating variability for the other traits. Tiller number and plant height are important selection traits to increase dry matter yield. Selection in advanced generations of mutant populations can increase the probability of identifying superior genotypes.

  8. Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures.

    PubMed

    Rueppell, Olav; Meier, Stephen; Deutsch, Roland

    2012-01-01

    Explaining the evolution of sex and recombination is particularly intriguing for some species of eusocial insects because they display exceptionally high mating frequencies and genomic recombination rates. Explanations for both phenomena are based on the notion that both increase colony genetic diversity, with demonstrated benefits for colony disease resistance and division of labor. However, the relative contributions of mating number and recombination rate to colony genetic diversity have never been simultaneously assessed. Our study simulates colonies, assuming different mating numbers, recombination rates, and genetic architectures, to assess their worker genotypic diversity. The number of loci has a strong negative effect on genotypic diversity when the allelic effects are inversely scaled to locus number. In contrast, dominance, epistasis, lethal effects, or limiting the allelic diversity at each locus does not significantly affect the model outcomes. Mating number increases colony genotypic variance and lowers variation among colonies with quickly diminishing returns. Genomic recombination rate does not affect intra- and inter-colonial genotypic variance, regardless of mating frequency and genetic architecture. Recombination slightly increases the genotypic range of colonies and more strongly the number of workers with unique allele combinations across all loci. Overall, our study contradicts the argument that the exceptionally high recombination rates cause a quantitative increase in offspring genotypic diversity across one generation. Alternative explanations for the evolution of high recombination rates in social insects are therefore needed. Short-term benefits are central to most explanations of the evolution of multiple mating and high recombination rates in social insects but our results also apply to other species.

  9. Pecans acutely increase plasma postprandial antioxidant capacity and catechins and decrease LDL oxidation in humans.

    PubMed

    Hudthagosol, Chatrapa; Haddad, Ella Hasso; McCarthy, Katie; Wang, Piwen; Oda, Keiji; Sabaté, Joan

    2011-01-01

    Bioactive constituents of pecan nuts such as γ-tocopherol and flavan-3-ol monomers show antioxidant properties in vitro, but bioavailability in humans is not known. We examined postprandial changes in plasma oxygen radical absorbance capacity (ORAC) and in concentrations of tocopherols, catechins, oxidized LDL, and malondialdehyde (MDA) in response to pecan test meals. Sixteen healthy men and women (23-44 y, BMI 22.7 ± 3.4) were randomly assigned to 3 sequences of test meals composed of whole pecans, blended pecans, or an isocaloric meal of equivalent macronutrient composition but formulated of refined ingredients in a crossover design with a 1-wk washout period between treatments. Blood was sampled at baseline and at intervals up to 24 h postingestion. Following the whole and blended pecan test meals, plasma concentrations of γ-tocopherols doubled at 8 h (P < 0.001) and hydrophilic- and lipophilic-ORAC increased 12 and 10% at 2 h, respectively. Post whole pecan consumption, oxidized LDL decreased 30, 33, and 26% at 2, 3, and 8 h, respectively (P < 0.05), and epigallocatechin-3-gallate concentrations at 1 h (mean ± SEM; 95.1 ± 30.6 nmol/L) and 2 h (116.3 ± 80.5 nmol/L) were higher than at baseline (0 h) and after the control test meal at 1 h (P < 0.05). The postprandial molar ratio of MDA:triglycerides decreased by 37, 36, and 40% at 3, 5, and 8 h, respectively (P < 0.05), only when whole and blended pecan data were pooled. These results show that bioactive constituent of pecans are absorbable and contribute to postprandial antioxidant defenses. PMID:21106921

  10. Increased antioxidant response and capability to produce ROS in hemocytes of Pinna nobilis L. exposed to anthropogenic activity.

    PubMed

    Sureda, Antoni; Natalotto, Antonino; Alvarez, Elvira; Deudero, Salud

    2013-10-01

    Environmental pollutants exert immunotoxical effects on aquatic organisms. The aim was to determine the antioxidant response, markers of oxidative damage and reactive oxygen species production in hemocytes of Pinna nobilis, the largest endemic bivalve in the Mediterranean Sea, under anthropogenic pressure. P. nobilis individuals were collected from two locations along Mallorca Island waters attending to different degree of human impact and the hemocytes were obtained. Specimens from the impacted area showed increased activities of the antioxidant enzymes - catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase -, myeloperoxidase activity and reduced glutathione levels. No differences in oxidative damage markers - malondiahdehyde and carbonyl index - were evidenced between the pristine and polluted areas. Hemocytes from the polluted area presented increased capability to generate reactive oxygen species and nitrite/nitrate when activated. In conclusion, the human activities primed hemocytes for oxidative burst and increased the antioxidant mechanism without evidence of oxidative damage. PMID:23871388

  11. Genetic predisposition to schizophrenia associated with increased use of cannabis.

    PubMed

    Power, R A; Verweij, K J H; Zuhair, M; Montgomery, G W; Henders, A K; Heath, A C; Madden, P A F; Medland, S E; Wray, N R; Martin, N G

    2014-11-01

    Cannabis is the most commonly used illicit drug worldwide. With debate surrounding the legalization and control of use, investigating its health risks has become a pressing area of research. One established association is that between cannabis use and schizophrenia, a debilitating psychiatric disorder affecting ~1% of the population over their lifetime. Although considerable evidence implicates cannabis use as a component cause of schizophrenia, it remains unclear whether this is entirely due to cannabis directly raising risk of psychosis, or whether the same genes that increases psychosis risk may also increase risk of cannabis use. In a sample of 2082 healthy individuals, we show an association between an individual's burden of schizophrenia risk alleles and use of cannabis. This was significant both for comparing those who have ever versus never used cannabis (P=2.6 × 10(-4)), and for quantity of use within users (P=3.0 × 10(-3)). Although directly predicting only a small amount of the variance in cannabis use, these findings suggest that part of the association between schizophrenia and cannabis is due to a shared genetic aetiology. This form of gene-environment correlation is an important consideration when calculating the impact of environmental risk factors, including cannabis use. PMID:24957864

  12. Modular genetic regulatory networks increase organization during pattern formation.

    PubMed

    Mohamadlou, Hamid; Podgorski, Gregory J; Flann, Nicholas S

    2016-08-01

    Studies have shown that genetic regulatory networks (GRNs) consist of modules that are densely connected subnetworks that function quasi-autonomously. Modules may be recognized motifs that comprise of two or three genes with particular regulatory functions and connectivity or be purely structural and identified through connection density. It is unclear what evolutionary and developmental advantages modular structure and in particular motifs provide that have led to this enrichment. This study seeks to understand how modules within developmental GRNs influence the complexity of multicellular patterns that emerge from the dynamics of the regulatory networks. We apply an algorithmic complexity to measure the organization of the patterns. A computational study was performed by creating Boolean intracellular networks within a simulated epithelial field of embryonic cells, where each cell contains the same network and communicates with adjacent cells using contact-mediated signaling. Intracellular networks with random connectivity were compared to those with modular connectivity and with motifs. Results show that modularity effects network dynamics and pattern organization significantly. In particular: (1) modular connectivity alone increases complexity in network dynamics and patterns; (2) bistable switch motifs simplify both the pattern and network dynamics; (3) all other motifs with feedback loops increase multicellular pattern complexity while simplifying the network dynamics; (4) negative feedback loops affect the dynamics complexity more significantly than positive feedback loops.

  13. Garlic sprouting is associated with increased antioxidant activity and concomitant changes in the metabolite profile.

    PubMed

    Zakarova, Alexandra; Seo, Ji Yeon; Kim, Hyang Yeon; Kim, Jeong Hwan; Shin, Jung-Hye; Cho, Kye Man; Lee, Choong Hwan; Kim, Jong-Sang

    2014-02-26

    Although garlic (Allium sativum) has been extensively studied for its health benefits, sprouted garlic has received little attention. We hypothesized that sprouting garlic would stimulate the production of various phytochemicals that improve health. Ethanolic extracts from garlic sprouted for different periods had variable antioxidant activities when assessed with in vitro assays, including the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay and the oxygen radical absorbance capacity assay. Extracts from garlic sprouted for 5 days had the highest antioxidant activity, whereas extracts from raw garlic had relatively low antioxidant activity. Furthermore, sprouting changed the metabolite profile of garlic: the metabolite profile of garlic sprouted for 5-6 days was distinct from the metabolite profile of garlic sprouted for 0-4 days, which is consistent with the finding that garlic sprouted for 5 days had the highest antioxidant activity. Therefore, sprouting may be a useful way to improve the antioxidant potential of garlic.

  14. Medium light and medium roast paper-filtered coffee increased antioxidant capacity in healthy volunteers: results of a randomized trial.

    PubMed

    Corrêa, Telma Angelina Faraldo; Monteiro, Marcela Piedade; Mendes, Thaíse Maria Nogueira; Oliveira, Daniela Moura de; Rogero, Marcelo Macedo; Benites, Cibelem Iribarrem; Vinagre, Carmen Guilherme Christiano de Matos; Mioto, Bruno Mahler; Tarasoutchi, Daniela; Tuda, Vera Lúcia; César, Luiz Antonio Machado; Torres, Elizabeth Aparecida Ferraz da Silva

    2012-09-01

    We compared the effects of medium light roast (MLR) and medium roast (MR) paper-filtered coffee on antioxidant capacity and lipid peroxidation in healthy volunteers. In a randomized crossover study, 20 volunteers consumed 482 ± 61 ml/day of MLR or MR for four weeks. Plasma total antioxidant status (TAS), oxygen radical absorbance capacity (ORAC), oxidized LDL and 8-epi-prostaglandin F2α, erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activity were measured at baseline and after the interventions. MLR had higher chlorogenic acids-(CGA; 334 mg/150 mL) and less caffeine (231 mg/150 ml) than MR had (210 and 244 mg/150 ml, respectively). MLR also had fewer Maillard reaction products (MRP) than MR had. Compared with baseline, subjects had an increase of 21 and 26 % in TAS, 13 and 13 % in CAT, 52 and 75 % in SOD, and 62 and 49 % in GPx after MLR and MR consumption (P < 0.001), respectively. ORAC increased after MLR (P = 0.004). No significant alteration in lipid peroxidation biomarkers was observed. Both coffees had antioxidant effects. Although MLR contained more CGA, there were similar antioxidant effects between the treatments. MRP may have contributed as an antioxidant. These effects may be important in protecting biological systems and reducing the risk of diseases related to oxidative stress. PMID:22766993

  15. Fermentation enhances the in vitro antioxidative effect of onion (Allium cepa) via an increase in quercetin content.

    PubMed

    Yang, Eun-Ju; Kim, Sang-In; Park, Sang-Yun; Bang, Han-Yeol; Jeong, Ji Hye; So, Jai-Hyun; Rhee, In-Koo; Song, Kyung-Sik

    2012-06-01

    Yellow onion (Allium cepa) extract showed enhanced antioxidative effects in 2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox equivalent antioxidant capacity (TEAC) and 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and acetyl ester (CM-H(2)DCFDA) assay after being treated with a crude enzyme extract from soybean paste fungi, Aspergillus kawachii. HPLC analysis showed two increased and two decreased peaks after enzyme treatment. The decreased peaks were identified as quercetin-3,4'-di-O-β-d-glucoside (1) and quercetin-4'-O-β-d-glucoside (2), and peaks that increased were quercetin-3-O-β-d-glucoside (3) and quercetin (4), respectively. It was expected that 3 and 4 were originated from the glucosidic cleavage of their glucosides, 1 and 2. Among the increased compounds, only quercetin (4) showed strong antioxidative activity in the DPPH assay. In addition, the protective effect against glutamate-induced neurotoxicity in HT22 cells was increased when treated with 25 μg/ml of fermented onion. The enhanced neuroprotective effect was also originated from the increased quercetin content. As a consequence, fermentation raised the quercetin content in onion, and subsequently increased the antioxidative and neuroprotective activities.

  16. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches.

    PubMed

    Balmus, Ioana Miruna; Ciobica, Alin; Antioch, Iulia; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context. PMID:27563374

  17. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches

    PubMed Central

    Balmus, Ioana Miruna; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context. PMID:27563374

  18. Genetic variation in antioxidant enzymes, cigarette smoking, and longitudinal change in lung function.

    PubMed

    Tang, Wenbo; Bentley, Amy R; Kritchevsky, Stephen B; Harris, Tamara B; Newman, Anne B; Bauer, Douglas C; Meibohm, Bernd; Cassano, Patricia A

    2013-10-01

    Antioxidant enzymes play an important role in the defense against oxidative stress in the lung and in the pathogenesis of chronic obstructive pulmonary disease (COPD). Sequence variation in genes encoding antioxidant enzymes may alter susceptibility to COPD by affecting longitudinal change in lung function in adults. We genotyped 384 sequence variants in 56 candidate genes in 1281 African American and 1794 European American elderly adults in the Health, Aging, and Body Composition study. Single-marker associations and gene-by-smoking interactions with rate of change in FEV₁ and FEV₁/FVC were evaluated using linear mixed-effects models, stratified by race/ethnicity. In European Americans, rs17883901 in GCLC was statistically significantly associated with rate of change in FEV₁/FVC; the recessive genotype (TT) was associated with a 0.9% per year steeper decline (P = 4.50 × 10(-5)). Statistically significant gene-by-smoking interactions were observed for variants in two genes in European Americans: the minor allele of rs2297765 in mGST3 attenuated the accelerated decline in FEV₁/FVC in smokers by 0.45% per year (P = 1.13 × 10(-4)); for participants with greater baseline smoking pack-years, the minor allele of rs2073192 in IDH3B was associated with an accelerated decline in FEV₁/FVC (P = 2.10 × 10(-4)). For both genes, nominally significant interactions (P < 0.01) were observed at the gene level in African Americans (P = 0.007 and 4.60 × 10(-4), respectively). Nominally significant evidence of association was observed for variants in SOD3 and GLRX2 in multiple analyses. This study identifies two novel genes associated with longitudinal lung function phenotypes in both African and European Americans and confirms a prior finding for GCLC. These findings suggest novel mechanisms and molecular targets for future research and advance the understanding of genetic determinants of lung function and COPD risk.

  19. Effect of Dose and Administration Period of Seed Cake of Genetically Modified and Non-Modified Flax on Selected Antioxidative Activities in Rats

    PubMed Central

    Matusiewicz, Magdalena; Kosieradzka, Iwona; Zuk, Magdalena; Szopa, Jan

    2015-01-01

    Flaxseed cake containing antioxidants is a valuable dietary component. Its nutritional effect may be diminished by the presence of anti-nutrients. The work was aimed at determining the effect of different contents of flaxseed cake in diets and their administration period on the development of rats and selected parameters of their health status. Diets with 15% and 30% addition of genetically modified (GM) flax seed cake with enhanced synthesis of polyphenols, as well as Linola non-GM flax were administered in short-term (33 days) and long-term (90 days) experiments. The 30% addition of flaxseed cake reduced digestibility of dietary nutrients, GM flaxseed cake lowered body weight gains. The relative weight of selected organs, hematological blood markers and serum activities of aspartate and alanine aminotransferases (AST, ALT) were not affected. Flaxseed cake consumption reduced serum concentration of albumins and increased globulins. Administration of 30% flaxseed cake improved plasma total antioxidant status and 30% GM flaxseed cake lowered liver thiobarbituric acid reactive substances. The activities of superoxide dismutase in erythrocytes, glutathione peroxidase in plasma and the liver concentration of 8-oxo-2′-deoxyguanosine were not changed. Most morphometric parameters of the small intestine did not differ between feeding groups. The administration of diets with 30% addition of flaxseed cake for 90 days improved the antioxidant status in rats. PMID:26110393

  20. Effect of Dose and Administration Period of Seed Cake of Genetically Modified and Non-Modified Flax on Selected Antioxidative Activities in Rats.

    PubMed

    Matusiewicz, Magdalena; Kosieradzka, Iwona; Zuk, Magdalena; Szopa, Jan

    2015-06-23

    Flaxseed cake containing antioxidants is a valuable dietary component. Its nutritional effect may be diminished by the presence of anti-nutrients. The work was aimed at determining the effect of different contents of flaxseed cake in diets and their administration period on the development of rats and selected parameters of their health status. Diets with 15% and 30% addition of genetically modified (GM) flax seed cake with enhanced synthesis of polyphenols, as well as Linola non-GM flax were administered in short-term (33 days) and long-term (90 days) experiments. The 30% addition of flaxseed cake reduced digestibility of dietary nutrients, GM flaxseed cake lowered body weight gains. The relative weight of selected organs, hematological blood markers and serum activities of aspartate and alanine aminotransferases (AST, ALT) were not affected. Flaxseed cake consumption reduced serum concentration of albumins and increased globulins. Administration of 30% flaxseed cake improved plasma total antioxidant status and 30% GM flaxseed cake lowered liver thiobarbituric acid reactive substances. The activities of superoxide dismutase in erythrocytes, glutathione peroxidase in plasma and the liver concentration of 8-oxo-2'-deoxyguanosine were not changed. Most morphometric parameters of the small intestine did not differ between feeding groups. The administration of diets with 30% addition of flaxseed cake for 90 days improved the antioxidant status in rats.

  1. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    PubMed Central

    2012-01-01

    Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells

  2. Irrigation of Solanum lycopersicum L. with magnetically treated water increases antioxidant properties of its tomato fruits.

    PubMed

    Dubois, A E Ferrer; Leite, G O; Rocha, J B T

    2013-09-01

    Antioxidant effects of tomatoes (Solanum lycopersicum L.) have been studied and an association between dietary intake of tomatoes and lowered risk of cancer, neurodegenerative, and cardiovascular diseases has been suggested. Here we used magnetically treated water (MTW; 0.03-0.15 T), which promotes better germination and productivity in tomatoes, and we investigated the effects of aqueous and ethanolic (10-400 μg/ml) extracts of S. lycopersicum as potential antioxidant against 10 μM Fe(II)-induced thiobarbituric acid reactive species (TBARS) in liver and brain homogenates from rats. The ethanolic extracts from magnetically treated plants were more effective than aqueous extracts in preventing TBARS formation in brain and liver. The protective effects of ethanolic extract can be associated with antioxidants (polyphenols and flavonoids), lycopene and other lipophilic components found in the extract. In effect, magnetically treated plants had higher content of polyphenolic and flavonoid compounds than nontreated plants and they can be a better source of antioxidants than nontreated plants. Consequently, MTW can be used to produce functional foods with high contents of antioxidant components and may have better beneficial health effects than traditionally produced foods. PMID:23324035

  3. Plasma antioxidants, genetic variation in SOD2, CAT, GPX1, GPX4, and prostate cancer survival

    PubMed Central

    Van Blarigan, Erin L.; Ma, Jing; Kenfield, Stacey A.; Stampfer, Meir J.; Sesso, Howard D.; Giovannucci, Edward L.; Witte, John S.; Erdman, John W.; Chan, June M.; Penney, Kathryn L.

    2014-01-01

    Background Antioxidants may reduce risk of aggressive prostate cancer, and single nucleotide polymorphisms (SNPs) in antioxidant genes may modify this association. Methods We used Cox proportional hazards regression to examine circulating prediagnostic alpha-tocopherol, gamma-tocopherol, and lycopene; SNPs in SOD2 (n=5), CAT (n=6), GPX1 (n=2), GPX4 (n=3); and their interactions and risk of lethal prostate cancer among 2,439 men with nonmetastatic prostate cancer in the Health Professionals Follow-up Study and Physicians’ Health Study. Results We observed 223 events over a median follow-up of 10 years. Higher alpha-tocopherol levels were associated with lower risk of lethal prostate cancer (hazard ratio (HR) 3rd v. 1st quartile (Q): 0.51; 95% confidence interval (CI): 0.30, 0.89; HR 4th v. 1st Q: 0.68; 95% CI: 0.41, 1.13; p-trend: 0.02). Men homozygous for the less common allele (G) at rs3746165 in GPX4 had a 35% lower risk of lethal prostate cancer compared to men homozygous for the more common allele (A) (HR: 0.65; 95% CI: 0.43, 0.99). Among men homozygous for the less common allele in rs3746165, high gamma-tocopherol levels were associated with a 3.5-fold increased risk of lethal prostate cancer (95% CI: 1.27, 9.72; p-value: 0.02; interaction p-value 0.01). Conclusions Among men with nonmetastatic prostate cancer, higher circulating prediagnostic alpha-tocopherol may be associated with lower risk of developing lethal disease. Variants in GPX4 may be associated with risk of lethal prostate cancer, and may modify the relation between gamma-tocopherol and prostate cancer survival. Impact Circulating tocopherol levels and variants in GPX4 may affect prostate cancer progression. PMID:24711484

  4. Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly.

    PubMed

    Swaegers, J; Mergeay, J; Therry, L; Larmuseau, M H D; Bonte, D; Stoks, R

    2013-11-01

    Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations.

  5. Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly

    PubMed Central

    Swaegers, J; Mergeay, J; Therry, L; Larmuseau, M H D; Bonte, D; Stoks, R

    2013-01-01

    Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations. PMID:23820582

  6. Quinclorac-habituation of bean (Phaseolus vulgaris) cultured cells is related to an increase in their antioxidant capacity.

    PubMed

    Largo-Gosens, Asier; de Castro, María; Alonso-Simón, Ana; García-Angulo, Penélope; Acebes, José L; Encina, Antonio; Álvarez, Jesús M

    2016-10-01

    The habituation of bean cells to quinclorac did not rely on cell wall modifications, contrary to what it was previously observed for the well-known cellulose biosynthesis inhibitors dichlobenil or isoxaben. The aim of the present study was to investigate whether or not the bean cells habituation to quinclorac is related to an enhancement of antioxidant activities involved in the scavenging capacity of reactive oxygen species. Treating non-habituated bean calluses with 10 μM quinclorac reduced the relative growth rate and induced a two-fold increase in lipid peroxidation. However, the exposition of quinclorac-habituated cells to a concentration of quinclorac up to 30 μM neither affected their growth rate nor increased their lipid peroxidation levels. Quinclorac-habituated calluses had significantly higher constitutive levels of three antioxidant activities (class-III peroxidase, glutathione reductase, and superoxide dismutase) than those observed in non-habituated calluses, and the treatment of habituated calluses with 30 μM quinclorac significantly increased the level of class III-peroxidase and superoxide dismutase. The results reported here indicate that the process of habituation to quinclorac in bean callus-cultured cells is related, at least partially, to the development of a stable antioxidant capacity that enables them to cope with the oxidative stress caused by quinclorac. Class-III peroxidase and superoxide dismutase activities could play a major role in the quinclorac-habituation. Changes in the antioxidant status of bean cells were stable, since the increase in the antioxidant activities were maintained in quinclorac-dehabituated cells.

  7. Quinclorac-habituation of bean (Phaseolus vulgaris) cultured cells is related to an increase in their antioxidant capacity.

    PubMed

    Largo-Gosens, Asier; de Castro, María; Alonso-Simón, Ana; García-Angulo, Penélope; Acebes, José L; Encina, Antonio; Álvarez, Jesús M

    2016-10-01

    The habituation of bean cells to quinclorac did not rely on cell wall modifications, contrary to what it was previously observed for the well-known cellulose biosynthesis inhibitors dichlobenil or isoxaben. The aim of the present study was to investigate whether or not the bean cells habituation to quinclorac is related to an enhancement of antioxidant activities involved in the scavenging capacity of reactive oxygen species. Treating non-habituated bean calluses with 10 μM quinclorac reduced the relative growth rate and induced a two-fold increase in lipid peroxidation. However, the exposition of quinclorac-habituated cells to a concentration of quinclorac up to 30 μM neither affected their growth rate nor increased their lipid peroxidation levels. Quinclorac-habituated calluses had significantly higher constitutive levels of three antioxidant activities (class-III peroxidase, glutathione reductase, and superoxide dismutase) than those observed in non-habituated calluses, and the treatment of habituated calluses with 30 μM quinclorac significantly increased the level of class III-peroxidase and superoxide dismutase. The results reported here indicate that the process of habituation to quinclorac in bean callus-cultured cells is related, at least partially, to the development of a stable antioxidant capacity that enables them to cope with the oxidative stress caused by quinclorac. Class-III peroxidase and superoxide dismutase activities could play a major role in the quinclorac-habituation. Changes in the antioxidant status of bean cells were stable, since the increase in the antioxidant activities were maintained in quinclorac-dehabituated cells. PMID:27318799

  8. Lactulose Increases Equol Production and Improves Liver Antioxidant Status in Barrows Treated with Daidzein

    PubMed Central

    Zheng, Weijiang; Hou, Yanjun; Yao, Wen

    2014-01-01

    Equol, one of the intestinal microflora metabolites of daidzein, has gained much attention for having greater bioactivity than its precursor (daidzein and daidzin) and seeming to be promoted by hydrogen gas. The effects of lactulose on the equol-producing capacity and liver antioxidant status of barrows treated with daidzein were investigated in this study. Male castrated piglets (barrows) of Landrace×Duroc, aged 40 days, were randomly divided into the following three groups: control group (C, n = 12, fed an isoflavones-free basic diet), daidzein group (D, n = 12, fed an isoflavones-free basic diet with 50 mg/kg of daidzein supplementation) and daidzein+lactulose group (D+L, n = 12, fed an isoflavones-free basic diet with 1% of lactulose and 50 mg/kg of daidzein supplementation). After 20 days, the profile of short-chain fatty acids in the colon digesta showed that lactulose significantly increased the fermented capacity in the gastrointestinal tract of the barrows. First-void urinary equol concentrations were significantly higher in the D+L group than in the D group (3.13±0.93 compared to 2.11±0.82 μg/ml, respectively). Furthermore, fecal equol levels were also significantly higher in the D+L group than in the D group (12.00±2.68 compared to 10.00±2.26 μg/g, respectively). The population of bacteroidetes and the percentage of bacteroidetes to bacteria in feces were higher in the D+L group than in the D group. The DGGE profiles results indicate that lactulose might shift the pathways of hydrogen utilization, and changing the profiles of SRB in feces. Moreover, the D+L group had weak enhancement of T-SOD and CuZn-SOD activities in the livers of barrows treated with daidzein. PMID:24667812

  9. Genetic Deficiency of Glutathione S-Transferase P Increases Myocardial Sensitivity to Ischemia-Reperfusion Injury

    PubMed Central

    Conklin, Daniel J.; Guo, Yiru; Jagatheesan, Ganapathy; Kilfoil, Peter; Haberzettl, Petra; Hill, Bradford G.; Baba, Shahid P.; Guo, Luping; Wetzelberger, Karin; Obal, Detlef; Rokosh, D. Gregg; Prough, Russell A.; Prabhu, Sumanth D.; Velayutham, Murugesan; Zweier, Jay L.; Hoetker, David; Riggs, Daniel W.; Srivastava, Sanjay; Bolli, Roberto; Bhatnagar, Aruni

    2016-01-01

    Rationale Myocardial ischemia-reperfusion (I/R) results in the generation of oxygen-derived free radicals and the accumulation of lipid peroxidation-derived unsaturated aldehydes. However, the contribution of aldehydes to myocardial I/R injury has not been assessed. Objective We tested the hypothesis that removal of aldehydes by glutathione S-transferase P (GSTP) diminishes I/R injury. Methods and Results In adult male C57BL/6 mouse hearts, Gstp1/2 was the most abundant GST transcript followed by Gsta4 and Gstm4.1, and GSTP activity was a significant fraction of the total GST activity. mGstp1/2 deletion reduced total GST activity, but no compensatory increase in GSTA and GSTM or major antioxidant enzymes was observed. Genetic deficiency of GSTP did not alter cardiac function, but in comparison with hearts from wild-type (WT) mice, the hearts isolated from GSTP-null mice were more sensitive to I/R injury. Disruption of the GSTP gene also increased infarct size after coronary occlusion in situ. Ischemia significantly increased acrolein in hearts, and GSTP deficiency induced significant deficits in the metabolism of the unsaturated aldehyde, acrolein, but not in the metabolism 4-hydroxy-trans-2-nonenal (HNE) or trans-2-hexanal; and, upon ischemia, the GSTP-null hearts accumulated more acrolein-modified proteins than WT hearts. GSTP-deficiency did not affect I/R-induced free radical generation, JNK activation or depletion of reduced glutathione. Acrolein-exposure induced a hyperpolarizing shift in INa, and acrolein-induced cell death was delayed by SN-6, a Na+/Ca++ exchange inhibitor. Cardiomyocytes isolated from GSTP-null hearts were more sensitive than WT myocytes to acrolein-induced protein crosslinking and cell death. Conclusions GSTP protects the heart from I/R injury by facilitating the detoxification of cytotoxic aldehydes such as acrolein. PMID:26169370

  10. Increased Antioxidant Defense Mechanism in Human Adventitia-Derived Progenitor Cells Is Associated with Therapeutic Benefit in Ischemia

    PubMed Central

    Iacobazzi, Dominga; Mangialardi, Giuseppe; Gubernator, Miriam; Hofner, Manuela; Wielscher, Matthias; Vierlinger, Klemens; Reni, Carlotta; Oikawa, Atsuhiko; Spinetti, Gaia; Vono, Rosa; Sangalli, Elena; Montagnani, Monica

    2014-01-01

    Abstract Aims: Vascular wall-resident progenitor cells hold great promise for cardiovascular regenerative therapy. This study evaluates the impact of oxidative stress on the viability and functionality of adventitia-derived progenitor cells (APCs) from vein remnants of coronary artery bypass graft (CABG) surgery. We also investigated the antioxidant enzymes implicated in the resistance of APCs to oxidative stress-induced damage and the effect of interfering with one of them, the extracellular superoxide dismutase (EC-SOD/SOD3), on APC therapeutic action in a model of peripheral ischemia. Results: After exposure to hydrogen peroxide, APCs undergo apoptosis to a smaller extent than endothelial cells (ECs). This was attributed to up-regulation of antioxidant enzymes, especially SODs and catalase. Pharmacological inhibition of SODs increases reactive oxygen species (ROS) levels in APCs and impairs their survival. Likewise, APC differentiation results in SOD down-regulation and ROS-induced apoptosis. Oxidative stress increases APC migratory activity, while being inhibitory for ECs. In addition, oxidative stress does not impair APC capacity to promote angiogenesis in vitro. In a mouse limb ischemia model, an injection of naïve APCs, but not SOD3-silenced APCs, helps perfusion recovery and neovascularization, thus underlining the importance of this soluble isoform in protection from ischemia. Innovation: This study newly demonstrates that APCs are endowed with enhanced detoxifier and antioxidant systems and that SOD3 plays an important role in their therapeutic activity in ischemia. Conclusions: APCs from vein remnants of CABG patients express antioxidant defense mechanisms, which enable them to resist stress. These properties highlight the potential of APCs in cardiovascular regenerative medicine. Antioxid. Redox Signal. 21, 1591–1604. PMID:24512058

  11. Increased genetic risk for obesity in premature coronary artery disease.

    PubMed

    Cole, Christopher B; Nikpay, Majid; Stewart, Alexandre F R; McPherson, Ruth

    2016-04-01

    There is ongoing controversy as to whether obesity confers risk for CAD independently of associated risk factors including diabetes mellitus. We have carried out a Mendelian randomization study using a genetic risk score (GRS) for body mass index (BMI) based on 35 risk alleles to investigate this question in a population of 5831 early onset CAD cases without diabetes mellitus and 3832 elderly healthy control subjects, all of strictly European ancestry, with adjustment for traditional risk factors (TRFs). We then estimated the genetic correlation between these BMI and CAD (rg) by relating the pairwise genetic similarity matrix to a phenotypic covariance matrix between these two traits. GRSBMI significantly (P=2.12 × 10(-12)) associated with CAD status in a multivariate model adjusted for TRFs, with a per allele odds ratio (OR) of 1.06 (95% CI 1.042-1.076). The addition of GRSBMI to TRFs explained 0.75% of CAD variance and yielded a continuous net recombination index of 16.54% (95% CI=11.82-21.26%, P<0.0001). To test whether GRSBMI explained CAD status when adjusted for measured BMI, separate models were constructed in which the score and BMI were either included as covariates or not. The addition of BMI explained ~1.9% of CAD variance and GRSBMI plus BMI explained 2.65% of CAD variance. Finally, using bivariate restricted maximum likelihood analysis, we provide strong evidence of genome-wide pleiotropy between obesity and CAD. This analysis supports the hypothesis that obesity is a causal risk factor for CAD. PMID:26220701

  12. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco.

    PubMed

    Zhang, Bing-Lin; Shang, Sheng-Hua; Zhang, Hai-Tao; Jabeen, Zahra; Zhang, Guo-Ping

    2013-06-01

    The effect of sodium chloride (NaCl) on cadmium (Cd) uptake, translocation, and oxidative stress was investigated using 2 tobacco cultivars differing in Cd tolerance. The growth inhibition of the tobacco plants exposed to Cd toxicity was in part alleviated by moderate addition of NaCl in the culture solution. Cadmium concentration of shoots and roots in the 2 cultivars increased with increasing Cd levels in the solution and decreased with the addition of NaCl. The addition of NaCl could alleviate the oxidative stress caused by Cd toxicity, as reflected by reduced production of malondialdehyde and recovered or enhanced activities of antioxidative enzymes catalase and glutathione peroxidase. The results also showed that the enhancement of antioxidative enzyme activity by NaCl for the tobacco plants exposed to Cd stress is related to induced Ca signaling.

  13. Antioxidants as potential therapeutics for neuropsychiatric disorders.

    PubMed

    Pandya, Chirayu D; Howell, Kristy R; Pillai, Anilkumar

    2013-10-01

    Oxidative stress has been implicated in the pathophysiology of many neuropsychiatric disorders such as schizophrenia, bipolar disorder, major depression etc. Both genetic and non-genetic factors have been found to cause increased cellular levels of reactive oxygen species beyond the capacity of antioxidant defense mechanism in patients of psychiatric disorders. These factors trigger oxidative cellular damage to lipids, proteins and DNA, leading to abnormal neural growth and differentiation. Therefore, novel therapeutic strategies such as supplementation with antioxidants can be effective for long-term treatment management of neuropsychiatric disorders. The use of antioxidants and PUFAs as supplements in the treatment of neuropsychiatric disorders has provided some promising results. At the same time, one should be cautious with the use of antioxidants since excessive antioxidants could dangerously interfere with some of the protective functions of reactive oxygen species. The present article will give an overview of the potential strategies and outcomes of using antioxidants as therapeutics in psychiatric disorders. PMID:23123357

  14. Increasing bioavailability of (R)-alpha-lipoic acid to boost antioxidant activity in the treatment of neuropathic pain.

    PubMed

    Maglione, Emilia; Marrese, Cinzia; Migliaro, Elisa; Marcuccio, Fortuna; Panico, Claudia; Salvati, Carmine; Citro, Giuseppe; Quercio, Marco; Roncagliolo, Federico; Torello, Carlo; Brufani, Mario

    2015-01-01

    a-lipoic acid (a-LA) is a potent natural antioxidant because it has a broad spectrum of action towards a great many free radical species and boosts the endogenous antioxidant systems.Although it is a multi-functional molecule, its pharmacokinetic characteristics pose restrictions to its use in the treatment of oxidative stress-dependent illnesses. Formulations that increase the bioavailability of a-LA have a better potential efficacy as adjuvants for the treatment of these conditions.This objective was achieved with a liquid formulation for oral use containing only R-aLA, the natural enantiomeric and most active form of a-lipoic acid.For the first time, the effects of this formulation were evaluated on neuropathic pain, a symptom caused by an increase in oxidative stress, regardless of the underlying cause. Neuropathic patients who have used this dietary supplement noticed an improvement in their quality of life and a significant reduction was observed in a number of certain descriptive pain parameters (intensity, burning, unpleasantness, superficial pain).Undoubtedly further, more in-depth, studies need to be conducted; however, this first investigation confirms the role of R-aLA as an anti-oxidant for the aetiological treatment of peripheral neuropathy. Increasing its plasma bioavailability even after a non-invasive administration through the oral route is a good starting point for proposing a valid adjuvant for the treatment of pain symptoms. PMID:26694149

  15. Region specific increase in the antioxidant enzymes and lipid peroxidation products in the brain of rats exposed to lead.

    PubMed

    Bennet, Christopher; Bettaiya, Rajanna; Rajanna, Sharada; Baker, Levenia; Yallapragada, Prabhakara Rao; Brice, Jon J; White, Samuel L; Bokara, Kiran Kumar

    2007-03-01

    The objective of this study is to determine the effect of lead (pb) on antioxidant enzymes and lipid peroxidation products in different regions of rat brain. Wistar male rats were treated with lead acetate (500 ppm) through drinking water for a period of 8 weeks. Control animals were maintained on sodium acetate. Treated and control rats were sacrificed at intervals of 1st, 4th and 8th week and the whole brains were dissected on ice into four regions namely the cerebellum, the hippocampus, the frontal cortex and the brain stem. Antioxidant enzymes namely catalase and superoxide dismutase in all the four regions of brain were determined. In addition, lipid peroxidation products were also estimated. The results indicated a gradual increase in the activity of antioxidant enzymes in different regions of the brain and this response was time-dependent. However, the increase was more in the cerebellum and the hippocampus compared to other regions of the brain. The lipid peroxidation products also showed a similar trend suggesting increased effect of lead in these two regions of the brain. The data indicated a region-specific oxidative stress in the brain exposed to lead. PMID:17364954

  16. Rye and Wheat Bran Extracts Isolated with Pressurized Solvents Increase Oxidative Stability and Antioxidant Potential of Beef Meat Hamburgers.

    PubMed

    Šulniūtė, Vaida; Jaime, Isabel; Rovira, Jordi; Venskutonis, Petras Rimantas

    2016-02-01

    Rye and wheat bran extracts containing phenolic compounds and demonstrating high DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS(•+) (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) scavenging and oxygen radical absorbance capacities (ORAC) were tested in beef hamburgers as possible functional ingredients. Bran extracts significantly increased the indicators of antioxidant potential of meat products and their global antioxidant response (GAR) during physiological in vitro digestion. The extracts also inhibited the formation of oxidation products, hexanal and malondialdehyde, of hamburgers during their storage; however, they did not have significant effect on the growth of microorganisms. Hamburgers with 0.8% wheat bran extract demonstrated the highest antioxidant potential. Some effects of bran extracts on other quality characteristics such as pH, color, formation of metmyoglobin were also observed, however, these effects did not have negative influence on the overall sensory evaluation score of hamburgers. Consequently, the use of bran extracts in meat products may be considered as promising means of increasing oxidative product stability and enriching with functional ingredients which might possess health benefits. PMID:26753797

  17. Oxidation Stability of Pig Liver Pâté with Increasing Levels of Natural Antioxidants (Grape and Tea)

    PubMed Central

    Pateiro, Mirian; Lorenzo, José M.; Vázquez, José A.; Franco, Daniel

    2015-01-01

    The present study investigated the effect of the addition of increasing levels of the natural antioxidants tea (TEA) and grape seed extracts (GRA) on the physiochemical and oxidative stability of refrigerated stored pig pâtés. In addition, a synthetic antioxidant and a control batch were used, thus a total of eight batches of liver pâté were prepared: CON, BHT, TEA (TEA50, TEA200 and TEA1000) and GRA (GRA50, GRA200 and GRA1000). Pâté samples were analyzed following 0, 4, 8 and 24 weeks of storage. Color parameters were affected by storage period and level of antioxidant extract. Samples with TEA200 and GRA1000 levels of extracts showed lower total color difference between 0 and 24 weeks. At the end of storage period, the lower TBARs values were obtained in samples with the highest concentration on natural extract. Overall, the evolution of volatile compounds showed an increase in those ones that arise from the lipid oxidation and samples with TEA1000 extract showed the lowest values. PMID:26785340

  18. Compost as a soil supplement increases the level of antioxidant compounds and oxygen radical absorbance capacity in strawberries.

    PubMed

    Wang, Shiow Y; Lin, Hsin-Shan

    2003-11-01

    Compost as a soil supplement significantly enhanced levels of ascorbic acid (AsA) and glutathione (GSH) and ratios of AsA/dehydroascorbic acid (DHAsA) and GSH/oxidized glutathione (GSSG) in fruit of two strawberry (Fragaria x ananassa Duch.) cultivars, Allstar and Honeoye. The peroxyl radical (ROO(*)) as well as the superoxide radical (O(2)(*)(-)), hydrogen peroxide (H(2)O(2)), hydroxyl radical (OH(*)), and singlet oxygen ((1)O(2)) absorbance capacity in strawberries increased significantly with increasing fertilizer strength and compost use. The planting medium (compost) x fertilizer interaction for phenolics and flavonoids was significant. Fruit from plants grown in full-strength fertilizer with 50% soil plus 50% compost and 100% compost yielded fruit with the highest levels of phenolics, flavonol, and anthocyanin content. A positive relationship between antioxidant activities and contents of AsA and GSH and ratios of AsA/DHAsA and GSH/GSSG existed in fruit of both strawberry cultivars. Correlation coefficients for the content of antioxidant components versus antioxidant activity [against ROO(*), O(2)(*)(-), H(2)O(2), OH(*), or (1)O(2)] ranged from r( )()= 0.7706 for H(2)O(2) versus GSH/GSSH in cv. Allstar to r = 0.9832 for O(2)(*)(-) versus total flavonoids in cv. Allstar.

  19. Oxidation Stability of Pig Liver Pâté with Increasing Levels of Natural Antioxidants (Grape and Tea).

    PubMed

    Pateiro, Mirian; Lorenzo, José M; Vázquez, José A; Franco, Daniel

    2015-01-01

    The present study investigated the effect of the addition of increasing levels of the natural antioxidants tea (TEA) and grape seed extracts (GRA) on the physiochemical and oxidative stability of refrigerated stored pig pâtés. In addition, a synthetic antioxidant and a control batch were used, thus a total of eight batches of liver pâté were prepared: CON, BHT, TEA (TEA50, TEA200 and TEA1000) and GRA (GRA50, GRA200 and GRA1000). Pâté samples were analyzed following 0, 4, 8 and 24 weeks of storage. Color parameters were affected by storage period and level of antioxidant extract. Samples with TEA200 and GRA1000 levels of extracts showed lower total color difference between 0 and 24 weeks. At the end of storage period, the lower TBARs values were obtained in samples with the highest concentration on natural extract. Overall, the evolution of volatile compounds showed an increase in those ones that arise from the lipid oxidation and samples with TEA1000 extract showed the lowest values. PMID:26785340

  20. Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells

    PubMed Central

    GOUTZOURELAS, NIKOLAOS; STAGOS, DIMITRIOS; HOUSMEKERIDOU, ANASTASIA; KARAPOULIOU, CHRISTINA; KERASIOTI, EFTHALIA; ALIGIANNIS, NEKTARIOS; SKALTSOUNIS, ALEXIOS L; SPANDIDOS, DEMETRIOS A; TSATSAKIS, ARISTIDIS M; KOURETAS, DEMETRIOS

    2015-01-01

    In a previous study, we demonstrated that a grape pomace extract (GPE) exerted antioxidant activity in endothelial (EA.hy926) and muscle (C2C12) cells through an increase in glutathione (GSH) levels. In the present study, in order to elucidate the mechanisms responsible for the antioxidant activity of GPE, its effects on the expression of critical antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD)1, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (GCS) were assessed in EA.hy926 and C2C12 cells. Moreover, the effects of GPE on CAT, SOD and glutathione S-transferase (GST) enzymatic activity were evaluated. For this purpose, the C2C12 and EA.hy926 cells were treated with GPE at low and non-cytotoxic concentrations (2.5 and 10 µg/ml for the C2C12 cells; 0.068 and 0.250 µg/ml for the EA.hy926 cells) for 3, 6, 12, 18 and 24 h. Following incubation, enzymatic expression and activity were assessed. The results revealed that treatment with GPE significantly increased GCS levels and GST activity in both the C2C12 and EA.hy926 cells. However, GPE significantly decreased CAT levels and activity, but only in the muscle cells, while it had no effect on CAT levels and activity in the endothelial cells. Moreover, treatment with GPE had no effect on HO-1 and SOD expression and activity in both cell lines. Therefore, the present results provide further evidence of the crucial role of GSH systems in the antioxidant effects exerted by GPE. Thus, GPE may prove to be effective for use as a food supplement for the treatment of oxidative stress-induced pathological conditions of the cardiovascular and skeletal muscle systems, particularly those associated with low GSH levels. PMID:26082074

  1. Decreased blood antioxidant capacity and increased lipid peroxidation in young cigarette smokers compared to nonsmokers: Impact of dietary intake

    PubMed Central

    Bloomer, Richard J

    2007-01-01

    Background Blood of cigarette smokers routinely displays decreased antioxidant capacity and increased oxidized lipids compared to nonsmokers. This is thought to be due to both chronic exposure to cigarette smoke in addition to low intake of dietary antioxidants, and is a routine finding in veteran smokers. No study to date has determined the independent and combined impact of dietary intake and cigarette smoking on blood antioxidant capacity and oxidative stress in a sample of young, novice smokers. Methods We compared resting plasma antioxidant reducing capacity (ARC; expressed in uric acid equivalents), serum trolox-equivalent antioxidant capacity (TEAC), whole blood total glutathione, plasma malondialdehyde (MDA), and plasma oxidized low density lipoprotein (oxLDL) between 15 young (24 ± 4 years), novice smokers (pack-year history: 3 ± 2) and 13 nonsmokers of similar age (24 ± 5 years). Detailed dietary records were maintained during a seven-day period for analysis of total energy, macro- and micronutrient intake. Results ARC (0.0676 ± 0.0352 vs. 0.1257 ± 0.0542 mmol·L-1; mean ± SD, p = 0.019), TEAC (0.721 ± 0.120 vs. 0.765 ± 0.130 mmol·L-1, p = 0.24) and glutathione (835 ± 143 vs. 898 ± 168 μmol·L-1, p = 0.28) were lower in smokers compared to nonsmokers, with only the former being statistically significant. MDA (0.919 ± 0.32 vs. 0.647 ± 0.16 μmol·L-1, p = 0.05) and oxLDL were both higher in smokers compared to nonsmokers (229 ± 94 vs. 110 ± 62 ng·mL-1, p = 0.12), although only the MDA comparison was of statistical significance. Interestingly, these findings existed despite no differences in dietary intake, including antioxidant micronutrient consumption, between both smokers and nonsmokers. Conclusion These data, with specificity to young, novice cigarette smokers, underscore the importance of smoking abstinence. Future studies with larger sample sizes, inclusive of smokers of different ages and smoking histories, are needed to extend

  2. Antioxidant defense markers modulated by glutathione S-transferase genetic polymorphism: results of lung cancer case–control study

    PubMed Central

    Reszka, Edyta; Gromadzinska, Jolanta

    2007-01-01

    Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case–control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P < 0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P < 0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P < 0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case–control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects. PMID:18850183

  3. Antioxidant defense markers modulated by glutathione S-transferase genetic polymorphism: results of lung cancer case-control study.

    PubMed

    Reszka, Edyta; Wasowicz, Wojciech; Gromadzinska, Jolanta

    2007-12-01

    Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P < 0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P < 0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P < 0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects. PMID:18850183

  4. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry.

    PubMed

    Cao, Changyu; Zhao, Xia; Fan, Ruifeng; Zhao, Jinxin; Luan, Yilin; Zhang, Ziwei; Xu, Shiwen

    2016-07-01

    Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency. PMID:26637493

  5. Use of different spices as potential natural antioxidant additives on cooked beans (Phaseolus vulgaris). Increase of DPPH radical scavenging activity and total phenolic content.

    PubMed

    Pereira, Marina Pelincer; Tavano, Olga Luisa

    2014-12-01

    Herbs and spices, excellent sources of phenolic compounds, can be considered potential antioxidant additives. The use of spices must strike a balance between their potential antioxidant capabilities during preparation and the flavor acceptance, in order to avoid rejection of the food. The aimed of this study is to evaluate the influence of different spices and their concentrations on cooked common beans, focusing its potential as antioxidant additives. Onion, parsley, spring onion, laurel and coriander increased the antioxidant activity of preparation when used at 7.96 g of onion, 1.06 g parsley, 3.43 g spring onion, 0.25 g laurel (dry leaves), and 0.43 g coriander/100 g of cooked beans. Besides, these spices concentrations enhance total phenolics and alter the mixture protein digestibility minimally. For garlic samples it was not possible to establish a concentration that increases the antioxidant activity of cooked beans. PMID:25179942

  6. Use of different spices as potential natural antioxidant additives on cooked beans (Phaseolus vulgaris). Increase of DPPH radical scavenging activity and total phenolic content.

    PubMed

    Pereira, Marina Pelincer; Tavano, Olga Luisa

    2014-12-01

    Herbs and spices, excellent sources of phenolic compounds, can be considered potential antioxidant additives. The use of spices must strike a balance between their potential antioxidant capabilities during preparation and the flavor acceptance, in order to avoid rejection of the food. The aimed of this study is to evaluate the influence of different spices and their concentrations on cooked common beans, focusing its potential as antioxidant additives. Onion, parsley, spring onion, laurel and coriander increased the antioxidant activity of preparation when used at 7.96 g of onion, 1.06 g parsley, 3.43 g spring onion, 0.25 g laurel (dry leaves), and 0.43 g coriander/100 g of cooked beans. Besides, these spices concentrations enhance total phenolics and alter the mixture protein digestibility minimally. For garlic samples it was not possible to establish a concentration that increases the antioxidant activity of cooked beans.

  7. Gamma irradiation increases the antioxidant properties of Tualang honey stored under different conditions.

    PubMed

    Khalil, Md Ibrahim; Sulaiman, Siti Amrah; Alam, Nadia; Moniruzzaman, Mohammed; Bai'e, Saringat; Man, Che Nin; Jamalullail, Syed Mohsin Sahil; Gan, Siew Hua

    2012-01-11

    This study was conducted to evaluate the effects of evaporation, gamma irradiation and temperature on the total polyphenols, flavonoids and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities of Tualang honey samples (n = 14) following storage over three, six or twelve months. The mean polyphenol concentrations of the six gamma irradiated honey samples at three, six and twelve months, respectively, were 96.13%, 98.01% and 102.03% higher than the corresponding values of the eight non-gamma irradiated samples. Similarly, the mean values for flavonoids at three, six and twelve months were 111.52%, 114.81% and 110.04% higher, respectively, for the gamma irradiated samples. The mean values for DPPH radical-scavenging activities at three, six and twelve months were also 67.09%, 65.26% and 44.65% higher, respectively, for the gamma irradiated samples. These data indicate that all gamma irradiated honey samples had higher antioxidant potential following gamma irradiation, while evaporation and temperature had minor effects on antioxidant potential.

  8. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

    PubMed

    Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

    2014-04-16

    Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries. PMID:24684635

  9. Increase in oxidative stress and mitochondrial impairment in hypothalamus of streptozotocin treated diabetic rat: Antioxidative effect of Withania somnifera.

    PubMed

    Parihar, P; Shetty, R; Ghafourifar, P; Parihar, M S

    2016-01-22

    Hypothalamus, the primary brain region for glucose sensing, is severely affected by oxidative stress in diabetes mellitus. Oxidative stress in this region of brain may cause severe impairment in neuronal metabolic functions. Mitochondria are prominent targets of oxidative stress and the combination of increased oxidative stress and mitochondrial dysfunctions may further decline hypothalamic neuronal functions. In the present study we examined the oxidative damage response, antioxidative responses and mitochondrial membrane permeability transition in hypothalamus of streptozotocin-treated diabetic rats. Our results show that streptozotocin significantly increases hypothalamic lipid peroxidation, protein carbonyl content while glutathione peroxidase and reduced glutathione were declined. Mitochondrial impairment marked by an increase in mitochondrial membrane permeabilization was seen following streptozotocin treatment in the hypothalamus. The oral administration of Withania somnifera root extract stabilized mitochondrial functions and prevented oxidative damage in the hypothalamus of diabetic rat. These findings suggest an increase in the oxidative stress and decline in antioxidative responses in the hypothalamus of streptozotocin treated diabetic rats. Withania somnifera root extract was found useful in reducing oxidative stress and mitochondrial impairment in hypothalamus of diabetic rat.

  10. Common genetic variation associated with increased susceptibility to prostate cancer does not increase risk of radiotherapy toxicity

    PubMed Central

    Ahmed, Mahbubl; Dorling, Leila; Kerns, Sarah; Fachal, Laura; Elliott, Rebecca; Partliament, Matt; Rosenstein, Barry S; Vega, Ana; Gómez-Caamaño, Antonio; Barnett, Gill; Dearnaley, David P; Hall, Emma; Sydes, Matt; Burnet, Neil; Pharoah, Paul D P; Eeles, Ros; West, Catharine M L

    2016-01-01

    Background: Numerous germline single-nucleotide polymorphisms increase susceptibility to prostate cancer, some lying near genes involved in cellular radiation response. This study investigated whether prostate cancer patients with a high genetic risk have increased toxicity following radiotherapy. Methods: The study included 1560 prostate cancer patients from four radiotherapy cohorts: RAPPER (n=533), RADIOGEN (n=597), GenePARE (n=290) and CCI (n=150). Data from genome-wide association studies were imputed with the 1000 Genomes reference panel. Individuals were genetically similar with a European ancestry based on principal component analysis. Genetic risks were quantified using polygenic risk scores. Regression models tested associations between risk scores and 2-year toxicity (overall, urinary frequency, decreased stream, rectal bleeding). Results were combined across studies using standard inverse-variance fixed effects meta-analysis methods. Results: A total of 75 variants were genotyped/imputed successfully. Neither non-weighted nor weighted polygenic risk scores were associated with late radiation toxicity in individual studies (P>0.11) or after meta-analysis (P>0.24). No individual variant was associated with 2-year toxicity. Conclusion: Patients with a high polygenic susceptibility for prostate cancer have no increased risk for developing late radiotherapy toxicity. These findings suggest that patients with a genetic predisposition for prostate cancer, inferred by common variants, can be safely treated using current standard radiotherapy regimens. PMID:27070714

  11. Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds.

