The Genetic Privacy Act and commentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annas, G.J.; Glantz, L.H.; Roche, P.A.
1995-02-28
The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. Therefore, to effectively protect genetic privacy unauthorized collection and analysis of individually identifiable DNA must be prohibited. As a result, the premise of the Act is that no stranger should have or control identifiable DNA samples or genetic information about an individual unless that individual specifically authorizes the collection of DNA samples for the purpose of genetic analysis, authorized the creation of that private information, andmore » has access to and control over the dissemination of that information.« less
Michie, Marsha; Henderson, Gail; Garrett, Joanne; Corbie-Smith, Giselle
2012-01-01
Human genome research depends upon participants who donate genetic samples, but few studies have explored in depth the motivations of genetic research donors. This mixed methods study examines telephone interviews with 752 sample donors in a U.S. genetic epidemiology study investigating colorectal cancer. Quantitative and qualitative results indicate that most participants wanted to help society, and that many also wanted information about their own health, even though such information was not promised. Qualitative analysis reveals that donors believed their samples contributed to a scientific “common good”; imagined samples as information rather than tissues; and often blurred distinctions between research and diagnostic testing of samples. Differences between African American and White perspectives were distinct from educational and other possible explanatory factors. PMID:21680977
The adequacy of informed consent forms in genetic research in Oman: a pilot study.
Al-Riyami, Asya; Jaju, Deepali; Jaju, Sanjay; Silverman, Henry J
2011-08-01
Genetic research presents ethical challenges to the achievement of valid informed consent, especially in developing countries with areas of low literacy. During the last several years, a number of genetic research proposals involving Omani nationals were submitted to the Department of Research and Studies, Ministry of Health, Oman. The objective of this paper is to report on the results of an internal quality assurance initiative to determine the extent of the information being provided in genetic research informed consent forms. In order to achieve this, we developed checklists to assess the inclusion of basic elements of informed consent as well as elements related to the collection and future storage of biological samples. Three of the authors independently evaluated and reached consensus on seven informed consent forms that were available for review. Of the seven consent forms, four had less than half of the basic elements of informed consent. None contained any information regarding whether genetic information relevant to health would be disclosed, whether participants may share in commercial products, the extent of confidentiality protections, and the inclusion of additional consent forms for future storage and use of tissue samples. Information regarding genetic risks and withdrawal of samples were rarely mentioned (1/7), whereas limits on future use of samples were mentioned in 3 of 7 consent forms. Ultimately, consent forms are not likely to address key issues regarding genetic research that have been recommended by research ethics guidelines. We recommend enhanced educational efforts to increase awareness, on the part of researchers, of information that should be included in consent forms. © 2011 Blackwell Publishing Ltd.
Privacy rules for DNA databanks. Protecting coded 'future diaries'.
Annas, G J
1993-11-17
In privacy terms, genetic information is like medical information. But the information contained in the DNA molecule itself is more sensitive because it contains an individual's probabilistic "future diary," is written in a code that has only partially been broken, and contains information about an individual's parents, siblings, and children. Current rules for protecting the privacy of medical information cannot protect either genetic information or identifiable DNA samples stored in DNA databanks. A review of the legal and public policy rationales for protecting genetic privacy suggests that specific enforceable privacy rules for DNA databanks are needed. Four preliminary rules are proposed to govern the creation of DNA databanks, the collection of DNA samples for storage, limits on the use of information derived from the samples, and continuing obligations to those whose DNA samples are in the databanks.
Wang, Haiqin; Liu, Wenlong; He, Fuyuan; Chen, Zuohong; Zhang, Xili; Xie, Xianggui; Zeng, Jiaoli; Duan, Xiaopeng
2012-02-01
To explore the once sampling quantitation of Houttuynia cordata through its DNA polymorphic bands that carried information entropy, from other form that the expression of traditional Chinese medicine polymorphism, genetic polymorphism, of traditional Chinese medicine. The technique of inter simple sequence repeat (ISSR) was applied to analyze genetic polymorphism of H. cordata samples from the same GAP producing area, the DNA genetic bands were transformed its into the information entropy, and the minimum once sampling quantitation with the mathematical mode was measured. One hundred and thirty-four DNA bands were obtained by using 9 screened ISSR primers to amplify from 46 strains DNA samples of H. cordata from the same GAP, the information entropy was H=0.365 6-0.978 6, and RSD was 14.75%. The once sampling quantitation was W=11.22 kg (863 strains). The "once minimum sampling quantitation" were calculated from the angle of the genetic polymorphism of H. cordata, and a great differences between this volume and the amount from the angle of fingerprint were found.
The association between intelligence and lifespan is mostly genetic.
Arden, Rosalind; Luciano, Michelle; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M
2016-02-01
Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. The finding of common genetic effects between lifespan and intelligence has important implications for public health, and for those interested in the genetics of intelligence, lifespan or inequalities in health outcomes including lifespan. © The Author 2015; Published by Oxford University Press on behalf of the International Epidemiological Association.
The association between intelligence and lifespan is mostly genetic
Arden, Rosalind; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M
2016-01-01
Abstract Background: Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. Methods: We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. Results: The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. Conclusions: The finding of common genetic effects between lifespan and intelligence has important implications for public health, and for those interested in the genetics of intelligence, lifespan or inequalities in health outcomes including lifespan. PMID:26213105
Roche, P A; Annas, G J
2001-05-01
This article outlines the arguments for and against new rules to protect genetic privacy. We explain why genetic information is different to other sensitive medical information, why researchers and biotechnology companies have opposed new rules to protect genetic privacy (and favour anti-discrimination laws instead), and discuss what can be done to protect privacy in relation to genetic-sequence information and to DNA samples themselves.
Yessica Rico; Marie-Stephanie Samain
2017-01-01
Investigating how genetic variation is distributed across the landscape is fundamental to inform forest conservation and restoration. Detecting spatial genetic discontinuities has value for defining management units, germplasm collection, and target sites for reforestation; however, inappropriate sampling schemes can misidentify patterns of genetic structure....
Monitoring Species of Concern Using Noninvasive Genetic Sampling and Capture-Recapture Methods
2016-11-01
ABBREVIATIONS AICc Akaike’s Information Criterion with small sample size correction AZGFD Arizona Game and Fish Department BMGR Barry M. Goldwater...MNKA Minimum Number Known Alive N Abundance Ne Effective Population Size NGS Noninvasive Genetic Sampling NGS-CR Noninvasive Genetic...parameter estimates from capture-recapture models require sufficient sample sizes , capture probabilities and low capture biases. For NGS-CR, sample
Online health communication about human genetics: perceptions and preferences of internet users.
Bernhardt, Jay M; McClain, Jacqueline; Parrott, Roxanne L
2004-12-01
Unprecedented advancements in human genetics research necessitate keeping the public abreast of new information, applications, and implications and the Internet represents an important method of communicating with the public. Our research used cross-sectional self-report survey data collected from a diverse convenience sample of 780 Internet users in two states. Multivariate regression analysis explored the relationships between experiences, perceptions, and preferences for online health and genetics communication. Online health information seeking was associated with previous genetic information seeking, comfort with online genetic communication, perceived risk for genetic abnormality, being female, and having more education. Comfort with online genetics communication was associated with a preference for online genetic information, previous online health and off-line genetics information seeking, having a healthy lifestyle, believing in the positive impact of human genetics research, and being female. Perceiving online health information to be accurate was associated with preferring the Internet for genetics communication, being older, less educated, and perceiving Internet use as anonymous. Preferring online genetics communication to other communication channels was associated with perceiving online health information as accurate, being comfortable receiving online genetics information, having lower intrinsic religiosity, and being male. The implications of findings for Web-based health message design are discussed.
Direct-to-Consumer Genetic Testing: Helping Patients Make Informed Choices .
Mahon, Suzanne M
2018-02-01
Using direct-to-consumer genetic testing (DTCGT), individuals can order a genetic test, collect and submit a saliva sample, and obtain results about their genetic risk for a variety of traits and health conditions without involving a healthcare provider. Potential benefits of DTCGT include personal control over genetic information and health management decisions, whereas potential risks include misinterpretation of results, psychosocial distress, and lack of informed consent. Oncology nurses can provide education, support, and advocacy to enable patients to truly understand the positives and negatives associated with DTCGT. .
Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.
Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.
2011-01-01
The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.
Explanatory Models of Genetics and Genetic Risk among a Selected Group of Students.
Goltz, Heather Honoré; Bergman, Margo; Goodson, Patricia
2016-01-01
This exploratory qualitative study focuses on how college students conceptualize genetics and genetic risk, concepts essential for genetic literacy (GL) and genetic numeracy (GN), components of overall health literacy (HL). HL is dependent on both the background knowledge and culture of a patient, and lower HL is linked to increased morbidity and mortality for a number of chronic health conditions (e.g., diabetes and cancer). A purposive sample of 86 students from three Southwestern universities participated in eight focus groups. The sample ranged in age from 18 to 54 years, and comprised primarily of female (67.4%), single (74.4%), and non-White (57%) participants, none of whom were genetics/biology majors. A holistic-content approach revealed broad categories concerning participants' explanatory models (EMs) of genetics and genetic risk. Participants' EMs were grounded in highly contextualized narratives that only partially overlapped with biomedical models. While higher education levels should be associated with predominately knowledge-based EM of genetic risk, this study shows that even in well-educated populations cultural factors can dominate. Study findings reveal gaps in how this sample of young adults obtains, processes, and understands genetic/genomic concepts. Future studies should assess how individuals with low GL and GN obtain and process genetics and genetic risk information and incorporate this information into health decision making. Future work should also address the interaction of communication between health educators, providers, and genetic counselors, to increase patient understanding of genetic risk.
Ambers, Angie D; Churchill, Jennifer D; King, Jonathan L; Stoljarova, Monika; Gill-King, Harrell; Assidi, Mourad; Abu-Elmagd, Muhammad; Buhmeida, Abdelbaset; Al-Qahtani, Mohammed; Budowle, Bruce
2016-10-17
Although the primary objective of forensic DNA analyses of unidentified human remains is positive identification, cases involving historical or archaeological skeletal remains often lack reference samples for comparison. Massively parallel sequencing (MPS) offers an opportunity to provide biometric data in such cases, and these cases provide valuable data on the feasibility of applying MPS for characterization of modern forensic casework samples. In this study, MPS was used to characterize 140-year-old human skeletal remains discovered at a historical site in Deadwood, South Dakota, United States. The remains were in an unmarked grave and there were no records or other metadata available regarding the identity of the individual. Due to the high throughput of MPS, a variety of biometric markers could be typed using a single sample. Using MPS and suitable forensic genetic markers, more relevant information could be obtained from a limited quantity and quality sample. Results were obtained for 25/26 Y-STRs, 34/34 Y SNPs, 166/166 ancestry-informative SNPs, 24/24 phenotype-informative SNPs, 102/102 human identity SNPs, 27/29 autosomal STRs (plus amelogenin), and 4/8 X-STRs (as well as ten regions of mtDNA). The Y-chromosome (Y-STR, Y-SNP) and mtDNA profiles of the unidentified skeletal remains are consistent with the R1b and H1 haplogroups, respectively. Both of these haplogroups are the most common haplogroups in Western Europe. Ancestry-informative SNP analysis also supported European ancestry. The genetic results are consistent with anthropological findings that the remains belong to a male of European ancestry (Caucasian). Phenotype-informative SNP data provided strong support that the individual had light red hair and brown eyes. This study is among the first to genetically characterize historical human remains with forensic genetic marker kits specifically designed for MPS. The outcome demonstrates that substantially more genetic information can be obtained from the same initial quantities of DNA as that of current CE-based analyses.
Measuring informed choice in population-based reproductive genetic screening: a systematic review
Ames, Alice Grace; Metcalfe, Sylvia Ann; Archibald, Alison Dalton; Duncan, Rony Emily; Emery, Jon
2015-01-01
Genetic screening and health-care guidelines recommend that programmes should facilitate informed choice. It is therefore important that accurate measures of informed choice are available to evaluate such programmes. This review synthesises and appraises measures used to evaluate informed choice in population-based genetic screening programmes for reproductive risk. Databases were searched for studies offering genetic screening for the purpose of establishing reproductive risk to an adult population sample, in which aspects of informed choice were measured. Studies were included if, at a minimum, measures of uptake of screening and knowledge were used. Searches identified 1462 citations and 76 studies were reviewed in full text; 34 studies met the inclusion criteria. Over 20 different measures of informed choice were used. Many measures lacked adequate validity and reliability data. This systematic review will inform future evaluation of informed choice in population genetic screening programmes. PMID:24848746
Genetic data and the listing of species under the U.S. Endangered Species Act.
Fallon, Sylvia M
2007-10-01
Genetic information is becoming an influential factor in determining whether species, subspecies, and distinct population segments qualify for protection under the U.S. Endangered Species Act. Nevertheless, there are currently no standards or guidelines that define how genetic information should be used by the federal agencies that administer the act. I examined listing decisions made over a 10-year period (February 1996-February 2006) that relied on genetic information. There was wide variation in the genetic data used to inform listing decisions in terms of which genomes (mitochondrial vs. nuclear) were sampled and the number of markers (or genetic techniques) and loci evaluated. In general, whether the federal agencies identified genetic distinctions between putative taxonomic units or populations depended on the type and amount of genetic data. Studies that relied on multiple genetic markers were more likely to detect distinctions, and those organisms were more likely to receive protection than studies that relied on a single genetic marker. Although the results may, in part, reflect the corresponding availability of genetic techniques over the given time frame, the variable use of genetic information for listing decisions has the potential to misguide conservation actions. Future management policy would benefit from guidelines for the critical evaluation of genetic information to list or delist organisms under the Endangered Species Act.
Morren, Mattijn; Rijken, Mieke; Baanders, Arianne N; Bensing, Jozien
2007-02-01
Genetics increasingly permeate everyday medicine. When patients want to make informed decisions about genetic testing, they require genetic knowledge. This study examined the genetic knowledge and attitudes of patients with chronic diseases, and the relationship between both. In addition, patients were asked about their preferred source of genetic information. Questionnaires were mailed to participants of a nationwide representative sample of patients with chronic diseases in the Netherlands (n = 1916). The response rate was 82% (n = 1496). Perceived genetic knowledge was low, particularly among older and lower educated patients. Attitudes towards genetics were rather positive, especially among younger and higher educated patients. Some concerns were also documented, mainly about the consequences of genetic testing for employment and taking insurance. Patients who perceived to have little knowledge found it difficult to formulate an opinion about genetic testing. Higher levels of genetic knowledge were associated with a more favourable attitude towards genetics. Chronic patients prefer to receive genetic information from their GP. Chronic patients are ill prepared when they require genetic knowledge to make decisions regarding the treatment of their disease. This seems to result from a knowledge deficiency rather than from disagreement with the genetic developments. When chronic patients are in need of information about genetics or genetic testing, their general practitioner should provide this.
Burnett, Leslie; Barlow-Stewart, Kris; Proos, Anné L; Aizenberg, Harry
2003-05-01
This article describes a generic model for access to samples and information in human genetic databases. The model utilises a "GeneTrustee", a third-party intermediary independent of the subjects and of the investigators or database custodians. The GeneTrustee model has been implemented successfully in various community genetics screening programs and has facilitated research access to genetic databases while protecting the privacy and confidentiality of research subjects. The GeneTrustee model could also be applied to various types of non-conventional genetic databases, including neonatal screening Guthrie card collections, and to forensic DNA samples.
When are pathogen genome sequences informative of transmission events?
Ferguson, Neil; Jombart, Thibaut
2018-01-01
Recent years have seen the development of numerous methodologies for reconstructing transmission trees in infectious disease outbreaks from densely sampled whole genome sequence data. However, a fundamental and as of yet poorly addressed limitation of such approaches is the requirement for genetic diversity to arise on epidemiological timescales. Specifically, the position of infected individuals in a transmission tree can only be resolved by genetic data if mutations have accumulated between the sampled pathogen genomes. To quantify and compare the useful genetic diversity expected from genetic data in different pathogen outbreaks, we introduce here the concept of ‘transmission divergence’, defined as the number of mutations separating whole genome sequences sampled from transmission pairs. Using parameter values obtained by literature review, we simulate outbreak scenarios alongside sequence evolution using two models described in the literature to describe transmission divergence of ten major outbreak-causing pathogens. We find that while mean values vary significantly between the pathogens considered, their transmission divergence is generally very low, with many outbreaks characterised by large numbers of genetically identical transmission pairs. We describe the impact of transmission divergence on our ability to reconstruct outbreaks using two outbreak reconstruction tools, the R packages outbreaker and phybreak, and demonstrate that, in agreement with previous observations, genetic sequence data of rapidly evolving pathogens such as RNA viruses can provide valuable information on individual transmission events. Conversely, sequence data of pathogens with lower mean transmission divergence, including Streptococcus pneumoniae, Shigella sonnei and Clostridium difficile, provide little to no information about individual transmission events. Our results highlight the informational limitations of genetic sequence data in certain outbreak scenarios, and demonstrate the need to expand the toolkit of outbreak reconstruction tools to integrate other types of epidemiological data. PMID:29420641
Integration of DNA sample collection into a multi-site birth defects case-control study.
Rasmussen, Sonja A; Lammer, Edward J; Shaw, Gary M; Finnell, Richard H; McGehee, Robert E; Gallagher, Margaret; Romitti, Paul A; Murray, Jeffrey C
2002-10-01
Advances in quantitative analysis and molecular genotyping have provided unprecedented opportunities to add biological sampling and genetic information to epidemiologic studies. The purpose of this article is to describe the incorporation of DNA sample collection into the National Birth Defects Prevention Study (NBDPS), an ongoing case-control study in an eight-state consortium with a primary goal to identify risk factors for birth defects. Babies with birth defects are identified through birth defects surveillance systems in the eight participating centers. Cases are infants with one or more of over 30 major birth defects. Controls are infants without defects from the same geographic area. Epidemiologic information is collected through an hour-long interview with mothers of both cases and controls. We added the collection of buccal cytobrush DNA samples for case-infants, control-infants, and their parents to this study. We describe here the methods by which the samples have been collected and processed, establishment of a centralized resource for DNA banking, and quality control, database management, access, informed consent, and confidentiality issues. Biological sampling and genetic analyses are important components to epidemiologic studies of birth defects aimed at identifying risk factors. The DNA specimens collected in this study can be used for detection of mutations, study of polymorphic variants that confer differential susceptibility to teratogens, and examination of interactions among genetic risk factors. Information on the methods used and issues faced by the NBDPS may be of value to others considering the addition of DNA sampling to epidemiologic studies.
Australian attitudes to DNA sample banks and genetic screening.
Williams, Carolyn
2005-11-01
An exploration via an anonymous questionnaire of Australian public attitudes towards medical genetics and sample banking revealed the overwhelming majority views these developments with thoughtful confidence. Continued public education and awareness of these issues will allow the public to make informed decisions and enhance vigilance towards the sometimes misleading coverage in the press and media.
Caught you: threats to confidentiality due to the public release of large-scale genetic data sets
2010-01-01
Background Large-scale genetic data sets are frequently shared with other research groups and even released on the Internet to allow for secondary analysis. Study participants are usually not informed about such data sharing because data sets are assumed to be anonymous after stripping off personal identifiers. Discussion The assumption of anonymity of genetic data sets, however, is tenuous because genetic data are intrinsically self-identifying. Two types of re-identification are possible: the "Netflix" type and the "profiling" type. The "Netflix" type needs another small genetic data set, usually with less than 100 SNPs but including a personal identifier. This second data set might originate from another clinical examination, a study of leftover samples or forensic testing. When merged to the primary, unidentified set it will re-identify all samples of that individual. Even with no second data set at hand, a "profiling" strategy can be developed to extract as much information as possible from a sample collection. Starting with the identification of ethnic subgroups along with predictions of body characteristics and diseases, the asthma kids case as a real-life example is used to illustrate that approach. Summary Depending on the degree of supplemental information, there is a good chance that at least a few individuals can be identified from an anonymized data set. Any re-identification, however, may potentially harm study participants because it will release individual genetic disease risks to the public. PMID:21190545
Caught you: threats to confidentiality due to the public release of large-scale genetic data sets.
Wjst, Matthias
2010-12-29
Large-scale genetic data sets are frequently shared with other research groups and even released on the Internet to allow for secondary analysis. Study participants are usually not informed about such data sharing because data sets are assumed to be anonymous after stripping off personal identifiers. The assumption of anonymity of genetic data sets, however, is tenuous because genetic data are intrinsically self-identifying. Two types of re-identification are possible: the "Netflix" type and the "profiling" type. The "Netflix" type needs another small genetic data set, usually with less than 100 SNPs but including a personal identifier. This second data set might originate from another clinical examination, a study of leftover samples or forensic testing. When merged to the primary, unidentified set it will re-identify all samples of that individual. Even with no second data set at hand, a "profiling" strategy can be developed to extract as much information as possible from a sample collection. Starting with the identification of ethnic subgroups along with predictions of body characteristics and diseases, the asthma kids case as a real-life example is used to illustrate that approach. Depending on the degree of supplemental information, there is a good chance that at least a few individuals can be identified from an anonymized data set. Any re-identification, however, may potentially harm study participants because it will release individual genetic disease risks to the public.
Wu, Pei-Wen; Mason, Katelyn E; Durbin-Johnson, Blythe P; Salemi, Michelle; Phinney, Brett S; Rocke, David M; Parker, Glendon J; Rice, Robert H
2017-07-01
Forensic association of hair shaft evidence with individuals is currently assessed by comparing mitochondrial DNA haplotypes of reference and casework samples, primarily for exclusionary purposes. Present work tests and validates more recent proteomic approaches to extract quantitative transcriptional and genetic information from hair samples of monozygotic twin pairs, which would be predicted to partition away from unrelated individuals if the datasets contain identifying information. Protein expression profiles and polymorphic, genetically variant hair peptides were generated from ten pairs of monozygotic twins. Profiling using the protein tryptic digests revealed that samples from identical twins had typically an order of magnitude fewer protein expression differences than unrelated individuals. The data did not indicate that the degree of difference within twin pairs increased with age. In parallel, data from the digests were used to detect genetically variant peptides that result from common nonsynonymous single nucleotide polymorphisms in genes expressed in the hair follicle. Compilation of the variants permitted sorting of the samples by hierarchical clustering, permitting accurate matching of twin pairs. The results demonstrate that genetic differences are detectable by proteomic methods and provide a framework for developing quantitative statistical estimates of personal identification that increase the value of hair shaft evidence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic Variation Sampled in Three California Oaks
Lawrence A. Riggs; Constance I. Millar; Diane L. Delany
1991-01-01
As a first step in acquiring genetic information about oak species indigenous to California's hardwood rangelands we drew on experience from both forest regeneration and species conservation and applied biochemical techniques for rapidly assaying patterns of genetic variation. In a study sponsored by the California Integrated Hardwood Range Management Program we...
Mirzabekov, Andrei; Guschin, Dmitry Y.; Chik, Valentine; Drobyshev, Aleksei; Fotin, Alexander; Yershov, Gennadiy; Lysov, Yuri
2002-01-01
This invention relates to using customized oligonucleotide microchips as biosensors for the detection and identification of nucleic acids specific for different genes, organisms and/or individuals in the environment, in food and in biological samples. The microchips are designed to convert multiple bits of genetic information into simpler patterns of signals that are interpreted as a unit. Because of an improved method of hybridizing oligonucleotides from samples to microchips, microchips are reusable and transportable. For field study, portable laser or bar code scanners are suitable.
Informed consent for genetic research.
Hamvas, Aaron; Madden, Katherine K; Nogee, Lawrence M; Trusgnich, Michelle A; Wegner, Daniel J; Heins, Hillary B; Cole, F Sessions
2004-06-01
Rapid technological advances in genetic research and public concern about genetic discrimination have led to anticipatory safeguards in the informed consent process in the absence of legal examples of proven discrimination. Despite federal and state regulations to restrict access to personal health information, including genetic information, institutional review boards have required the addition of language to informed consent documents that warns about the risks of discrimination with participation in genetic research. To determine the reasons that families refused consent for their infant's participation in a study evaluating a genetic cause of respiratory distress syndrome. Survey conducted between February 1, 2002, and March 31, 2003. Academic, tertiary free-standing children's hospital. A convenience sample of 465 families were approached for consent. The 135 families who refused consent were surveyed. Reasons for refusal. Of the nonconsenting families, 79% spontaneously and specifically identified institutionally required language in our consent form concerning the risk of denial of access to health insurance and employment as the primary reason for refusal; 97% indicated that their fears resulted directly from language in our consent form. Only 20% of families who refused consent cited inadequate time to consider the study. The institutionally required description of risk of genetic discrimination due solely to participation in genetic research was the primary reason for refusal to consent in this cohort. Information about federally and institutionally mandated protections for confidentiality of participants in genetic research should be included in the informed consent document to balance the description of hypothetical risks and more accurately inform subjects.
Olafsson, Kristinn; Pampoulie, Christophe; Hjorleifsdottir, Sigridur; Gudjonsson, Sigurdur; Hreggvidsson, Gudmundur O.
2014-01-01
Due to an improved understanding of past climatological conditions, it has now become possible to study the potential concordance between former climatological models and present-day genetic structure. Genetic variability was assessed in 26 samples from different rivers of Atlantic salmon in Iceland (total of 2,352 individuals), using 15 microsatellite loci. F-statistics revealed significant differences between the majority of the populations that were sampled. Bayesian cluster analyses using both prior information and no prior information on sampling location revealed the presence of two distinguishable genetic pools - namely, the Northern (Group 1) and Southern (Group 2) regions of Iceland. Furthermore, the random permutation of different allele sizes among allelic states revealed a significant mutational component to the genetic differentiation at four microsatellite loci (SsaD144, Ssa171, SSsp2201 and SsaF3), and supported the proposition of a historical origin behind the observed variation. The estimated time of divergence, using two different ABC methods, suggested that the observed genetic pattern originated from between the Last Glacial Maximum to the Younger Dryas, which serves as additional evidence of the relative immaturity of Icelandic fish populations, on account of the re-colonisation of this young environment following the Last Glacial Maximum. Additional analyses suggested the presence of several genetic entities which were likely to originate from the original groups detected. PMID:24498283
Paquin, Ryan S; Richards, Adam S; Koehly, Laura M; McBride, Colleen M
2012-12-01
Varying perspectives exist regarding the implications of genetic susceptibility testing for common disease, with some anticipating adverse effects and others expecting positive outcomes; however, little is known about the characteristics of people who are most likely to be interested in direct-to-consumer genetic testing. To that end, this study examines the association of individual dispositional differences with health risk perceptions and online information seeking related to a free genetic susceptibility test. Healthy adults enrolled in a large health maintenance organization were surveyed by telephone. Eligible participants (N = 1,959) were given access to a secure website that provided risk and benefit information about a genetic susceptibility test and given the option to be tested. Neuroticism was associated with increased perceptions of disease risk but not with logging on. Those scoring high in conscientiousness were more likely to log on. We found no evidence that neuroticism, a dispositional characteristic commonly linked to adverse emotional response, was predictive of online genetic information seeking in this sample of healthy adults.
MGIS: Managing banana (Musa spp.) genetic resources information and high-throughput genotyping data
USDA-ARS?s Scientific Manuscript database
Unraveling genetic diversity held in genebanks on a large scale is underway, due to the advances in Next-generation sequence-based technologies that produce high-density genetic markers for a large number of samples at low cost. Genebank users should be in a position to identify and select germplasm...
Xue, Dong-Xiu; Wang, Hai-Yan; Zhang, Tao; Liu, Jin-Xian
2014-01-01
The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata. PMID:24789175
Zhou, Anju; Wu, Weiwei; Liu, Qiuling; Wu, Yeda; Lu, Dejian
2013-03-01
Genetic variations of the 17 NGM SElect STR loci in Chinese Han samples from the Zhejiang region were analyzed. The results show that the NGM SElect is a highly genetic informative system in Zhejiang Han, and this population shows quite different genetic data from other major populations in the world with the exception of the Fujian Han.
Pedersen, C B; Bybjerg-Grauholm, J; Pedersen, M G; Grove, J; Agerbo, E; Bækvad-Hansen, M; Poulsen, J B; Hansen, C S; McGrath, J J; Als, T D; Goldstein, J I; Neale, B M; Daly, M J; Hougaard, D M; Mors, O; Nordentoft, M; Børglum, A D; Werge, T; Mortensen, P B
2018-01-01
The Integrative Psychiatric Research (iPSYCH) consortium has established a large Danish population-based Case–Cohort sample (iPSYCH2012) aimed at unravelling the genetic and environmental architecture of severe mental disorders. The iPSYCH2012 sample is nested within the entire Danish population born between 1981 and 2005, including 1 472 762 persons. This paper introduces the iPSYCH2012 sample and outlines key future research directions. Cases were identified as persons with schizophrenia (N=3540), autism (N=16 146), attention-deficit/hyperactivity disorder (N=18 726) and affective disorder (N=26 380), of which 1928 had bipolar affective disorder. Controls were randomly sampled individuals (N=30 000). Within the sample of 86 189 individuals, a total of 57 377 individuals had at least one major mental disorder. DNA was extracted from the neonatal dried blood spot samples obtained from the Danish Neonatal Screening Biobank and genotyped using the Illumina PsychChip. Genotyping was successful for 90% of the sample. The assessments of exome sequencing, methylation profiling, metabolome profiling, vitamin-D, inflammatory and neurotrophic factors are in progress. For each individual, the iPSYCH2012 sample also includes longitudinal information on health, prescribed medicine, social and socioeconomic information, and analogous information among relatives. To the best of our knowledge, the iPSYCH2012 sample is the largest and most comprehensive data source for the combined study of genetic and environmental aetiologies of severe mental disorders. PMID:28924187
Blood rights: the body and information privacy.
Alston, Bruce
2005-05-01
Genetic and other medical technology makes blood, human tissue and other bodily samples an immediate and accessible source of comprehensive personal and health information about individuals. Yet, unlike medical records, bodily samples are not subject to effective privacy protection or other regulation to ensure that individuals have rights to control the collection, use and transfer of such samples. This article examines the existing coverage of privacy legislation, arguments in favour of baseline protection for bodily samples as sources of information and possible approaches to new regulation protecting individual privacy rights in bodily samples.
Williams, Robert C; Elston, Robert C; Kumar, Pankaj; Knowler, William C; Abboud, Hanna E; Adler, Sharon; Bowden, Donald W; Divers, Jasmin; Freedman, Barry I; Igo, Robert P; Ipp, Eli; Iyengar, Sudha K; Kimmel, Paul L; Klag, Michael J; Kohn, Orly; Langefeld, Carl D; Leehey, David J; Nelson, Robert G; Nicholas, Susanne B; Pahl, Madeleine V; Parekh, Rulan S; Rotter, Jerome I; Schelling, Jeffrey R; Sedor, John R; Shah, Vallabh O; Smith, Michael W; Taylor, Kent D; Thameem, Farook; Thornley-Brown, Denyse; Winkler, Cheryl A; Guo, Xiuqing; Zager, Phillip; Hanson, Robert L
2016-05-04
The presence of population structure in a sample may confound the search for important genetic loci associated with disease. Our four samples in the Family Investigation of Nephropathy and Diabetes (FIND), European Americans, Mexican Americans, African Americans, and American Indians are part of a genome- wide association study in which population structure might be particularly important. We therefore decided to study in detail one component of this, individual genetic ancestry (IGA). From SNPs present on the Affymetrix 6.0 Human SNP array, we identified 3 sets of ancestry informative markers (AIMs), each maximized for the information in one the three contrasts among ancestral populations: Europeans (HAPMAP, CEU), Africans (HAPMAP, YRI and LWK), and Native Americans (full heritage Pima Indians). We estimate IGA and present an algorithm for their standard errors, compare IGA to principal components, emphasize the importance of balancing information in the ancestry informative markers (AIMs), and test the association of IGA with diabetic nephropathy in the combined sample. A fixed parental allele maximum likelihood algorithm was applied to the FIND to estimate IGA in four samples: 869 American Indians; 1385 African Americans; 1451 Mexican Americans; and 826 European Americans. When the information in the AIMs is unbalanced, the estimates are incorrect with large error. Individual genetic admixture is highly correlated with principle components for capturing population structure. It takes ~700 SNPs to reduce the average standard error of individual admixture below 0.01. When the samples are combined, the resulting population structure creates associations between IGA and diabetic nephropathy. The identified set of AIMs, which include American Indian parental allele frequencies, may be particularly useful for estimating genetic admixture in populations from the Americas. Failure to balance information in maximum likelihood, poly-ancestry models creates biased estimates of individual admixture with large error. This also occurs when estimating IGA using the Bayesian clustering method as implemented in the program STRUCTURE. Odds ratios for the associations of IGA with disease are consistent with what is known about the incidence and prevalence of diabetic nephropathy in these populations.
Evaluation of LOINC for Representing Constitutional Cytogenetic Test Result Reports
Heras, Yan Z.; Mitchell, Joyce A.; Williams, Marc S.; Brothman, Arthur R.; Huff, Stanley M.
2009-01-01
Genetic testing is becoming increasingly important to medical practice. Integrating genetics and genomics data into electronic medical records is crucial in translating genetic discoveries into improved patient care. Information technology, especially Clinical Decision Support Systems, holds great potential to help clinical professionals take full advantage of genomic advances in their daily medical practice. However, issues relating to standard terminology and information models for exchanging genetic testing results remain relatively unexplored. This study evaluates whether the current LOINC standard is adequate to represent constitutional cytogenetic test result reports using sample result reports from ARUP Laboratories. The results demonstrate that current standard terminology is insufficient to support the needs of coding cytogenetic test results. The terminology infrastructure must be developed before clinical information systems will be able to handle the high volumes of genetic data expected in the near future. PMID:20351857
Evaluation of LOINC for representing constitutional cytogenetic test result reports.
Heras, Yan Z; Mitchell, Joyce A; Williams, Marc S; Brothman, Arthur R; Huff, Stanley M
2009-11-14
Genetic testing is becoming increasingly important to medical practice. Integrating genetics and genomics data into electronic medical records is crucial in translating genetic discoveries into improved patient care. Information technology, especially Clinical Decision Support Systems, holds great potential to help clinical professionals take full advantage of genomic advances in their daily medical practice. However, issues relating to standard terminology and information models for exchanging genetic testing results remain relatively unexplored. This study evaluates whether the current LOINC standard is adequate to represent constitutional cytogenetic test result reports using sample result reports from ARUP Laboratories. The results demonstrate that current standard terminology is insufficient to support the needs of coding cytogenetic test results. The terminology infrastructure must be developed before clinical information systems will be able to handle the high volumes of genetic data expected in the near future.
The psychological impact of genetic testing on parents.
Dinc, Leyla; Terzioglu, Fusun
2006-01-01
The aim of this descriptive study was to explore the psychological impact of genetic testing on parents whose children have been referred for genetic testing. Genetic tests enable individuals to be informed about their health status and to have the opportunity of early diagnosis and treatment of their diseases. However undergoing genetic testing and receiving a positive test result may also cause stress and anxiety. This descriptive study was carried out at the genetic departments of two university hospitals in Ankara. The sample of this study consisted of 128 individuals whose children have been referred for chromosomal analysis. Data were collected through using a semi-structured interview method with a data collection form and the anxiety inventory and analysed using the percentages and independent samples t-test. The majority of our participants experienced distress before genetic testing. Their general trait anxiety score before receiving the test results was 47.38, and following the test results the state anxiety score was 50.65. Having a previous child with an abnormality, a positive test result, and being a mother elevated the anxiety of individuals. This paper supports the findings of previous studies, which indicated that genetic test results might lead to anxiety in individuals and reveals the importance of genetic counselling. As the results of this study indicated, genetic testing causes distress and anxiety in individuals. Nurses can play an important role in minimizing anxiety of parents whose children undergo genetic testing by providing information about genetic testing and by taking part in the counselling process.
Identifying genetic relatives without compromising privacy
He, Dan; Furlotte, Nicholas A.; Hormozdiari, Farhad; Joo, Jong Wha J.; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar
2014-01-01
The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual’s genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy. PMID:24614977
Identifying genetic relatives without compromising privacy.
He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar
2014-04-01
The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.
Hall, Taryn O; Renz, Anne D; Snapinn, Katherine W; Bowen, Deborah J; Edwards, Karen L
2012-07-01
To determine if awareness of, interest in, and use of direct-to-consumer (DTC) genetic testing is greater in a sample of high-risk individuals (cancer cases and their relatives), compared to controls. Participants were recruited from the Northwest Cancer Genetics Network. A follow-up survey was mailed to participants to assess DTC genetic testing awareness, interest, and use. One thousand two hundred sixty-seven participants responded to the survey. Forty-nine percent of respondents were aware of DTC genetic testing. Of those aware, 19% indicated interest in obtaining and <1% reported having used DTC genetic testing. Additional information supplied by respondents who reported use of DTC genetic tests indicated that 55% of these respondents likely engaged in clinical genetic testing, rather than DTC genetic testing. Awareness of DTC genetic testing was greater in our sample of high-risk individuals than in controls and population-based studies. Although interest in and use of these tests among cases in our sample were equivalent to other population-based studies, interest in testing was higher among relatives and people who self-referred for a registry focused on cancer than among cases and controls. Additionally, our results suggest that there may be some confusion about what constitutes DTC genetic testing.
Rocky Mountain Center for Conservation Genetics and Systematics
Oyler-McCance, S.J.; Quinn, T.W.
2005-01-01
The use of molecular genetic tools has become increasingly important in addressing conservation issues pertaining to plants and animals. Genetic information can be used to augment studies of population dynamics and population viability, investigate systematic, refine taxonomic definitions, investigate population structure and gene flow, and document genetic diversity in a variety of plant and animal species. Further, genetic techniques are being used to investigate mating systems through paternity analysis, and analyze ancient DNA samples from museum specimens, and estimate population size and survival rates using DNA as a unique marker. Such information is essential for the sound management of small, isolated populations of concern and is currently being used by universities, zoos, the U.S. Fish and Wildlife Service, and numerous state fish and wildlife agencies.
[Ethical considerations in genomic cohort study].
Choi, Eun Kyung; Kim, Ock-Joo
2007-03-01
During the last decade, genomic cohort study has been developed in many countries by linking health data and genetic data in stored samples. Genomic cohort study is expected to find key genetic components that contribute to common diseases, thereby promising great advance in genome medicine. While many countries endeavor to build biobank systems, biobank-based genome research has raised important ethical concerns including genetic privacy, confidentiality, discrimination, and informed consent. Informed consent for biobank poses an important question: whether true informed consent is possible in population-based genomic cohort research where the nature of future studies is unforeseeable when consent is obtained. Due to the sensitive character of genetic information, protecting privacy and keeping confidentiality become important topics. To minimize ethical problems and achieve scientific goals to its maximum degree, each country strives to build population-based genomic cohort research project, by organizing public consultation, trying public and expert consensus in research, and providing safeguards to protect privacy and confidentiality.
ERIC Educational Resources Information Center
Kelly, Kimberly M.; Andrews, James E; Case, Donald O.; Allard, Suzanne L.; Johnson, J. David
2007-01-01
Context: Research is limited regarding the potential of genetic testing for cancer risk in rural Appalachia. Purpose: This study examined perceptions of genetic testing in a population sample of Kentuckians, with a focus on Appalachian and rural differences. The goals were to examine cultural and psychosocial factors that may predict intentions to…
Demographic history of an elusive carnivore: using museums to inform management
Holbrook, Joseph D; DeYoung, Randy W; Tewes, Michael E; Young, John H
2012-01-01
Elusive carnivores present a challenge to managers because traditional survey methods are not suitable. We applied a genetic approach using museum specimens to examine how historical and recent conditions influenced the demographic history of Puma concolor in western and southern Texas, USA. We used 10 microsatellite loci and indexed population trends by estimating historical and recent genetic diversity, genetic differentiation and effective population size. Mountain lions in southern Texas exhibited a 9% decline in genetic diversity, whereas diversity remained stable in western Texas. Genetic differentiation between western and southern Texas was minimal historically (FST = 0.04, P < 0.01), but increased 2–2.5 times in our recent sample. An index of genetic drift for southern Texas was seven to eight times that of western Texas, presumably contributing to the current differentiation between western and southern Texas. Furthermore, southern Texas exhibited a >50% temporal decline in effective population size, whereas western Texas showed no change. Our results illustrate that population declines and genetic drift have occurred in southern Texas, likely because of contemporary habitat loss and predator control. Population monitoring may be needed to ensure the persistence of mountain lions in the southern Texas region. This study highlights the utility of sampling museum collections to examine demographic histories and inform wildlife management. PMID:23028402
Unger, Shem D.; Rhodes, Olin E.; Sutton, Trent M.; Williams, Rod N.