    PubMed

    Perales-Sánchez, Janitzio X K; Reyes-Moreno, Cuauhtémoc; Gómez-Favela, Mario A; Milán-Carrillo, Jorge; Cuevas-Rodríguez, Edith O; Valdez-Ortiz, Angel; Gutiérrez-Dorado, Roberto

    2014-09-01

    The aim of this study was to optimize the germination conditions of amaranth seeds that would maximize the antioxidant activity (AoxA), total phenolic (TPC), and flavonoid (TFC) contents. To optimize the germination bioprocess, response surface methodology was applied over three response variables (AoxA, TPC, TFC). A central composite rotable experimental design with two factors [germination temperature (GT), 20-45 ºC; germination time (Gt), 14-120 h] in five levels was used; 13 treatments were generated. The amaranth seeds were soaked in distilled water (25 °C/6 h) before germination. The sprouts from each treatment were dried (50 °C/8 h), cooled, and ground to obtain germinated amaranth flours (GAF). The best combination of germination bioprocess variables for producing optimized GAF with the highest AoxA [21.56 mmol trolox equivalent (TE)/100 g sample, dw], TPC [247.63 mg gallic acid equivalent (GAE)/100 g sample, dw], and TFC [81.39 mg catechin equivalent (CAE)/100 g sample, dw] was GT = 30 ºC/Gt = 78 h. The germination bioprocess increased AoxA, TPC, and TFC in 300-470, 829, and 213%, respectively. The germination is an effective strategy to increase the TPC and TFC of amaranth seeds for enhancing functionality with improved antioxidant activity.

  12. Age-dependent increase in the expression of antioxidant-like protein-1 in the gerbil hippocampus

    PubMed Central

    Park, Jin-A; Park, Joon Ha; Ahn, Ji Hyeon; Kim, Jong-Dai; Won, Moo-Ho; Lee, Choong-Hyun

    2016-01-01

    Antioxidant-like protein-1 (AOP-1) reduces the intracellular level of reactive oxygen species. In the present study, the age-related change in AOP-1 expression in the hippocampus among young, adult and aged gerbils was compared using western blot analysis and immunohistochemistry. The results demonstrated that the protein expression of AOP-1 was gradually and significantly increased in the hippocampus during the normal aging process. In addition, the age-dependent increase in AOP-1 immunoreactivity was also observed in pyramidal neurons of the hippocampus proper; however, in the dentate gyrus, AOP-1 immunoreactivity was not altered during the normal aging process. These results indicated that the expression of AOP-1 is significantly increased in the hippocampus proper, but not in the dentate gyrus, during the normal aging process. PMID:27511601

  13. Genetic Factors That Increase Male Facial Masculinity Decrease Facial Attractiveness of Female Relatives

    PubMed Central

    Lee, Anthony J.; Mitchem, Dorian G.; Wright, Margaret J.; Martin, Nicholas G.; Keller, Matthew C.; Zietsch, Brendan P.

    2014-01-01

    For women, choosing a facially masculine man as a mate is thought to confer genetic benefits to offspring. Crucial assumptions of this hypothesis have not been adequately tested. It has been assumed that variation in facial masculinity is due to genetic variation and that genetic factors that increase male facial masculinity do not increase facial masculinity in female relatives. We objectively quantified the facial masculinity in photos of identical (n = 411) and nonidentical (n = 782) twins and their siblings (n = 106). Using biometrical modeling, we found that much of the variation in male and female facial masculinity is genetic. However, we also found that masculinity of male faces is unrelated to their attractiveness and that facially masculine men tend to have facially masculine, less-attractive sisters. These findings challenge the idea that facially masculine men provide net genetic benefits to offspring and call into question this popular theoretical framework. PMID:24379153

  14. Genetic factors that increase male facial masculinity decrease facial attractiveness of female relatives.

    PubMed

    Lee, Anthony J; Mitchem, Dorian G; Wright, Margaret J; Martin, Nicholas G; Keller, Matthew C; Zietsch, Brendan P

    2014-02-01

    For women, choosing a facially masculine man as a mate is thought to confer genetic benefits to offspring. Crucial assumptions of this hypothesis have not been adequately tested. It has been assumed that variation in facial masculinity is due to genetic variation and that genetic factors that increase male facial masculinity do not increase facial masculinity in female relatives. We objectively quantified the facial masculinity in photos of identical (n = 411) and nonidentical (n = 782) twins and their siblings (n = 106). Using biometrical modeling, we found that much of the variation in male and female facial masculinity is genetic. However, we also found that masculinity of male faces is unrelated to their attractiveness and that facially masculine men tend to have facially masculine, less-attractive sisters. These findings challenge the idea that facially masculine men provide net genetic benefits to offspring and call into question this popular theoretical framework.

  15. Oxidative Stress Is Associated with an Increased Antioxidant Defense in Elderly Subjects: A Multilevel Approach

    PubMed Central

    Flores-Mateo, Gemma; Elosua, Roberto; Rodriguez-Blanco, Teresa; Basora-Gallisà, Josep; Bulló, Mònica; Salas-Salvadó, Jordi; Martínez-González, Miguel Ángel; Estruch, Ramon; Corella, Dolores; Fitó, Montserrat; Fiol, Miquel; Arós, Fernando; Gómez-Gracia, Enrique; Subirana, Isaac; Lapetra, José; Ruiz-Gutiérrez, Valentina; Sáez, Guillermo T.; Covas, Maria-Isabel

    2014-01-01

    Background Studies of associations between plasma GSH-Px activity and cardiovascular risk factors have been done in humans, and contradictory results have been reported. The aim of our study was to assess the association between the scavenger antioxidant enzyme glutathione peroxidase (GSH-Px) activity in plasma and the presence of novel and classical cardiovascular risk factors in elderly patients. Methods We performed a cross-sectional study with baseline data from a subsample of the PREDIMED (PREvención con DIeta MEDiterránea) study in Spain. Participants were 1,060 asymptomatic subjects at high risk for cardiovascular disease (CVD), aged 55 to 80, selected from 8 primary health care centers (PHCCs). We assessed classical CVD risk factors, plasma oxidized low-density lipoproteins (ox-LDL), and glutathione peroxidase (GSH-Px) using multilevel statistical procedures. Results Mean GSH-Px value was 612 U/L (SE: 12 U/L), with variation between PHCCs ranging from 549 to 674 U/L (Variance = 1013.5; P<0.001). Between-participants variability within a PHCC accounted for 89% of the total variation. Both glucose and oxidized LDL were positively associated with GSH-Px activity after adjustment for possible confounder variables (P = 0.03 and P = 0.01, respectively). Conclusion In a population at high cardiovascular risk, a positive linear association was observed between plasma GSH-Px activity and both glucose and ox-LDL levels. The high GSH-Px activity observed when an oxidative stress situation occurred, such as hyperglycemia and lipid oxidative damage, could be interpreted as a healthy defensive response against oxidative injury in our cardiovascular risk population. PMID:25269026

  16. Thermal treatment of eggplant (Solanum melongena L.) increases the antioxidant content and the inhibitory effect on human neutrophil burst.

    PubMed

    Lo Scalzo, Roberto; Fibiani, Marta; Mennella, Giuseppe; Rotino, Giuseppe L; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra; Braga, Pier Carlo

    2010-03-24

    The aim of this study was to compare the amount and activity of phytonutrients in raw, grilled, and boiled eggplant fruit using chemical measures and a biological assay of oxidative bursts in human neutrophils. The thermally treated samples showed various changes in their chemical composition (dry matter, soluble solids, acidity, and the amount of alcohol insoluble substances) due to the cooking processes and were much richer in the main phenolic compounds such as chlorogenic and caffeic acids, which are known to be antioxidants. Consequently, their free radical scavenging activity was significantly higher, especially that of superoxide anion. The biological assay of oxidative bursts from human neutrophils in the presence of N-formyl-methionyl-leucyl-phenylalanine confirmed the greater activity of extracts of the cooked eggplants with respect to raw eggplants. Successive extract dilutions showed a significant activity up to 1.25 microg/mL after cooking, while raw fruits resulted in an activity up to 10.00 microg/mL. These results showed that the thermal treatment commonly used before consumption can increase the content and biological activity of antioxidant compounds of eggplants.

  17. Plant genetic resources: what can they contribute toward increased crop productivity?

    PubMed

    Hoisington, D; Khairallah, M; Reeves, T; Ribaut, J M; Skovmand, B; Taba, S; Warburton, M

    1999-05-25

    To feed a world population growing by up to 160 people per minute, with >90% of them in developing countries, will require an astonishing increase in food production. Forecasts call for wheat to become the most important cereal in the world, with maize close behind; together, these crops will account for approximately 80% of developing countries' cereal import requirements. Access to a range of genetic diversity is critical to the success of breeding programs. The global effort to assemble, document, and utilize these resources is enormous, and the genetic diversity in the collections is critical to the world's fight against hunger. The introgression of genes that reduced plant height and increased disease and viral resistance in wheat provided the foundation for the "Green Revolution" and demonstrated the tremendous impact that genetic resources can have on production. Wheat hybrids and synthetics may provide the yield increases needed in the future. A wild relative of maize, Tripsacum, represents an untapped genetic resource for abiotic and biotic stress resistance and for apomixis, a trait that could provide developing world farmers access to hybrid technology. Ownership of genetic resources and genes must be resolved to ensure global access to these critical resources. The application of molecular and genetic engineering technologies enhances the use of genetic resources. The effective and complementary use of all of our technological tools and resources will be required for meeting the challenge posed by the world's expanding demand for food.

  18. Plant genetic resources: What can they contribute toward increased crop productivity?

    PubMed Central

    Hoisington, David; Khairallah, Mireille; Reeves, Timothy; Ribaut, Jean-Marcel; Skovmand, Bent; Taba, Suketoshi; Warburton, Marilyn

    1999-01-01

    To feed a world population growing by up to 160 people per minute, with >90% of them in developing countries, will require an astonishing increase in food production. Forecasts call for wheat to become the most important cereal in the world, with maize close behind; together, these crops will account for ≈80% of developing countries’ cereal import requirements. Access to a range of genetic diversity is critical to the success of breeding programs. The global effort to assemble, document, and utilize these resources is enormous, and the genetic diversity in the collections is critical to the world’s fight against hunger. The introgression of genes that reduced plant height and increased disease and viral resistance in wheat provided the foundation for the “Green Revolution” and demonstrated the tremendous impact that genetic resources can have on production. Wheat hybrids and synthetics may provide the yield increases needed in the future. A wild relative of maize, Tripsacum, represents an untapped genetic resource for abiotic and biotic stress resistance and for apomixis, a trait that could provide developing world farmers access to hybrid technology. Ownership of genetic resources and genes must be resolved to ensure global access to these critical resources. The application of molecular and genetic engineering technologies enhances the use of genetic resources. The effective and complementary use of all of our technological tools and resources will be required for meeting the challenge posed by the world’s expanding demand for food. PMID:10339521

  19. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis.

    PubMed

    Suryavanshi, Shweta; Sharma, Deepak; Checker, Rahul; Thoh, Maikho; Gota, Vikram; Sandur, Santosh K; Sainis, Krishna B

    2015-08-01

    Hematopoietic stem cells and progenitor cells (HSPC) are low in abundance and exhibit high radiosensitivity and their ability to divide dramatically decreases following exposure to ionizing radiation. Our earlier studies have shown antiapoptotic, immune-stimulatory, and antioxidant effects of chlorophyllin, a constituent of the over the counter drug derifil. Here we describe the beneficial effects of chlorophyllin against radiation-induced hematopoietic syndrome. Chlorophyllin administration significantly enhanced the abundance of HSPC in vivo. It induced a transient cell cycle arrest in lineage-negative cells in the bone marrow. However, the chlorophyllin-treated mice exposed to whole body irradiation (WBI) had a significantly higher proportion of actively dividing HSPC in the bone marrow as compared to only WBI-exposed mice. It significantly increased the number of colony forming units (CFUs) by bone marrow cells in vitro and spleen CFUs in irradiated mice in vivo. Pharmacokinetic study showed that chlorophyllin had a serum half-life of 141.8 min in mice. Chlorophyllin upregulated antiapoptotic genes and antioxidant machinery via activation of prosurvival transcription factors Nrf-2 and NF-κB and increased the survival and recovery of bone marrow cells in mice exposed to WBI. Chlorophyllin stimulated granulocyte production in bone marrow and increased the abundance of peripheral blood neutrophils by enhancing serum levels of granulocyte-colony stimulation factor (GCSF). Most importantly, prophylactic treatment of mice with chlorophyllin significantly abrogated radiation-induced mortality. Chlorophyllin mitigates radiation-induced hematopoietic syndrome by increasing the abundance of hematopoietic stem cells, enhancing granulopoiesis, and stimulating prosurvival pathways in bone marrow cells and lymphocytes.

  20. Dietary ALA, but not LNA, increase growth, reduce inflammatory processes, and increase anti-oxidant capacity in the marine finfish Larimichthys crocea: dietary ALA, but not LNA, increase growth, reduce inflammatory processes, and increase anti-oxidant capacity in the large yellow croaker.

    PubMed

    Zuo, Rantao; Mai, Kangsen; Xu, Wei; Turchini, Giovanni M; Ai, Qinghui

    2015-02-01

    Whilst aquaculture feed is increasingly formulated with the inclusion of plant oils replacing fish oil, and increasing research effort has been invested in understanding the metabolic effects of reduced dietary n-3 long chain poly unsaturated fatty acids (n-3 LC-PUFA), relatively little information is available on the potential direct metabolic roles of dietary alpha-linolenic acid (ALA, 18:3n-3) and alpha-linolenic acid/linoleic acid (LNA, 18:2n-6) ratio in cultured marine finfish species. In this study, four plant oil based diets, with varying ALA/LNA ratio (0.0, 0.5, 1.0 and 1.5) were fed to juvenile large yellow croakers (Larimichthys crocea) and compared to a fish oil-based control diet (CD) to evaluate the resulting effects on growth, nonspecific immunity, anti-oxidant capacity and related gene expression. High dietary LNA negatively impacted fish growth performance, nonspecific immunity and antioxidant capacity, but growth and immunity were maintained to levels comparable to CD by increasing the ratio of dietary ALA/LNA. The over-expression of genes associated with inflammation (cyclooxygenase-2 and interleukin-1β) and fatty acid oxidation (carnitine palmitoyl transferase I and acyl CoA oxidase) in croakers fed high concentrations of LNA were reduced to levels comparable to those fed CD by increasing dietary ALA/LNA. This study showed that dietary ALA, by increasing the overall n-3/n-6 PUFA ratio, exerts direct anti-inflammatory and antioxidant effects, similar to those exerted by dietary n-3 LC-PUFA.

  1. Ultraviolet-B light treatment increases antioxidant capacity of carrot products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abiotic stresses such as cutting and ultraviolet (UV) light exposure of plant cells triggers an increased activity response by phenylalanine ammonia-lyase (PAL) and chalcone synthase resulting in increased synthesis of phenolic compounds, mainly anthocyanins and flavonoids. This study investigated ...

  2. Effect of dietary antioxidant and increasing corn oil inclusion on milk fat yield and fatty acid composition in dairy cattle.

    PubMed

    Boerman, J P; Preseault, C L; Lock, A L

    2014-12-01

    The objective of this study was to examine the effect of a dietary synthetic antioxidant on feed intake, yields of milk and milk components and milk fatty acids (FA), in combination with increasing concentrations of dietary corn oil to provide increasing rumen unsaturated fatty acid load (RUFAL) challenges. Twenty-six Holstein cows (177 ± 57 d in milk; mean ± standard deviation) were assigned to treatment in a randomized complete block design. Treatments were a control diet (CON; n=13 cows) or the same diet supplemented with a synthetic antioxidant (AOX; 6.1g/d; dry blend of ethoxyquin and propyl gallate, Novus International Inc., St. Charles, MO; n=13 cows). In period 1 (21 d), no supplemental corn oil was fed; in periods 2, 3, and 4 (14 d each), corn oil was supplemented at 0.7, 1.4, and 2.8% of the diet [dry matter (DM) basis] to incrementally increase RUFAL. For all variables measured, no significant interactions were detected between treatment and period, indicating no differences between the CON and AOX treatments at all levels of oil inclusion. Intake of DM was lower for AOX compared with CON but AOX had no effect on milk yield or milk fat concentration and yield. Milk protein yield and feed efficiency (energy-corrected milk/DM intake) tended to be greater for AOX compared with CON. Increasing dietary corn oil concentration (RUFAL) decreased DM intake, milk yield, milk fat concentration and yield, and feed efficiency. The AOX treatment increased the concentration and yield of 16-carbon milk FA, with no effect on de novo (<16 carbon) or preformed (>16 carbon) milk FA. Milk FA concentration of trans-10 C18:1, trans-10,cis-12 C18:2, and trans-9,cis-11 C18:2 were unaffected by AOX but increased with increasing RUFAL. In conclusion, supplementation with AOX did not overcome the dietary-induced milk fat depression caused by increased RUFAL.

  3. Genetic predisposition to higher blood pressure increases risk of incident hypertension and cardiovascular diseases in Chinese.

    PubMed

    Lu, Xiangfeng; Huang, Jianfeng; Wang, Laiyuan; Chen, Shufeng; Yang, Xueli; Li, Jianxin; Cao, Jie; Chen, Jichun; Li, Ying; Zhao, Liancheng; Li, Hongfan; Liu, Fangcao; Huang, Chen; Shen, Chong; Shen, Jinjin; Yu, Ling; Xu, Lihua; Mu, Jianjun; Wu, Xianping; Ji, Xu; Guo, Dongshuang; Zhou, Zhengyuan; Yang, Zili; Wang, Renping; Yang, Jun; Yan, Weili; Gu, Dongfeng

    2015-10-01

    Although multiple genetic markers associated with blood pressure have been identified by genome-wide association studies, their aggregate effect on risk of incident hypertension and cardiovascular disease is uncertain, particularly among East Asian who may have different genetic and environmental exposures from Europeans. We aimed to examine the association between genetic predisposition to higher blood pressure and risk of incident hypertension and cardiovascular disease in 26 262 individuals in 2 Chinese population-based prospective cohorts. A genetic risk score was calculated based on 22 established variants for blood pressure in East Asian. We found the genetic risk score was significantly and independently associated with linear increases in blood pressure and risk of incident hypertension and cardiovascular disease (P range from 4.57×10(-3) to 3.10×10(-6)). In analyses adjusted for traditional risk factors including blood pressure, individuals carrying most blood pressure-related risk alleles (top quintile of genetic score distribution) had 40% (95% confidence interval, 18-66) and 26% (6-45) increased risk for incident hypertension and cardiovascular disease, respectively, when compared with individuals in the bottom quintile. The genetic risk score also significantly improved discrimination for incident hypertension and cardiovascular disease and led to modest improvements in risk reclassification for cardiovascular disease (all the P<0.05). Our data indicate that genetic predisposition to higher blood pressure is an independent risk factor for blood pressure increase and incident hypertension and cardiovascular disease and provides modest incremental information to cardiovascular disease risk prediction. The potential clinical use of this panel of blood pressure-associated polymorphisms remains to be determined.

  4. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    PubMed Central

    Ceretta, Luciane B.; Réus, Gislaine Z.; Abelaira, Helena M.; Ribeiro, Karine F.; Zappellini, Giovanni; Felisbino, Francine F.; Steckert, Amanda V.; Dal-Pizzol, Felipe; Quevedo, João

    2012-01-01

    Diabetes Mellitus (DM) is associated with pathological changes in the central nervous system (SNC) as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg), and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS) production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals' recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes. PMID:22645603

  5. Antioxidant capacity, total phenolic and ascorbate content as a function of the genetic diversity of leek (Allium ampeloprasum var. porrum).

    PubMed

    Bernaert, Nathalie; De Paepe, Domien; Bouten, Charlotte; De Clercq, Hervé; Stewart, Derek; Van Bockstaele, Erik; De Loose, Marc; Van Droogenbroeck, Bart

    2012-09-15

    Extracts of the white shaft and green leaves of 30 leek cultivars were investigated for their antioxidant properties, total phenolic (TP) and l-ascorbic acid (AA) content. The measured antioxidant properties included free radical scavenging activities against peroxyl (ORAC) and 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH) and their Fe(3+) reducing capacity (FRAP). The results from this study suggest that the green leek leaves generally have significantly stronger antioxidant properties than the white shaft. Correlation analysis between the TP and the AA content and the antioxidant activity showed that phenolics and ascorbic acid contribute significantly to the antioxidant activity of leek. The three antioxidant activity assays were all correlated for the extracts of the white shaft of the 30 leek cultivars. Principal component analysis (PCA) elucidated the influence of part and type of cultivar on the antioxidant capacity, TP, and l-ascorbic acid content, whilst the breeding strategy and seed company had no influence.

  6. Antioxidant capacity, total phenolic and ascorbate content as a function of the genetic diversity of leek (Allium ampeloprasum var. porrum).

    PubMed

    Bernaert, Nathalie; De Paepe, Domien; Bouten, Charlotte; De Clercq, Hervé; Stewart, Derek; Van Bockstaele, Erik; De Loose, Marc; Van Droogenbroeck, Bart

    2012-09-15

    Extracts of the white shaft and green leaves of 30 leek cultivars were investigated for their antioxidant properties, total phenolic (TP) and l-ascorbic acid (AA) content. The measured antioxidant properties included free radical scavenging activities against peroxyl (ORAC) and 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH) and their Fe(3+) reducing capacity (FRAP). The results from this study suggest that the green leek leaves generally have significantly stronger antioxidant properties than the white shaft. Correlation analysis between the TP and the AA content and the antioxidant activity showed that phenolics and ascorbic acid contribute significantly to the antioxidant activity of leek. The three antioxidant activity assays were all correlated for the extracts of the white shaft of the 30 leek cultivars. Principal component analysis (PCA) elucidated the influence of part and type of cultivar on the antioxidant capacity, TP, and l-ascorbic acid content, whilst the breeding strategy and seed company had no influence. PMID:23107677

  7. Reduced Genetic Diversity and Increased Dispersal in Guigna (Leopardus guigna) in Chilean Fragmented Landscapes.

    PubMed

    Napolitano, Constanza; Díaz, Diego; Sanderson, Jim; Johnson, Warren E; Ritland, Kermit; Ritland, Carol E; Poulin, Elie

    2015-01-01

    Landscape fragmentation is often a major cause of species extinction as it can affect a wide variety of ecological processes. The impact of fragmentation varies among species depending on many factors, including their life-history traits and dispersal abilities. Felids are one of the groups most threatened by fragmented landscapes because of their large home ranges, territorial behavior, and low population densities. Here, we model the impacts of habitat fragmentation on patterns of genetic diversity in the guigna (Leopardus guigna), a small felid that is closely associated with the heavily human-impacted temperate rainforests of southern South America. We assessed genetic variation in 1798 base pairs of mitochondrial DNA sequences, 15 microsatellite loci, and 2 sex chromosome genes and estimated genetic diversity, kinship, inbreeding, and dispersal in 38 individuals from landscapes with differing degrees of fragmentation on Chiloé Island in southern Chile. Increased fragmentation was associated with reduced genetic diversity, but not with increased kinship or inbreeding. However, in fragmented landscapes, there was a weaker negative correlation between pairwise kinship and geographic distance, suggesting increased dispersal distances. These results highlight the importance of biological corridors to maximize connectivity in fragmented landscapes and contribute to our understanding of the broader genetic consequences of habitat fragmentation, especially for forest-specialist carnivores. PMID:26245787

  8. Loss of genetic diversity and increased subdivision in an endemic Alpine Stonefly threatened by climate change

    USGS Publications Warehouse

    Jordan, Steve; Giersch, Jonathan J.; Muhlfeld, Clint C.; Hotalling, Scott; Fanning, Liz; Luikart, Gordon

    2016-01-01

    Much remains unknown about the genetic status and population connectivity of high-elevation and high-latitude freshwater invertebrates, which often persist near snow and ice masses that are disappearing due to climate change. Here we report on the conservation genetics of the meltwater stonefly Lednia tumana (Ricker) of Montana, USA, a cold-water obligate species. We sequenced 1530 bp of mtDNA from 116 L. tumana individuals representing “historic” (>10 yr old) and 2010 populations. The dominant haplotype was common in both time periods, while the second-most-common haplotype was found only in historic samples, having been lost in the interim. The 2010 populations also showed reduced gene and nucleotide diversity and increased genetic isolation. We found lower genetic diversity in L. tumana compared to two other North American stonefly species, Amphinemura linda (Ricker) and Pteronarcys californica Newport. Our results imply small effective sizes, increased fragmentation, limited gene flow, and loss of genetic variation among contemporary L. tumana populations, which can lead to reduced adaptive capacity and increased extinction risk. This study reinforces concerns that ongoing glacier loss threatens the persistence of L. tumana, and provides baseline data and analysis of how future environmental change could impact populations of similar organisms.

  9. Reduced Genetic Diversity and Increased Dispersal in Guigna (Leopardus guigna) in Chilean Fragmented Landscapes.

    PubMed

    Napolitano, Constanza; Díaz, Diego; Sanderson, Jim; Johnson, Warren E; Ritland, Kermit; Ritland, Carol E; Poulin, Elie

    2015-01-01

    Landscape fragmentation is often a major cause of species extinction as it can affect a wide variety of ecological processes. The impact of fragmentation varies among species depending on many factors, including their life-history traits and dispersal abilities. Felids are one of the groups most threatened by fragmented landscapes because of their large home ranges, territorial behavior, and low population densities. Here, we model the impacts of habitat fragmentation on patterns of genetic diversity in the guigna (Leopardus guigna), a small felid that is closely associated with the heavily human-impacted temperate rainforests of southern South America. We assessed genetic variation in 1798 base pairs of mitochondrial DNA sequences, 15 microsatellite loci, and 2 sex chromosome genes and estimated genetic diversity, kinship, inbreeding, and dispersal in 38 individuals from landscapes with differing degrees of fragmentation on Chiloé Island in southern Chile. Increased fragmentation was associated with reduced genetic diversity, but not with increased kinship or inbreeding. However, in fragmented landscapes, there was a weaker negative correlation between pairwise kinship and geographic distance, suggesting increased dispersal distances. These results highlight the importance of biological corridors to maximize connectivity in fragmented landscapes and contribute to our understanding of the broader genetic consequences of habitat fragmentation, especially for forest-specialist carnivores.

  10. Loss of Genetic Diversity and Increased Subdivision in an Endemic Alpine Stonefly Threatened by Climate Change

    PubMed Central

    Jordan, Steve; Giersch, J. Joseph; Muhlfeld, Clint C.; Hotaling, Scott; Fanning, Liz; Tappenbeck, Tyler H.; Luikart, Gordon

    2016-01-01

    Much remains unknown about the genetic status and population connectivity of high-elevation and high-latitude freshwater invertebrates, which often persist near snow and ice masses that are disappearing due to climate change. Here we report on the conservation genetics of the meltwater stonefly Lednia tumana (Ricker) of Montana, USA, a cold-water obligate species. We sequenced 1530 bp of mtDNA from 116 L. tumana individuals representing “historic” (>10 yr old) and 2010 populations. The dominant haplotype was common in both time periods, while the second-most-common haplotype was found only in historic samples, having been lost in the interim. The 2010 populations also showed reduced gene and nucleotide diversity and increased genetic isolation. We found lower genetic diversity in L. tumana compared to two other North American stonefly species, Amphinemura linda (Ricker) and Pteronarcys californica Newport. Our results imply small effective sizes, increased fragmentation, limited gene flow, and loss of genetic variation among contemporary L. tumana populations, which can lead to reduced adaptive capacity and increased extinction risk. This study reinforces concerns that ongoing glacier loss threatens the persistence of L. tumana, and provides baseline data and analysis of how future environmental change could impact populations of similar organisms. PMID:27348125

  11. Loss of Genetic Diversity and Increased Subdivision in an Endemic Alpine Stonefly Threatened by Climate Change.

    PubMed

    Jordan, Steve; Giersch, J Joseph; Muhlfeld, Clint C; Hotaling, Scott; Fanning, Liz; Tappenbeck, Tyler H; Luikart, Gordon

    2016-01-01

    Much remains unknown about the genetic status and population connectivity of high-elevation and high-latitude freshwater invertebrates, which often persist near snow and ice masses that are disappearing due to climate change. Here we report on the conservation genetics of the meltwater stonefly Lednia tumana (Ricker) of Montana, USA, a cold-water obligate species. We sequenced 1530 bp of mtDNA from 116 L. tumana individuals representing "historic" (>10 yr old) and 2010 populations. The dominant haplotype was common in both time periods, while the second-most-common haplotype was found only in historic samples, having been lost in the interim. The 2010 populations also showed reduced gene and nucleotide diversity and increased genetic isolation. We found lower genetic diversity in L. tumana compared to two other North American stonefly species, Amphinemura linda (Ricker) and Pteronarcys californica Newport. Our results imply small effective sizes, increased fragmentation, limited gene flow, and loss of genetic variation among contemporary L. tumana populations, which can lead to reduced adaptive capacity and increased extinction risk. This study reinforces concerns that ongoing glacier loss threatens the persistence of L. tumana, and provides baseline data and analysis of how future environmental change could impact populations of similar organisms. PMID:27348125

  12. The role of genetic (PON1 polymorphism) and environmental factors, especially physical activity, in antioxidant function of paraoxonase.

    PubMed

    Otocka-Kmiecik, Aneta; Orłowska-Majdak, Monika

    2009-12-30

    Paraoxonase 1 (PON1) is a member of a three-gene family (PON1, PON2, and PON3). PON1 activity dominates in human plasma. It is secreted from hepatic cells and is found in the circulation bound to high-density lipoproteins (HDLs). For many years it has been known only for its ability to hydrolyze organophosphate derivatives. More recently, PON1's antioxidant activity draws attention as the enzyme was described to prevent oxidation of lipoproteins by reactive oxygen species formed during oxidative stress. PON1 was also shown to hydrolyze atherogenic products of oxidative lipid modification such as phospholipid peroxides and cholesterol ester hydroperoxides. Some studies indicate that the enzyme presents a lipolactonase activity and hydrolyzes homocysteine thiolactone (HCTL). There is growing evidence as to PON1's protective role in atherosclerosis. Genetic (PON1 polymorphism) and environmental factors and lifestyle may influence PON1 blood concentration and biological activity. Among the many recognized factors accounting for lifestyle, physical activity plays an important role. Various, often opposite, effects on PON1 status are observed in regular training and single physical activities. The results of different studies are often contradictory. It may depend on the time, intensity, and frequency of physical activity. Additionally, it seems that the effects of physical activity on PON1 blood concentration and activity are modified by environmental and lifestyle factors as well as PON1 polymorphism.

  13. trans-Resveratrol, a natural antioxidant from grapes, increases sperm output in healthy rats.

    PubMed

    Juan, M Emília; González-Pons, Eulalia; Munuera, Thais; Ballester, Joan; Rodríguez-Gil, Joan E; Planas, Joana M

    2005-04-01

    trans-Resveratrol was reported to have health benefits including anticarcinogenic effects and protection against cardiovascular disease. One of the mechanisms by which it exerts its action is through modulating the estrogen response systems. Because estrogen is involved in male reproductive biology, we investigated the effect of trans-resveratrol on testis and spermatogenesis. Adult male rats were divided into 2 groups. The treated group was administered by gavage 20 mg/(kg . d) of trans-resveratrol suspended in 10 g/L of carboxymethylcellulose for 90 d, whereas the control group received only carboxymethylcellulose during the same period. The relative weight of testes did not differ between the groups. However, the diameter of the seminiferous tubules was significantly reduced from 437.5 +/- 0.1 mum in the controls to 310.9 +/- 0.1 mum in the resveratrol-treated rats. This decrease was accompanied by a significant increase in tubular density, from 3.20 +/- 0.18 in controls to 6.58 +/- 0.18 tubules/mm(2) in the treated group. Moreover, sperm counts were significantly greater in the resveratrol-treated rats (24.8 +/- 3.30 x 10(7)) than in the control group (14.1 +/- 0.80 x 10(7)), but sperm quality did not differ. Serum concentrations of gonadotrophins and testosterone were significantly higher in the resveratrol-treated group. We identified a novel activity of trans-resveratrol. The daily oral administration of this phytochemical to adult male rats enhanced sperm production by stimulating the hypothalamic-pituitary-gonadal axis, without inducing adverse effects.

  14. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans. PMID:27440535

  15. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans.

  16. Reduced lifespan and increased ageing driven by genetic drift in small populations.

    PubMed

    Lohr, Jennifer N; David, Patrice; Haag, Christoph R

    2014-09-01

    Explaining the strong variation in lifespan among organisms remains a major challenge in evolutionary biology. Whereas previous work has concentrated mainly on differences in selection regimes and selection pressures, we hypothesize that differences in genetic drift may explain some of this variation. We develop a model to formalize this idea and show that the strong positive relationship between lifespan and genetic diversity predicted by this model indeed exists among populations of Daphnia magna, and that ageing is accelerated in small populations. Additional results suggest that this is due to increased drift in small populations rather than adaptation to environments favoring faster life histories. First, the correlation between genetic diversity and lifespan remains significant after statistical correction for potential environmental covariates. Second, no trade-offs are observed; rather, all investigated traits show clear signs of increased genetic load in the small populations. Third, hybrid vigor with respect to lifespan is observed in crosses between small but not between large populations. Together, these results suggest that the evolution of lifespan and ageing can be strongly affected by genetic drift, especially in small populations, and that variation in lifespan and ageing may often be nonadaptive, due to a strong contribution from mutation accumulation.

  17. DNA evidence for strong genetic stability and increasing heritability of intelligence from age 7 to 12.

    PubMed

    Trzaskowski, M; Yang, J; Visscher, P M; Plomin, R

    2014-03-01

    Two genetic findings from twin research have far-reaching implications for understanding individual differences in the development of brain function as indexed by general cognitive ability (g, aka intelligence): (1) The same genes affect g throughout development, even though (2) heritability increases. It is now possible to test these hypotheses using DNA alone. From 1.7 million DNA markers and g scores at ages 7 and 12 on 2875 children, the DNA genetic correlation from age 7 to 12 was 0.73, highly similar to the genetic correlation of 0.75 estimated from 6702 pairs of twins from the same sample. DNA-estimated heritabilities increased from 0.26 at age 7 to 0.45 at age 12; twin-estimated heritabilities also increased from 0.35 to 0.48. These DNA results confirm the results of twin studies indicating strong genetic stability but increasing heritability for g, despite mean changes in brain structure and function from childhood to adolescence.

  18. Parenting Moderates a Genetic Vulnerability Factor in Longitudinal Increases in Youths' Substance Use

    ERIC Educational Resources Information Center

    Brody, Gene H.; Beach, Steven R. H.; Philibert, Robert A.; Chen, Yi-fu; Lei, Man-Kit; Murry, Velma McBride; Brown, Anita C.

    2009-01-01

    The authors used a longitudinal, prospective design to investigate a moderation effect in the association between a genetic vulnerability factor, a variable nucleotide repeat polymorphism in the promoter region of "5HTT" (5-HTTLPR), and increases in youths' substance use. The primary study hypothesis predicted that involved-supportive parenting…

  19. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia

    PubMed Central

    Mistry, Hiten D.; Gill, Carolyn A.; Kurlak, Lesia O.; Seed, Paul T.; Hesketh, John E.; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C.; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2–7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag–single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both P<0.001) compared to controls (median (IQR), copper, 1957.4 (1787, 2177.5) vs 1850.0 (1663.5, 2051.5) µg/L; ceruloplasmin, 2.5 (1.4, 3.2) vs 2.2 (1.2, 3.0) µg/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for SNPs and antioxidant enzyme activity. This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks׳ gestation that subsequently

  20. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia.

    PubMed

    Mistry, Hiten D; Gill, Carolyn A; Kurlak, Lesia O; Seed, Paul T; Hesketh, John E; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2-7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag-single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both P<0.001) compared to controls (median (IQR), copper, 1957.4 (1787, 2177.5) vs 1850.0 (1663.5, 2051.5) µg/L; ceruloplasmin, 2.5 (1.4, 3.2) vs 2.2 (1.2, 3.0) µg/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for SNPs and antioxidant enzyme activity. This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks׳ gestation that subsequently

  1. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis.

    PubMed

    Gu, Junfei; Yin, Xinyou; Stomph, Tjeerd-Jan; Struik, Paul C

    2014-01-01

    Rice productivity can be limited by available photosynthetic assimilates from leaves. However, the lack of significant correlation between crop yield and leaf photosynthetic rate (A) is noted frequently. Engineering for improved leaf photosynthesis has been argued to yield little increase in crop productivity because of complicated constraints and feedback mechanisms when moving up from leaf to crop level. Here we examined the extent to which natural genetic variation in A can contribute to increasing rice productivity. Using the mechanistic model GECROS, we analysed the impact of genetic variation in A on crop biomass production, based on the quantitative trait loci for various photosynthetic components within a rice introgression line population. We showed that genetic variation in A of 25% can be scaled up equally to crop level, resulting in an increase in biomass of 22-29% across different locations and years. This was probably because the genetic variation in A resulted not only from Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase)-limited photosynthesis but also from electron transport-limited photosynthesis; as a result, photosynthetic rates could be improved for both light-saturated and light-limited leaves in the canopy. Rice productivity could be significantly improved by mining the natural variation in existing germ-plasm, especially the variation in parameters determining light-limited photosynthesis.

  2. Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi.

    PubMed

    Schoberle, Taylor J; Nguyen-Coleman, C Kim; May, Gregory S

    2013-01-01

    Fungal species are continuously being studied to not only understand disease in humans and plants but also to identify novel antibiotics and other metabolites of industrial importance. Genetic manipulations, such as gene deletion, gene complementation, and gene over-expression, are common techniques to investigate fungal gene functions. Although advances in transformation efficiency and promoter usage have improved genetic studies, some basic steps in vector construction are still laborious and time-consuming. Gateway cloning technology solves this problem by increasing the efficiency of vector construction through the use of λ phage integrase proteins and att recombination sites. We developed a series of Gateway-compatible vectors for use in genetic studies in a range of fungal species. They contain nutritional and drug-resistance markers and can be utilized to manipulate different filamentous fungal genomes.

  3. Controlling for sugar and ascorbic acid, a mixture of flavonoids matching navel oranges significantly increases human postprandial serum antioxidant capacity.

    PubMed

    Snyder, Shannon M; Reber, Josh D; Freeman, Brenner L; Orgad, Kfir; Eggett, Dennis L; Parker, Tory L

    2011-07-01

    Fruit and vegetable consumption reduces the risk for cardiovascular disease development. The postprandial state is an important contributor to chronic disease development. Orange flavonoids may reduce postprandial oxidation. It was hypothesized that a mixture of orange flavonoids would reduce postprandial oxidation better than a single orange flavonoid or orange sugar and ascorbic acid, but not as well as orange juice, when consumed with a typical breakfast. A placebo-controlled crossover trial (16 male and female participants, 4 treatments, 4 visits) was carried out. Treatments were placebo (ascorbic acid and sugar equivalent to orange juice); placebo plus hesperidin; placebo plus hesperidin, luteolin, and naringenin (mixture; found to have synergistic antioxidant properties in vitro in previous work); and orange juice (positive control). Serum oxygen radical absorbance capacity (ORAC), total plasma phenolics (TP), and serum lipoprotein oxidation (LO) were measured after a 12-hour baseline fast and at 1, 2, and 3 hours after sample consumption. The placebo plus mixture and orange juice groups were significantly increased in ORAC and LO lag time. Data for TP were inconsistent with ORAC and LO. Contrary to previous studies attributing the protective postprandial effect to fructose and ascorbate in other fruit trials, orange phenolic compounds contribute directly to the postprandial oxidative protection of serum, despite an inconsistent change in serum TP.

  4. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    PubMed Central

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders. PMID:27340504

  5. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line.

    PubMed

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders. PMID:27340504

  6. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

    PubMed

    Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania

    2016-11-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress. PMID:27400061

  7. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

    PubMed

    Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania

    2016-11-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress.

  8. Anticipating issues related to increasing preimplantation genetic diagnosis use: a research agenda.

    PubMed

    Klitzman, Robert; Appelbaum, Paul S; Chung, Wendy; Sauer, Mark

    2008-01-01

    Increasing use of preimplantation genetic diagnosis (PGD) poses numerous clinical, social, psychological, ethical, legal and policy dilemmas, many of which have received little attention. Patients and providers are now considering and using PGD for a widening array of genetic disorders, and patients may increasingly seek 'designer babies.' In the USA, although governmental oversight policies have been discussed, few specific guidelines exist. Hence, increasingly, patients and providers will face challenging ethical and policy questions of when and for whom to use PGD, and how it should be financed. These issues should be better clarified and addressed through collection of data concerning the current use of PGD in the USA, including factors involved in decision making about PGD use, as well as the education of the various communities that are, and should be, involved in its implementation. Improved understanding of these issues will ultimately enhance the development and implementation of future clinical guidelines and policies.

  9. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate.

    PubMed

    Van Voorhies, W A; Ward, S

    1999-09-28

    Mutations that increase the longevity of the soil nematode Caenorhabditis elegans could define genes involved in a process specific for aging. Alternatively, these mutations could reduce animal metabolic rate and increase longevity as a consequence. In ectotherms, longevity is often negatively correlated with metabolic rate. Consistent with these observations, environmental conditions that reduce the metabolic rate of C. elegans also extend longevity. We found that the metabolic rate of long-lived C. elegans mutants is reduced compared with that of wild-type worms and that a genetic suppressor that restored normal longevity to long-lived mutants restored normal metabolic rate. Thus, the increased longevity of some long-lived C. elegans mutants may be a consequence of a reduction in their metabolic rate, rather than an alteration of a genetic pathway that leads to enhanced longevity while maintaining normal physiology. The actual mechanism responsible for the inverse correlation between metabolic rate and longevity remains unknown.

  10. Anticipating issues related to increasing preimplantation genetic diagnosis use: a research agenda.

    PubMed

    Klitzman, Robert; Appelbaum, Paul S; Chung, Wendy; Sauer, Mark

    2008-01-01

    Increasing use of preimplantation genetic diagnosis (PGD) poses numerous clinical, social, psychological, ethical, legal and policy dilemmas, many of which have received little attention. Patients and providers are now considering and using PGD for a widening array of genetic disorders, and patients may increasingly seek 'designer babies.' In the USA, although governmental oversight policies have been discussed, few specific guidelines exist. Hence, increasingly, patients and providers will face challenging ethical and policy questions of when and for whom to use PGD, and how it should be financed. These issues should be better clarified and addressed through collection of data concerning the current use of PGD in the USA, including factors involved in decision making about PGD use, as well as the education of the various communities that are, and should be, involved in its implementation. Improved understanding of these issues will ultimately enhance the development and implementation of future clinical guidelines and policies. PMID:18644221

  11. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium

    PubMed Central

    Osanai, Takashi; Shirai, Tomokazu; Iijima, Hiroko; Nakaya, Yuka; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Y.

    2015-01-01

    Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique. PMID:26500619

  12. Alterations in Plasmodium falciparum Genetic Structure Two Years after Increased Malaria Control Efforts in Western Kenya

    PubMed Central

    Vardo-Zalik, Anne M.; Zhou, Guofa; Zhong, Daibin; Afrane, Yaw A.; Githeko, Andrew K.; Yan, Guiyun

    2013-01-01

    The impact of malaria intervention measures (insecticide-treated net use and artemisinin combination therapy) on malaria genetics was investigated at two sites in western Kenya: an endemic lowland and an epidemic highland. The genetic structure of the parasite population was assessed by using microsatellites, and the prevalence of drug-resistant mutations was examined by using the polymerase chain reaction–restriction fragment length polymorphism method. Two years after intervention, genetic diversity remained high in both populations. A significant decrease in the prevalence of quintuple mutations conferring resistance to sulfadoxine-pyrimethamine was detected in both populations, but the mutation prevalence at codon 1246 of the Plasmodium falciparum multidrug resistance 1 gene had increased in the highland population. The decrease in sulfadoxine-pyrimethamine–resistant mutants is encouraging, but the increase in P. falciparum multidrug resistance 1 gene mutations is worrisome because these mutations are linked to resistance to other antimalarial drugs. In addition, the high level of genetic diversity observed after intervention suggests transmission is still high in each population. PMID:23166196

  13. Rapid increase in southern elephant seal genetic diversity after a founder event.

    PubMed

    de Bruyn, Mark; Pinsky, Malin L; Hall, Brenda; Koch, Paul; Baroni, Carlo; Hoelzel, A Rus

    2014-03-22

    Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population.

  14. Rapid increase in southern elephant seal genetic diversity after a founder event.

    PubMed

    de Bruyn, Mark; Pinsky, Malin L; Hall, Brenda; Koch, Paul; Baroni, Carlo; Hoelzel, A Rus

    2014-03-22

    Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population. PMID:24478305

  15. Liposome-containing Hibiscus sabdariffa calyx extract formulations with increased antioxidant activity, improved dermal penetration and reduced dermal toxicity.

    PubMed

    Pinsuwan, Sirirat; Amnuaikit, Thanaporn; Ungphaiboon, Suwipa; Itharat, Arunporn

    2010-12-01

    Hibiscus sabdariffa Linn, or Roselle, is a medicinal plant used extensively in traditional Thai medicine since ancient times. The extracts of Roselle calyces possess antioxidant activity and have potential for development as active ingredients in cosmetic products. However the limitations of using Roselle extracts in cosmetics are its low skin permeation and dermal irritation. Liposome technology is an obvious approach that might overcome these problems. Liposome formulations of standardized Roselle extracts were developed with various lipid components. The formulation showing the highest entrapment efficiency was selected for stability, skin permeation and dermal irritability studies. The liposome formulation with the highest entrapment efficiency (83%) and smalôlest particle size (332 mm) was formulated with phosphatidylcholine from soybean (SPC): Tween 80: deoxycholic acid (DA); 84:16:2.5 weight ratio, total lipid of 200 g/mL and 10% w/v Roselle extract in final liposomal preparation. This liposome formulation was found to be stable after storage at 4 degrees C, protected from light, for 2 months. The in vitro skin permeation studies, using freshly excised pig skin and modified Franz-diffusion cells, showed that the liposome formulation was able to considerably increased the rate of permeation of active compounds in Roselle extracts compared to the Roselle extract solution. The in vivo dermal irritability testing on rabbit skin showed that the liposome formulation dramatically decreased skin irritability compared to the unformulated extract. These results showed that the liposomes containing Roselle extracts had good stability, high entrapment efficacy, increased skin permeation and low skin irritation. PMID:21294418

  16. Variations in Antioxidant Genes and Male Infertility.

    PubMed

    Yu, Bolan; Huang, Zhaofeng

    2015-01-01

    Oxidative stress and reactive oxygen species (ROS) are generated from both endogenous and environmental resources, which in turn may cause defective spermatogenesis and male infertility. Antioxidant genes, which include catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST), nitric oxide synthase (NOS), nuclear factor erythroid 2-related factor 2 (NRF2), and superoxide dismutase (SOD), play important roles in spermatogenesis and normal sperm function. In this review, we discuss the association between variations in major antioxidant genes and male infertility. Numerous studies have suggested that genetic disruption or functional polymorphisms in these antioxidant genes are associated with a higher risk for male infertility, which include low sperm quality, oligoasthenoteratozoospermia, oligozoospermia, and subfertility. The synergistic effects of environmental ROS and functional polymorphisms on antioxidant genes that result in male infertility have also been reported. Therefore, variants in antioxidant genes, which independently or synergistically occur with environmental ROS, affect spermatogenesis and contribute to the occurrence of male infertility. Large cohort and multiple center-based population studies to identify new antioxidant genetic variants that increase susceptibility to male infertility as well as validate its potential as genetic markers for diagnosis and risk assessment for male infertility for precise clinical approaches are warranted.

  17. Variations in Antioxidant Genes and Male Infertility.

    PubMed

    Yu, Bolan; Huang, Zhaofeng

    2015-01-01

    Oxidative stress and reactive oxygen species (ROS) are generated from both endogenous and environmental resources, which in turn may cause defective spermatogenesis and male infertility. Antioxidant genes, which include catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST), nitric oxide synthase (NOS), nuclear factor erythroid 2-related factor 2 (NRF2), and superoxide dismutase (SOD), play important roles in spermatogenesis and normal sperm function. In this review, we discuss the association between variations in major antioxidant genes and male infertility. Numerous studies have suggested that genetic disruption or functional polymorphisms in these antioxidant genes are associated with a higher risk for male infertility, which include low sperm quality, oligoasthenoteratozoospermia, oligozoospermia, and subfertility. The synergistic effects of environmental ROS and functional polymorphisms on antioxidant genes that result in male infertility have also been reported. Therefore, variants in antioxidant genes, which independently or synergistically occur with environmental ROS, affect spermatogenesis and contribute to the occurrence of male infertility. Large cohort and multiple center-based population studies to identify new antioxidant genetic variants that increase susceptibility to male infertility as well as validate its potential as genetic markers for diagnosis and risk assessment for male infertility for precise clinical approaches are warranted. PMID:26618172

  18. Variations in Antioxidant Genes and Male Infertility

    PubMed Central

    Yu, Bolan; Huang, Zhaofeng

    2015-01-01

    Oxidative stress and reactive oxygen species (ROS) are generated from both endogenous and environmental resources, which in turn may cause defective spermatogenesis and male infertility. Antioxidant genes, which include catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST), nitric oxide synthase (NOS), nuclear factor erythroid 2-related factor 2 (NRF2), and superoxide dismutase (SOD), play important roles in spermatogenesis and normal sperm function. In this review, we discuss the association between variations in major antioxidant genes and male infertility. Numerous studies have suggested that genetic disruption or functional polymorphisms in these antioxidant genes are associated with a higher risk for male infertility, which include low sperm quality, oligoasthenoteratozoospermia, oligozoospermia, and subfertility. The synergistic effects of environmental ROS and functional polymorphisms on antioxidant genes that result in male infertility have also been reported. Therefore, variants in antioxidant genes, which independently or synergistically occur with environmental ROS, affect spermatogenesis and contribute to the occurrence of male infertility. Large cohort and multiple center-based population studies to identify new antioxidant genetic variants that increase susceptibility to male infertility as well as validate its potential as genetic markers for diagnosis and risk assessment for male infertility for precise clinical approaches are warranted. PMID:26618172

  19. Juniperus communis Linn oil decreases oxidative stress and increases antioxidant enzymes in the heart of rats administered a diet rich in cholesterol.

    PubMed

    Gumral, Nurhan; Kumbul, Duygu Doguc; Aylak, Firdevs; Saygin, Mustafa; Savik, Emin

    2015-01-01

    It has been asserted that consumption of dietary cholesterol (Chol) raises atherosclerotic cardiovascular diseases and that Chol causes an increase in free radical production. Hypercholesterolemic diet has also been reported to cause changes in the antioxidant system. In our study, different doses of Juniperus communis Linn (JCL) oil, a tree species growing in Mediterranean and Isparta regions and having aromatic characteristics, were administered to rats; and the levels of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and thiobarbituric acid reactive substances assay (TBARS) were examined in the heart tissue of rats. In this study, 35 Wistar Albino male adult rats weighing approximately 250-300 g were used. The rats were divided into five groups of seven each. The control group was administered normal pellet chow, and the Chol group was administered pellet chow including 2% Chol, while 50 JCL, 100 JCL, and 200 JCL groups were administered 50, 100, and 200 mg/kg JCL oil dissolved in 0.5% sodium carboxy methyl cellulose, respectively, in addition to the pellet chow containing 2% Chol, by gavage. After 30 days, the experiment was terminated and the antioxidant enzyme activities were examined in the heart tissue of rats. While consumption of dietary Chol decreases the activities of SOD, GSH-Px, and CAT in heart tissue of rats (not significant), administeration of 200 mg/kg JCL oil in addition to Chol led to a significant increase in the activity of antioxidant enzymes. Administering Chol led to a significant increase in TBARS level. Administering 100 and 200 mg/kg JCL oil together with Chol prevented significantly the increase in lipid peroxides. As a result of the study, JCL oil showed oxidant-antioxidant effect in the heart tissue of rats.

  20. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    NASA Astrophysics Data System (ADS)

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-04-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a ``tetraploid-dihaploid-tetraploid'' series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  1. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid.

    PubMed

    Zappacosta, Diego C; Ochogavía, Ana C; Rodrigo, Juan M; Romero, José R; Meier, Mauro S; Garbus, Ingrid; Pessino, Silvina C; Echenique, Viviana C

    2014-04-08

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a "tetraploid-dihaploid-tetraploid" series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.

  2. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid

    PubMed Central

    Zappacosta, Diego C.; Ochogavía, Ana C.; Rodrigo, Juan M.; Romero, José R.; Meier, Mauro S.; Garbus, Ingrid; Pessino, Silvina C.; Echenique, Viviana C.

    2014-01-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a “tetraploid-dihaploid-tetraploid” series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003–2007) to reach levels of 85–90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements. PMID:24710346

  3. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid.

    PubMed

    Zappacosta, Diego C; Ochogavía, Ana C; Rodrigo, Juan M; Romero, José R; Meier, Mauro S; Garbus, Ingrid; Pessino, Silvina C; Echenique, Viviana C

    2014-01-01

    Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a "tetraploid-dihaploid-tetraploid" series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003-2007) to reach levels of 85-90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements. PMID:24710346

  4. Genetic Variants Associated with Increased Risk of Malignant Pleural Mesothelioma: A Genome-Wide Association Study

    PubMed Central

    Matullo, Giuseppe; Guarrera, Simonetta; Betti, Marta; Fiorito, Giovanni; Ferrante, Daniela; Voglino, Floriana; Cadby, Gemma; Di Gaetano, Cornelia; Rosa, Fabio; Russo, Alessia; Hirvonen, Ari; Casalone, Elisabetta; Tunesi, Sara; Padoan, Marina; Giordano, Mara; Aspesi, Anna; Casadio, Caterina; Ardissone, Francesco; Ruffini, Enrico; Betta, Pier Giacomo; Libener, Roberta; Guaschino, Roberto; Piccolini, Ezio; Neri, Monica; Musk, Arthur W. B.; de Klerk, Nicholas H.; Hui, Jennie; Beilby, John; James, Alan L.; Creaney, Jenette; Robinson, Bruce W.; Mukherjee, Sutapa; Palmer, Lyle J.; Mirabelli, Dario; Ugolini, Donatella; Bonassi, Stefano; Magnani, Corrado; Dianzani, Irma

    2013-01-01

    Asbestos exposure is the main risk factor for malignant pleural mesothelioma (MPM), a rare aggressive tumor. Nevertheless, only 5–17% of those exposed to asbestos develop MPM, suggesting the involvement of other environmental and genetic risk factors. To identify the genetic risk factors that may contribute to the development of MPM, we conducted a genome-wide association study (GWAS; 370,000 genotyped SNPs, 5 million imputed SNPs) in Italy, among 407 MPM cases and 389 controls with a complete history of asbestos exposure. A replication study was also undertaken and included 428 MPM cases and 1269 controls from Australia. Although no single marker reached the genome-wide significance threshold, several associations were supported by haplotype-, chromosomal region-, gene- and gene-ontology process-based analyses. Most of these SNPs were located in regions reported to harbor aberrant alterations in mesothelioma (SLC7A14, THRB, CEBP350, ADAMTS2, ETV1, PVT1 and MMP14 genes), causing at most a 2–3-fold increase in MPM risk. The Australian replication study showed significant associations in five of these chromosomal regions (3q26.2, 4q32.1, 7p22.2, 14q11.2, 15q14). Multivariate analysis suggested an independent contribution of 10 genetic variants, with an Area Under the ROC Curve (AUC) of 0.76 when only exposure and covariates were included in the model, and of 0.86 when the genetic component was also included, with a substantial increase of asbestos exposure risk estimation (odds ratio, OR: 45.28, 95% confidence interval, CI: 21.52–95.28). These results showed that genetic risk factors may play an additional role in the development of MPM, and that these should be taken into account to better estimate individual MPM risk in individuals who have been exposed to asbestos. PMID:23626673

  5. Genomic testing interacts with reproductive surplus in reducing genetic lag and increasing economic net return.

    PubMed

    Hjortø, L; Ettema, J F; Kargo, M; Sørensen, A C

    2015-01-01

    Until now, genomic information has mainly been used to improve the accuracy of genomic breeding values for breeding animals at a population level. However, we hypothesize that the use of information from genotyped females also opens up the possibility of reducing genetic lag in a dairy herd, especially if genomic tests are used in combination with sexed semen or a high management level for reproductive performance, because both factors provide the opportunity for generating a reproductive surplus in the herd. In this study, sexed semen is used in combination with beef semen to produce high-value crossbred beef calves. Thus, on average there is no surplus of and selection among replacement heifers whether to go into the herd or to be sold. In this situation, the selection opportunities arise when deciding which cows to inseminate with sexed semen, conventional semen, or beef semen. We tested the hypothesis by combining the results of 2 stochastic simulation programs, SimHerd and ADAM. SimHerd estimates the economic effect of different strategies for use of sexed semen and beef semen at 3 levels of reproductive performance in a dairy herd. Besides simulating the operational return, SimHerd also simulates the parity distribution of the dams of heifer calves. The ADAM program estimates genetic merit per year in a herd under different strategies for use of sexed semen and genomic tests. The annual net return per slot was calculated as the sum of operational return and value of genetic lag minus costs of genomic tests divided by the total number of slots. Our results showed that the use of genomic tests for decision making decreases genetic lag by as much as 0.14 genetic standard deviation units of the breeding goal and that genetic lag decreases even more (up to 0.30 genetic standard deviation units) when genomic tests are used in combination with strategies for increasing and using a reproductive surplus. Thus, our hypothesis was supported. We also observed that

  6. Subspecies genetic assignments of worldwide captive tigers increase conservation value of captive populations.

    PubMed

    Luo, Shu-Jin; Johnson, Warren E; Martenson, Janice; Antunes, Agostinho; Martelli, Paolo; Uphyrkina, Olga; Traylor-Holzer, Kathy; Smith, James L D; O'Brien, Stephen J

    2008-04-22

    Tigers (Panthera tigris) are disappearing rapidly from the wild, from over 100,000 in the 1900s to as few as 3000. Javan (P.t. sondaica), Bali (P.t. balica), and Caspian (P.t. virgata) subspecies are extinct, whereas the South China tiger (P.t. amoyensis) persists only in zoos. By contrast, captive tigers are flourishing, with 15,000-20,000 individuals worldwide, outnumbering their wild relatives five to seven times. We assessed subspecies genetic ancestry of 105 captive tigers from 14 countries and regions by using Bayesian analysis and diagnostic genetic markers defined by a prior analysis of 134 voucher tigers of significant genetic distinctiveness. We assigned 49 tigers to one of five subspecies (Bengal P.t. tigris, Sumatran P.t. sumatrae, Indochinese P.t. corbetti, Amur P.t. altaica, and Malayan P.t. jacksoni tigers) and determined 52 had admixed subspecies origins. The tested captive tigers retain appreciable genomic diversity unobserved in their wild counterparts, perhaps a consequence of large population size, century-long introduction of new founders, and managed-breeding strategies to retain genetic variability. Assessment of verified subspecies ancestry offers a powerful tool that, if applied to tigers of uncertain background, may considerably increase the number of purebred tigers suitable for conservation management.

  7. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor.

    PubMed

    Truong, Sandra K; McCormick, Ryan F; Rooney, William L; Mullet, John E

    2015-11-01

    The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance.

  8. Subspecies genetic assignments of worldwide captive tigers increase conservation value of captive populations.

    PubMed

    Luo, Shu-Jin; Johnson, Warren E; Martenson, Janice; Antunes, Agostinho; Martelli, Paolo; Uphyrkina, Olga; Traylor-Holzer, Kathy; Smith, James L D; O'Brien, Stephen J

    2008-04-22

    Tigers (Panthera tigris) are disappearing rapidly from the wild, from over 100,000 in the 1900s to as few as 3000. Javan (P.t. sondaica), Bali (P.t. balica), and Caspian (P.t. virgata) subspecies are extinct, whereas the South China tiger (P.t. amoyensis) persists only in zoos. By contrast, captive tigers are flourishing, with 15,000-20,000 individuals worldwide, outnumbering their wild relatives five to seven times. We assessed subspecies genetic ancestry of 105 captive tigers from 14 countries and regions by using Bayesian analysis and diagnostic genetic markers defined by a prior analysis of 134 voucher tigers of significant genetic distinctiveness. We assigned 49 tigers to one of five subspecies (Bengal P.t. tigris, Sumatran P.t. sumatrae, Indochinese P.t. corbetti, Amur P.t. altaica, and Malayan P.t. jacksoni tigers) and determined 52 had admixed subspecies origins. The tested captive tigers retain appreciable genomic diversity unobserved in their wild counterparts, perhaps a consequence of large population size, century-long introduction of new founders, and managed-breeding strategies to retain genetic variability. Assessment of verified subspecies ancestry offers a powerful tool that, if applied to tigers of uncertain background, may considerably increase the number of purebred tigers suitable for conservation management. PMID:18424146

  9. Genetically Determined Amerindian Ancestry Correlates with Increased Frequency of Risk Alleles for Systemic Lupus Erythematosus

    PubMed Central

    Sanchez, E; Webb, R; Rasmussen, A.; Kelly, J.A; Riba, L.; Kaufman, K.M.; Garcia-de la Torre, I.; Moctezuma, J.F.; Maradiaga-Ceceña, M.A.; Cardiel, M.; Acevedo, E.; Cucho-Venegas, M.; Garcia, M.A.; Gamron, S.; Pons-Estel, B.A.; Vasconcelos, C.; Martin, J.; Tusié-Luna, T.; Harley, J.B.; Richardson, B.; Sawalha, A.H.; Alarcón-Riquelme, M.E.

    2011-01-01

    Objectives To analyze if genetically determined Amerindian ancestry predicts the increased presence of risk alleles of known susceptibility genes for systemic lupus erythematosus. Methods Single nucleotide polymorphisms within 16 confirmed genetic susceptibility loci for SLE were genotyped in a set of 804 Mestizo lupus patients and 667 Mestizo normal healthy controls. In addition, 347 admixture informative markers were genotyped. Individual ancestry proportions were determined using STRUCTURE. Association analysis was performed using PLINK, and correlation of the presence of risk alleles with ancestry was done using linear regression. Results A meta-analysis of the genetic association of the 16 SNPs across populations showed that TNFSF4, STAT4, PDCD1, ITGAM, and IRF5 were associated with lupus in a Hispanic-Mestizo cohort enriched for European and Amerindian ancestry. In addition, two SNPs within the MHC region, previously associated in a genome-wide association study in Europeans, were also associated in Mestizos. Using linear regression we predict an average increase of 2.34 risk alleles when comparing a lupus patient with 100% Amerindian ancestry to an SLE patient with 0% American Indian Ancestry (p<0.0001). SLE patients with 43% more Amerindian ancestry are predicted to carry one additional risk allele. Conclusion Amerindian ancestry increased the number of risk alleles for lupus. PMID:20848568

  10. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches.

    PubMed

    Beamonte-Barrientos, Rene; Verhulst, Simon

    2013-07-01

    Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is therefore often assumed that oxidative stress is proportional to energy consumption. In mammals, an increased metabolic rate induced by cold exposure generally increases oxidative stress. However, compared to mammals, birds generate fewer free radicals per ATP produced and hence it is not obvious that, in birds, a cold-induced increase of metabolic rate increase oxidative stress. We tested whether cold-induced increase in metabolic rate increased oxidative stress in zebra finches by exposing individuals to cold and warm overnight temperatures. We registered metabolic rate and plasma levels of non-enzymatic antioxidants and reactive oxygen metabolites (ROMs), a measure of oxidative damage. Metabolic rate was on average 88 % higher in cold compared to warm temperature, with females being stronger affected than males. However, temperature had no effect on plasma antioxidants or our measure of oxidative damage. Middle-age birds had higher levels of plasma antioxidants than younger and older birds, but age was unrelated to ROMs. Birds showed repeatability of plasma ROMs across temperatures but not of non-enzymatic antioxidants. In contrast to similar studies in mammals, our results do not show evidence of increased oxidative stress in plasma after an acute cold-induced increase of metabolic rate but research in more bird species is needed to assess the generality of this pattern.

  11. Maternal omega-3 fatty acid intake increases placental labyrinthine antioxidant capacity but does not protect against fetal growth restriction induced by placental ischaemia-reperfusion injury.

    PubMed

    Jones, Megan L; Mark, Peter J; Waddell, Brendan J

    2013-12-01

    Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders. Oxidative stress occurs when excess reactive oxygen species (ROS) damages cellular components, an outcome limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) also limits ROS production. We recently reported that maternal dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation reduced placental oxidative damage and enhanced fetal and placental growth in the rats. Here, we examined the effect of n-3 PUFAs on placental antioxidant defences and whether n-3 PUFA supplementation could prevent growth restriction induced by placental ischaemia-reperfusion (IR), a known inducer of oxidative stress. Rats were fed either standard or high-n-3 PUFA diets from day 1 of pregnancy. Placentas were collected on days 17 and 22 in untreated pregnancies (term=day 23) and at day 22 following IR treatment on day 17. Expression of several antioxidant enzyme genes (Sod1, Sod2, Sod3, Cat, Txn1 and Gpx3) and Ucp2 was measured by quantitative RT-PCR in the placental labyrinth zone (LZ) and junctional zone (JZ). Cytosolic superoxide dismutase (SOD), mitochondrial SOD and catalase (CAT) activities were also analyzed. Maternal n-3 PUFA supplementation increased LZ mRNA expression of Cat at both gestational days (2- and 1.5-fold respectively; P<0.01) and female Sod2 at day 22 (1.4-fold, P<0.01). Cytosolic SOD activity increased with n-3 PUFA supplementation at day 22 (1.3-fold, P<0.05). Sod1 and Txn1 expression decreased marginally (30 and 22%, P<0.05). JZ antioxidant defences were largely unaffected by diet. Despite increased LZ antioxidant defences, maternal n-3 PUFA supplementation did not protect against placental IR-induced growth restriction of the fetus and placental LZ.

  12. Placental genetic variations in circadian clock-related genes increase the risk of placental abruption

    PubMed Central

    Qiu, Chunfang; Gelaye, Bizu; Denis, Marie; Tadesse, Mahlet G; Enquobahrie, Daniel A; Ananth, Cande V; Pacora, Percy N; Salazar, Manuel; Sanchez, Sixto E; Williams, Michelle A

    2016-01-01

    The genetic architecture of placental abruption (PA) remains poorly understood. We examined variations in SNPs of circadian clock-related genes in placenta with PA risk. We also explored placental and maternal genomic contributions to PA risk. Placental genomic DNA samples were isolated from 280 PA cases and 244 controls. Genotyping was performed using the Illumina Cardio-MetaboChip. We examined 116 SNPs in 13 genes known to moderate circadian rhythms. Logistic regression models were fit to estimate odds ratios (ORs). The combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score. We examined independent and joint associations of wGRS derived from placental and maternal genomes with PA. Seven SNPs in five genes (ARNTL2, CRY2, DEC1, PER3 and RORA), in the placental genome, were associated with PA risk. Each copy of the minor allele (G) of a SNP in the RORA gene (rs2899663) was associated with a 30% reduced odds of PA (95% CI 0.52-0.95). The odds of PA increased with increasing placental-wGRS (Ptrend<0.001). The ORs were 1.00, 2.16, 3.24 and 4.48 across quartiles. Associations persisted after the maternal-wGRS was included in the model. There was evidence of an additive contribution of placental and maternal genetic contributions to PA risk. Participants with placental- and maternal-wGRS in the highest quartile, compared with those in the lowest quartile, had a 15.57-fold (95% CI 3.34-72.60) increased odds of PA. Placental variants in circadian clock-related genes are associated with PA risk; and the association persists after control of genetic variants in the maternal genome. PMID:27186326

  13. Using a family history questionnaire to identify adult patients with increased genetic risk for sarcoma

    PubMed Central

    Schiavi, A.; Lavigne, J.; Turcotte, R.; Kasprzak, L.; Dumas, N.; Chong, G.; Freeman, C.; Alameldin, M.; Galiatsatos, P.; Palma, L.; Foulkes, W.D.

    2015-01-01

    Background Sarcomas in adults can be associated with hereditary cancer syndromes characterized by early-onset predisposition to numerous types of cancer. Because of variability in familial presentation and the largely unexplained genetic basis of sarcomas, ascertainment of patients for whom a genetics evaluation is most indicated poses challenges. We assessed the utility of a Sarcoma Clinic Genetic Screening (scgs) questionnaire in facilitating that task. Methods Between 2008 and 2012, 169 patients (median age: 53 years; range: 17–88 years) completed a self-administered scgs questionnaire. A retrospective chart review was completed for all respondents, and descriptive statistics were reported. Probands were divided into two groups depending on whether they did or did not report a family history of Li–Fraumeni syndrome–type cancers. Results A family history of cancer (as far as 3rd-degree relatives) was reported in 113 of 163 sarcoma patients (69%). Eeles Li–Fraumeni–like (lfl) criteria were fulfilled in 46 probands (28%), Chompret lfl in 21 (13%), Birch lfl in 8 (5%), and classic Li–Fraumeni in none. In the 10 probands tested for TP53 mutations, 1 pathogenic mutation was found. Further investigation of selected families led to the discovery of germline mutations in MLH1, MSH2, and APC genes in 3 individuals. Conclusions The scgs questionnaire was useful for ascertaining probands with sarcoma who could benefit from a genetic assessment. The tool allowed us to identify high-risk families fitting the criteria for lfl and, surprisingly, other hereditary cancer syndromes. Similar questionnaires could be used in other cancer-specific clinics to increase awareness of the genetic component of these cancers. PMID:26628864

  14. THE RELATIONSHIP BETWEEN OZONE-INDUCED LUNG INJURY, ANTIOXIDANT COMPENSATION AND UNDERLYING CARDIOVASCULAR DISEASE (CVD).

    EPA Science Inventory

    Increased levels of oxidants and compromised compensatory response are associated with CVD susceptibility. We hypothesized that rat strains demonstrating genetic CVD will have lower levels of antioxidants and greater ozone-induced pulmonary injury relative to healthy strains. Mal...

  15. Raman spectroscopic analysis of the increase of the carotenoid antioxidant concentration in human skin after a 1-week diet with ecological eggs

    NASA Astrophysics Data System (ADS)

    Hesterberg, Karoline; Lademann, Jürgen; Patzelt, Alexa; Sterry, Wolfram; Darvin, Maxim E.

    2009-03-01

    Skin aging is mainly caused by the destructive action of free radicals, produced by the UV light of the sun. The human skin has developed a protection system against these highly reactive molecules in the form of the antioxidative potential. Carotenoids are one of the main components of the antioxidants of the human skin. From former studies, it is known that skin aging is reduced in individuals with high levels of carotenoids. Because most of the antioxidants cannot be produced by the human organism, they must be up taken by nutrition. Using noninvasive Raman spectroscopic measurements it is demonstrated that not only fruits and vegetables but also eggs contain high concentrations of antioxidants including carotenoids, which are even doubled in the case of ecological eggs. After a 1-week diet with ecological eggs performed by six volunteers, it is found that the concentration of the carotenoids in the skin of the volunteers increased by approx. 20%. Our study does not intend to recommend exorbitant egg consumption, as eggs also contain harmful cholesterol. But in the case of egg consumption, ecological eggs from hens kept on pasture should be preferred to also receive a benefit for the skin.

  16. Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes.

    PubMed

    Machiela, Mitchell J; Lan, Qing; Slager, Susan L; Vermeulen, Roel C H; Teras, Lauren R; Camp, Nicola J; Cerhan, James R; Spinelli, John J; Wang, Sophia S; Nieters, Alexandra; Vijai, Joseph; Yeager, Meredith; Wang, Zhaoming; Ghesquières, Hervé; McKay, James; Conde, Lucia; de Bakker, Paul I W; Cox, David G; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R; De Roos, Anneclaire J; Brooks-Wilson, Angela R; Giles, Graham G; Melbye, Mads; Gu, Jian; Jackson, Rebecca D; Kane, Eleanor; Purdue, Mark P; Vajdic, Claire M; Albanes, Demetrius; Kelly, Rachel S; Zucca, Mariagrazia; Bertrand, Kimberly A; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M; Link, Brian K; Novak, Anne J; Dogan, Ahmet; Asmann, Yan W; Liebow, Mark; Thompson, Carrie A; Ansell, Stephen M; Witzig, Thomas E; Tilly, Hervé; Haioun, Corinne; Molina, Thierry J; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans-Olov; Roos, Göran; Bracci, Paige M; Riby, Jacques; Smith, Martyn T; Holly, Elizabeth A; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M; Severson, Richard K; Tinker, Lesley F; North, Kari E; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J; Villano, Danylo J; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R; Turner, Jenny; Southey, Melissa C; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Boeing, Heiner; Tjønneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; De Vivo, Immaculata; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Liang, Liming; Park, Ju-Hyun; Chung, Charles C; Weisenburger, Dennis D; Fraumeni, Joseph F; Salles, Gilles; Glenn, Martha; Cannon-Albright, Lisa; Curtin, Karen; Wu, Xifeng; Smedby, Karin E; de Sanjose, Silvia; Skibola, Christine F; Berndt, Sonja I; Birmann, Brenda M; Chanock, Stephen J; Rothman, Nathaniel

    2016-04-15

    Evidence from a small number of studies suggests that longer telomere length measured in peripheral leukocytes is associated with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation, confounded by unmeasured environmental exposures and might miss time points for which prospective telomere measurement would best reveal a relationship between telomere length and NHL risk. We performed an analysis of genetically inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562 controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated variant alleles an individual carries with the published change in kb of telomere length. The analysis of the telomere length GRS resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds ratio (OR) = 1.49, 95% CI 1.22-1.82,P-value = 8.5 × 10(-5)]. Subtype-specific analyses indicated that chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI 1.93-3.51,P-value = 4.0 × 10(-10)). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that favors longer telomere length may increase NHL risk, particularly risk of CLL/SLL, and are consistent with earlier studies relating longer telomere length with increased NHL risk. PMID:27008888

  17. Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo.

    PubMed

    Mahn, Katharina; Borrás, Consuelo; Knock, Greg A; Taylor, Paul; Khan, Imran Y; Sugden, David; Poston, Lucilla; Ward, Jeremy P T; Sharpe, Richard M; Viña, Jose; Aaronson, Philip I; Mann, Giovanni E

    2005-10-01

    Epidemiological evidence suggests that populations consuming large amounts of soy protein have a reduced incidence of coronary heart disease (1-5). The cardiovascular risks associated with conventional hormone replacement therapy in postmenopausal women (5-7) have precipitated a search for alternative estrogen receptor modulators. Here we report that long-term feeding of rats with a soy protein-rich (SP) diet during gestation and adult life results in decreased oxidative stress, improved endothelial function, and reduced blood pressure in vivo measured by radiotelemetry in aged male offspring. Improved vascular reactivity in animals fed an SP diet was paralleled by increased mitochondrial glutathione and mRNA levels for endothelial nitric oxide synthase (eNOS) and the antioxidant enzymes manganese superoxide dismutase and cytochrome c oxidase. Reduced eNOS and antioxidant gene expression, impaired endothelial function, and elevated blood pressure in animals fed a soy-deficient diet was reversed after refeeding them an SP diet for 6 months. Our findings suggest that an SP diet increases eNOS and antioxidant gene expression in the vasculature and other tissues, resulting in reduced oxidative stress and increased NO bioavailability. The improvement in endothelial function, increased gene expression, and reduced blood pressure by soy isoflavones have implications for alternative therapy for postmenopausal women and patients at risk of coronary heart disease.

  18. Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the "cutoff effect".

    PubMed

    Losada Barreiro, Sonia; Bravo-Díaz, Carlos; Paiva-Martins, Fátima; Romsted, Laurence S

    2013-07-01

    Antioxidant (AO) efficiencies are reported to go through maxima with increasing chain length (hydrophobicity) in emulsions. The so-called "cutoff" after the maxima, indicating a decrease in efficiency, remains unexplained. This paper shows, for gallic acid (GA) and propyl, octyl, and lauryl gallates (PG, OG, and LG, respectively), that at any given volume fraction of emulsifier, the concentrations of antioxidants in the interfacial region of stripped corn oil emulsions and their efficiency order follow PG > GA > OG > LG. These results provide clear evidence that an AO's efficiency correlates with its fraction in the interfacial region. AO distributions were obtained in intact emulsions by using the pseudophase kinetic model to interpret changes in observed rate constants of the AOs with a chemical probe, and their efficiencies were measured by employing the Schaal oven test. The model provides a natural explanation for the maxima with increasing AO hydrophobicity.

  19. The effect of increased genetic risk for Alzheimer's disease on hippocampal and amygdala volume.

    PubMed

    Lupton, Michelle K; Strike, Lachlan; Hansell, Narelle K; Wen, Wei; Mather, Karen A; Armstrong, Nicola J; Thalamuthu, Anbupalam; McMahon, Katie L; de Zubicaray, Greig I; Assareh, Amelia A; Simmons, Andrew; Proitsi, Petroula; Powell, John F; Montgomery, Grant W; Hibar, Derrek P; Westman, Eric; Tsolaki, Magda; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Velas, Bruno; Lovestone, Simon; Brodaty, Henry; Ames, David; Trollor, Julian N; Martin, Nicholas G; Thompson, Paul M; Sachdev, Perminder S; Wright, Margaret J

    2016-04-01

    Reduction in hippocampal and amygdala volume measured via structural magnetic resonance imaging is an early marker of Alzheimer's disease (AD). Whether genetic risk factors for AD exert an effect on these subcortical structures independent of clinical status has not been fully investigated. We examine whether increased genetic risk for AD influences hippocampal and amygdala volumes in case-control and population cohorts at different ages, in 1674 older (aged >53 years; 17% AD, 39% mild cognitive impairment [MCI]) and 467 young (16-30 years) adults. An AD polygenic risk score combining common risk variants excluding apolipoprotein E (APOE), and a single nucleotide polymorphism in TREM2, were both associated with reduced hippocampal volume in healthy older adults and those with MCI. APOE ε4 was associated with hippocampal and amygdala volume in those with AD and MCI but was not associated in healthy older adults. No associations were found in young adults. Genetic risk for AD affects the hippocampus before the clinical symptoms of AD, reflecting a neurodegenerative effect before clinical manifestations in older adults.

  20. The effect of increased genetic risk for Alzheimer's disease on hippocampal and amygdala volume.

    PubMed

    Lupton, Michelle K; Strike, Lachlan; Hansell, Narelle K; Wen, Wei; Mather, Karen A; Armstrong, Nicola J; Thalamuthu, Anbupalam; McMahon, Katie L; de Zubicaray, Greig I; Assareh, Amelia A; Simmons, Andrew; Proitsi, Petroula; Powell, John F; Montgomery, Grant W; Hibar, Derrek P; Westman, Eric; Tsolaki, Magda; Kloszewska, Iwona; Soininen, Hilkka; Mecocci, Patrizia; Velas, Bruno; Lovestone, Simon; Brodaty, Henry; Ames, David; Trollor, Julian N; Martin, Nicholas G; Thompson, Paul M; Sachdev, Perminder S; Wright, Margaret J

    2016-04-01

    Reduction in hippocampal and amygdala volume measured via structural magnetic resonance imaging is an early marker of Alzheimer's disease (AD). Whether genetic risk factors for AD exert an effect on these subcortical structures independent of clinical status has not been fully investigated. We examine whether increased genetic risk for AD influences hippocampal and amygdala volumes in case-control and population cohorts at different ages, in 1674 older (aged >53 years; 17% AD, 39% mild cognitive impairment [MCI]) and 467 young (16-30 years) adults. An AD polygenic risk score combining common risk variants excluding apolipoprotein E (APOE), and a single nucleotide polymorphism in TREM2, were both associated with reduced hippocampal volume in healthy older adults and those with MCI. APOE ε4 was associated with hippocampal and amygdala volume in those with AD and MCI but was not associated in healthy older adults. No associations were found in young adults. Genetic risk for AD affects the hippocampus before the clinical symptoms of AD, reflecting a neurodegenerative effect before clinical manifestations in older adults. PMID:26973105

  1. PWD/PhJ mice have a genetically determined increase in nutrient-stimulated insulin secretion.

    PubMed

    Ho, Maggie M; Johnson, James D; Clee, Susanne M

    2015-04-01

    PWD/PhJ (PWD) is a wild-derived inbred mouse strain unrelated to commonly studied strains, such as C57BL/6J (B6). A chromosome substitution panel with PWD chromosomes transferred into the B6 background is commercially available and will facilitate genetic analysis of this strain. We have previously shown that the PWD strain is a model of primary fasting hyperinsulinemia. To identify more specific phenotypes affected by the genetic variation in PWD compared to B6 mice, we examined physiological mechanisms that may contribute to their elevated insulin levels. PWD mice had increased nutrient-stimulated insulin secretion due to factors inherent to their pancreatic islets. Insulin secretion responses to glucose, palmitate, and the metabolic intermediate α-ketoisocaproate were increased ~2-fold in islets from PWD mice compared to B6 islets. In contrast, there were no strain differences in processes affecting insulin secretion downstream of β cell depolarization. PWD mice tended to have larger but fewer islets than B6 mice, resulting in similar insulin-staining areas and insulin content per unit of pancreatic tissue. However, pancreata of PWD mice were smaller, resulting in reduced total β cell mass and pancreatic insulin content compared to B6 mice. Combined, these data suggest that the elevated fasting insulin levels in PWD mice result from increased generation of metabolic signals leading to β cell depolarization and insulin secretion. Identification of the genetic differences underlying the enhanced nutrient-stimulated insulin secretion in this model may lead to new approaches to appropriately modulate insulin secretion for the treatment of obesity and type 2 diabetes.

  2. Antioxidant responses in the polar marine sea-ice amphipod Gammarus wilkitzkii to natural and experimentally increased UV levels.

    PubMed

    Krapp, Rupert H; Baussant, Thierry; Bassinet, Thievery; Berge, Jørgen; Pampanin, Daniela M; Camus, Lionel

    2009-08-13

    Polar marine surface waters are characterized by high levels of dissolved oxygen, seasonally intense UV irradiance and high levels of dissolved organic carbon. Therefore, the Arctic sea-ice habitat is regarded as a strongly pro-oxidant environment, even though its significant ice cover protects the ice-associated (=sympagic) fauna from direct irradiation to a large extent. In order to investigate the level of resistance to oxyradical stress, we sampled the sympagic amphipod species Gammarus wilkitzkii during both winter and summer conditions, as well as exposed specimens to simulated levels of near-natural and elevated levels of UV irradiation. Results showed that this amphipod species possessed a much stronger antioxidant capacity during summer than during winter. Also, the experimental UV exposure showed a depletion in antioxidant defences, indicating a negative effect of UV exposure on the total oxyradical scavenging capacity. Another sympagic organism, Onisimus nanseni, was sampled during summer conditions. When compared to G. wilkitzkii, the species showed even higher antioxidant scavenging capacity. PMID:19524308

  3. Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep.

    PubMed

    López-Andrés, Patricia; Luciano, Giuseppe; Vasta, Valentina; Gibson, Trevor M; Biondi, Luisa; Priolo, Alessandro; Mueller-Harvey, Irene

    2013-08-01

    A total of sixteen lambs were divided into two groups and fed two different diets. Of these, eight lambs were fed a control diet (C) and eight lambs were fed the C diet supplemented with quebracho tannins (C+T). The objective of the present study was to assess whether dietary quebracho tannins can improve the antioxidant capacity of lamb liver and plasma and if such improvement is due to a direct transfer of phenolic compounds or their metabolites, to the animal tissues. Feed, liver and plasma samples were purified by solid-phase extraction (SPE) and analysed by liquid chromatography-MS for phenolic compounds. Profisitinidin compounds were identified in the C+T diet. However, no phenolic compounds were found in lamb tissues. The liver and the plasma from lambs fed the C+T diet displayed a greater antioxidant capacity than tissues from lambs fed the C diet, but only when samples were not purified with SPE. Profisetinidin tannins from quebracho seem not to be degraded or absorbed in the gastrointestinal tract. However, they induced antioxidant effects in animal tissues.

  4. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity.

    PubMed

    Viggiano, Davide

    2008-12-01

    The large number of transgenic mice realized thus far with different purposes allows addressing new questions, such as which animals, over the entire set of transgenic animals, show a specific behavioural abnormality. In the present study, we have used a metanalytical approach to organize a database of genetic modifications, brain lesions and pharmacological interventions that increase locomotor activity in animal models. To further understand the resulting data set, we have organized a second database of the alterations (genetic, pharmacological or brain lesions) that reduce locomotor activity. Using this approach, we estimated that 1.56% of the genes in the genome yield to hyperactivity and 0.75% of genes produce hypoactivity when altered. These genes have been classified into genes for neurotransmitter systems, hormonal, metabolic systems, ion channels, structural proteins, transcription factors, second messengers and growth factors. Finally, two additional classes included animals with neurodegeneration and inner ear abnormalities. The analysis of the database revealed several unexpected findings. First, the genes that, when mutated, induce hyperactive behaviour do not pertain to a single neurotransmitter system. In fact, alterations in most neurotransmitter systems can give rise to a hyperactive phenotype. In contrast, fewer changes can decrease locomotor activity. Specifically, genetic and pharmacological alterations that enhance the dopamine, orexin, histamine, cannabinoids systems or that antagonize the cholinergic system induce an increase in locomotor activity. Similarly, imbalances in the two main neurotransmitters of the nervous system, GABA and glutamate usually result in hyperactive behaviour. It is remarkable that no genetic alterations pertaining to the GABA system have been reported to reduce locomotor behaviour. Other neurotransmitters, such as norepinephrine and serotonin, have a more complex influence. For instance, a decrease in norepinephrine

  5. Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity.

    PubMed

    Hellmair, Michael; Kinziger, Andrew P

    2014-01-01

    Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi), show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species.

  6. Genetic Variation in NFKBIE Is Associated With Increased Risk of Pneumococcal Meningitis in Children

    PubMed Central

    Lundbo, Lene F.; Harboe, Zitta Barrella; Clausen, Louise N.; Hollegaard, Mads V.; Sørensen, Henrik T.; Hougaard, David M.; Konradsen, Helle B.; Nørgaard, Mette; Benfield, Thomas

    2015-01-01

    Background Streptococcus pneumoniae and Neisseria meningitidis are frequent pathogens in life-threatening infections. Genetic variation in the immune system may predispose to these infections. Nuclear factor-κB is a key component of the TLR-pathway, controlled by inhibitors, encoded by the genes NFKBIA, NFKBIE and NFKBIZ. We aimed to replicate previous findings of genetic variation associated with invasive pneumococcal disease (IPD), and to assess whether similar associations could be found in invasive meningococcal disease (IMD). Methods Cases with IPD and IMD and controls were identified by linking Danish national registries. DNA was obtained from the Danish Neonatal Screening Biobank. The association between SNPs and susceptibility to IPD and IMD, mortality and pneumococcal serotypes was investigated. Results 372 children with pneumococcal meningitis, 907 with pneumococcal bacteremia and 1273 controls were included. We included 406 cases with meningococcal meningitis, 272 with meningococcal bacteremia, and 672 controls. The NFKBIE SNP was associated with increased risk of pneumococcal meningitis (aOR 1.68; 95% CI: 1.20–2.36), but not bacteremia (aOR 1.08; 95% CI: 0.86–1.35). The remaining SNPs were not associated with susceptibility to invasive disease. None of the SNPs were associated with risk of IMD or mortality. Conclusions A NFKBIE polymorphism was associated with increased risk of pneumococcal meningitis. PMID:26870821

  7. Increased Extinction Potential of Insular Fish Populations with Reduced Life History Variation and Low Genetic Diversity

    PubMed Central

    Hellmair, Michael; Kinziger, Andrew P.

    2014-01-01

    Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi), show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species. PMID:25409501

  8. Antioxidant N-Acetylcysteine and Glutathione Increase the Viability and Proliferation of MG63 Cells Encapsulated in the Gelatin Methacrylate/VA-086/Blue Light Hydrogel System.

    PubMed

    Lin, Chih-Hsin; Lin, Kai-Fung; Mar, Kwei; Lee, Shyh-Yuan; Lin, Yuan-Min

    2016-08-01

    Photoencapsulation of cells inside a hydrogel system can provide a suitable path to establish a gel in situ for soft tissue regeneration applications. However, the presence of photoinitiators and blue or UV light irradiation can result in cell damage and an increase of reactive oxygen species. We here evaluate the benefits of an antioxidant pretreatment on the photoencapsulated cells. We study this by evaluating proliferation and viability of MG63 cells, which we combined with a gelatin methacrylate (GelMA) hydrogel system, using the photoinitiator, VA-086, cured with 440 nm blue light. We found that blue light irradiation as well as the presence of 1% VA-086 reduced MG63 cell proliferation rates. Adding a short pretreatment step to the MG63 cells, consisting of the antioxidant molecules N-acetylcysteine (NAC) and reduced glutathione (GSH), and optimizing the GelMA encapsulation steps, we found that both NAC and GSH pretreatments of MG63 cells significantly increased both proliferation and viability of the cells, when using a 15% GelMA hydrogel, 1% VA-086, and 1-min blue light exposure. These findings suggest that the use of antioxidant pretreatment can counteract the negative presence of the photoinitiators and blue light exposure and result in a suitable environment for photoencapsulating cells in situ for tissue engineering and soft tissue applications.

  9. Tumor Necrosis Factor B (TNFB) Genetic Variants and Its Increased Expression Are Associated with Vitiligo Susceptibility

    PubMed Central

    Laddha, Naresh C.; Dwivedi, Mitesh; Gani, Amina R.; Mansuri, Mohmmad Shoab; Begum, Rasheedunnisa

    2013-01-01

    Genetic polymorphisms in TNFB are involved in the regulation of its expression and are found to be associated with various autoimmune diseases. The aim of the present study was to determine whether TNFB +252A/G (rs909253) and exon 3 C/A (rs1041981) polymorphisms are associated with vitiligo susceptibility, and expression of TNFB and ICAM1 affects the disease onset and progression. We have earlier reported the role of TNFA in autoimmune pathogenesis of vitiligo, and we now show the involvement of TNFB in vitiligo pathogenesis. The two polymorphisms investigated in the TNFB were in strong linkage disequilibrium and significantly associated with vitiligo. TNFB and ICAM1 transcripts were significantly increased in patients compared to controls. Active vitiligo patients showed significant increase in TNFB transcripts compared to stable vitiligo. The genotype-phenotype analysis revealed that TNFB expression levels were higher in patients with GG and AA genotypes as compared to controls. Patients with the early age of onset and female patients showed higher TNFB and ICAM1 expression. Overall, our findings suggest that the increased TNFB transcript levels in vitiligo patients could result, at least in part, from variations at the genetic level which in turn leads to increased ICAM1 expression. For the first time, we show that TNFB +252A/G and exon 3 C/A polymorphisms are associated with vitiligo susceptibility and influence the TNFB and ICAM1 expression. Moreover, the study also emphasizes influence of TNFB and ICAM1 on the disease progression, onset and gender bias for developing vitiligo. PMID:24312346

  10. Pulmonary function response and effects of antioxidant genetic polymorphisms in healthy young adults exposed to low concentration ozone.

    EPA Science Inventory

    Rational: Ozone is known to induce a variety of pulmonary effects including decrement of spirometric lung function and inflammatory reaction, and antioxidant genes are known to play an important role in modulating the effects. It is unclear, however, if such effects may occur at...

  11. Genome-wide association study dissects the genetic architecture of polyphenols and antioxidant capacity in a sorghum diversified collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of polyphenol-rich food is associated with decreased risk of several oxidative stress-related chronic diseases. Sorghum, a major cereal crop grown worldwide, has many polyphenol-containing accessions with high antioxidant activity in the grain. However, many of these polyphenol-containin...

  12. A genetically adjuvanted influenza B virus vector increases immunogenicity and protective efficacy in mice.

    PubMed

    Kittel, Christian; Wressnigg, Nina; Shurygina, Anna Polina; Wolschek, Markus; Stukova, Marina; Romanovskaya-Romanko, Ekatherina; Romanova, Julia; Kiselev, Oleg; Muster, Thomas; Egorov, Andrej

    2015-10-01

    The existence of multiple antigenically distinct types and subtypes of influenza viruses allows the construction of a multivalent vector system for the mucosal delivery of foreign sequences. Influenza A viruses have been exploited successfully for the expression of extraneous antigens as well as immunostimulatory molecules. In this study, we describe the development of an influenza B virus vector whose functional part of the interferon antagonist NS1 was replaced by human interleukin 2 (IL2) as a genetic adjuvant. We demonstrate that IL2 expressed by this viral vector displays immune adjuvant activity in immunized mice. Animals vaccinated with the IL2 viral vector showed an increased hemagglutination inhibition antibody response and higher protective efficacy after challenge with a wild-type influenza B virus when compared to mice vaccinated with a control virus. Our results demonstrate that it is feasible to construct influenza B vaccine strains expressing immune-potentiating foreign sequences from the NS genomic segment. Based on these data, it is now hypothetically possible to create a trivalent (or quadrivalent) live attenuated influenza vaccine in which each component expresses a selected genetic adjuvant with tailored expression levels.

  13. Genetic evidence that culling increases badger movement: implications for the spread of bovine tuberculosis.

    PubMed

    Pope, Lisa C; Butlin, Roger K; Wilson, Gavin J; Woodroffe, Rosie; Erven, Kristien; Conyers, Chris M; Franklin, Tanya; Delahay, Richard J; Cheeseman, Chris L; Burke, Terry

    2007-12-01

    The Eurasian badger (Meles meles) has been implicated in the transmission of bovine tuberculosis (TB, caused by Mycobacterium bovis) to cattle. However, evidence suggests that attempts to reduce the spread of TB among cattle in Britain by culling badgers have mixed effects. A large-scale field experiment (the randomized badger culling trial, RBCT) showed that widespread proactive badger culling reduced the incidence of TB in cattle within culled areas but that TB incidence increased in adjoining areas. Additionally, localized reactive badger culling increased the incidence of TB in cattle. It has been suggested that culling-induced perturbation of badger social structure may increase individual movements and elevate the risk of disease transmission between badgers and cattle. Field studies support this hypothesis, by demonstrating increases in badger group ranges and the prevalence of TB infection in badgers following culling. However, more evidence on the effect of culling on badger movements is needed in order to predict the epidemiological consequences of this control strategy. Here, analysis of the genetic signatures of badger populations in the RBCT revealed increased dispersal following culling. While standard tests provided evidence for greater dispersal after culling, a novel method indicated that this was due to medium- and long-distance dispersal, in addition to previously reported increases in home-range size. Our results also indicated that, on average, badgers infected with M. bovis moved significantly farther than did uninfected badgers. A disease control strategy that included culling would need to take account of the potentially negative epidemiological consequences of increased badger dispersal. PMID:17944854

  14. An unknown genetic defect increases venous thrombosis risk, through interaction with protein C deficiency.

    PubMed Central

    Hasstedt, S J; Bovill, E G; Callas, P W; Long, G L

    1998-01-01

    We used two-locus segregation analysis to test whether an unknown genetic defect interacts with protein C deficiency to increase susceptibility to venous thromboembolic disease in a single large pedigree. Sixty-seven pedigree members carry a His107Pro mutation in the protein C gene, which reduces protein C levels to a mean of 46% of normal. Twenty-one carriers of the mutation and five other pedigree members had verified thromboembolic disease. We inferred the presence in this pedigree of a thrombosis-susceptibility gene interacting with protein C deficiency, by rejecting the hypothesis that the cases of thromboembolic disease resulted from protein C deficiency alone and by not rejecting Mendelian transmission of the interacting gene. When coinherited with protein C deficiency, the interacting gene conferred a probability of a thrombotic episode of approximately 79% for men and approximately 99% for women, before age 60 years. PMID:9683579

  15. Chard (Beta vulgaris L. var. cicla) extract ameliorates hyperglycemia by increasing GLUT2 through Akt2 and antioxidant defense in the liver of rats.

    PubMed

    Gezginci-Oktayoglu, Selda; Sacan, Ozlem; Bolkent, Sehnaz; Ipci, Yesim; Kabasakal, Levent; Sener, Goksel; Yanardag, Refiye

    2014-01-01

    Chard is a plant used as an alternative hypoglycemic agent by diabetic people in Turkey. The aim of this study was to examine the molecular mechanism of hypoglycemic effects of chard extract. Male Sprague-Dawley rats (6-7 months old) were divided into five groups for this investigation: (1) control, (2) hyperglycemic, (3) hyperglycemic+chard, (4) hyperglycemic+insulin, (5) hyperglycemic+chard+insulin. Fourteen days after animals were rendered hyperglycemic by intraperitoneal injection of 60 mg/kg streptozotocin, the chard water extract (2 g/kg/day) or/and insulin (6 U/kg/day) was administered for 45 days. Hypoglycemic effect of chard extract was demonstrated by a significant reduction in the fasting blood glucose and increased glycogen levels in liver of chard extract-treated hyperglycemic rats. Moreover, activity of adenosine deaminase, which is suggested as an important enzyme for modulating the bioactivity of insulin, was decreased by chard treatment. Immunostaining analysis showed increased nuclear translocation of Akt2 and synthesis of GLUT2 in the hepatocytes of chard or/and insulin-treated hyperglycemic rats. The oxidative stress was decreased and antioxidant defense was increased by chard extract or/and insulin treatment to hyperglycemic rats according to the decreased malondialdehyde formation, the activities of catalase, superoxide dismutase, myeloperoxidase and increased glutathione levels. These findings suggest that chard extract might improve glucose response by increasing GLUT2 through Akt2 and antioxidant defense in the liver.

  16. Liv.52 attenuate copper induced toxicity by inhibiting glutathione depletion and increased antioxidant enzyme activity in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Patki, Pralhad Sadashiv

    2010-07-01

    Altered copper metabolism plays a pivotal role in the onset of several hepatic disorders and glutathione (GSH) plays an important role in its homeostasis. Hepatic diseases are often implicated with decreased content of intracellular GSH. GSH depleted cells are prone to increased oxidative damage eventually leading to its death. Liv.52 is used to treat hepatic ailments since long time. Hence, in the present study the potential cytoprotective effect of Liv.52 against toxicity induced by copper (Cu2+) was evaluated in HepG2 cells. Cu2+ at 750 microM induced cytotoxicity to HepG2 cells as determined by MTT assay. The toxicity was brought about by increased lipid peroxidation, DNA fragmentation and decreased GSH content. But, upon treatment with Liv.52 cell death induced by Cu2+ was significantly abrogated by inhibition of lipid peroxidation by 58% and DNA fragmentation by 37%. Liv.52 increased the GSH content by 74%. Activities of the antioxidant enzymes catalase, glutathione peroxidase and superoxide dismutase were increased by 46%, 22% and 81% respectively in Liv.52 treated cells. Thus, it is apparent from these results that Liv.52 abrogates Cu2+ induced cytotoxicity in HepG2 cells by inhibiting lipid peroxidation and increased GSH content and antioxidant enzyme activity.

  17. Increasing water-use efficiency directly through genetic manipulation of stomatal density.

    PubMed

    Franks, Peter J; W Doheny-Adams, Timothy; Britton-Harper, Zoe J; Gray, Julie E

    2015-07-01

    Improvement in crop water-use efficiency (WUE) is a critical priority for regions facing increased drought or diminished groundwater resources. Despite new tools for the manipulation of stomatal development, the engineering of plants with high WUE remains a challenge. We used Arabidopsis epidermal patterning factor (EPF) mutants exhibiting altered stomatal density to test whether WUE could be improved directly by manipulation of the genes controlling stomatal density. Specifically, we tested whether constitutive overexpression of EPF2 reduced stomatal density and maximum stomatal conductance (gw(max) ) sufficiently to increase WUE. We found that a reduction in gw(max) via reduced stomatal density in EPF2-overexpressing plants (EPF2OE) increased both instantaneous and long-term WUE without altering significantly the photosynthetic capacity. Conversely, plants lacking both EPF1 and EPF2 expression (epf1epf2) exhibited higher stomatal density, higher gw(max) and lower instantaneous WUE, as well as lower (but not significantly so) long-term WUE. Targeted genetic modification of stomatal conductance, such as in EPF2OE, is a viable approach for the engineering of higher WUE in crops, particularly in future high-carbon-dioxide (CO2 ) atmospheres. PMID:25754246

  18. An uncertain revolution: why the rise of a genetic model of mental illness has not increased tolerance.

    PubMed

    Schnittker, Jason

    2008-11-01

    This study uses the 2006 replication of the 1996 General Social Survey Mental Health Module to explore trends in public beliefs about mental illness in the USA. Drawing on three models related to the framing of genetic arguments in popular media, the study attempts to address why tolerance of the mentally ill has not increased, despite the growing popularity of a biomedical view. The key to resolving this paradox lies in understanding how genetic arguments interact with other beliefs about mental illness, as well as the complex ideational implications of genetic frameworks. Genetic arguments have contingent relationships with tolerance. When applied to schizophrenia, genetic arguments are positively associated with fears regarding violence. Indeed, in this regard, attributing schizophrenia to genes is no different from attributing schizophrenia to bad character. However, when applied to depression, genetic arguments are positively associated with social acceptance. In addition to these contingencies, genetic explanations have discontinuous relationships with beliefs regarding treatment. Although genetic arguments are positively associated with recommending medical treatment, they are not associated with the perceived likelihood of improvement. The net result of these assorted relationships is little change in overall levels of tolerance over time. Because of the blunt nature of the forces propelling a biomedical view--including the growing popularity of psychiatric medications--altering beliefs about the etiology of mental illness is unlikely, on its own, to increase tolerance. PMID:18703264

  19. Alcohol consumption decreases the protection efficiency of the antioxidant network and increases the risk of sunburn in human skin.

    PubMed

    Darvin, M E; Sterry, W; Lademann, J; Patzelt, A

    2013-01-01

    In recent years, epidemiological data has demonstrated that alcohol consumption is a risk factor for sunburn, melanoma and nonmelanoma skin cancer. We hypothesized that if the concentration of the antioxidants in the skin has already decreased due to alcohol consumption, then an adequate neutralization of the free radicals induced by ultraviolet light cannot be performed. Based on this hypothesis, we determined the carotenoid concentration in the skin and the minimal erythema dose (MED) of 6 male human volunteers before and after consumption of alcohol or alcohol and orange juice combined. The results showed a significant decrease in the carotenoid concentration in the skin and the MED after alcohol consumption, but no significant decrease after a combined intake of alcohol and orange juice.

  20. Pioglitazone Improves Cognitive Function via Increasing Insulin Sensitivity and Strengthening Antioxidant Defense System in Fructose-Drinking Insulin Resistance Rats

    PubMed Central

    Yin, Qing-Qing; Pei, Jin-Jing; Xu, Song; Luo, Ding-Zhen; Dong, Si-Qing; Sun, Meng-Han; You, Li; Sun, Zhi-Jian; Liu, Xue-Ping

    2013-01-01

    Insulin resistance (IR) links Alzheimer’s disease (AD) with oxidative damage, cholinergic deficit, and cognitive impairment. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone previously used to treat type 2 diabetes mellitus (T2DM) has also been demonstrated to be effective in anti-inflammatory reaction and anti-oxidative stress in the animal models of AD and other neuroinflammatory diseases. Here, we investigated the effect of pioglitazone on learning and memory impairment and the molecular events that may cause it in fructose-drinking insulin resistance rats. We found that long-term fructose-drinking causes insulin resistance, oxidative stress, down-regulated activity of cholinergic system, and cognitive deficit, which could be ameliorated by pioglitazone administration. The results from the present study provide experimental evidence for using pioglitazone in the treatment of brain damage caused by insulin resistance. PMID:23527159

  1. A High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases the Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice.

    PubMed

    Jarukamjorn, Kanokwan; Jearapong, Nattharat; Pimson, Charinya; Chatuphonprasert, Waranya

    2016-01-01

    Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD), associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD) on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD.

  2. A High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases the Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice

    PubMed Central

    Jearapong, Nattharat; Pimson, Charinya; Chatuphonprasert, Waranya

    2016-01-01

    Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD), associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD) on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD. PMID:27019761

  3. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  4. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs.

    PubMed

    Marsden, Clare D; Ortega-Del Vecchyo, Diego; O'Brien, Dennis P; Taylor, Jeremy F; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D; Wayne, Robert K; Lohmueller, Kirk E

    2016-01-01

    Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2-3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants.

  5. Increased Genetic Vulnerability to Smoking at CHRNA5 in Early-Onset Smokers

    PubMed Central

    Hartz, Sarah M.; Short, Susan E.; Saccone, Nancy L.; Culverhouse, Robert; Chen, LiShiun; Schwantes-An, Tae-Hwi; Coon, Hilary; Han, Younghun; Stephens, Sarah H.; Sun, Juzhong; Chen, Xiangning; Ducci, Francesca; Dueker, Nicole; Franceschini, Nora; Frank, Josef; Geller, Frank; Guđbjartsson, Daniel; Hansel, Nadia N.; Jiang, Chenhui; Keskitalo-Vuokko, Kaisu; Liu, Zhen; Lyytikäinen, Leo-Pekka; Michel, Martha; Rawal, Rajesh; Hum, Sc; Rosenberger, Albert; Scheet, Paul; Shaffer, John R.; Teumer, Alexander; Thompson, John R.; Vink, Jacqueline M.; Vogelzangs, Nicole; Wenzlaff, Angela S.; Wheeler, William; Xiao, Xiangjun; Yang, Bao-Zhu; Aggen, Steven H.; Balmforth, Anthony J.; Baumeister, Sebastian E.; Beaty, Terri; Bennett, Siiri; Bergen, Andrew W.; Boyd, Heather A.; Broms, Ulla; Campbell, Harry; Chatterjee, Nilanjan; Chen, Jingchun; Cheng, Yu-Ching; Cichon, Sven; Couper, David; Cucca, Francesco; Dick, Danielle M.; Foroud, Tatiana; Furberg, Helena; Giegling, Ina; Gu, Fangyi; Hall, Alistair S.; Hällfors, Jenni; Han, Shizhong; Hartmann, Annette M.; Hayward, Caroline; Heikkilä, Kauko; Lic, Phil; Hewitt, John K.; Hottenga, Jouke Jan; Jensen, Majken K.; Jousilahti, Pekka; Kaakinen, Marika; Kittner, Steven J.; Konte, Bettina; Korhonen, Tellervo; Landi, Maria-Teresa; Laatikainen, Tiina; Leppert, Mark; Levy, Steven M.; Mathias, Rasika A.; McNeil, Daniel W.; Medland, Sarah E.; Montgomery, Grant W.; Muley, Thomas; Murray, Tanda; Nauck, Matthias; North, Kari; Pergadia, Michele; Polasek, Ozren; Ramos, Erin M.; Ripatti, Samuli; Risch, Angela; Ruczinski, Ingo; Rudan, Igor; Salomaa, Veikko; Schlessinger, David; Styrkársdóttir, Unnur; Terracciano, Antonio; Uda, Manuela; Willemsen, Gonneke; Wu, Xifeng; Abecasis, Goncalo; Barnes, Kathleen; Bickeböller, Heike; Boerwinkle, Eric; Boomsma, Dorret I.; Caporaso, Neil; Duan, Jubao; Edenberg, Howard J.; Francks, Clyde; Gejman, Pablo V.; Gelernter, Joel; Grabe, Hans Jörgen; Hops, Hyman; Jarvelin, Marjo-Riitta; Viikari, Jorma; Kähönen, Mika; Kendler, Kenneth S.; Lehtimäki, Terho; Levinson, Douglas F.; Marazita, Mary L.; Marchini, Jonathan; Melbye, Mads; Mitchell, Braxton D.; Murray, Jeffrey C.; Nöthen, Markus M.; Penninx, Brenda W.; Raitakari, Olli; Rietschel, Marcella; Rujescu, Dan; Samani, Nilesh J.; Sanders, Alan R.; Schwartz, Ann G.; Shete, Sanjay; Shi, Jianxin; Spitz, Margaret; Stefansson, Kari; Swan, Gary E.; Thorgeirsson, Thorgeir; Völzke, Henry; Wei, Qingyi; Wichmann, H.-Erich; Amos, Christopher I.; Breslau, Naomi; Cannon, Dale S.; Ehringer, Marissa; Grucza, Richard; Hatsukami, Dorothy; Heath, Andrew; Johnson, Eric O.; Kaprio, Jaakko; Madden, Pamela; Martin, Nicholas G.; Stevens, Victoria L.; Stitzel, Jerry A.; Weiss, Robert B.; Kraft, Peter; Bierut, Laura J.