2013-01-01
Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical) scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states). We identified two genetically differentiated groups at the range-wide scale: 1) the Ohio River drainage and 2) the Tennessee River drainage. An analysis of molecular variance (AMOVA) based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94–98%) occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD) at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species. PMID:24204565
de Souza, Elaine Dantas; Moralez-Silva, Emmanuel; Valdes, Talita Alvarenga; Cortiço Corrêa Rodrigues, Vera Lúcia
2017-01-01
Colonial waterbirds such as herons, egrets and spoonbills exhibit ecological characteristics that could have promoted the evolution of conspecific brood parasitism and extra-pair copulation. However, an adequate characterization of the genetic mating systems of this avian group has been hindered by the lack of samples of elusive candidate parents which precluded conducting conventional parentage allocation tests. Here, we investigate the genetic mating system of the invasive cattle egret using hematophagous insects contained in fake eggs to collect blood from incubating adults in a wild breeding colony. We tested a protocol with a previously unused Neotropical Triatominae, Panstrongylus megistus, obtained blood samples from males and females in 31 nests built on trees, drew blood from 89 nestlings at those nests, and genotyped all samples at 14 microsatellite loci, including six new species-specific loci. We comparatively addressed the performance of parentage allocation versus kinship classification of nestlings to infer the genetic mating system of cattle egrets. In line with previous behavioral observations, we found evidence in support of a non-monogamous genetic mating system, including extra-pair paternity (EPP) and conspecific brood parasitism (CBP). Parentage allocation tests detected a higher percentage of nests with alternative reproductive tactics (EPP: 61.7%; CBP: 64.5%) than the kinship classification method (EPP: 50.0%; CBP: 43.3%). Overall, these results indicate that rates of alternative reproductive tactics inferred in the absence of parental genetic information could be underestimated and should be interpreted with caution. This study highlights the importance of incorporating samples from candidate parents to adequately determine the genetic mating system of a species. We expand knowledge on the reproductive tactics of colonial waterbirds, contributing novel data on the genetic mating system of the cattle egret, valuable for the design of management strategies for this invasive bird. PMID:28854191
Miño, Carolina Isabel; de Souza, Elaine Dantas; Moralez-Silva, Emmanuel; Valdes, Talita Alvarenga; Cortiço Corrêa Rodrigues, Vera Lúcia; Del Lama, Sílvia Nassif
2017-01-01
Colonial waterbirds such as herons, egrets and spoonbills exhibit ecological characteristics that could have promoted the evolution of conspecific brood parasitism and extra-pair copulation. However, an adequate characterization of the genetic mating systems of this avian group has been hindered by the lack of samples of elusive candidate parents which precluded conducting conventional parentage allocation tests. Here, we investigate the genetic mating system of the invasive cattle egret using hematophagous insects contained in fake eggs to collect blood from incubating adults in a wild breeding colony. We tested a protocol with a previously unused Neotropical Triatominae, Panstrongylus megistus, obtained blood samples from males and females in 31 nests built on trees, drew blood from 89 nestlings at those nests, and genotyped all samples at 14 microsatellite loci, including six new species-specific loci. We comparatively addressed the performance of parentage allocation versus kinship classification of nestlings to infer the genetic mating system of cattle egrets. In line with previous behavioral observations, we found evidence in support of a non-monogamous genetic mating system, including extra-pair paternity (EPP) and conspecific brood parasitism (CBP). Parentage allocation tests detected a higher percentage of nests with alternative reproductive tactics (EPP: 61.7%; CBP: 64.5%) than the kinship classification method (EPP: 50.0%; CBP: 43.3%). Overall, these results indicate that rates of alternative reproductive tactics inferred in the absence of parental genetic information could be underestimated and should be interpreted with caution. This study highlights the importance of incorporating samples from candidate parents to adequately determine the genetic mating system of a species. We expand knowledge on the reproductive tactics of colonial waterbirds, contributing novel data on the genetic mating system of the cattle egret, valuable for the design of management strategies for this invasive bird.
Regional surnames and genetic structure in Great Britain.
Kandt, Jens; Cheshire, James A; Longley, Paul A
2016-10-01
Following the increasing availability of DNA-sequenced data, the genetic structure of populations can now be inferred and studied in unprecedented detail. Across social science, this innovation is shaping new bio-social research agendas, attracting substantial investment in the collection of genetic, biological and social data for large population samples. Yet genetic samples are special because the precise populations that they represent are uncertain and ill-defined. Unlike most social surveys, a genetic sample's representativeness of the population cannot be established by conventional procedures of statistical inference, and the implications for population-wide generalisations about bio-social phenomena are little understood. In this paper, we seek to address these problems by linking surname data to a censored and geographically uneven sample of DNA scans, collected for the People of the British Isles study. Based on a combination of global and local spatial correspondence measures, we identify eight regions in Great Britain that are most likely to represent the geography of genetic structure of Great Britain's long-settled population. We discuss the implications of this regionalisation for bio-social investigations. We conclude that, as the often highly selective collection of DNA and biomarkers becomes a more common practice, geography is crucial to understanding variation in genetic information within diverse populations.
Athrey, Giridhar; Barr, Kelly R; Lance, Richard F; Leberg, Paul L
2012-01-01
Anthropogenic alterations in the natural environment can be a potent evolutionary force. For species that have specific habitat requirements, habitat loss can result in substantial genetic effects, potentially impeding future adaptability and evolution. The endangered black-capped vireo (Vireo atricapilla) suffered a substantial contraction of breeding habitat and population size during much of the 20th century. In a previous study, we reported significant differentiation between remnant populations, but failed to recover a strong genetic signal of bottlenecks. In this study, we used a combination of historical and contemporary sampling from Oklahoma and Texas to (i) determine whether population structure and genetic diversity have changed over time and (ii) evaluate alternate demographic hypotheses using approximate Bayesian computation (ABC). We found lower genetic diversity and increased differentiation in contemporary samples compared to historical samples, indicating nontrivial impacts of fragmentation. ABC analysis suggests a bottleneck having occurred in the early part of the 20th century, resulting in a magnitude decline in effective population size. Genetic monitoring with temporally spaced samples, such as used in this study, can be highly informative for assessing the genetic impacts of anthropogenic fragmentation on threatened or endangered species, as well as revealing the dynamics of small populations over time. PMID:23028396
Methods for the survey and genetic analysis of populations
Ashby, Matthew
2003-09-02
The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.
Kierepka, E M; Latch, E K
2016-01-01
Landscape genetics is a powerful tool for conservation because it identifies landscape features that are important for maintaining genetic connectivity between populations within heterogeneous landscapes. However, using landscape genetics in poorly understood species presents a number of challenges, namely, limited life history information for the focal population and spatially biased sampling. Both obstacles can reduce power in statistics, particularly in individual-based studies. In this study, we genotyped 233 American badgers in Wisconsin at 12 microsatellite loci to identify alternative statistical approaches that can be applied to poorly understood species in an individual-based framework. Badgers are protected in Wisconsin owing to an overall lack in life history information, so our study utilized partial redundancy analysis (RDA) and spatially lagged regressions to quantify how three landscape factors (Wisconsin River, Ecoregions and land cover) impacted gene flow. We also performed simulations to quantify errors created by spatially biased sampling. Statistical analyses first found that geographic distance was an important influence on gene flow, mainly driven by fine-scale positive spatial autocorrelations. After controlling for geographic distance, both RDA and regressions found that Wisconsin River and Agriculture were correlated with genetic differentiation. However, only Agriculture had an acceptable type I error rate (3–5%) to be considered biologically relevant. Collectively, this study highlights the benefits of combining robust statistics and error assessment via simulations and provides a method for hypothesis testing in individual-based landscape genetics. PMID:26243136
Venegas, J; Rojas, T; DÍaz, F; Miranda, S; Jercic, M I; González, C; Coñoepán, W; Pichuantes, S; RodrÍguez, J; Gajardo, M; Sánchez, G
2011-01-01
In order to obtain more information about the population structure of Chilean Trypanosoma cruzi, and their genetic relationship with other Latino American counterparts, we performed the study of T. cruzi samples detected in the midgut content of Triatoma infestans insects from three endemic regions of Chile. The genetic characteristics of these samples were analysed using microsatellite markers and PCR conditions that allow the detection of predominant T. cruzi clones directly in triatomine midgut content. Population genetic analyses using the Fisher’s exact method, analysis of molecular variance (AMOVA) and the determination of FST showed that the northern T. cruzi population sample was genetically differentiated from the two southern population counterparts. Further analysis showed that the cause of this genetic differentiation was the asymmetrical distribution of TcIII T. cruzi predominant clones. Considering all triatomines from the three regions, the most frequent predominant lineages were TcIII (38%), followed by TcI (34%) and hybrid (8%). No TcII lineage was observed along the predominant T. cruzi clones. The best phylogenetic reconstruction using the shared allelic genetic distance was concordant with the population genetic analysis and tree topology previously described studying foreign samples. The correlation studies showed that the lineage TcIII from the III region was genetically differentiated from the other two, and this differentiation was correlated with geographical distance including Chilean and mainly Brazilian samples. It will be interesting to investigate whether this geographical structure may be related with different clinical manifestation of Chagas disease. PMID:22325822
Reynolds, Michelle H.; Pearce, John M.; Lavretsky, Philip; Peters Jeffrey L,; Courtot, Karen; Seixas, Pedro P.
2015-01-01
Genetic diversity is assumed to reflect the evolutionary potential and adaptability of populations, and thus quantifying the genetic diversity of endangered species is useful for recovery programs. In particular, if conservation strategies include reintroductions, periodic genetic assessments are useful to evaluate whether management efforts have resulted in the maximization or loss of genetic variation within populations over generations. In this study, we collected blood, feather, and tissue samples during 1999–2009 and quantified genetic diversity for a critically endangered waterfowl species endemic to the Hawaiian archipelago, the Laysan teal or duck (Anas laysanensis; n = 239 individual birds sampled). The last extant population of this species at Laysan Island was sourced in 2004–2005 for a ‘wild to wild’ translocation of 42 individuals for an experimental reintroduction to Midway Atoll. To inform future management strategies, we compared genetic diversity sampled from the source population (n = 133 Laysan birds) including 23 of Midway’s founders and offspring of the translocated population 2–5 years post release (n = 96 Midway birds). We attempted to identify polymorphic markers by screening nuclear microsatellite (N = 83) and intronic loci (N = 19), as well as the mitochondrial control region (mtDNA) for a subset of samples. Among 83 microsatellite loci screened, six were variable. We found low nuclear variation consistent with the species’ historical population bottlenecks and sequence variation was observed at a single intron locus. We detected no variation within the mtDNA. We found limited but similar estimates of allelic richness (2.58 alleles per locus) and heterozygosity within islands. Two rare alleles found in the Laysan Island source population were not present in the Midway translocated group, and a rare allele was discovered in an individual on Midway in 2008. We found similar genetic diversity and low, but statistically significant, levels of differentiation (0.6%) between island populations suggesting that genetic drift (as a result of translocation-induced population bottlenecking) has had a limited effect within five years post-release. Our results have utility for informing translocation and genetic management decisions.
Genetic Predisposition to Ischemic Stroke
Kamatani, Yoichiro; Takahashi, Atsushi; Hata, Jun; Furukawa, Ryohei; Shiwa, Yuh; Yamaji, Taiki; Hara, Megumi; Tanno, Kozo; Ohmomo, Hideki; Ono, Kanako; Takashima, Naoyuki; Matsuda, Koichi; Wakai, Kenji; Sawada, Norie; Iwasaki, Motoki; Yamagishi, Kazumasa; Ago, Tetsuro; Ninomiya, Toshiharu; Fukushima, Akimune; Hozawa, Atsushi; Minegishi, Naoko; Satoh, Mamoru; Endo, Ryujin; Sasaki, Makoto; Sakata, Kiyomi; Kobayashi, Seiichiro; Ogasawara, Kuniaki; Nakamura, Motoyuki; Hitomi, Jiro; Kita, Yoshikuni; Tanaka, Keitaro; Iso, Hiroyasu; Kitazono, Takanari; Kubo, Michiaki; Tanaka, Hideo; Tsugane, Shoichiro; Kiyohara, Yutaka; Yamamoto, Masayuki; Sobue, Kenji; Shimizu, Atsushi
2017-01-01
Background and Purpose— The prediction of genetic predispositions to ischemic stroke (IS) may allow the identification of individuals at elevated risk and thereby prevent IS in clinical practice. Previously developed weighted multilocus genetic risk scores showed limited predictive ability for IS. Here, we investigated the predictive ability of a newer method, polygenic risk score (polyGRS), based on the idea that a few strong signals, as well as several weaker signals, can be collectively informative to determine IS risk. Methods— We genotyped 13 214 Japanese individuals with IS and 26 470 controls (derivation samples) and generated both multilocus genetic risk scores and polyGRS, using the same derivation data set. The predictive abilities of each scoring system were then assessed using 2 independent sets of Japanese samples (KyushuU and JPJM data sets). Results— In both validation data sets, polyGRS was shown to be significantly associated with IS, but weighted multilocus genetic risk scores was not. Comparing the highest with the lowest polyGRS quintile, the odds ratios for IS were 1.75 (95% confidence interval, 1.33–2.31) and 1.99 (95% confidence interval, 1.19–3.33) in the KyushuU and JPJM samples, respectively. Using the KyushuU samples, the addition of polyGRS to a nongenetic risk model resulted in a significant improvement of the predictive ability (net reclassification improvement=0.151; P<0.001). Conclusions— The polyGRS was shown to be superior to weighted multilocus genetic risk scores as an IS prediction model. Thus, together with the nongenetic risk factors, polyGRS will provide valuable information for individual risk assessment and management of modifiable risk factors. PMID:28034966
Toward an Integration of Cognitive and Genetic Models of Risk for Depression
Gibb, Brandon E.; Beevers, Christopher G.; McGeary, John E.
2012-01-01
There is growing interest in integrating cognitive and genetic models of depression risk. We review two ways in which these models can be meaningfully integrated. First, information-processing biases may represent intermediate phenotypes for specific genetic influences. These genetic influences may represent main effects on specific cognitive processes or may moderate the impact of environmental influences on information-processing biases. Second, cognitive and genetic influences may combine to increase reactivity to environmental stressors, increasing risk for depression in a gene × cognition × environment model of risk. There is now growing support for both of these ways of integrating cognitive and genetic models of depression risk. Specifically, there is support for genetic influences on information-processing biases, particularly the link between 5-HTTLPR and attentional biases, from both genetic association and gene × environment (G × E) studies. There is also initial support for gene × cognition × environment models of risk in which specific genetic influences contribute to increased reactivity to environmental influences. We review this research and discuss important areas of future research, particularly the need for larger samples that allow for a broader examination of genetic and epigenetic influences as well as the combined influence of variability across a number of genes. PMID:22920216
[The Murcia Twin Registry. A resource for research on health-related behaviour].
Ordoñana, Juan R; Sánchez Romera, Juan F; Colodro-Conde, Lucía; Carrillo, Eduvigis; González-Javier, Francisca; Madrid-Valero, Juan J; Morosoli-García, José J; Pérez-Riquelme, Francisco; Martínez-Selva, José M
Genetically informative designs and, in particular, twin studies, are the most widely used methodology to analyse the relative contribution of genetic and environmental factors to inter-individual variability. These studies basically compare the degree of phenotypical similarity between monozygotic and dizygotic twin pairs. In addition to the traditional estimate of heritability, this kind of registry enables a wide variety of analyses which are unique due to the characteristics of the sample. The Murcia Twin Registry is population-based and focused on the analysis of health-related behaviour. The observed prevalence of health problems is comparable to that of other regional and national reference samples, which guarantees its representativeness. Overall, the characteristics of the Registry facilitate developing various types of research as well as genetically informative designs, and collaboration with different initiatives and consortia. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Genetic and educational assortative mating among US adults.
Domingue, Benjamin W; Fletcher, Jason; Conley, Dalton; Boardman, Jason D
2014-06-03
Understanding the social and biological mechanisms that lead to homogamy (similar individuals marrying one another) has been a long-standing issue across many fields of scientific inquiry. Using a nationally representative sample of non-Hispanic white US adults from the Health and Retirement Study and information from 1.7 million single-nucleotide polymorphisms, we compare genetic similarity among married couples to noncoupled pairs in the population. We provide evidence for genetic assortative mating in this population but the strength of this association is substantially smaller than the strength of educational assortative mating in the same sample. Furthermore, genetic similarity explains at most 10% of the assortative mating by education levels. Results are replicated using comparable data from the Framingham Heart Study.
Miyamoto, Keiko; Iwakuma, Miho; Nakayama, Takeo
2017-03-01
The authors investigated the relationship between the awareness of dietary salt and genetics and the intent to maintain a low-salt diet. In particular, they assessed whether hypothetical genetic information regarding salt-sensitive hypertension motivates the intent to reduce dietary salt for communicating the health benefits of lower salt consumption to citizens. A self-administered questionnaire survey was conducted with 2500 randomly sampled residents aged 30 to 69 years living in Nagahama, Japan. Genetic information regarding higher salt sensitivity increased motivation to reduce salt intake for both those who agreed that genes cause hypertension and those who did not. Less than 50% of those who agreed that genes cause hypertension lost their intention to lower their salt consumption when they found they did not possess the susceptibility gene. Communicating genetic information positively affected motivation to reduce salt intake. The present study clarifies the difficulty in changing the behavioral intent of those who have significantly less incentive to reduce salt intake. Therefore, a multidimensional approach is crucial to reduce salt consumption. ©2016 Wiley Periodicals, Inc.
Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip
2010-01-01
The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251
Clinical exome sequencing reports: current informatics practice and future opportunities.
Swaminathan, Rajeswari; Huang, Yungui; Astbury, Caroline; Fitzgerald-Butt, Sara; Miller, Katherine; Cole, Justin; Bartlett, Christopher; Lin, Simon
2017-11-01
The increased adoption of clinical whole exome sequencing (WES) has improved the diagnostic yield for patients with complex genetic conditions. However, the informatics practice for handling information contained in whole exome reports is still in its infancy, as evidenced by the lack of a common vocabulary within clinical sequencing reports generated across genetic laboratories. Genetic testing results are mostly transmitted using portable document format, which can make secondary analysis and data extraction challenging. This paper reviews a sample of clinical exome reports generated by Clinical Laboratory Improvement Amendments-certified genetic testing laboratories at tertiary-care facilities to assess and identify common data elements. Like structured radiology reports, which enable faster information retrieval and reuse, structuring genetic information within clinical WES reports would help facilitate integration of genetic information into electronic health records and enable retrospective research on the clinical utility of WES. We identify elements listed as mandatory according to practice guidelines but are currently missing from some of the clinical reports, which might help to organize the data when stored within structured databases. We also highlight elements, such as patient consent, that, although they do not appear within any of the current reports, may help in interpreting some of the information within the reports. Integrating genetic and clinical information would assist the adoption of personalized medicine for improved patient care and outcomes. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Is There a Right Time to Know? The Right Not to Know and Genetic Testing in Children.
Borry, Pascal; Shabani, Mahsa; Howard, Heidi Carmen
2014-01-01
The increasing implementation of next-generation sequencing technologies in the clinical context and the expanding commercial offer of genetic tests directly-toconsumers has increased the availability of previously inaccessible genetic information. A particular concern in both situations is how the volume of novel information will affect the processing of genetic and genomic information from minors. For minors, it is argued that in the provision of genetic testing, their "right not to know" should be respected as much as possible. Testing a minor early in life eliminates the possibility for the minor to make use of his or her "right not to know." The article discusses the theoretical underpinnings of the right not know, analyzes reasons why various direct-to-consumer companies process samples from minors, and discusses the right not to know in relation to common complex disorders in a pediatric population. © 2014 American Society of Law, Medicine & Ethics, Inc.
Enclaves of genetic diversity resisted Inca impacts on population history.
Barbieri, Chiara; Sandoval, José R; Valqui, Jairo; Shimelman, Aviva; Ziemendorff, Stefan; Schröder, Roland; Geppert, Maria; Roewer, Lutz; Gray, Russell; Stoneking, Mark; Fujita, Ricardo; Heggarty, Paul
2017-12-12
The Inca Empire is claimed to have driven massive population movements in western South America, and to have spread Quechua, the most widely-spoken language family of the indigenous Americas. A test-case is the Chachapoyas region of northern Peru, reported as a focal point of Inca population displacements. Chachapoyas also spans the environmental, cultural and demographic divides between Amazonia and the Andes, and stands along the lowest-altitude corridor from the rainforest to the Pacific coast. Following a sampling strategy informed by linguistic data, we collected 119 samples, analysed for full mtDNA genomes and Y-chromosome STRs. We report a high indigenous component, which stands apart from the network of intense genetic exchange in the core central zone of Andean civilization, and is also distinct from neighbouring populations. This unique genetic profile challenges the routine assumption of large-scale population relocations by the Incas. Furthermore, speakers of Chachapoyas Quechua are found to share no particular genetic similarity or gene-flow with Quechua speakers elsewhere, suggesting that here the language spread primarily by cultural diffusion, not migration. Our results demonstrate how population genetics, when fully guided by the archaeological, historical and linguistic records, can inform multiple disciplines within anthropology.
Alfonso Farnós, Iciar; Hernández Gil, Arantza; Rodríguez Velasco, María
2013-01-01
Research on human genome and its applications open great perspectives to improve human beings' health. However, these advances must never endanger the respect of dignity, freedom and rights of the participants in medical research, assuring prohibition of any way of discrimination because of genetic features. The Independent Research Boards (IRB), responsible for safeguarding rights, safety and well-being of the subjects taking part in the biomedical research, assess independently submitted genetic studies, clinical trials whose primary objective is obtaining genetic information and genetic sub-studies of clinical trials with drugs. Biobanks, as safeguarding means to preserve biological samples in suitable quality conditions, must be assigned to two external committees, a scientific one and an ethics one. External ethics committees of biobanks have to make the ethical assessment of the submissions of samples transfers and associated data, in order to carry out research projects. On the other hand, they have to advise biobanks on the compliance of ethical and legal principles, which, in many committees, has turned into the performance of informed consent forms which are in accordance with current laws.
Model selection with multiple regression on distance matrices leads to incorrect inferences.
Franckowiak, Ryan P; Panasci, Michael; Jarvis, Karl J; Acuña-Rodriguez, Ian S; Landguth, Erin L; Fortin, Marie-Josée; Wagner, Helene H
2017-01-01
In landscape genetics, model selection procedures based on Information Theoretic and Bayesian principles have been used with multiple regression on distance matrices (MRM) to test the relationship between multiple vectors of pairwise genetic, geographic, and environmental distance. Using Monte Carlo simulations, we examined the ability of model selection criteria based on Akaike's information criterion (AIC), its small-sample correction (AICc), and the Bayesian information criterion (BIC) to reliably rank candidate models when applied with MRM while varying the sample size. The results showed a serious problem: all three criteria exhibit a systematic bias toward selecting unnecessarily complex models containing spurious random variables and erroneously suggest a high level of support for the incorrectly ranked best model. These problems effectively increased with increasing sample size. The failure of AIC, AICc, and BIC was likely driven by the inflated sample size and different sum-of-squares partitioned by MRM, and the resulting effect on delta values. Based on these findings, we strongly discourage the continued application of AIC, AICc, and BIC for model selection with MRM.
Preempting genetic discrimination and assaults on privacy: report of a symposium.
Shinaman, Aileen; Bain, Lisa J; Shoulson, Ira
2003-08-01
At a symposium in June, 2002, biomedical researchers, clinicians, legal experts, policymakers, and representatives of the insurance industry and the advocacy community gathered to address issues of genetic privacy and discrimination; and to identify research, legal, and policy gaps needing to be filled. They concluded that over the next decade, as more genetic information becomes available and the public becomes more aware of individual risks, concerns about privacy and discrimination will become increasingly important. Documented cases of genetic discrimination are rare and largely anecdotal, yet individuals with genetic conditions harbor significant fears about discrimination. Current laws enacted to protect individuals from workplace and insurance discrimination offer some measure of protection, but leave many unfilled gaps. Moreover, the use of genetic information in potentially discriminatory ways is not limited to employment and insurability. Existing laws do little to protect people seeking life, disability, or long-term care insurance. And the courts have used genetic information in a wide variety of cases including paternity, criminal, and tort (personal injury) cases. Genetic information that might jeopardize an individual's right to privacy may also be obtained in the course of research studies, including through the collection of DNA and tissue samples. The insurance industry, State and Federal agencies, and the advocacy community are all making efforts to address some of these gaps through legislation and education of clinicians, the public, and policy makers. Copyright 2003 Wiley-Liss, Inc.
Global gene mining and the pharmaceutical industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Lisbeth E.
2005-09-01
Worldwide efforts are ongoing in optimizing medical treatment by searching for the right medicine at the right dose for the individual. Metabolism is regulated by polymorphisms, which may be tested by relatively simple SNP analysis, however requiring DNA from the test individuals. Target genes for the efficiency of a given medicine or predisposition of a given disease are also subject to population studies, e.g., in Iceland, Estonia, Sweden, etc. For hypothesis testing and generation, several bio-banks with samples from patients and healthy persons within the pharmaceutical industry have been established during the past 10 years. Thus, more than 100,000 samplesmore » are stored in the freezers of either the pharmaceutical companies or their contractual partners at universities and test institutions. Ethical issues related to data protection of the individuals providing samples to bio-banks are several: nature and extent of information prior to consent, coverage of the consent given by the study person, labeling and storage of the sample and data (coded or anonymized). In general, genetic test data, once obtained, are permanent and cannot be changed. The test data may imply information that is not beneficial to the patient and his/her family (e.g., employment opportunities, insurance, etc.). Furthermore, there may be a long latency between the analysis of the genetic test and the clinical expression of the disease and wide differences in the disease patterns. Consequently, information about some genetic test data may stigmatize patients leading to poor quality of life. This has raised the issue of 'genetic exceptionalism' justifying specific regulation of use of genetic information. Discussions on how to handle sampling and data are ongoing within the industry and the regulatory sphere, the European Agency for the Evaluation of Medicinal Products (EMEA) having issued a position paper, the Council for International Organizations of Medical Sciences (CIOMS) having a working group on this issue, and the European Society of Human Genetics preparing background paper on 'Polymorphic sequence variants in medicine: Technical, social, legal and ethical issues. Pharmacogenetics as an example'. Within the European project Privacy in Research Ethics and Law (PRIVIREAL), recommendations for common European guidelines for membership in research ethical committees have been discussed, balancing the interests and assuring independence and legal competence. Good decision making, assuring legality of protocols and assessment of data protection is suggested to be part of any evaluation of protocols.« less
NASA Astrophysics Data System (ADS)
Nantón, A.; Arias-Pérez, A.; Freire, R.; Fernández-Pérez, J.; Nóvoa, S.; Méndez, J.
2017-10-01
Genetic variation and population structure information is essential for conservation and stock management policies. The wedge clam Donax trunculus is an important fishing resource in the Iberian Peninsula and in some areas, such as the northwestern Spain, wild stocks have decreased greatly. Despite this, information is mainly from the southwestern Atlantic to the northwestern Mediterranean of the Iberian Peninsula. In this study, fifteen microsatellite loci were examined at 17 localities along the Iberian Peninsula to characterize its genetic diversity and population structure. Particular attention was paid to the northwestern Atlantic area, and to test if the pattern previously described for this species is confirmed when localities distributed across the Atlantic coast are included and different microsatellite markers are used. All localities displayed similar allelic richness values and heterozygosity levels but when genetic diversity levels were compared among groups of localities, tests were significant and samples from the northwestern area (Galicia) showed the lowest values. The analysis of population structure indicated that localities from the Atlantic coast are genetically homogeneous although some samples showed significant pairwise Fst values. These values were low and Bayesian analysis of genetic differentiation did not show a consistent structure along the Atlantic coast of the Iberian Peninsula. However, Atlantic samples were genetically different from those located in Mediterranean coast, which may be explained by the existence of the Almeria-Oran front. Moreover, Fuengirola, locality situated in the Alboran Sea between the Strait of Gibraltar and Mediterranean Sea, showed significant differences from all remaining localities included in the study. Overall, the data showed the existence of genetic homogeneity along the Atlantic coast of the Iberian Peninsula and support the three management units (Atlantic Ocean, the Alboran Sea and the northwestern Mediterranean) previously described in this species. Reduced diversity in the northwestern Spain samples could be related to the exploitation of this resource.
Hens, Kristien; Nys, Herman; Cassiman, Jean-Jacques; Dierickx, Kris
2009-01-01
Stored tissue samples are an important resource for epidemiological genetic research. Genetic research on biological material from minors can yield valuable information on the development and genesis of early-onset genetic disorders and the early interaction of environmental and genetic factors. The use of such tissue raises some specific ethical and governance questions, which are not completely covered by the discussion on biological materials from adults. We have retrieved 29 guidelines and position papers pertaining to the storage and use of biological tissue samples for genetic research, originating from 27 different organizations. Five documents have an international scope, three have an European scope and 21 have a national scope. We discovered that 11 of these documents did not contain a section on biological materials from minors. The content of the remaining 18 documents was categorized according to four themes: consent, principles of non-therapeutic research on vulnerable populations, ethics committee approval and difference between anonymous and identifiable samples. We found out that these themes are not consistently mentioned by each document, but that documents discussing the same themes were mostly in agreement with their recommendations. However, a systematic reflection on the ethical and policy issues arising from the participation of minors in biobank research is missing. PMID:19223929
Hens, Kristien; Nys, Herman; Cassiman, Jean-Jacques; Dierickx, Kris
2009-08-01
Stored tissue samples are an important resource for epidemiological genetic research. Genetic research on biological material from minors can yield valuable information on the development and genesis of early-onset genetic disorders and the early interaction of environmental and genetic factors. The use of such tissue raises some specific ethical and governance questions, which are not completely covered by the discussion on biological materials from adults. We have retrieved 29 guidelines and position papers pertaining to the storage and use of biological tissue samples for genetic research, originating from 27 different organizations. Five documents have an international scope, three have an European scope and 21 have a national scope. We discovered that 11 of these documents did not contain a section on biological materials from minors. The content of the remaining 18 documents was categorized according to four themes: consent, principles of non-therapeutic research on vulnerable populations, ethics committee approval and difference between anonymous and identifiable samples. We found out that these themes are not consistently mentioned by each document, but that documents discussing the same themes were mostly in agreement with their recommendations. However, a systematic reflection on the ethical and policy issues arising from the participation of minors in biobank research is missing.
Hatemi, Peter K.; Medland, Sarah E.; Klemmensen, Robert; Oskarrson, Sven; Littvay, Levente; Dawes, Chris; Verhulst, Brad; McDermott, Rose; Nørgaard, Asbjørn Sonne; Klofstad, Casey; Christensen, Kaare; Johannesson, Magnus; Magnusson, Patrik K.E.; Eaves, Lindon J.; Martin, Nicholas G.
2014-01-01
Almost forty years ago, evidence from large studies of adult twins and their relatives suggested that between 30-60% of the variance in social and political attitudes could be explained by genetic influences. However, these findings have not been widely accepted or incorporated into the dominant paradigms that explain the etiology of political ideology. This has been attributed in part to measurement and sample limitations, as well the relative absence of molecular genetic studies. Here we present results from original analyses of a combined sample of over 12,000 twins pairs, ascertained from nine different studies conducted in five democracies, sampled over the course of four decades. We provide evidence that genetic factors play a role in the formation of political ideology, regardless of how ideology is measured, the era, or the population sampled. The only exception is a question that explicitly uses the phrase “Left-Right”. We then present results from one of the first genome-wide association studies on political ideology using data from three samples: a 1990 Australian sample involving 6,894 individuals from 3,516 families; a 2008 Australian sample of 1,160 related individuals from 635 families and a 2010 Swedish sample involving 3,334 individuals from 2,607 families. No polymorphisms reached genome-wide significance in the meta-analysis. The combined evidence suggests that political ideology constitutes a fundamental aspect of one’s genetically informed psychological disposition, but as Fisher proposed long ago, genetic influences on complex traits will be composed of thousands of markers of very small effects and it will require extremely large samples to have enough power in order to identify specific polymorphisms related to complex social traits. PMID:24569950
Hatemi, Peter K; Medland, Sarah E; Klemmensen, Robert; Oskarsson, Sven; Littvay, Levente; Dawes, Christopher T; Verhulst, Brad; McDermott, Rose; Nørgaard, Asbjørn Sonne; Klofstad, Casey A; Christensen, Kaare; Johannesson, Magnus; Magnusson, Patrik K E; Eaves, Lindon J; Martin, Nicholas G
2014-05-01
Almost 40 years ago, evidence from large studies of adult twins and their relatives suggested that between 30 and 60% of the variance in social and political attitudes could be explained by genetic influences. However, these findings have not been widely accepted or incorporated into the dominant paradigms that explain the etiology of political ideology. This has been attributed in part to measurement and sample limitations, as well the relative absence of molecular genetic studies. Here we present results from original analyses of a combined sample of over 12,000 twins pairs, ascertained from nine different studies conducted in five democracies, sampled over the course of four decades. We provide evidence that genetic factors play a role in the formation of political ideology, regardless of how ideology is measured, the era, or the population sampled. The only exception is a question that explicitly uses the phrase "Left-Right". We then present results from one of the first genome-wide association studies on political ideology using data from three samples: a 1990 Australian sample involving 6,894 individuals from 3,516 families; a 2008 Australian sample of 1,160 related individuals from 635 families and a 2010 Swedish sample involving 3,334 individuals from 2,607 families. No polymorphisms reached genome-wide significance in the meta-analysis. The combined evidence suggests that political ideology constitutes a fundamental aspect of one's genetically informed psychological disposition, but as Fisher proposed long ago, genetic influences on complex traits will be composed of thousands of markers of very small effects and it will require extremely large samples to have enough power in order to identify specific polymorphisms related to complex social traits.
Rethinking Timing of First Sex and Delinquency
ERIC Educational Resources Information Center
Harden, K. Paige; Mendle, Jane; Hill, Jennifer E.; Turkheimer, Eric; Emery, Robert E.
2008-01-01
The relation between timing of first sex and later delinquency was examined using a genetically informed sample of 534 same-sex twin pairs from the National Longitudinal Study of Adolescent Health, who were assessed at three time points over a 7-year interval. Genetic and environmental differences between families were found to account for the…
Blokland, Gabriëlla A M; Mesholam-Gately, Raquelle I; Toulopoulou, Timothea; Del Re, Elisabetta C; Lam, Max; DeLisi, Lynn E; Donohoe, Gary; Walters, James T R; Seidman, Larry J; Petryshen, Tracey L
2017-07-01
Schizophrenia is characterized by neuropsychological deficits across many cognitive domains. Cognitive phenotypes with high heritability and genetic overlap with schizophrenia liability can help elucidate the mechanisms leading from genes to psychopathology. We performed a meta-analysis of 170 published twin and family heritability studies of >800 000 nonpsychiatric and schizophrenia subjects to accurately estimate heritability across many neuropsychological tests and cognitive domains. The proportion of total variance of each phenotype due to additive genetic effects (A), shared environment (C), and unshared environment and error (E), was calculated by averaging A, C, and E estimates across studies and weighting by sample size. Heritability ranged across phenotypes, likely due to differences in genetic and environmental effects, with the highest heritability for General Cognitive Ability (32%-67%), Verbal Ability (43%-72%), Visuospatial Ability (20%-80%), and Attention/Processing Speed (28%-74%), while the lowest heritability was observed for Executive Function (20%-40%). These results confirm that many cognitive phenotypes are under strong genetic influences. Heritability estimates were comparable in nonpsychiatric and schizophrenia samples, suggesting that environmental factors and illness-related moderators (eg, medication) do not substantially decrease heritability in schizophrenia samples, and that genetic studies in schizophrenia samples are informative for elucidating the genetic basis of cognitive deficits. Substantial genetic overlap between cognitive phenotypes and schizophrenia liability (average rg = -.58) in twin studies supports partially shared genetic etiology. It will be important to conduct comparative studies in well-powered samples to determine whether the same or different genes and genetic variants influence cognition in schizophrenia patients and the general population. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kilambi, Vikram; Johnson, F Reed; González, Juan Marcos; Mohamed, Ateesha F
2014-12-01
The value of the information that genetic testing services provide can be questioned for insurance-based health systems. The results of genetic tests oftentimes may not lead to well-defined clinical interventions; however, Lynch syndrome, a genetic mutation for which carriers are at an increased risk for colorectal cancer, can be identified through genetic testing, and meaningful health interventions are available via increased colonoscopic surveillance. Valuations of test information for such conditions ought to account for the full impact of interventions and contingent outcomes. To conduct a discrete-choice experiment to elicit individuals' preferences for genetic test information. A Web-enabled discrete-choice experiment survey was administered to a representative sample of US residents aged 50 years and older. In addition to specifying expenditures on colonoscopies, respondents were asked to make a series of nine selections between two hypothetical genetic tests or a no-test option under the premise that a relative had Lynch syndrome. The hypothetical genetic tests were defined by the probability of developing colorectal cancer, the probability of a false-negative test result, privacy of the result, and out-of-pocket cost. A model specification identifying necessary interactions was derived from assumptions of risk behavior and the decision context and was estimated using random-parameters logit. A total of 650 respondents were contacted, and 385 completed the survey. The monetary equivalent of test information was approximately $1800. Expenditures on colonoscopies to reduce mortality risks affected valuations. Respondents with lower income or who reported being employed significantly valued genetic tests more. Genetic testing may confer benefits through the impact of subsequent interventions on private individuals. Copyright © 2014. Published by Elsevier Inc.
Smerecnik, Chris M R; Mesters, Ilse; de Vries, Nanne K; de Vries, Hein
2009-11-01
Health messages alerting the public to previously unknown genetic risk factors for multifactorial diseases are a potentially useful strategy to create public awareness, and may be an important first step in promoting public health. However, there is a lack of evidence-based insight into its impact on individuals who were unaware of the existence of genetic risk factors at the moment of information exposure. The authors conducted 3 experimental studies with health messages communicating information about genetic risk factors for salt sensitivity (Studies 1A and 1B) and heightened cholesterol (Study 2) compared with general information without reference to genetic risk factors as a between-subjects variable and risk perception and intention to engage in preventive behavior as dependent variables. All 3 studies revealed lower perceived susceptibility among participants who received information on genetic risk factors, which was associated with lowered intentions to engage in preventive behavior. In Studies 1A and 1B, these effects were observed only for previously unaware individuals, whereas in Study 2, they were observed for the entire sample. Alerting the public to the existence of genetic risk factors may not necessarily be beneficial to public health. Public health promoters should be aware of the possible adverse effects of alerting the general population to genetic risk factors, and should simultaneously educate the public about the meaning and consequences of such factors. PsycINFO Database Record (c) 2009 APA, all rights reserved.
The clinical application of genetic testing in type 2 diabetes: a patient and physician survey.
Grant, R W; Hivert, M; Pandiscio, J C; Florez, J C; Nathan, D M; Meigs, J B
2009-11-01
Advances in type 2 diabetes genetics have raised hopes that genetic testing will improve disease prediction, prevention and treatment. Little is known about current physician and patient views regarding type 2 diabetes genetic testing. We hypothesised that physician and patient views would differ regarding the impact of genetic testing on motivation and adherence. We surveyed a nationally representative sample of US primary care physicians and endocrinologists (n = 304), a random sample of non-diabetic primary care patients (n = 152) and patients enrolled in a diabetes pharmacogenetics study (n = 89). Physicians and patients favoured genetic testing for diabetes risk prediction (79% of physicians vs 80% of non-diabetic patients would be somewhat/very likely to order/request testing, p = 0.7). More patients than physicians (71% vs 23%, p < 0.01) indicated that a 'high risk' result would be very likely to improve motivation to adopt preventive lifestyle changes. Patients favoured genetic testing to guide therapy (78% of patients vs 48% of physicians very likely to request/recommend testing, p < 0.01) and reported that genetic testing would make them 'much more motivated' to adhere to medications (72% vs 18% of physicians, p < 0.01). Many physicians (39%) would be somewhat/very likely to order genetic testing before published evidence of clinical efficacy. Despite the paucity of current data, physicians and patients reported high expectations that genetic testing would improve patient motivation to adopt key behaviours for the prevention or control of type 2 diabetes. This suggests the testable hypothesis that 'genetic' risk information might have greater value to motivate behaviour change compared with standard risk information.
Beach, Steven R. H.; Brody, Gene H.; Lei, Man Kit; Gibbons, Frederick X.; Gerrard, Meg; Simons, Ronald L.; Cutrona, Carolyn E.; Philibert, Robert A.