    2012-01-01

    Context Recent studies have shown an association between cigarettes per day (CPD) and a nonsynonymous single-nucleotide polymorphism in CHRNA5, rs16969968. Objective To determine whether the association between rs16969968 and smoking is modified by age at onset of regular smoking. Data Sources Primary data. Study Selection Available genetic studies containing measures of CPD and the genotype of rs16969968 or its proxy. Data Extraction Uniform statistical analysis scripts were run locally. Starting with 94 050 ever-smokers from 43 studies, we extracted the heavy smokers (CPD >20) and light smokers (CPD ≤10) with age-at-onset information, reducing the sample size to 33 348. Each study was stratified into early-onset smokers (age at onset ≤16 years) and late-onset smokers (age at onset >16 years), and a logistic regression of heavy vs light smoking with the rs16969968 genotype was computed for each stratum. Meta-analysis was performed within each age-at-onset stratum. Data Synthesis Individuals with 1 risk allele at rs16969968 who were early-onset smokers were significantly more likely to be heavy smokers in adulthood (odds ratio [OR]=1.45; 95% CI, 1.36–1.55; n=13 843) than were carriers of the risk allele who were late-onset smokers (OR = 1.27; 95% CI, 1.21–1.33, n = 19 505) (P = .01). Conclusion These results highlight an increased genetic vulnerability to smoking in early-onset smokers. PMID:22868939

  6. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs

    PubMed Central

    Marsden, Clare D.; Ortega-Del Vecchyo, Diego; O’Brien, Dennis P.; Taylor, Jeremy F.; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D.; Wayne, Robert K.; Lohmueller, Kirk E.

    2016-01-01

    Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2–3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants. PMID:26699508

  7. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs.

    PubMed

    Marsden, Clare D; Ortega-Del Vecchyo, Diego; O'Brien, Dennis P; Taylor, Jeremy F; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D; Wayne, Robert K; Lohmueller, Kirk E

    2016-01-01

    Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2-3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants. PMID:26699508

  8. Antioxidant defence-related genetic variants are not associated with higher risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence

    PubMed Central

    Vodusek, Ana Lina; Goricar, Katja; Gazic, Barbara; Dolzan, Vita

    2016-01-01

    Background Thyroid cancer is one of the most common secondary cancers after treatment of malignancy in childhood or adolescence. Thyroid gland is very sensitive to the carcinogenic effect of ionizing radiation, especially in children. Imbalance between pro- and anti-oxidant factors may play a role in thyroid carcinogenesis. Our study aimed to assess the relationship between genetic variability of antioxidant defence-related genes and the risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence. Patients and methods In a retrospective study, we compared patients with childhood or adolescence primary malignancy between 1960 and 2006 that developed a secondary thyroid cancer (cases) with patients (controls), with the same primary malignancy but did not develop any secondary cancer. They were matched for age, gender, primary diagnosis and treatment (especially radiotherapy) of primary malignancy. They were all genotyped for SOD2 p.Ala16Val, CAT c.-262C>T, GPX1 p.Pro200Leu, GSTP1 p.Ile105Val, GSTP1 p.Ala114Val and GSTM1 and GSTT1 deletions. The influence of polymorphisms on occurrence of secondary cancer was examined by McNemar test and Cox proportional hazards model. Results Between 1960 and 2006 a total of 2641 patients were diagnosed with primary malignancy before the age of 21 years in Slovenia. Among them 155 developed a secondary cancer, 28 of which were secondary thyroid cancers. No significant differences in the genotype frequency distribution were observed between cases and controls. Additionally we observed no significant influence of investigated polymorphisms on time to the development of secondary thyroid cancer. Conclusions We observed no association of polymorphisms in antioxidant genes with the risk for secondary thyroid cancer after treatment of malignancy in childhood or adolescence. However, thyroid cancer is one of the most common secondary cancers in patients treated for malignancy in childhood or adolescence and

  9. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy.

    PubMed

    Elshahabi, Adham; Klamer, Silke; Sahib, Ashish Kaul; Lerche, Holger; Braun, Christoph; Focke, Niels K

    2015-01-01

    Idiopathic/genetic generalized epilepsy (IGE/GGE) is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease.

  10. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology

    PubMed Central

    Chapuis, J; Hansmannel, F; Gistelinck, M; Mounier, A; Van Cauwenberghe, C; Kolen, K V; Geller, F; Sottejeau, Y; Harold, D; Dourlen, P; Grenier-Boley, B; Kamatani, Y; Delepine, B; Demiautte, F; Zelenika, D; Zommer, N; Hamdane, M; Bellenguez, C; Dartigues, J-F; Hauw, J-J; Letronne, F; Ayral, A-M; Sleegers, K; Schellens, A; Broeck, L V; Engelborghs, S; De Deyn, P P; Vandenberghe, R; O'Donovan, M; Owen, M; Epelbaum, J; Mercken, M; Karran, E; Bantscheff, M; Drewes, G; Joberty, G; Campion, D; Octave, J-N; Berr, C; Lathrop, M; Callaerts, P; Mann, D; Williams, J; Buée, L; Dewachter, I; Van Broeckhoven, C; Amouyel, P; Moechars, D; Dermaut, B; Lambert, J-C

    2013-01-01

    Genome-wide association studies (GWAS) have identified a region upstream the BIN1 gene as the most important genetic susceptibility locus in Alzheimer's disease (AD) after APOE. We report that BIN1 transcript levels were increased in AD brains and identified a novel 3 bp insertion allele ∼28 kb upstream of BIN1, which increased (i) transcriptional activity in vitro, (ii) BIN1 expression levels in human brain and (iii) AD risk in three independent case-control cohorts (Meta-analysed Odds ratio of 1.20 (1.14–1.26) (P=3.8 × 10−11)). Interestingly, decreased expression of the Drosophila BIN1 ortholog Amph suppressed Tau-mediated neurotoxicity in three different assays. Accordingly, Tau and BIN1 colocalized and interacted in human neuroblastoma cells and in mouse brain. Finally, the 3 bp insertion was associated with Tau but not Amyloid loads in AD brains. We propose that BIN1 mediates AD risk by modulating Tau pathology. PMID:23399914

  11. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy

    PubMed Central

    Elshahabi, Adham; Klamer, Silke; Sahib, Ashish Kaul; Lerche, Holger; Braun, Christoph; Focke, Niels K.

    2015-01-01

    Idiopathic/genetic generalized epilepsy (IGE/GGE) is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease. PMID:26368933

  12. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia.

    PubMed

    Liu, Xin; Pitarresi, Jason R; Cuitiño, Maria C; Kladney, Raleigh D; Woelke, Sarah A; Sizemore, Gina M; Nayak, Sunayana G; Egriboz, Onur; Schweickert, Patrick G; Yu, Lianbo; Trela, Stefan; Schilling, Daniel J; Halloran, Shannon K; Li, Maokun; Dutta, Shourik; Fernandez, Soledad A; Rosol, Thomas J; Lesinski, Gregory B; Shakya, Reena; Ludwig, Thomas; Konieczny, Stephen F; Leone, Gustavo; Wu, Jinghai; Ostrowski, Michael C

    2016-09-01

    The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a Kras(G12D) mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo Additionally, Smo-deleted fibroblasts stimulated the growth of Kras(G12D)/Tp53(R172H) pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating Kras(G12D)-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts. PMID:27633013

  13. Energy Dense, Protein Restricted Diet Increases Adiposity and Perturbs Metabolism in Young, Genetically Lean Pigs

    PubMed Central

    Fisher, Kimberly D.; Scheffler, Tracy L.; Kasten, Steven C.; Reinholt, Brad M.; van Eyk, Gregory R.; Escobar, Jeffery; Scheffler, Jason M.; Gerrard, David E.

    2013-01-01

    Animal models of obesity and metabolic dysregulation during growth (or childhood) are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12), containing 15% tallow, 35% refined sugars and 9.1–12.9% crude protein, or a control corn-based diet (n = 11) with 12.2–19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but by wk 5, consumed more (P<0.001) energy per kg body weight. At wk 15, pigs were subjected to an oral glucose tolerance test (OGTT); blood glucose increased (P<0.05) in control pigs and returned to baseline levels within 60 min. HED pigs were hyperglycemic at time 0, and blood glucose did not return to baseline (P = 0.01), even 4 h post-challenge. During OGTT, glucose area under the curve (AUC) was higher and insulin AUC was lower in HED pigs compared to controls (P = 0.001). Chronic HED intake increased (P<0.05) subcutaneous, intramuscular, and perirenal fat deposition, and induced hyperglycemia, hypoinsulinemia, and low-density lipoprotein hypercholesterolemia. A subset of HED pigs (n = 7) was transitioned back to a control diet for an additional six weeks. These pigs were subjected to an additional OGTT at 22 wk. Glucose AUC and insulin AUC did not improve, supporting that dietary intervention was not sufficient to recover glucose tolerance or insulin production. These data suggest a HED may be used to increase adiposity and disrupt glucose homeostasis in young, growing pigs. PMID:23991090

  14. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    NASA Astrophysics Data System (ADS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-04-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  15. Supplementation of the black rice outer layer fraction to rabbits decreases atherosclerotic plaque formation and increases antioxidant status.

    PubMed

    Ling, Wen Hua; Wang, Lin Llin; Ma, Jing

    2002-01-01

    The influence of the supplementation of black and white rice outer layer fractions on atherosclerotic plaque formation induced by hypercholesterolemia was investigated in rabbits. Male rabbits (n = 32) were randomly divided into four groups. They were fed nonpurified diet (normal group), a lard (3.5 g/100 g) with high cholesterol (0.5 g/100 g) diet (HC group); the HC diet with 5 g/100 g white rice outer layer fraction (WRF group); or the HC diet with 5 g/100 g black rice outer layer fraction (BRF) for 2 mo. Blood samples were collected for determination of lipid concentration and oxidative and antioxidative status variables, and aortae were taken for the assessment of atherosclerotic plaques. The atherosclerotic plaque area in rabbits fed the BRF diet was 66% lower than that of the HC or WRF rabbits (P < 0.001). Supplementation of the black rice outer layer significantly (P < 0.05) lowered aortic 8-hydroxy-2'-deoxyguanosine (8-OHdG) (-52%, -44%) compared with the WRF or HC diets (P < 0.05). There were no differences in aortic 8-OHdG levels between rabbits fed the BRF and normal diets. The BRF diet significantly (P < 0.05) decreased the malondialdehyde (MDA) level of serum (-37%) and aortic artery (-50%) compared with the WRF diet. There were no differences in the concentrations of serum total cholesterol (TC), LDL cholesterol (LDL-C), HDL-C or the ratio of apoprotein (apo)I/apoB among the HC, WRF and BRF groups. Similarly, there were no differences in the serum vitamin E concentration and erythrocyte and aorta superoxide dismutase (SOD) activities among rabbits fed these diets. The serum concentration of most fatty acids except 18:1 did not differ between the WRF and the BRF groups. We conclude that the inhibition of atherosclerotic plaque formation derived from the black rice outer layer fraction in rabbits might be mediated by antioxidative or anti-inflammatory effects. PMID:11773502

  16. Effects of antioxidant supplements and nutrients on patients with asthma and allergies.

    PubMed

    Moreno-Macias, Hortensia; Romieu, Isabelle

    2014-05-01

    Asthma and allergic diseases have become a worldwide public health concern because of their increased prevalence. Despite decades of research on risk factors, the causes of these disorders are poorly understood. They are thought to develop through complex interactions between genetic and environmental factors. Because pulmonary and systemic oxidative stress increase inflammatory responses relevant to asthma and allergy, dietary or vitamin supplementation with antioxidants (a broad and varied category) has been proposed as an approach to reducing asthma incidence or morbidity. Meta-analyses of observational epidemiologic studies of variable methodological quality suggest associations of relatively low dietary intake of antioxidants and higher asthma and allergy prevalence. However, there have been few longitudinal studies of maternal or child dietary or vitamin/supplement antioxidant intake and asthma/allergy development. Moreover, there are no clinical trial data to support the use of dietary antioxidants or supplements to prevent asthma or allergy. A few small clinical trials suggest that specific antioxidants from diet or vitamin supplements might improve asthma control or lung function in asthmatic children or adults. Studies suggest that responses to antioxidants might be modified by life stage, genetic susceptibility, and environmental sources of oxidative stress. Large trials of antioxidant vitamin supplementation to prevent cancer suggest an increase in overall mortality with antioxidant vitamin supplementation, at least in populations with sufficient dietary antioxidant intake. This cautionary experience suggests that future trials to assess whether antioxidants reduce asthma incidence or improve asthma control should focus on supplementation of dietary sources of antioxidants. The potential benefits and risks of trials of vitamin supplements might be considered in special situations in which vulnerable populations have marked deficiency in dietary

  17. Peak and Persistent Excess of Genetic Diversity Following an Abrupt Migration Increase

    PubMed Central

    Alcala, Nicolas; Streit, Daniela; Goudet, Jérôme; Vuilleumier, Séverine

    2013-01-01

    Genetic diversity is essential for population survival and adaptation to changing environments. Demographic processes (e.g., bottleneck and expansion) and spatial structure (e.g., migration, number, and size of populations) are known to shape the patterns of the genetic diversity of populations. However, the impact of temporal changes in migration on genetic diversity has seldom been considered, although such events might be the norm. Indeed, during the millions of years of a species’ lifetime, repeated isolation and reconnection of populations occur. Geological and climatic events alternately isolate and reconnect habitats. We analytically document the dynamics of genetic diversity after an abrupt change in migration given the mutation rate and the number and sizes of the populations. We demonstrate that during transient dynamics, genetic diversity can reach unexpectedly high values that can be maintained over thousands of generations. We discuss the consequences of such processes for the evolution of species based on standing genetic variation and how they can affect the reconstruction of a population’s demographic and evolutionary history from genetic data. Our results also provide guidelines for the use of genetic data for the conservation of natural populations. PMID:23307901

  18. Genetic Vulnerability Interacts with Parenting and Early Care and Education to Predict Increasing Externalizing Behavior

    ERIC Educational Resources Information Center

    Lipscomb, Shannon T.; Laurent, Heidemarie; Neiderhiser, Jenae M.; Shaw, Daniel S.; Natsuaki, Misaki N.; Reiss, David; Leve, Leslie D.

    2014-01-01

    The current study examined interactions among genetic influences and children's early environments on the development of externalizing behaviors from 18 months to 6 years of age. Participants included 233 families linked through adoption (birth parents and adoptive families). Genetic influences were assessed by birth parent temperamental…

  19. Effects of Increasing Doses of UV-B on Main Phenolic Acids Content, Antioxidant Activity and Estimated Biomass in Lavandin (Lavandula x intermedia).

    PubMed

    Usano-Alemany, Jaime; Panjai, Lachinee

    2015-07-01

    Lavandin is a well-known aromatic plant cultivated mainly for its valuable essential oil. Nonetheless, little attention has been paid so far to the quantification of other natural products such as polyphenols. Accordingly, we examined the effect of increasing doses of UV-B radiation on the main phenolic content, antioxidant activity and estimated biomass of one year old lavandin pots compared with pots grown outdoors. Significantly higher total phenolic content and concentration of main polyphenols have been found in outdoor plants. Rosmarinic acid has been described as the major phenolic compound in methanolic extracts (max. 25.9 ± 9.7 mg/g(-1) DW). Furthermore, we found that increasing doses of UV-B promote the plant growth of this species as well as the accumulation of phenolic compounds although with less antioxidant capacity in scavenging DPPH radicals. On the other hand, our results showed a remarkable variability among individual plants regarding the content of major phenolic acids. The application of UV-B doses during plant growth could be a method to promote biomass in this species along with the promotion of higher content of valuable secondary metabolites. PMID:26411027

  20. Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts.

    PubMed

    Mendoza-Sánchez, Magdalena; Guevara-González, Ramón G; Castaño-Tostado, Eduardo; Mercado-Silva, Edmundo M; Acosta-Gallegos, Jorge A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2016-12-01

    The aim of this study was to determine the effect of chitosan (CH), salicylic acid (SA) and hydrogen peroxide (H2O2) at different concentrations on the antinutritional and nutraceutical content, as well as the antioxidant capacity of bean sprouts (cv Dalia). All elicitors at medium and high concentrations reduced the antinutritional content of lectins (48%), trypsin inhibitor (57%), amylase inhibitor (49%) and phytic acid (56%). Sprouts treated with CH, SA and H2O2 (7μM; 1 and 2mM, and 30mM respectively) increased the content of phenolic compounds (1.8-fold), total flavonoids (3-fold), saponins (1.8-fold) and antioxidant capacity (37%). Furthermore, the UPLC-ESI-MS/MS analysis showed an increase of several nutraceutical compounds in bean sprouts treated with SA such as coumaric (8.5-fold), salicylic (115-fold), gallic (25-fold) and caffeic (1.7-fold) acids, as well as epigallocatechin (63-fold), rutin (41-fold) and quercetin (16.6-fold) flavonoids. The application of elicitors in bean seed during sprouting enhances their nutraceutical properties.

  1. Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts.

    PubMed

    Mendoza-Sánchez, Magdalena; Guevara-González, Ramón G; Castaño-Tostado, Eduardo; Mercado-Silva, Edmundo M; Acosta-Gallegos, Jorge A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2016-12-01

    The aim of this study was to determine the effect of chitosan (CH), salicylic acid (SA) and hydrogen peroxide (H2O2) at different concentrations on the antinutritional and nutraceutical content, as well as the antioxidant capacity of bean sprouts (cv Dalia). All elicitors at medium and high concentrations reduced the antinutritional content of lectins (48%), trypsin inhibitor (57%), amylase inhibitor (49%) and phytic acid (56%). Sprouts treated with CH, SA and H2O2 (7μM; 1 and 2mM, and 30mM respectively) increased the content of phenolic compounds (1.8-fold), total flavonoids (3-fold), saponins (1.8-fold) and antioxidant capacity (37%). Furthermore, the UPLC-ESI-MS/MS analysis showed an increase of several nutraceutical compounds in bean sprouts treated with SA such as coumaric (8.5-fold), salicylic (115-fold), gallic (25-fold) and caffeic (1.7-fold) acids, as well as epigallocatechin (63-fold), rutin (41-fold) and quercetin (16.6-fold) flavonoids. The application of elicitors in bean seed during sprouting enhances their nutraceutical properties. PMID:27374516

  2. Inhibition of specific cellular antioxidant pathways increases the sensitivity of neurons to meta-tetrahydroxyphenyl chlorin-mediated photodynamic therapy in a 3D co-culture model.

    PubMed

    Wright, Kathleen E; MacRobert, Alexander J; Phillips, James B

    2012-01-01

    The effect of photodynamic therapy (PDT) on neurons is of critical importance when treating cancers within or adjacent to the nervous system. Neurons show reduced sensitivity to meta-tetrahydroxyphenyl chlorin (mTHPC) mediated PDT, so the aim of this study was to investigate whether neuron sparing is due to endogenous cellular antioxidant activity. Dorsal root ganglion (DRG) neurons and their associated satellite glia were subjected to mTHPC-PDT in a 3D co-culture system following incubation with antioxidant inhibitors: diethyl dithiocarbamate (DDC, SOD-1 inhibitor), 2-methoxyestradiol (2-MeOH(2), SOD-2 inhibitor) and L-buthionine sulfoximine (L-BSO, glutathione synthase inhibitor). Sensitivity of each cell type was assessed using a combination of live/dead staining and immunofluorescence. Pretreatment with DDC and with L-BSO significantly increased the sensitivity of neurons to mTHPC-PDT and also affected satellite glial cell viability, whereas 2-MeOE(2) caused only a small increase in neuron sensitivity (not significant). Pretreatment using a combination of DDC and L-BSO caused a near total loss of neuron and glial cell viability in treatment and control conditions. These findings suggest that the SOD-1 and glutathione pathways are likely to be involved in the neuronal sparing associated with mTHPC-PDT.

  3. Prolonged latency to CNS-O2 toxicity induced by heat acclimation in rats is associated with increased antioxidative defenses and metabolic energy preservation.

    PubMed

    Eynan, Mirit; Ertracht, Offir; Gancz, Hanan; Kashi, Yechezkel; Arieli, Yehuda

    2012-08-15

    We have previously shown that heat acclimation provides protection against central nervous system oxygen toxicity (CNS-OT). This was well correlated with increased levels of heat shock protein 72 (HSP72). We now examine other antioxidative defenses against CNS-OT that are correlated with heat acclimation. Two groups of male Sprague-Dawley rats were used. The heat-acclimated group (HA) was exposed for 4 wk to 32°C, and the control group (C) was maintained at 24°C. At the end of the acclimation period, rats were exposed to oxygen at 608 kPa. EEG was recorded continuously until appearance of the first electrical discharge. Brain samples were taken from each group after exposure to pressure. Levels of the antioxidant enzymes CuZnSOD, MnSOD, catalase, and glutathione peroxidase, as well as levels of HSP72, were quantified by Western blot. Comparative proteome analysis of the brains of HA and C rats was carried out using two-dimensional electrophoresis and mass spectrometry to define protein spot alterations. Levels of HSP72 and CuZnSOD were higher in HA rats. Levels of the other antioxidant enzymes were not affected significantly by heat acclimation. Differences in the levels of four protein spots identified as α-synuclein, valosin-containing protein, adenylate kinase 1 (AK1), and the mitochondrial H+-ATP synthase α subunit were found between HA and C rats. We conclude that elevation of HSP72, CuZnSOD, AK1, and the mitochondrial H+-ATP synthase α subunit and possible phosphorylation of α-synuclein--all proteins involved in oxidative stress or energy conservation--might contribute to the prolongation of latency to CNS-OT induced by heat acclimation.

  4. Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2010-11-01

    Zingiber officinale Roscoe. (Family Zingiberaceae) is well known in Asia. The plant is widely cultivated in village gardens in the tropics for its medicinal properties and as a marketable spice in Malaysia. Ginger varieties are rich in physiologically active phenolics and flavonoids with a range of pharmacological activities. Experiments were conducted to determine the feasibility of increasing levels of flavonoids (quercetin, rutin, catechin, epicatechin, kaempferol, naringenin, fisetin and morin) and phenolic acid (gallic acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid and salicylic acid), and antioxidant activities in different parts of Malaysian young ginger varieties (Halia Bentong and Halia Bara) with CO(2) enrichment in a controlled environment system. Both varieties showed an increase in phenolic compounds and flavonoids in response to CO(2) enrichment from 400 to 800 µmol mol-1 CO(2). These increases were greater in rhizomes compared to leaves. High performance liquid chromatography (HPLC) results showed that quercetin and gallic acid were the most abundant flavonoid and phenolic acid in Malaysian young ginger varieties. Under elevated CO(2) conditions, kaempferol and fisetin were among the flavonoid compounds, and gallic acid and vanillic acid were among the phenolic compounds whose levels increased in both varieties. As CO(2) concentration was increased from 400 to 800 µmol mol-1, free radical scavenging power (DPPH) increased about 30% in Halia Bentong and 21.4% in Halia Bara; and the rhizomes exhibited more enhanced free radical scavenging power, with 44.9% in Halia Bentong and 46.2% in Halia Bara. Leaves of both varieties also displayed good levels of flavonoid compounds and antioxidant activities. These results indicate that the yield and pharmaceutical quality of Malaysian young ginger varieties can be enhanced by controlled environment production and CO(2) enrichment. PMID:21060298

  5. Effects of increasing brain GABA on the meal patterns of genetically obese vs. lean Zucker rats.

    PubMed

    Coscina, D V; Castonguay, T W; Stern, J S

    1992-06-01

    To explore recent suggestions that genetically obese Zucker rats show less anorexia when brain gamma-aminobutyric acid (GABA) is elevated, obese vs. lean littermates received 100, 50 and 0 micrograms of the GABA-transaminase inhibitor, ethanolamine-O-sulfate (EOS), intra-cisternally in a longitudinal design where their feeding patterns were monitored 24 h daily. Obese rats were refractory to EOS-induced anorexia as evidenced by less suppression of daily food intake and fewer alterations to both meal size and meal frequency, particularly in the night. This effect was not due to an inability of EOS to increase brain GABA since equivalent, specific dose-dependent increments were seen in the brains of separate obese vs. lean rats after analysis of endogenous GABA and seven other amino acids. An unexpected finding was elevated levels of brain taurine for obese rats regardless of EOS dosage, implying a hitherto unknown neurochemical trait whose potential significance is unclear. The primary data obtained provide further support for recent hypotheses that obese Zucker rats possess altered brain GABAergic mechanisms that may serve as one contributor to their over-eating.

  6. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    PubMed

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop. PMID:23205714

  7. Brain Tumor Genetic Modification Yields Increased Resistance to Paclitaxel in Physical Confinement.

    PubMed

    Bui, Loan; Hendricks, Alissa; Wright, Jamie; Chuong, Cheng-Jen; Davé, Digant; Bachoo, Robert; Kim, Young-Tae

    2016-01-01

    Brain tumor cells remain highly resistant to radiation and chemotherapy, particularly malignant and secondary cancers. In this study, we utilized microchannel devices to examine the effect of a confined environment on the viability and drug resistance of the following brain cancer cell lines: primary cancers (glioblastoma multiforme and neuroblastoma), human brain cancer cell lines (D54 and D54-EGFRvIII), and genetically modified mouse astrocytes (wild type, p53-/-, p53-/- PTEN-/-, p53-/- Braf, and p53-/- PTEN-/- Braf). We found that loss of PTEN combined with Braf activation resulted in higher viability in narrow microchannels. In addition, Braf conferred increased resistance to the microtubule-stabilizing drug Taxol in narrow confinement. Similarly, survival of D54-EGFRvIII cells was unaffected following treatment with Taxol, whereas the viability of D54 cells was reduced by 75% under these conditions. Taken together, our data suggests key targets for anticancer drugs based on cellular genotypes and their specific survival phenotypes during confined migration. PMID:27184621

  8. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    PubMed

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop.

  9. Brain Tumor Genetic Modification Yields Increased Resistance to Paclitaxel in Physical Confinement

    PubMed Central

    Bui, Loan; Hendricks, Alissa; Wright, Jamie; Chuong, Cheng-Jen; Davé, Digant; Bachoo, Robert; Kim, Young-tae

    2016-01-01

    Brain tumor cells remain highly resistant to radiation and chemotherapy, particularly malignant and secondary cancers. In this study, we utilized microchannel devices to examine the effect of a confined environment on the viability and drug resistance of the following brain cancer cell lines: primary cancers (glioblastoma multiforme and neuroblastoma), human brain cancer cell lines (D54 and D54-EGFRvIII), and genetically modified mouse astrocytes (wild type, p53−/−, p53−/− PTEN−/−, p53−/− Braf, and p53−/− PTEN−/− Braf). We found that loss of PTEN combined with Braf activation resulted in higher viability in narrow microchannels. In addition, Braf conferred increased resistance to the microtubule-stabilizing drug Taxol in narrow confinement. Similarly, survival of D54-EGFRvIII cells was unaffected following treatment with Taxol, whereas the viability of D54 cells was reduced by 75% under these conditions. Taken together, our data suggests key targets for anticancer drugs based on cellular genotypes and their specific survival phenotypes during confined migration. PMID:27184621

  10. Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability.

    PubMed

    Greenbury, Sam F; Schaper, Steffen; Ahnert, Sebastian E; Louis, Ard A

    2016-03-01

    Mutational neighbourhoods in genotype-phenotype (GP) maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps-a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure-to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i) If a particular (non-neutral) phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii) If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii) If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i) and ii) reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii) may instead facilitate evolutionary exploration and so

  11. Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability

    PubMed Central

    Greenbury, Sam F.; Schaper, Steffen; Ahnert, Sebastian E.; Louis, Ard A.

    2016-01-01

    Mutational neighbourhoods in genotype-phenotype (GP) maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps—a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure—to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i) If a particular (non-neutral) phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii) If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii) If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i) and ii) reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii) may instead facilitate evolutionary exploration and so

  12. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice.

    PubMed

    Strong, Randy; Miller, Richard A; Astle, Clinton M; Floyd, Robert A; Flurkey, Kevin; Hensley, Kenneth L; Javors, Martin A; Leeuwenburgh, Christiaan; Nelson, James F; Ongini, Ennio; Nadon, Nancy L; Warner, Huber R; Harrison, David E

    2008-10-01

    The National Institute on Aging's Interventions Testing Program was established to evaluate agents that are purported to increase lifespan and delay the appearance of age-related disease in genetically heterogeneous mice. Up to five compounds are added to the study each year and each compound is tested at three test sites (The Jackson Laboratory, University of Michigan, and University of Texas Health Science Center at San Antonio). Mice in the first cohort were exposed to one of four agents: aspirin, nitroflurbiprofen, 4-OH-alpha-phenyl-N-tert-butyl nitrone, or nordihydroguaiaretic acid (NDGA). Sample size was sufficient to detect a 10% difference in lifespan in either sex,with 80% power, using data from two of the three sites. Pooling data from all three sites, a log-rank test showed that both NDGA (p=0.0006) and aspirin (p=0.01) led to increased lifespan of male mice. Comparison of the proportion of live mice at the age of 90% mortality was used as a surrogate for measurement of maximum lifespan;neither NDGA (p=0.12) nor aspirin (p=0.16) had a significant effect in this test. Measures of blood levels of NDGA or aspirin and its salicylic acid metabolite suggest that the observed lack of effects of NDGA or aspirin on life span in females could be related to gender differences in drug disposition or metabolism. Further studies are warranted to find whether NDGA or aspirin, over a range of doses,might prove to postpone death and various age-related outcomes reproducibly in mice. PMID:18631321

  13. Assessing genetically modified crops to minimize the risk of increased food allergy: a review.

    PubMed

    Goodman, Richard E; Hefle, Susan L; Taylor, Steven L; van Ree, Ronald

    2005-06-01

    The first genetically modified (GM) crops approved for food use (tomato and soybean) were evaluated for safety by the United States Food and Drug Administration prior to commercial production. Among other factors, those products and all additional GM crops that have been grown commercially have been evaluated for potential increases in allergenic properties using methods that are consistent with the current understanding of food allergens and knowledge regarding the prediction of allergenic activity. Although there have been refinements, the key aspects of the evaluation have not changed. The allergenic properties of the gene donor and the host (recipient) organisms are considered in determining the appropriate testing strategy. The amino acid sequence of the encoded protein is compared to all known allergens to determine whether the protein is a known allergen or is sufficiently similar to any known allergen to indicate an increased probability of allergic cross-reactivity. Stability of the protein in the presence of acid with the stomach protease pepsin is tested as a risk factor for food allergenicity. In vitro or in vivo human IgE binding are tested when appropriate, if the gene donor is an allergen or the sequence of the protein is similar to an allergen. Serum donors and skin test subjects are selected based on their proven allergic responses to the gene donor or to material containing the allergen that was matched in sequence. While some scientists and regulators have suggested using animal models, performing broadly targeted serum IgE testing or extensive pre- or post-market clinical tests, current evidence does not support these tests as being predictive or practical. Based on the evidence to date, the current assessment process has worked well to prevent the unintended introduction of allergens in commercial GM crops.

  14. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients.

    PubMed

    Babizhayev, Mark A; Strokov, Igor A; Nosikov, Valery V; Savel'yeva, Ekaterina L; Sitnikov, Vladimir F; Yegorov, Yegor E; Lankin, Vadim Z

    2015-04-01

    Diabetic neuropathy (DN) represents the main cause of morbidity and mortality among diabetic patients. Clinical data support the conclusion that the severity of DN is related to the frequency and duration of hyperglycemic periods. The presented experimental and clinical evidences propose that changes in cellular function resulting in oxidative stress act as a leading factor in the development and progression of DN. Hyperglycemia- and dyslipidemia-driven oxidative stress is a major contributor, enhanced by advanced glycation end product (AGE) formation and polyol pathway activation. There are several polymorphous pathways that lead to oxidative stress in the peripheral nervous system in chronic hyperglycemia. This article demonstrates the origin of oxidative stress derived from glycation reactions and genetic variations within the antioxidant genes which could be implicated in the pathogenesis of DN. In the diabetic state, unchecked superoxide accumulation and resultant increases in polyol pathway activity, AGEs accumulation, protein kinase C activity, and hexosamine flux trigger a feed-forward system of progressive cellular dysfunction. In nerve, this confluence of metabolic and vascular disturbances leads to impaired neural function and loss of neurotrophic support, and over the long term, can mediate apoptosis of neurons and Schwann cells, the glial cells of the peripheral nervous system. In this article, we consider AGE-mediated reactive oxygen species (ROS) generation as a pathogenesis factor in the development of DN. It is likely that oxidative modification of proteins and other biomolecules might be the consequence of local generation of superoxide on the interaction of the residues of L-lysine (and probably other amino acids) with α-ketoaldehydes. This phenomenon of non-enzymatic superoxide generation might be an element of autocatalytic intensification of pathophysiological action of carbonyl stress. Glyoxal and methylglyoxal formed during metabolic

  15. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways

    PubMed Central

    Aldebasi, Yousef H; Aly, Salah M; Rahmani, Arshad H

    2013-01-01

    Diabetic Retinopathy (DR) is one of the most common complications of diabetes mellitus that affects the blood vessels of the retina, leading to blindness. The current approach of treatment based on anti-inflammatory, anti-angiogenesis drugs and laser photocoagulation are effective but also shows adverse affect in retinal tissues and that can even worsen the visual abilities. Thus, a safe and effective mode of treatment is needed to control or delaying the DR. Based on the earlier evidence of the potentiality of natural products as anti-oxidants, anti-diabetic and antitumor, medicinal plants may constitute a good therapeutic approach in the prevention of DR. Curcumin, constituents of dietary spice turmeric, has been observed to have therapeutic potential in the inhibition or slow down progression of DR. In this review, we summarize the therapeutic potentiality of curcumin in the delaying the DR through antioxidant, anti-inflammatory, inhibition of Vascular Endothelial Growth and nuclear transcription factors. The strength of involvement of curcumin in the modulation of genes action creates a strong optimism towards novel therapeutic strategy of diabetic retinopathy and important mainstay in the management of diabetes and its complications DR. PMID:24379904

  16. Liv.52 up-regulates cellular antioxidants and increase glucose uptake to circumvent oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sharath Kumar, L M; Barooah, Vandana; Sandeep Varma, R; Nandakumar, Krishna S; Patki, Pralhad Sadashiv

    2012-10-15

    HepG2 cells were rendered steatotic by supplementing 2.0mM oleic acid (OA) in the culture media for 24h. OA induced hepatic steatosis in HepG2 cells was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. It was also marked by increased inflammatory cytokines TNF-α and IL-8 with decreased enzymic and non-enzymic antioxidant molecules and decreased cell proliferation associated with insulin resistance and DNA fragmentation. Addition of Liv.52 hydro-alcoholic extract (LHAE) 50μg/mL to the steatotic cells was effective in increasing the insulin mediated glucose uptake by 3.13 folds and increased cell proliferation by 3.81 folds with decreased TAG content (55%) and cytokines. The intracellular glutathione content was increased by 8.9 folds without substantial increase in GSSG content. LHAE decreased TNF-α and IL-8 by 51% and 6.5% folds respectively, lipid peroxidation by 65% and inhibited DNA fragmentation by 69%. The superoxide dismutase, catalase and glutathione peroxidase activities were increased by 88%, 128% and 64% respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by LHAE. Hence, LHAE effectively attenuate molecular perturbations associated with non-alcoholic fatty liver disease (NAFLD) indications in HepG2 cells. PMID:22940028

  17. Liv.52 up-regulates cellular antioxidants and increase glucose uptake to circumvent oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sharath Kumar, L M; Barooah, Vandana; Sandeep Varma, R; Nandakumar, Krishna S; Patki, Pralhad Sadashiv

    2012-10-15

    HepG2 cells were rendered steatotic by supplementing 2.0mM oleic acid (OA) in the culture media for 24h. OA induced hepatic steatosis in HepG2 cells was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. It was also marked by increased inflammatory cytokines TNF-α and IL-8 with decreased enzymic and non-enzymic antioxidant molecules and decreased cell proliferation associated with insulin resistance and DNA fragmentation. Addition of Liv.52 hydro-alcoholic extract (LHAE) 50μg/mL to the steatotic cells was effective in increasing the insulin mediated glucose uptake by 3.13 folds and increased cell proliferation by 3.81 folds with decreased TAG content (55%) and cytokines. The intracellular glutathione content was increased by 8.9 folds without substantial increase in GSSG content. LHAE decreased TNF-α and IL-8 by 51% and 6.5% folds respectively, lipid peroxidation by 65% and inhibited DNA fragmentation by 69%. The superoxide dismutase, catalase and glutathione peroxidase activities were increased by 88%, 128% and 64% respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by LHAE. Hence, LHAE effectively attenuate molecular perturbations associated with non-alcoholic fatty liver disease (NAFLD) indications in HepG2 cells.

  18. Tai Chi exercise increases SOD activity and total antioxidant status in saliva and is linked to an improvement of periodontal disease in the elderly.

    PubMed

    Mendoza-Núñez, Víctor Manuel; Hernández-Monjaraz, Beatriz; Santiago-Osorio, Edelmiro; Betancourt-Rule, José Miguel; Ruiz-Ramos, Mirna

    2014-01-01

    The aim of this study was to determine the effect of Tai Chi on biological markers of oxidative stress in saliva and its relationship with periodontal disease (PD) in older adults. We carried out a quasi-experimental study with a sample of 71 sedentary volunteers with PD who were divided into a control group of 34 subjects and an experimental group of 37 subjects who performed Tai Chi 5 days a week for a period of 6 months. PD status was characterized using the Periodontal Disease Index (PDI). Superoxide dismutase (SOD), total antioxidant status (TAS), and TBARS levels of both groups were measured by spectrophotometric methods. In addition, inflammation markers (TNF-α, IL-1β, IL-6, IL-8, and IL-10) were measured by flow cytometry. We found a statistically significant increase in SOD activity (P < 0.001) and TAS concentration (P < 0.05), whereas levels of IL-1β were significantly lower (P < 0.01). Likewise, a statistically significant decrease in the PDI (P < 0.05) was observed in subjects who performed Tai Chi during a period of 6 months. Our findings suggest that the practice of Tai Chi has both antioxidant and anti-inflammatory effects that are linked to the improvement of PD in older adults. PMID:24790703

  19. Tai Chi Exercise Increases SOD Activity and Total Antioxidant Status in Saliva and Is Linked to an Improvement of Periodontal Disease in the Elderly

    PubMed Central

    Hernández-Monjaraz, Beatriz; Santiago-Osorio, Edelmiro; Betancourt-Rule, José Miguel; Ruiz-Ramos, Mirna

    2014-01-01

    The aim of this study was to determine the effect of Tai Chi on biological markers of oxidative stress in saliva and its relationship with periodontal disease (PD) in older adults. We carried out a quasi-experimental study with a sample of 71 sedentary volunteers with PD who were divided into a control group of 34 subjects and an experimental group of 37 subjects who performed Tai Chi 5 days a week for a period of 6 months. PD status was characterized using the Periodontal Disease Index (PDI). Superoxide dismutase (SOD), total antioxidant status (TAS), and TBARS levels of both groups were measured by spectrophotometric methods. In addition, inflammation markers (TNF-α, IL-1β, IL-6, IL-8, and IL-10) were measured by flow cytometry. We found a statistically significant increase in SOD activity (P < 0.001) and TAS concentration (P < 0.05), whereas levels of IL-1β were significantly lower (P < 0.01). Likewise, a statistically significant decrease in the PDI (P < 0.05) was observed in subjects who performed Tai Chi during a period of 6 months. Our findings suggest that the practice of Tai Chi has both antioxidant and anti-inflammatory effects that are linked to the improvement of PD in older adults. PMID:24790703

  20. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function.

    PubMed

    Hughes, Kim; Flynn, Tanya; de Zoysa, Janak; Dalbeth, Nicola; Merriman, Tony R

    2014-02-01

    Increased serum urate predicts chronic kidney disease independent of other risk factors. The use of xanthine oxidase inhibitors coincides with improved renal function. Whether this is due to reduced serum urate or reduced production of oxidants by xanthine oxidase or another physiological mechanism remains unresolved. Here we applied Mendelian randomization, a statistical genetics approach allowing disentangling of cause and effect in the presence of potential confounding, to determine whether lowering of serum urate by genetic modulation of renal excretion benefits renal function using data from 7979 patients of the Atherosclerosis Risk in Communities and Framingham Heart studies. Mendelian randomization by the two-stage least squares method was done with serum urate as the exposure, a uric acid transporter genetic risk score as instrumental variable, and estimated glomerular filtration rate and serum creatinine as the outcomes. Increased genetic risk score was associated with significantly improved renal function in men but not in women. Analysis of individual genetic variants showed the effect size associated with serum urate did not correlate with that associated with renal function in the Mendelian randomization model. This is consistent with the possibility that the physiological action of these genetic variants in raising serum urate correlates directly with improved renal function. Further studies are required to understand the mechanism of the potential renal function protection mediated by xanthine oxidase inhibitors.

  1. Genetic factors associated with population size may increase extinction risks and decrease colonization potential in a keystone tropical pine

    PubMed Central

    del Castillo, Rafael F; Trujillo-Argueta, Sonia; Sánchez-Vargas, Nahúm; Newton, Adrian C

    2011-01-01

    Pioneer species are essential for forest regeneration and ecosystem resilience. Pinus chiapensis is an endangered pioneer key species for tropical montane cloud forest regeneration in Mesoamerica. Human activities have severely reduced some P. chiapensis populations, which exhibited a small or null colonization potential suggesting the involvement of genetic factors associated with small populations. We explored the relationships between (i) population genetic diversity (allozymes) and population size, including sampling size effects, (ii) fitness estimates associated with colonization potential (seed viability and seedling performance) in a common environment and population size, and (iii) fitness estimates and observed heterozygosity in populations with sizes spanning five orders of magnitude. All the estimates of genetic diversity and fitness increased significantly with population size. Low fitness was detected in progenies of small populations of disturbed and undisturbed habitats. Progenies with the lowest observed heterozygosity displayed the lowest fitness estimates, which, in turn, increased with heterozygosity, but seed viability peaked at intermediate heterozygosity values suggesting inbreeding and outbreeding depression. Inbreeding depression appears to be the most immediate genetic factor in population decline. Conservation efforts should try to maintain large and genetically diverse populations, enhance gene flow by restoring connectivity between adjacent populations, and avoid genetically distant individuals. PMID:25568006

  2. Loss of genetic diversity and increased embryonic mortality in non-native lizard populations.

    PubMed

    Michaelides, Sozos N; While, Geoffrey M; Zajac, Natalia; Aubret, Fabien; Calsbeek, Brittny; Sacchi, Roberto; Zuffi, Marco A L; Uller, Tobias

    2016-09-01

    Many populations are small and isolated with limited genetic variation and high risk of mating with close relatives. Inbreeding depression is suspected to contribute to extinction of wild populations, but the historical and demographic factors that contribute to reduced population viability are often difficult to tease apart. Replicated introduction events in non-native species can offer insights into this problem because they allow us to study how genetic variation and inbreeding depression are affected by demographic events (e.g. bottlenecks), genetic admixture and the extent and duration of isolation. Using detailed knowledge about the introduction history of 21 non-native populations of the wall lizard Podarcis muralis in England, we show greater loss of genetic diversity (estimated from microsatellite loci) in older populations and in populations from native regions of high diversity. Loss of genetic diversity was accompanied by higher embryonic mortality in non-native populations, suggesting that introduced populations are sufficiently inbred to jeopardize long-term viability. However, there was no statistical correlation between population-level genetic diversity and average embryonic mortality. Similarly, at the individual level, there was no correlation between female heterozygosity and clutch size, infertility or hatching success, or between embryo heterozygosity and mortality. We discuss these results in the context of human-mediated introductions and how the history of introductions can play a fundamental role in influencing individual and population fitness in non-native species. PMID:27393416

  3. Increased genetic diversity of Viola tricolor L. (Violaceae) in metal-polluted environments.

    PubMed

    Słomka, A; Sutkowska, A; Szczepaniak, M; Malec, P; Mitka, J; Kuta, E

    2011-04-01

    Changes in DNA sequences affecting cryptic intraspecific variability are very important mechanisms of plant microevolutionary processes, initiating species diversification. In polluted environments, intra- and interpopulation changes at the molecular level proceed rapidly and lead to the formation of new ecotypes in a relatively short time. We used ISSR PCR fingerprinting data to analyze the genetic diversity and genetic structure of seven populations of Viola tricolor: four growing on soil contaminated with heavy metals (Zn, Pb, Cd; waste heaps) and three from control soil. The populations from the polluted sites showed higher genetic polymorphism (%(poly)=84%) and gene diversity (H(T)=0.1709) than the control populations (%(poly)=75% and H(T)=0.1448). The number of private markers we detected within metallicolous (MET) populations was more than double that found within non-metallicolous (NON) populations (15 vs. 7). The STRUCTURE and UPGMA analyses showed clear genetic differences between the NON and MET populations. Based on broad analyses of the genetic parameters, we conclude that the effect of these polluted environments on the genetic diversity of the MET populations, separating them from the NON populations, is evidence of microevolutionary processes at species level, leading to species divergence and the emergence of local ecotypes better adapted to their different environments.

  4. Genetic diversity within honeybee colonies increases signal production by waggle-dancing foragers

    PubMed Central

    Mattila, Heather R; Burke, Kelly M; Seeley, Thomas D

    2008-01-01

    Recent work has demonstrated considerable benefits of intracolonial genetic diversity for the productivity of honeybee colonies: single-patriline colonies have depressed foraging rates, smaller food stores and slower weight gain relative to multiple-patriline colonies. We explored whether differences in the use of foraging-related communication behaviour (waggle dances and shaking signals) underlie differences in foraging effort of genetically diverse and genetically uniform colonies. We created three pairs of colonies; each pair had one colony headed by a multiply mated queen (inseminated by 15 drones) and one colony headed by a singly mated queen. For each pair, we monitored the production of foraging-related signals over the course of 3 days. Foragers in genetically diverse colonies had substantially more information available to them about food resources than foragers in uniform colonies. On average, in genetically diverse colonies compared with genetically uniform colonies, 36% more waggle dances were identified daily, dancers performed 62% more waggle runs per dance, foragers reported food discoveries that were farther from the nest and 91% more shaking signals were exchanged among workers each morning prior to foraging. Extreme polyandry by honeybee queens enhances the production of worker–worker communication signals that facilitate the swift discovery and exploitation of food resources. PMID:18198143

  5. Riboflavin and vitamin E increase brain calcium and antioxidants, and microsomal calcium-ATP-ase values in rat headache models induced by glyceryl trinitrate.

    PubMed

    Bütün, Ayşe; Nazıroğlu, Mustafa; Demirci, Serpil; Çelik, Ömer; Uğuz, Abdulhadi Cihangir

    2015-04-01

    The essential use of riboflavin is the prevention of migraine headaches, although its effect on migraines is considered to be associated with the increased mitochondrial energy metabolism. Oxidative stress is also important in migraine pathophysiology. Vitamin E is a strong antioxidant in nature and its analgesic effect is not completely clear in migraines. The current study aimed to investigate the effects of glyceryl trinitrate (GTN)-sourced exogen nitric oxide (NO), in particular, and also riboflavin and/or vitamin E on involved in the headache model induced via GTN-sourced exogen NO on oxidative stress, total brain calcium levels, and microsomal membrane Ca(2+)-ATPase levels. GTN infusion is a reliable method to provoke migraine-like headaches in experimental animals and humans. GTN resulted in a significant increase in brain cortex and microsomal lipid peroxidation levels although brain calcium, vitamin A, vitamin C, and vitamin E, and brain microsomal-reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and plasma-membrane Ca(2+)-ATPase values decreased through GTN. The lipid peroxidation, GSH, vitamin A, β-carotene, vitamin C, and vitamin E, and calcium concentrations, GSH-Px, and the Ca(2+)-ATPase activities were increased both by riboflavin and vitamin E treatments. Brain calcium and vitamin A concentrations increased through riboflavin only. In conclusion, riboflavin and vitamin E had a protective effect on the GTN-induced brain injury by inhibiting free radical production, regulation of calcium-dependent processes, and supporting the antioxidant redox system. However, the effects of vitamin E on the values seem more important than in riboflavin.

  6. Improving the cytoplasmic maturation of bovine oocytes matured in vitro with intracellular and/or extracellular antioxidants is not associated with increased rates of embryo development.

    PubMed

    Rocha-Frigoni, Nathália A S; Leão, Beatriz C S; Dall'Acqua, Priscila Chediek; Mingoti, Gisele Z

    2016-11-01

    The production of reactive oxygen species (ROS) is a normal process that occurs in the cellular mitochondrial respiratory chain. However, an increase in ROS levels during in vitro production of bovine embryos induces oxidative stress, leading to failed embryonic development. Therefore, we investigated whether supplementation of IVM medium with intracellular (cysteine and cysteamine; C + C) and/or extracellular (catalase; CAT) antioxidants improves the culture system, affects the mitochondrial membrane potential, affects the intracellular levels of ROS and glutathione (GSH) in the bovine oocytes at the end of maturation, and thereby affects the subsequent embryonic development. At the end of IVM, the metaphase II rates were unaffected by the treatments (76.7 ± 1.7% to 80.6 ± 5.2%; P > 0.05). The intracellular ROS levels, expressed in arbitrary fluorescence units, found in the oocytes treated with intracellular antioxidants (C + C and C + C + CAT groups; 1.06, averaged) were as low as those observed in immature oocytes (0 hour: 1.00 ± 0.12). Among mature oocytes, higher (P < 0.05) ROS levels were found in the control group (1.91 ± 0.10) when compared to the ROS levels found in oocytes treated with antioxidants. Intracellular GSH levels in all groups were lower (0.17 ± 0.09 to 0.51 ± 0.05; P < 0.05) than those in immature oocytes (1.00 ± 0.08), although GSH levels in the C + C group (0.51 ± 0.05) were greater (P < 0.05) than in the control, CAT, and C + C + CAT groups (0.23; averaged). The mitochondrial membrane potential in all groups was improved (1.6; averaged; P < 0.05) compared to the membrane potential observed in the immature oocytes (1.00 ± 0.05), with the exception of the C + C group (0.94 ± 0.03). There was no effect (P > 0.05) of antioxidant supplementation on embryonic development to the blastocyst stage (36.1%; averaged); however, there was an increased tendency (P = 0.0689) to obtain a higher

  7. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    SciTech Connect

    Ishikado, Atsushi; Nishio, Yoshihiko; Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime; Makino, Taketoshi; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  8. Reduced genetic diversity and increased reproductive isolation follow population-level loss of larval dispersal in a marine gastropod.

    PubMed

    Ellingson, Ryan A; Krug, Patrick J

    2016-01-01

    Population-level consequences of dispersal ability remain poorly understood, especially for marine animals in which dispersal is typically considered a species-level trait governed by oceanographic transport of microscopic larvae. Transitions from dispersive (planktotrophic) to nondispersive, aplanktonic larvae are predicted to reduce connectivity, genetic diversity within populations, and the spatial scale at which reproductive isolation evolves. However, larval dimorphism within a species is rare, precluding population-level tests. We show the sea slug Costasiella ocellifera expresses both larval morphs in Florida and the Caribbean, regions with divergent mitochondrial lineages. Planktotrophy predominated at 11 sites, 10 of which formed a highly connected and genetically diverse Caribbean metapopulation. Four populations expressed mainly aplanktonic development and had markedly reduced connectivity, and lower genetic diversity at one mitochondrial and six nuclear loci. Aplanktonic dams showed partial postzygotic isolation in most interpopulation crosses, regardless of genetic or geographic distance to the sire's source, suggesting that outbreeding depression affects fragmented populations. Dams from genetically isolated and neighboring populations also exhibited premating isolation, consistent with reinforcement contingent on historical interaction. By increasing self-recruitment and genetic drift, the loss of dispersal may thus initiate a feedback loop resulting in the evolution of reproductive isolation over small spatial scales in the sea. PMID:26635309

  9. Reduced genetic diversity and increased reproductive isolation follow population-level loss of larval dispersal in a marine gastropod.

    PubMed

    Ellingson, Ryan A; Krug, Patrick J

    2016-01-01

    Population-level consequences of dispersal ability remain poorly understood, especially for marine animals in which dispersal is typically considered a species-level trait governed by oceanographic transport of microscopic larvae. Transitions from dispersive (planktotrophic) to nondispersive, aplanktonic larvae are predicted to reduce connectivity, genetic diversity within populations, and the spatial scale at which reproductive isolation evolves. However, larval dimorphism within a species is rare, precluding population-level tests. We show the sea slug Costasiella ocellifera expresses both larval morphs in Florida and the Caribbean, regions with divergent mitochondrial lineages. Planktotrophy predominated at 11 sites, 10 of which formed a highly connected and genetically diverse Caribbean metapopulation. Four populations expressed mainly aplanktonic development and had markedly reduced connectivity, and lower genetic diversity at one mitochondrial and six nuclear loci. Aplanktonic dams showed partial postzygotic isolation in most interpopulation crosses, regardless of genetic or geographic distance to the sire's source, suggesting that outbreeding depression affects fragmented populations. Dams from genetically isolated and neighboring populations also exhibited premating isolation, consistent with reinforcement contingent on historical interaction. By increasing self-recruitment and genetic drift, the loss of dispersal may thus initiate a feedback loop resulting in the evolution of reproductive isolation over small spatial scales in the sea.

  10. Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L.), subjected to short-term low temperature stress.

    PubMed

    He, J; Qiang, J; Yang, H; Xu, P; Zhu, Z X; Yang, R Q

    2015-10-01

    We evaluated the effect of cold shock on the fatty acid composition, antioxidant enzymes, and physiological responses of genetically improved farmed tilapia (GIFT). Experimental GIFT tilapia, a warm-water teleost, were initially acclimated at 28°C and then transferred directly to 13°C. Stress responses were monitored for 120h. There was a significant change in all parameters in response to the cold stressor (P<0.05). Serum cortisol levels increased from 336.93ng/ml to a peak of 1165.31ng/ml 24h after the initial cold shock, and declined rapidly thereafter. Serum glucose and cholesterol levels were significantly lower in the low temperature group than the control group at 120h (P<0.05). Acute low temperature stress enhanced superoxide dismutase, glutathione peroxidase, catalase, and glutathione levels in the liver of GIFT tilapia. The GIFT tilapia were able to selectively metabolize fatty acids for energy needs during the early period of exposure to low-temperature stress. During this time, they primarily used saturated fatty acids for energy. However as the duration of the stressor and loss of muscle fat increased, the fish began to metabolize long-chain polyunsaturated fatty acids. Increased malondialdehyde was produced by oxidation of these fatty acids leading to oxidative damage. Our results provide insight into the changes in fatty acid metabolism physiology that allow GIFT tilapia juveniles to adapt to short-term cold stress.

  11. Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L.), subjected to short-term low temperature stress.

    PubMed

    He, J; Qiang, J; Yang, H; Xu, P; Zhu, Z X; Yang, R Q

    2015-10-01

    We evaluated the effect of cold shock on the fatty acid composition, antioxidant enzymes, and physiological responses of genetically improved farmed tilapia (GIFT). Experimental GIFT tilapia, a warm-water teleost, were initially acclimated at 28°C and then transferred directly to 13°C. Stress responses were monitored for 120h. There was a significant change in all parameters in response to the cold stressor (P<0.05). Serum cortisol levels increased from 336.93ng/ml to a peak of 1165.31ng/ml 24h after the initial cold shock, and declined rapidly thereafter. Serum glucose and cholesterol levels were significantly lower in the low temperature group than the control group at 120h (P<0.05). Acute low temperature stress enhanced superoxide dismutase, glutathione peroxidase, catalase, and glutathione levels in the liver of GIFT tilapia. The GIFT tilapia were able to selectively metabolize fatty acids for energy needs during the early period of exposure to low-temperature stress. During this time, they primarily used saturated fatty acids for energy. However as the duration of the stressor and loss of muscle fat increased, the fish began to metabolize long-chain polyunsaturated fatty acids. Increased malondialdehyde was produced by oxidation of these fatty acids leading to oxidative damage. Our results provide insight into the changes in fatty acid metabolism physiology that allow GIFT tilapia juveniles to adapt to short-term cold stress. PMID:26590460

  12. Chytrid epidemics may increase genetic diversity of a diatom spring-bloom

    PubMed Central

    Gsell, Alena S; de Senerpont Domis, Lisette N; Verhoeven, Koen JF; van Donk, Ellen; Ibelings, Bastiaan W

    2013-01-01

    Contrary to expectation, populations of clonal organisms are often genetically highly diverse. In phytoplankton, this diversity is maintained throughout periods of high population growth (that is, blooms), even though competitive exclusion among genotypes should hypothetically lead to the dominance of a few superior genotypes. Genotype-specific parasitism may be one mechanism that helps maintain such high-genotypic diversity of clonal organisms. Here, we present a comparison of population genetic similarity by estimating the beta-dispersion among genotypes of early and peak bloom populations of the diatom Asterionella formosa for three spring-blooms under high or low parasite pressure. The Asterionella population showed greater beta-dispersion at peak bloom than early bloom in the 2 years with high parasite pressure, whereas the within group dispersion did not change under low parasite pressure. Our findings support that high prevalence parasitism can promote genetic diversification of natural populations of clonal hosts. PMID:23657362

  13. Reduced Genetic Diversity and Increased Structure in American Mink on the Swedish Coast following Invasive Species Control.

    PubMed

    Zalewski, Andrzej; Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz

    2016-01-01

    Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates. PMID:27333328

  14. Reduced Genetic Diversity and Increased Structure in American Mink on the Swedish Coast following Invasive Species Control.

    PubMed

    Zalewski, Andrzej; Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz

    2016-01-01

    Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates.

  15. Reduced Genetic Diversity and Increased Structure in American Mink on the Swedish Coast following Invasive Species Control

    PubMed Central

    Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz

    2016-01-01

    Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates. PMID:27333328

  16. Antioxidant peptidomics reveals novel skin antioxidant system.

    PubMed

    Yang, Hailong; Wang, Xu; Liu, Xiuhong; Wu, Jing; Liu, Cunbao; Gong, Weiming; Zhao, Zhiqiang; Hong, Jing; Lin, Donghai; Wang, Yizheng; Lai, Ren

    2009-03-01

    It is generally agreed that reactive oxygen species (ROS) contribute to skin aging, skin disorders, and skin diseases. Skin possesses an extremely efficient antioxidant system. This antioxidant activity is conferred by two systems: antioxidant enzymes and small molecules that can scavenge ROS by donating electrons. No gene-encoded secreted ROS scavengers have been reported. Amphibian skin is a multifunctional organ acting in defense, respiration, and water regulation, although it seems susceptible. Amphibian skins are easily harmed by biological or non-biological attacks such as microorganism infection or radiation injury. Among vertebrates, skins of amphibian are exposed to more dangers of radiation injury than others. Radiation toxicity occurs by directly attacking the genetic material and/or by generating ROS. In addition, amphibian skin respiration and inflammatory response also induce ROS generation. It is rational to hypothesize that amphibian skins should have potent free radical scavenging and radioprotective ability for their survival. Rana pleuraden is distributed in Southwest of China; it lives in the subtropical plateau (altitude around 2300 m) where there is strong ultraviolet radiation and long duration of sunshine. By peptidomics and genomics approaches, a large amount of antioxidant peptides belonging to 11 different groups with variable structures were isolated from the skin secretions of R. pleuraden. Their free radical scavenging and anti-inflammatory abilities were studied. All of these peptide share highly homologous preproregions, although mature antioxidant peptides have very divergent primary structures, suggesting the possibility of a common ancestor. Some peptides were also found to have multifunctional properties, such as combined antioxidant, anti-inflammatory, and antimicrobial activities. According to our knowledge, no gene-encoded specific antioxidant peptides have been reported except metallothionein. Our work possibly reveals a new

  17. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    PubMed

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  18. Increasing Public Awareness of Direct-to-Consumer Genetic Tests: Health Care Access, Internet Use, and Population Density Correlates

    PubMed Central

    Finney Rutten, Lila J.; Gollust, Sarah E.; Naveed, Sana; Moser, Richard P.

    2012-01-01

    Uncertainty around the value of and appropriate regulatory models for direct-to-consumer (DTC) genetic testing underscores the importance of tracking public awareness of these services. We analyzed nationally representative, cross-sectional data from the Health Information National Trends Survey in 2008 (n = 7, 674) and 2011 (n = 3, 959) to assess population-level changes in awareness of DTC genetic testing in the U.S. and to explore sociodemographic, health care, Internet use, and population density correlates. Overall, awareness increased significantly from 29% in 2008 to 37% in 2011. The observed increase in awareness from 2008 to 2011 remained significant (OR = 1.39) even when adjusted for sociodemographic variables, health care access, Internet use, and population density. Independent of survey year, the odds of awareness of DTC genetic tests were significantly higher for those aged 50–64 (OR = 1.64), and 65–74 (OR = 1.60); college graduates (OR = 2.02); those with a regular source of health care (OR = 1.27); those with a prior cancer diagnosis (OR = 1.24); those who use the Internet (OR = 1.27); and those living in urban areas (OR = 1.25). Surveillance of awareness—along with empirical data on use of and response to genetic risk information—can inform public health and policy efforts to maximize benefits and minimize risks of DTC genetic testing. PMID:22899921

  19. Increased Reliability Of Genetic Evaluations For Dairy Cattle In The United States From Use Of Genomic Information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of genomic information increased reliability of genetic evaluations compared to parent averages by 28.4% for Holsteins, 20.7% for Jerseys and 12.8% for Brown Swiss when averaged across milk, fat and protein yields and three functional traits. Correlations of genomic predictions based on evaluati...

  20. Catastrophic Floods May Pave the Way for Increased Genetic Diversity in Endemic Artesian Spring Snail Populations

    PubMed Central

    Worthington Wilmer, Jessica; Murray, Lynde; Elkin, Ché; Wilcox, Chris; Niejalke, Darren; Possingham, Hugh

    2011-01-01

    The role of disturbance in the promotion of biological heterogeneity is widely recognised and occurs at a variety of ecological and evolutionary scales. However, within species, the impact of disturbances that decimate populations are neither predicted nor known to result in conditions that promote genetic diversity. Directly examining the population genetic consequences of catastrophic disturbances however, is rarely possible, as it requires both longitudinal genetic data sets and serendipitous timing. Our long-term study of the endemic aquatic invertebrates of the artesian spring ecosystem of arid central Australia has presented such an opportunity. Here we show a catastrophic flood event, which caused a near total population crash in an aquatic snail species (Fonscochlea accepta) endemic to this ecosystem, may have led to enhanced levels of within species genetic diversity. Analyses of individuals sampled and genotyped from the same springs sampled both pre (1988–1990) and post (1995, 2002–2006) a devastating flood event in 1992, revealed significantly higher allelic richness, reduced temporal population structuring and greater effective population sizes in nearly all post flood populations. Our results suggest that the response of individual species to disturbance and severe population bottlenecks is likely to be highly idiosyncratic and may depend on both their ecology (whether they are resilient or resistant to disturbance) and the stability of the environmental conditions (i.e. frequency and intensity of disturbances) in which they have evolved. PMID:22205959

  1. Reproduction Does Not Adversely Affect Liver Mitochondrial Respiratory Function but Results in Lipid Peroxidation and Increased Antioxidants in House Mice

    PubMed Central

    Mowry, Annelise V.; Kavazis, Andreas N.; Sirman, Aubrey E.; Potts, Wayne K.; Hood, Wendy R.

    2016-01-01

    Reproduction is thought to come at a cost to longevity. Based on the assumption that increased energy expenditure during reproduction is associated with increased free-radical production by mitochondria, oxidative damage has been suggested to drive this trade-off. We examined the impact of reproduction on liver mitochondrial function by utilizing post-reproductive and non-reproductive house mice (Mus musculus) living under semi-natural conditions. The age-matched post-reproductive and non-reproductive groups were compared after the reproductive females returned to a non-reproductive state, so that both groups were in the same physiological state at the time the liver was collected. Despite increased oxidative damage (p = 0.05) and elevated CuZnSOD (p = 0.002) and catalase (p = 0.04) protein levels, reproduction had no negative impacts on the respiratory function of liver mitochondria. Specifically, in a post-reproductive, maintenance state the mitochondrial coupling (i.e., respiratory control ratio) of mouse livers show no negative impacts of reproduction. In fact, there was a trend (p = 0.059) to suggest increased maximal oxygen consumption by liver mitochondria during the ADP stimulated state (i.e., state 3) in post-reproduction. These findings suggest that oxidative damage may not impair mitochondrial respiratory function and question the role of mitochondria in the trade-off between reproduction and longevity. In addition, the findings highlight the importance of quantifying the respiratory function of mitochondria in addition to measuring oxidative damage. PMID:27537547

  2. Advances in the Development of Gene-Targeting Vectors to Increase the Efficiency of Genetic Modification.

    PubMed

    Saito, Shinta; Adachi, Noritaka

    2016-01-01

    Gene targeting via homologous recombination, albeit highly inefficient in human cells, is considered a powerful tool for analyzing gene functions. Despite recent progress in the application of artificial nucleases for genome editing, safety issues remain a concern, particularly when genetic modification is used for therapeutic purposes. Therefore, the development of gene-targeting vectors is necessary for safe and sophisticated genetic modification. In this paper, we describe the effect of vector structure on random integration, which is a major obstacle in efficient gene targeting. In addition, we focus on the features of exon-trapping-type gene-targeting vectors, and discuss a novel strategy for negative selection to enhance gene targeting in human cells.

  3. Antioxidants of Edible Mushrooms.

    PubMed

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M; van Griensven, Leo

    2015-10-27

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  4. Antioxidants of Edible Mushrooms.

    PubMed

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M; van Griensven, Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality. PMID:26516828

  5. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice.

    PubMed

    Garratt, Michael; Pichaud, Nicolas; King, Edith D Aloise; Brooks, Robert C

    2013-08-01

    Life history theory suggests that investment in reproduction can trade off against growth, longevity and both reproduction and performance later in life. One possible reason for this trade-off is that reproduction directly causes somatic damage. Oxidative stress, an overproduction of reactive oxygen species in relation to cellular defences, can correlate with reproductive investment and has been implicated as a pathway leading to senescence. This has led to the suggestion that this aspect of physiology could be an important mechanism underlying the trade-off between reproduction and lifespan. We manipulated female reproductive investment to test whether oxidative stress increases with reproduction in mice. Each female's pups were cross-fostered to produce litters of either two or eight, representing low and high levels of reproductive investment for wild mice. No differences were observed between reproductive groups at peak lactation for several markers of oxidative stress in the heart and gastrocnemius muscle. Surprisingly, oxidative damage to proteins was lower in the livers of females with a litter size of eight than in females with two pups or non-reproductive control females. While protein oxidation decreased, activity levels of the antioxidant enzyme superoxide dismutase increased in the liver, suggesting this may be one pathway used to protect against oxidative stress. Our results highlight the need for caution when interpreting correlative relationships and suggest that oxidative stress does not increase with enhanced reproductive effort during lactation.

  6. Metabolic effect of TAp63α: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense.

    PubMed

    D'Alessandro, Angelo; Amelio, Ivano; Berkers, Celia R; Antonov, Alexey; Vousden, Karen H; Melino, Gerry; Zolla, Lello

    2014-09-15

    TAp63α is a member of the p53 family, which plays a central role in epithelial cancers. Recently, a role has emerged for p53 family members in cancer metabolic modulation. In order to assess whether TAp63α plays a role in cancer metabolism, we exploited p53-null osteosarcoma Tet-On Saos-2 cells, in which the expression of TAp63α was dependent on doxycycline supplementation to the medium. Metabolomics labeling experiments were performed by incubating the cells in 13C-glucose or 13C15N-glutamine-labeled culture media, as to monitor metabolic fluxes upon induced expression of TAp63α. Induced expression of TAp63α resulted in cell cycle arrest at the G1 phase. From a metabolic standpoint, expression of Tap63α promoted glycolysis and the pentose phosphate pathway, which was uncoupled from nucleotide biosynthesis, albeit prevented oxidative stress in the form of oxidized glutathione. Double 13C-glucose and 13C15N-glutamine metabolic labeling confirmed that induced expression of TAp63α corresponded to a decreased flux of pyruvate to the Krebs cycle and decreased utilization of glutamine for catabolic purposes in the TCA cycle. Results were not conclusive in relation to anabolic utilization of labeled glutamine, since it is unclear to what extent the observed minor TAp63α-dependent increases of glutamine-derived labeling in palmitate could be tied to increased rates of reductive carboxylation and de novo synthesis of fatty acids. Finally, bioinformatics elaborations highlighted a link between patient survival rates and the co-expression of p63 and rate limiting enzymes of the pentose phosphate pathway, G6PD and PGD.

  7. Metabolic effect of TAp63α: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense.

    PubMed

    D'Alessandro, Angelo; Amelio, Ivano; Berkers, Celia R; Antonov, Alexey; Vousden, Karen H; Melino, Gerry; Zolla, Lello

    2014-09-15

    TAp63α is a member of the p53 family, which plays a central role in epithelial cancers. Recently, a role has emerged for p53 family members in cancer metabolic modulation. In order to assess whether TAp63α plays a role in cancer metabolism, we exploited p53-null osteosarcoma Tet-On Saos-2 cells, in which the expression of TAp63α was dependent on doxycycline supplementation to the medium. Metabolomics labeling experiments were performed by incubating the cells in 13C-glucose or 13C15N-glutamine-labeled culture media, as to monitor metabolic fluxes upon induced expression of TAp63α. Induced expression of TAp63α resulted in cell cycle arrest at the G1 phase. From a metabolic standpoint, expression of Tap63α promoted glycolysis and the pentose phosphate pathway, which was uncoupled from nucleotide biosynthesis, albeit prevented oxidative stress in the form of oxidized glutathione. Double 13C-glucose and 13C15N-glutamine metabolic labeling confirmed that induced expression of TAp63α corresponded to a decreased flux of pyruvate to the Krebs cycle and decreased utilization of glutamine for catabolic purposes in the TCA cycle. Results were not conclusive in relation to anabolic utilization of labeled glutamine, since it is unclear to what extent the observed minor TAp63α-dependent increases of glutamine-derived labeling in palmitate could be tied to increased rates of reductive carboxylation and de novo synthesis of fatty acids. Finally, bioinformatics elaborations highlighted a link between patient survival rates and the co-expression of p63 and rate limiting enzymes of the pentose phosphate pathway, G6PD and PGD. PMID:25229745

  8. Polyclonal IgE increase after HgCl2 injections in BN and LEW rats: a genetic analysis.

    PubMed

    Sapin, C; Hirsch, F; Delaporte, J P; Bazin, H; Druet, P

    1984-01-01

    An autoimmune disease and a dramatic increase in total serum IgE concentration are observed in BN rats that are chronically injected with HgCl2. In contrast, LEW rats do not develop the characteristic glomerulonephritis and are very "low IgE responders". In this study, we examined the genetic control of total serum IgE increase after HgCl2 injection in F1 and F2 hybrids, in both backcrosses between LEW and BN rats, and in LEW.1N congenic rats. Genetic analysis was performed using peak IgE concentrations expressed as log microgram/ml. A high IgE phenotype was found to be dominant. Eighty-five percent of F2 variance was due to genetic factors (VG) while only 15% of this variance was caused by environmental factors (VE). From observations in F2 hybrids and backcrosses, estimations of additive variance (VA) and dominance variance (VD) were made following three different methods. Genetic control by about four loci is demonstrated. One of these genes is RT1-linked. This gene contributes to 25% of the phenotypic difference observed between BN and LEW rats. No correlation was found between the peak total IgE level and autoimmune disease based on IgG deposition in spleen and/or kidney.

  9. Cyclodextrins and antioxidants.

    PubMed

    López-Nicolás, José Manuel; Rodríguez-Bonilla, Pilar; García-Carmona, Francisco

    2014-01-01

    In recent years, the growth of the functional foods industry has increased research into new compounds with high added value for use in the fortification of traditional products. One of the most promising functional food groups is those enriched in antioxidant compounds of a lipophilic nature. In spite of the numerous advantages reported for such antioxidant molecules, they may also have disadvantages that impede their use in functional foods, although these problems may well avoided by the use of encapsulant agents such as cyclodextrins. This explains the recent increase in the number of research papers dealing with the complexation of different guest molecules possesing important antioxidant properties using natural and modified cyclodextrins. This paper presents a review of the most recent studies on the complexes formed between several important types of antioxidant compounds and cyclodextrins, focusing on the contradictory data reported in the literature concerning to the antioxidant activity of the host/guest molecule complexes, the different complexation constants reported for identical complexes, the bioavailability of the antioxidant compound in the presence of cyclodextrins and recommendation concerning the use of natural or modified cyclodextrins. Moreover, the use of cyclodextrins as antibrowning agents to prevent enzymatic browning in different foods is revised. Finally, we look at studies which suggest that cyclodextrins act as ''secondary antioxidants," enhancing the ability of traditional antioxidants to prevent enzymatic browning.

  10. Cyclodextrins and antioxidants.

    PubMed

    López-Nicolás, José Manuel; Rodríguez-Bonilla, Pilar; García-Carmona, Francisco

    2014-01-01

    In recent years, the growth of the functional foods industry has increased research into new compounds with high added value for use in the fortification of traditional products. One of the most promising functional food groups is those enriched in antioxidant compounds of a lipophilic nature. In spite of the numerous advantages reported for such antioxidant molecules, they may also have disadvantages that impede their use in functional foods, although these problems may well avoided by the use of encapsulant agents such as cyclodextrins. This explains the recent increase in the number of research papers dealing with the complexation of different guest molecules possesing important antioxidant properties using natural and modified cyclodextrins. This paper presents a review of the most recent studies on the complexes formed between several important types of antioxidant compounds and cyclodextrins, focusing on the contradictory data reported in the literature concerning to the antioxidant activity of the host/guest molecule complexes, the different complexation constants reported for identical complexes, the bioavailability of the antioxidant compound in the presence of cyclodextrins and recommendation concerning the use of natural or modified cyclodextrins. Moreover, the use of cyclodextrins as antibrowning agents to prevent enzymatic browning in different foods is revised. Finally, we look at studies which suggest that cyclodextrins act as ''secondary antioxidants," enhancing the ability of traditional antioxidants to prevent enzymatic browning. PMID:24188271

  11. Increasing The Genetic Admixture of Available Lines of Human Pluripotent Stem Cells

    PubMed Central

    Tofoli, Fabiano A.; Dasso, Maximiliano; Morato-Marques, Mariana; Nunes, Kelly; Pereira, Lucas Assis; da Silva, Giselle Siqueira; Fonseca, Simone A. S.; Costas, Roberta Montero; Santos, Hadassa Campos; da Costa Pereira, Alexandre; Lotufo, Paulo A.; Bensenor, Isabela M.; Meyer, Diogo; Pereira, Lygia Veiga

    2016-01-01

    Human pluripotent stem cells (hPSCs) may significantly improve drug development pipeline, serving as an in vitro system for the identification of novel leads, and for testing drug toxicity. Furthermore, these cells may be used to address the issue of differential drug response, a phenomenon greatly influenced by genetic factors. This application depends on the availability of hPSC lines from populations with diverse ancestries. So far, it has been reported that most lines of hPSCs derived worldwide are of European or East Asian ancestries. We have established 23 lines of hPSCs from Brazilian individuals, and we report the analysis of their genomic ancestry. We show that embryo-derived PSCs are mostly of European descent, while induced PSCs derived from participants of a national-wide Brazilian cohort study present high levels of admixed European, African and Native American genomic ancestry. Additionally, we use high density SNP data and estimate local ancestries, particularly those of CYP genes loci. Such information will be of key importance when interpreting variation among cell lines with respect to cellular phenotypes of interest. The availability of genetically admixed lines of hPSCs will be of relevance when setting up future in vitro studies of drug response. PMID:27708369

  12. Increasing public involvement in enriching our fish stocks through genetic enhancement.

    PubMed

    Halvorson, H O; Quezada, F

    1999-11-01

    A total of 70%, of the world's conventional commercial fish species are now fully exploited, overexploited, depleted or recovering from depletion. This dramatic crash in the capture world fisheries production has led to problems in foods distribution, balance of payments, employment, and ecological depletion. Public support for breeding programs with terrestrial farm animals and plants in agriculture have revolutionized this industry over the past few hundred years. However, new genetic rearing technologies to improve marine animal production through aquaculture that utilize modern biology to obtain sustainable aquaculture and preserve biodiversity provide a promise to address these problems. However aquaculture has not been subject to public discussion and approval. Public involvement, not necessarily acquiescence, provide value added in the decision making process. Public understanding and involvement involves three stages. (i) Public concern over the pool of genetic information; (ii) if aquaculture is to respond to the fisheries crises with innovation, the knowledge gap between public understanding and scientific information must be bridged; and (iii) strategies must be developed for achieving this. Release of recombinant DNA to the environment, and handling exotic species, are useful case studies. Illustrations will be given of communication bridges to the public and ways to involve the public in making policy decisions.

  13. An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocyte apoptosis.

    PubMed

    Sanders, Lisa M; Henderson, Cara E; Hong, Mee Young; Barhoumi, Rola; Burghardt, Robert C; Wang, Naisyin; Spinka, Christine M; Carroll, Raymond J; Turner, Nancy D; Chapkin, Robert S; Lupton, Joanne R

    2004-12-01

    We showed previously that the dietary combination of fish oil, rich in (n-3) fatty acids, and the fermentable fiber pectin enhances colonocyte apoptosis in a rat model of experimentally induced colon cancer. In this study, we propose that the mechanism by which this dietary combination heightens apoptosis is via modulation of the colonocyte redox environment. Male Sprague-Dawley rats (n = 60) were fed 1 of 2 fats (corn oil or fish oil) and 1 of 2 fibers (cellulose or pectin) for 2 wk before determination of reactive oxygen species (ROS), oxidative DNA damage, antioxidant enzyme activity [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)] and apoptosis in isolated colonocytes. Fish oil enhanced ROS, whereas the combination of fish oil and pectin suppressed SOD and CAT and enhanced the SOD/CAT ratio compared with a corn oil and cellulose diet. Despite this modulation to a seemingly prooxidant environment, oxidative DNA damage was inversely related to ROS in the fish oil and pectin diet, and apoptosis was enhanced relative to other diets. Furthermore, apoptosis increased exponentially as ROS increased. These results suggest that the enhancement of apoptosis associated with fish oil and pectin feeding may be due to a modulation of the redox environment that promotes ROS-mediated apoptosis.

  14. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants.

    PubMed

    Usta, Julnar; Hachem, Yassmine; El-Rifai, Omar; Bou-Moughlabey, Yolla; Echtay, Karim; Griffiths, David; Nakkash-Chmaisse, Hania; Makki, Rajaa Fakhoury

    2013-02-01

    We investigate in this study the biochemical effects on cells in culture of two commonly used fragrance chemicals: lyral and lilial. Whereas both chemicals exerted a significant effect on primary keratinocyte(s), HaCat cells, no effect was obtained with any of HepG2, Hek293, Caco2, NIH3T3, and MCF7 cells. Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Lipoic acid protected HaCat cells against the decrease in viability induced by either compound. Dehydrogenation of lyral and lilial produce α,β-unsaturated aldehydes, that reacts with lipoic acid requiring proteins resulting in their inhibition. We propose lyral and lilial as toxic to mitochondria that have a direct effect on electron transport chain, increase ROS production, derange mitochondrial membrane potential, and decrease cellular ATP level, leading thus to cell death. PMID:22940465

  15. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants.

    PubMed

    Usta, Julnar; Hachem, Yassmine; El-Rifai, Omar; Bou-Moughlabey, Yolla; Echtay, Karim; Griffiths, David; Nakkash-Chmaisse, Hania; Makki, Rajaa Fakhoury

    2013-02-01

    We investigate in this study the biochemical effects on cells in culture of two commonly used fragrance chemicals: lyral and lilial. Whereas both chemicals exerted a significant effect on primary keratinocyte(s), HaCat cells, no effect was obtained with any of HepG2, Hek293, Caco2, NIH3T3, and MCF7 cells. Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Lipoic acid protected HaCat cells against the decrease in viability induced by either compound. Dehydrogenation of lyral and lilial produce α,β-unsaturated aldehydes, that reacts with lipoic acid requiring proteins resulting in their inhibition. We propose lyral and lilial as toxic to mitochondria that have a direct effect on electron transport chain, increase ROS production, derange mitochondrial membrane potential, and decrease cellular ATP level, leading thus to cell death.

  16. Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV-Vis spectra as a marker.

    PubMed

    Phan-Thi, Hanh; Waché, Yves

    2014-08-01

    Momordica cochinchinensis (gac) is a plant rich in lycopene. This pigment tends to solubilize in oil and get damaged during extraction. The impact of heating on cis-isomerization of oil-free lycopene in hexane was studied at 50 and 80°C during 240min with UV-Vis spectrometry, DAD-HPLC and TEAC test. The initial all-trans-form isomerized to the 13-cis isomer more rapidly at 80°C. After this treatment, 16% of the lycopene compounds were in the 9-cis-form. This isomer triggered an increase in the antioxidant properties which was detectable from concentrations above 9% and resulted in a change from 2.4 to 3.7μmol Trolox equivalent. It is thus possible to increase the bioactivity of lycopene samples by controlling heating. The evolution of ratios calculated from the global UV-Vis spectrum was representative of cis-isomerization and spectrometry can thus be a simple way to evaluate the state of isomerization of lycopene solutions. PMID:24629938

  17. Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV-Vis spectra as a marker.

    PubMed

    Phan-Thi, Hanh; Waché, Yves

    2014-08-01

    Momordica cochinchinensis (gac) is a plant rich in lycopene. This pigment tends to solubilize in oil and get damaged during extraction. The impact of heating on cis-isomerization of oil-free lycopene in hexane was studied at 50 and 80°C during 240min with UV-Vis spectrometry, DAD-HPLC and TEAC test. The initial all-trans-form isomerized to the 13-cis isomer more rapidly at 80°C. After this treatment, 16% of the lycopene compounds were in the 9-cis-form. This isomer triggered an increase in the antioxidant properties which was detectable from concentrations above 9% and resulted in a change from 2.4 to 3.7μmol Trolox equivalent. It is thus possible to increase the bioactivity of lycopene samples by controlling heating. The evolution of ratios calculated from the global UV-Vis spectrum was representative of cis-isomerization and spectrometry can thus be a simple way to evaluate the state of isomerization of lycopene solutions.

  18. Supplementation of Superfine Powder Prepared from Chaenomeles speciosa Fruit Increases Endurance Capacity in Rats via Antioxidant and Nrf2/ARE Signaling Pathway

    PubMed Central

    Chen, Ka; You, Jia; Tang, Yong; Zhou, Yong; Liu, Peng; Zou, Dan; Zhou, Qicheng; Zhang, Ting; Zhu, Jundong; Mi, Mantian

    2014-01-01

    Chaenomeles speciosa fruit is a traditional herb medicine widely used in China. In this study, superfine powder of C. speciosa fruit (SCE), ground by supersonic nitrogen airflow at −140°C, was investigated to assess its in vitro antioxidant activity and in vivo antiphysical fatigue activity. SCE was homogenous (d < 10 μm) and rich in antioxidants like polyphenols, saponins, oleanolic acid, ursolic acid, ascorbic acid, and SOD. According to the in vitro experiments, SCE displayed promising antioxidant activity with powerful FARP, SC-DPPH, and SC-SAR activities. According to the in vivo experiments, rats supplemented with SCE had prolonged exhaustive swimming time (57%) compared to the nonsupplemented rats. Meanwhile, compared to the nonsupplemented rats, the SCE-supplemented rats had higher levels of blood glucose and liver and muscular glycogen and lower levels of LA and BUN. Lower MDA, higher antioxidant enzymes (SOD, CAT, and GSH-Px) activities, and upregulated Nrf2/ARE mediated antioxidant enzymes (HO-1, Trx, GCLM, and GCLC) expression were also detected in the supplemented group. This study indicates that SCE is a potent antioxidant and antifatigue agent, and SCE could be a promising raw material for the food and pharmaceutical industries. PMID:25610489

  19. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats.

    PubMed

    Choi, Eun-Young; Jang, Jin-Young; Cho, Youn-Ok

    2010-08-01

    This study investigated the effect of coffee intake and exercise on the antioxidative activity and plasma cholesterol profile of physically trained rats while they were exercising. Forty eight rats were under either the control diet with water (C) or control diet with coffee (CF) and at the same time they were given physical training for 4 weeks. In terms of physical training, the rats were exercised on a treadmill for 30 minutes everyday. At the end of 4 weeks, animals in each dietary group were subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). Animals in the DE group were exercised on a treadmill for one hour, immediately before being sacrificed. Animals in the AE group were allowed to take a rest for one hour after exercise. TG levels were significantly high in coffee intake group than in control group. Also TG level of AE group was significantly higher than that of BE group. Exercise and coffee-exercise interaction effects were significant in total cholesterol (P = 0.0004, 0.0170). The AE of coffee intake group showed highest total cholesterol levels. HDL-cholesterol was significantly lower in coffee intake group than in control group. Coffee, exercise, and coffee-exercise interaction effects were significant in SOD (P = 0.0001, 0.0001, and 0.0001). The AE and BE of coffee intake group showed higher SOD levels than the other four groups. Catalase activities were significantly higher in coffee intake group than control group. No significant main effect was found in GSH/GSSG. Coffee, exercise, and coffee-exercise interaction effects were significant in MDA levels (P = 0.0464, 0.0016, and 0.0353). The DE and AE of coffee intake group and the DE of control group showed higher MDA levels than the BE of control group. Therefore, coffee intake can promote activities of antioxidant enzyme but it also increases MDA and decreases HDL-cholesterol in physically trained rats.

  20. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats

    PubMed Central

    Choi, Eun-Young; Jang, Jin-Young

    2010-01-01

    This study investigated the effect of coffee intake and exercise on the antioxidative activity and plasma cholesterol profile of physically trained rats while they were exercising. Forty eight rats were under either the control diet with water (C) or control diet with coffee (CF) and at the same time they were given physical training for 4 weeks. In terms of physical training, the rats were exercised on a treadmill for 30 minutes everyday. At the end of 4 weeks, animals in each dietary group were subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). Animals in the DE group were exercised on a treadmill for one hour, immediately before being sacrificed. Animals in the AE group were allowed to take a rest for one hour after exercise. TG levels were significantly high in coffee intake group than in control group. Also TG level of AE group was significantly higher than that of BE group. Exercise and coffee-exercise interaction effects were significant in total cholesterol (P = 0.0004, 0.0170). The AE of coffee intake group showed highest total cholesterol levels. HDL-cholesterol was significantly lower in coffee intake group than in control group. Coffee, exercise, and coffee-exercise interaction effects were significant in SOD (P = 0.0001, 0.0001, and 0.0001). The AE and BE of coffee intake group showed higher SOD levels than the other four groups. Catalase activities were significantly higher in coffee intake group than control group. No significant main effect was found in GSH/GSSG. Coffee, exercise, and coffee-exercise interaction effects were significant in MDA levels (P = 0.0464, 0.0016, and 0.0353). The DE and AE of coffee intake group and the DE of control group showed higher MDA levels than the BE of control group. Therefore, coffee intake can promote activities of antioxidant enzyme but it also increases MDA and decreases HDL-cholesterol in physically trained rats. PMID:20827343

  1. GSH-targeted nanosponges increase doxorubicin-induced toxicity "in vitro" and "in vivo" in cancer cells with high antioxidant defenses.

    PubMed

    Daga, Martina; Ullio, Chiara; Argenziano, Monica; Dianzani, Chiara; Cavalli, Roberta; Trotta, Francesco; Ferretti, Carlo; Zara, Gian Paolo; Gigliotti, Casimiro L; Ciamporcero, Eric S; Pettazzoni, Piergiorgio; Corti, Denise; Pizzimenti, Stefania; Barrera, Giuseppina

    2016-08-01

    Several reports indicate that chemo-resistant cancer cells become highly adapted to intrinsic oxidative stress by up-regulating their antioxidant systems, which causes an increase of intracellular GSH content. Doxorubicin is one of the most widely used drugs for tumor treatment, able to kill cancer cells through several mechanisms. However, doxorubicin use is limited by its toxicity and cancer resistance. Therefore, new therapeutic strategies able to reduce doses and to overcome chemo-resistance are needed. A new class of glutathione-responsive cyclodextrin nanosponges (GSH-NS), is able to release anticancer drugs preferentially in cells having high GSH content. Doxorubicin-loaded GSH-NS, in the cancer cells with high GSH content, inhibited clonogenic growth, cell viability, topoisomerase II activity and induced DNA damage with higher effectiveness than free drug. Moreover, GSH-NS reduced the development of human tumor in xenograft models more than free drug. These characteristics indicate that GSH-NS can be a suitable drug delivery carrier for future applications in cancer therapy. PMID:27184956

  2. Antioxidant action of ganghwayakssuk (Artemisia princeps Pamp.) in combination with ascorbic acid to increase the shelf life in raw and deep fried chicken nuggets.

    PubMed

    Hwang, Ko-Eun; Choi, Yun-Sang; Choi, Sun-Mi; Kim, Hyun-Wook; Choi, Ji-Hun; Lee, Mi-Ai; Kim, Cheon-Jei

    2013-11-01

    Raw and deep fried chicken nuggets containing various levels of ganghwayakssuk ethanolic extract (GE) in combination with ascorbic acid (Aa) were evaluated for shelf-life during refrigerated storage (4°C). The pH and color (lightness, redness, and yellowness) values of raw and deep fried samples were significantly affected by the addition of GE (P<0.05). All antioxidant combinations except for Aa+GE 0.01 were effective at delaying lipid oxidation (CD, POV, and TBARS) when compared to the control or Aa. Raw samples with GE 0.2 and Aa+GE 0.1 exhibited lower bacterial populations during storage. The sensory characteristics (color, juiciness, flavor, tenderness, and overall acceptability) did not differ significantly in all deep fried chicken nugget samples, except color, whereas storage time had a significant effect (P<0.05). The results suggest the possibility of utilizing raw and deep fried chicken nuggets with a mixture of ganghwayakssuk and ascorbic acid for the increase of shelf-life and quality.

  3. Increased lead and cadmium tolerance of Typha angustifolia from Huaihe River is associated with enhanced phytochelatin synthesis and improved antioxidative capacity.

    PubMed

    Liu, Yunlei; Chen, Jian; Lu, Shaonan; Yang, Libo; Qian, Jiazhong; Cao, Shuqing

    2016-11-01

    Heavy metal contamination of water is an increasing environmental problem worldwide, and the use of aquatic plants for phytoremediation of heavy metal pollution has become an important subject of research. One key to successful phytoremediation is the identification of plants that are efficient at sequestering heavy metals. In this study, we examined the growth and heavy metal accumulation of Typha angustifolia and compared growth characteristics and tolerance mechanisms in plants from the Huaihe and Chaohu Rivers irrigated with different concentrations of lead (Pb) and cadmium (Cd). T. angustifolia from Huaihe River showed enhanced tolerance and accumulation of Pb and Cd and had greater biomass and more vigorous growth than the ecotype from Chaohu River. In addition, higher phytochelatin (PC) content and significantly higher superoxide dismutase and catalase activities were detected in T. angustifolia from Huaihe River than in T. angustifolia from Chaohu River. These findings suggest that high Pb and Cd accumulation and tolerance in T. angustifolia from Chaohu River is associated with its higher PC synthesis and better antioxidative capacity, and that the Huaihe ecotype of T. angustifolia might also be an efficient species for phytoremediation of Pb and Cd in water contaminated by heavy metals. PMID:26959972

  4. Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree.

    PubMed

    Wang, Rong; Compton, Stephen G; Chen, Xiao-Yong

    2011-11-01

    Fragmentation reduces population sizes, increases isolation between habitats and can result in restricted dispersal of pollen and seeds. Given that diploid seed dispersal contributes more to shaping fine-scale spatial genetic structure (SGS) than haploid pollen flow, we tested whether fine-scale SGS can be sensitive to fragmentation even if extensive pollen dispersal is maintained. Castanopsis sclerophylla (Lindley & Paxton) Schottky (Fagaceae), a wind-pollinated and gravity seed-dispersed tree, was studied in an area of southeast China where its populations have been fragmented to varying extents by human activity. Using different age classes of trees in areas subject to varying extents of fragmentation, we found no significant difference in genetic diversity between prefragmentation vs. postfragmentation C. sclerophylla subpopulations. Genetic differentiation among postfragmentation subpopulations was also only slightly lower than among prefragmentation subpopulations. In the most fragmented habitat, selfing rates were significantly higher than zero in prefragmentation, but not postfragmentation, cohorts. These results suggest that fragmentation had not decreased gene flow among these populations and that pollen flow remains extensive. However, significantly greater fine-scale SGS was found in postfragmentation subpopulations in the most fragmented habitat, but not in less fragmented habitats. This alteration in SGS reflected more restricted seed dispersal, induced by changes in the physical environments and the prevention of secondary seed dispersal by rodents. An increase in SGS can therefore result from more restricted seed dispersal, even in the face of extensive pollen flow, making it a sensitive indicator of the negative consequences of population fragmentation. PMID:21981067

  5. Mitochondrial genetic background plays a role in increasing risk to asthma.

    PubMed

    Zifa, Emily; Daniil, Zoe; Skoumi, Eleutheria; Stavrou, Maria; Papadimitriou, Kostantinos; Terzenidou, Marini; Kostikas, Konstantinos; Bagiatis, Vasileios; Gourgoulianis, Konstantinos I; Mamuris, Zissis

    2012-04-01

    A number of studies suggest that mitochondrial dysfunction plays a role in the pathogenesis of asthma. To shed light for the first time on the role of the mitochondrial genome in the etiology of asthma we analyzed the mitochondrial tRNA genes and part of their flanking regions in patients with asthma compared with a set of healthy controls. We found a total of 10 mutations in 56 out of 76 asthmatic patients. Four of these mutations were not found in the control group, five were observed at a significantly lower frequency in controls, but none of the combinations of mutations detected in asthma patients was observed in the controls. Furthermore, we observed that 27.6% of the asthma patients (vs. 4% of the controls) belonged to the haplogroup U (Fisher test P = 0.00) and a positive significant correlation was found between the occurrence of the haplogroup U and the severity of the disease (Fisher test P = 0.02). Whereas further studies in larger cohorts are needed to confirm these observations we suggest that the mitochondrial genetic background plays a key role in asthma development.

  6. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch.

    PubMed

    Earnest, Tyler M; Roberts, Elijah; Assaf, Michael; Dahmen, Karin; Luthey-Schulten, Zaida

    2013-04-01

    Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application. PMID:23406725

  7. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch

    NASA Astrophysics Data System (ADS)

    Earnest, Tyler M.; Roberts, Elijah; Assaf, Michael; Dahmen, Karin; Luthey-Schulten, Zaida

    2013-04-01

    Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application.

  8. Reduced genetic distance and high replication levels increase the RNA recombination rate of hepatitis delta virus.

    PubMed

    Lin, Chia-Chi; Yang, Zhi-Wei; Iang, Shan-Bei; Chao, Mei

    2015-01-01

    Hepatitis delta virus (HDV) replication is carried out by host RNA polymerases. Since homologous inter-genotypic RNA recombination is known to occur in HDV, possibly via a replication-dependent process, we hypothesized that the degree of sequence homology and the replication level should be related to the recombination frequency in cells co-expressing two HDV sequences. To confirm this, we separately co-transfected cells with three different pairs of HDV genomic RNAs and analyzed the obtained recombinants by RT-PCR followed by restriction fragment length polymorphism and sequencing analyses. The sequence divergence between the clones ranged from 24% to less than 0.1%, and the difference in replication levels was as high as 100-fold. As expected, significant differences were observed in the recombination frequencies, which ranged from 0.5% to 47.5%. Furthermore, varying the relative amounts of parental RNA altered the dominant recombinant species produced, suggesting that template switching occurs frequently during the synthesis of genomic HDV RNA. Taken together, these data suggest that during the host RNA polymerase-driven RNA recombination of HDV, both inter- and intra-genotypic recombination events are important in shaping the genetic diversity of HDV.

  9. Increased Virulence in Sunflower Broomrape (Orobanche cumana Wallr.) Populations from Southern Spain Is Associated with Greater Genetic Diversity

    PubMed Central

    Martín-Sanz, Alberto; Malek, Jebri; Fernández-Martínez, José M.; Pérez-Vich, Begoña; Velasco, Leonardo

    2016-01-01

    Orobanche cumana Wallr. (sunflower broomrape) is a holoparasitic weed that infects roots of sunflower in large areas of Europe and Asia. Two distant O. cumana gene pools have been identified in Spain, one in Cuenca province in the Center and another one in the Guadalquivir Valley in the South. Race F has been hypothesized to have arisen by separate mutational events in both gene pools. In the Guadalquivir Valley, race F spread in the middle 1990’s to become predominant and contained so far with race F hybrids. Recently, enhanced virulent populations of O. cumana have been observed in commercial fields parasitizing race F resistant hybrids. From them, we collected four independent populations and conducted virulence and SSR marker-based genetic diversity analysis. Virulence essays confirmed that the four populations studied can parasitize most of the race F resistant hybrids tested, but they cannot parasitize the differential inbred lines DEB-2, carrying resistance to race F and G, and P-96, resistant to F but susceptible to races G from other countries. Accordingly, the new populations have been classified as race GGV to distinguish them from other races G. Cluster analysis with a set of populations from the two Spanish gene pools and from other areas, mainly Eastern Europe, confirmed that race GGV populations maintain close genetic relatedness with the Guadalquivir Valley gene pool. This suggested that increased virulence was not caused by new introductions from other countries. Genetic diversity parameters revealed that the four populations had much greater genetic diversity than conventional populations of the same area, containing only alleles present in the Guadalquivir Valley and Cuenca gene pools. The results suggested that increased virulence may have resulted from admixture of populations from the Guadalquivir Valley and Cuenca followed by recombination of avirulence genes. PMID:27200060

  10. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  11. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

  12. Genetically-increased taste cell population with Gα-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice

    PubMed Central

    2009-01-01

    Background The peptide gurmarin is a selective sweet response inhibitor for rodents. In mice, gurmarin sensitivity differs among strains with gurmarin-sensitive C57BL and gurmarin-poorly-sensitive BALB strains. In C57BL mice, sweet-responsive fibers of the chorda tympani (CT) nerve can be divided into two distinct populations, gurmarin-sensitive (GS) and gurmarin-insensitive (GI) types, suggesting the existence of two distinct reception pathways for sweet taste responses. By using the dpa congenic strain (dpa CG) whose genetic background is identical to BALB except that the gene(s) controlling gurmarin sensitivity are derived from C57BL, we previously found that genetically-elevated gurmarin sensitivity in dpa CG mice, confirmed by using behavioral response and whole CT nerve response analyses, was linked to a greater taste cell population co-expressing sweet taste receptors and a Gα protein, Gα-gustducin. However, the formation of neural pathways from the increased taste cell population to nerve fibers has not yet been examined. Results Here, we investigated whether the increased taste cell population with Gα-gustducin-coupled sweet receptors would be associated with selective increment of GS fiber population or nonselective shift of gurmarin sensitivities of overall sweet-responsive fibers by examining the classification of GS and GI fiber types in dpa CG and BALB mice. The results indicated that dpa CG, like C57BL, possess two distinct populations of GS and GI types of sweet-responsive fibers with almost identical sizes (dpa CG: 13 GS and 16 GI fibers; C57BL: 16 GS and 14 GI fibers). In contrast, BALB has only 3 GS fibers but 18 GI fibers. These data indicate a marked increase of the GS population in dpa CG. Conclusion These results suggest that the increased cell population expressing T1r2/T1r3/Gα-gustducin in dpa CG mice may be associated with an increase of their matched GS type fibers, and may form the distinct GS sweet reception pathway in mice. G

  13. Supplementation with Japanese bunching onion (Allium fistulosum L.) expressing a single alien chromosome from shallot increases the antioxidant activity of Kamaboko fish jelly paste in vitro.

    PubMed

    Harada, Kazuki; Wada, Ritsuko; Yaguchi, Shigenori; Maeda, Toshimichi; Date, Rie; Tokunaga, Takushi; Kazumura, Kimiko; Shimada, Kazuko; Matsumoto, Misato; Wako, Tadayuki; Yamauchi, Naoki; Shigyo, Masayoshi

    2013-05-01

    Kamaboko is a traditional type of processed seafood made from fish jelly paste that is unique to Japan. We supplemented Kamaboko with Japanese bunching onion (Allium fistulosum L.) with an alien monosome from shallot (Allium cepa L. Aggregatum group) and we measured in vitro the oxygen radical absorbance capacity (ORAC) value, an index of antioxidant activity. We also evaluated the results of sensory testing. The ORAC value of plain Kamaboko was 166±14 μmol trolox equivalent (TE)/100 g fresh weight (FW). The values of the edible Alliaceae powder, i.e., Japanese bunching onion (JBO, genome FF, 2n=2x=16) and the alien addition line of JBO carrying the 6A chromosome from shallot (FF+6A, 2n=2x+1=17), were 6,659±238 and 14,096±635 μmol TE/100 g dry weight (DW). We hypothesized that the 6A chromosome encoded the enhancement of polyphenol production. Subsequently, we created Kamaboko containing 4.8% JBO powder or 4.8% FF+6A powder. The ORAC value of each modified Kamaboko product was increased to 376±24 μmol TE/100 g FW for the JBO powder and to 460±16 μmol TE/100 g FW for the FF+6A powder, respectively. We next created Kamaboko containing 9.0% JBO powder or 9.0% FF+6A powder and the ORAC values of the respective modified Kamaboko products was increased to 671±16 and 740±21 μmol TE/100 g FW, i.e., 4.1- and 4.5-times the value of plain Kamaboko. Consequently, taking into consideration the sensory evaluation regarding taste and appearance as well, the use of Kamaboko supplemented with 4.8% FF+6A powder is recommended.

  14. Supplementation with Japanese bunching onion (Allium fistulosum L.) expressing a single alien chromosome from shallot increases the antioxidant activity of Kamaboko fish jelly paste in vitro

    PubMed Central

    HARADA, KAZUKI; WADA, RITSUKO; YAGUCHI, SHIGENORI; MAEDA, TOSHIMICHI; DATE, RIE; TOKUNAGA, TAKUSHI; KAZUMURA, KIMIKO; SHIMADA, KAZUKO; MATSUMOTO, MISATO; WAKO, TADAYUKI; YAMAUCHI, NAOKI; SHIGYO, MASAYOSHI

    2013-01-01

    Kamaboko is a traditional type of processed seafood made from fish jelly paste that is unique to Japan. We supplemented Kamaboko with Japanese bunching onion (Allium fistulosum L.) with an alien monosome from shallot (Allium cepa L. Aggregatum group) and we measured in vitro the oxygen radical absorbance capacity (ORAC) value, an index of antioxidant activity. We also evaluated the results of sensory testing. The ORAC value of plain Kamaboko was 166±14 μmol trolox equivalent (TE)/100 g fresh weight (FW). The values of the edible Alliaceae powder, i.e., Japanese bunching onion (JBO, genome FF, 2n=2x=16) and the alien addition line of JBO carrying the 6A chromosome from shallot (FF+6A, 2n=2x+1=17), were 6,659±238 and 14,096±635 μmol TE/100 g dry weight (DW). We hypothesized that the 6A chromosome encoded the enhancement of polyphenol production. Subsequently, we created Kamaboko containing 4.8% JBO powder or 4.8% FF+6A powder. The ORAC value of each modified Kamaboko product was increased to 376±24 μmol TE/100 g FW for the JBO powder and to 460±16 μmol TE/100 g FW for the FF+6A powder, respectively. We next created Kamaboko containing 9.0% JBO powder or 9.0% FF+6A powder and the ORAC values of the respective modified Kamaboko products was increased to 671±16 and 740±21 μmol TE/100 g FW, i.e., 4.1- and 4.5-times the value of plain Kamaboko. Consequently, taking into consideration the sensory evaluation regarding taste and appearance as well, the use of Kamaboko supplemented with 4.8% FF+6A powder is recommended. PMID:24648948

  15. Saikosaponin-D attenuates heat stress-induced oxidative damage in LLC-PK1 cells by increasing the expression of anti-oxidant enzymes and HSP72.

    PubMed

    Zhang, Bao-Zhen; Guo, Xiao-Tong; Chen, Jian-Wei; Zhao, Yuan; Cong, Xia; Jiang, Zhong-Ling; Cao, Rong-Feng; Cui, Kai; Gao, Shan-Song; Tian, Wen-Ru

    2014-01-01

    Heat stress stimulates the production of reactive oxygen species (ROS), which cause oxidative damage in the kidney. This study clarifies the mechanism by which saikosaponin-d (SSd), which is extracted from the roots of Bupleurum falcatum L, protects heat-stressed pig kidney proximal tubular (LLC-PK1) cells against oxidative damage. SSd alone is not cytotoxic at concentrations of 1 or 3 μg/mL as demonstrated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To assess the effects of SSd on heat stress-induced cellular damage, LLC-PK1 cells were pretreated with various concentrations of SSd, heat stressed at 42°C for 1 h, and then returned to 37°C for 9 h. DNA ladder and MTT assays demonstrated that SSd helped to prevent heat stress-induced cellular damage when compared to untreated cells. Additionally, pretreatment with SSd increased the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) but decreased the concentration of malondialdehyde (MDA) in a dose-dependent manner when compared to controls. Furthermore, real-time PCR and Western blot analysis demonstrated that SSd significantly increased the expression of copper and zinc superoxide dismutase (SOD-1), CAT, GPx-1 and heat shock protein 72 (HSP72) at both the mRNA and protein levels. In conclusion, these results are the first to demonstrate that SSd ameliorates heat stress-induced oxidative damage by modulating the activity of anti-oxidant enzymes and HSP72 in LLC-PK1 cells. PMID:25169909

  16. Supplementation with Japanese bunching onion (Allium fistulosum L.) expressing a single alien chromosome from shallot increases the antioxidant activity of Kamaboko fish jelly paste in vitro.

    PubMed

    Harada, Kazuki; Wada, Ritsuko; Yaguchi, Shigenori; Maeda, Toshimichi; Date, Rie; Tokunaga, Takushi; Kazumura, Kimiko; Shimada, Kazuko; Matsumoto, Misato; Wako, Tadayuki; Yamauchi, Naoki; Shigyo, Masayoshi

    2013-05-01

    Kamaboko is a traditional type of processed seafood made from fish jelly paste that is unique to Japan. We supplemented Kamaboko with Japanese bunching onion (Allium fistulosum L.) with an alien monosome from shallot (Allium cepa L. Aggregatum group) and we measured in vitro the oxygen radical absorbance capacity (ORAC) value, an index of antioxidant activity. We also evaluated the results of sensory testing. The ORAC value of plain Kamaboko was 166±14 μmol trolox equivalent (TE)/100 g fresh weight (FW). The values of the edible Alliaceae powder, i.e., Japanese bunching onion (JBO, genome FF, 2n=2x=16) and the alien addition line of JBO carrying the 6A chromosome from shallot (FF+6A, 2n=2x+1=17), were 6,659±238 and 14,096±635 μmol TE/100 g dry weight (DW). We hypothesized that the 6A chromosome encoded the enhancement of polyphenol production. Subsequently, we created Kamaboko containing 4.8% JBO powder or 4.8% FF+6A powder. The ORAC value of each modified Kamaboko product was increased to 376±24 μmol TE/100 g FW for the JBO powder and to 460±16 μmol TE/100 g FW for the FF+6A powder, respectively. We next created Kamaboko containing 9.0% JBO powder or 9.0% FF+6A powder and the ORAC values of the respective modified Kamaboko products was increased to 671±16 and 740±21 μmol TE/100 g FW, i.e., 4.1- and 4.5-times the value of plain Kamaboko. Consequently, taking into consideration the sensory evaluation regarding taste and appearance as well, the use of Kamaboko supplemented with 4.8% FF+6A powder is recommended. PMID:24648948

  17. Sexual selection can increase the effect of random genetic drift--a quantitative genetic model of polymorphism in Oophaga pumilio, the strawberry poison-dart frog.