2013-01-01
Genetic, environmental, and epigenetic influences and their transactions were examined in a sample of 155 women from the Iowa Adoptee sample (IAS) who had been removed from their biological parents shortly after birth, and assessed when participants were an average of 41.10 years old. We observed an interactive effect of child sex abuse (CSA) and biological parent psychopathology (i.e., genetic load) on substance abuse as well as a main effect of CSA on substance abuse in adulthood. We also observed main effects of CSA and genetic load on depression and on antisocial characteristics. As predicted, CSA, but not genetic load or later substance abuse, was associated with epigenetic change. In addition, the interaction between genetic load and CSA predicted epigenetic change, indicating a potential genetic basis for differential impact of CSA on epigenetic change. Finally, epigenetic change partially mediated the effect of CSA on antisocial characteristics. The results suggest the relevance of genetic and epigenetic processes for future theorizing regarding marital and family precursors of several forms of adult psychopathology. Implications for preventive intervention are discussed. PMID:23421829
Sartor, C E; McCutcheon, V V; Pommer, N E; Nelson, E C; Grant, J D; Duncan, A E; Waldron, M; Bucholz, K K; Madden, P A F; Heath, A C
2011-07-01
The few genetically informative studies to examine post-traumatic stress disorder (PTSD) and alcohol dependence (AD), all of which are based on a male veteran sample, suggest that the co-morbidity between PTSD and AD may be attributable in part to overlapping genetic influences, but this issue has yet to be addressed in females.MethodData were derived from an all-female twin sample (n=3768) ranging in age from 18 to 29 years. A trivariate genetic model that included trauma exposure as a separate phenotype was fitted to estimate genetic and environmental contributions to PTSD and the degree to which they overlap with those that contribute to AD, after accounting for potential confounding effects of heritable influences on trauma exposure. Additive genetic influences (A) accounted for 72% of the variance in PTSD; individual-specific environmental (E) factors accounted for the remainder. An AE model also provided the best fit for AD, for which heritability was estimated to be 71%. The genetic correlation between PTSD and AD was 0.54. The heritability estimate for PTSD in our sample is higher than estimates reported in earlier studies based almost exclusively on an all-male sample in which combat exposure was the precipitating traumatic event. However, our findings are consistent with the absence of evidence for shared environmental influences on PTSD and, most importantly, the substantial overlap in genetic influences on PTSD and AD reported in these investigations. Additional research addressing potential distinctions by gender in the relative contributions of genetic and environmental influences on PTSD is merited.
USDA-ARS?s Scientific Manuscript database
Venturia effusa is the most important pathogen of pecan in the southeastern USA. Little information exists on the population biology and genetic diversity of the pathogen. A hierarchical sampling of a total of 784 isolates from 63 trees in 11 pecan orchards in the southeastern USA were screened agai...
USDA-ARS?s Scientific Manuscript database
Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern USA. There is no information available on the fine scale population genetic diversity. Four cv. Wichita trees (populations) were sampled hierarchically. Within each tree canopy, 4 approximately evenly spaced terminals...
Gayà-Vidal, Magdalena; Dugoujon, Jean-Michel; Esteban, Esther; Athanasiadis, Georgios; Rodríguez, Armando; Villena, Mercedes; Vasquez, René; Moral, Pedro
2010-01-01
Thirty-two polymorphic Alu insertions (18 autosomal and 14 from the X chromosome) were studied in 192 individuals from two Amerindian populations of the Bolivian Altiplano (Aymara and Quechua speakers: the two main Andean linguistic groups), to provide relevant information about their genetic relationships and demographic processes. The main objective was to determine from genetic data whether the expansion of the Quechua language into Bolivia could be associated with demographic (Inca migration of Quechua-speakers from Peru into Bolivia) or cultural (language imposition by the Inca Empire) processes. Allele frequencies were used to assess the genetic relationships between these two linguistic groups. Our results indicated that the two Bolivian samples showed a high genetic similarity for both sets of markers and were clearly differentiated from the two Peruvian Quechua samples available in the literature. Additionally, our data were compared with the available literature to determine the genetic and linguistic structure, and East-West differentiation in South America. The close genetic relationship between the two Bolivian samples and their differentiation from the Quechua-speakers from Peru suggests that the Quechua language expansion in Bolivia took place without any important demographic contribution. Moreover, no clear geographical or linguistic structure was found for the Alu variation among South Amerindians. (c) 2009 Wiley-Liss, Inc.
Mas, Sergi; Gassó, Patricia; Morer, Astrid; Calvo, Anna; Bargalló, Nuria; Lafuente, Amalia; Lázaro, Luisa
2016-01-01
We propose an integrative approach that combines structural magnetic resonance imaging data (MRI), diffusion tensor imaging data (DTI), neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD) severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38) and a validation set (N = 18). Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the training set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our understanding of the neurobiological basis of the disorder. PMID:27093171
Oliveri, Serena; Masiero, Marianna; Arnaboldi, Paola; Cutica, Ilaria; Fioretti, Chiara; Pravettoni, Gabriella
2016-01-01
Objective . The study aims at assessing personality tendencies and orientations that could be closely correlated with knowledge, awareness, and interest toward undergoing genetic testing. Methods. A sample of 145 subjects in Italy completed an online survey, investigating demographic data, health orientation, level of perceived knowledge about genetic risk, genetic screening, and personal attitudes toward direct to consumer genetic testing (DTCGT). Results . Results showed that respondents considered genetic assessment to be helpful for disease prevention, but they were concerned that results could affect their life planning with little clinical utility. Furthermore, a very high percentage of respondents (67%) had never heard about genetic testing directly available to the public. Data showed that personality tendencies, such as personal health consciousness, health internal control, health esteem, and confidence, motivation to avoid unhealthiness and motivation for healthiness affected the uptake of genetic information and the interest in undergoing genetic testing. Conclusions . Public knowledge and attitudes toward genetic risk and genetic testing among European countries, along with individual personality and psychological tendencies that could affect these attitudes, remain unexplored. The present study constitutes one of the first attempts to investigate how such personality tendencies could motivation to undergo genetic testing and engagement in lifestyle changes.
Arnaboldi, Paola; Cutica, Ilaria; Fioretti, Chiara
2016-01-01
Objective. The study aims at assessing personality tendencies and orientations that could be closely correlated with knowledge, awareness, and interest toward undergoing genetic testing. Methods. A sample of 145 subjects in Italy completed an online survey, investigating demographic data, health orientation, level of perceived knowledge about genetic risk, genetic screening, and personal attitudes toward direct to consumer genetic testing (DTCGT). Results. Results showed that respondents considered genetic assessment to be helpful for disease prevention, but they were concerned that results could affect their life planning with little clinical utility. Furthermore, a very high percentage of respondents (67%) had never heard about genetic testing directly available to the public. Data showed that personality tendencies, such as personal health consciousness, health internal control, health esteem, and confidence, motivation to avoid unhealthiness and motivation for healthiness affected the uptake of genetic information and the interest in undergoing genetic testing. Conclusions. Public knowledge and attitudes toward genetic risk and genetic testing among European countries, along with individual personality and psychological tendencies that could affect these attitudes, remain unexplored. The present study constitutes one of the first attempts to investigate how such personality tendencies could motivation to undergo genetic testing and engagement in lifestyle changes. PMID:28105428
Knowledge of Genetics and Attitudes toward Genetic Testing among College Students in Saudi Arabia.
Olwi, Duaa; Merdad, Leena; Ramadan, Eman
2016-01-01
Genetic testing has been gradually permeating the practice of medicine. Health-care providers may be confronted with new genetic approaches that require genetically informed decisions which will be influenced by patients' knowledge of genetics and their attitudes toward genetic testing. This study assesses the knowledge of genetics and attitudes toward genetic testing among college students. A cross-sectional study was conducted using a multistage stratified sample of 920 senior college students enrolled at King Abdulaziz University, Saudi Arabia. Information regarding knowledge of genetics, attitudes toward genetic testing, and sociodemographic data were collected using a self-administered questionnaire. In general, students had a good knowledge of genetics but lacked some fundamentals of genetics. The majority of students showed positive attitudes toward genetic testing, but some students showed negative attitudes toward certain aspects of genetic testing such as resorting to abortion in the case of an untreatable major genetic defect in an unborn fetus. The main significant predictors of knowledge were faculty, gender, academic year, and some prior awareness of 'genetic testing'. The main significant predictors of attitudes were gender, academic year, grade point average, and some prior awareness of 'genetic testing'. The knowledge of genetics among college students was higher than has been reported in other studies, and the attitudes toward genetic testing were fairly positive. Genetics educational programs that target youths may improve knowledge of genetics and create a public perception that further supports genetic testing. © 2016 S. Karger AG, Basel.
Lewis, G J; Plomin, R
2015-07-01
Although behavioural problems (e.g., anxiety, conduct, hyperactivity, peer problems) are known to be heritable both in early childhood and in adolescence, limited work has examined prediction across these ages, and none using a genetically informative sample. We examined, first, whether parental ratings of behavioural problems (indexed by the Strengths and Difficulties questionnaire) at ages 4, 7, 9, 12, and 16 years were stable across these ages. Second, we examined the extent to which stability reflected genetic or environmental effects through multivariate quantitative genetic analysis on data from a large (n > 3000) population (UK) sample of monozygotic and dizygotic twins. Behavioural problems in early childhood (age 4 years) showed significant associations with the corresponding behavioural problem at all subsequent ages. Moreover, stable genetic influences were observed across ages, indicating that biological bases underlying behavioural problems in adolescence are underpinned by genetic influences expressed as early as age 4 years. However, genetic and environmental innovations were also observed at each age. These observations indicate that genetic factors are important for understanding stable individual differences in behavioural problems across childhood and adolescence, although novel genetic influences also facilitate change in such behaviours.
Gene flow connects coastal populations of a habitat specialist, the Clapper Rail Rallus crepitans
Coster, Stephanie S.; Welsh, Amy B.; Costanzo, Gary R.; Harding, Sergio R.; Anderson, James T.; Katzner, Todd
2018-01-01
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographic range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of North America, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks, and a weak pattern of genetic differentiation that increased with geographic distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the North American Atlantic coast, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioral factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.
23andMe: a new two-sided data-banking market model.
Stoeklé, Henri-Corto; Mamzer-Bruneel, Marie-France; Vogt, Guillaume; Hervé, Christian
2016-03-31
Since 2006, the genetic testing company 23andMe has collected biological samples, self-reported information, and consent documents for biobanking and research from more than 1,000,000 individuals (90% participating in research), through a direct-to-consumer (DTC) online genetic-testing service providing a genetic ancestry report and a genetic health report. However, on November 22, 2013, the Food and Drug Administration (FDA) halted the sale of genetic health testing, on the grounds that 23andMe was not acting in accordance with federal law, by selling tests of undemonstrated reliability as predictive tests for medical risk factors. Consumers could still obtain the genetic ancestry report, but they no longer had access to the genetic health report in the United States (US). However, this did not prevent the company from continuing its health research, with previously obtained and future samples, provided that consent had been obtained from the consumers concerned, or with health reports for individuals from other countries. Furthermore, 23andMe was granted FDA authorization on February 19, 2015, first to provide reports about Bloom syndrome carrier status, and, more recently, to provide consumers with "carrier status" information for 35 genes known (with high levels of confidence) to cause disease. In this Debate, we highlight the likelihood that the primary objective of the company was probably two-fold: promoting itself within the market for predictive testing for human genetic diseases and ancestry at a low cost to consumers, and establishing a high-value database/biobank for research (one of the largest biobanks of human deoxyribonucleic acid (DNA) and personal information). By dint of this marketing approach, a two-sided market has been established between the consumer and the research laboratories, involving the establishment of a database/DNA biobank for scientific and financial gain. We describe here the profound ethical issues raised by this setup.
Characteristics of genetics-related news content in Black weekly newspapers
Caburnay, Charlene A.; Babb, Patricia; Kaphingst, Kimberly A.; Roberts, Jessica; Rath, Suchitra
2013-01-01
Background/Aims/Objectives The media are an important source of health information, especially for those with less access to regular health care. Black news outlets such as Black newspapers are a source of health information for African Americans. This study characterized media coverage of genetics-related information in Black weekly newspapers and general audience newspapers from the same communities. Methods All health stories in a sample of 24 Black weekly newspapers and 12 general audience newspapers from January 2004 to December 2007 were reviewed for genetics-related stories. These stories were further coded for both journalistic and public health variables. Results Of all health-related stories identified, only 2% (n=357) were considered genetics-related. Genetics-related stories in Black newspapers–compared to those in general audience newspapers–were larger, more locally- and racially-relevant, and more likely to contain recommendations or action steps to improve health or reduce disease risks and to mention the importance of knowing one's family history. Stories in general audience newspapers were more likely to discuss causes of disease, mention genetic testing or therapy, and suggest a high/moderate degree of genetic determinism. Conclusions Black newspapers are a viable communication channel to disseminate findings and implications of human genome research to African American audiences. PMID:24080971
Characteristics of genetics-related news content in Black weekly newspapers.
Caburnay, C A; Babb, P; Kaphingst, K A; Roberts, J; Rath, S
2014-01-01
BACKGROUND/AIMS/OBJECTIVES: The media are an important source of health information, especially for those with less access to regular health care. Black news outlets such as Black newspapers are a source of health information for African Americans. This study characterized media coverage of genetics-related information in Black weekly newspapers and general audience newspapers from the same communities. All health stories in a sample of 24 Black weekly newspapers and 12 general audience newspapers from January 2004 to December 2007 were reviewed for genetics-related stories. These stories were further coded for both journalistic and public health variables. Of all health-related stories identified, only 2% (n = 357) were considered genetics related. Genetics-related stories in Black newspapers - compared to those in general audience newspapers - were larger, more locally and racially relevant, and more likely to contain recommendations or action steps to improve health or reduce disease risks and to mention the importance of knowing one's family history. Stories in general audience newspapers were more likely to discuss causes of disease, mention genetic testing or therapy, and suggest a high/moderate degree of genetic determinism. Black newspapers are a viable communication channel to disseminate findings and implications of human genome research to African American audiences.
DNA-based methods of geochemical prospecting
Ashby, Matthew [Mill Valley, CA
2011-12-06
The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.
Refined genetic algorithm -- Economic dispatch example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheble, G.B.; Brittig, K.
1995-02-01
A genetic-based algorithm is used to solve an economic dispatch (ED) problem. The algorithm utilizes payoff information of perspective solutions to evaluate optimality. Thus, the constraints of classical LaGrangian techniques on unit curves are eliminated. Using an economic dispatch problem as a basis for comparison, several different techniques which enhance program efficiency and accuracy, such as mutation prediction, elitism, interval approximation and penalty factors, are explored. Two unique genetic algorithms are also compared. The results are verified for a sample problem using a classical technique.
Learning from Text: Knowing the Test Format Enhanced Metacognitive Monitoring
ERIC Educational Resources Information Center
Dutke, Stephan; Barenberg, Jonathan; Leopold, Claudia
2010-01-01
In an experiment with 56 young adults, the hypothesis was tested that information about the format of an anticipated test improves metacognitive monitoring. Half of the participants were informed about the format of the test before they started studying a text about human genetics. The other half of the sample received the same information after…
Trace samples of human blood in mosquitoes as a forensic investigation tool.
Rabêlo, K C N; Albuquerque, C M R; Tavares, V B; Santos, S M; Souza, C A; Oliveira, T C; Oliveira, N C L; Crovella, S
2015-11-23
Investigations of any type of crime invariably starts at the crime scene by collecting evidence. Thus, the purpose of this research was to collect and analyze an entomological trace from an environment that is similar to those of indoor crime scenes. Hematophagous mosquitoes were collected from two residential units; saliva of volunteers that were residents in the units was also collected for genetic analysis as reference samples. We examined the allele frequencies of 15 short tandem repeat loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, and FGA) and amelogenin. A total of 26 female hematophagous mosquitoes were identified as Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus; we were able to obtain 11 forensically valid genetic profiles, with a minimum of 0.028203 ng/μL of human DNA. Thus, the results of this study showed that it was possible to correlate human genetic information from mosquitoes with the volunteer reference samples, which validates the use of this information as forensic evidence. Furthermore, we observed mixed genetic profiles from one mosquito. Therefore, it is clearly important to collect these insects indoors where crimes were committed, because it may be possible to find intact genetic profiles of suspects in the blood found in the digestive tract of hematophagous mosquitoes for later comparison to identify an offender and/or exclude suspects.
Genetic pleiotropy explains associations between musical auditory discrimination and intelligence.
Mosing, Miriam A; Pedersen, Nancy L; Madison, Guy; Ullén, Fredrik
2014-01-01
Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions.
Genetic Pleiotropy Explains Associations between Musical Auditory Discrimination and Intelligence
Mosing, Miriam A.; Pedersen, Nancy L.; Madison, Guy; Ullén, Fredrik
2014-01-01
Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions. PMID:25419664
Kajale, Dilip B; Becker, T C
2014-01-01
This study examines the effects of information on consumers' willingness to pay (WTP) for genetically modified food (GMF). We used Vickrey second price experimental auction method for elicitation of consumer WTP for GM potato chips and GM soya-chocolate bar. The sample used in this study was university students from Delhi, India. Four information formats (positive, negative, no information, and combined information about GM technology) were used for the examination. The results show that, when students received the combine information they were willing to pay around 17%-20% premium for GMF and when received the negative information they demanded around 22% discount for GMF. While the positive- and the no-information formats alone have no considerable effect on consumers' WTP for GMF. Overall, our findings suggest that while doing marketing of GMF in India, the best strategy is to provide combined information about GM technology.
A Genealogical Interpretation of Principal Components Analysis
McVean, Gil
2009-01-01
Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference. PMID:19834557
Trzaskowski, Maciej; Lichtenstein, Paul; Magnusson, Patrik K; Pedersen, Nancy L; Plomin, Robert
2016-01-27
It is now possible to estimate genetic correlations between two independent samples when there is no overlapping phenotypic information. We applied the latest bivariate genomic methods to children in the UK and older adults in Sweden to ask two questions. Are the same variants driving individual differences in anthropometric traits in these two populations, and are these variants as important in childhood as they are later in life? A sample of 3152 11-year-old children in the UK was compared with a sample of 6813 adults with an average age of 65 in Sweden. Genotypes were imputed from 1000 genomes with combined 9 767 136 single nucleotide polymorphisms meeting quality control criteria in both samples. Two cross-sample GCTA-GREML analyses and linkage disequilibrium (LD) score regressions were conducted to assess genetic correlations across more than 50 years: child versus adult height and child versus adult body mass index (BMI). Consistency of effects was tested using the recently proposed polygenic scoring method. For height, GCTA-GREML and LD score indicated strong genetic stability between children and adults, 0.58 (0.16) and 1.335 (1.09), respectively. For BMI, both methods produced similarly strong estimates of genetic stability 0.75 (0.26) and 0.855 (0.49), respectively. In height, adult polygenic score explained 60% of genetic variance in childhood and 10% of variance in BMI. Here we replicated and extended previous findings of longitudinal genetic stability in anthropometric traits to cross-cultural dimensions, and showed that for height but not BMI these variants are as important in childhood as they are in adulthood. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.
About Rubella (German Measles, Three-Day Measles)
... Professionals Pregnancy and Rubella Rubella Vaccination Travelers’ Health Information on Rubella Laboratory Testing CDC Laboratory Testing & Procedures Serology RNA Detection Genetic Analysis Specimen Collection, Storage, & Shipment Sample Submission Q&A ...
Rubella (German Measles, Three-Day Measles) Photos
... Professionals Pregnancy and Rubella Rubella Vaccination Travelers’ Health Information on Rubella Laboratory Testing CDC Laboratory Testing & Procedures Serology RNA Detection Genetic Analysis Specimen Collection, Storage, & Shipment Sample Submission Q&A ...
Baeta, Miriam; Núñez, Carolina; Cardoso, Sergio; Palencia-Madrid, Leire; Herrasti, Lourdes; Etxeberria, Francisco; de Pancorbo, Marian M
2015-11-01
The Spanish Civil War (1936-1939) and posterior dictatorship (until 1970s) stands as one of the major conflicts in the recent history of Spain. It led to nearly two hundred thousand men and women executed or murdered extra-judicially or after dubious legal procedures. Nowadays, most of them remain unidentified or even buried in irretraceable mass graves across Spain. Here, we present the genetic identification of human remains found in 26 mass graves located in Northern Spain. A total of 252 post-mortem remains were analyzed and compared to 186 relatives, allowing the identification of 87 victims. Overall, a significant success of DNA profiling was reached, since informative profiles (≥ 12 STRs and/or mitochondrial DNA profile) were obtained in 85.71% of the remains. This high performance in DNA profiling from challenging samples demonstrated the efficacy of DNA extraction and amplification methods used herein, given that only around 14.29% of the samples did not provide an informative genetic profile for the analysis performed, probably due to the presence of degraded and/or limited DNA in these remains. However, this study shows a partial identification success rate, which is clearly a consequence of the lack of both appropriate family members for genetic comparisons and accurate information about the victims' location. Hence, further perseverance in the exhumation of other intact graves as well as in the search of more alleged relatives is crucial in order to facilitate and increase the number of genetic identifications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Not the time or the place: the missing spatio-temporal link in publicly available genetic data.
Pope, Lisa C; Liggins, Libby; Keyse, Jude; Carvalho, Silvia B; Riginos, Cynthia
2015-08-01
Genetic data are being generated at unprecedented rates. Policies of many journals, institutions and funding bodies aim to ensure that these data are publicly archived so that published results are reproducible. Additionally, publicly archived data can be 'repurposed' to address new questions in the future. In 2011, along with other leading journals in ecology and evolution, Molecular Ecology implemented mandatory public data archiving (the Joint Data Archiving Policy). To evaluate the effect of this policy, we assessed the genetic, spatial and temporal data archived for 419 data sets from 289 articles in Molecular Ecology from 2009 to 2013. We then determined whether archived data could be used to reproduce analyses as presented in the manuscript. We found that the journal's mandatory archiving policy has had a substantial positive impact, increasing genetic data archiving from 49 (pre-2011) to 98% (2011-present). However, 31% of publicly archived genetic data sets could not be recreated based on information supplied in either the manuscript or public archives, with incomplete data or inconsistent codes linking genetic data and metadata as the primary reasons. While the majority of articles did provide some geographic information, 40% did not provide this information as geographic coordinates. Furthermore, a large proportion of articles did not contain any information regarding date of sampling (40%). Although the inclusion of spatio-temporal data does require an increase in effort, we argue that the enduring value of publicly accessible genetic data to the molecular ecology field is greatly compromised when such metadata are not archived alongside genetic data. © 2015 John Wiley & Sons Ltd.
Unraveling the Genetic Etiology of Adult Antisocial Behavior: A Genome-Wide Association Study
Tielbeek, Jorim J.; Medland, Sarah E.; Benyamin, Beben; Byrne, Enda M.; Heath, Andrew C.; Madden, Pamela A. F.; Martin, Nicholas G.; Wray, Naomi R.; Verweij, Karin J. H.
2012-01-01
Crime poses a major burden for society. The heterogeneous nature of criminal behavior makes it difficult to unravel its causes. Relatively little research has been conducted on the genetic influences of criminal behavior. The few twin and adoption studies that have been undertaken suggest that about half of the variance in antisocial behavior can be explained by genetic factors. In order to identify the specific common genetic variants underlying this behavior, we conduct the first genome-wide association study (GWAS) on adult antisocial behavior. Our sample comprised a community sample of 4816 individuals who had completed a self-report questionnaire. No genetic polymorphisms reached genome-wide significance for association with adult antisocial behavior. In addition, none of the traditional candidate genes can be confirmed in our study. While not genome-wide significant, the gene with the strongest association (p-value = 8.7×10−5) was DYRK1A, a gene previously related to abnormal brain development and mental retardation. Future studies should use larger, more homogeneous samples to disentangle the etiology of antisocial behavior. Biosocial criminological research allows a more empirically grounded understanding of criminal behavior, which could ultimately inform and improve current treatment strategies. PMID:23077488
Li, Yue; Huang, Hong-Jia; Li, Hongye; Liu, Jiesheng; Yang, Weidong
2016-10-15
Green tides have occurred in Qingdao coast in China for seven consecutive years from 2007 to 2013. To provide information on the genetic structure of these blooms, 210 free-floating green algae samples isolated from the green tide in Qingdao coast on June 19, 2013 were identified based on the ITS, rbcL and 5S sequence, and genetic diversity was investigated by microsatellite markers. According to ITS, rbcL and 5S sequence, all the 210 samples belonged to Ulva prolifera. Nei's genetic diversity and Shannon index estimated using eight microsatellite markers indicated that the genetic diversity of U. prolifera population within Qingdao's green bloom in 2013 was low. Taking into account previous reports about life history and physiology of U. prolifera, we proposed that the limited origin area of the free-floating biomass and asexual reproduction of U. prolifera might be responsible for the lower diversity of free floating U. prolifera. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bajpai, Prabodh K; Warghat, Ashish R; Sharma, Ram Kumar; Yadav, Ashish; Thakur, Anil K; Srivastava, Ravi B; Stobdan, Tsering
2014-04-01
Sequence-related amplified polymorphism markers were used to assess the genetic structure in three natural populations of Morus alba from trans-Himalaya. Multilocation sampling was conducted across 14 collection sites. The overall genetic diversity estimates were high: percentage polymorphic loci 89.66%, Nei's gene diversity 0.2286, and Shannon's information index 0.2175. At a regional level, partitioning of variability assessed using analysis of molecular variance (AMOVA), revealed 80% variation within and 20% among collection sites. Pattern appeared in STRUCTURE, BARRIER, and AMOVA, clearly demonstrating gene flow between the Indus and Suru populations and a geographic barrier between the Indus-Suru and Nubra populations, which effectively hinders gene flow. The results showed significant genetic differentiation, population structure, high to restricted gene flow, and high genetic diversity. The assumption that samples collected from the three valleys represent three different populations does not hold true. The fragmentation present in trans-Himalaya was more natural and less anthropogenic.
Grabitz, Clara R; Button, Katherine S; Munafò, Marcus R; Newbury, Dianne F; Pernet, Cyril R; Thompson, Paul A; Bishop, Dorothy V M
2018-01-01
Genetics and neuroscience are two areas of science that pose particular methodological problems because they involve detecting weak signals (i.e., small effects) in noisy data. In recent years, increasing numbers of studies have attempted to bridge these disciplines by looking for genetic factors associated with individual differences in behavior, cognition, and brain structure or function. However, different methodological approaches to guarding against false positives have evolved in the two disciplines. To explore methodological issues affecting neurogenetic studies, we conducted an in-depth analysis of 30 consecutive articles in 12 top neuroscience journals that reported on genetic associations in nonclinical human samples. It was often difficult to estimate effect sizes in neuroimaging paradigms. Where effect sizes could be calculated, the studies reporting the largest effect sizes tended to have two features: (i) they had the smallest samples and were generally underpowered to detect genetic effects, and (ii) they did not fully correct for multiple comparisons. Furthermore, only a minority of studies used statistical methods for multiple comparisons that took into account correlations between phenotypes or genotypes, and only nine studies included a replication sample or explicitly set out to replicate a prior finding. Finally, presentation of methodological information was not standardized and was often distributed across Methods sections and Supplementary Material, making it challenging to assemble basic information from many studies. Space limits imposed by journals could mean that highly complex statistical methods were described in only a superficial fashion. In summary, methods that have become standard in the genetics literature-stringent statistical standards, use of large samples, and replication of findings-are not always adopted when behavioral, cognitive, or neuroimaging phenotypes are used, leading to an increased risk of false-positive findings. Studies need to correct not just for the number of phenotypes collected but also for the number of genotypes examined, genetic models tested, and subsamples investigated. The field would benefit from more widespread use of methods that take into account correlations between the factors corrected for, such as spectral decomposition, or permutation approaches. Replication should become standard practice; this, together with the need for larger sample sizes, will entail greater emphasis on collaboration between research groups. We conclude with some specific suggestions for standardized reporting in this area.
PhyloGeoViz: a web-based program that visualizes genetic data on maps.
Tsai, Yi-Hsin E
2011-05-01
The first step of many population genetic studies is the simple visualization of allele frequencies on a landscape. This basic data exploration can be challenging without proprietary software, and the manual plotting of data is cumbersome and unfeasible at large sample sizes. I present an open source, web-based program that plots any kind of frequency or count data as pie charts in Google Maps (Google Inc., Mountain View, CA). Pie polygons are then exportable to Google Earth (Google Inc.), a free Geographic Information Systems platform. Import of genetic data into Google Earth allows phylogeographers access to a wealth of spatial information layers integral to forming hypotheses and understanding patterns in the data. © 2010 Blackwell Publishing Ltd.
Yuh, Jongil; Neiderhiser, Jenae M; Lichtenstein, Paul; Hansson, Kjell; Cederblad, Marianne; Elthammer, Olle; Reiss, David
2009-09-01
Although previous research has explored associations between personality and depressive symptoms, a limited number of studies have assessed the extent to which genetic and environmental influences explain the association. This study investigated how temperament and character were associated with depressive symptoms in 131 pairs of twin and sibling women in early adulthood, as well as 326 pairs of twin women in middle adulthood. Results indicated that genetic influences accounted for a moderate to substantial percentage of the association between these personality features and depressive symptoms, emphasizing the role of genetic influences. Nonshared environmental influences made important contributions to the association between character and depressive symptoms, particularly in the sample of middle-aged twin women. These findings suggest that unique social experiences and relationships with a partner in adulthood may play an important role in these associations between character and depressive symptoms.
Phenotypes from ancient DNA: approaches, insights and prospects.
Fortes, Gloria G; Speller, Camilla F; Hofreiter, Michael; King, Turi E
2013-08-01
The great majority of phenotypic characteristics are complex traits, complicating the identification of the genes underlying their expression. However, both methodological and theoretical progress in genome-wide association studies have resulted in a much better understanding of the underlying genetics of many phenotypic traits, including externally visible characteristics (EVCs) such as eye and hair color. Consequently, it has become possible to predict EVCs from human samples lacking phenotypic information. Predicting EVCs from genetic evidence is clearly appealing for forensic applications involving the personal identification of human remains. Now, a recent paper has reported the genetic determination of eye and hair color in samples up to 800 years old. The ability to predict EVCs from ancient human remains opens up promising perspectives for ancient DNA research, as this could allow studies to directly address archaeological and evolutionary questions related to the temporal and geographical origins of the genetic variants underlying phenotypes. © 2013 WILEY Periodicals, Inc.
Genetic composition and connectivity of the Antillean manatee (Trichechus manatus manatus) in Panama
Díaz-Ferguson, Edgardo; Hunter, Margaret; Guzmán, Héctor M.
2017-01-01
Genetic diversity and haplotype composition of the West Indian manatee (Trichechus manatus) population from the San San Pond Sak wetland in Bocas del Toro, Panama was studied using a segment of mitochondrial DNA (D’loop). No genetic information has been published to date for Panamanian populations. Due to the secretive behavior and small population size of the species in the area, DNA extraction was conducted from opportunistically collected fecal (N=20), carcass tissue (N=4) and bone (N=4) samples. However, after DNA processing only 10 samples provided good quality DNA for sequencing (3 fecal, 4 tissue and 3 bone samples). We found three haplotypes in total; two of these haplotypes are reported for the first time, J02 (N=3) and J03 (N=4), and one J01 was previously published (N=3). Genetic diversity showed similar values to previous studies conducted in other Caribbean regions with moderate values of nucleotide diversity (π= 0.00152) and haplotipic diversity (Hd= 0.57). Connectivity assessment was based on sequence similarity, genetic distance and genetic differentiation between San San population and other manatee populations previously studied. The J01 haplotype found in the Panamanian population is shared with populations in the Caribbean mainland and the Gulf of Mexico showing a reduced differentiation corroborated with Fst value between HSSPS and this region of 0.0094. In contrast, comparisons between our sequences and populations in the Eastern Caribbean (South American populations) and North Western Caribbean showed fewer similarities (Fst =0.049 and 0.058, respectively). These results corroborate previous phylogeographic patterns already established for manatee populations and situate Panamanian populations into the Belize and Mexico cluster. In addition, these findings will be a baseline for future studies and comparisons with manatees in other areas of Panama and Central America. These results should be considered to inform management decisions regarding conservation of genetic diversity, future controlled introductions, connectivity and effective population size of the West Indian manatee along the Central American corridor.
Dar-Nimrod, Ilan; Zuckerman, Miron; Duberstein, Paul R
2013-02-01
Increased accessibility of direct-to-consumer personalized genetic reports raises the question: how are people affected by information about their own genetic predispositions? Participants were led to believe that they had entered a study on the genetics of alcoholism and sleep disorders. Participants provided a saliva sample purportedly to be tested for the presence of relevant genes. While awaiting the results, they completed a questionnaire assessing their emotional state. They subsequently received a bogus report about their genetic susceptibility and completed a questionnaire about their emotional state and items assessing perceived control over drinking, relevant future drinking-related intentions, and intervention-related motivation and behavior. Participants who were led to believe that they had a gene associated with alcoholism showed an increase in negative affect, decrease in positive affect, and reduced perceived personal control over drinking. Reported intentions for alcohol consumption in the near future were not affected; however, individuals were more likely to enroll in a "responsible drinking" workshop after learning of their alleged genetic susceptibility. The first complete randomized experiment to examine the psychological and behavioral effects of receiving personalized genetic susceptibility information indicates some potential perils and benefits of direct-to-consumer genetic tests.
Kaphingst, K A; Janoff, J M; Harris, L N; Emmons, K M
2006-05-01
Although social and ethical issues related to the storage and use of biologic specimens for genetic research have been discussed extensively in the medical literature, few empiric data exist describing patients' views. This qualitative study explored the views of 26 female breast cancer patients who had consented to donate blood or tissue samples for breast cancer research. Participants generally did not expect personal benefits from research and had few unprompted concerns. Few participants had concerns about use of samples for studies not planned at the time of consent. Some participants did express concerns about insurance or employment discrimination, while others believed that current privacy protections might actually slow breast cancer research. Participants were generally more interested in receiving individual genetic test results from research studies than aggregate results. Most participants did not want individual results of uncertain clinical significance, although others believed that they should be able to receive such information. These data examined the range of participants' views regarding the storage and use of biologic samples. Further research with different and diverse patient populations is critical to establishing an appropriate balance between protecting the rights of human subjects in genetic research and allowing research to progress.
Amount of Genetics Education is Low Among Didactic Programs in Dietetics.
Beretich, Kaitlan; Pope, Janet; Erickson, Dawn; Kennedy, Angela
2017-01-01
Nutritional genomics is a growing area of research. Research has shown registered dietitian nutritionists (RDNs) have limited knowledge of genetics. Limited research is available regarding how didactic programs in dietetics (DPDs) meet the genetics knowledge requirement of the Accreditation Council for Education in Nutrition and Dietetics (ACEND®). The purpose of this study was to determine the extent to which the study of nutritional genomics is incorporated into undergraduate DPDs in response to the Academy of Nutrition and Dietetics position statement on nutritional genomics. The sample included 62 DPD directors in the U.S. Most programs (63.9%) reported the ACEND genetics knowledge requirement was being met by integrating genetic information into the current curriculum. However, 88.7% of programs reported devoting only 1-10 clock hours to genetics education. While 60.3% of directors surveyed reported they were confident in their program's ability to teach information related to genetics, only 6 directors reported having specialized training in genetics. The overall amount of clock hours devoted to genetics education is low. DPD directors, faculty, and instructors are not adequately trained to provide this education to students enrolled in DPDs. Therefore, the primary recommendation of this study is the development of a standardized curriculum for genetics education in DPDs.
Predictive accuracy of combined genetic and environmental risk scores.
Dudbridge, Frank; Pashayan, Nora; Yang, Jian
2018-02-01
The substantial heritability of most complex diseases suggests that genetic data could provide useful risk prediction. To date the performance of genetic risk scores has fallen short of the potential implied by heritability, but this can be explained by insufficient sample sizes for estimating highly polygenic models. When risk predictors already exist based on environment or lifestyle, two key questions are to what extent can they be improved by adding genetic information, and what is the ultimate potential of combined genetic and environmental risk scores? Here, we extend previous work on the predictive accuracy of polygenic scores to allow for an environmental score that may be correlated with the polygenic score, for example when the environmental factors mediate the genetic risk. We derive common measures of predictive accuracy and improvement as functions of the training sample size, chip heritabilities of disease and environmental score, and genetic correlation between disease and environmental risk factors. We consider simple addition of the two scores and a weighted sum that accounts for their correlation. Using examples from studies of cardiovascular disease and breast cancer, we show that improvements in discrimination are generally small but reasonable degrees of reclassification could be obtained with current sample sizes. Correlation between genetic and environmental scores has only minor effects on numerical results in realistic scenarios. In the longer term, as the accuracy of polygenic scores improves they will come to dominate the predictive accuracy compared to environmental scores. © 2017 WILEY PERIODICALS, INC.
Predictive accuracy of combined genetic and environmental risk scores
Pashayan, Nora; Yang, Jian
2017-01-01
ABSTRACT The substantial heritability of most complex diseases suggests that genetic data could provide useful risk prediction. To date the performance of genetic risk scores has fallen short of the potential implied by heritability, but this can be explained by insufficient sample sizes for estimating highly polygenic models. When risk predictors already exist based on environment or lifestyle, two key questions are to what extent can they be improved by adding genetic information, and what is the ultimate potential of combined genetic and environmental risk scores? Here, we extend previous work on the predictive accuracy of polygenic scores to allow for an environmental score that may be correlated with the polygenic score, for example when the environmental factors mediate the genetic risk. We derive common measures of predictive accuracy and improvement as functions of the training sample size, chip heritabilities of disease and environmental score, and genetic correlation between disease and environmental risk factors. We consider simple addition of the two scores and a weighted sum that accounts for their correlation. Using examples from studies of cardiovascular disease and breast cancer, we show that improvements in discrimination are generally small but reasonable degrees of reclassification could be obtained with current sample sizes. Correlation between genetic and environmental scores has only minor effects on numerical results in realistic scenarios. In the longer term, as the accuracy of polygenic scores improves they will come to dominate the predictive accuracy compared to environmental scores. PMID:29178508
SAIL--a software system for sample and phenotype availability across biobanks and cohorts.
Gostev, Mikhail; Fernandez-Banet, Julio; Rung, Johan; Dietrich, Joern; Prokopenko, Inga; Ripatti, Samuli; McCarthy, Mark I; Brazma, Alvis; Krestyaninova, Maria
2011-02-15
The Sample avAILability system-SAIL-is a web based application for searching, browsing and annotating biological sample collections or biobank entries. By providing individual-level information on the availability of specific data types (phenotypes, genetic or genomic data) and samples within a collection, rather than the actual measurement data, resource integration can be facilitated. A flexible data structure enables the collection owners to provide descriptive information on their samples using existing or custom vocabularies. Users can query for the available samples by various parameters combining them via logical expressions. The system can be scaled to hold data from millions of samples with thousands of variables. SAIL is available under Aferro-GPL open source license: https://github.com/sail.
Genetic variability within and among populations of an invasive, exotic orchid
Ueno, Sueme; Rodrigues, Jucelene Fernandes; Alves-Pereira, Alessandro; Pansarin, Emerson Ricardo; Veasey, Elizabeth Ann
2015-01-01
Despite the fact that invasive species are of great evolutionary interest because of their success in colonizing and spreading into new areas, the factors underlying this success often remain obscure. In this sense, studies on population genetics and phylogenetic relationships of invasive species could offer insights into mechanisms of invasions. Originally from Africa, the terrestrial orchid Oeceoclades maculata, considered an invasive plant, is the only species of the genus throughout the Americas. Considering the lack of information on population genetics of this species, the aim of this study was to evaluate the genetic diversity and structure of Brazilian populations of O. maculata. We used 13 inter-simple sequence repeat primers to assess the genetic diversity of 152 individuals of O. maculata distributed in five sampled sites from three Brazilian states (São Paulo, Mato Grosso and Paraná). Low diversity was found within samples, with estimates of the Shannon index (H) ranging from 0.0094 to 0.1054 and estimates of Nei's gene diversity (He) ranging from 0.0054 to 0.0668. However, when evaluated together, the sampling locations showed substantially higher diversity estimates (H = 0.3869, He = 0.2556), and most of the genetic diversity was found among populations (ΦST = 0.933). Both clustering and principal coordinate analysis indicate the existence of five distinct groups, corresponding to the sampled localities, and which were also recovered in the Bayesian analysis. A substructure was observed in one of the localities, suggesting a lack of gene flow even between very small distances. The patterns of genetic structure found in this study may be understood considering the interaction of several probable reproductive strategies with its history of colonization involving possible genetic drift, selective pressures and multiple introductions. PMID:26162896
Mullineaux, Paula Y; DiLalla, Lisabeth Fisher
2015-07-01
Nearly all aspects of human development are influenced by genetic and environmental factors, which conjointly shape development through several gene-environment interplay mechanisms. More recently, researchers have begun to examine the influence of genetic factors on peer and family relationships across the pre-adolescent and adolescent time periods. This article introduces the special issue by providing a critical overview of behavior genetic methodology and existing research demonstrating gene-environment processes operating on the link between peer and family relationships and adolescent adjustment. The overview is followed by a summary of new research studies, which use genetically informed samples to examine how peer and family environment work together with genetic factors to influence behavioral outcomes across adolescence. The studies in this special issue provide further evidence of gene-environment interplay through innovative behavior genetic methodological approaches across international samples. Results from the quantitative models indicate environmental moderation of genetic risk for coercive adolescent-parent relationships and deviant peer affiliation. The molecular genetics studies provide support for a gene-environment interaction differential susceptibility model for dopamine regulation genes across positive and negative peer and family environments. Overall, the findings from the studies in this special issue demonstrate the importance of considering how genes and environments work in concert to shape developmental outcomes during adolescence.
The Harvard case of Xu Xiping: exploitation of the people, scientific advance, or genetic theft?