    PubMed

    Tazzyman, Samuel J; Iwasa, Yoh

    2010-06-01

    The variation in color pattern between populations of the poison-dart frog Oophaga pumilio across the Bocas del Toro archipelago in Panama is suggested to be due to sexual selection, as two other nonsexually selecting Dendrobatid species found in the same habitat and range do not exhibit this variation. We theoretically test this assertion using a quantitative genetic sexual selection model incorporating aposematic coloration and random drift. We find that sexual selection could cause the observed variation via a novel process we call "coupled drift." Within our model, for certain parameter values, sexual selection forces frog color to closely follow the evolution of female preference. Any between-population variation in preference due to genetic drift is passed on to color. If female preference in O. pumilio is strongly affected by drift, whereas color in the nonsexually selecting Dendrobatid species is not, coupled drift will cause increased between-population phenotypic variation. However, with different parameter values, coupled drift will result in between-population variation in color being suppressed compared to its neutral value, or in little or no effect. We suggest that coupled drift is a novel theoretical process that could have a role linking sexual selection with speciation both in O. pumilio, and perhaps more generally. PMID:20015236

  18. Sexual selection can increase the effect of random genetic drift--a quantitative genetic model of polymorphism in Oophaga pumilio, the strawberry poison-dart frog.

    PubMed

    Tazzyman, Samuel J; Iwasa, Yoh

    2010-06-01

    The variation in color pattern between populations of the poison-dart frog Oophaga pumilio across the Bocas del Toro archipelago in Panama is suggested to be due to sexual selection, as two other nonsexually selecting Dendrobatid species found in the same habitat and range do not exhibit this variation. We theoretically test this assertion using a quantitative genetic sexual selection model incorporating aposematic coloration and random drift. We find that sexual selection could cause the observed variation via a novel process we call "coupled drift." Within our model, for certain parameter values, sexual selection forces frog color to closely follow the evolution of female preference. Any between-population variation in preference due to genetic drift is passed on to color. If female preference in O. pumilio is strongly affected by drift, whereas color in the nonsexually selecting Dendrobatid species is not, coupled drift will cause increased between-population phenotypic variation. However, with different parameter values, coupled drift will result in between-population variation in color being suppressed compared to its neutral value, or in little or no effect. We suggest that coupled drift is a novel theoretical process that could have a role linking sexual selection with speciation both in O. pumilio, and perhaps more generally.

  19. Genetic ablation and short-duration inhibition of lipoxygenase results in increased macroautophagy

    SciTech Connect

    Jang, Insook; Park, Sujin; Cho, Jin Won; Yigitkanli, Kazim; Leyen, Klaus van; Roth, Jürgen

    2014-02-15

    12/15-lipoxygenase (12/15-LOX) is involved in organelle homeostasis by degrading mitochondria in maturing red blood cells and by eliminating excess peroxisomes in liver. Furthermore, 12/15-LOX contributes to diseases by exacerbating oxidative stress-related injury, notably in stroke. Nonetheless, it is unclear what the consequences are of abolishing 12/15-LOX activity. Mice in which the alox15 gene has been ablated do not show an obvious phenotype, and LOX enzyme inhibition is not overtly detrimental. We show here that liver histology is also unremarkable. However, electron microscopy demonstrated that 12/15-LOX knockout surprisingly leads to increased macroautophagy in the liver. Not only macroautophagy but also mitophagy and pexophagy were increased in hepatocytes, which otherwise showed unaltered fine structure and organelle morphology. These findings were substantiated by immunofluorescence showing significantly increased number of LC3 puncta and by Western blotting demonstrating a significant increase for LC3-II protein in both liver and brain homogenates of 12/15-LOX knockout mice. Inhibition of 12/15-LOX activity by treatment with four structurally different inhibitors had similar effects in cultured HepG2 hepatoma cells and SH-SY5Y neuroblastoma cells with significantly increased autophagy discernable already after 2 hours. Hence, our study reveals a link between ablation or inhibition of 12/15-LOX and stimulation of macroautophagy. The enhanced macroautophagy may be related to the known tissue-protective effects of LOX ablation or inhibition under various diseased conditions caused by oxidative stress and ischemia. This could provide an important cleaning mechanism of cells and tissues to prevent accumulation of damaged mitochondria and other cellular components. - Highlights: • A relationship between lipoxygenases and autophagy is disclosed. • 12/15-lipoxygenase knockout increases autophagy in mice liver and brain. • Lipoxygenase inhibition boosts

  20. Statistics of Scientific Procedures on Living Animals 2012: another increase in experimentation - genetically-altered animals dominate again.

    PubMed

    Hudson-Shore, Michelle

    2013-09-01

    The Annual Statistics of Scientific Procedures on Living Animals Great Britain 2012 reveal that the level of animal experimentation in Great Britain continues to rise, with just over 4.1 million procedures being started in that year. Despite the previous year's indication that the dominance of the production and use of genetically-altered (GA, i.e. genetically-modified animals plus animals with harmful genetic defects) animal might be abating, it returned with a vengeance in 2012. Breeding increased from 43% to 48% of all procedures, and GA animals were involved in 59% of all the procedures. Indeed, if the breeding of these animals were removed from the statistics, the total number of procedures would actually decline by 2%. In order to honour their pledge to reduce animal use in science, the Coalition Government will have to address this issue. The general trends in the species used, and the numbers and types of procedures, are also reviewed. Finally, forthcoming changes to the statistics are discussed.

  1. Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection.

    PubMed

    Pedersen, Niels C; Liu, Hongwei; Durden, Monica; Lyons, Leslie A

    2016-03-01

    A previous study demonstrated the existence of a natural resistance to feline infectious peritonitis virus (FIPV) among 36% of randomly bred laboratory cats. A genome wide association study (GWAS) on this population suggested that resistance was polygenic but failed to identify any strong specific associations. In order to enhance the power of GWAS or whole genome sequencing to identify strong genetic associations, a decision was made to positively select for resistance over three generations. The inbreeding experiment began with a genetically related parental (P) population consisting of three toms and four queens identified from among the survivors of the earlier study and belonging to a closely related subgroup (B). The subsequent effects of inbreeding were measured using 42 genome-wide STR markers. P generation cats produced 57 first filial (F1) kittens, only five of which (9.0%) demonstrated a natural resistance to FIPV infection. One of these five F1 survivors was then used to produce six F1/P-backcrosses kittens, only one of which proved resistant to FIP. Six of eight of the F1 and F1/P survivors succumbed to a secondary exposure 4-12 months later. Therefore, survival after both primary and secondary infection was decreased rather than increased by positive selection for resistance. The common genetic factor associated with this diminished resistance was a loss of heterozygosity.

  2. Developmentally dynamic genome: Evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence.

    PubMed

    Pingault, Jean-Baptiste; Rijsdijk, Frühling; Zheng, Yao; Plomin, Robert; Viding, Essi

    2015-01-01

    The development of conduct problems in childhood and adolescence is associated with adverse long-term outcomes, including psychiatric morbidity. Although genes constitute a proven factor of stability in conduct problems, less is known regarding their role in conduct problems' developmental course (i.e. systematic age changes, for instance linear increases or decreases).Mothers rated conduct problems from age 4 to 16 years in 10,038 twin pairs from the Twins Early Development Study. Individual differences in the baseline level (.78; 95% CI: .68-.88) and the developmental course of conduct problems (.73; 95% CI: .60-.86) were under high and largely independent additive genetic influences. Shared environment made a small contribution to the baseline level but not to the developmental course of conduct problems. These results show that genetic influences not only contribute to behavioural stability but also explain systematic change in conduct problems. Different sets of genes may be associated with the developmental course versus the baseline level of conduct problems. The structure of genetic and environmental influences on the development of conduct problems suggests that repeated preventive interventions at different developmental stages might be necessary to achieve a long-term impact. PMID:25944445

  3. Developmentally dynamic genome: Evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence.

    PubMed

    Pingault, Jean-Baptiste; Rijsdijk, Frühling; Zheng, Yao; Plomin, Robert; Viding, Essi

    2015-01-01

    The development of conduct problems in childhood and adolescence is associated with adverse long-term outcomes, including psychiatric morbidity. Although genes constitute a proven factor of stability in conduct problems, less is known regarding their role in conduct problems' developmental course (i.e. systematic age changes, for instance linear increases or decreases).Mothers rated conduct problems from age 4 to 16 years in 10,038 twin pairs from the Twins Early Development Study. Individual differences in the baseline level (.78; 95% CI: .68-.88) and the developmental course of conduct problems (.73; 95% CI: .60-.86) were under high and largely independent additive genetic influences. Shared environment made a small contribution to the baseline level but not to the developmental course of conduct problems. These results show that genetic influences not only contribute to behavioural stability but also explain systematic change in conduct problems. Different sets of genes may be associated with the developmental course versus the baseline level of conduct problems. The structure of genetic and environmental influences on the development of conduct problems suggests that repeated preventive interventions at different developmental stages might be necessary to achieve a long-term impact.

  4. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    PubMed

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments

  5. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants

    PubMed Central

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments

  6. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    PubMed

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments

  7. Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation?

    PubMed Central

    Buhner, S; Buning, C; Genschel, J; Kling, K; Herrmann, D; Dignass, A; Kuechler, I; Krueger, S; Schmidt, H H‐J; Lochs, H

    2006-01-01

    Background and aim A genetically impaired intestinal barrier function has long been suspected to be a predisposing factor for Crohn's disease (CD). Recently, mutations of the capsase recruitment domain family, member 15 (CARD15) gene have been identified and associated with CD. We hypothesise that a CARD15 mutation may be associated with an impaired intestinal barrier. Methods We studied 128 patients with quiescent CD, 129 first degree relatives (CD‐R), 66 non‐related household members (CD‐NR), and 96 healthy controls. The three most common CARD15 polymorphisms (R702W, G908R, and 3020insC) were analysed and intestinal permeability was determined by the lactulose/mannitol ratio. Results Intestinal permeability was significantly increased in CD and CD‐R groups compared with CD‐NR and controls. Values above the normal range were seen in 44% of CD and 26% of CD‐R but only in 6% of CD‐NR, and in none of the controls. A household community with CD patients, representing a common environment, was not associated with increased intestinal permeability in family members. However, 40% of CD first degree relatives carrying a CARD15 3020insC mutation and 75% (3/4) of those CD‐R with combined 3020insC and R702W mutations had increased intestinal permeability compared with only 15% of wild‐types, indicating a genetic influence on barrier function. R702W and G908R mutations were not associated with high permeability. Conclusions In healthy first degree relatives, high mucosal permeability is associated with the presence of a CARD15 3020insC mutation. This indicates that genetic factors may be involved in impairment of intestinal barrier function in families with IBD. PMID:16000642

  8. Genetically engineered flavonol enriched tomato fruit modulates chondrogenesis to increase bone length in growing animals.

    PubMed

    Choudhary, Dharmendra; Pandey, Ashutosh; Adhikary, Sulekha; Ahmad, Naseer; Bhatia, Chitra; Bhambhani, Sweta; Trivedi, Prabodh Kumar; Trivedi, Ritu

    2016-01-01

    Externally visible body and longitudinal bone growth is a result of proliferation of chondrocytes. In growth disorder, there is delay in the age associated increase in height. The present study evaluates the effect of extract from transgenic tomato fruit expressing AtMYB12 transcription factor on bone health including longitudinal growth. Constitutive expression of AtMYB12 in tomato led to a significantly enhanced biosynthesis of flavonoids in general and the flavonol biosynthesis in particular. Pre-pubertal ovary intact BALB/c mice received daily oral administration of vehicle and ethanolic extract of wild type (WT-TOM) and transgenic AtMYB12-tomato (MYB12-TOM) fruits for six weeks. Animal fed with MYB12-TOM showed no inflammation in hepatic tissues and normal sinusoidal Kupffer cell morphology. MYB12-TOM extract significantly increased tibial and femoral growth and subsequently improved the bone length as compared to vehicle and WT-TOM. Histomorphometry exhibited significantly wider distal femoral and proximal tibial growth plate, increased number and size of hypertrophic chondrocytes in MYB12-TOM which corroborated with micro-CT and expression of BMP-2 and COL-10, marker genes for hypertrophic cells. We conclude that metabolic reprogramming of tomato by AtMYB12 has the potential to improve longitudinal bone growth thus helping in achievement of greater peak bone mass during adolescence. PMID:26917158

  9. Genetically engineered flavonol enriched tomato fruit modulates chondrogenesis to increase bone length in growing animals

    PubMed Central

    Choudhary, Dharmendra; Pandey, Ashutosh; Adhikary, Sulekha; Ahmad, Naseer; Bhatia, Chitra; Bhambhani, Sweta; Trivedi, Prabodh Kumar; Trivedi, Ritu

    2016-01-01

    Externally visible body and longitudinal bone growth is a result of proliferation of chondrocytes. In growth disorder, there is delay in the age associated increase in height. The present study evaluates the effect of extract from transgenic tomato fruit expressing AtMYB12 transcription factor on bone health including longitudinal growth. Constitutive expression of AtMYB12 in tomato led to a significantly enhanced biosynthesis of flavonoids in general and the flavonol biosynthesis in particular. Pre-pubertal ovary intact BALB/c mice received daily oral administration of vehicle and ethanolic extract of wild type (WT-TOM) and transgenic AtMYB12-tomato (MYB12-TOM) fruits for six weeks. Animal fed with MYB12-TOM showed no inflammation in hepatic tissues and normal sinusoidal Kupffer cell morphology. MYB12-TOM extract significantly increased tibial and femoral growth and subsequently improved the bone length as compared to vehicle and WT-TOM. Histomorphometry exhibited significantly wider distal femoral and proximal tibial growth plate, increased number and size of hypertrophic chondrocytes in MYB12-TOM which corroborated with micro-CT and expression of BMP-2 and COL-10, marker genes for hypertrophic cells. We conclude that metabolic reprogramming of tomato by AtMYB12 has the potential to improve longitudinal bone growth thus helping in achievement of greater peak bone mass during adolescence. PMID:26917158

  10. Genetic Changes Accompanying Increased Fitness in Evolving Populations of Escherichia Coli

    PubMed Central

    Modi, R. I.; Castilla, L. H.; Puskas-Rozsa, S.; Helling, R. B.; Adams, J.

    1992-01-01

    Two populations of Escherichia coli, each initiated with a single clone containing a derivative of the plasmid pBR322, were maintained for long periods in glucose-limited continuous culture. In both populations, after an extensive number of generations had elapsed, clones were isolated in which the transposon Tn3 from the plasmid had integrated into the bacterial chromosome. In both cases examined, the transpositions were shown to increase relative fitness approximately 6-7%, in the environment in which the populations were maintained. The loci of integration were mapped to ~13.2 min (population 1) and ~32.8 min (population 2). PMID:1311694

  11. Antioxidants in Translational Medicine

    PubMed Central

    Schmidt, Harald H.H.W.; Stocker, Roland; Vollbracht, Claudia; Paulsen, Gøran; Riley, Dennis

    2015-01-01

    Abstract Significance: It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. Recent Advances: The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. Critical Issues: Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. Future Directions: Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities. Antioxid. Redox Signal. 23, 1130–1143. PMID:26154592

  12. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children.

    PubMed

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C; Reyes-López, Miguel A; Quiñones, Luis A

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11-5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62-78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42-191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94-31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05-6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19-31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  13. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children

    PubMed Central

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C.; Reyes-López, Miguel A.; Quiñones, Luis A.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11–5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62–78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42–191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94–31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05–6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19–31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  14. Increasing association mapping power and resolution in mouse genetic studies through the use of meta-analysis for structured populations.

    PubMed

    Furlotte, Nicholas A; Kang, Eun Yong; Van Nas, Atila; Farber, Charles R; Lusis, Aldons J; Eskin, Eleazar

    2012-07-01

    Genetic studies in mouse models have played an integral role in the discovery of the mechanisms underlying many human diseases. The primary mode of discovery has been the application of linkage analysis to mouse crosses. This approach results in high power to identify regions that affect traits, but in low resolution, making it difficult to identify the precise genomic location harboring the causal variant. Recently, a panel of mice referred to as the hybrid mouse diversity panel (HMDP) has been developed to overcome this problem. However, power in this panel is limited by the availability of inbred strains. Previous studies have suggested combining results across multiple panels as a means to increase power, but the methods employed may not be well suited to structured populations, such as the HMDP. In this article, we introduce a meta-analysis-based method that may be used to combine HMDP studies with F2 cross studies to gain power, while increasing resolution. Due to the drastically different genetic structure of F2s and the HMDP, the best way to combine two studies for a given SNP depends on the strain distribution pattern in each study. We show that combining results, while accounting for these patterns, leads to increased power and resolution. Using our method to map bone mineral density, we find that two previously implicated loci are replicated with increased significance and that the size of the associated is decreased. We also map HDL cholesterol and show a dramatic increase in the significance of a previously identified result. PMID:22505625

  15. Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk

    PubMed Central

    Menke, Ricarda A L; Proudfoot, Malcolm; Wuu, Joanne; Andersen, Peter M; Talbot, Kevin; Benatar, Michael; Turner, Martin R

    2016-01-01

    Objective To discern presymptomatic changes in brain structure or function using advanced MRI in carriers of mutations predisposing to amyotrophic lateral sclerosis (ALS). Methods T1-weighted, diffusion weighted and resting state functional MRI data were acquired at 3 T for 12 asymptomatic mutation carriers (psALS), 12 age-matched controls and affected patients with ALS. Cortical thickness analysis, voxel-based morphometry, volumetric and shape analyses of subcortical structures, tract-based spatial statistics of metrics derived from the diffusion tensor, and resting state functional connectivity (FC) analyses were performed. Results Grey matter cortical thickness and shape analysis revealed significant atrophy in patients with ALS (but not psALS) compared with controls in the right primary motor cortex and right caudate. Comparison of diffusion tensor metrics showed widespread fractional anisotropy and radial diffusivity differences in patients with ALS compared to controls and the psALS group, encompassing parts of the corpus callosum, corticospinal tracts and superior longitudinal fasciculus. While FC in the resting-state sensorimotor network was similar in psALS and controls, FC between the cerebellum and a network comprising the precuneus, cingulate & middle frontal lobe was significantly higher in psALS and affected ALS compared to controls. Conclusions Rather than structural brain changes, increased FC may be among the earliest detectable brain abnormalities in asymptomatic carriers of ALS-causing gene mutations. With replication and significant refinement, this technique has potential in the future assessment of neuroprotective strategies. PMID:26733601

  16. Genetic influence on general mental ability increases between infancy and middle childhood.

    PubMed

    Fulker, D W; DeFries, J C; Plomin, R

    Adoption studies can provide direct evidence for the independent effects of family environment and heredity that are always confounded in intact nuclear families. When children are separated from their biological mothers shortly after birth and placed nonselectively in adoptive homes, adoptive-parent/adopted-child resemblance can be ascribed to cultural transmission, whereas biological-parent/adopted-child similarities are due to heritable factors. Furthermore, a longitudinal adoption study facilitates examination of changes in these two main sources of variation during development. The Colorado Adoption Project is the first large-scale longitudinal adoption study of behavioural development and was initiated in 1975. Data were collected from biological parents of 245 adopted children, the adoptive parents and parents of 245 matched nonadopted children. The children have subsequently been tested at 1, 2, 3 and 4 years of age, and at the end of their first year in primary school (average age, 7.4 years). The number of subjects tested is now adequate for analysis of data over 7 years. The results provide conclusive evidence for increasing heritable variation of general mental ability, ranging from 9% at 1 year of age to 36% at 7 years.

  17. Antioxidant compositions

    SciTech Connect

    Braid, M.

    1980-08-12

    Compositions having highly effective antioxidant characteristics are provided comprising organic media, normally susceptible to oxidation, such as oils of lubricating viscosity, containing a minor amount sufficient to impart antioxidant properties thereto of the reaction product of a polysulfide and a hydrocarbylmagnesium halide or a grignard reagent.

  18. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants.

    PubMed

    Yang, Xinghong; Liang, Zheng; Wen, Xiaogang; Lu, Congming

    2008-01-01

    Genetically engineered tobacco (Nicotiana tabacum L.) with the ability to synthesis glycinebetaine (GB) in chloroplasts was established by introducing the BADH gene for betaine aldehyde dehydrogenase from spinach (Spinacia oleracea L.). The genetic engineering resulted in enhanced tolerance of growth of young seedlings to salt stress. This increased tolerance was not due to improved water status, since there were no significant differences in accumulation of sodium and chloride, leaf water potential, and relative water content between wild type and transgenic plants under salt stress. Salt stress resulted in a decrease in CO2 assimilation and such a decrease was much greater in wild type plants than in transgenic plants. Though salt stress showed no damage to PSII, there were a decrease in the maximal PSII electron transport rate in vivo and an increase in non-photochemical quenching (NPQ) and these changes were greater in wild type plants than in transgenic plants. In addition, salt stress inhibited the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase, chloroplastic fructose-1,6-bisphosphatase, fructose-1,6-bisphosphate aldolase, and phosphoribulokinase and such a decrease was also greater in wild type plants than in transgenic plants, suggesting that GB protects these enzymes against salt stress. However, there were no significant changes in the activities of phosphoglycerate kinase, triose phosphate isomerase, ribulose-5-phosphate isomerase, transketolase, and sedoheptulose-1,7-bisphosphatase in both wild type and transgenic plants. The results in this study suggest that enhanced tolerance of CO2 assimilation to salt stress may be one of physiological bases for increased tolerance of growth of transgenic plants to salt stress.

  19. A Twelve-SNP Genetic Risk Score Identifies Individuals at Increased Risk for Future Atrial Fibrillation and Stroke

    PubMed Central

    Smith, J. Gustav; Sjögren, Marketa; Lubitz, Steven A.; Ellinor, Patrick T.; Louie, Judy Z.; Catanese, Joseph J.; Engström, Gunnar; Devlin, James J.

    2015-01-01

    Background and Purpose Atrial fibrillation (AF) is prevalent and there is a clinical need for biomarkers to identify individuals at higher risk for AF. Fixed throughout a life course and assayable early in life, genetic biomarkers may meet this need. Here, we investigate whether multiple single nucleotide polymorphisms (SNPs) together as an AF genetic risk score (AF-GRS) can improve prediction of one's risk for AF. Methods In 27,471 participants of the Malmö Diet and Cancer Study, a prospective, community-based cohort, we used Cox models that adjusted for established AF risk factors to assess the association of AF-GRS with incident AF and ischemic stroke. Median follow-up was 14.4 years for incident AF and 14.5 years for ischemic stroke. The AF-GRS comprised 12 SNPs that had been previously shown to be associated with AF at genome-wide significance. Results During follow-up, 2,160 participants experienced a first AF event and 1,495 had a first ischemic stroke event. Participants in the top AF-GRS quintile were at increased risk for incident AF (HR = 2.00; 95%CI = 1.73 to 2.31; P=2.7×10−21) and ischemic stroke (HR = 1.23; 95%CI = 1.04 to 1.46; P=0.02) when compared with the bottom quintile. Addition of the AF-GRS to established AF risk factors modestly improved both discrimination and reclassification (P<0.0001 for both). Conclusions An AF-GRS can identify 20% of individuals who are at approximately two-fold increased risk for incident AF and at 23% increased risk for ischemic stroke. Targeting diagnostic or therapeutic interventions to this subset may prove clinically useful. PMID:25123217

  20. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    PubMed

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-01

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. PMID:25450369

  1. Increased virulence of Rabbit Haemorrhagic Disease Virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus)

    PubMed Central

    Elsworth, Peter; Cooke, Brian D.; Kovaliski, John; Sinclair, Ronald; Holmes, Edward C.; Strive, Tanja

    2015-01-01

    The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution. PMID:25146599

  2. Pulmonary antioxidants

    SciTech Connect

    Massaro, E.J.; Grose, E.C.; Hatch, G.E.; Slade, R.

    1987-05-01

    One of the most vital of the cellular defenses against pollution is an antioxidant armanentarium which consists of oxidant scavenging molecules such as vitamin E, glutathione, vitamin C, and uric acid as well as a number of enzymes (superoxide dismutase, semidehydroascorbate reductase, catalase, GSH synthetase, GSH peroxidase, GSH reductase, and GSH transferase) and appears to function in keeping oxidant forces under control. Pollutants can upset the oxidant/antioxidant balance of cells by inhibiting vital enzymes, by reacting with oxidant scavengers, or by forming free radical intermediates which initiate uncontrolled tissue reactions with molecular oxygen. The book chapter reviews possible interactions between pollutants and the oxidant/antioxidant balance.

  3. Genetic predisposition increases the tic severity, rate of comorbidities, and psychosocial and educational difficulties in children with Tourette syndrome.

    PubMed

    Eysturoy, Absalon Niclas; Skov, Liselotte; Debes, Nanette Mol

    2015-03-01

    This study aimed to examine whether there are differences in tic severity, comorbidities, and psychosocial and educational consequences in children with Tourette syndrome and genetic predisposition to Tourette syndrome compared with children with Tourette syndrome without genetic predisposition to Tourette syndrome. A total of 314 children diagnosed with Tourette syndrome participated in this study. Validated diagnostic tools were used to assess tic severity, comorbidities, and cognitive performance. A structured interview was used to evaluate psychosocial and educational consequences related to Tourette syndrome. The children with Tourette syndrome and genetic predisposition present with statistically significant differences in terms of severity of tics, comorbidities, and a range of psychosocial and educational factors compared with the children with Tourette syndrome without genetic predisposition. Professionals need to be aware of genetic predisposition to Tourette syndrome, as children with Tourette syndrome and genetic predisposition have more severe symptoms than those children with Tourette syndrome who are without genetic predisposition.

  4. Oxidant/antioxidant effects of chronic exposure to predator odor in prefrontal cortex, amygdala, and hypothalamus.

    PubMed

    Mejia-Carmona, G E; Gosselink, K L; Pérez-Ishiwara, G; Martínez-Martínez, A

    2015-08-01

    The incidence of anxiety-related diseases is increasing these days, hence there is a need to understand the mechanisms that underlie its nature and consequences. It is known that limbic structures, mainly the prefrontal cortex and amygdala, are involved in the processing of anxiety, and that projections from prefrontal cortex and amygdala can induce activity of the hypothalamic-pituitary-adrenal axis with consequent cardiovascular changes, increase in oxygen consumption, and ROS production. The compensatory reaction can include increased antioxidant enzymes activities, overexpression of antioxidant enzymes, and genetic shifts that could include the activation of antioxidant genes. The main objective of this study was to evaluate the oxidant/antioxidant effect that chronic anxiogenic stress exposure can have in prefrontal cortex, amygdala, and hypothalamus by exposition to predator odor. Results showed (a) sensitization of the HPA axis response, (b) an enzymatic phase 1 and 2 antioxidant response to oxidative stress in amygdala, (c) an antioxidant stability without elevation of oxidative markers in prefrontal cortex, (d) an elevation in phase 1 antioxidant response in hypothalamus. Chronic exposure to predator odor has an impact in the metabolic REDOX state in amygdala, prefrontal cortex, and hypothalamus, with oxidative stress being prevalent in amygdala as this is the principal structure responsible for the management of anxiety.

  5. Genetic fate mapping of type-1 stem cell-dependent increase in newborn hippocampal neurons after electroconvulsive seizures.

    PubMed

    Weber, Tillmann; Baier, Vera; Lentz, Katharina; Herrmann, Elke; Krumm, Bertram; Sartorius, Alexander; Kronenberg, Golo; Bartsch, Dusan

    2013-12-01

    Electroconvulsive therapy (ECT) is a uniquely effective treatment for major depressive disorder. An increase in hippocampal neurogenesis is implicated in the recovery from depression. We used an inducible genetic mouse model in which only GFAP-expressing stem-like cells (type-1 cells) and their progeny are selectively labeled with the reporter protein β-galactosidase to track the process of neurogenesis in the dentate gyrus over 3 months following electroconvulsive seizures (ECS), the mouse equivalent of ECT. All ECS protocols tested induced a transient increase in type-1 cell divisions. While this led to an expansion of the type-1 cell pool after high-frequency ECS sessions for 5 consecutive days (5-ECS), asymmetric divisions drove neurogenesis by giving rise to Doublecortin (DCX)-expressing neuroblasts that matured into NeuN+ neurons. Significantly, the increase in newly generated DCX+ and NeuN+ cells after 5-ECS could be traced back to proliferating type-1 cells. Low-frequency continuation ECS (c-ECS) consisting of five single ECS sessions administered every 2 weeks resulted in a similar increase in newborn neurons as the high-frequency 5-ECS protocol. Moreover, the combination of 5-ECS and c-ECS led to a further significant increase in newborn neurons, suggesting a cellular mechanism responsible for the propitious effects of high-frequency ECT followed by continuation ECT in severely depressed patients. The ability of high- and low-frequency ECS to induce normally quiescent type-1 cells to proliferate and generate new neurons sets it apart from other antidepressant treatments and may underlie the superior clinical efficacy of ECT.

  6. Dietary alpha-ketoglutarate increases cold tolerance in Drosophila melanogaster and enhances protein pool and antioxidant defense in sex-specific manner.

    PubMed

    Bayliak, Maria M; Lylyk, Maria P; Shmihel, Halyna V; Sorochynska, Oksana M; Manyukh, Oksana V; Pierzynowski, Stefan G; Lushchak, Volodymyr I

    2016-08-01

    Alpha-ketoglutarate (AKG) is an important intermediate in Krebs cycle which bridges the metabolism of amino acids and carbohydrates. Its effects as a dietary supplement on cold tolerance were studied in Drosophila melanogaster Canton S. Two-day-old adult flies fed at larval and adult stages with AKG at moderate concentrations (5-10mM) recovered faster from chill coma (0°C for 15min or 3h) than control ones. The beneficial effect of AKG on chill coma recovery was not found at its higher concentrations, which suggests hormetic like action of this keto acid. Time of 50% observed mortality after 2h recovery from continuous cold exposure (-1°C for 3-31h) (LTi50) was higher for flies reared on 10mM AKG compared with control ones, showing that the diet with AKG enhanced insect cold tolerance. In parallel with enhancement of cold tolerance, dietary AKG improved fly locomotor activity. Metabolic effects of AKG differed partly in males and females. In males fed on AKG, there were no differences in total protein and free amino acid levels, but the total antioxidant capacity, catalase activity and low molecular mass thiol content were higher than in control animals. In females, dietary AKG promoted higher total antioxidant capacity and higher levels of proteins, total amino acids, proline and low molecular mass thiols. The levels of lipid peroxides were lower in both fly sexes reared on AKG as compared with control ones. We conclude that both enhancement of antioxidant system capacity and synthesis of amino acids can be important for AKG-promoted cold tolerance in D. melanogaster. The involvement of AKG in metabolic pathways of Drosophila males and females is discussed. PMID:27503710

  7. Antioxidant status, lipid and color stability of aged beef from grazing steers supplemented with corn grain and increasing levels of flaxseed.

    PubMed

    Pouzo, L B; Descalzo, A M; Zaritzky, N E; Rossetti, L; Pavan, E

    2016-01-01

    Angus steers were grazed on unsupplemented pasture (CNTRL), pasture supplemented with 0.7% BW cracked corn (FLAX-0), FLAX-0 with 0.125% and 0.250% BW of whole flaxseed (FLAX-1 and FLAX-2). Six steers were grazed per treatment for 70 days, with start and finish weights of 458 and 508 kg. At 24 h post slaughter, longissimus thoracis were harvested, and steaks assigned to treatments of postmortem aging time under vacuum (PM; 3, 14 and 56 days) with or without five days of aerobic exposure (AE). Meat antioxidant status was higher (P<0.05) when feeding CNTRL and FLAX-1 than FLAX-0 and FLAX-2. Under AE, lipid oxidation was highest for FLAX-2 (P<0.05), and lowest for FLAX-1. Greatest TBARs and lowest antioxidant capacity and redness values were obtained with AE and the longer PM (P<0.05). Beef oxidative stability through AE improved by adding a low flaxseed level to supplemented corn grain, but deteriorated by adding a high flaxseed level or by extending PM.

  8. Antioxidant status, lipid and color stability of aged beef from grazing steers supplemented with corn grain and increasing levels of flaxseed.

    PubMed

    Pouzo, L B; Descalzo, A M; Zaritzky, N E; Rossetti, L; Pavan, E

    2016-01-01

    Angus steers were grazed on unsupplemented pasture (CNTRL), pasture supplemented with 0.7% BW cracked corn (FLAX-0), FLAX-0 with 0.125% and 0.250% BW of whole flaxseed (FLAX-1 and FLAX-2). Six steers were grazed per treatment for 70 days, with start and finish weights of 458 and 508 kg. At 24 h post slaughter, longissimus thoracis were harvested, and steaks assigned to treatments of postmortem aging time under vacuum (PM; 3, 14 and 56 days) with or without five days of aerobic exposure (AE). Meat antioxidant status was higher (P<0.05) when feeding CNTRL and FLAX-1 than FLAX-0 and FLAX-2. Under AE, lipid oxidation was highest for FLAX-2 (P<0.05), and lowest for FLAX-1. Greatest TBARs and lowest antioxidant capacity and redness values were obtained with AE and the longer PM (P<0.05). Beef oxidative stability through AE improved by adding a low flaxseed level to supplemented corn grain, but deteriorated by adding a high flaxseed level or by extending PM. PMID:26318758

  9. Will Genetic Testing for Complex Diseases Increase Motivation to Quit Smoking? Anticipated Reactions in a Survey of Smokers

    ERIC Educational Resources Information Center

    Sanderson, Saskia C.; Wardle, Jane

    2005-01-01

    The aim of this study was to improve understanding of smokers' potential reactions to genetic testing for smoking-related diseases. One thousand twenty-four respondents completed a postal survey; 186 were smokers. Questions addressed anticipated psychological and behavioral reactions to genetic test results using hypothetical scenarios. Of…

  10. Genotypic variation in tomatoes affecting processing and antioxidant attributes.

    PubMed

    Siddiqui, Mohammed Wasim; Ayala-Zavala, J F; Dhua, R S

    2015-01-01

    Tomatoes are widely consumed either raw or after processing and can provide a significant proportion of the total antioxidants in the diet associated with beneficial health properties. Over the last two or three decades an increasing interest for processing and antioxidant attributes in tomatoes has arisen. The screening of processing attributes of tomatoes is subject of a large number of articles; however, special interest has been addressed to the biochemical composition. The postharvest and industrial processing of tomato in tomato-based products includes several steps. Processing and antioxidant characteristics of the raw fruit are important considering the processing steps and final product. To respond to consumer and industrial complaints, breeders should know the range of genetic variability available in tomato resources, including local genotypes, for improving the mentioned attributes. Characterization and conservation of traditional and modern varieties is a major goal for their preservation and utilization. The bioactive contents have an impact on the processed destines so their stability must be contemplated while selecting the tomato fruits for processing. The endeavor of this review was to examine comprehensively the variation in processing and antioxidant attributes among tomatoes. Role of tomato peel in terms of bioactive contents and information on high pigment (hp) tomato mutants are also touched to some extent. Probably, patterns of variation identified/discussed in this paper would give impetus for planning breeding strategies to develop and improve the new processing cultivars with good antioxidant status.

  11. Genetic variants of MAOB affect serotonin level and specific behavioral attributes to increase autism spectrum disorder (ASD) susceptibility in males.

    PubMed

    Chakraborti, Barnali; Verma, Deepak; Karmakar, Arijit; Jaiswal, Preeti; Sanyal, Aritrika; Paul, Debarshi; Sinha, Swagata; Singh, Asem Surindro; Guhathakurta, Subhrangshu; Roychowdhury, Anirban; Panda, Chinmoy Kumar; Ghosh, Saurabh; Mohanakumar, Kochupurackal P; Mukhophadhyay, Kanchan; Rajamma, Usha

    2016-11-01

    Serotonergic system participates in various developmental processes and modulation of behaviour. Autism Spectrum Disorder (ASD) is characterized by a range of behavioral symptoms scaling from mild to severe. Abnormal 5-HT synthesis and signalling, platelet hyperserotonemia and amelioration of repetitive behaviours by SSRI are some of the key findings, which reinforced the hypothesis that serotonergic genes might act as ASD susceptible genes. Therefore, genes encoding monoamine oxidases A/B (MAOA/MAOB) received special attention as these genes are located on the X-chromosome and the gene products are responsible for 5-HT degradation. In the present study, we conducted population-based association analysis of eight markers of MAOB with ASD in a study cohort of 203 cases and 236 controls form India and examined its effect on platelet 5-HT content and behaviour. Gender-specific changes were observed for the contrasting LD between pair of markers among cases and controls. Case-control analysis demonstrated over-distribution of major C allele of rs2283728 and rs2283727 in male and female ASD cases respectively. Haplotypic distribution and interaction among markers showed more robust effect in male cases. Interestingly, male ASD cases displayed higher platelet 5-HT content in comparison to the respective controls. Quantitative trait analysis revealed significant correlation of genetic variants and haplotypes of MAOB markers, rs1799836 and rs6324 with increased platelet 5-HT level and CARS scores for specific behavioral symptoms respectively in males. This study suggests that MAOB increases ASD risk in males, possibly through its sex-specific regulatory effect on 5-HT metabolism and behavior.

  12. Genetic variants of MAOB affect serotonin level and specific behavioral attributes to increase autism spectrum disorder (ASD) susceptibility in males.

    PubMed

    Chakraborti, Barnali; Verma, Deepak; Karmakar, Arijit; Jaiswal, Preeti; Sanyal, Aritrika; Paul, Debarshi; Sinha, Swagata; Singh, Asem Surindro; Guhathakurta, Subhrangshu; Roychowdhury, Anirban; Panda, Chinmoy Kumar; Ghosh, Saurabh; Mohanakumar, Kochupurackal P; Mukhophadhyay, Kanchan; Rajamma, Usha

    2016-11-01

    Serotonergic system participates in various developmental processes and modulation of behaviour. Autism Spectrum Disorder (ASD) is characterized by a range of behavioral symptoms scaling from mild to severe. Abnormal 5-HT synthesis and signalling, platelet hyperserotonemia and amelioration of repetitive behaviours by SSRI are some of the key findings, which reinforced the hypothesis that serotonergic genes might act as ASD susceptible genes. Therefore, genes encoding monoamine oxidases A/B (MAOA/MAOB) received special attention as these genes are located on the X-chromosome and the gene products are responsible for 5-HT degradation. In the present study, we conducted population-based association analysis of eight markers of MAOB with ASD in a study cohort of 203 cases and 236 controls form India and examined its effect on platelet 5-HT content and behaviour. Gender-specific changes were observed for the contrasting LD between pair of markers among cases and controls. Case-control analysis demonstrated over-distribution of major C allele of rs2283728 and rs2283727 in male and female ASD cases respectively. Haplotypic distribution and interaction among markers showed more robust effect in male cases. Interestingly, male ASD cases displayed higher platelet 5-HT content in comparison to the respective controls. Quantitative trait analysis revealed significant correlation of genetic variants and haplotypes of MAOB markers, rs1799836 and rs6324 with increased platelet 5-HT level and CARS scores for specific behavioral symptoms respectively in males. This study suggests that MAOB increases ASD risk in males, possibly through its sex-specific regulatory effect on 5-HT metabolism and behavior. PMID:27381555

  13. Antioxidants and vascular health.

    PubMed

    Bielli, Alessandra; Scioli, Maria Giovanna; Mazzaglia, Donatella; Doldo, Elena; Orlandi, Augusto

    2015-12-15

    Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies.

  14. Germination and extrusion as combined processes for reducing phytates and increasing phenolics content and antioxidant capacity of Oryza sativa L. whole grain flours.

    PubMed

    Albarracín, M; De Greef, D M; González, R J; Drago, S R

    2015-01-01

    Whole rice (WR) products with low phytic acid (PA) content and enhanced bio-functional components were obtained by the combination of germination and extrusion processes. Germination conditions (24 h - 35 °C), with a previous soaking process (24 h - 20 °C), were chosen according to the remnant PA content and germination rate. Specific mechanical energy consumption, expansion, sensorial and mechanical hardness, specific volume, solubility, water absorption, free phenolic content (FPC) and antioxidant capacity were evaluated. Results indicated that 175 °C and 14 g 100 g(-1) of moisture were the most appropriate conditions to obtain expanded products and precooked flours based on germinated WR. Selected extruded product presented less PA content (821.6 9 ± 10.3 versus 695.2 0 ± 1.6 mg 100 g(-1)) and higher Fe bio-accessibility, FPC (45.2 9 ± 1.61 versus 66.3 5 ± 3.35 mg GAE g(-1)) and antioxidant capacity compared with WR (34.9 5 ± 0.8 versus 54.6 3 ± 1.6 µmol trolox g(-1)). Combining germination-extrusion processes could be a strategy to obtain expanded products or precooked flours based on WR with enhanced health benefits. PMID:26560879

  15. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha.

    PubMed

    Mosquera, Laurivette; Colón, Jennifer M; Santiago, José M; Torrado, Aranza I; Meléndez, Margarita; Segarra, Annabell C; Rodríguez-Orengo, José F; Miranda, Jorge D

    2014-05-01

    17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition.

  16. New Antioxidant Drugs for Neonatal Brain Injury

    PubMed Central

    Tataranno, Maria Luisa; Longini, Mariangela; Buonocore, Giuseppe

    2015-01-01

    The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs) generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment. PMID:25685254

  17. A polysaccharide-peptide complex from abalone mushroom (Pleurotus abalonus) fruiting bodies increases activities and gene expression of antioxidant enzymes and reduces lipid peroxidation in senescence-accelerated mice.

    PubMed

    Li, L; Ng, T B; Song, M; Yuan, F; Liu, Z K; Wang, C L; Jiang, Y; Fu, M; Liu, F

    2007-06-01

    The antioxidant effects of a polysaccharide-peptide complex (F22) from mushroom (Pleurotus abalonus)-fruiting bodies were studied. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the liver, kidney, and brain of senescence-accelerated mice showed a marked increase after treatment with the polysaccharide-peptide complex. Concurrently, the gene expression levels of SOD, CAT, and GPx, as determined with real-time polymerase chain reaction, were up-regulated in the liver, kidney, and brain, whereas the MDA content in these organs declined. The maximal lifespan of the mice was prolonged.

  18. Metabolic Biosynthesis of Potato (Solanum tuberosum l.) Antioxidants and Implications for Human Health.

    PubMed

    Lovat, Christie; Nassar, Atef M K; Kubow, Stan; Li, Xiu-Qing; Donnelly, Danielle J

    2016-10-25

    Potato (Solanum tuberosum L.) is common, affordable, readily stored, easily prepared for consumption, and nutritious. For these reasons, potato has become one of the top five crops consumed worldwide. Consequently, it is important to understand its contribution to both our daily and long-term health. Potato is one of the most important sources of antioxidants in the human diet. As such, it supports the antioxidant defense network in our bodies that reduces cellular and tissue toxicities that result from free radical-induced protein, lipid, carbohydrate, and DNA damage. In this way, potato antioxidants may reduce the risk for cancers, cardiovascular diseases, diabetes, and even radiation damage. A better understanding of these components of potato is needed by the food industry, health professionals, and consumers. This review provides referenced summaries of all of the antioxidant groups present in potato tubers and updated schematics including genetic regulation for the major antioxidant biosynthesis pathways. This review complements current knowledge on the role of potato in human health. We hope it will provide impetus toward breeding efforts to develop cultivars with increased antioxidant capacity as 'functional foods' and encourage potato consumers and processors to work toward preservation of antioxidant capacity in cooked potato and potato products.

  19. A Genetically Engineered Waterfowl Influenza Virus with a Deletion in the Stalk of the Neuraminidase Has Increased Virulence for Chickens▿

    PubMed Central

    Munier, S.; Larcher, T.; Cormier-Aline, F.; Soubieux, D.; Su, B.; Guigand, L.; Labrosse, B.; Cherel, Y.; Quéré, P.; Marc, D.; Naffakh, N.

    2010-01-01

    A deletion of about 20 amino acids in the stalk of the neuraminidase (NA) is frequently detected upon transmission of influenza A viruses from waterfowl to domestic poultry. Using reverse genetics, a recombinant virus derived from a wild duck influenza virus isolate, A/Mallard/Marquenterre/Z237/83 (MZ), and an NA stalk deletion variant (MZ-delNA) were produced. Compared to the wild type, the MZ-delNA virus showed a moderate growth advantage on avian cultured cells. In 4-week-old chickens inoculated intratracheally with the MZ-delNA virus, viral replication in the lungs, liver, and kidneys was enhanced and interstitial pneumonia lesions were more severe than with the wild-type virus. The MZ-delNA-inoculated chickens showed significantly increased levels of mRNAs encoding interleukin-6 (IL-6), transforming growth factor-β4 (TGF-β4), and CCL5 in the lungs and a higher frequency of apoptotic cells in the liver than did their MZ-inoculated counterparts. Molecular mechanisms possibly underlying the growth advantage of the MZ-delNA virus were explored. The measured enzymatic activities toward a small substrate were similar for the wild-type and deleted NA, but the MZ-delNA virus eluted from chicken erythrocytes at reduced rates. Pseudoviral particles expressing the MZ hemagglutinin in combination with the MZ-NA or MZ-delNA protein were produced from avian cultured cells with similar efficiencies, suggesting that the deletion in the NA stalk does not enhance the release of progeny virions and probably affects an earlier step of the viral cycle. Overall, our data indicate that a shortened NA stalk is a strong determinant of adaptation and virulence of waterfowl influenza viruses in chickens. PMID:19889765

  20. Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression.

    PubMed

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers; Nyengaard, Jens R

    2010-12-01

    The aim was to investigate treatment effects of the antidepressant imipramine on the markers of neuronal plasticity. We investigated changes in neuron and synapse numbers in a rat strain that displays a genetic susceptibility to depressive behavior, the Flinders Sensitive and Resistant Lines (FSL/FRL). All rats were treated with imipramine (15 mg/kg) or saline (i.p) once daily for 25 days. The volume, neuron and synapse numbers in the hippocampus were estimated using design-based stereological methods. Under untreated conditions, the volume and the number of neurons and synapses were significantly smaller in the FSL saline group (untreated "depressed" rats) compared with the FRL saline group (normal rats), showing correlation to the observed decreased immobility in the forced swim test. Imipramine treatment significantly increased the number of neurons in the granule cell layer (GCL) and spine synapses in the CA1 in the FSL imipramine group (treated "depressed" rats) compared with the FSL saline group. The neuron numbers in the GCL and Hilus showed no differences in the FSL imipramine group compared to the FRL saline group. In conclusion, baseline levels of the volume and the number of neurons and spine synapses in hippocampus were significantly smaller in the untreated FSL rats. Our findings indicate that chronic imipramine treatment reverses the suppression of neurogenesis and synaptogenesis in the hippocampus of the "depressed" FSL rats, and this occurs in correlation with behavioral effects. Our results support the neuronal plasticity hypothesis that depressive disorders may be related to impairments of structural plasticity and neuronal viability in hippocampus, furthermore, antidepressant treatment counteracts the structural impairments.

  1. Synergistic Exposure of Rice Seeds to Different Doses of γ-Ray and Salinity Stress Resulted in Increased Antioxidant Enzyme Activities and Gene-Specific Modulation of TC-NER Pathway

    PubMed Central

    Macovei, Anca; Garg, Bharti; Raikwar, Shailendra; Carbonera, Daniela; Bremont, Juan Francisco Jiménez; Gill, Sarvajeet Singh; Tuteja, Narendra

    2014-01-01

    Recent reports have underlined the potential of gamma (γ)-rays as tools for seed priming, a process used in seed industry to increase seed vigor and to enhance plant tolerance to biotic/abiotic stresses. However, the impact of γ-rays on key aspects of plant metabolism still needs to be carefully evaluated. In the present study, rice seeds were challenged with different doses of γ-rays and grown in absence/presence of NaCl to assess the impact of these treatments on the early stages of plant life. Enhanced germination efficiency associated with increase in radicle and hypocotyl length was observed, while at later stages no increase in plant tolerance to salinity stress was evident. APX, CAT, and GR were enhanced at transcriptional level and in terms of enzyme activity, indicating the activation of antioxidant defence. The profiles of DNA damage accumulation were obtained using SCGE and the implication of TC-NER pathway in DNA damage sensing and repair mechanisms is discussed. OsXPB2, OsXPD, OsTFIIS, and OsTFIIS-like genes showed differential modulation in seedlings and plantlets in response to γ-irradiation and salinity stress. Altogether, the synergistic exposure to γ-rays and NaCl resulted in enhanced oxidative stress and proper activation of antioxidant mechanisms, thus being compatible with plant survival. PMID:24551849

  2. Synergistic exposure of rice seeds to different doses of γ-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway.

    PubMed

    Macovei, Anca; Garg, Bharti; Raikwar, Shailendra; Balestrazzi, Alma; Carbonera, Daniela; Buttafava, Armando; Bremont, Juan Francisco Jiménez; Gill, Sarvajeet Singh; Tuteja, Narendra

    2014-01-01

    Recent reports have underlined the potential of gamma (γ)-rays as tools for seed priming, a process used in seed industry to increase seed vigor and to enhance plant tolerance to biotic/abiotic stresses. However, the impact of γ -rays on key aspects of plant metabolism still needs to be carefully evaluated. In the present study, rice seeds were challenged with different doses of γ -rays and grown in absence/presence of NaCl to assess the impact of these treatments on the early stages of plant life. Enhanced germination efficiency associated with increase in radicle and hypocotyl length was observed, while at later stages no increase in plant tolerance to salinity stress was evident. APX, CAT, and GR were enhanced at transcriptional level and in terms of enzyme activity, indicating the activation of antioxidant defence. The profiles of DNA damage accumulation were obtained using SCGE and the implication of TC-NER pathway in DNA damage sensing and repair mechanisms is discussed. OsXPB2, OsXPD, OsTFIIS, and OsTFIIS-like genes showed differential modulation in seedlings and plantlets in response to γ -irradiation and salinity stress. Altogether, the synergistic exposure to γ -rays and NaCl resulted in enhanced oxidative stress and proper activation of antioxidant mechanisms, thus being compatible with plant survival. PMID:24551849

  3. Synergistic exposure of rice seeds to different doses of γ-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway.

    PubMed

    Macovei, Anca; Garg, Bharti; Raikwar, Shailendra; Balestrazzi, Alma; Carbonera, Daniela; Buttafava, Armando; Bremont, Juan Francisco Jiménez; Gill, Sarvajeet Singh; Tuteja, Narendra

    2014-01-01

    Recent reports have underlined the potential of gamma (γ)-rays as tools for seed priming, a process used in seed industry to increase seed vigor and to enhance plant tolerance to biotic/abiotic stresses. However, the impact of γ -rays on key aspects of plant metabolism still needs to be carefully evaluated. In the present study, rice seeds were challenged with different doses of γ -rays and grown in absence/presence of NaCl to assess the impact of these treatments on the early stages of plant life. Enhanced germination efficiency associated with increase in radicle and hypocotyl length was observed, while at later stages no increase in plant tolerance to salinity stress was evident. APX, CAT, and GR were enhanced at transcriptional level and in terms of enzyme activity, indicating the activation of antioxidant defence. The profiles of DNA damage accumulation were obtained using SCGE and the implication of TC-NER pathway in DNA damage sensing and repair mechanisms is discussed. OsXPB2, OsXPD, OsTFIIS, and OsTFIIS-like genes showed differential modulation in seedlings and plantlets in response to γ -irradiation and salinity stress. Altogether, the synergistic exposure to γ -rays and NaCl resulted in enhanced oxidative stress and proper activation of antioxidant mechanisms, thus being compatible with plant survival.

  4. Antioxidants and the Comet assay.

    PubMed

    Cemeli, Eduardo; Baumgartner, Adolf; Anderson, Diana

    2009-01-01

    It is widely accepted that antioxidants, either endogenous or from the diet, play a key role in preserving health. They are able to quench radical species generated in situations of oxidative stress, either triggered by pathologies or xenobiotics, and they protect the integrity of DNA from genotoxicants. Nevertheless, there are still many compounds with unclear or unidentified prooxidant/antioxidant activities. This is of concern since there is an increase in the number of compounds synthesized or extracted from vegetables to which humans might be exposed. Despite the well-established protective effects of fruit and vegetables, the antioxidant(s) responsible have not all been clearly identified. There might also be alternative mechanisms contributing to the protective effects for which a comprehensive description is lacking. In the last two decades, the Comet assay has been extensively used for the investigation of the effects of antioxidants and many reports can be found in the literature. The Comet assay, a relatively fast, simple, and sensitive technique for the analysis of DNA damage in all cell types, has been applied for the screening of chemicals, biomonitoring and intervention studies. In the present review, several of the most well-known antioxidants are considered. These include: catalase, superoxide dismutase, glutathione peroxidase, selenium, iron chelators, melatonin, melanin, vitamins (A, B, C and E), carotenes, flavonoids, isoflavones, tea polyphenols, wine polyphenols and synthetic antioxidants. Investigations showing beneficial as well as non-beneficial properties of the antioxidants selected, either at the in vitro, ex vivo or in vivo level are discussed.

  5. Antioxidant relevance to human health.

    PubMed

    Wahlqvist, Mark L

    2013-01-01

    Human ecology requires both oxygen and water with the generation from food of an immediate energy source, ATP, by oxidative phosphorylation. A continuing balance between oxidation and antioxidation is necessary for longer less-disabled lives, taking account of oxidative stresses and the critical roles of oxidants in defence against infection, tissue repair and signalling. Antioxidant capacity is derived both exogenously (from food, beverage and sunlight) and endogenously (from enzymatic and non-enzymatic pathways). A number of oxidant food factors service antioxidant metallo-enzymes. The capacity operates extra- or intracellularly. Uric acid is the major antioxidant in primate blood. Uric acid synthesis is increased by dietary fructose from fruit, sugary foods and drinks. This indirect antioxidant effect of fruit is separate from that attributable to its flavonoids. Alcohol also increases serum uric acid. Urate excess and retention is associated with disease. The high prevalence of hyperuricaemia in NE Asia presents a major public health dilemma in regard to putative benefits and risks. Foods with high antioxidant activity include berries, nuts and legumes, tomatoes and sweet potato leaves. Each of the antioxidants in these foods is pleiotropic being inter-alia anti-inflammatory, anti-angiogenic or anti-neoplastic. Moreover, food matrices and patterns contribute to the safety of antioxidant consumption. There is no evidence to date that isolated antioxidants as food supplements improve health outcomes or survival; and some that indicate unacceptable risk. Their use as biomarkers of food cannot justify their isolated use. Nevertheless, a spectrum of dietary pluripotential antioxidants for tissues, metabolic and immune systems is advantageous.