Sleeboom, Margaret
2005-04-01
A unique history and make-up of a population may make it an attractive research target for population geneticists and pharmaco-genomic investors. The promise of pharmaceutical profits and advances in medical knowledge attracted Harvard researchers and the company Millennium Pharmaceuticals to remote areas in Anhui Province, Central China, leading to international diplomatic disagreements about issues such as the ownership of genetic material and informed consent (IC). This article discusses the role of genomics and genetic sampling in China, the way it is related to population policies (the new eugenics), the national importance of genetic materials and the conflicts it led to between the Chinese government and Harvard University. Here many consider the Xu Xiping case as textbook example of ruthless Western exploitation of development countries, illustrating the cold rationality of science in the process of globalisation. Ten perspectives on this case show that this view is simplistic and contributes little to an understanding of bioethical issues important to the population actually donating the samples. Viewing the Xu Xiping case as the nexus of the intertwinement of international, transnational, national, and local interest groups shows how different interest groups make use of different units of analysis. It also clarifies why the same practice of genetic sampling continues under a different regime, and why the discussion about genetic sampling has shifted from a concern with health care of the poor to an issue of international exploitation, terrorism and development.
SAIL—a software system for sample and phenotype availability across biobanks and cohorts
Gostev, Mikhail; Fernandez-Banet, Julio; Rung, Johan; Dietrich, Joern; Prokopenko, Inga; Ripatti, Samuli; McCarthy, Mark I.; Brazma, Alvis; Krestyaninova, Maria
2011-01-01
Summary: The Sample avAILability system—SAIL—is a web based application for searching, browsing and annotating biological sample collections or biobank entries. By providing individual-level information on the availability of specific data types (phenotypes, genetic or genomic data) and samples within a collection, rather than the actual measurement data, resource integration can be facilitated. A flexible data structure enables the collection owners to provide descriptive information on their samples using existing or custom vocabularies. Users can query for the available samples by various parameters combining them via logical expressions. The system can be scaled to hold data from millions of samples with thousands of variables. Availability: SAIL is available under Aferro-GPL open source license: https://github.com/sail. Contact: gostev@ebi.ac.uk, support@simbioms.org Supplementary information: Supplementary data are available at Bioinformatics online and from http://www.simbioms.org. PMID:21169373
General practitioner attitudes to direct-to-consumer genetic testing in New Zealand.
Ram, Sanyogita; Russell, Bruce; Gubb, Mary; Taylor, Rebekah; Butler, Cassandra; Khan, Imran; Shelling, Andrew
2012-10-26
The aim of the study was to explore the attitudes of general practitioners (GPs) towards direct to consumer (DTC) genetic testing and elicit their perceptions of the risks and benefits associated with DTC genetic testing. A postal questionnaire was mailed to a national random sample of 300 registered GPs from a list provided by the New Zealand Medical Council. Non-responders were followed up with an abridged survey questionnaire. Responses were received from 38% of the GPs contacted. This consisted of 113 responses from the full questionnaire. The proportion of respondents who had heard about DTC genetic testing was 47.8%. Respondents considered convenience to be the greatest benefit for the individual requesting DTC genetic testing. Misunderstanding of results and inadequate provision of information were perceived to be the greatest risks associated. Lack of knowledge, experience and time were all considered barriers to GPs providing genetic counselling, and a genetic specialist was highlighted as the most appropriate to provide this. Respondents thought advertising of DTC genetic testing should be regulated in a similar manner to DTC advertising of prescription medicines. Clinical validity of tests and counselling were thought to be the most important aspects to be regulated. As public access to DTC genetic testing increases, the role of GPs knowledge and training to reflect this growth will become increasingly more important. The 'Patient-Doctor-Counsellor Model of Delivery of Genetic Services' may be more appropriate for the provision of this service than the current model of direct access by patients. The involvement of health professionals in the DTC genetic testing process will aid patients in making informed health decisions, and ensure increased benefit from recent advances in genetic information.
Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros.
Rovie-Ryan, Jeffrine Japning; Zainuddin, Zainal Zahari; Marni, Wahap; Ahmad, Abdul Hamid; Ambu, Laurentius N; Payne, Junaidi
2013-02-01
To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Blood meal was recovered from the abdomen of an engorged tabanid fly (Haematopota sp.) which was captured immediately after biting a Sumatran rhino in captivity. The blood was applied on to a Whatman FTA(®) blood card. Subsequent laboratory work was conducted to extract, amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinoceros and subjecting it to the same laboratory process. BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from the rhino. This method could be used in the field application to noninvasively collect genetic samples. Collection of tabanids and other haematophagous arthropods (e.g. mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases.
Micalizzi, Lauren; Wang, Manjie; Saudino, Kimberly J.
2015-01-01
A genetically informed longitudinal cross-lagged model was applied to twin data to explore etiological links between difficult temperament and negative parenting in early childhood. The sample comprised 313 monozygotic (MZ) and dizygotic (DZ) twin pairs. Difficult temperament and negative parenting were assessed at ages 2 and 3 using parent ratings. Both constructs were interrelated within and across age (rs .34–.47) and showed substantial stability (rs .65–.68). Difficult temperament and negative parenting were influenced by genetic and environmental factors at ages 2 and 3. The genetic and nonshared environmental correlations (rs .21–.76) at both ages suggest overlap at the level of etiology between the phenotypes. Significant bidirectional associations between difficult temperament and negative parenting were found. The cross-lagged association from difficult temperament at age 2 to negative parenting at age 3 and from negative parenting at age 2 and difficult temperament at age 3 were due to genetic, shared environmental, and nonshared environmental factors. Substantial novel genetic and nonshared environmental influences emerged at age 3 and suggest change in the etiology of these constructs over time. PMID:26490166
Rocha, Heather Mae; Savatt, Juliann M; Riggs, Erin Rooney; Wagner, Jennifer K; Faucett, W Andrew; Martin, Christa Lese
2018-04-01
Patients with newly-described or rare genetic findings are turning to social media to find and connect with others. Blogs, Facebook groups, and Twitter have all been reported as tools for patients to connect with one another. However, the preferences for social media use and privacy among patients, their families, and these communities have not been well characterized. To explore preferences about privacy and membership guidelines, an online survey was administered to two web-based patient registries, Simons Variation in Individuals Project ( www.simonsvipconnect.org ) and GenomeConnect ( www.genomeconnect.org ). Over a three-month period, invitations were sent to 2524 individuals and 103 responses (4%) were received and analyzed. Responses indicate that Facebook is the most popular resource accessed within this sample population (99%). Participants used social media to look for information about their diagnosis or test results (83%), read posts from rare disease groups or organizations (73%), participate in conversations about their diagnosis (67%), and connect with others to find support (58%). Focusing on privacy issues in social media, respondents indicate that membership and access impact the level of comfort in sharing personal or medical information. Nearly 60% of respondents felt uncomfortable sharing photos or medical information within a public Facebook group, whereas only 12% of respondents felt uncomfortable sharing in private group targeted to families alone. Using this preliminary data concerning social media use and privacy, we developed points for genetic counselors to incorporate when discussing available support resources for patients with a new, or rare, genetic diagnosis or genetic test result. Genetic counselors are trained to provide anticipatory guidance to families adapting to new genetic information, and are well-equipped to help patients consider their preferences about using social media as a source of information and support.
Santagata, Sandro; Cahill, Daniel P.; Taylor-Weiner, Amaro; Jones, Robert T.; Van Allen, Eliezer M.; Lawrence, Michael S.; Horowitz, Peleg M.; Cibulskis, Kristian; Ligon, Keith L.; Tabernero, Josep; Seoane, Joan; Martinez-Saez, Elena; Curry, William T.; Dunn, Ian F.; Paek, Sun Ha; Park, Sung-Hye; McKenna, Aaron; Chevalier, Aaron; Rosenberg, Mara; Barker, Frederick G.; Gill, Corey M.; Van Hummelen, Paul; Thorner, Aaron R.; Johnson, Bruce E.; Hoang, Mai P.; Choueiri, Toni K.; Signoretti, Sabina; Sougnez, Carrie; Rabin, Michael S.; Lin, Nancy U.; Winer, Eric P.; Stemmer-Rachamimov, Anat; Meyerson, Matthew; Garraway, Levi; Gabriel, Stacey; Lander, Eric S.; Beroukhim, Rameen; Batchelor, Tracy T.; Baselga, Jose; Louis, David N.
2016-01-01
Brain metastases are associated with a dismal prognosis. Whether brain metastases harbor distinct genetic alterations beyond those observed in primary tumors is unknown. We performed whole-exome sequencing of 86 matched brain metastases, primary tumors and normal tissue. In all clonally related cancer samples, we observed branched evolution, where all metastatic and primary sites shared a common ancestor yet continued to evolve independently. In 53% of cases, we found potentially clinically informative alterations in the brain metastases not detected in the matched primary-tumor sample. In contrast, spatially and temporally separated brain metastasis sites were genetically homogenous. Distal extracranial and regional lymph node metastases were highly divergent from brain metastases. We detected alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in the brain metastases. Genomic analysis of brain metastases provides an opportunity to identify potentially clinically informative alterations not detected in clinically sampled primary tumors, regional lymph nodes, or extracranial metastases. PMID:26410082
The Polish Genetic Database of Victims of Totalitarianisms.
Ossowski, A; Kuś, M; Kupiec, T; Bykowska, M; Zielińska, G; Jasiński, M E; March, A L
2016-01-01
This paper describes the creation of the Polish Genetic Database of Victims of Totalitarianism and the first research conducted under this project. On September 28th 2012, the Pomeranian Medical University in Szczecin and the Institute of National Remembrance-Commission for Prosecution of Crimes against the Polish Nation agreed to support the creation of the Polish Genetic Database of Victims of Totalitarianism (PBGOT, www.pbgot.pl). The purpose was to employ state-of-the-art methods of forensic genetics to identify the remains of unidentified victims of Communist and Nazi totalitarian regimes. The database was designed to serve as a central repository of genetic information of the victim's DNA and that of the victim's nearest living relatives, with the goal of making a positive identification of the victim. Along the way, PGBOT encountered several challenges. First, extracting useable DNA samples from the remains of individuals who had been buried for over half a century required forensic geneticists to create special procedures and protocols. Second, obtaining genetic reference material and historical information from the victim's closest relatives was both problematic and urgent. The victim's nearest living relatives were part of a dying generation, and the opportunity to obtain the best genetic and historical information about the victims would soon die with them. For this undertaking, PGBOT assembled a team of historians, archaeologists, forensic anthropologists, and forensic geneticists from several European research institutions. The field work was divided into five broad categories: (1) exhumation of victim remains and storing their biological material for later genetic testing; (2) researching archives and historical data for a more complete profile of those killed or missing and the families that lost them; (3) locating the victim's nearest relatives to obtain genetic reference samples (swabs), (4) entering the genetic data from both victims and family members into a common database; (5) making a conclusive, final identification of the victim. PGBOT's first project was to identify victims of the Communist regime buried in hidden mass graves in the Powązki Military Cemetery in Warsaw. Throughout 2012 and 2013, PGBOT carried out archaeological exhumations in the Powązki Military Cemetery that resulted in the recovery of the skeletal remains of 194 victims in several mass graves. Of the 194 sets of remains, more than 50 victims have been successfully matched and identified through genetic evidence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
'Battling my biology': psychological effects of genetic testing for risk of weight gain.
Meisel, S F; Wardle, J
2014-04-01
The availability of genetic tests for multifactorial conditions such as obesity raises concerns that higher-risk results could lead to fatalistic reactions or lower-risk results to complacency. No study has investigated the effects of genetic test feedback for the risk of obesity in non-clinical samples. The present study explored psychological and behavioral reactions to genetic test feedback for a weight related gene (FTO) in a volunteer sample (n = 18) using semi-structured interviews. Respondents perceived the gene test result as scientifically objective; removing some of the emotion attached to the issue of weight control. Those who were struggling with weight control reported relief of self-blame. There was no evidence for either complacency or fatalism; all respondents emphasized the importance of lifestyle choices in long-term weight management, although they recognized the role of both genes and environment. Regardless of the test result, respondents evaluated the testing positively and found it motivating and informative. Genetic test feedback for risk of weight gain may offer psychological benefits beyond its objectively limited clinical utility. As the role of genetic counselors is likely to expand, awareness of reasons for genetic testing for common, complex conditions and reactions to the test result is important.
CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins
Londin, Eric R.; Keller, Margaret A.; Maista, Cathleen; Smith, Gretchen; Mamounas, Laura A.; Zhang, Ran; Madore, Steven J.; Gwinn, Katrina; Corriveau, Roderick A.
2010-01-01
Background Genetic ancestry is known to impact outcomes of genotype-phenotype studies that are designed to identify risk for common diseases in human populations. Failure to control for population stratification due to genetic ancestry can significantly confound results of disease association studies. Moreover, ancestry is a critical factor in assessing lifetime risk of disease, and can play an important role in optimizing treatment. As modern medicine moves towards using personal genetic information for clinical applications, it is important to determine genetic ancestry in an accurate, cost-effective and efficient manner. Self-identified race is a common method used to track and control for population stratification; however, social constructs of race are not necessarily informative for genetic applications. The use of ancestry informative markers (AIMs) is a more accurate method for determining genetic ancestry for the purposes of population stratification. Methodology/Principal Findings Here we introduce a novel panel of 36 microsatellite (MSAT) AIMs that determines continental admixture proportions. This panel, which we have named Continental Ancestry Informative Markers or CoAIMs, consists of MSAT AIMs that were chosen based upon their measure of genetic variance (Fst), allele frequencies and their suitability for efficient genotyping. Genotype analysis using CoAIMs along with a Bayesian clustering method (STRUCTURE) is able to discern continental origins including Europe/Middle East (Caucasians), East Asia, Africa, Native America, and Oceania. In addition to determining continental ancestry for individuals without significant admixture, we applied CoAIMs to ascertain admixture proportions of individuals of self declared race. Conclusion/Significance CoAIMs can be used to efficiently and effectively determine continental admixture proportions in a sample set. The CoAIMs panel is a valuable resource for genetic researchers performing case-control genetic association studies, as it can control for the confounding effects of population stratification. The MSAT-based approach used here has potential for broad applicability as a cost effective tool toward determining admixture proportions. PMID:20976178
Caspi, Avshalom; Langley, Kate; Milne, Barry; Moffitt, Terrie E; O'Donovan, Michael; Owen, Michael J; Polo Tomas, Monica; Poulton, Richie; Rutter, Michael; Taylor, Alan; Williams, Benjamin; Thapar, Anita
2008-02-01
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder that in some cases is accompanied by antisocial behavior. To test if variations in the catechol O-methyltransferase gene (COMT) would prove useful in identifying the subset of children with ADHD who exhibit antisocial behavior. Three independent samples composed of 1 clinical sample of ADHD cases and 2 birth cohort studies. Participants in the clinical sample were drawn from child psychiatry and child health clinics in England and Wales. The 2 birth cohort studies included 1 sample of 2232 British children born in 1994-1995 and a second sample of 1037 New Zealander children born in 1972-1973. Diagnosis of ADHD and measures of antisocial behavior. We present replicated evidence that the COMT valine/methionine polymorphism at codon 158 (COMT Val158Met) was associated with phenotypic variation among children with ADHD. Across the 3 samples, valine/valine homozygotes had more symptoms of conduct disorder, were more aggressive, and were more likely to be convicted of criminal offenses compared with methionine carriers. The findings confirm the presence of genetic heterogeneity in ADHD and illustrate how genetic information may provide biological evidence pointing to clinical subtypes.
Databases for rRNA gene profiling of microbial communities
Ashby, Matthew
2013-07-02
The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.
López, Almudena; Vera, Manuel; Planas, Miquel; Bouza, Carmen
2015-01-01
This study was focused on conservation genetics of threatened Hippocampus guttulatus on the Atlantic coast of NW Iberian Peninsula. Information about spatial structure and temporal stability of wild populations was obtained based on microsatellite markers, and used for monitoring a captive breeding program firstly initiated in this zone at the facilities of the Institute of Marine Research (Vigo, Spain). No significant major genetic structure was observed regarding the biogeographical barrier of Cape Finisterre. However, two management units under continuous gene flow are proposed based on the allelic differentiation between South-Atlantic and Cantabrian subpopulations, with small to moderate contemporary effective size based on single-sample methods. Temporal stability was observed in South-Atlantic population samples of H. guttulatus for the six-year period studied, suggesting large enough effective population size to buffer the effects of genetic drift within the time frame of three generations. Genetic analysis of wild breeders and offspring in captivity since 2009 allowed us to monitor the breeding program founded in 2006 in NW Spain for this species. Similar genetic diversity in the renewed and founder broodstock, regarding the wild population of origin, supports suitable renewal and rearing processes to maintain genetic variation in captivity. Genetic parentage proved single-brood monogamy in the wild and in captivity, but flexible short- and long-term mating system under captive conditions, from strict monogamy to polygamy within and/or among breeding seasons. Family analysis showed high reproductive success in captivity under genetic management assisted by molecular relatedness estimates to avoid inbreeding. This study provides genetic information about H. guttulatus in the wild and captivity within an uncovered geographical range for this data deficient species, to be taken into account for management and conservation purposes. PMID:25646777
Intentions to donate to a biobank in a national sample of African Americans.
McDonald, Jasmine A; Vadaparampil, Susan; Bowen, Deborah; Magwood, Gayenell; Obeid, Jihad S; Jefferson, Melanie; Drake, Richard; Gebregziabher, Mulugeta; Hughes Halbert, Chanita
2014-01-01
Despite the investments being made to develop biobanks, African Americans are under-represented in genomic studies. We identified factors having significant independent associations with intentions to donate personal health information and blood and/or tissue samples to a biobank in a national random sample of African Americans (n = 1,033). We conducted a national survey from October 2010 through February 2011. Twenty-three percent of respondents reported that it was not at all likely that they would donate to a biobank, 18% reported it was a little likely, 36% reported it was somewhat likely, and 23% reported it was very likely. Respondents who were likely to donate to a biobank had greater positive expectations about participating in cancer genetics research and reported more participation facilitators relative to barriers. Respondents who were distrustful of researchers had a significantly lower likelihood of being willing to donate to a biobank compared to those who were less distrustful. African Americans have diverse attitudes about participating in genetics research, and many are likely to donate to a biobank based on expectations of positive outcomes. It may be important to address attitudes about genetics research as part of recruitment to enhance the quality of informed consent for participation in biobanks among African Americans. © 2014 S. Karger AG, Basel.
Intentions to Donate to a Biobank in a National Sample of African Americans
McDonald, Jasmine A.; Vadaparampil, Susan; Bowen, Deborah; Magwood, Gayenell; Obeid, Jihad S.; Jefferson, Melanie; Drake, Richard; Gebregziabher, Mulugeta; Halbert, Chanita Hughes
2015-01-01
Background/Aims Despite the investments being made to develop biobanks, African Americans are under-represented in genomic studies. We identified factors having significant independent associations with intentions to donate personal health information and blood and/or tissue samples to a biobank in a national, random sample of African Americans (n=1,033). Methods National survey conducted from October 2010 through February 2011. Results 23% of respondents reported that it was not at all likely that they would donate to a biobank, 18% reported a little likely, 36% reported somewhat likely, and 23% reported very likely. Respondents who were likely to donate to a biobank had greater positive expectations about participating in cancer genetics research and reported more participation facilitators relative to barriers. Respondents who were distrustful of researchers had a significantly lower likelihood of being willing to donate to a biobank compared to those who were less distrustful. Conclusions African Americans have diverse attitudes about participating in genetics research and many are likely to donate to a biobank based on expectations of positive outcomes. It may be important to address attitudes about genetics research as part of recruitment to enhance the quality of informed consent for participation in biobanks among African Americans. PMID:24942180
Predicting Hydrologic Function With Aquatic Gene Fragments
NASA Astrophysics Data System (ADS)
Good, S. P.; URycki, D. R.; Crump, B. C.
2018-03-01
Recent advances in microbiology techniques, such as genetic sequencing, allow for rapid and cost-effective collection of large quantities of genetic information carried within water samples. Here we posit that the unique composition of aquatic DNA material within a water sample contains relevant information about hydrologic function at multiple temporal scales. In this study, machine learning was used to develop discharge prediction models trained on the relative abundance of bacterial taxa classified into operational taxonomic units (OTUs) based on 16S rRNA gene sequences from six large arctic rivers. We term this approach "genohydrology," and show that OTU relative abundances can be used to predict river discharge at monthly and longer timescales. Based on a single DNA sample from each river, the average Nash-Sutcliffe efficiency (NSE) for predicted mean monthly discharge values throughout the year was 0.84, while the NSE for predicted discharge values across different return intervals was 0.67. These are considerable improvements over predictions based only on the area-scaled mean specific discharge of five similar rivers, which had average NSE values of 0.64 and -0.32 for seasonal and recurrence interval discharge values, respectively. The genohydrology approach demonstrates that genetic diversity within the aquatic microbiome is a large and underutilized data resource with benefits for prediction of hydrologic function.
Following the giant's paces-governance issues and bioethical reflections in China.
Wang, Zhaochen; Zhang, Di; Ng, Vincent H; Lie, Reidar; Zhai, Xiaomei
2014-10-31
China has become a global player in the field of biosamples research and analysis of genetic data. The Beijing Genomics Institute is a genetics factory where enormous amounts of biosamples/data from all over the world are being analyzed. Most of the global bioethics discussions focused on research conducted by scientists from industrialized countries with subjects from poorer countries. Today, however, samples from industrialized nations are being analyzed in China on an unprecedented scale. This means that one should not just focus on bioethics developments in western countries, but also should pay attention to the situation in China. Under this era of rapid advancement in genomics, reassessing the conventionally accepted bioethical principles is strongly needed. In this paper, we will analyze the case of BGI in the context of the Chinese regulatory system in order to identify methods to regulate genetic research more effectively and to strengthen BGI's role in international collaborative research projects. Three main issues concerning sample collection and samples/data management are addressed. Firstly, an ambiguous definition of research, which does not specifically include biosamples/data, when applied to genetic research, may cause confusion and leave loopholes in governance. Secondly, the current regulations do not provide sufficient guidelines on the details of what information to present to prospective subjects, and how to combine informed consent with strategies of re-consent, withdrawal and feedback from research. Finally, the existing regulations do not adequately address issues of genetic privacy and data protection. Bioethical issues related to genetic research in China may be partially due to the nature of genetic research and partially stems from the strategy of simply adopting general international guidelines into the Chinese context without detailed considerations of the local needs. However, there are no perfect readymade ethical solutions for everyone; every country faces different open questions and challenges behind what appears to be unified guidelines. Given the importance of China in international genetic research, other countries ought to be concerned about the bioethical developments in China. China should also have a substantive discussion with the international community on bioethics issues.
Effects of sample treatments on genome recovery via single-cell genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clingenpeel, Scott; Schwientek, Patrick; Hugenholtz, Philip
2014-06-13
It is known that single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we demonstrate that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing.
Powell, Joseph E.; Henders, Anjali K.; McRae, Allan F.; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G.; Dermitzakis, Emmanouil T.; Gibson, Greg
2013-01-01
There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted—in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects. PMID:23696747
Powell, Joseph E; Henders, Anjali K; McRae, Allan F; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G; Dermitzakis, Emmanouil T; Gibson, Greg; Montgomery, Grant W; Visscher, Peter M
2013-05-01
There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted--in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects.
Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George
2016-01-01
Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of understanding levels of genetic diversity and connectivity to making informed management and conservation decisions with the goal to maintain functional connectivity across the region. PMID:27783617
Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George
2016-01-01
Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of understanding levels of genetic diversity and connectivity to making informed management and conservation decisions with the goal to maintain functional connectivity across the region.
NASA Astrophysics Data System (ADS)
De Girolamo, Mirko; Torboli, Valentina; Pallavicini, Alberto; Isidro, Eduardo
2017-11-01
Megabalanus azoricus giant barnacles are the most traditional seafood of the Azores archipelago (NE Atlantic). This valuable commercial species has been highly exploited in the past and it is considered one of the key species for the development of aquaculture in the region. Despite the importance for conservation and aquaculture there is still a lack of basic information about M. azoricus genetic diversity and population structure. Here we used seven microsatellites markers to analyse 300 samples collected at six out of nine islands of the Azores archipelago, including also different locations from a single island, to provide information on the scale of genetic diversity and population structure of this species. Parameters like heterozygosity, allelic richness and effective number of alleles indicated a high genetic diversity and variability among islands. Pairwise comparisons and PCoA analysis on FST and Jost's DEST showed significant and evident differentiation among sampling locations. Additionally, AMOVA allocates a small (6.02%) but statistically significant portion of the variance to the among Island level revealing also a weak resolution (1.87%) at finer scale. Additionally Monte Carlo resampling methods indicated the most likely sources of the recruits were the local or adjacent populations. Genetic risks associated with the giant barnacle potential production scheme should be taken into account in a future management plan delimiting, as precautionary measure, this culture at a single island or at groups of islands here identified. Moreover a monitoring strategy should be implemented with the aim to evaluate possible changes in genetic parameters of native populations.
Proietti, Maira C; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A; Monteiro, Danielle S; Pattiaratchi, Charitha; Secchi, Eduardo R
2014-01-01
Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.
Proietti, Maira C.; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A.; Monteiro, Danielle S.; Pattiaratchi, Charitha; Secchi, Eduardo R.
2014-01-01
Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations. PMID:24558419
A Spatial Statistical Model for Landscape Genetics
Guillot, Gilles; Estoup, Arnaud; Mortier, Frédéric; Cosson, Jean François
2005-01-01
Landscape genetics is a new discipline that aims to provide information on how landscape and environmental features influence population genetic structure. The first key step of landscape genetics is the spatial detection and location of genetic discontinuities between populations. However, efficient methods for achieving this task are lacking. In this article, we first clarify what is conceptually involved in the spatial modeling of genetic data. Then we describe a Bayesian model implemented in a Markov chain Monte Carlo scheme that allows inference of the location of such genetic discontinuities from individual geo-referenced multilocus genotypes, without a priori knowledge on populational units and limits. In this method, the global set of sampled individuals is modeled as a spatial mixture of panmictic populations, and the spatial organization of populations is modeled through the colored Voronoi tessellation. In addition to spatially locating genetic discontinuities, the method quantifies the amount of spatial dependence in the data set, estimates the number of populations in the studied area, assigns individuals to their population of origin, and detects individual migrants between populations, while taking into account uncertainty on the location of sampled individuals. The performance of the method is evaluated through the analysis of simulated data sets. Results show good performances for standard data sets (e.g., 100 individuals genotyped at 10 loci with 10 alleles per locus), with high but also low levels of population differentiation (e.g., FST < 0.05). The method is then applied to a set of 88 individuals of wolverines (Gulo gulo) sampled in the northwestern United States and genotyped at 10 microsatellites. PMID:15520263
Wahab, Tara; Birdsell, Dawn N.; Hjertqvist, Marika; Mitchell, Cedar L.; Wagner, David M.; Keim, Paul S.; Hedenström, Ingela; Löfdahl, Sven
2014-01-01
Tularaemia, caused by the bacterium Francisella tularensis, is endemic in Sweden and is poorly understood. The aim of this study was to evaluate the effectiveness of three different genetic typing systems to link a genetic type to the source and place of tularemia infection in Sweden. Canonical single nucleotide polymorphisms (canSNPs), MLVA including five variable number of tandem repeat loci and PmeI-PFGE were tested on 127 F. tularensis positive specimens collected from Swedish case-patients. All three typing methods identified two major genetic groups with near-perfect agreement. Higher genetic resolution was obtained with canSNP and MLVA compared to PFGE; F. tularensis samples were first assigned into ten phylogroups based on canSNPs followed by 33 unique MLVA types. Phylogroups were geographically analysed to reveal complex phylogeographic patterns in Sweden. The extensive phylogenetic diversity found within individual counties posed a challenge to linking specific genetic types with specific geographic locations. Despite this, a single phylogroup (B.22), defined by a SNP marker specific to a lone Swedish sequenced strain, did link genetic type with a likely geographic place. This result suggests that SNP markers, highly specific to a particular reference genome, may be found most frequently among samples recovered from the same location where the reference genome originated. This insight compels us to consider whole-genome sequencing (WGS) as the appropriate tool for effectively linking specific genetic type to geography. Comparing the WGS of an unknown sample to WGS databases of archived Swedish strains maximizes the likelihood of revealing those rare geographically informative SNPs. PMID:25401326
Cong, Wei; Qin, Si-Yuan; Meng, Qing-Feng; Zou, Feng-Cai; Qian, Ai-Dong; Zhu, Xing-Quan
2016-04-01
The objective of the present study was to investigate the prevalence and genetic characterization of Toxoplasma gondii infection in sika deer in China. During August 2014 to November 2014, a total of 450 tissue samples coming from 150 sika deer were collected to detect the T. gondii B1 gene using a nested PCR, and the positive samples were genotyped at 11 genetic markers (SAG1, 5'- and 3'-SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, c22-8, c29-2, and Apico) using multilocus polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technology. Seventeen of 150 sika deer (11.33%) were tested positive by nested PCR. Six DNA samples from the 17 positive samples were completely typed, in which 4 samples from lung tissues, and 2 from muscular tissues, were identified as ToxoDB Genotype #9 (http://toxodb.org/toxo/). The results of the present study revealed the existence of T. gondii infection in sika deer in China, which provided the information of T. gondii genetic diversity in this host species. This study also indicated that ToxoDB Genotype #9 has a wide distribution in sika deer that could be potential reservoirs for T. gondii transmission, which may pose a threat to human health. Copyright © 2016 Elsevier B.V. All rights reserved.
Longest, Susan M.; Ottewell, Kym; Lantz, Samantha M.; Walter, Scott T.
2017-01-01
Environmental disturbances, both natural and anthropogenic, have the capacity to substantially impact animal behavior and abundance, which can in turn influence patterns of genetic diversity and gene flow. However, little empirical information is available on the nature and degree of such changes due to the relative rarity of longitudinal genetic sampling of wild populations at appropriate intervals. Addressing this knowledge gap is therefore of interest to evolutionary biologists, policy makers, and managers. In the past half century, populations of the brown pelican (Pelecanus occidentalis) in the southeastern United States have been exposed to regional extirpations, translocations, colony losses, and oil spills, but potential impacts on genetic diversity and population structure remain unknown. To investigate the cumulative impacts of recent disturbances and management actions, we analyzed seven microsatellite loci using genetic samples collected from 540 nestlings across twelve pelican colonies from two time periods, corresponding to before (n = 305) and after (n = 235) the 2010 Deepwater Horizon oil spill. Pre-2010 populations in Texas were significantly differentiated from Louisiana, Alabama, and Florida populations to the east, with reintroduced populations in southeastern Louisiana having less genetic diversity than sites in Texas, consistent with a recent bottleneck. In contrast, there was no evidence of a geographic component to genetic structure among colonies sampled after the spill, consistent with increased dispersal among sites following the event. This pattern may be associated with reduced philopatry in response to colony abandonment in the areas most heavily impacted by the Deepwater Horizon event, though other factors (e.g., rehabilitation and translocation of oiled birds or colony loss due to erosion and tropical storms) were likely also involved. Future monitoring is necessary to determine if bottlenecks and loss of genetic variation are associated with the oil spill over time, and is recommended for other systems in which disturbance effects may be inferred via repeated genetic sampling. PMID:28977003
Geary, Brock; Longest, Susan M; Ottewell, Kym; Lantz, Samantha M; Walter, Scott T; Karubian, Jordan; Leberg, Paul L
2017-01-01
Environmental disturbances, both natural and anthropogenic, have the capacity to substantially impact animal behavior and abundance, which can in turn influence patterns of genetic diversity and gene flow. However, little empirical information is available on the nature and degree of such changes due to the relative rarity of longitudinal genetic sampling of wild populations at appropriate intervals. Addressing this knowledge gap is therefore of interest to evolutionary biologists, policy makers, and managers. In the past half century, populations of the brown pelican (Pelecanus occidentalis) in the southeastern United States have been exposed to regional extirpations, translocations, colony losses, and oil spills, but potential impacts on genetic diversity and population structure remain unknown. To investigate the cumulative impacts of recent disturbances and management actions, we analyzed seven microsatellite loci using genetic samples collected from 540 nestlings across twelve pelican colonies from two time periods, corresponding to before (n = 305) and after (n = 235) the 2010 Deepwater Horizon oil spill. Pre-2010 populations in Texas were significantly differentiated from Louisiana, Alabama, and Florida populations to the east, with reintroduced populations in southeastern Louisiana having less genetic diversity than sites in Texas, consistent with a recent bottleneck. In contrast, there was no evidence of a geographic component to genetic structure among colonies sampled after the spill, consistent with increased dispersal among sites following the event. This pattern may be associated with reduced philopatry in response to colony abandonment in the areas most heavily impacted by the Deepwater Horizon event, though other factors (e.g., rehabilitation and translocation of oiled birds or colony loss due to erosion and tropical storms) were likely also involved. Future monitoring is necessary to determine if bottlenecks and loss of genetic variation are associated with the oil spill over time, and is recommended for other systems in which disturbance effects may be inferred via repeated genetic sampling.
Inácio, Ana; Costa, Heloísa Afonso; da Silva, Cláudia Vieira; Ribeiro, Teresa; Porto, Maria João; Santos, Jorge Costa; Igrejas, Gilberto; Amorim, António
2017-05-01
The migratory phenomenon in Portugal has become one of the main factors for the genetic variability. In the last few years, a new class of autosomal insertion/deletion markers-InDel-has attracted interest in forensic genetics. Since there is no data for InDel markers of Portuguese-speaking African countries (PALOP) immigrants living in Lisboa, our aim is the characterization of those groups of individuals by typing them with at least 30 InDel markers and to compare different groups of individuals/populations. We studied 454 bloodstain samples belonging to immigrant individuals from Angola, Guinea-Bissau, and Mozambique. DNA extraction was performed with the Chelex® 100 method. After extraction, all samples were typed with the Investigator® DIPplex method. Through the obtained results, allelic frequencies show that all markers are at Hardy-Weinberg equilibrium, and we can confirm that those populations show significant genetic distances between themselves, between them, and the host Lisboa population. Because of this, they introduce genetic variability in Lisboa population.
Peel, D; Waples, R S; Macbeth, G M; Do, C; Ovenden, J R
2013-03-01
Theoretical models are often applied to population genetic data sets without fully considering the effect of missing data. Researchers can deal with missing data by removing individuals that have failed to yield genotypes and/or by removing loci that have failed to yield allelic determinations, but despite their best efforts, most data sets still contain some missing data. As a consequence, realized sample size differs among loci, and this poses a problem for unbiased methods that must explicitly account for random sampling error. One commonly used solution for the calculation of contemporary effective population size (N(e) ) is to calculate the effective sample size as an unweighted mean or harmonic mean across loci. This is not ideal because it fails to account for the fact that loci with different numbers of alleles have different information content. Here we consider this problem for genetic estimators of contemporary effective population size (N(e) ). To evaluate bias and precision of several statistical approaches for dealing with missing data, we simulated populations with known N(e) and various degrees of missing data. Across all scenarios, one method of correcting for missing data (fixed-inverse variance-weighted harmonic mean) consistently performed the best for both single-sample and two-sample (temporal) methods of estimating N(e) and outperformed some methods currently in widespread use. The approach adopted here may be a starting point to adjust other population genetics methods that include per-locus sample size components. © 2012 Blackwell Publishing Ltd.
Surrogate Receptivity to Participation in Critical Illness Genetic Research
Butler, Kevin; Bolcic-Jankovic, Dragana; Clarridge, Brian R.; Kennedy, Carie R.; LeBlanc, Jessica; Chandros Hull, Sara
2015-01-01
BACKGROUND: Collection of genetic biospecimens as part of critical illness investigations is increasingly commonplace. Oversight bodies vary in restrictions imposed on genetic research, introducing inconsistencies in study design, potential for sampling bias, and the possibility of being overly prohibitive of this type of research altogether. We undertook this study to better understand whether restrictions on genetic data collection beyond those governing research on cognitively intact subjects reflect the concerns of surrogates for critically ill patients. METHODS: We analyzed survey data collected from 1,176 patients in nonurgent settings and 437 surrogates representing critically ill adults. Attitudes pertaining to genetic data (familiarity, perceptions, interest in participation, concerns) and demographic information were examined using univariate and multivariate techniques. RESULTS: We explored differences among respondents who were receptive (1,333) and nonreceptive (280) to genetic sample collection. Whereas factors positively associated with receptivity to research participation were “complete trust” in health-care providers (OR, 2.091; 95% CI, 1.544-2.833), upper income strata (OR, 2.319; 95% CI, 1.308-4.114), viewing genetic research “very positively” (OR, 3.524; 95% CI, 2.122-5.852), and expressing “no worry at all” regarding disclosure of results (OR, 2.505; 95% CI, 1.436-4.369), black race was negatively associated with research participation (OR, 0.410; 95% CI, 0.288-0.585). We could detect no difference in receptivity to genetic sample collection comparing ambulatory patients and surrogates (OR, 0.738; 95% CI, 0.511-1.066). CONCLUSIONS: Expressing trust in health-care providers and viewing genetic research favorably were associated with increased willingness for study enrollment, while concern regarding breach of confidentiality and black race had the opposite effect. Study setting had no bearing on willingness to participate. PMID:25340645
Freeman, Bradley D; Butler, Kevin; Bolcic-Jankovic, Dragana; Clarridge, Brian R; Kennedy, Carie R; LeBlanc, Jessica; Chandros Hull, Sara
2015-04-01
Collection of genetic biospecimens as part of critical illness investigations is increasingly commonplace. Oversight bodies vary in restrictions imposed on genetic research, introducing inconsistencies in study design, potential for sampling bias, and the possibility of being overly prohibitive of this type of research altogether. We undertook this study to better understand whether restrictions on genetic data collection beyond those governing research on cognitively intact subjects reflect the concerns of surrogates for critically ill patients. We analyzed survey data collected from 1,176 patients in nonurgent settings and 437 surrogates representing critically ill adults. Attitudes pertaining to genetic data (familiarity, perceptions, interest in participation, concerns) and demographic information were examined using univariate and multivariate techniques. We explored differences among respondents who were receptive (1,333) and nonreceptive (280) to genetic sample collection. Whereas factors positively associated with receptivity to research participation were "complete trust" in health-care providers (OR, 2.091; 95% CI, 1.544-2.833), upper income strata (OR, 2.319; 95% CI, 1.308-4.114), viewing genetic research "very positively" (OR, 3.524; 95% CI, 2.122-5.852), and expressing "no worry at all" regarding disclosure of results (OR, 2.505; 95% CI, 1.436-4.369), black race was negatively associated with research participation (OR, 0.410; 95% CI, 0.288-0.585). We could detect no difference in receptivity to genetic sample collection comparing ambulatory patients and surrogates (OR, 0.738; 95% CI, 0.511-1.066). Expressing trust in health-care providers and viewing genetic research favorably were associated with increased willingness for study enrollment, while concern regarding breach of confidentiality and black race had the opposite effect. Study setting had no bearing on willingness to participate.
Cluster analysis of Pinus taiwanensis for its ex situ conservation in China.
Gao, X; Shi, L; Wu, Z
2015-06-01
Pinus taiwanensis Hayata is one of the most famous sights in the Huangshan Scenic Resort, China, because of its strong adaptability and ability to survive; however, this endemic species is currently under threat in China. Relationships between different P. taiwanensis populations have been well-documented; however, few studies have been conducted on how to protect this rare pine. In the present study, we propose the ex situ conservation of this species using geographical information system (GIS) cluster and genetic diversity analyses. The GIS cluster method was conducted as a preliminary analysis for establishing a sampling site category based on climatic factors. Genetic diversity was analyzed using morphological and genetic traits. By combining geographical information with genetic data, we demonstrate that growing conditions, morphological traits, and the genetic make-up of the population in the Huangshan Scenic Resort were most similar to conditions on Tianmu Mountain. Therefore, we suggest that Tianmu Mountain is the best choice for the ex situ conservation of P. taiwanensis. Our results provide a molecular basis for the sustainable management, utilization, and conservation of this species in Huangshan Scenic Resort.
Genetic Heterogeneity in Algerian Human Populations
Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David
2015-01-01
The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region. PMID:26402429
Karn, Elizabeth; Jasieniuk, Marie
2017-07-01
Management of agroecosystems with herbicides imposes strong selection pressures on weedy plants leading to the evolution of resistance against those herbicides. Resistance to glyphosate in populations of Lolium perenne L. ssp. multiflorum is increasingly common in California, USA, causing economic losses and the loss of effective management tools. To gain insights into the recent evolution of glyphosate resistance in L. perenne in perennial cropping systems of northwest California and to inform management, we investigated the frequency of glyphosate resistance and the genetic diversity and structure of 14 populations. The sampled populations contained frequencies of resistant plants ranging from 10% to 89%. Analyses of neutral genetic variation using microsatellite markers indicated very high genetic diversity within all populations regardless of resistance frequency. Genetic variation was distributed predominantly among individuals within populations rather than among populations or sampled counties, as would be expected for a wide-ranging outcrossing weed species. Bayesian clustering analysis provided evidence of population structuring with extensive admixture between two genetic clusters or gene pools. High genetic diversity and admixture, and low differentiation between populations, strongly suggest the potential for spread of resistance through gene flow and the need for management that limits seed and pollen dispersal in L. perenne .
MolabIS--an integrated information system for storing and managing molecular genetics data.
Truong, Cong V C; Groeneveld, Linn F; Morgenstern, Burkhard; Groeneveld, Eildert
2011-10-31
Long-term sample storage, tracing of data flow and data export for subsequent analyses are of great importance in genetics studies. Therefore, molecular labs do need a proper information system to handle an increasing amount of data from different projects. We have developed a molecular labs information management system (MolabIS). It was implemented as a web-based system allowing the users to capture original data at each step of their workflow. MolabIS provides essential functionality for managing information on individuals, tracking samples and storage locations, capturing raw files, importing final data from external files, searching results, accessing and modifying data. Further important features are options to generate ready-to-print reports and convert sequence and microsatellite data into various data formats, which can be used as input files in subsequent analyses. Moreover, MolabIS also provides a tool for data migration. MolabIS is designed for small-to-medium sized labs conducting Sanger sequencing and microsatellite genotyping to store and efficiently handle a relative large amount of data. MolabIS not only helps to avoid time consuming tasks but also ensures the availability of data for further analyses. The software is packaged as a virtual appliance which can run on different platforms (e.g. Linux, Windows). MolabIS can be distributed to a wide range of molecular genetics labs since it was developed according to a general data model. Released under GPL, MolabIS is freely available at http://www.molabis.org.
MolabIS - An integrated information system for storing and managing molecular genetics data
2011-01-01
Background Long-term sample storage, tracing of data flow and data export for subsequent analyses are of great importance in genetics studies. Therefore, molecular labs do need a proper information system to handle an increasing amount of data from different projects. Results We have developed a molecular labs information management system (MolabIS). It was implemented as a web-based system allowing the users to capture original data at each step of their workflow. MolabIS provides essential functionality for managing information on individuals, tracking samples and storage locations, capturing raw files, importing final data from external files, searching results, accessing and modifying data. Further important features are options to generate ready-to-print reports and convert sequence and microsatellite data into various data formats, which can be used as input files in subsequent analyses. Moreover, MolabIS also provides a tool for data migration. Conclusions MolabIS is designed for small-to-medium sized labs conducting Sanger sequencing and microsatellite genotyping to store and efficiently handle a relative large amount of data. MolabIS not only helps to avoid time consuming tasks but also ensures the availability of data for further analyses. The software is packaged as a virtual appliance which can run on different platforms (e.g. Linux, Windows). MolabIS can be distributed to a wide range of molecular genetics labs since it was developed according to a general data model. Released under GPL, MolabIS is freely available at http://www.molabis.org. PMID:22040322
Neuro-genetic system for optimization of GMI samples sensitivity.
Pitta Botelho, A C O; Vellasco, M M B R; Hall Barbosa, C R; Costa Silva, E
2016-03-01
Magnetic sensors are largely used in several engineering areas. Among them, magnetic sensors based on the Giant Magnetoimpedance (GMI) effect are a new family of magnetic sensing devices that have a huge potential for applications involving measurements of ultra-weak magnetic fields. The sensitivity of magnetometers is directly associated with the sensitivity of their sensing elements. The GMI effect is characterized by a large variation of the impedance (magnitude and phase) of a ferromagnetic sample, when subjected to a magnetic field. Recent studies have shown that phase-based GMI magnetometers have the potential to increase the sensitivity by about 100 times. The sensitivity of GMI samples depends on several parameters, such as sample length, external magnetic field, DC level and frequency of the excitation current. However, this dependency is yet to be sufficiently well-modeled in quantitative terms. So, the search for the set of parameters that optimizes the samples sensitivity is usually empirical and very time consuming. This paper deals with this problem by proposing a new neuro-genetic system aimed at maximizing the impedance phase sensitivity of GMI samples. A Multi-Layer Perceptron (MLP) Neural Network is used to model the impedance phase and a Genetic Algorithm uses the information provided by the neural network to determine which set of parameters maximizes the impedance phase sensitivity. The results obtained with a data set composed of four different GMI sample lengths demonstrate that the neuro-genetic system is able to correctly and automatically determine the set of conditioning parameters responsible for maximizing their phase sensitivities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Micalizzi, Lauren; Wang, Manjie; Saudino, Kimberly J
2017-03-01
A genetically informed longitudinal cross-lagged model was applied to twin data to explore etiological links between difficult temperament and negative parenting in early childhood. The sample comprised 313 monozygotic (MZ) and dizygotic (DZ) twin pairs. Difficult temperament and negative parenting were assessed at ages 2 and 3 using parent ratings. Both constructs were interrelated within and across age (rs .34-.47) and showed substantial stability (rs .65-.68). Difficult temperament and negative parenting were influenced by genetic and environmental factors at ages 2 and 3. The genetic and nonshared environmental correlations (rs .21-.76) at both ages suggest overlap at the level of etiology between the phenotypes. Significant bidirectional associations between difficult temperament and negative parenting were found. The cross-lagged association from difficult temperament at age 2 to negative parenting at age 3 and from negative parenting at age 2 and difficult temperament at age 3 were due to genetic, shared environmental, and nonshared environmental factors. Substantial novel genetic and nonshared environmental influences emerged at age 3 and suggest change in the etiology of these constructs over time. © 2015 John Wiley & Sons Ltd.
Biggeri, Annibale; Tallacchini, Mariachiara
2018-06-01
The different and seemingly unrelated practices of Information and Communication Technologies (ICT) used to collect and share personal and scientific data within networked communities, and the organized storage of human genetic samples and information-namely biobanking-have merged with another recent epistemic and social phenomenon, namely scientists and citizens collaborating as "peers" in creating knowledge (or peer-production of knowledge). These different dimensions can be found in joint initiatives where scientists-and-citizens use genetic information and ICT as powerful ways to gain more control over their health and the environment. While this kind of initiative usually takes place only after rights have been infringed (or are put at risk)-as the two cases presented in the paper show-collaborative scientists-and-citizens' knowledge should be institutionally allowed to complement and corroborate official knowledge-supporting policies.
Seglem, Karoline Brobakke; Waaktaar, Trine; Ask, Helga; Torgersen, Svenn
2015-03-01
Studying monozygotic and dizygotic adolescent twin pairs of both sexes reared together, the present study examined the extent to which the variance in smoking involvement is attributable to genetic and environmental effects, and to what extent there are sex differences in the etiology. Questionnaire data on how often the adolescent had ever smoked tobacco was collected from a population-based twin sample consisting of seven national birth cohorts (ages 12-18), their mothers, and their fathers (N = 1,394 families). The data was analyzed with multivariate genetic modeling, using a multi-informant design. The etiological structure of smoking involvement was best represented in an ACE common pathway model, with smoking defined as a latent factor loading onto all three informants' reports. Estimates could be set equal across sexes. Results showed that adolescent lifetime smoking involvement was moderately heritable (37 %). The largest influence was from the shared environment (56 %), while environmental effects unique to each twin had minimal influence (7 %).
Fine-Scale Map of Encyclopedia of DNA Elements Regions in the Korean Population
Yoo, Yeon-Kyeong; Ke, Xiayi; Hong, Sungwoo; Jang, Hye-Yoon; Park, Kyunghee; Kim, Sook; Ahn, TaeJin; Lee, Yeun-Du; Song, Okryeol; Rho, Na-Young; Lee, Moon Sue; Lee, Yeon-Su; Kim, Jaeheup; Kim, Young J.; Yang, Jun-Mo; Song, Kyuyoung; Kimm, Kyuchan; Weir, Bruce; Cardon, Lon R.; Lee, Jong-Eun; Hwang, Jung-Joo
2006-01-01
The International HapMap Project aims to generate detailed human genome variation maps by densely genotyping single-nucleotide polymorphisms (SNPs) in CEPH, Chinese, Japanese, and Yoruba samples. This will undoubtedly become an important facility for genetic studies of diseases and complex traits in the four populations. To address how the genetic information contained in such variation maps is transferable to other populations, the Korean government, industries, and academics have launched the Korean HapMap project to genotype high-density Encyclopedia of DNA Elements (ENCODE) regions in 90 Korean individuals. Here we show that the LD pattern, block structure, haplotype diversity, and recombination rate are highly concordant between Korean and the two HapMap Asian samples, particularly Japanese. The availability of information from both Chinese and Japanese samples helps to predict more accurately the possible performance of HapMap markers in Korean disease-gene studies. Tagging SNPs selected from the two HapMap Asian maps, especially the Japanese map, were shown to be very effective for Korean samples. These results demonstrate that the HapMap variation maps are robust in related populations and will serve as an important resource for the studies of the Korean population in particular. PMID:16702437
Polygenic risk predicts obesity in both white and black young adults.
Domingue, Benjamin W; Belsky, Daniel W; Harris, Kathleen Mullan; Smolen, Andrew; McQueen, Matthew B; Boardman, Jason D
2014-01-01
To test transethnic replication of a genetic risk score for obesity in white and black young adults using a national sample with longitudinal data. A prospective longitudinal study using the National Longitudinal Study of Adolescent Health Sibling Pairs (n = 1,303). Obesity phenotypes were measured from anthropometric assessments when study members were aged 18-26 and again when they were 24-32. Genetic risk scores were computed based on published genome-wide association study discoveries for obesity. Analyses tested genetic associations with body-mass index (BMI), waist-height ratio, obesity, and change in BMI over time. White and black young adults with higher genetic risk scores had higher BMI and waist-height ratio and were more likely to be obese compared to lower genetic risk age-peers. Sibling analyses revealed that the genetic risk score was predictive of BMI net of risk factors shared by siblings. In white young adults only, higher genetic risk predicted increased risk of becoming obese during the study period. In black young adults, genetic risk scores constructed using loci identified in European and African American samples had similar predictive power. Cumulative information across the human genome can be used to characterize individual level risk for obesity. Measured genetic risk accounts for only a small amount of total variation in BMI among white and black young adults. Future research is needed to identify modifiable environmental exposures that amplify or mitigate genetic risk for elevated BMI.
Lobach, Iryna; Fan, Ruzong; Manga, Prashiela
A central problem in genetic epidemiology is to identify and rank genetic markers involved in a disease. Complex diseases, such as cancer, hypertension, diabetes, are thought to be caused by an interaction of a panel of genetic factors, that can be identified by markers, which modulate environmental factors. Moreover, the effect of each genetic marker may be small. Hence, the association signal may be missed unless a large sample is considered, or a priori biomedical data are used. Recent advances generated a vast variety of a priori information, including linkage maps and information about gene regulatory dependence assembled into curated pathway databases. We propose a genotype-based approach that takes into account linkage disequilibrium (LD) information between genetic markers that are in moderate LD while modeling gene-gene and gene-environment interactions. A major advantage of our method is that the observed genetic information enters a model directly thus eliminating the need to estimate haplotype-phase. Our approach results in an algorithm that is inexpensive computationally and does not suffer from bias induced by haplotype-phase ambiguity. We investigated our model in a series of simulation experiments and demonstrated that the proposed approach results in estimates that are nearly unbiased and have small variability. We applied our method to the analysis of data from a melanoma case-control study and investigated interaction between a set of pigmentation genes and environmental factors defined by age and gender. Furthermore, an application of our method is demonstrated using a study of Alcohol Dependence.
Chaotic Homes and Children’s Disruptive Behavior
Jaffee, Sara R.; Haworth, Claire M. A.; Davis, Oliver S. P.; Plomin, Robert
2012-01-01
Chaotic home lives are correlated with behavior problems in children. In the study reported here, we tested whether there was a cross-lagged relation between children’s experience of chaos and their disruptive behaviors (conduct problems and hyperactivity-inattention). Using genetically informative models, we then tested for the first time whether the influence of household chaos on disruptive behavior was environmentally mediated and whether genetic influences on children’s disruptive behaviors accounted for the heritability of household chaos. We measured children’s perceptions of household chaos and parents’ ratings of children’s disruptive behavior at ages 9 and 12 in a sample of 6,286 twin pairs from the Twins Early Development Study (TEDS). There was a phenotypic cross-lagged relation between children’s experiences of household chaos and their disruptive behavior. In genetically informative models, we found that the effect of household chaos on subsequent disruptive behavior was environmentally mediated. However, genetic influences on disruptive behavior did not explain why household chaos was heritable. PMID:22547656
Guo, Guang; Tong, Yuying; Cai, Tianji
2010-01-01
In this study, we set out to investigate whether introducing molecular genetic measures into an analysis of sexual partner variety will yield novel sociological insights. The data source is the white male DNA sample in the National Longitudinal Study of Adolescent Health. Our empirical analysis has produced a robust protective effect of the 9R/9R genotype relative to the Any10R genotype in the dopamine transporter gene (DAT1). The gene-environment interaction analysis demonstrates that the protective effect of 9R/9R tends to be lost in schools in which higher proportions of students start having sex early or among those with relatively low levels of cognitive ability. Our genetics-informed sociological analysis suggests that the “one size” of a single social theory may not fit all. Explaining a human trait or behavior may require a theory that accommodates the complex interplay between social contextual and individual influences and genetic predispositions. PMID:19569400
Marshall, Patricia A; Adebamowo, Clement A; Adeyemo, Adebowale A; Ogundiran, Temidayo O; Strenski, Teri; Zhou, Jie; Rotimi, Charles N
2014-05-13
Studies on informed consent to medical research conducted in low or middle-income settings have increased, including empirical investigations of consent to genetic research. We investigated voluntary participation and comprehension of informed consent among women involved in a genetic epidemiological study on breast cancer in an urban setting of Nigeria comparing women in the case and control groups. Surveys were administered in face-to-face interviews with 215 participants following their enrollment in the genetic study (106 patients, 109 controls). Audio-taped in-depth interviews were conducted with a sub-sample of 17 (8%) women who completed the survey. The majority of all participants reported being told that participation in the genetic study was voluntary (97%), that they did not feel pressured to participate in the study (99%), and that they could withdraw from the study (81%). The majority of the breast cancer patients (83%) compared to 58% of women in the control group reported that the study purpose was to learn about the genetic inheritance of breast cancer (OR 3.44; 95% CI =1.66, 7.14, p value = 0.001). Most participants reported being told about study procedures (95%) and study benefits (98%). Sixty-eight percent of the patients, compared to 47% of the control group reported being told about study risks (p-value <0.001). Of the 165 married women, 19% reported asking permission from their husbands to enroll in the breast cancer study; no one sought permission from local elders. In-depth interviews highlight the use of persuasion and negotiation between a wife and her husband regarding study participation. The global expansion of genetic and genomic research highlights our need to understand informed consent practices for studies in ethnically diverse cultural environments such as Africa. Quantitative and qualitative empirical investigations of the informed consent process for genetic and genomic research will further our knowledge of complex issues associated with communication of information, comprehension, decisional authority and voluntary participation. In the future, the development and testing of innovative strategies to promote voluntary participation and comprehension of the goals of genomic research will contribute to our understanding of strategies that enhance the consent process.
Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros
Rovie-Ryan, Jeffrine Japning; Zainuddin, Zainal Zahari; Marni, Wahap; Ahmad, Abdul Hamid; Ambu, Laurentius N.; Payne, Junaidi
2013-01-01
Objective To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Methods Blood meal was recovered from the abdomen of an engorged tabanid fly (Haematopota sp.) which was captured immediately after biting a Sumatran rhino in captivity. The blood was applied on to a Whatman FTA® blood card. Subsequent laboratory work was conducted to extract, amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinoceros and subjecting it to the same laboratory process. Results BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from the rhino. Conclusions This method could be used in the field application to noninvasively collect genetic samples. Collection of tabanids and other haematophagous arthropods (e.g. mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases. PMID:23593586
Micalizzi, Lauren; Ronald, Angelica; Saudino, Kimberly J.
2015-01-01
A genetically informed cross-lagged model was applied to twin data to explore etiological links between autistic-like traits and affective problems in early childhood. The sample comprised 310 same-sex twin pairs (143 monozygotic and 167 dizygotic; 53% male). Autistic-like traits and affective problems were assessed at ages 2 and 3 using parent ratings. Both constructs were related within and across age (r = .30−.53) and showed moderate stability (r = .45−.54). Autistic-like traits and affective problems showed genetic and environmental influences at both ages. Whereas at age 2, the covariance between autistic-like traits and affective problems was entirely due to environmental influences (shared and nonshared), at age 3, genetic factors also contributed to the covariance between constructs. The stability paths, but not the cross-lagged paths, were significant, indicating that there is stability in both autistic-like traits and affective problems but they do not mutually influence each other across age. Stability effects were due to genetic, shared, and nonshared environmental influences. Substantial novel genetic and nonshared environmental influences emerge at age 3 and suggest change in the etiology of these constructs over time. During early childhood, autistic-like traits tend to occur alongside affective problems and partly overlapping genetic and environmental influences explain this association. PMID:26456961
A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification
Weisberg, Steven M.; Badgio, Daniel; Chatterjee, Anjan
2017-01-01
The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes—conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people’s attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification. PMID:28589120
A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification.
Weisberg, Steven M; Badgio, Daniel; Chatterjee, Anjan
2017-01-01
The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes-conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people's attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification.
Schuttler, Stephanie G; Philbrick, Jessica A; Jeffery, Kathryn J; Eggert, Lori S
2014-01-01
Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r) tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r) tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines, with some individuals having more associates than observed from group sizes alone.
Balazik, Matthew T.; Farrae, Daniel J.; Darden, Tanya L.; Garman, Greg C.
2017-01-01
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) populations are currently at severely depleted levels due to historic overfishing, habitat loss, and pollution. The importance of biologically correct stock structure for effective conservation and management efforts is well known. Recent improvements in our understanding of Atlantic sturgeon migrations, movement, and the occurrence of putative dual spawning groups leads to questions regarding the true stock structure of this endangered species. In the James River, VA specifically, captures of spawning Atlantic sturgeon and accompanying telemetry data suggest there are two discrete spawning groups of Atlantic sturgeon. The two putative spawning groups were genetically evaluated using a powerful microsatellite marker suite to determine if they are genetically distinct. Specifically, this study evaluates the genetic structure, characterizes the genetic diversity, estimates effective population size, and measures inbreeding of Atlantic sturgeon in the James River. The results indicate that fall and spring spawning James River Atlantic sturgeon groups are genetically distinct (overall FST = 0.048, F’ST = 0.181) with little admixture between the groups. The observed levels of genetic diversity and effective population sizes along with the lack of detected inbreeding all indicated that the James River has two genetically healthy populations of Atlantic sturgeon. The study also demonstrates that samples from adult Atlantic sturgeon, with proper sample selection criteria, can be informative when creating reference population databases. The presence of two genetically-distinct spawning groups of Atlantic sturgeon within the James River raises concerns about the current genetic assignment used by managers. Other nearby rivers may also have dual spawning groups that either are not accounted for or are pooled in reference databases. Our results represent the second documentation of genetically distinct dual spawning groups of Atlantic sturgeon in river systems along the U.S. Atlantic coast, suggesting that current reference population database should be updated to incorporate both new samples and our increased understanding of Atlantic sturgeon life history. PMID:28686610
Reasor, Eric H; Brosnan, James T; Staton, Margaret E; Lane, Thomas; Trigiano, Robert N; Wadl, Phillip A; Conner, Joann A; Schwartz, Brian M
2018-01-01
Interspecific hybrid bermudagrass [ Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] is one of the most widely used grasses on golf courses, with cultivars derived from 'Tifgreen' or 'Tifdwarf' particularly used for putting greens. Many bermudagrass cultivars established for putting greens can be genetically unstable and lead to the occurrence of undesirable off-type grasses that vary in phenotype. The objective of this research was to genetically and phenotypically differentiate off-type grasses and hybrid cultivars. Beginning in 2013, off-type and desirable hybrid bermudagrass samples were collected from golf course putting greens in the southeastern United States and genetically and phenotypically characterized using genotyping-by-sequencing and morphology. Genotyping-by-sequencing determined that 11% (5) of off-type and desirable samples from putting greens were genetically divergent from standard cultivars such as Champion, MiniVerde, Tifdwarf, TifEagle, and Tifgreen. In addition, genotyping-by-sequencing was unable to genetically distinguish all standard cultivars from one another due to their similar origin and clonal propagation; however, over 90,000 potentially informative nucleotide variants were identified among the triploid hybrid cultivars. Although few genetic differences were found in this research, samples harvested from golf course putting greens had variable morphology and were clustered into three distinct phenotypic groups. The majority of off-type grasses in hybrid bermudagrass putting greens were genetically similar with variable morphological traits. Off-type grasses within golf course putting greens have the potential to compromise putting surface functionality and aesthetics.
Broad-Scale Genetic Diversity of Cannabis for Forensic Applications.
Dufresnes, Christophe; Jan, Catherine; Bienert, Friederike; Goudet, Jérôme; Fumagalli, Luca
2017-01-01
Cannabis (hemp and marijuana) is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs) in 1 324 samples selected specifically for fibre (24 hemp varieties) and drug (15 marijuana varieties) production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal) diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide.
Broad-Scale Genetic Diversity of Cannabis for Forensic Applications
Dufresnes, Christophe; Jan, Catherine; Bienert, Friederike; Goudet, Jérôme; Fumagalli, Luca
2017-01-01
Cannabis (hemp and marijuana) is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs) in 1 324 samples selected specifically for fibre (24 hemp varieties) and drug (15 marijuana varieties) production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal) diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide. PMID:28107530
Fung, Tak; Keenan, Kevin
2014-01-01
The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%), a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L.), occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
Toffanin, V; Penasa, M; McParland, S; Berry, D P; Cassandro, M; De Marchi, M
2015-05-01
The aim of the present study was to estimate genetic parameters for calcium (Ca), phosphorus (P) and titratable acidity (TA) in bovine milk predicted by mid-IR spectroscopy (MIRS). Data consisted of 2458 Italian Holstein-Friesian cows sampled once in 220 farms. Information per sample on protein and fat percentage, pH and somatic cell count, as well as test-day milk yield, was also available. (Co)variance components were estimated using univariate and bivariate animal linear mixed models. Fixed effects considered in the analyses were herd of sampling, parity, lactation stage and a two-way interaction between parity and lactation stage; an additive genetic and residual term were included in the models as random effects. Estimates of heritability for Ca, P and TA were 0.10, 0.12 and 0.26, respectively. Positive moderate to strong phenotypic correlations (0.33 to 0.82) existed between Ca, P and TA, whereas phenotypic weak to moderate correlations (0.00 to 0.45) existed between these traits with both milk quality and yield. Moderate to strong genetic correlations (0.28 to 0.92) existed between Ca, P and TA, and between these predicted traits with both fat and protein percentage (0.35 to 0.91). The existence of heritable genetic variation for Ca, P and TA, coupled with the potential to predict these components for routine cow milk testing, imply that genetic gain in these traits is indeed possible.
2010-01-01
Background Research involving minors has been the subject of much ethical debate. The growing number of longitudinal, pediatric studies that involve genetic research present even more complex challenges to ensure appropriate protection of children and families as research participants. Long-term studies with a genetic component involve collection, retention and use of biological samples and personal information over many years. Cohort studies may be established to study specific conditions (e.g. autism, asthma) or may have a broad aim to research a range of factors that influence the health and development of children. Studies are increasingly intended to serve as research platforms by providing access to data and biological samples to researchers over many years. This study examines how six birth cohort studies in North America and Europe that involve genetic research handle key ethical, legal and social (ELS) issues: recruitment, especially parental authority to include a child in research; initial parental consent and subsequent assent and/or consent from the maturing child; withdrawal; confidentiality and sample/data protection; handling sensitive information; and disclosure of results. Methods Semi-structured telephone interviews were carried out in 2008/09 with investigators involved in six birth cohort studies in Canada, Denmark, England, France, the Netherlands and the United States. Interviewees self-identified as being knowledgeable about ELS aspects of the study. Interviews were conducted in English. Results The studies vary in breadth of initial consent, but none adopt a blanket consent for future use of samples/data. Ethics review of new studies is a common requirement. Studies that follow children past early childhood recognise a need to seek assent/consent as the child matures. All studies limit access to identifiable data and advise participants of the right to withdraw. The clearest differences among studies concern handling of sensitive information and return of results. In all studies, signs of child abuse require reports to authorities, but this disclosure duty is not always stated in consent materials. Studies vary in whether they will return to participants results of routine tests/measures, but none inform participants about findings with unknown clinical significance. Conclusions Analysis of how cohort studies in various jurisdictions handle key ELS issues provides informative data for comparison and contrast. Consideration of these and other examples and further scholarly exploration of ELS issues provides insight on how best to address these aspects in ways that respect the well-being of participants, especially children who become research subjects at the start of their lives. PMID:20331891
Knopik, Valerie S.; Marceau, Kristine; Palmer, Rohan H. C.; Smith, Taylor F.; Heath, Andrew C.
2016-01-01
Maternal smoking during pregnancy (SDP) is a significant public health concern with adverse consequences to the health and well-being of the fetus. There is considerable debate about the best method of assessing SDP, including birth/medical records, timeline follow-back approaches, multiple reporters, and biological verification (e.g., cotinine). This is particularly salient for genetically-informed approaches where it is not always possible or practical to do a prospective study starting during the prenatal period when concurrent biological specimen samples can be collected with ease. In a sample of families (N = 173) specifically selected for sibling pairs discordant for prenatal smoking exposure, we: (1) compare rates of agreement across different types of report—maternal report of SDP, paternal report of maternal SDP, and SDP contained on birth records from the Department of Vital Statistics; (2) examine whether SDP is predictive of birth weight outcomes using our best SDP report as identified via step (1); and (3) use a sibling-comparison approach that controls for genetic and familial influences that siblings share in order to assess the effects of SDP on birth weight. Results show high agreement between reporters and support the utility of retrospective report of SDP. Further, we replicate a causal association between SDP and birth weight, wherein SDP results in reduced birth weight even when accounting for genetic and familial confounding factors via a sibling comparison approach. PMID:26494459
Mascheretti, Sara; Riva, Valentina; Cattaneo, Francesca; Rigoletto, Catia; Rusconi, Marianna; Gruen, Jeffrey R.; Giorda, Roberto; Lazazzera, Claudio; Molteni, Massimo
2014-01-01
Converging evidence indicates that developmental problems in oral language and mathematics can predate or co-occur with developmental dyslexia (DD). Substantial genetic correlations have been found between language, mathematics and reading traits, independent of the method of sampling. We tested for association of variants of two DD susceptibility genes, DCDC2 and DYX1C1, in nuclear families ascertained through a proband with DD using concurrent measurements of language and mathematics in both probands and siblings by the Quantitative Transmission Disequilibrium Test. Evidence for significant associations was found between DCDC2 and ‘Numerical Facts’ (p value = 0.02, with 85 informative families, genetic effect = 0.57) and between ‘Mental Calculation’ and DYX1C1 markers −3GA (p value = 0.05, with 40 informative families, genetic effect = −0.67) and 1249GT (p value = 0.02, with 49 informative families, genetic effect = −0.65). No statistically significant associations were found between DCDC2 or DYX1C1 and language phenotypes. Both DCDC2 and DYX1C1 DD susceptibility genes appear to have a pleiotropic role on mathematics but not language phenotypes. PMID:21046216
Marino, Cecilia; Mascheretti, Sara; Riva, Valentina; Cattaneo, Francesca; Rigoletto, Catia; Rusconi, Marianna; Gruen, Jeffrey R; Giorda, Roberto; Lazazzera, Claudio; Molteni, Massimo
2011-01-01
Converging evidence indicates that developmental problems in oral language and mathematics can predate or co-occur with developmental dyslexia (DD). Substantial genetic correlations have been found between language, mathematics and reading traits, independent of the method of sampling. We tested for association of variants of two DD susceptibility genes, DCDC2 and DYX1C1, in nuclear families ascertained through a proband with DD using concurrent measurements of language and mathematics in both probands and siblings by the Quantitative Transmission Disequilibrium Test. Evidence for significant associations was found between DCDC2 and 'Numerical Facts' (p value = 0.02, with 85 informative families, genetic effect = 0.57) and between 'Mental Calculation' and DYX1C1 markers -3GA (p value = 0.05, with 40 informative families, genetic effect = -0.67) and 1249GT (p value = 0.02, with 49 informative families, genetic effect = -0.65). No statistically significant associations were found between DCDC2 or DYX1C1 and language phenotypes. Both DCDC2 and DYX1C1 DD susceptibility genes appear to have a pleiotropic role on mathematics but not language phenotypes.
Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA)
Schultz, Martin T.; Lance, Richard F.
2015-01-01
The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives. PMID:26509674
Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA).
Schultz, Martin T; Lance, Richard F
2015-01-01
The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives.
Rural-urban and racial-ethnic differences in awareness of direct-to-consumer genetic testing.
Salloum, Ramzi G; George, Thomas J; Silver, Natalie; Markham, Merry-Jennifer; Hall, Jaclyn M; Guo, Yi; Bian, Jiang; Shenkman, Elizabeth A
2018-02-23
Access to direct-to-consumer genetic testing services has increased in recent years. However, disparities in knowledge and awareness of these services are not well documented. We examined awareness of genetic testing services by rural/urban and racial/ethnic status. Analyses were conducted using pooled cross-sectional data from 4 waves (2011-2014) of the Health Information National Trends Survey (HINTS). Descriptive statistics compared sample characteristics and information sources by rural/urban residence. Logistic regression was used to examine the relationship between geography, racial/ethnic status, and awareness of genetic testing, controlling for sociodemographic characteristics. Of 13,749 respondents, 16.7% resided in rural areas, 13.8% were Hispanic, and 10.1% were non-Hispanic black. Rural residents were less likely than urban residents to report awareness of genetic testing (OR = 0.74, 95% CI = 0.63-0.87). Compared with non-Hispanic whites, racial/ethnic minorities were less likely to be aware of genetic testing: Hispanic (OR = 0.68, 95% CI = 0.56-0.82); and non-Hispanic black (OR = 0.74, 95% CI = 0.61-0.90). Rural-urban and racial-ethnic differences exist in awareness of direct-to-consumer genetic testing. These differences may translate into disparities in the uptake of genetic testing, health behavior change, and disease prevention through precision and personalized medicine.
Sampling through time and phylodynamic inference with coalescent and birth–death models
Volz, Erik M.; Frost, Simon D. W.
2014-01-01
Many population genetic models have been developed for the purpose of inferring population size and growth rates from random samples of genetic data. We examine two popular approaches to this problem, the coalescent and the birth–death-sampling model (BDM), in the context of estimating population size and birth rates in a population growing exponentially according to the birth–death branching process. For sequences sampled at a single time, we found the coalescent and the BDM gave virtually indistinguishable results in terms of the growth rates and fraction of the population sampled, even when sampling from a small population. For sequences sampled at multiple time points, we find that the birth–death model estimators are subject to large bias if the sampling process is misspecified. Since BDMs incorporate a model of the sampling process, we show how much of the statistical power of BDMs arises from the sequence of sample times and not from the genealogical tree. This motivates the development of a new coalescent estimator, which is augmented with a model of the known sampling process and is potentially more precise than the coalescent that does not use sample time information. PMID:25401173
Kimel, Sasha Y; Huesmann, Rowell; Kunst, Jonas R; Halperin, Eran
2016-05-01
Information about the degree of one's genetic overlap with ethnic outgroups has been emphasized in genocides, is frequently learned about through media reporting, and is increasingly being accessed via personal genetic testing services. However, the consequence of learning about whether your own ethnic group is either genetically related to or genetically distinct from a disliked ethnic group remains unknown. Across four experiments, using diverse samples, measures and contexts, we demonstrate that altering perceptions of genetic overlap between groups in conflict--in this case Arabs and Jews--impacts factors that are directly related to interethnic hostility (e.g., aggressive behaviors, support of conflict-related policies). Our findings indicate that learning about the genetic difference between oneself and an ethnic outgroup may contribute to the promotion of violence, whereas learning about the similarities may be a vital step toward fostering peace in some contexts. Possible interventions and implications are discussed. © 2016 by the Society for Personality and Social Psychology, Inc.
Fernández, Jesús; Toro, Miguel Á; Sonesson, Anna K; Villanueva, Beatriz
2014-01-01
The success of an aquaculture breeding program critically depends on the way in which the base population of breeders is constructed since all the genetic variability for the traits included originally in the breeding goal as well as those to be included in the future is contained in the initial founders. Traditionally, base populations were created from a number of wild strains by sampling equal numbers from each strain. However, for some aquaculture species improved strains are already available and, therefore, mean phenotypic values for economically important traits can be used as a criterion to optimize the sampling when creating base populations. Also, the increasing availability of genome-wide genotype information in aquaculture species could help to refine the estimation of relationships within and between candidate strains and, thus, to optimize the percentage of individuals to be sampled from each strain. This study explores the advantages of using phenotypic and genome-wide information when constructing base populations for aquaculture breeding programs in terms of initial and subsequent trait performance and genetic diversity level. Results show that a compromise solution between diversity and performance can be found when creating base populations. Up to 6% higher levels of phenotypic performance can be achieved at the same level of global diversity in the base population by optimizing the selection of breeders instead of sampling equal numbers from each strain. The higher performance observed in the base population persisted during 10 generations of phenotypic selection applied in the subsequent breeding program.
Coelho, A V C; Moura, R R; Cavalcanti, C A J; Guimarães, R L; Sandrin-Garcia, P; Crovella, S; Brandão, L A C
2015-03-31
Genetic association studies determine how genes influence traits. However, non-detected population substructure may bias the analysis, resulting in spurious results. One method to detect substructure is to genotype ancestry informative markers (AIMs) besides the candidate variants, quantifying how much ancestral populations contribute to the samples' genetic background. The present study aimed to use a minimum quantity of markers, while retaining full potential to estimate ancestries. We tested the feasibility of a subset of the 12 most informative markers from a previously established study to estimate influence from three ancestral populations: European, African and Amerindian. The results showed that in a sample with a diverse ethnicity (N = 822) derived from 1000 Genomes database, the 12 AIMs had the same capacity to estimate ancestries when compared to the original set of 128 AIMs, since estimates from the two panels were closely correlated. Thus, these 12 SNPs were used to estimate ancestry in a new sample (N = 192) from an admixed population in Recife, Northeast Brazil. The ancestry estimates from Recife subjects were in accordance with previous studies, showing that Northeastern Brazilian populations show great influence from European ancestry (59.7%), followed by African (23.0%) and Amerindian (17.3%) ancestries. Ethnicity self-classification according to skin-color was confirmed to be a poor indicator of population substructure in Brazilians, since ancestry estimates overlapped between classifications. Thus, our streamlined panel of 12 markers may substitute panels with more markers, while retaining the capacity to control for population substructure and admixture, thereby reducing sample processing time.
Across-cohort QC analyses of GWAS summary statistics from complex traits.
Chen, Guo-Bo; Lee, Sang Hong; Robinson, Matthew R; Trzaskowski, Maciej; Zhu, Zhi-Xiang; Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Kutalik, Zoltán; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Yang, Jian; Wray, Naomi R; Visscher, Peter M
2016-01-01
Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics F st statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy.
Across-cohort QC analyses of GWAS summary statistics from complex traits
Chen, Guo-Bo; Lee, Sang Hong; Robinson, Matthew R; Trzaskowski, Maciej; Zhu, Zhi-Xiang; Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Kutalik, Zoltán; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Yang, Jian; Wray, Naomi R; Visscher, Peter M
2017-01-01
Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics Fst statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy. PMID:27552965
Caruso, Anita; Vigna, Cristina; Maggi, Gabriella; Sega, Fabio Massimo; Cognetti, Francesco; Savarese, Antonella
2008-11-24
Oncogenetic counselling is seldom followed through, even when individuals are eligible according to the test criteria. The basic variables which influence the decision to undergo the genetic counselling process are: risk perception, expected benefit or limitations of genetic testing, general psychological distress or cancer-specific distress, lack of trust in one's emotional reactions when faced with negative events, expected level of family support and communications within the family. The aim of this study was to describe the psychosocial variables of an Italian sample that forgoes genetic counselling. From May 2002 to December 2006 a psychological questionnaire was sent out to one hundred and six subjects, who freely requested a first genetic informative consultation, and never asked to have a second visit and the family tree drawn up in order to inquire about their eligibility for genetic testing. Statistical analysis was performed by Pearson chi-square test, t-test and Spearman RHO coefficient. The survey presents a lack of emotional cohesion and structured roles and rules within the family system and a positive correlation between the number of children, anxiety and risk perception. The main reasons for giving up on counselling were a sense that testing was a waste of time and the inability to emotionally handle the negative consequences of the test outcome. The subjects who maintained that test and an early diagnosis were a "waste of time" experienced more anxiety. The study revealed the importance to ac knowledging the whole persona and their family system as well as provide information highlighting usefulness of early diagnosis.
Let the consumer decide? The regulation of commercial genetic testing.
Levitt, D M
2001-12-01
The development of predictive genetic tests provides a new area where consumers can gain knowledge of their health status and commercial opportunities. "Over-the-counter" or mail order genetic tests are most likely to provide information on carrier status or the risk of developing a multifactorial disease. The paper considers the social and ethical implications of individuals purchasing genetic tests and whether genetic information is different from other types of health information which individuals can obtain for themselves. The discussion is illustrated by findings from a questionnaire survey of university students as potential consumers. Topics covered included what health tests they had already used, expectations of genetic tests, willingness to pay, who should have access to the results and whether there need to be restrictions on such tests. SAMPLE-Six hundred and fifteen first-year students in the universities of Leuven, Cardiff, Central Lancashire, Vienna and Nijmegen studying either medicine or a non-science subject. Students were enthusiastic about genetic tests and had high expectations of their accuracy and usefulness but most thought they should be available through the health service and a minority thought that some tests, for example for sex selection, should not be available at all. There were few differences in responses by sex or subject of study but some by country. The paper also considers ethical and social issues outside the scope of a questionnaire survey of this type. To address some of these issues the sale of genetic tests to individuals can be made subject to ethical guidelines or codes of practice, for example to protect vulnerable groups, but there are fundamental social and ethical questions which such guidelines cannot address.
Genetic analysis of scats reveals minimum number and sex of recently documented mountain lions
Naidu, Ashwin; Smythe, Lindsay A.; Thompson, Ron W.; Culver, Melanie
2011-01-01
Recent records of mountain lions Puma concolor and concurrent declines in desert bighorn sheep Ovis canadensis mexicana on Kofa National Wildlife Refuge in Arizona, United States, have prompted investigations to estimate the number of mountain lions occurring there. We performed noninvasive genetic analyses and identified species, individuals, and sex from scat samples collected from the Kofa and Castle Dome Mountains. From 105 scats collected, we identified a minimum of 11 individual mountain lions. These individuals consisted of six males, two females and three of unknown sex. Three of the 11 mountain lions were identified multiple times over the study period. These estimates supplement previously recorded information on mountain lions in an area where they were historically considered only transient. We demonstrate that noninvasive genetic techniques, especially when used in conjunction with camera-trap and radiocollaring methods, can provide additional and reliable information to wildlife managers, particularly on secretive species like the mountain lion.
EHR based Genetic Testing Knowledge Base (iGTKB) Development
2015-01-01
Background The gap between a large growing number of genetic tests and a suboptimal clinical workflow of incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic test recommendation system that not only can provide a comprehensive view of genetic tests as education resources, but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB). Methods We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic. Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO). Results Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic. A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243 clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their associated information about genetic tests and genetic disorders. Conclusions In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic testing recommendation system, iGenetics. PMID:26606281
EHR based Genetic Testing Knowledge Base (iGTKB) Development.
Zhu, Qian; Liu, Hongfang; Chute, Christopher G; Ferber, Matthew
2015-01-01
The gap between a large growing number of genetic tests and a suboptimal clinical workflow of incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic test recommendation system that not only can provide a comprehensive view of genetic tests as education resources, but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB). We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic. Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO). Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic. A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243 clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their associated information about genetic tests and genetic disorders. In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic testing recommendation system, iGenetics.
78 FR 57353 - Endangered Species; File No. 14726
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-18
... gather information on their life-history, genetics, movements, behavior, and diet. Researchers are... from this sampling would help Dr. Witherington determine the trophic history of pelagic neonate and... with the trophic histories would further describe the sea turtles' home range, habitat use, residency...
Li, S.-F.; Xu, J.-W.; Yang, Q.-L.; Wang, C.H.; Chapman, D.C.; Lu, G.
2011-01-01
Silver carp Hypophthalmichthys molitrix (Cyprinidae) is native to China and has been introduced to over 80 countries. The extent of genetic diversity in introduced silver carp and the genetic divergence between introduced and native populations remain largely unknown. In this study, 241 silver carp sampled from three major native rivers and two non-native rivers (Mississippi River and Danube River) were analyzed using nucleotide sequences of mitochondrial COI gene and D-loop region. A total of 73 haplotypes were observed, with no haplotype found common to all the five populations and eight haplotypes shared by two to four populations. As compared with introduced populations, all native populations possess both higher haplotype diversity and higher nucleotide diversity, presumably a result of the founder effect. Significant genetic differentiation was revealed between native and introduced populations as well as among five sampled populations, suggesting strong selection pressures might have occurred in introduced populations. Collectively, this study not only provides baseline information for sustainable use of silver carp in their native country (i.e., China), but also offers first-hand genetic data for the control of silver carp in countries (e.g., the United States) where they are considered invasive.