  6. Isolation-hypoxia and re-oxygenation of the pallial cavity of female Crepipatella dilatata during estuarine salinity changes requires increased glyoxylase activity and antioxidant metabolism to avoid oxidative damage to female tissues and developing embryos.

    PubMed

    Cubillos, Víctor; Chaparro, Oscar; Segura, Cristian; Montory, Jaime; Cruces, Edgardo; Burritt, David

    2016-08-01

    The estuarine slipper limpet Crepipatella dilatata is a gastropod that can survive prolonged periods of low salinities (< 24 PSU) caused by tidal changes and/or prolonged periods of rain. During low salinity events, C. dilatata can isolate its body from the outside environment, by sealing its shell against the substrate on which it grows. Prolonged isolation periods from the surrounding environment can greatly lower available oxygen levels inside of the pallial cavity, impacting on the physiology of both females and their incubated encapsulated embryos. When salinity levels return to normal, isolation is terminated and the inflow of seawater results in re-oxygenation. In this study we show that when re-oxygenation of the pallial cavity takes place, oxidative damage, in the form of increased levels of lipid peroxides and protein carbonyls, occurs in both maternal tissues and in incubated embryos. To avoid terminal oxidative damage both females and their embryos increase their levels of the glyoxalase pathway enzymes (GLX-I and GLX-II) and general antioxidant metabolism (SOD, CAT, GR, GPOX and GST). As a result the levels of oxidative damage decline to basal levels within 24 h of reoxygenation. Thus the combination of isolation, a behavioural strategy, combined with encapsulation of embryos and a capacity to up regulate relatively rapidly the glyoxylase pathway and general antioxidant metabolism, play major roles in facilitating the survival of C. dilatata in the small estuaries of Southern Chile. PMID:27232979

  7. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS.

    PubMed

    Alin, Jonas; Hakkarainen, Minna

    2011-05-25

    Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.

  8. Interactions between demography, genetics, and landscape connectivity increase extinction probability for a small population of large carnivores in a major metropolitan area.

    PubMed

    Benson, John F; Mahoney, Peter J; Sikich, Jeff A; Serieys, Laurel E K; Pollinger, John P; Ernest, Holly B; Riley, Seth P D

    2016-08-31

    The extinction vortex is a theoretical model describing the process by which extinction risk is elevated in small, isolated populations owing to interactions between environmental, demographic, and genetic factors. However, empirical demonstrations of these interactions have been elusive. We modelled the dynamics of a small mountain lion population isolated by anthropogenic barriers in greater Los Angeles, California, to evaluate the influence of demographic, genetic, and landscape factors on extinction probability. The population exhibited strong survival and reproduction, and the model predicted stable median population growth and a 15% probability of extinction over 50 years in the absence of inbreeding depression. However, our model also predicted the population will lose 40-57% of its heterozygosity in 50 years. When we reduced demographic parameters proportional to reductions documented in another wild population of mountain lions that experienced inbreeding depression, extinction probability rose to 99.7%. Simulating greater landscape connectivity by increasing immigration to greater than or equal to one migrant per generation appears sufficient to largely maintain genetic diversity and reduce extinction probability. We provide empirical support for the central tenet of the extinction vortex as interactions between genetics and demography greatly increased extinction probability relative to the risk from demographic and environmental stochasticity alone. Our modelling approach realistically integrates demographic and genetic data to provide a comprehensive assessment of factors threatening small populations. PMID:27581877

  9. Interactions between demography, genetics, and landscape connectivity increase extinction probability for a small population of large carnivores in a major metropolitan area.

    PubMed

    Benson, John F; Mahoney, Peter J; Sikich, Jeff A; Serieys, Laurel E K; Pollinger, John P; Ernest, Holly B; Riley, Seth P D

    2016-08-31

    The extinction vortex is a theoretical model describing the process by which extinction risk is elevated in small, isolated populations owing to interactions between environmental, demographic, and genetic factors. However, empirical demonstrations of these interactions have been elusive. We modelled the dynamics of a small mountain lion population isolated by anthropogenic barriers in greater Los Angeles, California, to evaluate the influence of demographic, genetic, and landscape factors on extinction probability. The population exhibited strong survival and reproduction, and the model predicted stable median population growth and a 15% probability of extinction over 50 years in the absence of inbreeding depression. However, our model also predicted the population will lose 40-57% of its heterozygosity in 50 years. When we reduced demographic parameters proportional to reductions documented in another wild population of mountain lions that experienced inbreeding depression, extinction probability rose to 99.7%. Simulating greater landscape connectivity by increasing immigration to greater than or equal to one migrant per generation appears sufficient to largely maintain genetic diversity and reduce extinction probability. We provide empirical support for the central tenet of the extinction vortex as interactions between genetics and demography greatly increased extinction probability relative to the risk from demographic and environmental stochasticity alone. Our modelling approach realistically integrates demographic and genetic data to provide a comprehensive assessment of factors threatening small populations.

  10. Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer.

    PubMed

    Latifa, Khlifi; Sondess, Sahli; Hajer, Graiet; Manel, Ben-Hadj-Mohamed; Souhir, Khelil; Nadia, Bouzidi; Abir, Jaballah; Salima, Ferchichi; Abdelhedi, Miled

    2016-01-01

    Pressure ulcer (PU) remains a common worldwide problem in all health care settings, it is synonymous with suffering. PU is a complex disease that is dependent on a number of interrelated factors. It involves multiple mechanisms such as physiological risk factors, chronic inflammation, oxidant-antioxidant imbalance and proteolytic attack on extracellular matrix by matrix metalloproteinases (MMP). Therefore, we propose that these wounds lead to molecular variations that can be detected by assessing biomarkers. In this study, we aimed to evaluate the major clinical elements and biological scars in Tunisian patients suffering from PU. Consistently, non-healing wound remains a challenging clinical problem. The complex challenges of the wound environment, involving nutrient deficiencies, bacterial infection, as well as the critical role played by inflammatory cells, should be considered because of their negative impact on wound healing. In addition, an imbalance between pro-oxidants and antioxidant systems seems to be more aggravated in patients with PU compared to healthy subjects. Of interest, this study provides further evidence to support a core role of the biological activity of MMP-9 in the pathogenesis of PU and indicates that the MMP9-1562 C/T (rs 3918242) functional polymorphism is associated with protection against this disease. PMID:27405842

  11. Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer.

    PubMed

    Latifa, Khlifi; Sondess, Sahli; Hajer, Graiet; Manel, Ben-Hadj-Mohamed; Souhir, Khelil; Nadia, Bouzidi; Abir, Jaballah; Salima, Ferchichi; Abdelhedi, Miled

    2016-07-11

    Pressure ulcer (PU) remains a common worldwide problem in all health care settings, it is synonymous with suffering. PU is a complex disease that is dependent on a number of interrelated factors. It involves multiple mechanisms such as physiological risk factors, chronic inflammation, oxidant-antioxidant imbalance and proteolytic attack on extracellular matrix by matrix metalloproteinases (MMP). Therefore, we propose that these wounds lead to molecular variations that can be detected by assessing biomarkers. In this study, we aimed to evaluate the major clinical elements and biological scars in Tunisian patients suffering from PU. Consistently, non-healing wound remains a challenging clinical problem. The complex challenges of the wound environment, involving nutrient deficiencies, bacterial infection, as well as the critical role played by inflammatory cells, should be considered because of their negative impact on wound healing. In addition, an imbalance between pro-oxidants and antioxidant systems seems to be more aggravated in patients with PU compared to healthy subjects. Of interest, this study provides further evidence to support a core role of the biological activity of MMP-9 in the pathogenesis of PU and indicates that the MMP9-1562 C/T (rs 3918242) functional polymorphism is associated with protection against this disease.

  12. Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer

    PubMed Central

    Latifa, Khlifi; Sondess, Sahli; Hajer, Graiet; Manel, Ben-Hadj-Mohamed; Souhir, Khelil; Nadia, Bouzidi; Abir, Jaballah; Salima, Ferchichi; Abdelhedi, Miled

    2016-01-01

    Pressure ulcer (PU) remains a common worldwide problem in all health care settings, it is synonymous with suffering. PU is a complex disease that is dependent on a number of interrelated factors. It involves multiple mechanisms such as physiological risk factors, chronic inflammation, oxidant–antioxidant imbalance and proteolytic attack on extracellular matrix by matrix metalloproteinases (MMP). Therefore, we propose that these wounds lead to molecular variations that can be detected by assessing biomarkers. In this study, we aimed to evaluate the major clinical elements and biological scars in Tunisian patients suffering from PU. Consistently, non-healing wound remains a challenging clinical problem. The complex challenges of the wound environment, involving nutrient deficiencies, bacterial infection, as well as the critical role played by inflammatory cells, should be considered because of their negative impact on wound healing. In addition, an imbalance between pro-oxidants and antioxidant systems seems to be more aggravated in patients with PU compared to healthy subjects. Of interest, this study provides further evidence to support a core role of the biological activity of MMP-9 in the pathogenesis of PU and indicates that the MMP9-1562 C/T (rs 3918242) functional polymorphism is associated with protection against this disease. PMID:27405842

  13. Increasing phenotypic and genetic variations in hyperactivity/inattention problems from age 3 to 13 years: a cross-sectional twin study.

    PubMed

    Hur, Yoon-Mi

    2014-12-01

    A twin design was used to examine the developmental nature of genetic, environmental, and phenotypic variations in hyperactivity and inattention problems (HIP). Mothers of 662 complete pairs of twins (273 monozygotic [MZ] pairs and 389 dizygotic [DZ] pairs) aged from 3 to 13 years (mean [SD] age = 8.3 [2.9] years) responded to the items of the HIP scale of the Strengths and Difficulties questionnaire via a telephone interview. Maximum likelihood MZ and DZ twin correlations in the total sample were 0.47 (95% CI: 0.37-0.55) and -0.01 (95% CI: -0.11-0.09). A standard univariate model incorporating age as a modifier was applied to the raw data. Results of model-fitting analyses showed that the phenotypic variation of HIP monotonically increased from age 3 to age 12 and that this increase was completely due to an increase in genetic variance, suggesting that it is genes that expand individual difference in ADHD symptoms with age during childhood. Child-specific environmental variance was constant during this age period. In terms of relative influences, total genetic factors increased from 33% (95% CI: 27-44%) at age 3 to 51% (95% CI: 28-71%) at age 13 and this increase was accompanied by a decrease in relative influences of child-specific environmental factors from 67% (95% CI: 56-73%) at age 3 to 49% (95% CI: 29-72%) at age 13. These estimates of genetic influences were somewhat lower than those found in most twin studies of ADHD symptoms. However, the increasing trend of genetic influences with age during childhood was consistent with the results of a recent meta-analysis of ADHD symptoms.

  14. "Chromoseratops Meiosus": A Simple, Two-Phase Exercise to Represent the Connection between Meiosis & Increased Genetic Diversity

    ERIC Educational Resources Information Center

    Eliyahu, Dorit

    2014-01-01

    I present an activity to help students make the connection between meiosis and genetic variation. The students model meiosis in the first phase of the activity, and by that process they produce gametes of a fictitious reptilobird species, "Chromoseratops meiosus." Later on, they will "mate" their gametes and produce a zygote…

  15. Antioxidant pharmacological therapies for COPD.

    PubMed

    Rahman, Irfan; MacNee, William

    2012-06-01

    Increased oxidative stress occurs in the lungs and systemically in COPD, which plays a role in many of the pathogenic mechanisms in COPD. Hence, targeting local lung and systemic oxidative stress with agents that modulate the antioxidants/redox system or boost endogenous antioxidants would be a useful therapeutic approach in COPD. Thiol antioxidants (N-acetyl-l-cysteine [NAC] and N-acystelyn, carbocysteine, erdosteine, and fudosteine) have been used to increase lung thiol content. Modulation of cigarette smoke (CS) induced oxidative stress and its consequent cellular changes have also been reported to be effected by synthetic molecules, such as spin traps (α-phenyl-N-tert-butyl nitrone), catalytic antioxidants (superoxide dismutase [ECSOD] mimetics), porphyrins, and lipid peroxidation and protein carbonylation blockers/inhibitors (edaravone and lazaroids/tirilazad). Preclinical and clinical trials have shown that these antioxidants can reduce oxidative stress, affect redox and glutathione biosynthesis genes, and proinflammatory gene expression. In this review the approaches to enhance lung antioxidants in COPD and the potential beneficial effects of antioxidant therapy on the course of the disease are discussed. PMID:22349417

  16. A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Agrobacterium is a phytopathogenic bacterium that induces crown gall disease in many plant species by transferring and integrating a segment of its own DNA (T-DNA) into its host genome. Whereas Agrobacterium usually does not trigger an extensive defense response in its host plants, it induces the expression of several defense-related genes and activates plant stress reactions. In the complex interplay between Agrobacterium and its host plant, Agrobacterium has evolved to take advantage of these plant defense pathways for its own purpose of advancement of the infection process. For example, Agrobacterium utilizes the host stress response transcriptional regulator VIP1 to facilitate nuclear import and proteasomal uncoating of its T-DNA during genetic transformation of the host cell. In Arabidopsis, the VIP1 gene expression is repressed by WRKY17, a negative regulator of basal resistance to Pseudomonas. Thus, we examined whether WRKY17 is also involved in plant susceptibility to genetic transformation by Agrobacterium. Using reverse genetics, we showed that a wrky17 mutant displays higher expression of the VIP1 gene in roots, but not in shoots. In a root infection assay, the wrky17 mutant plants were hyper-susceptible to Agrobacterium compared to wild type plants. WRKY17, therefore, may act as a positive regulator of Arabidopsis resistance to Agrobacterium. This notion is important for understanding the complex regulation of Agrobacterium-mediated genetic transformation; thus, although this paper reports a relatively small set of data that we do not plan to pursue further in our lab, we believe it might be useful for the broad community of plant pathologists and plant biotechnologists. PMID:24358874

  17. A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation

    PubMed Central

    Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Agrobacterium is a phytopathogenic bacterium that induces crown gall disease in many plant species by transferring and integrating a segment of its own DNA (T-DNA) into its host genome. Whereas Agrobacterium usually does not trigger an extensive defense response in its host plants, it induces the expression of several defense-related genes and activates plant stress reactions. In the complex interplay between Agrobacterium and its host plant, Agrobacterium has evolved to take advantage of these plant defense pathways for its own purpose of advancement of the infection process. For example, Agrobacterium utilizes the host stress response transcriptional regulator VIP1 to facilitate nuclear import and proteasomal uncoating of its T-DNA during genetic transformation of the host cell. In Arabidopsis, the VIP1 gene expression is repressed by WRKY17, a negative regulator of basal resistance to Pseudomonas. Thus, we examined whether WRKY17 is also involved in plant susceptibility to genetic transformation by Agrobacterium. Using reverse genetics, we showed that a wrky17 mutant displays higher expression of the VIP1 gene in roots, but not in shoots. In a root infection assay, the wrky17 mutant plants were hyper-susceptible to Agrobacterium compared to wild type plants. WRKY17, therefore, may act as a positive regulator of Arabidopsis resistance to Agrobacterium. This notion is important for understanding the complex regulation of Agrobacterium-mediated genetic transformation; thus, although this paper reports a relatively small set of data that we do not plan to pursue further in our lab, we believe it might be useful for the broad community of plant pathologists and plant biotechnologists. PMID:24358874

  18. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  19. Somatic and genetic effects of the increase of carbon dioxide and other trace gases in the atmosphere through changes of radon and thoron exhalation rates and other factors

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuto

    Somatic and genetic effects of the increase of greenhouse gases are investigated. The exhalation rates of radon and thoron are affected by the climate change through the temperature rise itself, melting of snow and ice and the change of soil moisture, and the lung cancer rate is affected by these changes. On the other hand the greenhouse warming of the troposphere leads to cooling of the stratosphere, which protects the O 3 layer and reduces skin cancer. In the genetic side the temperature rise is harmful for sperm. The Rn increase leads to an increase of chromosome aberrations. Crude estimates of these effects show that the soil moisture effect is probably the largest, but the O 3 protection effect may also be significant.

  20. GSTO1*E155del polymorphism associated with increased risk for late-onset Alzheimer's disease: association hypothesis for an uncommon genetic variant.

    PubMed

    Piacentini, Sara; Polimanti, Renato; Squitti, Rosanna; Mariani, Stefania; Migliore, Simone; Vernieri, Fabrizio; Rossini, Paolo Maria; Manfellotto, Dario; Fuciarelli, Maria

    2012-01-11

    Glutathione S-transferases are multifunctional enzymes involved in cellular detoxification. A genetic linkage was found between Alzheimer's Disease (AD) and the chromosome 10q, where the GSTO1 and GSTO2 genes are located, leading to the hypothesis that GST Omega class (GSTO) genes may be an AD risk factor. Since it is still controversial, we decided to explore GSTO polymorphisms in Italian cohorts. We analyzed 119 AD patients and 114 healthy controls for the GSTO gene polymorphisms. In particular we investigated two common polymorphisms (GSTO1*A140D, GSTO2*N142D) and two uncommon variants (GSTO1*E155del, GSTO1*E208K) to find loci associated with AD risk. Detection of GSTO1*A140D and GSTO2*N142D was performed by PCR-RFLP, while GSTO1*E155del and GSTO1*E208K were detected using confronting two-pair primer and allele specific PCR, respectively. While GSTO1*A140D, GSTO1*E208K and GSTO2*N142D polymorphisms did not show significant outcomes, the GSTO1*E155del polymorphism is associated with AD [P=0.003; adjusted OR=3.70 (1.57-8.75)]. Our results suggest that GSTO1-1 plays a role in AD since the GSTO1*del155 variant is involved in changes in GSTO1-1 activities decreasing in enzyme stability. Specifically, three hypotheses may explain the role of GSTO1-1 in the pathophysiology of AD: the antioxidant activity of GSTO1-1 may protect brain tissue against oxidative stress; GSTO1-1 activity regulate interleukin-1β activation and its genetic variation may act to modulate inflammation in AD; GSTO1-1 is involved in the arsenic biotransformation pathway and gene polymorphisms may be implicated in the modulation of arsenic neurotoxicity. In conclusion, we hypothesized that GSTO1*E155del is an uncommon genetic variant associated with AD risk. PMID:22100662

  1. The Common FTO Genetic Polymorphism rs9939609 is Associated with Increased BMI in Type 1 Diabetes but not with Diabetic Nephropathy.

    PubMed

    Gu, Harvest F; Alvarsson, Alexandra; Brismar, Kerstin

    2010-04-27

    The fat mass and obesity associated (FTO) gene has an important genetic effect on body mass index (BMI) and risk of obesity, and obesity contributes to the progression of renal diseases, including diabetic nephropathy. We thus conducted a genetic association study to evaluate whether the FTO gene confers the risk susceptibility to the development of diabetic nephropathy. Genotyping experiments of the common FTO polymorphism, rs9939609, in 1170 type 1 diabetes patients with (n = 597) or without diabetic nephropathy (n = 573) were performed with TaqMan allelic discrimination. All subjects are of European descent and selected from the Genetics of Kidney Diseases in Diabetes (GoKinD) study. The frequency of T allele of this polymorphism was 0.414 in the studied population. There was no allelic association of this polymorphism with diabetic nephropathy. But, the risk susceptibility of A allele conferring to the increased BMI among type 1 diabetes patients was observed. The subjects carrying with AA genotype had higher BMI compared to the carriers with TA and/or TT genotype(s) (P genetic polymorphism, rs9939609, is associated with increased BMI in type 1 diabetes but not with diabetic nephropathy.

  2. Increased genetic diversity as a defence against parasites is undermined by social parasites: Microdon mutabilis hoverflies infesting Formica lemani ant colonies

    PubMed Central

    Gardner, M.G; Schönrogge, K; Elmes, G.W; Thomas, J.A

    2006-01-01

    Genetic diversity can benefit social insects by providing variability in immune defences against parasites and pathogens. However, social parasites of ants infest colonies and not individuals, and for them a different relationship between genetic diversity and resistance may exist. Here, we investigate the genetic variation, assessed using up to 12 microsatellite loci, of workers in 91 Formica lemani colonies in relation to their infestation by the specialist social parasite Microdon mutabilis. At the main study site, workers in infested colonies exhibited lower relatedness and higher estimated queen numbers, on average, than uninfested ones. Additionally, estimated queen numbers were negatively correlated with estimated average numbers of mates per queen within infested colonies. At another site, infested colonies also exhibited significantly lower worker relatedness, and estimated queen numbers were comparable in trend. In contrast, in two populations of F. lemani where M. mutabilis was absent, relatedness within colonies was high (40 and 90% with R>0.6). While high genetic variation can benefit social insects by increasing their resistance to pathogens, there may be a cost in the increased likelihood of infiltration by social parasites owing to greater variation in nestmate recognition cues. This study provides the first empirical test of this hypothesis. PMID:17035169

  3. Genetic selection to increase bone strength affects prevalence of keel bone damage and egg parameters in commercially housed laying hens.

    PubMed

    Stratmann, A; Fröhlich, E K F; Gebhardt-Henrich, S G; Harlander-Matauschek, A; Würbel, H; Toscano, M J

    2016-05-01

    The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects. PMID:26944960

  4. Genetic selection to increase bone strength affects prevalence of keel bone damage and egg parameters in commercially housed laying hens.

    PubMed

    Stratmann, A; Fröhlich, E K F; Gebhardt-Henrich, S G; Harlander-Matauschek, A; Würbel, H; Toscano, M J

    2016-05-01

    The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects.

  5. Oxidants, antioxidants and carcinogenesis.

    PubMed

    Ray, Gibanananda; Husain, Syed Akhtar

    2002-11-01

    nitrosamine formation and an alteration of metabolic activations of carcinogens. They can prevent genetic changes by inhibiting DNA damage induced by the ROMs. Therefore, these antioxidants may be helpful in the treatment of human cancer. However, detailed studies are required to draw a definite conclusion.

  6. Recent and Projected Increases in Atmospheric CO2 Concentration Can Enhance Gene Flow between Wild and Genetically Altered Rice (Oryza sativa)

    PubMed Central

    Ziska, Lewis H.; Gealy, David R.; Tomecek, Martha B.; Jackson, Aaron K.; Black, Howard L.

    2012-01-01

    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO2 from an early 20th century concentration (300 µmol mol−1) to current (400 µmol mol−1) and projected, mid-21st century (600 µmol mol−1) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol−1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems. PMID:22649533

  7. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    PubMed Central

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  8. Genetically determined resistance to listeriosis is associated with increased accumulation of inflammatory neutrophils and macrophages which have enhanced listericidal activity.

    PubMed Central

    Czuprynski, C J; Canono, B P; Henson, P M; Campbell, P A

    1985-01-01

    The C57BL/6 and A/J inbred strains of mice differ markedly in their resistance to the facultative intracellular bacterium Listeria monocytogenes. One possible explanation for this genetically determined resistance is that phagocytes from Listeria-resistant strains of mice can kill L. monocytogenes more effectively than phagocytes from Listeria-susceptible strains of mice. We report here that inflammatory neutrophils and macrophages from Listeria-resistant mice (C57BL/6) exhibit a slight but significantly enhanced ability to kill L. monocytogenes in vitro as compared to inflammatory phagocytes from Listeria-susceptible mice (A/J). More importantly, however, Listeria-resistant mice recruited more inflammatory neutrophils and macrophages to the peritoneal cavity in response to i.p. injection of heat-killed Listeria than did Listeria-susceptible mice. These data suggest that genetically determined resistance to listeriosis is dependent on the enhanced inflammatory responsiveness of Listeria-resistant mice. Further support for this hypothesis was provided by experiments in which the passive transfer to A/J mice (C5-deficient) of plasma from C57BL/6 mice (C5-sufficient) enhanced the ability of the recipient A/J mice both to recruit inflammatory neutrophils to the peritoneal cavity in response to i.p. injection of heat-killed Listeria, and to clear L. monocytogenes from the spleen after a sublethal challenge of viable Listeria. PMID:4018836

  9. Increased sampling reveals novel lineages of Entamoeba: consequences of genetic diversity and host specificity for taxonomy and molecular detection.

    PubMed

    Stensvold, C Rune; Lebbad, Marianne; Victory, Emma L; Verweij, Jaco J; Tannich, Egbert; Alfellani, Mohammed; Legarraga, Paulette; Clark, C Graham

    2011-07-01

    To expand the representation for phylogenetic analysis, ten additional complete Entamoeba small-subunit rRNA gene sequences were obtained from humans, non-human primates, cattle and a tortoise. For some novel sequences no corresponding morphological data were available, and we suggest that these organisms should be referred to as ribosomal lineages (RL) rather than being assigned species names at present. To investigate genetic diversity and host specificity of selected Entamoeba species, a total of 91 new partial small subunit rRNA gene sequences were obtained, including 49 from Entamoeba coli, 18 from Entamoeba polecki, and 17 from Entamoeba hartmanni. We propose a new nomenclature for significant variants within established Entamoeba species. Based on current data we propose that the uninucleated-cyst-producing Entamoeba infecting humans is called Entamoeba polecki and divided into four subtypes (ST1-ST4) and that Entamoeba coli is divided into two subtypes (ST1-ST2). New hosts for several species were detected and, while host specificity and genetic diversity of several species remain to be clarified, it is clear that previous reliance on cultivated material has given us a misleading and incomplete picture of variation within the genus Entamoeba. PMID:21295520

  10. Increased sampling reveals novel lineages of Entamoeba: consequences of genetic diversity and host specificity for taxonomy and molecular detection.

    PubMed

    Stensvold, C Rune; Lebbad, Marianne; Victory, Emma L; Verweij, Jaco J; Tannich, Egbert; Alfellani, Mohammed; Legarraga, Paulette; Clark, C Graham

    2011-07-01

    To expand the representation for phylogenetic analysis, ten additional complete Entamoeba small-subunit rRNA gene sequences were obtained from humans, non-human primates, cattle and a tortoise. For some novel sequences no corresponding morphological data were available, and we suggest that these organisms should be referred to as ribosomal lineages (RL) rather than being assigned species names at present. To investigate genetic diversity and host specificity of selected Entamoeba species, a total of 91 new partial small subunit rRNA gene sequences were obtained, including 49 from Entamoeba coli, 18 from Entamoeba polecki, and 17 from Entamoeba hartmanni. We propose a new nomenclature for significant variants within established Entamoeba species. Based on current data we propose that the uninucleated-cyst-producing Entamoeba infecting humans is called Entamoeba polecki and divided into four subtypes (ST1-ST4) and that Entamoeba coli is divided into two subtypes (ST1-ST2). New hosts for several species were detected and, while host specificity and genetic diversity of several species remain to be clarified, it is clear that previous reliance on cultivated material has given us a misleading and incomplete picture of variation within the genus Entamoeba.

  11. A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation.

    PubMed

    Gomez-Mestre, Ivan; Jovani, Roger

    2013-11-22

    An ongoing new synthesis in evolutionary theory is expanding our view of the sources of heritable variation beyond point mutations of fixed phenotypic effects to include environmentally sensitive changes in gene regulation. This expansion of the paradigm is necessary given ample evidence for a heritable ability to alter gene expression in response to environmental cues. In consequence, single genotypes are often capable of adaptively expressing different phenotypes in different environments, i.e. are adaptively plastic. We present an individual-based heuristic model to compare the adaptive dynamics of populations composed of plastic or non-plastic genotypes under a wide range of scenarios where we modify environmental variation, mutation rate and costs of plasticity. The model shows that adaptive plasticity contributes to the maintenance of genetic variation within populations, reduces bottlenecks when facing rapid environmental changes and confers an overall faster rate of adaptation. In fluctuating environments, plasticity is favoured by selection and maintained in the population. However, if the environment stabilizes and costs of plasticity are high, plasticity is reduced by selection, leading to genetic assimilation, which could result in species diversification. More broadly, our model shows that adaptive plasticity is a common consequence of selection under environmental heterogeneity, and hence a potentially common phenomenon in nature. Thus, taking adaptive plasticity into account substantially extends our view of adaptive evolution.

  12. Complete Genome Sequence of Flavobacterium psychrophilum Strain CSF259-93, Used To Select Rainbow Trout for Increased Genetic Resistance against Bacterial Cold Water Disease.

    PubMed

    Wiens, Gregory D; LaPatra, Scott E; Welch, Timothy J; Rexroad, Caird; Call, Douglas R; Cain, Kenneth D; LaFrentz, Benjamin R; Vaisvil, Benjamin; Schmitt, Daniel P; Kapatral, Vinayak

    2014-01-01

    The genome sequence of Flavobacterium psychrophilum strain CSF259-93, isolated from rainbow trout (Oncorhynchus mykiss), consists of a single circular genome of 2,900,735 bp and 2,701 predicted open reading frames (ORFs). Strain CSF259-93 has been used to select a line of rainbow trout with increased genetic resistance against bacterial cold water disease. PMID:25237017

  13. Complete Genome Sequence of Flavobacterium psychrophilum Strain CSF259-93, Used To Select Rainbow Trout for Increased Genetic Resistance against Bacterial Cold Water Disease

    PubMed Central

    LaPatra, Scott E.; Welch, Timothy J.; Rexroad, Caird; Call, Douglas R.; Cain, Kenneth D.; LaFrentz, Benjamin R.; Vaisvil, Benjamin; Schmitt, Daniel P.; Kapatral, Vinayak

    2014-01-01

    The genome sequence of Flavobacterium psychrophilum strain CSF259-93, isolated from rainbow trout (Oncorhynchus mykiss), consists of a single circular genome of 2,900,735 bp and 2,701 predicted open reading frames (ORFs). Strain CSF259-93 has been used to select a line of rainbow trout with increased genetic resistance against bacterial cold water disease. PMID:25237017

  14. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  15. Antioxidant Impregnated Ultra-High Molecular Weight Polyethylene Wear Debris Particles Display Increased Bone Remodeling and a Superior Osteogenic:Osteolytic Profile vs. Conventional UHMWPE Particles in a Murine Calvaria Model

    PubMed Central

    Chen, Yu; Hallab, Nadim J.; Liao, Yen-Shuo; Narayan, Venkat; Schwarz, Edward M.; Xie, Chao

    2015-01-01

    Periprosthetic osteolysis remains a major limitation of long-term successful total hip replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. As intra and extracellular reactive oxygen species are know to contribute to wear debris-induced osteoclastic bone resorption and decreased osteoblastic bone formation, antioxidant doped UHMWPE has emerged as an approach to reduce the osteolytic potential of wear debris and maintain coupled bone remodeling. To test this hypothesis in vivo, we evaluated the effects of crosslinked UHMWPE wear debris particles (AltrX™), versus similar wear particles made from COVERNOX™ containing UHMWPE (AOX™), in an established murine calvaria model. Eight-week-old female C57B/6 mice (n=10/Group) received a pre-op micro-CT scan prior to surgical implantation of the UHMWPE particles (2mg), or surgery without particles (sham). Dynamic labeling was performed by intraperitoneal injection of calcein on day 7 and alizarin on day 9, and the calvaria were harvested for micro-CT and histology on day 10. Surprisingly, we found that AOX particles induced significantly more bone resorption (1.72-fold) and osteoclast numbers (1.99-fold) vs. AltrX (p<0.001). However, AOX also significantly induced 1.64-fold more new bone formation vs. AltrX (p<0.01). Moreover, while the osteolytic:osteogenic ratio of both particles was very close to 1.0, which is indicative of coupled remodeling, AOX was more osteogenic (Slope=1.13±0.10 vs. 0.97±0.10). Histomorphometry of the metabolically labeled undecalcified calvaria revealed a consistent trend of greater MAR in AOX vs. AltrX. Collectively, these results demonstrate that anti-oxidant impregnated UHMWPE particles have decreased osteolytic potential due to their increased osteogenic properties that support coupled bone remodeling. PMID:26495749

  16. Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules.

    PubMed

    Feng, Lin; Li, Wen; Liu, Yang; Jiang, Wei-Dan; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Wu, Pei; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    The present work evaluated the effects of dietary phenylalanine (Phe) on the intestinal immune response, tight junction proteins transcript abundance, and the gene expression of immune- and antioxidant-related signalling molecules in the intestine. In addition, the dietary Phe (and Phe + Tyr) requirement of young grass carp (Ctenopharyngodon idella) was also estimated. Fish were fed fish meal-casein-gelatin based diets (302.3 g crude protein kg(-1)) containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g Phe kg(-1) with a fixed amount of 10.7 g tyrosine kg(-1) for 8 weeks. The results showed that Phe deficiency or excess Phe reduced the lysozyme and acid phosphatase activities and complement C 3 content in the intestine (P < 0.05). Moreover, zonula occludens-1 (ZO-1), occludin and claudin c mRNA levels were highest in the fish fed the diet containing 11.5 g Phe kg(-1) (P < 0.05). However, claudin 12 and claudin b mRNA levels were not significantly affected by dietary Phe (P > 0.05). Gene expression of interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), target of rapamycin (TOR) and inhibitor of nuclear factor κBα (IκBα) in proximal intestine (PI), mid intestine (MI) and distal intestine (DI) increased as dietary Phe increased up to 6.1, 9.1, 11.5 and 14.0 g kg(-1), respectively (P < 0.05). However, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and nuclear factor-κB p65 (NF-κB p65) mRNA levels showed opposite tendencies. In addition, the mRNA level of superoxide dismutase (SOD) was significantly lower in the intestinal tissue of the group fed a diet with Phe levels of 16.8 g kg(-1) than in those of other groups (P < 0.05). The expression of NF-E2-related factor 2 (Nrf2) gene was increased as dietary Phe increased up to 9.1 g kg(-1) (P < 0.05). In conclusion, Phe improved intestinal immune status, and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes, NF-κB p65, IκBα, TOR, and Nrf2 in the fish

  17. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs?

    PubMed

    Kara, Yusuf; Doguc, Duygu Kumbul; Kulac, Esin; Gultekin, Fatih

    2014-05-01

    Chronic inflammation occurs systematically in the central nervous system during ageing, it has been shown that neuroinflammation plays an important role in the pathogenesis of many neurodegenerative disorders. Aspirin, a nonselective COX inhibitor, as well as ascorbic acid, has been purported to protect cerebral tissue. We investigated the effects of subchronic aspirin and ascorbic acid usage on spatial learning, oxidative stress and expressions of NR2A, NR2B, nAChRα7, α4 and β2. Forty male rats (16-18 months) were divided into 4 groups, namely, control, aspirin-treated, ascorbic acid-treated, aspirin+ascorbic acid-treated groups. Following 10-weeks administration period, rats were trained and tested in the Morris water maze. 8-Hydroxy-2-deoxyguanosine and malondialdehyde were evaluated by ELISA and HPLC, respectively. Receptor expressions were assessed by western blotting of hippocampi. Spatial learning performance improved partially in the aspirin group, but significant improvement was seen in the aspirin+ascorbic acid group (p < 0.05). While 8-hydroxy-2-deoxyguanosine and malondialdehyde levels were significantly decreased, NR2B and nAChRα7 expressions were significantly increased in the aspirin+ascorbic acid group as compared to the control group (p < 0.05). Subchronic treatment with aspirin+ascorbic acid in aged rats was shown to enhance cognitive performance and increase the expressions of several receptors related to learning and memory process.

  18. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases.

    PubMed

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A

    2016-02-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.

  19. Testing directed evolution strategies for space exploration: genetic modification of photosystem II to increase stress tolerance under space conditions

    NASA Astrophysics Data System (ADS)

    Bertalan, I.; Giardi, M. T.; Johanningmeier, U.

    Plants and many microorganisms are able to convert and store solar energy in chemical bonds by a process called photosynthesis They remove CO 2 from the atmosphere fix it as carbohydrate and simultaneously evolve oxygen Oxygen evolution is of supreme relevance for all higher life forms and results from the splitting of water molecules This process is catalyzed by the so called photosystem II PSII complex and represents the very beginning of biomass production PS II is also a central point of regulation being responsive to various physical and physiological parameters Complex space radiation is damaging PS II and reduces photosynthetic efficiency Thus bioregenerative life-support systems are severely disturbed at this point Genetic manipulation of photosynthesis checkpoints offer the possibility to adjust biomass and oxygen production to changing environmental conditions As the photosynthetic apparatus has adapted to terrestrial and not to space conditions we are trying to adapt a central and particularly stress-susceptible element of the photosynthesis apparatus - the D1 subunit of PS II - to space radiation by a strategy of directed evolution The D1 subunit together with its sister subunit D2 form the reaction centre of PS II D1 presents a central weak point for radiation energy that hits the chloroplast We have constructed a mutant of the green alga Chlamydomonas reinhardtii with a defect D1 protein This mutant is easily transformable with D1-encoding PCR fragments without purification and cloning steps 1 When

  20. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity.

    PubMed

    Patrick, Lyn

    2003-05-01

    Exposure to toxic metals has become an increasingly recognized source of illness worldwide. Both cadmium and arsenic are ubiquitous in the environment, and exposure through food and water as well as occupational sources can contribute to a well-defined spectrum of disease. The symptom picture of arsenic toxicity is characterized by dermal lesions, anemia, and an increased risk for cardiovascular disease, diabetes, and liver damage. Cadmium has a significant effect on renal function, and as a result alters bone metabolism, leading to osteoporosis and osteomalacia. Cadmium-induced genotoxicity also increases risk for several cancers. The mechanisms of arsenic- and cadmium-induced damage include the production of free radicals that alter mitochondrial activity and genetic information. The metabolism and excretion of these heavy metals depend on the presence of antioxidants and thiols that aid arsenic methylation and both arsenic and cadmium metallothionein-binding. S-adenosylmethionine, lipoic acid, glutathione, selenium, zinc, N-acetylcysteine (NAC), methionine, cysteine, alpha-tocopherol, and ascorbic acid have specific roles in the mitigation of heavy metal toxicity. Several antioxidants including NAC, zinc, methionine, and cysteine, when used in conjunction with standard chelating agents, can improve the mobilization and excretion of arsenic and cadmium.

  1. Mesolimbic effects of the antidepressant fluoxetine in Holtzman rats, a genetic strain with increased vulnerability to stress.

    PubMed

    Padilla, Eimeira; Shumake, Jason; Barrett, Douglas W; Sheridan, Eva C; Gonzalez-Lima, F

    2011-04-28

    This is the first metabolic mapping study of the effects of fluoxetine after learned helplessness training. Antidepressants are the most commonly prescribed medications, but the regions underlying treatment effects in affectively disordered brains are poorly understood. We hypothesized the antidepressant action of fluoxetine would produce adaptations in mesolimbic regions after 2 weeks of treatment. We used Holtzman rats, a genetic strain showing susceptibility to novelty-evoked hyperactivity and stress-evoked helplessness, to map regional brain metabolic effects caused by fluoxetine treatment. Animals underwent learned helplessness, and subsequently immobility time was scored in the forced swim test (FST). On the next day, animals began receiving 2 weeks of fluoxetine (5mg/kg/day) or vehicle and were retested in the FST at the end of drug treatment. Antidepressant behavioral effects of fluoxetine were analyzed using a ratio of immobility during pre- and post-treatment FST sessions. Brains were analyzed for regional metabolic activity using quantitative cytochrome oxidase histochemistry as in our previous study using congenitally helpless rats. Fluoxetine exerted a protective effect against FST-induced immobility behavior in Holtzman rats. Fluoxetine also caused a significant reduction in the mean regional metabolism of the nucleus accumbens shell and the ventral hippocampus as compared to vehicle-treated subjects. Additional networks affected by fluoxetine treatment included the prefrontal-cingulate cortex and brainstem nuclei linked to depression (e.g., habenula, dorsal raphe and interpeduncular nucleus). We concluded that corticolimbic regions such as the prefrontal-cingulate cortex, nucleus accumbens, ventral hippocampus and key brainstem nuclei represent important contributors to the neural network mediating fluoxetine antidepressant action.

  2. Carotenoids, birdsong and oxidative status: administration of dietary lutein is associated with an increase in song rate and circulating antioxidants (albumin and cholesterol) and a decrease in oxidative damage.

    PubMed

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336

  3. Carotenoids, Birdsong and Oxidative Status: Administration of Dietary Lutein Is Associated with an Increase in Song Rate and Circulating Antioxidants (Albumin and Cholesterol) and a Decrease in Oxidative Damage

    PubMed Central

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336

  4. From observation to intervention: development of a psychoeducational intervention to increase uptake of BRCA genetic counseling among high-risk breast cancer survivors.

    PubMed

    Vadaparampil, Susan T; Malo, Teri L; Nam, Kelli M; Nelson, Alison; de la Cruz, Cara Z; Quinn, Gwendolyn P

    2014-12-01

    We describe the development of a psychoeducational intervention (PEI) to increase uptake of genetic counseling targeted to high-risk breast cancer survivors. Based on previous research, scientific literature, and a review of cancer education websites, we identified potential PEI content. We then assessed the initial acceptability and preference of two booklets of identical content but different layouts, by presenting the booklets to individuals with a personal or family history of breast cancer (n = 57). The preferred booklet was evaluated by two focus groups of ten breast cancer patients who had not attended genetic counseling. The booklet was refined based on participants' feedback at each stage. Focus group participants generally found the booklet visually appealing, informative, and helpful, but some thought that it was too long. Final changes were made based on learner verification principles of attraction, comprehension, cultural acceptability, and persuasion. This project produced an interventional tool to present key constructs that may facilitate decision making about risk-appropriate genetic counseling uptake among high-risk breast cancer survivors. The process described for creating, testing, and adapting materials from a patient perspective can be used for developing other PEIs. This newly developed, unique PEI can be used in many clinical settings. PMID:24706196

  5. From Observation to Intervention: Development of a Psychoeducational Intervention to Increase Uptake of BRCA Genetic Counseling Among High-Risk Breast Cancer Survivors

    PubMed Central

    Malo, Teri L.; Nam, Kelli M.; Nelson, Alison; de la Cruz, Cara Z.; Quinn, Gwendolyn P.

    2015-01-01

    We describe the development of a psychoeducational intervention (PEI) to increase uptake of genetic counseling targeted to high-risk breast cancer survivors. Based on previous research, scientific literature, and a review of cancer education websites, we identified potential PEI content. We then assessed the initial acceptability and preference of two booklets of identical content but different layouts, by presenting the booklets to individuals with a personal or family history of breast cancer (n=57). The preferred booklet was evaluated by two focus groups of ten breast cancer patients who had not attended genetic counseling. The booklet was refined based on participants' feedback at each stage. Focus group participants generally found the booklet visually appealing, informative, and helpful, but some thought that it was too long. Final changes were made based on learner verification principles of attraction, comprehension, cultural acceptability, and persuasion. This project produced an interventional tool to present key constructs that may facilitate decision making about risk-appropriate genetic counseling uptake among high-risk breast cancer survivors. The process described for creating, testing, and adapting materials from a patient perspective can be used for developing other PEIs. This newly developed, unique PEI can be used in many clinical settings. PMID:24706196

  6. Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients: Increased Genetic Load of Islet-Expressed and Cytokine-Regulated Candidate Genes Predicts Poorer Glycemic Control

    PubMed Central

    Brorsson, Caroline A.; Nielsen, Lotte B.; Andersen, Marie Louise; Kaur, Simranjeet; Bergholdt, Regine; Hansen, Lars; Mortensen, Henrik B.; Pociot, Flemming; Størling, Joachim; Hvidoere Study Group on Childhood Diabetes

    2016-01-01

    Genome-wide association studies (GWAS) have identified over 40 type 1 diabetes risk loci. The clinical impact of these loci on β-cell function during disease progression is unknown. We aimed at testing whether a genetic risk score could predict glycemic control and residual β-cell function in type 1 diabetes (T1D). As gene expression may represent an intermediate phenotype between genetic variation and disease, we hypothesized that genes within T1D loci which are expressed in islets and transcriptionally regulated by proinflammatory cytokines would be the best predictors of disease progression. Two-thirds of 46 GWAS candidate genes examined were expressed in human islets, and 11 of these significantly changed expression levels following exposure to proinflammatory cytokines (IL-1β + IFNγ + TNFα) for 48 h. Using the GWAS single nucleotide polymorphisms (SNPs) from each locus, we constructed a genetic risk score based on the cumulative number of risk alleles carried in children with newly diagnosed T1D. With each additional risk allele carried, HbA1c levels increased significantly within first year after diagnosis. Network and gene ontology (GO) analyses revealed that several of the 11 candidate genes have overlapping biological functions and interact in a common network. Our results may help predict disease progression in newly diagnosed children with T1D which can be exploited for optimizing treatment. PMID:26904692

  7. Genetic suppression of HO-1 exacerbates renal damage: reversed by an increase in the antiapoptotic signaling pathway.

    PubMed

    Olszanecki, Rafal; Rezzani, Rita; Omura, Shinji; Stec, David E; Rodella, Luigi; Botros, Fady T; Goodman, Alvin I; Drummond, George; Abraham, Nader G

    2007-01-01

    Apoptosis has been shown to contribute to the development of acute and chronic renal failure. The antiapoptotic action of the heme oxygenase (HO) system may represent an important protective mechanism in kidney pathology. We examined whether the lack of HO-1 would influence apoptosis in clipped kidneys of two-kidney, one-clip (2K1C) rats. Five-day-old Sprague-Dawley rats were injected in the left ventricle with approximately 5 x 10(9) colony-forming units/ml of retrovirus containing rat HO-1 antisense (LSN-RHO-1-AS) or control retrovirus (LXSN). After 3 mo, a 0.25-mm U-shaped silver clip was placed around the left renal artery. Animals were killed 3 wk later. Clipping the renal artery in LSN-RHO-1-AS rats did not result in increased HO-1 expression. In contrast to LXSN animals, 2K1C LSN-RHO-1-AS rats showed increased expression of cyclooxygenase 2 (COX-2) and higher 3-nitrotyrosine (3-NT) content as well as increased expression of the proapoptotic protein Apaf-1 and caspase-3 activity. Clipping the renal artery in LXSN rats resulted in increased expression of the antiapoptotic proteins Bcl-2 and Bcl-xl, while clipping the renal artery in LSN-RHO-1-AS rats did not change Bcl-2 levels and decreased the levels of Bcl-xl. Treatment of LSN-RHO-1-AS rats with cobalt protoporphyrin resulted in induction of renal HO-1, which was accompanied by decreases in blood pressure, COX-2, 3-NT, and caspase-3 activity, and increased expression of anti-apoptotic molecules (Bcl-2, Bcl-xl, Akt and p-Akt) in the clipped kidneys. These findings underscore the prominent role of HO-1 in counteracting apoptosis in this 2K1C renovascular hypertension model. PMID:16940561

  8. Therapeutics role of olive fruits/oil in the prevention of diseases via modulation of anti-oxidant, anti-tumour and genetic activity

    PubMed Central

    Rahmani, Arshad H; Albutti, Aqel S; Aly, Salah M

    2014-01-01

    The current mode of treatment for various diseases is based on synthetic drugs are effective but they show adverse effect and also alter the genetic and metabolic activity. Moreover, some drugs prepared from plants and their constituents show potentiality with more efficacy than synthetic agents used in clinical therapy. Earlier report has shown that regular consumption of fruits and vegetables is strongly related with reduced risk of developing various diseases. Several epidemiological studies has shown that, the incidence heart disease and cancers is lowest in the Mediterranean basin as compared to the part of the world because of their diet rich in olives and olive products. Olives are commonly consumed in Mediterranean and Arabian Peninsula and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that, the constituents from olive such as oleuropein, squalene and hydroxytyrosol modulate the genes functions and other activities. In this review, the medicinal value of olives and their constituents are summarized in terms of therapeutic approach in the diseases management through regulation of various activities. PMID:24955148

  9. Mitochondria-targeted antioxidants.

    PubMed

    Oyewole, Anne O; Birch-Machin, Mark A

    2015-12-01

    Redox homeostasis is maintained by the antioxidant defense system, which is responsible for eliminating a wide range of oxidants, including reactive oxygen species (ROS), lipid peroxides, and metals. Mitochondria-localized antioxidants are widely studied because the mitochondria, the major producers of intracellular ROS, have been linked to the cause of aging and other chronic diseases. Mitochondria-targeted antioxidants have shown great potential because they cross the mitochondrial phospholipid bilayer and eliminate ROS at the heart of the source. Growing evidence has identified mitochondria-targeted antioxidants, such as MitoQ and tiron, as potentially effective antioxidant therapies against the damage caused by enhanced ROS generation. This literature review summarizes the current knowledge on mitochondria-targeted antioxidants and their contribution to the body's antioxidant defense system. In addition to addressing the concerns surrounding current antioxidant strategies, including difficulties in targeting antioxidant treatment to sites of pathologic oxidative damage, we discuss promising therapeutic agents and new strategic approaches.

  10. Potassium channel openers increase aortic elastic fiber formation and reverse the genetically determined elastin deficit in the BN rat.

    PubMed

    Slove, Séverin; Lannoy, Morgane; Behmoaras, Jacques; Pezet, Mylène; Sloboda, Natacha; Lacolley, Patrick; Escoubet, Brigitte; Buján, Julia; Jacob, Marie-Paule

    2013-10-01

    Hypertension is a cardiovascular disorder that appears in more than half of the patients with Williams-Beuren syndrome, hemizygous for the elastin gene among 26 to 28 other genes. It was shown that the antihypertensive drug minoxidil, an ATP-dependent potassium channel opener, enhances elastic fiber formation; however, no wide clinical application was developed because of its adverse side effects. The Brown Norway rat was used here as an arterial elastin-deficient model. We tested 3 different potassium channel openers, minoxidil, diazoxide, and pinacidil, and 1 potassium channel blocker, glibenclamide, on cultured smooth muscle cells from Brown Norway rat aorta. All tested potassium channel openers increased mRNAs encoding proteins and enzymes involved in elastic fiber formation, whereas glibenclamide had the opposite effect. The higher steady-state level of tropoelastin mRNA in minoxidil-treated cells was attributable to an increase in both transcription and mRNA stability. Treatment of Brown Norway rats for 10 weeks with minoxidil or diazoxide increased elastic fiber content and decreased cell number in the aortic media, without changing collagen content. The minoxidil-induced cardiac hypertrophy was reduced when animals simultaneously received irbesartan, an angiotensin II-receptor antagonist. This side effect of minoxidil was not observed in diazoxide-treated animals. In conclusion, diazoxide, causing less undesirable side effects than minoxidil, or coadministration of minoxidil and irbesartan, increases elastic fiber content, decreases cell number in the aorta and, thus, could be suitable for treating vascular pathologies characterized by diminished arterial elastin content and simultaneous hypertension. PMID:23918751

  11. Antioxidant activities from different rosemary clonal lines.

    PubMed

    Ban, Lan; Narasimhamoorthy, Brindha; Zhao, Liuqing; Greaves, John A; Schroeder, William D

    2016-06-15

    Rosemary extract is widely used in food industry and carnosic acid is reported to be the major component that is responsible for its antioxidant activities. However, it is unclear how the numerous plant metabolites interact and contribute to the overall antioxidant activity. In this study, with poultry fat as the model food system, rosemary extract from six clonal lines were evaluated that each represented a different genetic variant. As expected, rosemary extract with higher carnosic acid content had higher antioxidant activity. However, rosemary extract which had carnosic acid removed retained a significant amount of activity. Furthermore, when the individual contributions of carnosic acid and the portion without carnosic acid were evaluated separately, neither was shown to be responsible for the overall level of its stabilization effect from rosemary extract as a whole entity. The interactions among different plant metabolites have a major impact on the overall antioxidant capabilities of rosemary extract. PMID:26868574

  12. Antioxidant activities from different rosemary clonal lines.

    PubMed

    Ban, Lan; Narasimhamoorthy, Brindha; Zhao, Liuqing; Greaves, John A; Schroeder, William D

    2016-06-15

    Rosemary extract is widely used in food industry and carnosic acid is reported to be the major component that is responsible for its antioxidant activities. However, it is unclear how the numerous plant metabolites interact and contribute to the overall antioxidant activity. In this study, with poultry fat as the model food system, rosemary extract from six clonal lines were evaluated that each represented a different genetic variant. As expected, rosemary extract with higher carnosic acid content had higher antioxidant activity. However, rosemary extract which had carnosic acid removed retained a significant amount of activity. Furthermore, when the individual contributions of carnosic acid and the portion without carnosic acid were evaluated separately, neither was shown to be responsible for the overall level of its stabilization effect from rosemary extract as a whole entity. The interactions among different plant metabolites have a major impact on the overall antioxidant capabilities of rosemary extract.

  13. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint.

    PubMed

    Kingston-Smith, A H; Marshall, A H; Moorby, J M

    2013-03-01

    Animal production is a fundamental component of the food supply chain, and with an increasing global population production levels are set to increase. Ruminant animals in particular are valuable in their ability to convert a fibre-rich forage diet into a high-quality protein product for human consumption, although this benefit is offset by inefficiencies in rumen fermentation that contribute to emission of significant quantities of methane and nitrogenous waste. Through co-operation between plant and animal sciences, we can identify how the nutritional requirements of ruminants can be satisfied by high-quality forages for the future. Selective forage plant breeding has supported crop improvement for nearly a century. Early plant breeding programmes were successful in terms of yield gains (4% to 5% per decade), with quality traits becoming increasingly important breeding targets (e.g. enhanced disease resistance and digestibility). Recently, demands for more sustainable production systems have required high yielding, high-quality forages that enable efficient animal production with minimal environmental impact. Achieving this involves considering the entire farm system and identifying opportunities for maximising nutrient use efficiency in both forage and animal components. Forage crops of the future must be able to utilise limited resources (water and nutrients) to maximise production on a limited land area and this may require us to consider alternative plant species to those currently in use. Furthermore, new breeding targets will be identified as the interactions between plants and the animals that consume them become better understood. This will ensure that available resources are targeted at delivering maximum benefits to the animal through enhanced transformation efficiency.