An overview of STRUCTURE: applications, parameter settings, and supporting software
Porras-Hurtado, Liliana; Ruiz, Yarimar; Santos, Carla; Phillips, Christopher; Carracedo, Ángel; Lareu, Maria V.
2013-01-01
Objectives: We present an up-to-date review of STRUCTURE software: one of the most widely used population analysis tools that allows researchers to assess patterns of genetic structure in a set of samples. STRUCTURE can identify subsets of the whole sample by detecting allele frequency differences within the data and can assign individuals to those sub-populations based on analysis of likelihoods. The review covers STRUCTURE's most commonly used ancestry and frequency models, plus an overview of the main applications of the software in human genetics including case-control association studies (CCAS), population genetics, and forensic analysis. The review is accompanied by supplementary material providing a step-by-step guide to running STRUCTURE. Methods: With reference to a worked example, we explore the effects of changing the principal analysis parameters on STRUCTURE results when analyzing a uniform set of human genetic data. Use of the supporting software: CLUMPP and distruct is detailed and we provide an overview and worked example of STRAT software, applicable to CCAS. Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct, and STRAT can be applied to provide researchers with an informed choice of parameter settings and supporting software when analyzing their own genetic data. PMID:23755071
Multilocus nuclear DNA markers reveal population structure and demography of Anopheles minimus.
Dixit, Jyotsana; Arunyawat, Uraiwan; Huong, Ngo Thi; Das, Aparup
2014-11-01
Utilization of multiple putatively neutral DNA markers for inferring evolutionary history of species population is considered to be the most robust approach. Molecular population genetic studies have been conducted in many species of Anopheles genus, but studies based on single nucleotide polymorphism (SNP) data are still very scarce. Anopheles minimus is one of the principal malaria vectors of Southeast (SE) Asia including the Northeastern (NE) India. Although population genetic studies with mitochondrial genetic variation data have been utilized to infer phylogeography of the SE Asian populations of this species, limited information on the population structure and demography of Indian An. minimus is available. We herewith have developed multilocus nuclear genetic approach with SNP markers located in X chromosome of An. minimus in eight Indian and two SE Asian population samples (121 individual mosquitoes in total) to infer population history and test several hypotheses on the phylogeography of this species. While the Thai population sample of An. minimus presented the highest nucleotide diversity, majority of the Indian samples were also fairly diverse. In general, An. minimus populations were moderately substructured in the distribution range covering SE Asia and NE India, largely falling under three distinct genetic clusters. Moreover, demographic expansion events could be detected in the majority of the presently studied populations of An. minimus. Additional DNA sequencing of the mitochondrial COII region in a subset of the samples (40 individual mosquitoes) corroborated the existing hypothesis of Indian An. minimus falling under the earlier reported mitochondrial lineage B. © 2014 John Wiley & Sons Ltd.
Attentional switching forms a genetic link between attention problems and autistic traits in adults.
Polderman, T J C; Hoekstra, R A; Vinkhuyzen, A A E; Sullivan, P F; van der Sluis, S; Posthuma, D
2013-09-01
Attention deficit hyperactivity disorder (ADHD) symptoms and autistic traits often occur together. The pattern and etiology of co-occurrence are largely unknown, particularly in adults. This study investigated the co-occurrence between both traits in detail, and subsequently examined the etiology of the co-occurrence, using two independent adult population samples. Method Data on ADHD traits (Inattention and Hyperactivity/Impulsivity) were collected in a population sample (S1, n = 559) of unrelated individuals. Data on Attention Problems (AP) were collected in a population-based family sample of twins and siblings (S2, n = 560). In both samples five dimensions of autistic traits were assessed (social skills, routine, attentional switching, imagination, patterns). Hyperactive traits (S1) did not correlate substantially with the autistic trait dimensions. For Inattention (S1) and AP (S2), the correlations with the autistic trait dimensions were low, apart from a prominent correlation with the attentional switching scale (0.47 and 0.32 respectively). Analyses in the genetically informative S2 revealed that this association could be explained by a shared genetic factor. Our findings suggest that the co-occurrence of ADHD traits and autistic traits in adults is not determined by problems with hyperactivity, social skills, imagination or routine preferences. Instead, the association between those traits is due primarily to shared attention-related problems (inattention and attentional switching capacity). As the etiology of this association is purely genetic, biological pathways involving attentional control could be a promising focus of future studies aimed at unraveling the genetic causes of these disorders.
Florez, J. C.; Price, A. L.; Campbell, D.; Riba, L.; Parra, M. V.; Yu, F.; Duque, C.; Saxena, R.; Gallego, N.; Tello-Ruiz, M.; Franco, L.; Rodríguez-Torres, M.; Villegas, A.; Bedoya, G.; Aguilar-Salinas, C. A.; Tusié-Luna, M. T.; Ruiz-Linares, A.; Reich, D.
2011-01-01
Aims/hypothesis Type 2 diabetes is more prevalent in US American minority populations of African or Native American descent than it is in European Americans. However, the proportion of this epidemiological difference that can be ascribed to genetic or environmental factors is unknown. To determine whether genetic ancestry is correlated with diabetes risk in Latinos, we estimated the proportion of European ancestry in case-control samples from Mexico and Colombia in whom socioeconomic status had been carefully ascertained. Methods We genotyped 67 ancestry-informative markers in 499 participants with type 2 diabetes and 197 controls from Medellín (Colombia), as well as in 163 participants with type 2 diabetes and 72 controls from central Mexico. Each participant was assigned a socioeconomic status scale via various measures. Results Although European ancestry was associated with lower diabetes risk in Mexicans (OR [95% CI] 0.06 [0.02–0.21], p=2.0 × 10−5) and Colombians (OR 0.26 [0.08–0.78], p=0.02), adjustment for socioeconomic status eliminated the association in the Colombian sample (OR 0.64 [0.19–2.12], p=0.46) and significantly attenuated it in the Mexican sample (OR 0.17 [0.04–0.71], p=0.02). Adjustment for BMI did not change the results. Conclusions/interpretation The proportion of non-European ancestry is associated with both type 2 diabetes and lower socioeconomic status in admixed Latino populations from North and South America. We conclude that ancestry-directed search for genetic markers associated with type 2 diabetes in Latinos may benefit from information involving social factors, as these factors have a quantitatively important effect on type 2 diabetes risk relative to ancestry effects. PMID:19526211
Anaplasma phagocytophilum in sheep and goats in central and southeastern China.
Yang, Jifei; Liu, Zhijie; Niu, Qingli; Liu, Junlong; Han, Rong; Guan, Guiquan; Li, Youquan; Liu, Guangyuan; Luo, Jianxun; Yin, Hong
2016-11-21
Anaplasma phagocytophilum is wide spread throughout the world and impacts both human and animal health. Several distinct ecological clusters and ecotypes of the agent have been established on the basis of various genetic loci. However, information on the genetic variability of A. phagocytophilum isolates in China represents a gap in knowledge. The objective of this study was to determine the prevalence and genetic characterization of A. phagocytophilum in small ruminants in central and southeastern China. The presence of A. phagocytophilum was determined in 421 blood samples collected from small ruminants by PCR. Positive samples were genetically characterized based on 16S rRNA and groEL genes. Statistical analyses were conducted to identify ecotypes of A. phagocytophilum strains, to assess their host range and zoonotic potential. Out of 421 sampled small ruminants, 106 (25.2%) were positive for A. phagocytophilum. The positive rate was higher in sheep (35.1%, 40/114) than in goats (26.4%, 66/307) (P < 0.05). Sequence analyses revealed that the isolates identified in this study were placed on two separate clades, indicating that two 16S rRNA variants of A. phagocytophilum were circulating in small ruminants in China. However, analysis using obtained groEL sequences in this study formed one cluster, which was separate from other known ecotypes reported in Europe. In addition, a novel Anaplasma sp. was identified and closely related to an isolate previously reported in Hyalomma asiaticum, which clustered independently from all recognized Anaplasma species. A molecular survey of A. phagocytophilum was conducted in sheep and goats from ten provinces in central and southeastern China. Two 16S rRNA variants and a new ecotype of A. phagocytophilum were identified in small ruminants in China. Moreover, a potential novel Anaplasma species was reported in goats. Our findings provide additional information on the complexity of A. phagocytophilum in terms of genetic diversity in China.
Ehler, Edvard; Vanek, Daniel
2017-05-01
Isolated populations present a constant threat to the correctness of forensic genetic casework. In this review article we present several examples of how analyzing samples from isolated populations can bias the results of the forensic statistics and analyses. We select our examples from isolated populations from central and southeastern Europe, namely the Valachs and the European Roma. We also provide the reader with general strategies and principles to improve the laboratory practice (best practice) and reporting of samples from supposedly isolated populations. These include reporting the precise population data used for computing the forensic statistics, using the appropriate θ correction factor for calculating allele frequencies, typing ancestry informative markers in samples of unknown or uncertain ethnicity and establishing ethnic-specific forensic databases. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Pereira, Rui; Phillips, Christopher; Pinto, Nádia; Santos, Carla; dos Santos, Sidney Emanuel Batista; Amorim, António; Carracedo, Ángel; Gusmão, Leonor
2012-01-01
Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies. This work presents a set of 46 ancestry-informative insertion deletion polymorphisms selected to efficiently measure population admixture proportions of four different origins (African, European, East Asian and Native American). All markers are analyzed in short fragments (under 230 basepairs) through a single PCR followed by capillary electrophoresis (CE) allowing a very simple one tube PCR-to-CE approach. HGDP-CEPH diversity panel samples from the four groups, together with Oceanians, were genotyped to evaluate the efficiency of the assay in clustering populations from different continental origins and to establish reference databases. In addition, other populations from diverse geographic origins were tested using the HGDP-CEPH samples as reference data. The results revealed that the AIM-INDEL set developed is highly efficient at inferring the ancestry of individuals and provides good estimates of ancestry proportions at the population level. In conclusion, we have optimized the multiplexed genotyping of 46 AIM-INDELs in a simple and informative assay, enabling a more straightforward alternative to the commonly available AIM-SNP typing methods dependent on complex, multi-step protocols or implementation of large-scale genotyping technologies. PMID:22272242
Carrier screening in the era of expanding genetic technology.
Arjunan, Aishwarya; Litwack, Karen; Collins, Nick; Charrow, Joel
2016-12-01
The Center for Jewish Genetics provides genetic education and carrier screening to individuals of Jewish descent. Carrier screening has traditionally been performed by targeted mutation analysis for founder mutations with an enzyme assay for Tay-Sachs carrier detection. The development of next-generation sequencing (NGS) allows for higher detection rates regardless of ethnicity. Here, we explore differences in carrier detection rates between genotyping and NGS in a primarily Jewish population. Peripheral blood samples or saliva samples were obtained from 506 individuals. All samples were analyzed by sequencing, targeted genotyping, triplet-repeat detection, and copy-number analysis; the analyses were carried out at Counsyl. Of 506 individuals screened, 288 were identified as carriers of at least 1 condition and 8 couples were carriers for the same disorder. A total of 434 pathogenic variants were identified. Three hundred twelve variants would have been detected via genotyping alone. Although no additional mutations were detected by NGS in diseases routinely screened for in the Ashkenazi Jewish population, 26.5% of carrier results and 2 carrier couples would have been missed without NGS in the larger panel. In a primarily Jewish population, NGS reveals a larger number of pathogenic variants and provides individuals with valuable information for family planning.Genet Med 18 12, 1214-1217.
Genetic diversity and connectivity within Mytilus spp. in the subarctic and Arctic.
Mathiesen, Sofie Smedegaard; Thyrring, Jakob; Hemmer-Hansen, Jakob; Berge, Jørgen; Sukhotin, Alexey; Leopold, Peter; Bekaert, Michaël; Sejr, Mikael Kristian; Nielsen, Einar Eg
2017-01-01
Climate changes in the Arctic are predicted to alter distributions of marine species. However, such changes are difficult to quantify because information on present species distribution and the genetic variation within species is lacking or poorly examined. Blue mussels, Mytilus spp., are ecosystem engineers in the coastal zone globally. To improve knowledge of distribution and genetic structure of the Mytilus edulis complex in the Arctic, we analyzed 81 SNPs in 534 Mytilus spp. individuals sampled at 13 sites to provide baseline data for distribution and genetic variation of Mytilus mussels in the European Arctic. Mytilus edulis was the most abundant species found with a clear genetic split between populations in Greenland and the Eastern Atlantic. Surprisingly, analyses revealed the presence of Mytilus trossulus in high Arctic NW Greenland (77°N) and Mytilus galloprovincialis or their hybrids in SW Greenland, Svalbard, and the Pechora Sea. Furthermore, a high degree of hybridization and introgression between species was observed. Our study highlights the importance of distinguishing between congener species, which can display local adaptation and suggests that information on dispersal routes and barriers is essential for accurate predictions of regional susceptibility to range expansions or invasions of boreal species in the Arctic.
García, Angelina; Dermarchi, Darío A.; Tovo-Rodrigues, Luciana; Pauro, Maia; Callegari-Jacques, Sidia M.; Salzano, Francisco M.; Hutz, Mara H.
2015-01-01
The population of Argentina has already been studied with regard to several genetic markers, but much more data are needed for the appropriate definition of its genetic profile. This study aimed at investigating the admixture patterns and genetic structure in Central Argentina, using biparental markers and comparing the results with those previously obtained by us with mitochondrial DNA (mtDNA) in the same samples. A total of 521 healthy unrelated individuals living in 13 villages of the Córdoba and San Luis provinces were tested. The individuals were genotyped for ten autosomal ancestry informative markers (AIMs). Allele frequencies were compared with those of African, European and Native American populations, chosen to represent parental contributions. The AIM estimates indicated a greater influence of the Native American ancestry as compared to previous studies in the same or other Argentinean regions, but smaller than that observed with the mtDNA tests. These differences can be explained, respectively, by different genetic contributions between rural and urban areas, and asymmetric gene flow occurred in the past. But a most unexpected finding was the marked interpopulation genetic homogeneity found in villages located in diverse geographic environments across a wide territory, suggesting considerable gene flow. PMID:26500436
Genetic Heterogeneity of Self-Reported Ancestry Groups in an Admixed Brazilian Population
Lins, Tulio C; Vieira, Rodrigo G; Abreu, Breno S; Gentil, Paulo; Moreno-Lima, Ricardo; Oliveira, Ricardo J; Pereira, Rinaldo W
2011-01-01
Background Population stratification is the main source of spurious results and poor reproducibility in genetic association findings. Population heterogeneity can be controlled for by grouping individuals in ethnic clusters; however, in admixed populations, there is evidence that such proxies do not provide efficient stratification control. The aim of this study was to evaluate the relation of self-reported with genetic ancestry and the statistical risk of grouping an admixed sample based on self-reported ancestry. Methods A questionnaire that included an item on self-reported ancestry was completed by 189 female volunteers from an admixed Brazilian population. Individual genetic ancestry was then determined by genotyping ancestry informative markers. Results Self-reported ancestry was classified as white, intermediate, and black. The mean difference among self-reported groups was significant for European and African, but not Amerindian, genetic ancestry. Pairwise fixation index analysis revealed a significant difference among groups. However, the increase in the chance of type 1 error was estimated to be 14%. Conclusions Self-reporting of ancestry was not an appropriate methodology to cluster groups in a Brazilian population, due to high variance at the individual level. Ancestry informative markers are more useful for quantitative measurement of biological ancestry. PMID:21498954
Maroso, Francesco; Franch, Rafaella; Dalla Rovere, Giulia; Arculeo, Marco; Bargelloni, Luca
2016-08-01
Dolphinfish is an important fish species for both commercial and sport fishing, but so far limited information is available on genetic variability and pattern of differentiation of dolphinfish populations in the Mediterranean basin. Recently developed techniques allow genome-wide identification of genetic markers for better understanding of population structure in species with limited genome information. Using restriction-site associated DNA analysis we successfully genotyped 140 individuals of dolphinfish from eight locations in the Mediterranean Sea at 3324 SNP loci. We identified 311 sex-related loci that were used to assess sex-ratio in dolphinfish populations. In addition, we identified a weak signature of genetic differentiation of the population closer to Gibraltar Strait in comparison to other Mediterranean populations, which might be related to introgression of individuals from Atlantic. No further genetic differentiation could be detected in the other populations sampled, as expected considering the known highly mobility of the species. The results obtained improve our knowledge of the species and can help managing dolphinfish stock in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
Hann, Katie E J; Fraser, Lindsay; Side, Lucy; Gessler, Sue; Waller, Jo; Sanderson, Saskia C; Freeman, Madeleine; Jacobs, Ian; Lanceley, Anne
2017-12-16
Ovarian cancer is usually diagnosed at a late stage when outcomes are poor. Personalised ovarian cancer risk prediction, based on genetic and epidemiological information and risk stratified management in adult women could improve outcomes. Examining health care professionals' (HCP) attitudes to ovarian cancer risk stratified management, willingness to support women, self-efficacy (belief in one's own ability to successfully complete a task), and knowledge about ovarian cancer will help identify training needs in anticipation of personalised ovarian cancer risk prediction being introduced. An anonymous survey was distributed online to HCPs via relevant professional organisations in the UK. Kruskal-Wallis tests and pairwise comparisons were used to compare knowledge and self-efficacy scores between different types of HCPs, and attitudes toward population-based genetic testing and risk stratified management were described. Content analysis was undertaken of free text responses concerning HCPs willingness to discuss risk management options with women. One hundred forty-six eligible HCPs completed the survey: oncologists (31%); genetics clinicians (30%); general practitioners (22%); gynaecologists (10%); nurses (4%); and 'others'. Scores for knowledge of ovarian cancer and genetics, and self-efficacy in conducting a cancer risk consultation were generally high but significantly lower for general practitioners compared to genetics clinicians, oncologists, and gynaecologists. Support for population-based genetic testing was not high (<50%). Attitudes towards ovarian cancer risk stratification were mixed, although the majority of participants indicated a willingness to discuss management options with patients. Larger samples are required to investigate attitudes to population-based genetic testing for ovarian cancer risk and to establish why some HCPs are hesitant to offer testing to all adult female patients. If ovarian cancer risk assessment using genetic testing and non-genetic information including epidemiological information is rolled out on a population basis, training will be needed for HCPs in primary care to enable them to provide appropriate support to women at each stage of the process.
Protein-based forensic identification using genetically variant peptides in human bone.
Mason, Katelyn Elizabeth; Anex, Deon; Grey, Todd; Hart, Bradley; Parker, Glendon
2018-04-22
Bone tissue contains organic material that is useful for forensic investigations and may contain preserved endogenous protein that can persist in the environment for extended periods of time over a range of conditions. Single amino acid polymorphisms in these proteins reflect genetic information since they result from non-synonymous single nucleotide polymorphisms (SNPs) in DNA. Detection of genetically variant peptides (GVPs) - those peptides that contain amino acid polymorphisms - in digests of bone proteins allows for the corresponding SNP alleles to be inferred. Resulting genetic profiles can be used to calculate statistical measures of association between a bone sample and an individual. In this study proteomic analysis on rib cortical bone samples from 10 recently deceased individuals demonstrates this concept. A straight-forward acidic demineralization protocol yielded proteins that were digested with trypsin. Tryptic digests were analyzed by liquid chromatography mass spectrometry. A total of 1736 different proteins were identified across all resulting datasets. On average, individual samples contained 454±121 (x¯±σ) proteins. Thirty-five genetically variant peptides were identified from 15 observed proteins. Overall, 134 SNP inferences were made based on proteomically detected GVPs, which were confirmed by sequencing of subject DNA. Inferred individual SNP genetic profiles ranged in random match probability (RMP) from 1/6 to 1/42,472 when calculated with European population frequencies in the 1000 Genomes Project, Phase 3. Similarly, RMPs based on African population frequencies were calculated for each SNP genetic profile and likelihood ratios (LR) were obtained by dividing each European RMP by the corresponding African RMP. Resulting LR values ranged from 1.4 to 825 with a median value of 16. GVP markers offer a basis for the identification of compromised skeletal remains independent of the presence of DNA template. Published by Elsevier B.V.
HE, Ya; WANG, Zheng-Huan; WANG, Xiao-Ming
2014-01-01
Cervus sichuanicus is a species of sika deer (Cervus nippon Group). To date, research has mainly focused on quantity surveying and behavior studies, with genetic information on this species currently deficient. To provide scientific evidence to assist in the protection of this species, we collected Sichuan sika deer fecal samples from the Sichuan Tiebu Nature Reserve (TNR) and extracted DNA from those samples. Microsatellite loci of bovine were used for PCR amplification. After GeneScan, the genotype data were used to analyze the genetic diversity and population structure of the Sichuan sika deer in TNR. Results showed that the average expected heterozygosity of the Sichuan sika deer population in TNR was 0.562, equivalent to the average expected heterozygosity of endangered animals, such as Procapra przewalskii. Furthermore, 8 of 9 microsatellite loci significantly deviated from the Hardy-Weinberg equilibrium and two groups existed within the Sichuan sika deer TNR population. This genetic structure may be caused by a group of Manchurian sika deer (Cervus hortulorum) released in TNR. PMID:25465089
He, Ya; Wang, Zheng-Huan; Wang, Xiao-Ming
2014-11-18
Cervus sichuanicus is a species of sika deer (Cervus nippon Group). To date, research has mainly focused on quantity surveying and behavior studies, with genetic information on this species currently deficient. To provide scientific evidence to assist in the protection of this species, we collected Sichuan sika deer fecal samples from the Sichuan Tiebu Nature Reserve (TNR) and extracted DNA from those samples. Microsatellite loci of bovine were used for PCR amplification. After GeneScan, the genotype data were used to analyze the genetic diversity and population structure of the Sichuan sika deer in TNR. Results showed that the average expected heterozygosity of the Sichuan sika deer population in TNR was 0.562, equivalent to the average expected heterozygosity of endangered animals, such as Procapra przewalskii. Furthermore, 8 of 9 microsatellite loci significantly deviated from the Hardy-Weinberg equilibrium and two groups existed within the Sichuan sika deer TNR population. This genetic structure may be caused by a group of Manchurian sika deer (Cervus hortulorum) released in TNR.
Skin cancer concerns and genetic risk information-seeking in primary care.
Hay, J; Kaphingst, K A; Baser, R; Li, Y; Hensley-Alford, S; McBride, C M
2012-01-01
Genomic testing for common genetic variants associated with skin cancer risk could enable personalized risk feedback to motivate skin cancer screening and sun protection. In a cross-sectional study, we investigated whether skin cancer cognitions and behavioral factors, sociodemographics, family factors, and health information-seeking were related to perceived importance of learning about how (a) genes and (b) health habits affect personal health risks using classification and regression trees (CART). The sample (n = 1,772) was collected in a large health maintenance organization as part of the Multiplex Initiative, ranged in age from 25-40, was 53% female, 41% Caucasian, and 59% African-American. Most reported that they placed somewhat to very high importance on learning about how genes (79%) and health habits (88%) affect their health risks. Social influence actors were associated with information-seeking about genes and health habits. Awareness of family history was associated with importance of health habit, but not genetic, information-seeking. The investment of family and friends in health promotion may be a primary motivator for prioritizing information-seeking about how genes and health habits affect personal health risks and may contribute to the personal value, or personal utility, of risk information. Individuals who seek such risk information may be receptive to interventions aimed to maximize the social implications of healthy lifestyle change to reduce their health risks. Copyright © 2011 S. Karger AG, Basel.
Genebanks: a comparison of eight proposed international genetic databases.
Austin, Melissa A; Harding, Sarah; McElroy, Courtney
2003-01-01
To identify and compare population-based genetic databases, or "genebanks", that have been proposed in eight international locations between 1998 and 2002. A genebank can be defined as a stored collection of genetic samples in the form of blood or tissue, that can be linked with medical and genealogical or lifestyle information from a specific population, gathered using a process of generalized consent. Genebanks were identified by searching Medline and internet search engines with key words such as "genetic database" and "biobank" and by reviewing literature on previously identified databases such as the deCode project. Collection of genebank characteristics was by an electronic and literature search, augmented by correspondence with informed individuals. The proposed genebanks are located in Iceland, the United Kingdom, Estonia, Latvia, Sweden, Singapore, the Kingdom of Tonga, and Quebec, Canada. Comparisons of the genebanks were based on the following criteria: genebank location and description of purpose, role of government, commercial involvement, consent and confidentiality procedures, opposition to the genebank, and current progress. All of the groups proposing the genebanks plan to search for susceptibility genes for complex diseases while attempting to improve public health and medical care in the region and, in some cases, stimulating the local economy through expansion of the biotechnology sector. While all of the identified plans share these purposes, they differ in many aspects, including funding, subject participation, and organization. The balance of government and commercial involvement in the development of each project varies. Genetic samples and health information will be collected from participants and coded in all of the genebanks, but consent procedures range from presumed consent of the entire eligible population to recruitment of volunteers with informed consent. Issues regarding confidentiality and consent have resulted in opposition to some of the more publicized projects. None of the proposed databases are currently operational and at least one project was terminated due to opposition. Ambitious genebank projects have been proposed in numerous countries and provinces. The characteristics of the projects vary, but all intend to map genes for common diseases and hope to improve the health of the populations involved. The impact of these projects on understanding genetic susceptibility to disease will be increasingly apparent if the projects become operational. The ethical, legal, and social implications of the projects should be carefully considered during their development. Copyright 2003 S. Karger AG, Basel
USDA-ARS?s Scientific Manuscript database
Contextualizing natural genetic variation in plant disease resistance in terms of pathogenesis can provide information about the function of causal genes. Cellular mechanisms associated with pathogenesis can be elucidated with confocal microscopy, but systematic phenotyping platforms—from sample pro...
Cryptosporidiosis has recently attracted attention as an emerging water borne and food borne disease as well as an opportunistic infection in HIV infected indivduals. The lack of genetic information, however, has resulted in confusion in the taxonomy of Cryptosporidium parasites ...
Application of automation and information systems to forensic genetic specimen processing.
Leclair, Benoît; Scholl, Tom
2005-03-01
During the last 10 years, the introduction of PCR-based DNA typing technologies in forensic applications has been highly successful. This technology has become pervasive throughout forensic laboratories and it continues to grow in prevalence. For many criminal cases, it provides the most probative evidence. Criminal genotype data banking and victim identification initiatives that follow mass-fatality incidents have benefited the most from the introduction of automation for sample processing and data analysis. Attributes of offender specimens including large numbers, high quality and identical collection and processing are ideal for the application of laboratory automation. The magnitude of kinship analysis required by mass-fatality incidents necessitates the application of computing solutions to automate the task. More recently, the development activities of many forensic laboratories are focused on leveraging experience from these two applications to casework sample processing. The trend toward increased prevalence of forensic genetic analysis will continue to drive additional innovations in high-throughput laboratory automation and information systems.
Schall, Megan K.; Bartron, Meredith L.; Wertz, Timothy; Niles, Jonathan M.; Shaw, Cassidy H.; Wagner, Tyler
2017-01-01
The Smallmouth Bass Micropterus dolomieu was introduced into the Susquehanna River basin, Pennsylvania, nearly 150 years ago. Since introduction, it has become an economically and ecologically important species that supports popular recreational fisheries. It is also one of the most abundant top predators in the system. Currently, there is no information on the level of genetic diversity or genetic structuring that may have occurred since introduction. An understanding of genetic diversity is important for the delineation of management units and investigation of gene flow at various management scales. The goals of this research were to investigate population genetic structure of Smallmouth Bass at sites within the Susquehanna River basin and to assess genetic differentiation relative to Smallmouth Bass at an out-of-basin site (Allegheny River, Pennsylvania) located within the species’ native range. During spring 2015, fin clips (n = 1,034) were collected from adults at 11 river sites and 13 tributary sites in the Susquehanna River basin and at one site on the Allegheny River. Fin clips were genotyped at 12 polymorphic microsatellite loci. Based on our results, adults sampled throughout the Susquehanna River basin did not represent separate genetic populations. There were only subtle differences in genetic diversity among sites (mean pairwise genetic differentiation index FST = 0.012), and there was an overall lack of population differentiation (K = 3 admixed populations). The greatest genetic differentiation was observed between fish collected from the out-of-basin site and those from the Susquehanna River basin sites. Knowledge that separate genetic populations of Smallmouth Bass do not exist in the Susquehanna River basin is valuable information for fisheries management in addition to providing baseline genetic data on an introduced sport fish population.
Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder
Cardno, Alastair G.
2014-01-01
There is substantial evidence for partial overlap of genetic influences on schizophrenia and bipolar disorder, with family, twin, and adoption studies showing a genetic correlation between the disorders of around 0.6. Results of genome-wide association studies are consistent with commonly occurring genetic risk variants, contributing to both the shared and nonshared aspects, while studies of large, rare chromosomal structural variants, particularly copy number variants, show a stronger influence on schizophrenia than bipolar disorder to date. Schizoaffective disorder has been less investigated but shows substantial familial overlap with both schizophrenia and bipolar disorder. A twin analysis is consistent with genetic influences on schizoaffective episodes being entirely shared with genetic influences on schizophrenic and manic episodes, while association studies suggest the possibility of some relatively specific genetic influences on broadly defined schizoaffective disorder, bipolar subtype. Further insights into genetic relationships between these disorders are expected as studies continue to increase in sample size and in technical and analytical sophistication, information on phenotypes beyond clinical diagnoses are increasingly incorporated, and approaches such as next-generation sequencing identify additional types of genetic risk variant. PMID:24567502
Study books on ADHD genetics: balanced or biased?
Te Meerman, Sanne; Batstra, Laura; Hoekstra, Rink; Grietens, Hans
2017-06-01
Academic study books are essential assets for disseminating knowledge about ADHD to future healthcare professionals. This study examined if they are balanced with regard to genetics. We selected and analyzed study books (N=43) used in (pre) master's programmes at 10 universities in the Netherlands. Because the mere behaviourally informed quantitative genetics give a much higher effect size of the genetic involvement in ADHD, it is important that study books contrast these findings with molecular genetics' outcomes. The latter studies use real genetic data, and their low effect sizes expose the potential weaknesses of quantitative genetics, like underestimating the involvement of the environment. Only a quarter of books mention both effect sizes and contrast these findings, while another quarter does not discuss any effect size. Most importantly, however, roughly half of the books in our sample mention only the effect sizes from quantitative genetic studies without addressing the low explained variance of molecular genetic studies. This may confuse readers by suggesting that the weakly associated genes support the quite spectacular, but potentially flawed estimates of twin, family and adoption studies, while they actually contradict them.
Mezuk, Briana; Myers, John M; Kendler, Kenneth S
2013-10-01
We tested 3 hypotheses-social causation, social drift, and common cause-regarding the origin of socioeconomic disparities in major depression and determined whether the relationship between socioeconomic status (SES) and major depression varied by genetic liability for major depression. Data were from a sample of female twins in the baseline Virginia Adult Twin Study of Psychiatric and Substance Use Disorders interviewed between 1987 and 1989 (n = 2153). We used logistic regression and structural equation twin models to evaluate these 3 hypotheses. Consistent with the social causation hypothesis, education (odds ratio [OR] = 0.78; 95% confidence interval [CI] = 0.66, 0.93; P < .01) and income (OR = 0.93; 95% CI = 0.89, 0.98; P < .01) were significantly related to past-year major depression. Upward social mobility was associated with lower risk of depression. There was no evidence that childhood SES was related to development of major depression (OR = 0.98; 95% CI = 0.89, 1.09; P > .1). Consistent with a common genetic cause, there was a negative correlation between the genetic components of major depression and education (r(2) = -0.22). Co-twin control analyses indicated a protective effect of education and income on major depression even after accounting for genetic liability. This study utilized a genetically informed design to address how social position relates to major depression. Results generally supported the social causation model.
Ising, M; Mather, K A; Zimmermann, P; Brückl, T; Höhne, N; Heck, A; Schenk, L A; Rujescu, D; Armstrong, N J; Sachdev, P S; Reppermund, S
2014-06-01
Information processing is a cognitive trait forming the basis of complex abilities like executive function. The Trail Making Test (TMT) is a well-established test of information processing with moderate to high heritability. Age of the individual also plays an important role. A number of genetic association studies with the TMT have been performed, which, however, did not consider age as a moderating factor. We report the results of genome-wide association studies (GWASs) on age-independent and age-dependent TMT performance in two population-representative community samples (Munich Antidepressant Response Signature, MARS: N1 = 540; Ludwig Maximilians University, LMU: N2 = 350). Age-dependent genome-wide findings were then evaluated in a third sample of healthy elderly subjects (Sydney Memory and Ageing Study, Sydney MAS: N3 = 448). While a meta-analysis on the GWAS findings did not reveal age-independent TMT associations withstanding correction for multiple testing, we found a genome-wide significant age-moderated effect between variants in the DSG1 gene region and TMT-A performance predominantly reflecting visual processing speed (rs2199301, P(meta-analysis) = 1.3 × 10(-7)). The direction of the interaction suggests for the minor allele a beneficial effect in younger adults turning into a detrimental effect in older adults. The detrimental effect of the missense single nucleotide polymorphism rs1426310 within the same DSG1 gene region could be replicated in Sydney MAS participants aged 70-79, but not in those aged 80 years and older, presumably a result of survivor bias. Our findings demonstrate opposing effects of DSG1 variants on information processing speed depending on age, which might be related to the complex processes that DSG1 is involved with, including cell adhesion and apoptosis. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Cömert, Numan; Carlı, Oya; Dinçtürk, H Benan
2018-03-08
The populations of Eurasian lynx in Anatolia are as fragmented as the European populations. Although the origins of and the connections between the European lynx populations have been elucidated, there have been no genetic studies on the lynx populations in Turkey. The lack of genetic and evolutionary information about lynx in Anatolia, which is considered to be a biodiversity hotspot, makes it difficult to track the migration routes during the Quaternary. In this study, we present the genetic characteristics of two isolated lynx populations in Southwest Taurus Mountains and the Turkish Caucasus as well as two individuals from Erzincan area. DNA purified from the ecological scat samples collected from Çığlıkara Nature Reserve in Elmalı-Antalya and Allahuekber Mountains in Sarıkamış-Kars, as well as two roadkill samples from Erzincan, has been analysed for phylogenetic markers such as the mitochondrial DNA control region and cytochrome b. The DNA sequences were compared with haplotypes previously detected in populations from Europe and the Caucasus in order to determine the evolutionary relationships of the populations. This study compares the current genetic structure of some of the Turkish lynx populations to the other lynx genetic data, mostly carried out with museum samples around the world. Three haplotypes were found in three different regions of Anatolia. The Northeast and Southwest populations harbour genetically distinct haplotypes, the latter one, a new haplotype: H13-TR is the only phylogenetic connection to the critically endangered Balkan lynx yet to be described.
Silvestre, Ellida de Aguiar; Schwarcz, Kaiser Dias; Grando, Carolina; de Campos, Jaqueline Bueno; Sujii, Patricia Sanae; Tambarussi, Evandro Vagner; Macrini, Camila Menezes Trindade; Pinheiro, José Baldin; Brancalion, Pedro Henrique Santin; Zucchi, Maria Imaculada
2018-03-16
The reproductive system of a tree species has substantial impact on genetic diversity and structure within and among natural populations. Such information, should be considered when planning tree planting for forest restoration. Here, we describe the mating system and genetic diversity of an overexploited Neotropical tree, Myroxylon peruiferum L.f. (Fabaceae) sampled from a forest remnant (10 seed trees and 200 seeds) and assess whether the effective population size of nursery-grown seedlings (148 seedlings) is sufficient to prevent inbreeding depression in reintroduced populations. Genetic analyses were performed based on 8 microsatellite loci. M. peruiferum presented a mixed mating system with evidence of biparental inbreeding (t^m-t^s = 0.118). We found low levels of genetic diversity for M. peruiferum species (allelic richness: 1.40 to 4.82; expected heterozygosity: 0.29 to 0.52). Based on Ne(v) within progeny, we suggest a sample size of 47 seed trees to achieve an effective population size of 100. The effective population sizes for the nursery-grown seedlings were much smaller Ne = 27.54-34.86) than that recommended for short term Ne ≥ 100) population conservation. Therefore, to obtain a reasonable genetic representation of native tree species and prevent problems associated with inbreeding depression, seedling production for restoration purposes may require a much larger sampling effort than is currently used, a problem that is further complicated by species with a mixed mating system. This study emphasizes the need to integrate species reproductive biology into seedling production programs and connect conservation genetics with ecological restoration.
Betson, Martha; Sousa-Figueiredo, Jose C; Kabatereine, Narcis B; Stothard, J Russell
2013-01-01
Significant numbers of pre-school children are infected with Schistosoma mansoni in sub-Saharan Africa and are likely to play a role in parasite transmission. However, they are currently excluded from control programmes. Molecular phylogenetic studies have provided insights into the evolutionary origins and transmission dynamics of S. mansoni, but there has been no research into schistosome molecular epidemiology in pre-school children. Here, we investigated the genetic diversity and population structure of S. mansoni in pre-school children and mothers living in lakeshore communities in Uganda and monitored for changes over time after praziquantel treatment. Parasites were sampled from children (<6 years) and mothers enrolled in the longitudinal Schistosomiasis Mothers and Infants Study at baseline and at 6-, 12- and 18-month follow-up surveys. 1347 parasites from 35 mothers and 45 children were genotyped by direct sequencing of the cytochrome c oxidase (cox1) gene. The cox1 region was highly diverse with over 230 unique sequences identified. Parasite populations were genetically differentiated between lakes and non-synonymous mutations were more diverse at Lake Victoria than Lake Albert. Surprisingly, parasite populations sampled from children showed a similar genetic diversity to those sampled from mothers, pointing towards a non-linear relationship between duration of exposure and accumulation of parasite diversity. The genetic diversity six months after praziquantel treatment was similar to pre-treatment diversity. Our results confirm the substantial genetic diversity of S. mansoni in East Africa and provide significant insights into transmission dynamics within young children and mothers, important information for schistosomiasis control programmes.
Health workers cohort study: methods and study design.
Denova-Gutiérrez, Edgar; Flores, Yvonne N; Gallegos-Carrillo, Katia; Ramírez-Palacios, Paula; Rivera-Paredez, Berenice; Muñoz-Aguirre, Paloma; Velázquez-Cruz, Rafael; Torres-Ibarra, Leticia; Meneses-León, Joacim; Méndez-Hernández, Pablo; Hernández-López, Rubí; Salazar-Martínez, Eduardo; Talavera, Juan O; Tamayo, Juan; Castañón, Susana; Osuna-Ramírez, Ignacio; León-Maldonado, Leith; Flores, Mario; Macías, Nayeli; Antúnez, Daniela; Huitrón-Bravo, Gerardo; Salmerón, Jorge
2016-01-01
To examine different health outcomes that are associated with specific lifestyle and genetic factors. From March 2004 to April 2006, a sample of employees from three different health and academic institutions, as well as their family members, were enrolled in the study after providing informed consent. At baseline and follow-up (2010-2013), participants completed a self-administered questionnaire, a physical examination, and provided blood samples. A total of 10 729 participants aged 6 to 94 years were recruited at baseline. Of these, 70% were females, and 50% were from the Mexican Social Security Institute. Nearly 42% of the adults in the sample were overweight, while 20% were obese. Our study can offer new insights into disease mechanisms and prevention through the analysis of risk factor information in a large sample of Mexicans.
Haag, Taiana; Santos, Anelisie S; De Angelo, Carlos; Srbek-Araujo, Ana Carolina; Sana, Dênis A; Morato, Ronaldo G; Salzano, Francisco M; Eizirik, Eduardo
2009-07-01
The elusive nature and endangered status of most carnivore species imply that efficient approaches for their non-invasive sampling are required to allow for genetic and ecological studies. Faecal samples are a major potential source of information, and reliable approaches are needed to foster their application in this field, particularly in areas where few studies have been conducted. A major obstacle to the reliable use of faecal samples is their uncertain species-level identification in the field, an issue that can be addressed with DNA-based assays. In this study we describe a sequence-based approach that efficiently distinguishes jaguar versus puma scats, and that presents several desirable properties: (1) considerably high amplification and sequencing rates; (2) multiple diagnostic sites reliably differentiating the two focal species; (3) high information content that allows for future application in other carnivores; (4) no evidence of amplification of prey DNA; and (5) no evidence of amplification of a nuclear mitochondrial DNA insertion known to occur in the jaguar. We demonstrate the reliability and usefulness of this approach by evaluating 55 field-collected samples from four locations in the highly fragmented Atlantic Forest biome of Brazil and Argentina, and document the presence of one or both of these endangered felids in each of these areas.
Influence of Genetic Counseling Graduate Program Websites on Student Application Decisions.