  14. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma' levels.

    PubMed

    Uitte de Willige, Shirley; de Visser, Marieke C H; Houwing-Duistermaat, Jeanine J; Rosendaal, Frits R; Vos, Hans L; Bertina, Rogier M

    2005-12-15

    We investigated the association between haplotypes of fibrinogen alpha (FGA), beta (FGB), and gamma (FGG), total fibrinogen levels, fibrinogen gamma' (gammaA/gamma' plus gamma'/gamma') levels, and risk for deep venous thrombosis. In a population-based case-control study, the Leiden Thrombophilia Study, we typed 15 haplotype-tagging single nucleotide polymorphisms (htSNPs) in this gene cluster. None of these haplotypes was associated with total fibrinogen levels. In each gene, one haplotype increased the thrombosis risk approximately 2-fold. After adjustment for linkage disequilibrium between the genes, only FGG-H2 homozygosity remained associated with risk (odds ratio [OR], 2.4; 95% confidence interval [95% CI], 1.5-3.9). FGG-H2 was also associated with reduced fibrinogen gamma' levels and reduced ratios of fibrinogen gamma' to total fibrinogen. Multivariate analysis showed that reduced fibrinogen gamma' levels and elevated total fibrinogen levels were both associated with an increased risk for thrombosis, even after adjustment for FGG-H2. A reduced fibrinogen gamma' to total fibrinogen ratio (less than 0.69) also increased the risk (OR, 2.4; 95% CI, 1.7-3.5). We propose that FGG-H2 influences thrombosis risk through htSNP 10034C/T [rs2066865] by strengthening the consensus of a CstF site and thus favoring the formation of gammaA chain above that of gamma' chain. Fibrinogen gamma' contains a unique high-affinity, nonsubstrate binding site for thrombin, which seems critical for the expression of the antithrombin activity that develops during fibrin formation (antithrombin 1).

  15. Genetically Enhanced Sorghum and Sugarcane: Engineering Hydrocarbon Biosynthesis and Storage together with Increased Photosynthetic Efficiency into the Saccharinae

    SciTech Connect

    2012-02-15

    PETRO Project: UIUC is working to convert sugarcane and sorghum—already 2 of the most productive crops in the world—into dedicated bio-oil crop systems. Three components will be engineered to produce new crops that have a 50% higher yield, produce easily extractable oils, and have a wider growing range across the U.S. This will be achieved by modifying the crop canopy to better distribute sunlight and increase its cold tolerance. By directly producing oil in the shoots of these plants, these biofuels could be easily extracted with the conventional crushing techniques used today to extract sugar.

  16. Antioxidant-Induced Stress

    PubMed Central

    Villanueva, Cleva; Kross, Robert D.

    2012-01-01

    Antioxidants are among the most popular health-protecting products, sold worldwide without prescription. Indeed, there are many reports showing the benefits of antioxidants but only a few questioning the possible harmful effects of these “drugs”. The normal balance between antioxidants and free radicals in the body is offset when either of these forces prevails. The available evidence on the harmful effects of antioxidants is analyzed in this review. In summary, a hypothesis is presented that “antioxidant-induced stress” results when antioxidants overwhelm the body’s free radicals. PMID:22408440

  17. Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels.

    PubMed

    Chang, Ming-Kang; Kramer, Ina; Huber, Thomas; Kinzel, Bernd; Guth-Gundel, Sabine; Leupin, Olivier; Kneissel, Michaela

    2014-12-01

    We identified previously in vitro LRP4 (low-density lipoprotein receptor-related protein 4) as a facilitator of the WNT (Wingless-type) antagonist sclerostin and found mutations disrupting this function to be associated with high bone mass in humans similar to patients lacking sclerostin. To further delineate the role of LRP4 in bone in vivo, we generated mice lacking Lrp4 in osteoblasts/osteocytes or osteocytes only. Lrp4 deficiency promoted progressive cancellous and cortical bone gain in both mutants, although more pronouncedly in mice deficient in osteoblast/osteocyte Lrp4, consistent with our observation in human bone that LRP4 is most strongly expressed by osteoblasts and early osteocytes. Bone gain was related primarily to increased bone formation. Interestingly, Lrp4 deficiency in bone dramatically elevated serum sclerostin levels whereas bone expression of Sost encoding for sclerostin was unaltered, indicating that osteoblastic Lrp4 retains sclerostin within bone. Moreover, we generated anti-LRP4 antibodies selectively blocking sclerostin facilitator function while leaving unperturbed LRP4-agrin interaction, which is essential for neuromuscular junction function. These antibodies increased bone formation and thus cancellous and cortical bone mass in skeletally mature rodents. Together, we demonstrate a pivotal role of LRP4 in bone homeostasis by retaining and facilitating sclerostin action locally and provide a novel avenue to bone anabolic therapy by antagonizing LRP4 sclerostin facilitator function.

  18. VEGF, eNOS, and ABCB1 genetic polymorphisms may increase the risk of osteonecrosis of the femoral head.

    PubMed

    Zhou, Z C; Gu, S Z; Wu, J; Liang, Q W

    2015-01-01

    We investigated the associations between vascular endothelial growth factors (VEGF), endothelial nitric oxide synthase (eNOS), and ATP-binding cassette subfamily B member 1 transporter (ABCB1) polymorphisms and the risk of osteonecrosis of the femoral head (ONFH). Published studies were reviewed and analyzed based on predefined selection criteria. The strength of the association between VEGF, eNOS, and ABCB1 polymorphisms and ONFH risk was evaluated based on the odds ratio with corresponding 95%CIs. Meta-analysis was performed using the Comprehensive Meta-analysis 2.0 software. A total of 135 relevant articles were retrieved, of which 10 studies met the selection criteria, and included a total of 1025 patients with ONFH and 1730 healthy controls. The meta-analysis study results revealed that the VEGF rs2010963 G>C polymorphism increased the risk of ONFH, while the VEGF rs2010963 G>C and ABCB1 rs1045642 C>T polymorphisms increased the risk of ONFH under the allele model. In conclusion, the VEGF, eNOS, and ABCB1 polymorphisms may contribute to ONFH, but further studies including larger sample sizes are needed to confirm the results. PMID:26535684

  19. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery.

    PubMed

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2013-11-15

    Converting T cells into tumor cell killers by grafting them with a chimeric antigen receptor (CAR) has shown promise as a cancer immunotherapeutic. However, the inability of these cells to actively migrate and extravasate into tumor parenchyma has limited their effectiveness in vivo. Here we report the construction of a CAR containing an echistatin as its targeting moiety (eCAR). As echistatin has high binding affinity to αvβ3 integrin that is highly expressed on the surface of endothelial cells of tumor neovasculature, T cells engrafted with eCAR (T-eCAR) can efficiently lyse human umbilical vein endothelial cells and tumor cells that express αvβ3 integrin when tested in vitro. Systemic administration of T-eCAR led to extensive bleeding in tumor tissues with no evidence of damage to blood vessels in normal tissues. Destruction of tumor blood vessels by T-eCAR significantly inhibited the growth of established bulky tumors. Moreover, when T-eCAR was codelivered with nanoparticles in a strategically designed temporal order, it dramatically increased nanoparticle deposition in tumor tissues, pointing to the possibility that it may be used together with nanocarriers to increase their capability to selectively deliver antineoplastic drugs to tumor tissues.

  20. Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels

    PubMed Central

    Chang, Ming-Kang; Kramer, Ina; Huber, Thomas; Kinzel, Bernd; Guth-Gundel, Sabine; Leupin, Olivier; Kneissel, Michaela

    2014-01-01

    We identified previously in vitro LRP4 (low-density lipoprotein receptor-related protein 4) as a facilitator of the WNT (Wingless-type) antagonist sclerostin and found mutations disrupting this function to be associated with high bone mass in humans similar to patients lacking sclerostin. To further delineate the role of LRP4 in bone in vivo, we generated mice lacking Lrp4 in osteoblasts/osteocytes or osteocytes only. Lrp4 deficiency promoted progressive cancellous and cortical bone gain in both mutants, although more pronouncedly in mice deficient in osteoblast/osteocyte Lrp4, consistent with our observation in human bone that LRP4 is most strongly expressed by osteoblasts and early osteocytes. Bone gain was related primarily to increased bone formation. Interestingly, Lrp4 deficiency in bone dramatically elevated serum sclerostin levels whereas bone expression of Sost encoding for sclerostin was unaltered, indicating that osteoblastic Lrp4 retains sclerostin within bone. Moreover, we generated anti-LRP4 antibodies selectively blocking sclerostin facilitator function while leaving unperturbed LRP4–agrin interaction, which is essential for neuromuscular junction function. These antibodies increased bone formation and thus cancellous and cortical bone mass in skeletally mature rodents. Together, we demonstrate a pivotal role of LRP4 in bone homeostasis by retaining and facilitating sclerostin action locally and provide a novel avenue to bone anabolic therapy by antagonizing LRP4 sclerostin facilitator function. PMID:25404300

  1. Genetic deletion of mouse platelet glycoprotein Ibbeta produces a Bernard-Soulier phenotype with increased alpha-granule size.

    PubMed

    Kato, Kazunobu; Martinez, Constantino; Russell, Susan; Nurden, Paquita; Nurden, Alan; Fiering, Steven; Ware, Jerry

    2004-10-15

    Here we report the characterization of a mouse model of the Bernard-Soulier syndrome generated by a targeted disruption of the gene encoding the glycoprotein (GP) Ibbeta subunit of the GP Ib-IX complex. Similar to a Bernard-Soulier model generated by disruption of the mouse GP Ibalpha subunit, GP Ibbeta(Null) mice display macrothrombocytopenia and a severe bleeding phenotype. When examined by transmission electron microscopy, the large platelets produced by a GP Ibbeta(Null) genotype revealed alpha-granules with increased size as compared with the alpha-granules from control mouse platelets. Data are presented linking the overexpression of a septin protein, SEPT5, to the presence of larger alpha-granules in the GP Ibbeta(Null) platelet. The SEPT5 gene resides approximately 250 nucleotides 5' to the GP Ibbeta gene and has been associated with modulating exocytosis from neurons and platelets as part of a presynaptic protein complex. Fusion mRNA transcripts present in megakaryocytes can contain both the SEPT5 and GP Ibbeta coding sequences as a result in an imperfect polyadenylation signal within the 3' end of both the human and mouse SEPT5 genes. We observed a 2- to 3-fold increase in SEPT5 protein levels in platelets from GP Ibbeta(Null) mice. These results implicate SEPT5 levels in the maintenance of normal alpha-granule size and may explain the variant granules associated with human GP Ibbeta mutations and the Bernard-Soulier syndrome.

  2. Antioxidants: basic principles, emerging concepts, and problems.

    PubMed

    Niki, Etsuo

    2014-01-01

    The radical scavenging antioxidants play an essential role in the maintenance of health and prevention of diseases, and a thorough understanding of the action and capacity of antioxidants is critically important. Despite the assumption that antioxidants must exert beneficial effects against oxidative stress, many large-scale randomized controlled trials gave inconsistent and disappointing results on the prevention of chronic diseases. It is now generally accepted that there is no evidence to support the use of non-discriminative antioxidant supplements for prevention of diseases. On the other hand, recent data show that antioxidants may be effective in the prevention and/or treatment of diseases when the right antioxidant is given to the right subject at the right time for the right duration. Now it is accepted that reactive oxygen species (ROS) act as physiologically important signaling messengers as well as deleterious agents. The signaling ROS are produced in a subtly regulated manner, while many deleterious ROS are produced and react randomly. Free radical-mediated lipid peroxidation products which, in contrast to enzymatic oxidation products, are produced by non-specific mechanisms cause oxidative damage, but may also induce adaptive response to enhance the expression of antioxidant enzymes and compounds. This has raised a question if removal of too many ROS by supplementation of antioxidants may upset the cell signaling pathways and actually increase the risk of chronic diseases. However, it is unlikely that antioxidants impair physiologically essential signaling pathways.

  3. Antioxidant impregnated ultra-high molecular weight polyethylene wear debris particles display increased bone remodeling and a superior osteogenic:osteolytic profile vs. conventional UHMWPE particles in a murine calvaria model.

    PubMed

    Chen, Yu; Hallab, Nadim J; Liao, Yen-Shuo; Narayan, Venkat; Schwarz, Edward M; Xie, Chao

    2016-05-01

    Periprosthetic osteolysis remains a major limitation of long-term successful total hip replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. As intra and extracellular reactive oxygen species are know to contribute to wear debris-induced osteoclastic bone resorption and decreased osteoblastic bone formation, antioxidant doped UHMWPE has emerged as an approach to reduce the osteolytic potential of wear debris and maintain coupled bone remodeling. To test this hypothesis in vivo, we evaluated the effects of crosslinked UHMWPE wear debris particles (AltrX(™) ), versus similar wear particles made from COVERNOX(™) containing UHMWPE (AOX(™) ), in an established murine calvaria model. Eight-week-old female C57B/6 mice (n = 10/Group) received a pre-op micro-CT scan prior to surgical implantation of the UHMWPE particles (2mg), or surgery without particles (sham). Dynamic labeling was performed by intraperitoneal injection of calcein on day 7 and alizarin on day 9, and the calvaria were harvested for micro-CT and histology on day 10. Surprisingly, we found that AOX particles induced significantly more bone resorption (1.72-fold) and osteoclast numbers (1.99-fold) vs. AltrX (p < 0.001). However, AOX also significantly induced 1.64-fold more new bone formation vs. AltrX (p < 0.01). Moreover, while the osteolytic:osteogenic ratio of both particles was very close to 1.0, which is indicative of coupled remodeling, AOX was more osteogenic (Slope = 1.13 ± 0.10 vs. 0.97 ± 0.10). Histomorphometry of the metabolically labeled undecalcified calvaria revealed a consistent trend of greater MAR in AOX vs. AltrX. Collectively, these results demonstrate that anti-oxidant impregnated UHMWPE particles have decreased osteolytic potential due to their increased osteogenic properties that support coupled bone remodeling. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:845-851, 2016. PMID:26495749

  4. Antioxidant impregnated ultra-high molecular weight polyethylene wear debris particles display increased bone remodeling and a superior osteogenic:osteolytic profile vs. conventional UHMWPE particles in a murine calvaria model.

    PubMed

    Chen, Yu; Hallab, Nadim J; Liao, Yen-Shuo; Narayan, Venkat; Schwarz, Edward M; Xie, Chao

    2016-05-01

    Periprosthetic osteolysis remains a major limitation of long-term successful total hip replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. As intra and extracellular reactive oxygen species are know to contribute to wear debris-induced osteoclastic bone resorption and decreased osteoblastic bone formation, antioxidant doped UHMWPE has emerged as an approach to reduce the osteolytic potential of wear debris and maintain coupled bone remodeling. To test this hypothesis in vivo, we evaluated the effects of crosslinked UHMWPE wear debris particles (AltrX(™) ), versus similar wear particles made from COVERNOX(™) containing UHMWPE (AOX(™) ), in an established murine calvaria model. Eight-week-old female C57B/6 mice (n = 10/Group) received a pre-op micro-CT scan prior to surgical implantation of the UHMWPE particles (2mg), or surgery without particles (sham). Dynamic labeling was performed by intraperitoneal injection of calcein on day 7 and alizarin on day 9, and the calvaria were harvested for micro-CT and histology on day 10. Surprisingly, we found that AOX particles induced significantly more bone resorption (1.72-fold) and osteoclast numbers (1.99-fold) vs. AltrX (p < 0.001). However, AOX also significantly induced 1.64-fold more new bone formation vs. AltrX (p < 0.01). Moreover, while the osteolytic:osteogenic ratio of both particles was very close to 1.0, which is indicative of coupled remodeling, AOX was more osteogenic (Slope = 1.13 ± 0.10 vs. 0.97 ± 0.10). Histomorphometry of the metabolically labeled undecalcified calvaria revealed a consistent trend of greater MAR in AOX vs. AltrX. Collectively, these results demonstrate that anti-oxidant impregnated UHMWPE particles have decreased osteolytic potential due to their increased osteogenic properties that support coupled bone remodeling. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:845-851, 2016.

  5. Antioxidants accelerate lung cancer progression in mice.

    PubMed

    Sayin, Volkan I; Ibrahim, Mohamed X; Larsson, Erik; Nilsson, Jonas A; Lindahl, Per; Bergo, Martin O

    2014-01-29

    Antioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. We show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by disrupting the ROS-p53 axis. Because somatic mutations in p53 occur late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production. PMID:24477002

  6. Antioxidants accelerate lung cancer progression in mice.

    PubMed

    Sayin, Volkan I; Ibrahim, Mohamed X; Larsson, Erik; Nilsson, Jonas A; Lindahl, Per; Bergo, Martin O

    2014-01-29

    Antioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. We show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by disrupting the ROS-p53 axis. Because somatic mutations in p53 occur late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production.

  7. Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element.

    PubMed

    Froyen, Erik B; Steinberg, Francene M

    2011-09-01

    Soy protein and isoflavones (genistein and daidzein) have been demonstrated to increase quinone reductase (QR) activity, protein, and mRNA in animal and cell culture models. However, their mechanism of action has not been completely characterized. Additionally, it has not been determined if equol, a daidzein metabolite, can modulate QR activity and expression. Estrogen receptor beta (ERβ) is thought to be involved in stimulating QR gene transcription by anti-estrogens and phytoestrogens, along with nuclear factor erythroid 2-related factor 2 (Nrf2). This study tested the hypothesis that genistein, daidzein and equol increase quinone reductase activity, protein and mRNA via ERβ and Nrf2 binding to the QR antioxidant response element (ARE). QR expression and activity were determined using TaqMan polymerase chain reaction, protein immunoblots and activity assays. Molecular events were investigated using luciferase reporter gene assays and chromatin immunoprecipitation (ChIP). Hepa-1c1c7 cells were treated with control [0.1% (v:v) dimethyl sulfoxide (DMSO)]; 1 μmol/L β-naphthoflavone (positive control); 5 μmol/L resveratrol (ChIP positive control for ERβ binding) and 1, 5 and 25 μmol/L genistein, daidzein or equol. Treatment durations were 1 h (ChIP), 24 h (mRNA and luciferase assays) and 24 and 48 h (protein and activity). Genistein, daidzein and equol increased QR activity, protein and mRNA, with daidzein and equol having more of an impact at physiologic concentrations (1 and 5 μmol/L) compared to genistein. Furthermore, the study results demonstrate that genistein, daidzein and equol interact with the QR ARE and that daidzein and equol act via both ERβ and Nrf2 binding strongly to the QR ARE.

  8. Cellular antioxidant activity of common vegetables.

    PubMed

    Song, Wei; Derito, Christopher M; Liu, M Keshu; He, Xiangjiu; Dong, Mei; Liu, Rui Hai

    2010-06-01

    The measurement of antioxidant activity using biologically relevant assays is important to screen fruits, vegetables, natural products, and dietary supplements for potential health benefits. The cellular antioxidant activity (CAA) assay quantifies antioxidant activity using a cell culture model and was developed to meet the need for a more biologically representative method than the popular chemistry antioxidant capacity measures. The objective of the study was to determine the CAA, total phenolic contents, and oxygen radical absorbance capacity (ORAC) values of 27 vegetables commonly consumed in the United States. Beets, broccoli, and red pepper had the highest CAA values, whereas cucumber had the lowest. CAA values were significantly correlated to total phenolic content. Potatoes were found to be the largest contributors of vegetable phenolics and CAA to the American diet. Increased fruit and vegetable consumption is an effective strategy to increase antioxidant intake and decrease oxidative stress and may lead to reduced risk of developing chronic diseases, such as cancer and cardiovascular disease.

  9. Genetic alterations for increased coumarin production lead to metabolic changes in the medicinally important Pelargonium sidoides DC (Geraniaceae).

    PubMed

    Colling, J; Groenewald, J-H; Makunga, N P

    2010-11-01

    The medicinal plant Pelargonium sidoides is fast becoming threatened due to the overharvest of its tubers from the wild to produce a phytopharmaceutical for treating respiratory infections. The action of the coumarins is implicated in the efficacy of the commercial herbal extract with the highly oxygenated coumarins exhibiting the best anti-bacterial and anti-viral activity. Through this work we aimed at exploring the metabolic effects of Agrobacterium rhizogenes transformation. After confirmation of transgenesis using PCR amplification of the rol A (320 bp), rol B (400 bp) and rol C (600 bp) genes, metabolite profiles indicated a high level of variability between the different transgenic clones but these had more compounds compared to non-transgenic control cultures. This was represented by a two- to four-fold increase in detected metabolites in transgenic clones. We quantified several commercially important coumarins, flavonoids and phenolic acids. One of the clones had six out of nine of these metabolites. Overall, the concentration of these metabolites of interest were significantly changed in transgenic root cultures, for instance shikimic acid was recorded at the highest level in clone A4T-A. Production of key metabolites at significantly higher concentrations due to transgenesis and positive anti-bacterial activity exhibited by transgenic roots lends support to the idea of developing these clones as an alternative source that will allow for sustainable access to economically valuable secondary compounds of P. sidoides.

  10. Increase of genetic diversity and clonal replacement of epidemic methicillin-resistant Staphylococcus aureus strains in South-East Austria

    PubMed Central

    Zarfel, Gernot; Luxner, Josefa; Folli, Bettina; Leitner, Eva; Feierl, Gebhard; Kittinger, Clemens; Grisold, Andrea

    2016-01-01

    Spa-typing and microarray techniques were used to study epidemiological changes in methicillin-resistant Staphylococcus aureus (MRSA) in South-East Austria. The population structure of 327 MRSA isolated between 2002 and 2012 was investigated. MRSA was assigned to 58 different spa types and 14 different MLST CC (multilocus sequence type clonal complexes); in particular, between 2007 and 2012, an increasing diversity in MRSA clones could be observed. The most abundant clonal complex was CC5. On the respective SCCmec cassettes, the CC5 isolates differed clearly within this decade and CC5/SCCmecI, the South German MRSA, predominant in 2002, was replaced by CC5/SCCmecII, the Rhine-Hesse MRSA in 2012. Whereas in many European countries MLST CC22-MRSA (EMRSA 15, the Barnim epidemic MRSA) is predominant, this clone occurred in Austria nearly 10 years later than in neighbouring countries. CC45, the Berlin EMRSA, epidemic in Germany, was only sporadically found in South-East Austria. The Irish ST8-MRSA-II represented by spa-type t190 was frequently found in 2002 and 2007, but disappeared in 2012. Our results demonstrate clonal replacement of MRSA clones within the last years in Austria. Ongoing surveillance is warranted for detection of changes within the MRSA population. PMID:27231237

  11. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    SciTech Connect

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya; Challapalli, Srinivas; Chandraguthi, Shrinidhi Gururajarao; Jain, Navya; Krishnamurthy, Hanumanthappa; Kumar, Pratap; Adiga, Satish Kumar

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  12. COLD-PCR enriches low-level variant DNA sequences and increases the sensitivity of genetic testing.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Guha, Minakshi; Makrigiorgos, G Mike

    2014-01-01

    Detection of low-level mutations is important for cancer biomarker and therapy targets discovery, but reliable detection remains a technical challenge. The newly developed method of CO-amplification at Lower Denaturation temperature PCR (COLD-PCR) helps to circumvent this issue. This PCR-based technology preferentially enriches minor known or unknown variants present in samples with a high background of wild type DNA which often hampers the accurate identification of these minority alleles. This is a simple process that consists of lowering the temperature at the denaturation step during the PCR-cycling protocol (critical denaturation temperature, T c) and inducing DNA heteroduplexing during an intermediate step. COLD-PCR in its simplest forms does not need additional reagents or specific instrumentation and thus, can easily replace conventional PCR and at the same time improve the mutation detection sensitivity limit of downstream technologies. COLD-PCR can be applied in two basic formats: fast-COLD-PCR that can enrich T m-reducing mutations and full-COLD-PCR that can enrich all mutations, though it requires an intermediate cross-hybridization step that lengthens the thermocycling program. An improved version of full-COLD-PCR (improved and complete enrichment, ice-COLD-PCR) has also been described. Finally, most recently, we developed yet another form of COLD-PCR, temperature-tolerant-COLD-PCR, which gradually increases the denaturation temperature during the COLD-PCR reaction, enriching diverse targets using a single cycling program. This report describes practical considerations for application of fast-, full-, ice-, and temperature-tolerant-COLD-PCR for enrichment of mutations prior to downstream screening.

  13. Genetic Variants and Increased Expression of Parascaris equorum P-glycoprotein-11 in Populations with Decreased Ivermectin Susceptibility

    PubMed Central

    Janssen, I. Jana I.; Krücken, Jürgen; Demeler, Janina; Basiaga, Marta; Kornaś, Sławomir; von Samson-Himmelstjerna, Georg

    2013-01-01

    Macrocyclic lactones (MLs) represent the major drug class for control of parasitic infections in humans and animals. However, recently reports of treatment failures became more frequent. In addition to human and ruminant parasitic nematodes this also is the case for the horse-nematode Parascaris equorum. Nevertheless, to date the molecular basis of ML resistance is still not understood. Unspecific resistance mechanisms involving transporters such as P-glycoproteins (Pgps) are expected to contribute to ML resistance in nematodes. Here, complete sequences of two P. equorum Pgps were cloned and identified as orthologs of Caenorhabditis elegans Ppg-11 and an unnamed Caenorhabditis briggsae Pgp designated as Pgp-16 using phylogenetic analysis. Quantitative real-time PCR was used to compare expression between tissues. Significantly higher PeqPgp-11 expression was found in the gut for both genders, whereas for PeqPgp-16 the body wall was identified as predominant expression site. Furthermore, Pgps were analyzed regarding their participation in resistance development. Using SeqDoC analyses, Pgp-sequences of P. equorum populations with different ML susceptibility were compared. This approach revealed three single nucleotide polymorphisms (SNPs) causing missense mutations in the PeqPgp-11 sequence which correlated with decreased ML susceptibility. However, no resistance associated differences in mRNA expression levels were detected between embryonated eggs of these populations. In contrast, comparison of two pre-adult groups with different ivermectin (IVM) susceptibility revealed the presence of the three SNPs and in addition statistically significant PeqPgp-11 overexpression in the group of worms with reduced susceptibility. These results indicate that Pgp-11 might be involved in IVM resistance in P. equorum as it shows increased expression in an IVM exposed life-cycle stage of an IVM resistant population as well as occurrence of putatively resistance associated SNPs in

  14. No increases in biomarkers of genetic damage or pathological changes in heart and brain tissues in male rats administered methylphenidate hydrochloride (Ritalin) for 28 days.

    PubMed

    Witt, Kristine L; Malarkey, David E; Hobbs, Cheryl A; Davis, Jeffrey P; Kissling, Grace E; Caspary, William; Travlos, Gregory; Recio, Leslie

    2010-01-01

    Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. [2007]: Prog Neuropsychopharmacol Biol Psychiatry 31:1282-1288) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats.

  15. Maximizing Antioxidants in Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits contain high levels of antioxidant compounds, such as carotenoids, flavonoids, vitamins, and phenols. These antioxidants are capable of performing a number of functions including free radical scavengers, peroxide decomposers, singlet and triplet oxygen quenchers, enzyme inhibitors, and syner...

  16. Maximizing Antioxidants in Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits contain high levels of antioxidant compounds, such as carotenoids, flavonoids, vitamins, and phenols. These antioxidants are capable of performing a number of functions including free radical scavengers, peroxide decomposers, singlet and triplet oxygen quenchers, enzyme inhibitors, and synerg...

  17. Functional Genetic Polymorphisms in PP2A Subunit Genes Confer Increased Risks of Lung Cancer in Southern and Eastern Chinese

    PubMed Central

    Yang, Rongrong; Yang, Lei; Qiu, Fuman; Zhang, Lisha; Wang, Hui; Yang, Xiaorong; Deng, Jieqiong; Fang, Wenxiang; Zhou, Yifeng; Lu, Jiachun

    2013-01-01

    Protein phosphatase-2A (PP2A) is one of the major cellular serine-threonine phosphatases and functions as a tumor suppressor that negatively regulates the activity of some oncogenic kinases. Recent studies have reported that PP2A expression was suppressed during lung carcinogenesis, we there hypothesized that the single nucleotide polymorphisms (SNPs) in PP2A subunit genes may affect PP2A function and thus contribute to lung cancer susceptibility. In a two-stage case-control study with a total of 1559 lung cancer patients and 1679 controls, we genotyped eight putative functional SNPs and one identified functional SNP (i.e., rs11453459) in seven major PP2A subunits (i.e., PPP2R1A, PPP2R1B, PPP2CA, PPP2R2A, PPP2R2B, PPP2R5C, PPP2R5E) in southern and eastern Chinese. We found that rs11453459G (-G/GG) variant genotypes of PPP2R1A and the rs1255722AA variant genotype of PPP2R5E conferred increased risks of lung cancer (rs11453459, -G/GG vs. –: OR = 1.31, 95% CI = 1.13–1.51; rs1255722, AA vs. AG/GG: OR = 1.27, 95% CI = 1.07–1.51). After combined the two variants, the number of the adverse genotypes was positively associated with lung cancer risk in a dose-response manner (Ptrend  = 5.63×10−6). Further functional assay showed that lung cancer tissues carrying rs1255722AA variant genotype had a significantly lower mRNA level of PPP2R5E compared with tissues carrying GG/GA genotypes. However, such effect was not observed for the other SNPs and other combinations. Our findings suggested that the two functional variants in PPP2R1A and PPP2R5E and their combination are associated with lung cancer risk in Chinese, which may be valuable biomarkers to predict risk of lung cancer. PMID:24204789

  18. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    PubMed Central

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  19. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs.

    PubMed

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS-LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  20. [Antioxidant properties of dihydroquercetin].

    PubMed

    Teselkin, Iu O; Zhambalova, B A; Babenkova, I V; Tiukavkina, N A

    1996-01-01

    The effect of dihydroquercetin on peroxidation process of liposome membranes from egg phospholipids induced by ferrous sulfate or Fe(2+)-ascorbate system was studied. It was shown that dihydroquercetin antioxidant activity matches antioxidant activity of alpha-tocopherol. It was suggested that the mechanism dihydroquercetin antioxidant action consists in scavenging of lipids radicals. PMID:8924461

  1. Antioxidants in dermatology

    PubMed Central

    Pai, Varadraj V.; Shukla, Pankaj; Kikkeri, Naveen Narayanshetty

    2014-01-01

    Antioxidants neutralize free radicals produced by various environmental insults such as ultraviolet radiation, cigarette smoke and air pollutants, thereby preventing cellular damage. The role of oxidative stress and antioxidants is known in diseases like obesity, atherosclerosis, and Alzheimer's disease. Herein we discuss the effects of oxidative stress on the skin and role of antioxidants in dermatology. PMID:24860765

  2. Cutaneous delivery of natural antioxidants: the enhancement approaches.

    PubMed

    Aljuffali, Ibrahim A; Hsu, Ching-Yun; Lin, Yin-Ku; Fang, Jia-You

    2015-01-01

    Topically applied natural antioxidants can be an effective treatment for inhibiting oxidative damage and photoaging of the skin. Due to the barrier function of the stratum corneum (SC), it is necessary to use an enhancement approach to promote the cutaneous absorption of natural antioxidants. Some factors that should be considered when developing delivery systems for natural antioxidants include increased solubility, enhanced storage stability, improved permeability and bioavailability, skin targeting, and minimal side effects. This review describes the skin delivery systems for natural antioxidant permeation that have been developed during the last decade. The antioxidants introduced include vitamins, polyphenols, and carotenoids. Various types of formulations are employed to improve the skin penetration of the antioxidants, such as hydrogels, cyclodextrin, microemulsions, nanoparticles, liposomes and niosomes. This review focuses on the introduction of natural antioxidants used in skin protection, the mechanisms of antioxidant activity on the skin, and formulation designs for enhancing absorption and efficacy. PMID:25925121

  3. Cutaneous delivery of natural antioxidants: the enhancement approaches.

    PubMed

    Aljuffali, Ibrahim A; Hsu, Ching-Yun; Lin, Yin-Ku; Fang, Jia-You

    2015-01-01

    Topically applied natural antioxidants can be an effective treatment for inhibiting oxidative damage and photoaging of the skin. Due to the barrier function of the stratum corneum (SC), it is necessary to use an enhancement approach to promote the cutaneous absorption of natural antioxidants. Some factors that should be considered when developing delivery systems for natural antioxidants include increased solubility, enhanced storage stability, improved permeability and bioavailability, skin targeting, and minimal side effects. This review describes the skin delivery systems for natural antioxidant permeation that have been developed during the last decade. The antioxidants introduced include vitamins, polyphenols, and carotenoids. Various types of formulations are employed to improve the skin penetration of the antioxidants, such as hydrogels, cyclodextrin, microemulsions, nanoparticles, liposomes and niosomes. This review focuses on the introduction of natural antioxidants used in skin protection, the mechanisms of antioxidant activity on the skin, and formulation designs for enhancing absorption and efficacy.

  4. Enhancement of antioxidant properties and increase of content of vitamin D2 and non-volatile components in fresh button mushroom, Agaricus bisporus (higher Basidiomycetes) by γ-irradiation.

    PubMed

    Tsai, Shu-Yao; Mau, Jeng-Leun; Huang, Shih-Jeng

    2014-01-01

    Agaricus bisporus is a popular culinary-medicinal mushroom in Taiwan, and γ-irradiation could extend its shelf life. Our objective was to study the content of vitamin D2 and the taste components and antioxidant properties of ethanolic extracts from A. bisporus with various doses of γ-irradiation. After irradiation, the vitamin D2 content of 5-10 kGy irradiated mushrooms was in the range of 5.22-7.90 µg/g, higher than that of the unirradiated control (2.24 µg/g). For all treatments, the total content of soluble sugars and polyols ranged from 113 to 142 mg/g, and the monosodium glutamate-like components ranged from 6.57 to 13.50 mg/g, among which the 2.5 kGy irradiated sample has the highest content of flavor 5'-nucleotide. About antioxidant properties, 10 kGy irradiated samples exhibited lower EC50 values than did other samples. EC50 values were less than 5 mg/mL for ethanolic extracts. Total phenols were the major antioxidant components and the total content was 13.24-22.78 mg gallic acid equivalents/g. Based on the results obtained, γ-irradiation could be used to improve the vitamin D2 content and intensity of umami taste in fresh mushrooms. In addition, γ-irradiation not only maintained the antioxidant properties of mushrooms but also enhanced the antioxidant properties to some extent.

  5. Replication of a gene-environment interaction Via Multimodel inference: additive-genetic variance in adolescents' general cognitive ability increases with family-of-origin socioeconomic status.

    PubMed

    Kirkpatrick, Robert M; McGue, Matt; Iacono, William G

    2015-03-01

    The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES-an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research. PMID:25539975

  6. Impact of NGS in the medical sciences: Genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies.

    PubMed

    Lapunzina, Pablo; López, Rocío Ortiz; Rodríguez-Laguna, Lara; García-Miguel, Purificación; Martínez, Augusto Rojas; Martínez-Glez, Víctor

    2014-03-01

    The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Currently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform complete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole genome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk. The purpose of this work is to review these syndromes as an example of a group of disorders that has been included in a panel of genes for NGS analysis. We also highlight the relationship between development and cancer and underline the connections between these syndromes.

  7. An Analysis of Factors Affecting Genotyping Success from Museum Specimens Reveals an Increase of Genetic and Morphological Variation during a Historical Range Expansion of a European Spider.

    PubMed

    Krehenwinkel, Henrik; Pekar, Stano

    2015-01-01

    Natural history collections house an enormous amount of plant and animal specimens, which constitute a promising source for molecular analyses. Storage conditions differ among taxa and can have a dramatic effect on the success of DNA work. Here, we analyze the feasibility of DNA extraction from ethanol preserved spiders (Araneae). We tested genotyping success using several hundred specimens of the wasp spider, Argiope bruennichi, deposited in two large German natural history collections. We tested the influence of different factors on the utility of specimens for genotyping. Our results show that not the specimen's age, but the museum collection is a major predictor of genotyping success. These results indicate that long term storage conditions should be optimized in natural history museums to assure the utility of collections for DNA work. Using historical material, we also traced historical genetic and morphological variation in the course of a poleward range expansion of A. bruennichi by comparing contemporary and historical specimens from a native and an invasive population in Germany. We show that the invasion of A. bruennichi is tightly correlated with an historical increase of genetic and phenotypic variation in the invasive population. PMID:26309219

  8. An Analysis of Factors Affecting Genotyping Success from Museum Specimens Reveals an Increase of Genetic and Morphological Variation during a Historical Range Expansion of a European Spider

    PubMed Central

    Krehenwinkel, Henrik; Pekar, Stano

    2015-01-01

    Natural history collections house an enormous amount of plant and animal specimens, which constitute a promising source for molecular analyses. Storage conditions differ among taxa and can have a dramatic effect on the success of DNA work. Here, we analyze the feasibility of DNA extraction from ethanol preserved spiders (Araneae). We tested genotyping success using several hundred specimens of the wasp spider, Argiope bruennichi, deposited in two large German natural history collections. We tested the influence of different factors on the utility of specimens for genotyping. Our results show that not the specimen’s age, but the museum collection is a major predictor of genotyping success. These results indicate that long term storage conditions should be optimized in natural history museums to assure the utility of collections for DNA work. Using historical material, we also traced historical genetic and morphological variation in the course of a poleward range expansion of A. bruennichi by comparing contemporary and historical specimens from a native and an invasive population in Germany. We show that the invasion of A. bruennichi is tightly correlated with an historical increase of genetic and phenotypic variation in the invasive population. PMID:26309219

  9. An Analysis of Factors Affecting Genotyping Success from Museum Specimens Reveals an Increase of Genetic and Morphological Variation during a Historical Range Expansion of a European Spider.

    PubMed

    Krehenwinkel, Henrik; Pekar, Stano

    2015-01-01

    Natural history collections house an enormous amount of plant and animal specimens, which constitute a promising source for molecular analyses. Storage conditions differ among taxa and can have a dramatic effect on the success of DNA work. Here, we analyze the feasibility of DNA extraction from ethanol preserved spiders (Araneae). We tested genotyping success using several hundred specimens of the wasp spider, Argiope bruennichi, deposited in two large German natural history collections. We tested the influence of different factors on the utility of specimens for genotyping. Our results show that not the specimen's age, but the museum collection is a major predictor of genotyping success. These results indicate that long term storage conditions should be optimized in natural history museums to assure the utility of collections for DNA work. Using historical material, we also traced historical genetic and morphological variation in the course of a poleward range expansion of A. bruennichi by comparing contemporary and historical specimens from a native and an invasive population in Germany. We show that the invasion of A. bruennichi is tightly correlated with an historical increase of genetic and phenotypic variation in the invasive population.

  10. Replication of a Gene-Environment Interaction via Multimodel Inference: Additive-Genetic Variance in Adolescents’ General Cognitive Ability Increases with Family-of-Origin Socioeconomic Status

    PubMed Central

    Kirkpatrick, Robert M.; McGue, Matt; Iacono, William G.

    2015-01-01

    The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES—an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research. PMID:25539975

  11. Replication of a gene-environment interaction Via Multimodel inference: additive-genetic variance in adolescents' general cognitive ability increases with family-of-origin socioeconomic status.

    PubMed

    Kirkpatrick, Robert M; McGue, Matt; Iacono, William G

    2015-03-01

    The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES-an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research.

  12. Pharmacological applications of antioxidants: lights and shadows.

    PubMed

    Saso, Luciano; Firuzi, Omidreza

    2014-01-01

    Oxidative stress is linked with many pathologies ranging from cancer to neurodegenerative disorders and antioxidants have presumably therapeutic value in such diseases. In this review, we categorize different direct and indirect mechanisms by which antioxidants exert their action. These include scavenging and metal chelating effects, mimicking the antioxidant enzymes or upregulation of their expression, activation of nuclear factor erythroid 2-related factor 2 (Nrf2), increasing the activity of sirtuins and inhibition of pro-oxidant enzymes among others. Recent findings on the most frequently investigated antioxidants including polyphenolics, thiolics, spin trapping agents, SOD mimetics, inducers of heme oxygenase-1 and nitric oxide synthase, activators of Nrf2, NADPH oxidase inhibitors and herbal supplements are summarized. Furthermore, the antioxidant effects of drugs that are clinically used for other pharmacological purposes including ACE inhibitors and statins are discussed. Cost-effectiveness and adverse effects of antioxidants are also evaluated. Since antioxidant therapy has failed in many instances, we have classified the reasons that may explain these shortcomings in different categories. Novel approaches to antioxidant therapy, that include mitochondria-targeting drugs, antioxidant gene therapy and approaches for improvement of cell uptake and alteration of subcellular compartment localization are also described. In the end, "shadows" that are shortcomings of antioxidant therapy as well as "lights" that include positive outcomes are addressed. It is concluded that if we learn from failures, invest on agents with higher potential and take advantage of novel emerging approaches, antioxidants could be an asset for the management of certain carefully chosen oxidative stress-related diseases.

  13. Antioxidant compounds and antioxidant activity in "early potatoes".

    PubMed

    Leo, Lucia; Leone, Antonella; Longo, Cristiano; Lombardi, Domenico Antonio; Raimo, Francesco; Zacheo, Giuseppe

    2008-06-11

    The antioxidant content and the antioxidant capacity of both hydrophilic and lipophilic antioxidant extracts from four "early potato" cultivars, grown in two different locations (Racale and Monteroni), were examined. There was a considerable variation in carotenoid content and weak differences in the ascorbic acid concentration of the examined cultivars of "early potato" and between the harvested locations. An increase in both methanol/water (8:2 v/v) and phosphate buffer soluble (PBS) free phenols (70%) and bound phenols (28%) in the extracts from the cultivars grown at Racale site was found and discussed. Examination of individual phenols revealed that chlorogenic acid and catechin were the major phenols present in potato tuber extracts; a moderate amount of caffeic acid and ferulic acid was also detected. The total equivalent antioxidant capacity (TEAC) was higher in the Racale extracts and a highly positive linear relationship ( R (2) = 0.8193) between TEAC values and total phenolic content was observed. The oxyradical scavenging capacity (TOSC) of methanol/water and PBS extracts of peel and whole potatoes against the reactive oxygen species (ROS) peroxyl radicals, peroxynitrite, and hydroxyl radicals was also analyzed. A highly significant linear correlation ( R (2) = 0.9613) between total antioxidant capacity (as a sum of peroxyl radicals + peroxynitrite) and total phenol content of methanol/water extracts was established. Moreover, proliferation of human mammalian cancer (MCF-7) cells was significantly inhibited in a dose-dependent manner after exposure to potato extracts. These data can be useful for "early potato" tuber characterization and suggest that the "early potato" has a potential as a dietary source of antioxidants.

  14. Immunoregulatory impact of food antioxidants.

    PubMed

    Gostner, Johanna; Ciardi, Christian; Becker, Kathrin; Fuchs, Dietmar; Sucher, Robert

    2014-01-01

    Immune system activation and inflammation are deeply involved in the pathogenesis of a variety of diseases including infections, autoimmunity and malignancy as well as allergy and asthma. The incidence of allergy and asthma has significantly increased during the past decades. Still the background of this phenomenon is not well understood. The contribution of life style and habits are heavily discussed. Among them is a too clean environment which may predispose individuals to an increased sensitivity to allergic responses. Also dietary habits have changed drastically in the Western world, and it appears that especially the increased use of antioxidant food supplements, preservatives and colorants could be of relevance. In vitro experiments show that typical antioxidant compounds like vitamin C and E and the stilbene resveratrol as well as food preservatives such as sulfite, benzoate and sorbic acid and also colorants like curcumin exert significant suppressive effects on the T helper (h)1 immune activation cascade in freshly isolated human peripheral blood mononuclear cells. Obviously, antioxidant compounds interfere with central immunoregulatory pathways such as tryptophan breakdown via indoleamine 2,3-dioxygenase (IDO) and neopterin production by GTP-cyclohydrolase I (GCH). Results show an anti-inflammatory property of antioxidants which could shift the Th1-Th2-type immune balance towards Th2-type immunity that is of utmost importance in allergic responses. Additionally, food preservatives reduce the number of pathogens to which humans are exposed by their diet, so that in agreement with the hygiene hypothesis the likelihood of allergy might increase. This review article discusses the beneficial effects which antioxidants may have to counteract inflammatory diseases, but also their potential in the increase of allergy and asthma in the Western world and their involvement in the obesity epidemic.

  15. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River.

    PubMed

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha(-1) in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  16. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    PubMed Central

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  17. Use of antioxidants in oral healthcare.

    PubMed

    San Miguel, Symone M; Opperman, Lynne A; Allen, Edward P; Svoboda, Kathy K H

    2011-03-01

    There is increasing attention to the potential benefit from the use of antioxidants in the field of dental medicine. In general, antioxidants may be available through oral ingestion, diet or vitamin supplements, and in nutraceuticals. In addition, treatment of oral and dental health problems may include drug-free, natural antioxidant remedies that are available in topical oral applications such as mouth rinse, gel, paste, gum, or lozenge compositions. These topical antioxidant remedies help reduce free-radical or reactive-oxygen species, which are causative inflammatory factors in the progression of gingival and periodontal maladies. This review focuses on relationships between antioxidants and free-radical/reactive-oxygen species in the oral environment. PMID:23738832

  18. Use of antioxidants in oral healthcare.

    PubMed

    San Miguel, Symone M; Opperman, Lynne A; Allen, Edward P; Svoboda, Kathy K H

    2011-01-01

    There is increasing attention to the potential benefit from the use of antioxidants in the field of dental medicine. In general, antioxidants may be available through oral ingestion, diet or vitamin supplements, and in nutraceuticals. In addition, treatment of oral and dental health problems may include drug-free, natural antioxidant remedies that are available in topical oral applications such as mouth rinse, gel, paste, gum, or lozenge compositions. These topical antioxidant remedies help reduce free-radical or reactive-oxygen species, which are causative inflammatory factors in the progression of gingival and periodontal maladies. This review focuses on relationships between antioxidants and free-radical/reactive-oxygen species in the oral environment. PMID:23627309

  19. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  20. Genetic heterogeneity of primary open angle glaucoma and ocular hypertension: linkage to GLC1A associated with an increased risk of severe glaucomatous optic neuropathy.

    PubMed Central

    Brézin, A P; Béchetoille, A; Hamard, P; Valtot, F; Berkani, M; Belmouden, A; Adam, M F; Dupont de Dinechin, S; Bach, J F; Garchon, H J

    1997-01-01

    The GLC1A locus for autosomal dominant juvenile and middle age onset primary open angle glaucoma (OAG) has been mapped to chromosome 1q21-q31. OAG, however, is a heterogeneous disease. We tested linkage of OAG and ocular hypertension (OHT), a major risk factor for OAG, to GLC1A in eight French families with multiple cases of juvenile and middle age onset OAG. There was strong evidence of genetic heterogeneity, four families being linked to GLC1A and two or three others being unlinked, depending on whether the complete OAG phenotype was analysed alone or jointly with OHT. Peak intraocular pressure (IOP) did not differ significantly between the two groups of families, while linkage to GLC1A conferred a highly increased risk of developing OAG and of having severe glaucomatous optic neuropathy. Testing linkage of familial OAG to GLC1A may therefore have prognostic value too. PMID:9222961

  1. Increased population sampling confirms low genetic divergence among Pteropus (Chiroptera: Pteropodidae) fruit bats of Madagascar and other western Indian Ocean islands.

    PubMed

    Chan, Lauren M; Goodman, Steven M; Nowak, Michael D; Weisrock, David W; Yoder, Anne D

    2011-03-21

    Fruit bats of the genus Pteropus occur throughout the Austral-Asian region west to islands off the eastern coast of Africa. Recent phylogenetic analyses of Pteropus from the western Indian Ocean found low sequence divergence and poor phylogenetic resolution among several morphologically defined species. We reexamine the phylogenetic relationships of these taxa by using multiple individuals per species. In addition, we estimate population genetic structure in two well-sampled taxa occurring on Madagascar and the Comoro Islands (P. rufus and P. seychellensis comorensis). Despite finding a similar pattern of low sequence divergence among species, increased sampling provides insight into the phylogeographic history of western Indian Ocean Pteropus, uncovering high levels of gene flow within species.

  2. Antioxidant activity of capsaicinoid in canola oil.

    PubMed

    Si, Wenhui; Liang, Yintong; Ma, Ka Ying; Chung, Hau Yin; Chen, Zhen-Yu

    2012-06-20

    Interest in replacing synthetic antioxidants, namely, butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA), with natural antioxidants is increasing. The present study examined the antioxidant activity of capsaicinoid from chili pepper in heated canola oil. The oxidation was conducted at 60, 90, 120, and 180 °C by monitoring oxygen consumption and the decrease in linoleic acid and α-linolenic acid in canola oil. At 60 °C, capsaicinoid was more effective against oxidation of canola oil compared with BHT. At higher temperatures of 90, 120, and 180 °C, capsaicinoid possessed an antioxidant activity similar to or slightly weaker that that of BHT. It was found that capsaicinoid prevented canola oil from oxidation in a dose-dependent manner. To study the structure-antioxidant relationship, it was found that the trimethylsiloxy (TMS) derivatives of capsaicinoid did not exhibit any antioxidant activity, suggesting the hydroxyl moiety was the functional group responsible for the antioxidant activity of capsaicinoid. It was concluded that capsaicinoid had the potential to be further explored as a natural antioxidant in foods, particularly spicy foods. PMID:22642555

  3. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview

    PubMed Central

    Teixeira, José; Gaspar, Alexandra; Garrido, E. Manuela; Garrido, Jorge; Borges, Fernanda

    2013-01-01

    Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure. The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants. The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far. PMID:23956973

  4. Antioxidants from tropical herbs.

    PubMed

    Razab, Rasyidah; Abdul-Aziz, Azlina

    2010-03-01

    Plants that contain high amounts of polyphenolic compounds are potential candidates for natural antioxidant sources. Studies are on going in the search for new sources of antioxidants. Not much data are available on the antioxidant capacity of tropical herbs. With this in mind, 19 commonly consumed Malaysian herbs were analyzed for their polyphenolic content and antioxidant activities. A majority of these plants have never been studied before with regards to their polyphenolic content and antioxidant activities. The shoots of Anacardium occidentale, the shoots and fruits of Barringtonia racemosa, Pithecellobium jiringa and Parkia speciosa had high polyphenolic contents (> 150 microg gallic acid equivalents/mg dried plant) and antioxidant activities when measured using the ferric reducing antioxidant power (FRAP) (>1.2 mM) and Trolox equivalent antioxidant capacity (TEAC) assays (>2.4 mM). A strong correlation was observed between the two antioxidant assays (FRAP vs TEAC) implying that the plants could both scavenge free radicals and reduce oxidants. There was also a strong correlation between the antioxidant activities and polyphenolic content suggesting the observed antioxidant activities were contributed mainly by the polyphenolics in the plants. PMID:20420325

  5. Antioxidants in liver health

    PubMed Central

    Casas-Grajales, Sael; Muriel, Pablo

    2015-01-01

    Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals (FR). However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leads to deleterious processes in the liver and produces liver diseases. Therefore, restoring antioxidants is essential to maintain homeostasis. One method of restoring antioxidants is to consume natural compounds with antioxidant capacity. The objective of this review is to provide information pertaining to various antioxidants found in food that have demonstrated utility in improving liver diseases. PMID:26261734

  6. Simultaneous Activation of Nrf2 and Elevation of Dietary and Endogenous Antioxidant Chemicals for Cancer Prevention in Humans.

    PubMed

    Prasad, Kedar N

    2016-01-01

    Despite extensive studies in cancer prevention, the incidence of cancer is increasing. We review studies that have identified several biochemical and genetic defects as well as potential carcinogens in the diet, environmental factors, and lifestyle-related habits. Two of the biochemical abnormalities increased oxidative stress and chronic inflammation, and chronic exposure to carcinogens and mutagens play a significant role in the initiation of multistage carcinogenesis. Therefore, attenuation of these biochemical defects may be useful in reducing the incidence of cancer. Activation of the transcriptional factor called nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which enhances the levels of antioxidant enzymes and phase-2-detoxifying enzymes by complex mechanisms, may be one of the ways to reduce oxidative stress and chronic inflammation. Antioxidant enzymes destroy free radicals by catalysis, whereas phase-2-detoxifying enzymes remove potential carcinogens by converting them to harmless compounds for elimination from the body. However, increasing the levels of antioxidant enzymes by activating Nrf2 may not be sufficient to decrease oxidative stress and chronic inflammation optimally, because antioxidant chemicals, which are decreased in a high oxidative environment, must also be elevated. This review discusses the regulation of activation of Nrf2 and proposes a hypothesis that an elevation of the levels of antioxidant enzymes and dietary and endogenous antioxidant chemicals simultaneously may reduce the incidence of cancer by decreasing oxidative stress and chronic inflammation. The levels of antioxidant chemicals can be increased by supplementation, but increasing the levels of antioxidant enzymes requires activation of Nrf2 by reactive oxygen species (ROS)-dependent and-independent mechanisms. Several phytochemicals and antioxidant chemicals that activate Nrf2 have been identified. This review also describes clinical studies on antioxidants in cancer

  7. Antioxidant Treatment Promotes Prostate Epithelial Proliferation in Nkx3.1 Mutant Mice

    PubMed Central

    Martinez, Erin E.; Anderson, Philip D.; Logan, Monica; Abdulkadir, Sarki A.

    2012-01-01

    Discordant results in preclinical and clinical trials have raised questions over the effectiveness of antioxidants in prostate cancer chemoprevention. Results from the large-scale Selenium and Vitamin E Cancer Prevention Trial (SELECT) showed that antioxidants failed to prevent, and in some cases promoted, prostate cancer formation in men without a history of the disease. One possible explanation for these alarming results is the notion that the effects of antioxidant treatment on the prostate are modified by specific, intrinsic genetic risk factors, causing some men to respond negatively to antioxidant treatment. Loss of expression of the homeobox transcription factor NKX3.1 in the prostate is frequently associated with human prostate cancer. Nkx3.1 mutant mice display prostatic hyperplasia and dysplasia and are u