Ivan, Kristina M; Hassed, Susan; Darden, Alix G; Aston, Christopher E; Guy, Carrie
2017-12-01
This study investigated how genetic counseling educational program websites affect application decisions via an online survey sent to current students and recent graduates. Program leadership: directors, assistant directors, associate directors, were also surveyed to determine where their opinions coincided or differed from those reported by students and recent graduates. Chi square analysis and t-tests were used to determine significance of results. A two-sample t-test was used to compare factors students identified as important on a 5-point Likert scale with those identified by directors. Thematic analysis revealed three major themes students consider important for program websites: easy navigation, website content, and website impression. Directors were interested in how prospective students use their program website and what information they found most useful. Students indicated there were specific programs they chose not to apply to due to the difficulty of using the website for that program. Directors significantly underestimated how important information about application requirements was to students in making application decisions. The information reported herein will help individual genetic counseling graduate programs improve website functionality and retain interested applicants.
GMOMETHODS: the European Union database of reference methods for GMO analysis.
Bonfini, Laura; Van den Bulcke, Marc H; Mazzara, Marco; Ben, Enrico; Patak, Alexandre
2012-01-01
In order to provide reliable and harmonized information on methods for GMO (genetically modified organism) analysis we have published a database called "GMOMETHODS" that supplies information on PCR assays validated according to the principles and requirements of ISO 5725 and/or the International Union of Pure and Applied Chemistry protocol. In addition, the database contains methods that have been verified by the European Union Reference Laboratory for Genetically Modified Food and Feed in the context of compliance with an European Union legislative act. The web application provides search capabilities to retrieve primers and probes sequence information on the available methods. It further supplies core data required by analytical labs to carry out GM tests and comprises information on the applied reference material and plasmid standards. The GMOMETHODS database currently contains 118 different PCR methods allowing identification of 51 single GM events and 18 taxon-specific genes in a sample. It also provides screening assays for detection of eight different genetic elements commonly used for the development of GMOs. The application is referred to by the Biosafety Clearing House, a global mechanism set up by the Cartagena Protocol on Biosafety to facilitate the exchange of information on Living Modified Organisms. The publication of the GMOMETHODS database can be considered an important step toward worldwide standardization and harmonization in GMO analysis.
2014-01-01
Background Studies on informed consent to medical research conducted in low or middle-income settings have increased, including empirical investigations of consent to genetic research. We investigated voluntary participation and comprehension of informed consent among women involved in a genetic epidemiological study on breast cancer in an urban setting of Nigeria comparing women in the case and control groups. Methods Surveys were administered in face-to-face interviews with 215 participants following their enrollment in the genetic study (106 patients, 109 controls). Audio-taped in-depth interviews were conducted with a sub-sample of 17 (8%) women who completed the survey. Results The majority of all participants reported being told that participation in the genetic study was voluntary (97%), that they did not feel pressured to participate in the study (99%), and that they could withdraw from the study (81%). The majority of the breast cancer patients (83%) compared to 58% of women in the control group reported that the study purpose was to learn about the genetic inheritance of breast cancer (OR 3.44; 95% CI =1.66, 7.14, p value = 0.001). Most participants reported being told about study procedures (95%) and study benefits (98%). Sixty-eight percent of the patients, compared to 47% of the control group reported being told about study risks (p-value <0.001). Of the 165 married women, 19% reported asking permission from their husbands to enroll in the breast cancer study; no one sought permission from local elders. In-depth interviews highlight the use of persuasion and negotiation between a wife and her husband regarding study participation. Conclusions The global expansion of genetic and genomic research highlights our need to understand informed consent practices for studies in ethnically diverse cultural environments such as Africa. Quantitative and qualitative empirical investigations of the informed consent process for genetic and genomic research will further our knowledge of complex issues associated with communication of information, comprehension, decisional authority and voluntary participation. In the future, the development and testing of innovative strategies to promote voluntary participation and comprehension of the goals of genomic research will contribute to our understanding of strategies that enhance the consent process. PMID:24885380
Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu
2017-11-20
The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.
Hilner, Joan E; Perdue, Letitia H; Sides, Elizabeth G; Pierce, June J; Wägner, Ana M; Aldrich, Alan; Loth, Amanda; Albret, Lotte; Wagenknecht, Lynne E; Nierras, Concepcion; Akolkar, Beena
2010-01-01
The Type 1 Diabetes Genetics Consortium (T1DGC) is an international project whose primary aims are to: (a) discover genes that modify type 1 diabetes risk; and (b) expand upon the existing genetic resources for type 1 diabetes research. The initial goal was to collect 2500 affected sibling pair (ASP) families worldwide. T1DGC was organized into four regional networks (Asia-Pacific, Europe, North America, and the United Kingdom) and a Coordinating Center. A Steering Committee, with representatives from each network, the Coordinating Center, and the funding organizations, was responsible for T1DGC operations. The Coordinating Center, with regional network representatives, developed study documents and data systems. Each network established laboratories for: DNA extraction and cell line production; human leukocyte antigen genotyping; and autoantibody measurement. Samples were tracked from the point of collection, processed at network laboratories and stored for deposit at National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repositories. Phenotypic data were collected and entered into the study database maintained by the Coordinating Center. T1DGC achieved its original ASP recruitment goal. In response to research design changes, the T1DGC infrastructure also recruited trios, cases, and controls. Results of genetic analyses have identified many novel regions that affect susceptibility to type 1 diabetes. T1DGC created a resource of data and samples that is accessible to the research community. Participation in T1DGC was declined by some countries due to study requirements for the processing of samples at network laboratories and/or final deposition of samples in NIDDK Central Repositories. Re-contact of participants was not included in informed consent templates, preventing collection of additional samples for functional studies. T1DGC implemented a distributed, regional network structure to reach ASP recruitment targets. The infrastructure proved robust and flexible enough to accommodate additional recruitment. T1DGC has established significant resources that provide a basis for future discovery in the study of type 1 diabetes genetics.
Identification and MS-assisted interpretation of genetically influenced NMR signals in human plasma
2013-01-01
Nuclear magnetic resonance spectroscopy (NMR) provides robust readouts of many metabolic parameters in one experiment. However, identification of clinically relevant markers in 1H NMR spectra is a major challenge. Association of NMR-derived quantities with genetic variants can uncover biologically relevant metabolic traits. Using NMR data of plasma samples from 1,757 individuals from the KORA study together with 655,658 genetic variants, we show that ratios between NMR intensities at two chemical shift positions can provide informative and robust biomarkers. We report seven loci of genetic association with NMR-derived traits (APOA1, CETP, CPS1, GCKR, FADS1, LIPC, PYROXD2) and characterize these traits biochemically using mass spectrometry. These ratios may now be used in clinical studies. PMID:23414815
Steinbach, Rosemary J.; Allyse, Megan; Michie, Marsha; Liu, Emily Y.; Cho, Mildred K.
2016-01-01
Recently, new noninvasive prenatal genetic screening technologies for Down syndrome and other genetic conditions have become commercially available. Unique characteristics of these screening tests have reignited long-standing concerns about prenatal testing for intellectual and developmental disabilities. We conducted a web-based survey of a sample of the US public to examine how attitudes towards disability inform views of prenatal testing in the context of these rapidly advancing prenatal genetic screening technologies. Regardless of opinion toward disability, the majority of respondents supported both the availability of screening and the decision to continue a pregnancy positive for aneuploidy. Individuals rationalized their support with various conceptions of disability; complications of the expressivist argument and other concerns from the disability literature were manifested in many responses analyzed. PMID:26566970
SSR characterization of Oryza glumaepatula populations from the Brazilian Amazon and Cerrado biomes.
Abreu, Aluana Gonçalves; Rosa, Thalita Marra; Borba, Tereza Cristina de Oliveira; Vianello, Rosana Pereira; Rangel, Paulo Hideo Nakano; Brondani, Claudio
2015-08-01
The level and distribution of the genetic variability in 18 natural populations of Oryza glumaepatula that were collected from two Brazilian states were estimated using a set of 23 highly informative SSR markers. Samples comprising 78 and 117 individuals from populations of the states of Tocantins and Roraima, respectively, were evaluated in order to integrate and support previous studies that were carried out with populations of O. glumaepatula from Brazil. A total of 189 alleles were identified with an average of 8.22 alleles per locus. The 11 populations from Roraima presented, in combination, a higher genetic diversity (HE = 0.245) compared with that of the seven populations from Tocantins (HE = 0.212). All of the populations showed high and significant inbreeding values (mean f = 0.59); however, the mean was higher in Tocantins populations, indicating a higher gene flow in Roraima populations. The overall coefficient of genetic differentiation (FST) among the populations was high and significant (0.59) and was higher in Tocantins due to the isolation of each population, in contrast to Roraima, where gene flow occurred more frequently. The SSR panel used in this work resulted to be informative (polymorphism information content = 0.201) for assessing genetic structure in O. glumaepatula populations.
Irizarry, Kristopher J L; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L; Barrett, Gini; Barr, Margaret C
2016-01-01
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.
Irizarry, Kristopher J. L.; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L.; Barrett, Gini; Barr, Margaret C.
2016-01-01
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management. PMID:27376076
Sanderson, Saskia C.; Suckiel, Sabrina A.; Zweig, Micol; Bottinger, Erwin P.; Jabs, Ethylin Wang; Richardson, Lynne D.
2016-01-01
Background: As whole-genome sequencing (WGS) increases in availability, WGS educational aids are needed for research participants, patients, and the general public. Our aim was therefore to develop an accessible and scalable WGS educational aid. Genet Med 18 5, 501–512. Methods: We engaged multiple stakeholders in an iterative process over a 1-year period culminating in the production of a novel 10-minute WGS educational animated video, “Whole Genome Sequencing and You” (https://goo.gl/HV8ezJ). We then presented the animated video to 281 online-survey respondents (the video-information group). There were also two comparison groups: a written-information group (n = 281) and a no-information group (n = 300). Genet Med 18 5, 501–512. Results: In the video-information group, 79% reported the video was easy to understand, satisfaction scores were high (mean 4.00 on 1–5 scale, where 5 = high satisfaction), and knowledge increased significantly. There were significant differences in knowledge compared with the no-information group but few differences compared with the written-information group. Intention to receive personal results from WGS and decisional conflict in response to a hypothetical scenario did not differ between the three groups. Genet Med 18 5, 501–512. Conclusions: The educational animated video, “Whole Genome Sequencing and You,” was well received by this sample of online-survey respondents. Further work is needed to evaluate its utility as an aid to informed decision making about WGS in other populations. Genet Med 18 5, 501–512. PMID:26334178
Correlation not Causation: The Relationship between Personality Traits and Political Ideologies
Verhulst, Brad; Eaves, Lindon J.; Hatemi, Peter K.
2013-01-01
The assumption in the personality and politics literature is that a person's personality motivates them to develop certain political attitudes later in life. This assumption is founded on the simple correlation between the two constructs and the observation that personality traits are genetically influenced and develop in infancy, whereas political preferences develop later in life. Work in psychology, behavioral genetics, and recently political science, however, has demonstrated that political preferences also develop in childhood and are equally influenced by genetic factors. These findings cast doubt on the assumed causal relationship between personality and politics. Here we test the causal relationship between personality traits and political attitudes using a direction of causation structural model on a genetically informative sample. The results suggest that personality traits do not cause people to develop political attitudes; rather, the correlation between the two is a function of an innate common underlying genetic factor. PMID:22400142
Tseren-Ochir, Erdene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Jeong, Jei-Hyun; Jeong, Sol; Kim, Kyu-Jik; Lee, Ji-Ho; Kim, Jun-Beom; Kim, Yu-Jin; Lee, Sun-Hak; Kim, Jun-Young; Song, Chang-Seon
2018-07-01
In recent years, avian paramyxovirus type 4 (APMV-4) frequently isolated from wild and domestic bird populations particularly waterfowls worldwide. However, molecular characteristics and genetic diversity of APMV-4 are uncertain, owing to the limited availability of sequence information. A total of 11 APMV-4 strains from 9850 fecal, swab, and environmental samples were isolated during the surveillance program in wintering seasons of 2013-2017 in South Korea. We performed genetic characterization and phylogenetic analysis to investigate the genetic diversity and relatedness between isolates from the region. We report high APMV-4 genetic diversity (multiple genotypes and sub-genotypes) among wild bird and poultry populations in Korea and that the potential virus exchange occurs between neighboring countries via wild bird migration. Furthermore, our study results suggest the possibility of transcontinental transmission of APMV-4 between Asia and Europe. Copyright © 2018 Elsevier B.V. All rights reserved.
Population Genetics of Trypanosoma evansi from Camel in the Sudan
Salim, Bashir; de Meeûs, Thierry; Bakheit, Mohammed A.; Kamau, Joseph; Nakamura, Ichiro; Sugimoto, Chihiro
2011-01-01
Genetic variation of microsatellite loci is a widely used method for the analysis of population genetic structure of microorganisms. We have investigated genetic variation at 15 microsatellite loci of T. evansi isolated from camels in Sudan and Kenya to evaluate the genetic information partitioned within and between individuals and between sites. We detected a strong signal of isolation by distance across the area sampled. The results also indicate that either, and as expected, T. evansi is purely clonal and structured in small units at very local scales and that there are numerous allelic dropouts in the data, or that this species often sexually recombines without the need of the “normal” definitive host, the tsetse fly or as the recurrent immigration from sexually recombined T. brucei brucei. Though the first hypothesis is the most likely, discriminating between these two incompatible hypotheses will require further studies at much localized scales. PMID:21666799
Correlation not causation: the relationship between personality traits and political ideologies.
Verhulst, Brad; Eaves, Lindon J; Hatemi, Peter K
2012-01-01
The assumption in the personality and politics literature is that a person's personality motivates them to develop certain political attitudes later in life. This assumption is founded on the simple correlation between the two constructs and the observation that personality traits are genetically influenced and develop in infancy, whereas political preferences develop later in life. Work in psychology, behavioral genetics, and recently political science, however, has demonstrated that political preferences also develop in childhood and are equally influenced by genetic factors. These findings cast doubt on the assumed causal relationship between personality and politics. Here we test the causal relationship between personality traits and political attitudes using a direction of causation structural model on a genetically informative sample. The results suggest that personality traits do not cause people to develop political attitudes; rather, the correlation between the two is a function of an innate common underlying genetic factor.
Ethical issues in consumer genome sequencing: Use of consumers' samples and data
Niemiec, Emilia; Howard, Heidi Carmen
2016-01-01
High throughput approaches such as whole genome sequencing (WGS) and whole exome sequencing (WES) create an unprecedented amount of data providing powerful resources for clinical care and research. Recently, WGS and WES services have been made available by commercial direct-to-consumer (DTC) companies. The DTC offer of genetic testing (GT) has already brought attention to potentially problematic issues such as the adequacy of consumers' informed consent and transparency of companies' research activities. In this study, we analysed the websites of four DTC GT companies offering WGS and/or WES with regard to their policies governing storage and future use of consumers' data and samples. The results are discussed in relation to recommendations and guiding principles such as the “Statement of the European Society of Human Genetics on DTC GT for health-related purposes” (2010) and the “Framework for responsible sharing of genomic and health-related data” (Global Alliance for Genomics and Health, 2014). The analysis reveals that some companies may store and use consumers' samples or sequencing data for unspecified research and share the data with third parties. Moreover, the companies do not provide sufficient or clear information to consumers about this, which can undermine the validity of the consent process. Furthermore, while all companies state that they provide privacy safeguards for data and mention the limitations of these, information about the possibility of re-identification is lacking. Finally, although the companies that may conduct research do include information regarding proprietary claims and commercialisation of the results, it is not clear whether consumers are aware of the consequences of these policies. These results indicate that DTC GT companies still need to improve the transparency regarding handling of consumers' samples and data, including having an explicit and clear consent process for research activities. PMID:27047756
Jolley, K A; Wilson, D J; Kriz, P; McVean, G; Maiden, M C J
2005-03-01
Patterns of genetic diversity within populations of human pathogens, shaped by the ecology of host-microbe interactions, contain important information about the epidemiological history of infectious disease. Exploiting this information, however, requires a systematic approach that distinguishes the genetic signal generated by epidemiological processes from the effects of other forces, such as recombination, mutation, and population history. Here, a variety of quantitative techniques were employed to investigate multilocus sequence information from isolate collections of Neisseria meningitidis, a major cause of meningitis and septicemia world wide. This allowed quantitative evaluation of alternative explanations for the observed population structure. A coalescent-based approach was employed to estimate the rate of mutation, the rate of recombination, and the size distribution of recombination fragments from samples from disease-associated and carried meningococci obtained in the Czech Republic in 1993 and a global collection of disease-associated isolates collected globally from 1937 to 1996. The parameter estimates were used to reject a model in which genetic structure arose by chance in small populations, and analysis of molecular variation showed that geographically restricted gene flow was unlikely to be the cause of the genetic structure. The genetic differentiation between disease and carriage isolate collections indicated that, whereas certain genotypes were overrepresented among the disease-isolate collections (the "hyperinvasive" lineages), disease-associated and carried meningococci exhibited remarkably little differentiation at the level of individual nucleotide polymorphisms. In combination, these results indicated the repeated action of natural selection on meningococcal populations, possibly arising from the coevolutionary dynamic of host-pathogen interactions.
Lucas-Borja, M E; Ahrazem, O; Candel-Pérez, D; Moya, D; Fonseca, T; Hernández Tecles, E; De Las Heras, J; Gómez-Gómez, L
2016-12-01
The management of maritime pine in fire-prone habitats is a challenging task and fine-scale population genetic analyses are necessary to check if different fire recurrences affect genetic variability. The objective of this study was to assess the effect of fire recurrence on maritime pine genetic diversity using inter-simple sequence repeat markers (ISSR). Three maritime pine (Pinus pinaster Ait.) populations from Northern Portugal were chosen to characterize the genetic variability among populations. In relation to fire recurrence, Seirós population was affected by fire both in 1990 and 2005 whereas Vila Seca-2 population was affected by fire just in 2005. The Vila Seca-1 population has been never affected by fire. Our results showed the highest Nei's genetic diversity (He=0.320), Shannon information index (I=0.474) and polymorphic loci (PPL=87.79%) among samples from twice burned populations (Seirós site). Thus, fire regime plays an important role affecting genetic diversity in the short-term, although not generating maritime pine genetic erosion. Copyright © 2016 Elsevier B.V. All rights reserved.
Study books on ADHD genetics: balanced or biased?
te Meerman, Sanne; Batstra, Laura; Hoekstra, Rink; Grietens, Hans
2017-01-01
ABSTRACT Academic study books are essential assets for disseminating knowledge about ADHD to future healthcare professionals. This study examined if they are balanced with regard to genetics. We selected and analyzed study books (N=43) used in (pre) master’s programmes at 10 universities in the Netherlands. Because the mere behaviourally informed quantitative genetics give a much higher effect size of the genetic involvement in ADHD, it is important that study books contrast these findings with molecular genetics’ outcomes. The latter studies use real genetic data, and their low effect sizes expose the potential weaknesses of quantitative genetics, like underestimating the involvement of the environment. Only a quarter of books mention both effect sizes and contrast these findings, while another quarter does not discuss any effect size. Most importantly, however, roughly half of the books in our sample mention only the effect sizes from quantitative genetic studies without addressing the low explained variance of molecular genetic studies. This may confuse readers by suggesting that the weakly associated genes support the quite spectacular, but potentially flawed estimates of twin, family and adoption studies, while they actually contradict them. PMID:28532325
Zahm, Kimberly Wehner; Veach, Patricia McCarthy; Martyr, Meredith A; LeRoy, Bonnie S
2016-08-01
Research on genetic counselor professional development would characterize typical developmental processes, inform training and supervision, and promote life-long development opportunities. To date, however no studies have comprehensively examined this phenomenon. The aims of this study were to investigate the nature of professional development for genetic counselors (processes, influences, and outcomes) and whether professional development varies across experience levels. Thirty-four genetic counselors participated in semi-structured telephone interviews exploring their perspectives on their professional development. Participants were sampled from three levels of post-degree genetic counseling experience: novice (0-5 years), experienced (6-14 years), and seasoned (>15 years). Using modified Consensual Qualitative Research and grounded theory methods, themes, domains, and categories were extracted from the data. The themes reflect genetic counselors' evolving perceptions of their professional development and its relationship to: (a) being a clinician, (b) their professional identity, and (c) the field itself. Across experience levels, prevalent influences on professional development were interpersonal (e.g., experiences with patients, genetic counseling colleagues) and involved professional and personal life events. Common developmental experiences included greater confidence and less anxiety over time, being less information-driven and more emotion-focused with patients, delivering "bad news" to patients remains challenging, and individuals' professional development experiences parallel genetic counseling's development as a field. With a few noteworthy exceptions, professional development was similar across experience levels. A preliminary model of genetic counselor professional development is proposed suggesting development occurs in a non-linear fashion throughout the professional lifespan. Each component of the model mutually influences the others, and there are positive and negative avenues of development.
Ramey, Andy M.; Schmutz, Joel A.; Fleskes, Joseph P.; Yabsley, Michael J.
2013-01-01
Information on the molecular detection of hematozoa from different tissue types and multiple years would be useful to inform sample collection efforts and interpret results of meta-analyses or investigations spanning multiple seasons. In this study, we tested blood and muscle tissue collected from northern pintails (Anas acuta) during autumn and winter of different years to evaluate prevalence and genetic diversity ofLeucocytozoon, Haemoproteus, and Plasmodium infections in this abundant waterfowl species of the Central Valley of California. We first compared results for paired blood and wing muscle samples to assess the utility of different tissue types for molecular investigations of haemosporidian parasites. Second, we explored inter-annual variability of hematozoa infection in Central Valley northern pintails and investigated possible effects of age, sex, and sub-region of sample collection on estimated parasite detection probability and prevalence. We found limited evidence for differences between tissue types in detection probability and prevalence ofLeucocytozoon, Haemoproteus, and Plasmodium parasites, which supports the utility of both sample types for obtaining information on hematozoan infections. However, we detected 11 haemosporidian mtDNA cyt bhaplotypes in blood samples vs. six in wing muscle tissue collected during the same sample year suggesting an advantage to using blood samples for investigations of genetic diversity. Estimated prevalence ofLeucocytozoon parasites was greater during 2006–2007 as compared to 2011–2012 and four unique haemosporidian mtDNA cyt b haplotypes were detected in the former sample year but not in the latter. Seven of 15 mtDNA cyt b haplotypes detected in northern pintails had 100% identity with previously reported hematozoa lineages detected in waterfowl (Haemoproteus and Leucocytozoon) or other avian taxa (Plasmodium) providing support for lack of host specificity for some parasite lineages.
Cecchinato, A; Penasa, M; De Marchi, M; Gallo, L; Bittante, G; Carnier, P
2011-08-01
The aim of this study was to estimate heritabilities of rennet coagulation time (RCT) and curd firmness (a(30)) and their genetic correlations with test-day milk yield, composition (fat, protein, and casein content), somatic cell score, and acidity (pH and titratable acidity) using coagulating and noncoagulating (NC) milk information. Data were from 1,025 Holstein-Friesian (HF) and 1,234 Brown Swiss (BS) cows, which were progeny of 54 HF and 58 BS artificial insemination sires, respectively. Milk coagulation properties (MCP) of each cow were measured once using a computerized renneting meter and samples not exhibiting coagulation within 31 min after rennet addition were classified as NC milk. For NC samples, RCT was unobserved. Multivariate analyses, using Bayesian methodology, were performed to estimate the genetic relationships of RCT or a(30) with the other traits and statistical inference was based on the marginal posterior distributions of parameters of concern. For analyses involving RCT, a right-censored Gaussian linear model was used and records of NC milk samples, being censored records, were included as unknown parameters in the model implementing a data augmentation procedure. Rennet coagulation time was more heritable [heritability (h(2))=0.240 and h(2)=0.210 for HF and BS, respectively] than a(30) (h(2)=0.148 and h(2)=0.168 for HF and BS, respectively). Milk coagulation properties were more heritable than a single test-day milk yield (h(2)=0.103 and h(2)=0.097 for HF and BS, respectively) and less heritable than milk composition traits whose heritability ranged from 0.275 to 0.275, with the only exception of fat content of BS milk (h(2)=0.108). A negative genetic correlation, lower than -0.85, was estimated between RCT and a(30) for both breeds. Genetic relationships of MCP with yield and composition were low or moderate and favorable. The genetic correlation of somatic cell score with RCT in BS cows was large and positive and even more positive were those of RCT with pH and titratable acidity in both breeds, ranging from 0.80 to 0.94. Including NC milk information in the data affected the estimated correlations and decreased the uncertainty associated with the estimation process. On the basis of the estimated heritabilities and genetic correlations, enhancement of MCP through selective breeding with no detrimental effects on yield and composition seems feasible in both breeds. Milk acidity may play a role as an indicator trait for indirect enhancement of MCP. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ostergren, Jenny E; Gornick, Michele C; Carere, Deanna Alexis; Kalia, Sarah S; Uhlmann, Wendy R; Ruffin, Mack T; Mountain, Joanna L; Green, Robert C; Roberts, J Scott
2015-01-01
To assess customer comprehension of health-related personal genomic testing (PGT) results. We presented sample reports of genetic results and examined responses to comprehension questions in 1,030 PGT customers (mean age: 46.7 years; 59.9% female; 79.0% college graduates; 14.9% non-White; 4.7% of Hispanic/Latino ethnicity). Sample reports presented a genetic risk for Alzheimer's disease and type 2 diabetes, carrier screening summary results for >30 conditions, results for phenylketonuria and cystic fibrosis, and drug response results for a statin drug. Logistic regression was used to identify correlates of participant comprehension. Participants exhibited high overall comprehension (mean score: 79.1% correct). The highest comprehension (range: 81.1-97.4% correct) was observed in the statin drug response and carrier screening summary results, and lower comprehension (range: 63.6-74.8% correct) on specific carrier screening results. Higher levels of numeracy, genetic knowledge, and education were significantly associated with greater comprehension. Older age (≥ 60 years) was associated with lower comprehension scores. Most customers accurately interpreted the health implications of PGT results; however, comprehension varied by demographic characteristics, numeracy and genetic knowledge, and types and format of the genetic information presented. Results suggest a need to tailor the presentation of PGT results by test type and customer characteristics. © 2015 S. Karger AG, Basel.
Ostergren, Jenny E.; Gornick, Michele C.; Carere, Deanna Alexis; Kalia, Sarah S.; Uhlmann, Wendy R.; Ruffin, Mack T.; Mountain, Joanna L.; Green, Robert C.; Roberts, J. Scott
2016-01-01
Aim To assess customer comprehension of health-related personal genomic testing (PGT) results. Methods We presented sample reports of genetic results and examined responses to comprehension questions in 1,030 PGT customers (mean age: 46.7 years; 59.9% female; 79.0% college graduates; 14.9% non-White; 4.7% of Hispanic/Latino ethnicity). Sample reports presented a genetic risk for Alzheimer’s disease and type 2 diabetes, carrier screening summary results for >30 conditions, results for phenylketonuria and cystic fibrosis, and drug response results for a statin drug. Logistic regression was used to identify correlates of participant comprehension. Results Participants exhibited high overall comprehension (mean score: 79.1% correct). The highest comprehension (range: 81.1–97.4% correct) was observed in the statin drug response and carrier screening summary results, and lower comprehension (range: 63.6–74.8% correct) on specific carrier screening results. Higher levels of numeracy, genetic knowledge, and education were significantly associated with greater comprehension. Older age (≥ 60 years) was associated with lower comprehension scores. Conclusions Most customers accurately interpreted the health implications of PGT results; however, comprehension varied by demographic characteristics, numeracy and genetic knowledge, and types and format of the genetic information presented. Results suggest a need to tailor the presentation of PGT results by test type and customer characteristics. PMID:26087778
A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects.
Schlipalius, D I; Waldron, J; Carroll, B J; Collins, P J; Ebert, P R
2001-12-01
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability in three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced approximately 50 scoreable polymorphic DNA markers, between individuals of three independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from individual DNA samples that had been combined to create the bulked samples.
Genetic analysis of 7 medieval skeletons from Aragonese Pyrenees
Núńez, Carolina; Sosa, Cecilia; Baeta, Miriam; Geppert, Maria; Turnbough, Meredith; Phillips, Nicole; Casalod, Yolanda; Bolea, Miguel; Roby, Rhonda; Budowle, Bruce; Martínez-Jarreta, Begońa
2011-01-01
Aim To perform a genetic characterization of 7 skeletons from medieval age found in a burial site in the Aragonese Pyrenees. Methods Allele frequencies of autosomal short tandem repeats (STR) loci were determined by 3 different STR systems. Mitochondrial DNA (mtDNA) and Y-chromosome haplogroups were determined by sequencing of the hypervariable segment 1 of mtDNA and typing of phylogenetic Y chromosome single nucleotide polymorphisms (Y-SNP) markers, respectively. Possible familial relationships were also investigated. Results Complete or partial STR profiles were obtained in 3 of the 7 samples. Mitochondrial DNA haplogroup was determined in 6 samples, with 5 of them corresponding to the haplogroup H and 1 to the haplogroup U5a. Y-chromosome haplogroup was determined in 2 samples, corresponding to the haplogroup R. In one of them, the sub-branch R1b1b2 was determined. mtDNA sequences indicated that some of the individuals could be maternally related, while STR profiles indicated no direct family relationships. Conclusions Despite the antiquity of the samples and great difficulty that genetic analyses entail, the combined use of autosomal STR markers, Y-chromosome informative SNPs, and mtDNA sequences allowed us to genotype a group of skeletons from the medieval age. PMID:21674829
A novel, privacy-preserving cryptographic approach for sharing sequencing data
Cassa, Christopher A; Miller, Rachel A; Mandl, Kenneth D
2013-01-01
Objective DNA samples are often processed and sequenced in facilities external to the point of collection. These samples are routinely labeled with patient identifiers or pseudonyms, allowing for potential linkage to identity and private clinical information if intercepted during transmission. We present a cryptographic scheme to securely transmit externally generated sequence data which does not require any patient identifiers, public key infrastructure, or the transmission of passwords. Materials and methods This novel encryption scheme cryptographically protects participant sequence data using a shared secret key that is derived from a unique subset of an individual’s genetic sequence. This scheme requires access to a subset of an individual’s genetic sequence to acquire full access to the transmitted sequence data, which helps to prevent sample mismatch. Results We validate that the proposed encryption scheme is robust to sequencing errors, population uniqueness, and sibling disambiguation, and provides sufficient cryptographic key space. Discussion Access to a set of an individual’s genotypes and a mutually agreed cryptographic seed is needed to unlock the full sequence, which provides additional sample authentication and authorization security. We present modest fixed and marginal costs to implement this transmission architecture. Conclusions It is possible for genomics researchers who sequence participant samples externally to protect the transmission of sequence data using unique features of an individual’s genetic sequence. PMID:23125421
Kashiwagi, Tom; Maxwell, Elisabeth A; Marshall, Andrea D; Christensen, Ana B
2015-01-01
Sharks and rays are increasingly being identified as high-risk species for extinction, prompting urgent assessments of their local or regional populations. Advanced genetic analyses can contribute relevant information on effective population size and connectivity among populations although acquiring sufficient regional sample sizes can be challenging. DNA is typically amplified from tissue samples which are collected by hand spears with modified biopsy punch tips. This technique is not always popular due mainly to a perception that invasive sampling might harm the rays, change their behaviour, or have a negative impact on tourism. To explore alternative methods, we evaluated the yields and PCR success of DNA template prepared from the manta ray mucus collected underwater and captured and stored on a Whatman FTA™ Elute card. The pilot study demonstrated that mucus can be effectively collected underwater using toothbrush. DNA stored on cards was found to be reliable for PCR-based population genetics studies. We successfully amplified mtDNA ND5, nuclear DNA RAG1, and microsatellite loci for all samples and confirmed sequences and genotypes being those of target species. As the yields of DNA with the tested method were low, further improvements are desirable for assays that may require larger amounts of DNA, such as population genomic studies using emerging next-gen sequencing.
Maxwell, Elisabeth A.; Marshall, Andrea D.; Christensen, Ana B.
2015-01-01
Sharks and rays are increasingly being identified as high-risk species for extinction, prompting urgent assessments of their local or regional populations. Advanced genetic analyses can contribute relevant information on effective population size and connectivity among populations although acquiring sufficient regional sample sizes can be challenging. DNA is typically amplified from tissue samples which are collected by hand spears with modified biopsy punch tips. This technique is not always popular due mainly to a perception that invasive sampling might harm the rays, change their behaviour, or have a negative impact on tourism. To explore alternative methods, we evaluated the yields and PCR success of DNA template prepared from the manta ray mucus collected underwater and captured and stored on a Whatman FTA™ Elute card. The pilot study demonstrated that mucus can be effectively collected underwater using toothbrush. DNA stored on cards was found to be reliable for PCR-based population genetics studies. We successfully amplified mtDNA ND5, nuclear DNA RAG1, and microsatellite loci for all samples and confirmed sequences and genotypes being those of target species. As the yields of DNA with the tested method were low, further improvements are desirable for assays that may require larger amounts of DNA, such as population genomic studies using emerging next-gen sequencing. PMID:26413431
ERIC Educational Resources Information Center
Lee, Tammy H.; Blasey, Christine M.; Dyer-Friedman, Jennifer; Glaser, Bronwyn; Reiss, Allan L.; Eliez, Stephan
2005-01-01
Pediatricians' and teachers' knowledge of physical, cognitive, and behavioral features associated with three genetic syndromes were assessed and the effectiveness of information sources about these syndromes evaluated. The surveyed sample included 53 pediatricians and 69 teachers from Northern and Central California. Respondents demonstrated…
Lean, J; Hammer, M P; Unmack, P J; Adams, M; Beheregaray, L B
2017-04-01
Poor dispersal species represent conservative benchmarks for biodiversity management because they provide insights into ecological processes influenced by habitat fragmentation that are less evident in more dispersive organisms. Here we used the poorly dispersive and threatened river blackfish (Gadopsis marmoratus) as a surrogate indicator system for assessing the effects of fragmentation in highly modified river basins and for prioritizing basin-wide management strategies. We combined individual, population and landscape-based approaches to analyze genetic variation in samples spanning the distribution of the species in Australia's Murray-Darling Basin, one of the world's most degraded freshwater systems. Our results indicate that G. marmoratus displays the hallmark of severe habitat fragmentation with notably scattered, small and demographically isolated populations with very low genetic diversity-a pattern found not only between regions and catchments but also between streams within catchments. By using hierarchically nested population sampling and assessing relationships between genetic uniqueness and genetic diversity across populations, we developed a spatial management framework that includes the selection of populations in need of genetic rescue. Landscape genetics provided an environmental criterion to identify associations between landscape features and ecological processes. Our results further our understanding of the impact that habitat quality and quantity has on habitat specialists with similarly low dispersal. They should also have practical applications for prioritizing both large- and small-scale conservation management actions for organisms inhabiting highly fragmented ecosystems.
Lean, J; Hammer, M P; Unmack, P J; Adams, M; Beheregaray, L B
2017-01-01
Poor dispersal species represent conservative benchmarks for biodiversity management because they provide insights into ecological processes influenced by habitat fragmentation that are less evident in more dispersive organisms. Here we used the poorly dispersive and threatened river blackfish (Gadopsis marmoratus) as a surrogate indicator system for assessing the effects of fragmentation in highly modified river basins and for prioritizing basin-wide management strategies. We combined individual, population and landscape-based approaches to analyze genetic variation in samples spanning the distribution of the species in Australia's Murray–Darling Basin, one of the world's most degraded freshwater systems. Our results indicate that G. marmoratus displays the hallmark of severe habitat fragmentation with notably scattered, small and demographically isolated populations with very low genetic diversity—a pattern found not only between regions and catchments but also between streams within catchments. By using hierarchically nested population sampling and assessing relationships between genetic uniqueness and genetic diversity across populations, we developed a spatial management framework that includes the selection of populations in need of genetic rescue. Landscape genetics provided an environmental criterion to identify associations between landscape features and ecological processes. Our results further our understanding of the impact that habitat quality and quantity has on habitat specialists with similarly low dispersal. They should also have practical applications for prioritizing both large- and small-scale conservation management actions for organisms inhabiting highly fragmented ecosystems. PMID:27876805
Ullah, Ashraf; Basak, Abhisak; Islam, Md Nazrul; Alam, Md Samsul
2015-01-01
The founder stock of a captive breeding program is prone to changes in genetic structure due to inbreeding and genetic drift. Genetic characterization of the founder population using suitable molecular markers may help monitor periodic changes in the genetic structure in future. To develop benchmark information about the genetic structure we analyzed six microsatellite loci in the Brodbank collections of rohu (Labeo rohita) originated from three major rivers-the Jamuna, the Padma and the Halda. A total of 28 alleles were detected in 90 individuals with an average of 4.6 alleles per locus. The average observed heterozygosity ranged from 0.655 to 0.705 and the expected heterozygosity ranged from 0.702 to 0.725. The mean F IS values were 0.103, 0.106 and 0.018 for the Jamuna, Padma and Halda fishes respectively. The population pair-wise F ST values ranged from 0.0057 to 0.0278. Structure analysis grouped the fishes of the three rivers into two clusters. The numbers of half-sib families were 5, 5 and 4 and the numbers of full-sib families were 12, 10 and 18 for the Halda, Jamuna and the Padma samples respectively. Bottleneck was detected in all the river samples. We recommend to collect more fish from different locations of the major rivers to broaden the genetic variability of the founder stocks of the Brood bank.
Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil
Kajdacsi, Brittney; Costa, Federico; Hyseni, Chaz; Porter, Fleur; Brown, Julia; Rodrigues, Gorete; Farias, Helena; Reis, Mitermeyer G.; Childs, James E.; Ko, Albert I.; Caccone, Adalgisa
2013-01-01
Throughout the developing world, urban centers with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers, and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus), are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure, and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from 9 sites in the city of Salvador, Brazil. These sites were divided between three neighborhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographic distances. Most FST comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighborhoods or valleys within neighborhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies. PMID:24118116
[Exploration of the concept of genetic drift in genetics teaching of undergraduates].
Wang, Chun-ming
2016-01-01
Genetic drift is one of the difficulties in teaching genetics due to its randomness and probability which could easily cause conceptual misunderstanding. The “sampling error" in its definition is often misunderstood because of the research method of “sampling", which disturbs the results and causes the random changes in allele frequency. I analyzed and compared the definitions of genetic drift in domestic and international genetic textbooks, and found that the definitions containing “sampling error" are widely adopted but are interpreted correctly in only a few textbooks. Here, the history of research on genetic drift, i.e., the contributions of Wright, Fisher and Kimura, is introduced. Moreover, I particularly describe two representative articles recently published about genetic drift teaching of undergraduates, which point out that misconceptions are inevitable for undergraduates during the studying process and also provide a preliminary solution. Combined with my own teaching practice, I suggest that the definition of genetic drift containing “sampling error" can be adopted with further interpretation, i.e., “sampling error" is random sampling among gametes when generating the next generation of alleles which is equivalent to a random sampling of all gametes participating in mating in gamete pool and has no relationship with artificial sampling in general genetics studies. This article may provide some help in genetics teaching.
EvoSNP-DB: A database of genetic diversity in East Asian populations.
Kim, Young Uk; Kim, Young Jin; Lee, Jong-Young; Park, Kiejung
2013-08-01
Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/].
Genetic Comparison of B. Anthracis and its Close Relatives Using AFLP and PCR Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, P.J.; Hill, K.K.; Laker, M.T.
1999-02-01
Amplified Fragment length Polymorphism (AFLP) analysis allows a rapid, relatively simple analysis of a large portion of a microbial genome, providing information about the species and its phylogenetic relationship to other microbes (Vos, et al., 1995). The method simply surveys the genome for length and sequence polymorphisms. The pattern identified can be used for comparison to the genomes of other species. Unlike other methods, it does not rely on analysis of a single genetic locus that may bias the interpretation of results and it does not require any prior knowledge of the targeted organism. Moreover, a standard set of reagentsmore » can be applied to any species without using species-specific information or molecular probes. The authors are using AFLP's to rapidly identify different bacterial species. A comparison of AFLP profiles generated from a large battery of B. anthracis strains shows very little variability among different isolates (Keim, et al., 1997). By contrast, there is a significant difference between AFLP profiles generated for any B. anthracis strain and even the most closely related Bacillus species. Sufficient variability is apparent among all known microbial species to allow phylogenetic analysis based on large numbers of genetically unlinked loci. These striking differences among AFLP profiles allow unambiguous identification of previously identified species and phylogenetic placement of newly characterized isolates relative to known species based on a large number of independent genetic loci. Data generated thus far show that the method provides phylogenetic analyses that are consistent with other widely accepted phylogenetic methods. However, AFLP analysis provides a more detailed analysis of the targets and samples a much larger portion of the genome. Consequently, it provides an inexpensive, rapid means of characterizing microbial isolates to further differentiate among strains and closely related microbial species. Such information cannot be rapidly generated by other means. AFLP sample analysis quickly generates a very large amount of molecular information about microbial genomes. However, this information cannot be analyzed rapidly using manual methods. The authors are developing a large archive of electronic AFLP signatures that is being used to identify isolates collected from medical, veterinary, forensic and environmental samples. They are also developing the computational packages necessary to rapidly and unambiguously analyze the AFLP profiles and conduct a phylogenetic comparison of these data relative to information already in the database. They will use this archive and the associated algorithms to determine the species identity of previously uncharacterized isolates and place them phylogenetically relative to other microbes based on their AFLP signatures. This study provides significant new information about microbes with environmental, veterinary and medical significance. This information can be used in further studies to understand the relationships among these species and the factors that distinguish them from one another. It should also allow identification of unique factors that contribute to important microbial traits including pathogenicity and virulence. They are also using AFLP data to identify, isolate and sequence DNA fragments that are unique to particular microbial species and strains. The fragment patterns and sequence information provide insights into the complexity and organization of bacterial genomes relative to one another. They also provide the information necessary for development of species-specific PCR primers that can be used to interrogate complex samples for the presence of B. anthracis, other microbial pathogens or their remnants.« less
Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo
2014-01-01
Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.
Deck, John; Gaither, Michelle R; Ewing, Rodney; Bird, Christopher E; Davies, Neil; Meyer, Christopher; Riginos, Cynthia; Toonen, Robert J; Crandall, Eric D
2017-08-01
The Genomic Observatories Metadatabase (GeOMe, http://www.geome-db.org/) is an open access repository for geographic and ecological metadata associated with biosamples and genetic data. Whereas public databases have served as vital repositories for nucleotide sequences, they do not accession all the metadata required for ecological or evolutionary analyses. GeOMe fills this need, providing a user-friendly, web-based interface for both data contributors and data recipients. The interface allows data contributors to create a customized yet standard-compliant spreadsheet that captures the temporal and geospatial context of each biosample. These metadata are then validated and permanently linked to archived genetic data stored in the National Center for Biotechnology Information's (NCBI's) Sequence Read Archive (SRA) via unique persistent identifiers. By linking ecologically and evolutionarily relevant metadata with publicly archived sequence data in a structured manner, GeOMe sets a gold standard for data management in biodiversity science.
Living at Risk: Concealing Risk and Preserving Hope in Huntington Disease
Sims, Sharon L.; Swenson, Melinda M.; Harrison, Joan M.; Moskowitz, Carol; Stepanov, Nonna; Suter, Gregory W.; Westphal, Beryl J.
2013-01-01
Much of the qualitative research on Huntington disease has focused on the genetic testing aspects of HD. The overall purpose of this qualitative study was to gather information about the everyday experience of living with the risk of developing Huntington disease in a sample of individuals at risk for HD who have chosen not to pursue genetic testing. Data for this article was obtained from unstructured, open-ended qualitative interviews of a sample of people participating in the PHAROS study. PHAROS, the Prospective Huntington At-Risk Observational Study, is a multi-site study that aims to establish whether experienced clinicians can reliably determine the earliest clinical symptoms of Huntington disease in individuals at 50% risk for HD who have chosen not to undergo genetic testing. Interviews were conducted at six PHAROS research sites across the United States. In this paper, the research team used qualitative description to construct and explore two main themes: (1) careful concealment of risk as an act of self-preservation and (2) preserving hope. PMID:17943424
Rasbash, Jon; Jenkins, Jennifer; O'Connor, Thomas G; Tackett, Jennifer; Reiss, David
2011-03-01
The goal of this study was to investigate individual and relationship influences on expressions of negativity and positivity in families. Parents and adolescents were observed in a round-robin design in a sample of 687 families. Data were analyzed using a multilevel social relations model. In addition, genetic contributions were estimated for actor effects. Children showed higher mean levels of negativity and lower mean levels of positivity as actors than did parents. Mothers were found to express and elicit higher mean levels of positivity and negativity than fathers. Actor effects were much stronger than partner effects, accounting for between 18%-39% of the variance depending on the actor and the outcome. Genetic (35%) and shared environmental (19%) influences explained a substantial proportion of the actor effect variance for negativity. Dyadic reciprocities were lowest in dyads with a high power differential (i.e., parent-child dyads) and highest for dyads with equal power (sibling and marital dyads). (c) 2011 APA, all rights reserved
Kuhn, Jens H.; Bao, Yiming; Bavari, Sina; Becker, Stephan; Bradfute, Steven; Brister, J. Rodney; Bukreyev, Alexander A.; Chandran, Kartik; Davey, Robert A.; Dolnik, Olga; Dye, John M.; Enterlein, Sven; Hensley, Lisa; Honko, Anna N.; Jahrling, Peter B.; Johnson, Karl M.; Kobinger, Gary; Leroy, Eric M.; Lever, Mark S.; Mühlberger, Elke; Netesov, Sergey V.; Olinger, Gene G.; Palacios, Gustavo; Patterson, Jean L.; Paweska, Janusz T.; Pitt, Louise; Radoshitzky, Sheli R.; Saphire, Erica Ollmann; Smither, Sophie J.; Swanepoel, Robert; Towner, Jonathan S.; van der Groen, Guido; Volchkov, Viktor E.; Wahl-Jensen, Victoria; Warren, Travis; Weidmann, Manfred; Nichol, Stuart T.
2012-01-01
The task of international expert groups is to recommend the classification and naming of viruses. The ICTV Filoviridae Study Group and other experts have recently established an almost consistent classification and nomenclature for filoviruses. Here, further guidelines are suggested to include their natural genetic variants. First, this term is defined. Second, a template for full-length virus names (such as “Ebola virus H.sapiens-tc/COD/1995/Kikwit-9510621”) is proposed. These names contain information on the identity of the virus (e.g., Ebola virus), isolation host (e.g., members of the species Homo sapiens), sampling location (e.g., Democratic Republic of the Congo (COD)), sampling year, genetic variant (e.g., Kikwit), and isolate (e.g., 9510621). Suffixes are proposed for individual names that clarify whether a given genetic variant has been characterized based on passage zero material (-wt), has been passaged in tissue/cell culture (-tc), is known from consensus sequence fragments only (-frag), or does (most likely) not exist anymore (-hist). We suggest that these comprehensive names are to be used specifically in the methods section of publications. Suitable abbreviations, also proposed here, could then be used throughout the text, while the full names could be used again in phylograms, tables, or figures if the contained information aids the interpretation of presented data. The proposed system is very similar to the well-known influenzavirus nomenclature and the nomenclature recently proposed for rotaviruses. If applied consistently, it would considerably simplify retrieval of sequence data from electronic databases and be a first important step toward a viral genome annotation standard as sought by the National Center for Biotechnology Information (NCBI). Furthermore, adoption of this nomenclature would increase the general understanding of filovirus-related publications and presentations and improve figures such as phylograms, alignments, and diagrams. Most importantly, it would counter the increasing confusion in genetic variant naming due to the identification of ever more sequences through technological breakthroughs in high-throughput sequencing and environmental sampling. PMID:23001720
Scorrano, Gabriele; Lelli, Roberta; Martínez-Labarga, Cristina; Scano, Giuseppina; Contini, Irene; Hafez, Hani S; Rudan, Pavao; Rickards, Olga
2016-01-01
The most abundant of the collagen protein family, type I collagen is encoded by the COL1A2 gene. The COL1A2 restriction fragment length polymorphisms (RFLPs) EcoRI, RsaI and MspI in samples from several different central-eastern Mediterranean populations were analysed and found to be potentially informative anthropogenetic markers. The objective was to define the genetic variability of COL1A2 in the central-eastern Mediterranean and to shed light on its genetic distribution in human groups over a wide geographic area. PCR-RFLP analysis of EcoRI, RsaI and MspI polymorphisms of the COL1A2 gene was performed on oral swab and blood samples from 308 individuals from the central-eastern Mediterranean Basin. The genetic similarities among these groups and other populations described in the literature were investigated through correspondence analysis. Single-marker data and haplotype frequencies seemed to suggest a genetic homogeneity within the European populations, whereas a certain degree of differentiation was noted for the Egyptians and the Turks. The genetic variability in the central-eastern Mediterranean area is probably a result of the geographical barrier of the Mediterranean Sea, which separated European and African populations over time.
Pandey, Ram Vinay; Kofler, Robert; Orozco-terWengel, Pablo; Nolte, Viola; Schlötterer, Christian
2011-03-02
The enormous potential of natural variation for the functional characterization of genes has been neglected for a long time. Only since recently, functional geneticists are starting to account for natural variation in their analyses. With the new sequencing technologies it has become feasible to collect sequence information for multiple individuals on a genomic scale. In particular sequencing pooled DNA samples has been shown to provide a cost-effective approach for characterizing variation in natural populations. While a range of software tools have been developed for mapping these reads onto a reference genome and extracting SNPs, linking this information to population genetic estimators and functional information still poses a major challenge to many researchers. We developed PoPoolation DB a user-friendly integrated database. Popoolation DB links variation in natural populations with functional information, allowing a wide range of researchers to take advantage of population genetic data. PoPoolation DB provides the user with population genetic parameters (Watterson's θ or Tajima's π), Tajima's D, SNPs, allele frequencies and indels in regions of interest. The database can be queried by gene name, chromosomal position, or a user-provided query sequence or GTF file. We anticipate that PoPoolation DB will be a highly versatile tool for functional geneticists as well as evolutionary biologists. PoPoolation DB, available at http://www.popoolation.at/pgt, provides an integrated platform for researchers to investigate natural polymorphism and associated functional annotations from UCSC and Flybase genome browsers, population genetic estimators and RNA-seq information.
29 CFR 1635.12 - Medical information that is not genetic information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 4 2014-07-01 2014-07-01 false Medical information that is not genetic information. 1635... COMMISSION GENETIC INFORMATION NONDISCRIMINATION ACT OF 2008 § 1635.12 Medical information that is not genetic information. (a) Medical information about a manifested disease, disorder, or pathological...
29 CFR 1635.12 - Medical information that is not genetic information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 4 2011-07-01 2011-07-01 false Medical information that is not genetic information. 1635... COMMISSION GENETIC INFORMATION NONDISCRIMINATION ACT OF 2008 § 1635.12 Medical information that is not genetic information. (a) Medical information about a manifested disease, disorder, or pathological...
29 CFR 1635.12 - Medical information that is not genetic information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 4 2013-07-01 2013-07-01 false Medical information that is not genetic information. 1635... COMMISSION GENETIC INFORMATION NONDISCRIMINATION ACT OF 2008 § 1635.12 Medical information that is not genetic information. (a) Medical information about a manifested disease, disorder, or pathological...
29 CFR 1635.12 - Medical information that is not genetic information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 4 2012-07-01 2012-07-01 false Medical information that is not genetic information. 1635... COMMISSION GENETIC INFORMATION NONDISCRIMINATION ACT OF 2008 § 1635.12 Medical information that is not genetic information. (a) Medical information about a manifested disease, disorder, or pathological...
Francis, Leslie P
2010-01-01
Genetic information poses an apparent paradox for justice in health care. On the one hand, genetic information seems to be exactly the kind of information that it is unjust to take into account in the distribution of important goods. On the other hand, genetic information may increasingly become useful in individual patient care as evidence for personalized medicine increases. Although it is important to emphasize the difference between genetic information and the social construct of race, nonetheless, the historical interplay between discrimination based on assumptions about heritability and discrimination based on race are significant. Thus, this article defends the importance of paying very close attention to protections in the use of genetic information. Three current examples of inadequate protection are cited. First, informed consent to genetic testing should incorporate potential confidentiality risks raised by this information. Second, the Genetic Information Nondiscrimination Act is too porous to protect employees from their employers' possession of genetic information; if such information is used in discriminatory ways, burdens of seeking protection then fall on the employees. More stringent strategies for protecting information are thus desirable. Finally, current designs of interoperable health records fail to allow for the sequestration of genetic information. Efforts to develop such sequestration techniques should be encouraged; among other benefits, they would be helpful in shielding genetic information from employers. (c) 2010 Mount Sinai School of Medicine.
Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.
Sztepanacz, Jacqueline L; Blows, Mark W
2017-07-01
The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.
Microsatellite markers for Senna spectabilis var. excelsa (Caesalpinioideae, Fabaceae)1
López-Roberts, M. Cristina; Barbosa, Ariane R.; Paganucci de Queiroz, Luciano; van den Berg, Cássio
2016-01-01
Premise of the study: Senna spectabilis var. excelsa (Fabaceae) is a South and Central American tree of great ecological importance and one of the most common species in several sites of seasonally dry forests. Our goal was to develop microsatellite markers to assess the genetic diversity and structure of this species. Methods and Results: We designed and assessed 53 loci obtained from a microsatellite-enriched library and an intersimple sequence repeat library. Fourteen loci were polymorphic, and they presented a total of 39 alleles in a sample of 61 individuals from six populations. The mean values of observed and expected heterozygosities were 0.355 and 0.479, respectively. Polymorphism information content was 0.390 and the Shannon index was 0.778. Conclusions: Polymorphism information content and Shannon index indicate that at least nine of the 14 microsatellite loci developed are moderate to highly informative, and potentially useful for population genetic studies in this species. PMID:26819856
McGowan, Michelle L.; Burant, Chris; Moran, Rocio; Farrell, Ruth
2013-01-01
Introduction Innovative applications of genetic testing have emerged within the field of assisted reproductive technology through preimplantation genetic diagnosis (PGD). As in all forms of genetic testing, adequate genetic counseling and informed consent are critical. Despite the growing recognition of the role of informed consent in genetic testing, there is little data available about how this process occurs in the setting of PGD. Methods A cross sectional study of IVF clinics offering PGD in the U.S. was conducted to assess patient education and informed consent practices. Descriptive data were collected with a self-administered survey instrument. Results More than half of the clinics offering PGD required genetic counseling prior to PGD (56%). Genetic counseling was typically performed by certified genetic counselors (84 %). Less than half (37%) of the clinics required a separate informed consent process for genetic testing of embryonic cells. At a majority of those clinics requiring a separate informed consent for genetic testing (54%), informed consent for PGD and genetic testing took place as a single event before beginning IVF procedures. Conclusions The results suggest that patient education and informed consent practices for PGD have yet to be standardized. These findings warrant the establishment of professional guidelines for patient education and informed consent specific to embryonic genetic testing. PMID:19652605
Al-Sadi, Abdullah M; Al-Oweisi, Fatma A; Edwards, Simon G; Al-Nadabi, Hamed; Al-Fahdi, Ahmed M
2015-07-28
Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T. asperellum, T. ghanense, T. longibrachiatum and T. orientalis.
Nelson, Sarah C.; Stilp, Adrienne M.; Papanicolaou, George J.; Taylor, Kent D.; Rotter, Jerome I.; Thornton, Timothy A.; Laurie, Cathy C.
2016-01-01
Imputation is commonly used in genome-wide association studies to expand the set of genetic variants available for analysis. Larger and more diverse reference panels, such as the final Phase 3 of the 1000 Genomes Project, hold promise for improving imputation accuracy in genetically diverse populations such as Hispanics/Latinos in the USA. Here, we sought to empirically evaluate imputation accuracy when imputing to a 1000 Genomes Phase 3 versus a Phase 1 reference, using participants from the Hispanic Community Health Study/Study of Latinos. Our assessments included calculating the correlation between imputed and observed allelic dosage in a subset of samples genotyped on a supplemental array. We observed that the Phase 3 reference yielded higher accuracy at rare variants, but that the two reference panels were comparable at common variants. At a sample level, the Phase 3 reference improved imputation accuracy in Hispanic/Latino samples from the Caribbean more than for Mainland samples, which we attribute primarily to the additional reference panel samples available in Phase 3. We conclude that a 1000 Genomes Project Phase 3 reference panel can yield improved imputation accuracy compared with Phase 1, particularly for rare variants and for samples of certain genetic ancestry compositions. Our findings can inform imputation design for other genome-wide association studies of participants with diverse ancestries, especially as larger and more diverse reference panels continue to become available. PMID:27346520
MGIS: managing banana (Musa spp.) genetic resources information and high-throughput genotyping data
Guignon, V.; Sempere, G.; Sardos, J.; Hueber, Y.; Duvergey, H.; Andrieu, A.; Chase, R.; Jenny, C.; Hazekamp, T.; Irish, B.; Jelali, K.; Adeka, J.; Ayala-Silva, T.; Chao, C.P.; Daniells, J.; Dowiya, B.; Effa effa, B.; Gueco, L.; Herradura, L.; Ibobondji, L.; Kempenaers, E.; Kilangi, J.; Muhangi, S.; Ngo Xuan, P.; Paofa, J.; Pavis, C.; Thiemele, D.; Tossou, C.; Sandoval, J.; Sutanto, A.; Vangu Paka, G.; Yi, G.; Van den houwe, I.; Roux, N.
2017-01-01
Abstract Unraveling the genetic diversity held in genebanks on a large scale is underway, due to advances in Next-generation sequence (NGS) based technologies that produce high-density genetic markers for a large number of samples at low cost. Genebank users should be in a position to identify and select germplasm from the global genepool based on a combination of passport, genotypic and phenotypic data. To facilitate this, a new generation of information systems is being designed to efficiently handle data and link it with other external resources such as genome or breeding databases. The Musa Germplasm Information System (MGIS), the database for global ex situ-held banana genetic resources, has been developed to address those needs in a user-friendly way. In developing MGIS, we selected a generic database schema (Chado), the robust content management system Drupal for the user interface, and Tripal, a set of Drupal modules which links the Chado schema to Drupal. MGIS allows germplasm collection examination, accession browsing, advanced search functions, and germplasm orders. Additionally, we developed unique graphical interfaces to compare accessions and to explore them based on their taxonomic information. Accession-based data has been enriched with publications, genotyping studies and associated genotyping datasets reporting on germplasm use. Finally, an interoperability layer has been implemented to facilitate the link with complementary databases like the Banana Genome Hub and the MusaBase breeding database. Database URL: https://www.crop-diversity.org/mgis/ PMID:29220435
Analysis of Informed Consent Document Utilization in a Minimal-Risk Genetic Study
Desch, Karl; Li, Jun; Kim, Scott; Laventhal, Naomi; Metzger, Kristen; Siemieniak, David; Ginsburg, David
2012-01-01
Background The signed informed consent document certifies that the process of informed consent has taken place and provides research participants with comprehensive information about their role in the study. Despite efforts to optimize the informed consent document, only limited data are available about the actual use of consent documents by participants in biomedical research. Objective To examine the use of online consent documents in a minimal-risk genetic study. Design Prospective sibling cohort enrolled as part of a genetic study of hematologic and common human traits. Setting University of Michigan Campus, Ann Arbor, Michigan. Participants Volunteer sample of healthy persons with 1 or more eligible siblings aged 14 to 35 years. Enrollment was through targeted e-mail to student lists. A total of 1209 persons completed the study. Measurements Time taken by participants to review a 2833-word online consent document before indicating consent and identification of a masked hyperlink near the end of the document. Results The minimum predicted reading time was 566 seconds. The median time to consent was 53 seconds. A total of 23% of participants consented within 10 seconds, and 93% of participants consented in less than the minimum predicted reading time. A total of 2.5% of participants identified the masked hyperlink. Limitation The online consent process was not observed directly by study investigators, and some participants may have viewed the consent document more than once. Conclusion Few research participants thoroughly read the consent document before agreeing to participate in this genetic study. These data suggest that current informed consent documents, particularly for low-risk studies, may no longer serve the intended purpose of protecting human participants, and the role of these documents should be reassessed. Primary Funding Source National Institutes of Health. PMID:21893624
Lesieur, Vincent; Martin, Jean-François; Weaver, David K; Hoelmer, Kim A; Smith, David R; Morrill, Wendell L; Kadiri, Nassera; Peairs, Frank B; Cockrell, Darren M; Randolph, Terri L; Waters, Debra K; Bon, Marie-Claude
2016-01-01
The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage resulting from this species has recently expanded southward. Current pest management practices are inadequate and uncertainty regarding geographic origin, as well as limited data on population structure and dynamics across North America impede progress towards more informed management. We examined the genetic divergence between samples collected in North America and northeastern Asia, the assumed native range of C. cinctus using two mitochondrial regions (COI and 16S). Subsequently, we characterized the structure of genetic diversity in the main wheat producing areas in North America using a combination of mtDNA marker and microsatellites in samples collected both in wheat fields and in grasses in wildlands. The strong genetic divergence observed between North American samples and Asian congeners, in particular the synonimized C. hyalinatus, did not support the hypothesis of a recent American colonization by C. cinctus. Furthermore, the relatively high genetic diversity both with mtDNA and microsatellite markers offered additional evidence in favor of the native American origin of this pest. The genetic diversity of North American populations is structured into three genetic clusters and these are highly correlated with geography. Regarding the recent southern outbreaks in North America, the results tend to exclude the hypothesis of recent movement of damaging wheat stem sawfly populations from the northern area. The shift in host plant use by local populations appears to be the most likely scenario. Finally, the significance of these findings is discussed in the context of pest management.
Lesieur, Vincent; Martin, Jean-François; Weaver, David K.; Hoelmer, Kim A.; Smith, David R.; Morrill, Wendell L.; Kadiri, Nassera; Peairs, Frank B.; Cockrell, Darren M.; Randolph, Terri L.; Waters, Debra K.; Bon, Marie-Claude
2016-01-01
The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage resulting from this species has recently expanded southward. Current pest management practices are inadequate and uncertainty regarding geographic origin, as well as limited data on population structure and dynamics across North America impede progress towards more informed management. We examined the genetic divergence between samples collected in North America and northeastern Asia, the assumed native range of C. cinctus using two mitochondrial regions (COI and 16S). Subsequently, we characterized the structure of genetic diversity in the main wheat producing areas in North America using a combination of mtDNA marker and microsatellites in samples collected both in wheat fields and in grasses in wildlands. The strong genetic divergence observed between North American samples and Asian congeners, in particular the synonimized C. hyalinatus, did not support the hypothesis of a recent American colonization by C. cinctus. Furthermore, the relatively high genetic diversity both with mtDNA and microsatellite markers offered additional evidence in favor of the native American origin of this pest. The genetic diversity of North American populations is structured into three genetic clusters and these are highly correlated with geography. Regarding the recent southern outbreaks in North America, the results tend to exclude the hypothesis of recent movement of damaging wheat stem sawfly populations from the northern area. The shift in host plant use by local populations appears to be the most likely scenario. Finally, the significance of these findings is discussed in the context of pest management. PMID:27959958
Fola, Abebe A; Harrison, G L Abby; Hazairin, Mita Hapsari; Barnadas, Céline; Hetzel, Manuel W; Iga, Jonah; Siba, Peter M; Mueller, Ivo; Barry, Alyssa E
2017-03-01
Abstract Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3 , and 758 positive P. falciparum samples were genotyped at Pfmsp2 . The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax . The genetic diversity of P. vivax ( PvMS16 : expected heterozygosity = 0.95, 0.85-0.98; PvMsp1F3 : 0.78, 0.66-0.89) was higher and less variable than that of P. falciparum ( Pfmsp2 : 0.89, 0.65-0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum . Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax . The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species.
Characterization of local goat breeds using RAP-DNA markers
NASA Astrophysics Data System (ADS)
Al-Barzinji, Yousif M. S.; Hamad, Aram O.
2017-09-01
The present study was conducted on different colors of local goat breeds. A number of 216 does were sampled from the seven groups. Genomic DNA was extracted from the blood samples. From the twenty used RAPD primers 12 of them were amplified, and presence of bands. The total fragment number of 12 primers over all the goat breed samples was 485 fragments. Out of the 485 fragments, 90 of them were Polymorphic fragments numbers (PFN). From all bands obtained, 20 of them possessed unique bands. The highest unique band was found in locus RAP 6 which has 4 unique bands, three of them in the Maraz Brown and one in the local Koor. Nei's gene diversity and Shanon's information index in this study were averaged 0.38 and 0.60, respectively. The genetic distance among several goat breeds ranged from 9.11 to 43.33%. The highest genetic distance 43.33% recorded between Maraz goat and other goat breeds and between local Koor and other goat (except Maraz goats) breeds (37.79%). However, the lowest genetic distance recorded between local white and Pnok. The distance between (local Black and Pnok) and (local Black and local white) was 22.75%. In conclusions, the high distance among these goat breeds, polymorphism and high numbers of unique bands found in present study indicates that these goat breeds have the required amount of genetic variation to made genetic improvement. This study helps us to clarify the image of the genetic diversity of the local goat breeds and the breeders can used it for mating system when need to make the crossing among these goat breeds.
Kaphingst, Kimberly A.; Blanchard, Melvin; Milam, Laurel; Pokharel, Manusheela; Elrick, Ashley; Goodman, Melody S.
2017-01-01
The increasing importance of genomic information in clinical care heightens our need to examine how individuals understand, value, and communicate about this information. Based on a conceptual framework of genomics-related health literacy, we examined whether health literacy was related to knowledge, self-efficacy, and perceived importance of genetics and FHH and communication about FHH in a medically underserved population. The analytic sample was comprised of 624 patients at a primary care clinic at a large urban hospital. About half of participants (47%) had limited health literacy; 55% had no education beyond high school and 58% were Black. In multivariable models, limited health literacy was associated with lower genetic knowledge (β=−0.55; SE=0.10, p<.0001), lower awareness of FHH (OR=0.50; 95% CI=0.28,0.90, p=.020), greater perceived importance of genetic information (OR=1.95; 95% CI=1.27,3.00, p=.0022) but lower perceived importance of FHH information (OR=0.47; 95% CI=0.26,0.86, p=.013), and more frequent communication with a doctor about FHH (OR=2.02; 95% CI=1.27,3.23, p=.0032). The findings highlight the importance of considering domains of genomics-related health literacy (e.g., knowledge, oral literacy) in developing educational strategies for genomic information. Health literacy research is essential to avoid increasing disparities in information and health outcomes as genomic information reaches more patients. PMID:27043759
Valle Mansilla, José Ignacio
2011-01-01
Biomedical researchers often now ask subjects to donate samples to be deposited in biobanks. This is not only of interest to researchers, patients and society as a whole can benefit from the improvements in diagnosis, treatment, and prevention that the advent of genomic medicine portends. However, there is a growing debate regarding the social and ethical implications of creating biobanks and using stored human tissue samples for genomic research. Our aim was to identify factors related to both scientists and patients' preferences regarding the sort of information to convey to subjects about the results of the study and the risks related to genomic research. The method used was a survey addressed to 204 scientists and 279 donors from the U.S. and Spain. In this sample, researchers had already published genomic epidemiology studies; and research subjects had actually volunteered to donate a human sample for genomic research. Concerning the results, patients supported more frequently than scientists their right to know individual results from future genomic research. These differences were statistically significant after adjusting by the opportunity to receive genetic research results from the research they had previously participated and their perception of risks regarding genetic information compared to other clinical data. A slight majority of researchers supported informing participants about individual genomic results only if the reliability and clinical validity of the information had been established. Men were more likely than women to believe that patients should be informed of research results even if these conditions were not met. Also among patients, almost half of them would always prefer to be informed about individual results from future genomic research. The three main factors associated to a higher support of a non-limited access to individual results were: being from the US, having previously been offered individual information and considering genomic data more sensitive than other personal medical data. Moreover, the disease of patients, the educational level and the patient's country of origin were factors associated with the perception of risks related to genomic information. As a conclusion, it is mandatory to clarify the criteria required to establish when individual results from genomic research should be offered to participants.
Gaspar, Paulo; Seixas, Susana; Rocha, Jorge
2004-04-01
The genetic variation at a compound nonrecombining haplotype system, consisting of the previously reported SB19.3 Alu insertion polymorphism and a newly identified adjacent short tandem repeat (STR), was studied in population samples from Portugal and São Tomé (Gulf of Guinea, West Africa). Age estimates based on the linked microsatellite variation suggest that the Alu insertion occurred about 190,000 years ago. In accordance with the global patterns of distribution of human genetic variation, the highest haplotype diversity was found in the African sample. This excess in African diversity was due to both a substantial reduction in heterozygosity at the Alu polymorphism and a lower STR variability associated with the predominant Alu insertion allele in the Portuguese sample. The high level of interpopulation differentiation observed at the Alu locus (F(ST) = 0.43) was interpreted under alternative selective and demographic scenarios. The need for compatibility between patterns of variation at the STR and Alu loci could be used to restrict the range of selection coefficients in selection-driven genetic hitchhiking frameworks and to favor demographic scenarios dominated by larger pre-expansion African population sizes. Taken together, the data show that the SB19.3 Alu-STR system is an informative marker that can be included in more extended batteries of compound haplotypes used in human evolutionary studies.
Rosagro Escámez, Francisco; González-Javier, Francisca; Ordoñana, Juan R
2013-01-01
Our objective is to determine the prevalence and factors associated to psychotropic medication consumption in a sample of adult females. Additionally, this study seeks to analyze the relative contribution of environmental and genetic factors to psychoactive medication use. Sample consists of a population-based cohort comprising 437 pairs of female twins born between 1940 and 1966. Information is collected through individual interviews, and it includes employment status, educational level, partner status, menopause, presence of mental disorders and psychoactive medication use. Logistic regression models are applied. The relative contribution of genetic and environmental factors to interindividual variation is analyzed through the classical twin design. In the past month, 34.0% of the women interviewed had consumed psychoactive medication. Consumption increases with age, in women out of the labor market, menopausal, and reporting a history of mental disorders. When controlling for age, all variables lost significance, except the presence of mental health problems. Heritability estimates for psychoactive medication use was 52%. This estimate is similar (46%) for consumption in the two categories studied. There is a high prevalence of psychoactive medication use in this sample. This consumption is mainly associated with age and presence of mental disorders. About half of the interindividual variation in psychotropic medication use is attributable to genetic factors, while the rest of the variance would be due to environmental factors unique to each individual.
Smith, Blair H; Campbell, Archie; Linksted, Pamela; Fitzpatrick, Bridie; Jackson, Cathy; Kerr, Shona M; Deary, Ian J; Macintyre, Donald J; Campbell, Harry; McGilchrist, Mark; Hocking, Lynne J; Wisely, Lucy; Ford, Ian; Lindsay, Robert S; Morton, Robin; Palmer, Colin N A; Dominiczak, Anna F; Porteous, David J; Morris, Andrew D
2013-06-01
GS:SFHS is a family-based genetic epidemiology study with DNA and socio-demographic and clinical data from about 24 000 volunteers across Scotland aged 18-98 years, from February 2006 to March 2011. Biological samples and anonymized data form a resource for research on the genetics of health, disease and quantitative traits of current and projected public health importance. Specific and important features of GS:SFHS include the family-based recruitment, with the intent of obtaining family groups; the breadth and depth of phenotype information, including detailed data on cognitive function, personality traits and mental health; consent and mechanisms for linkage of all data to comprehensive routine health-care records; and 'broad' consent from participants to use their data and samples for a wide range of medical research, including commercial research, and for re-contact for the potential collection of other data or samples, or for participation in related studies and the design and review of the protocol in parallel with in-depth sociological research on (potential) participants and users of the research outcomes. These features were designed to maximize the power of the resource to identify, replicate or control for genetic factors associated with a wide spectrum of illnesses and risk factors, both now and in the future.
Sazzini, Marco; Garagnani, Paolo; Sarno, Stefania; De Fanti, Sara; Lazzano, Teresa; Yang Yao, Daniele; Boattini, Alessio; Pazzola, Giulia; Maramotti, Sally; Boiardi, Luigi; Franceschi, Claudio; Salvarani, Carlo; Luiselli, Donata
2015-01-01
Behçet's disease is a multifactorial vasculitis that shows its highest prevalence in geographical areas historically involved in the Silk Road, suggesting that it might have originated somewhere along these ancient trade routes. This study aims to provide a first clue towards genetic evidence for this hypothesis by testing it via an anthropological evolutionary genetics approach. Behçet's disease variation at ancestry informative mitochondrial DNA control region and haplogroup diagnostic sites was characterised in 185 disease subjects of Italian descent and set into the Eurasian mitochondrial landscape by comparison with nearly 9,000 sequences representative of diversity observable in Italy and along the main Silk Road routes. Dissection of the actual genetic ancestry of disease individuals by means of population structure, spatial autocorrelation and haplogroup analyses revealed their closer relationships with some Middle Eastern and Central Asian groups settled along the Silk Road than with healthy Italians. These findings support the hypothesis that the Behçet's disease genetic risk has migrated to western Eurasia in parallel with ancestry components typical of Silk Road-related groups. This provided new insights that are useful to improve the understanding of disease origins and diffusion, as well as to inform future association studies aimed at properly accounting for the actual genetic ancestry of the examined Behçet's disease samples in order to minimise the detection of spurious associations and to improve the identification of genetic variants with actual clinical relevance.
Chen, Zhijian; Craiu, Radu V; Bull, Shelley B
2014-11-01
In focused studies designed to follow up associations detected in a genome-wide association study (GWAS), investigators can proceed to fine-map a genomic region by targeted sequencing or dense genotyping of all variants in the region, aiming to identify a functional sequence variant. For the analysis of a quantitative trait, we consider a Bayesian approach to fine-mapping study design that incorporates stratification according to a promising GWAS tag SNP in the same region. Improved cost-efficiency can be achieved when the fine-mapping phase incorporates a two-stage design, with identification of a smaller set of more promising variants in a subsample taken in stage 1, followed by their evaluation in an independent stage 2 subsample. To avoid the potential negative impact of genetic model misspecification on inference we incorporate genetic model selection based on posterior probabilities for each competing model. Our simulation study shows that, compared to simple random sampling that ignores genetic information from GWAS, tag-SNP-based stratified sample allocation methods reduce the number of variants continuing to stage 2 and are more likely to promote the functional sequence variant into confirmation studies. © 2014 WILEY PERIODICALS, INC.
Privacy of genetic information: a review of the laws in the United States.
Fuller, B; Ip, M
2001-01-01
This paper examines the privacy of genetic information and the laws in the United States designed to protect genetic privacy. While all 50 states have laws protecting the privacy of health information, there are many states that have additional laws that carve out additional protections specifically for genetic information. The majority of the individual states have enacted legislation to protect individuals from discrimination on the basis of genetic information, and most of this legislation also has provisions to protect the privacy of genetic information. On the Federal level, there has been no antidiscrimination or genetic privacy legislation. Secretary Donna Shalala of the Department of Health and Human Services has issued proposed regulations to protect the privacy of individually identifiable health information. These regulations encompass individually identifiable health information and do not make specific provisions for genetic information. The variety of laws regarding genetic privacy, some found in statutes to protect health information and some found in statutes to prevent genetic discrimination, presents challenges to those charged with administering and executing these laws.
Family communication in a population at risk for hypertrophic cardiomyopathy.
Batte, Brittany; Sheldon, Jane P; Arscott, Patricia; Huismann, Darcy J; Salberg, Lisa; Day, Sharlene M; Yashar, Beverly M
2015-04-01
Encouraging family communication is an integral component of genetic counseling; therefore, we sought to identify factors impacting communication to family members at risk for Hypertrophic Cardiomyopathy (HCM). Participants (N = 383) completed an online survey assessing: 1) demographics (gender, genetic test results, HCM family history, and disease severity); 2) illness representations; 3) family functioning and cohesiveness; 4) coping styles; 5) comprehension of HCM autosomal dominant inheritance; and 6) communication of HCM risk information to at-risk relatives. Participants were a national sample of individuals with HCM, recruited through the Hypertrophic Cardiomyopathy Association. Data from 183 participants were analyzed using a logistic regression analysis, with family communication as a dichotomous dependent variable. We found that female gender and higher comprehension of autosomal dominant inheritance were significant predictors of participants' communication of HCM risk information to all their siblings and children. Our results suggest that utilizing interventions that promote patient comprehension (e.g., a teaching-focused model of genetic counseling) are important and may positively impact family communication within families with HCM.
Bates, Timothy C.
2015-01-01
Optimism and pessimism are associated with important outcomes including health and depression. Yet it is unclear if these apparent polar opposites form a single dimension or reflect two distinct systems. The extent to which personality accounts for differences in optimism/pessimism is also controversial. Here, we addressed these questions in a genetically informative sample of 852 pairs of twins. Distinct genetic influences on optimism and pessimism were found. Significant family-level environment effects also emerged, accounting for much of the negative relationship between optimism and pessimism, as well as a link to neuroticism. A general positive genetics factor exerted significant links among both personality and life-orientation traits. Both optimism bias and pessimism also showed genetic variance distinct from all effects of personality, and from each other. PMID:26561494
NASA Astrophysics Data System (ADS)
Umar, Widyastuti; Jompa, Jamaluddin; Tassakka, Asmi Citra Malina A. R.
2018-02-01
The existence of hard coral is one of the keys to maintain the suistainability of ecosystem in the waters. Currently, the hard coral keeps declining over time due to various disturbances. In addition, hard coral where fish and other organisms live in will directly affect the ecosystem sustainability if the damage still happens. Molecular approach, such as knowing the genetic variation information of coral population can be an informative study to estimate the condition of waters, so that, conservation efforts can be easily done. In this study, we use Lobophyllia corymbosa as a spawning broadcast coral to be the sample which is collected from Sinjai and Luwuk Banggai. The study areas are selected based on geographical patterns which are in the South and East of Sulawesi waters. Since they have a considerable distance, it is likely for them to produce high genetic variations. Genome DNA uses mitochondrial genome that is extracted from coral tissue. The result shows that the genetic diversity is high. From the two major groups provided, there have been 8 haplotypes for all locations. In addition, the L.corymbosa distribution between Sinjai and Luwuk banggai has a high genetic connectivity with 0.6 fixation index.
Medalie, Laura; Matthews, Leslie J.; Stelzer, Erin A.
2011-01-01
The use of host-associated Bacteroidales-based 16S ribosomal ribonucleic acid genetic markers was investigated as a tool for providing information to managers on sources of bacterial impairment in Vermont streams. The study was conducted during 2009 in two watersheds on the U.S. Environmental Protection Agency's 303(d) List of Impaired Waters, the Huntington and the Mettawee Rivers. Streamwater samples collected during high-flow and base-flow conditions were analyzed for concentrations of Escherichia coli (E. coli) and Bacteroidales genetic markers (General AllBac, Human qHF183 and BacHum, Ruminant BoBac, and Canid BacCan) to identify humans, ruminants, and canids as likely or unlikely major sources of fecal contamination. Fecal reference samples from each of the potential source groups, as well as from common species of wildlife, were collected during the same season and from the same watersheds as water samples. The results were combined with data from other states to assess marker cross reaction and to relate marker results to E. coli, the regulated water-quality parameter, with a higher degree of statistical significance. Results from samples from the Huntington River collected under different flow conditions on three dates indicated that humans were unlikely to be a major source of fecal contamination, except for a single positive result at one station that indicated the potential for human sources. Ruminants (deer, moose, cow, or sheep) were potential sources of fecal contamination at all six stations on the Huntington River during one high-flow event and at all but two stations during the other high-flow event. Canids were potential sources of fecal contamination at some stations during two high-flow events, with genetic-marker concentrations in samples from two of the six stations showing consistent positive results for canids for both storm dates. A base-flow sample showed no evidence of major fecal contamination in the Huntington River from humans, ruminants, or canids. Results from samples from the Mettawee River watershed collected during high-flow conditions (12 storm samples on 2 dates at 6 stations) indicated that there was no evidence of fecal contamination from humans in seven samples and possible evidence in five samples. Results for humans were positive for only one station during both storm events. For two of the five samples with evidence for human fecal contamination, results for two different human genetic markers agreed, but results from three samples were inconsistent. In samples from five of the six Mettawee stations, ruminants were a potential source of fecal contamination on at least one of the three sampled dates, including three positive results for the base-flow sample. Yet samples from all of the stations that showed positive results for ruminants did so for only one or two of the three sampled dates. Samples from only one of the six stations gave consistent results, which were negative for ruminants for all three dates. In the Mettawee River base-flow sample, humans were an unlikely source of major fecal contamination. Factors that may influence results and conclusions include the timing of sample collection relative to the storm event; variability of E. coli and Bacteroidales concentrations in fecal reference samples and in water; sampling and analytical errors; the potential cross reactivity of host-associated genetic markers; and different persistence and survival rates of E. coli bacteria and Bacteroidales genetic markers on land, in water, and by season. These factors interfere with the ability to directly relate Bacteroidales concentrations to E. coli concentrations in river samples. It must be recognized that while use of Bacteroidales genetic markers as a source tracking tool coupled with the interpretive approach described in this report cannot be used quantitatively to pinpoint sources, it can be used to exclude potential sources as major contributors to fecal contamination.
Ramey, Andrew M; Goraichuk, Iryna V; Hicks, Joseph T; Dimitrov, Kiril M; Poulson, Rebecca L; Stallknecht, David E; Bahl, Justin; Afonso, Claudio L
2017-03-03
Avian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health. In this study we sequenced the fusion gene from 58 APMV-1 isolates recovered from thirteen species of wild birds sampled throughout the USA during 2007-2014. We analyzed sequence information with previously reported data in order to assess contemporary genetic diversity and inter-taxa/inter-region exchange of APMV-1 in wild birds sampled in North America. Our results suggest that wild birds maintain previously undescribed genetic diversity of APMV-1; however, such diversity is unlikely to be pathogenic to domestic poultry. Phylogenetic analyses revealed that APMV-1 diversity detected in wild birds of North America has been found in birds belonging to numerous taxonomic host orders and within hosts inhabiting multiple geographic regions suggesting some level of viral exchange. However, our results also provide statistical support for associations between phylogenetic tree topology and host taxonomic order/region of sample origin which supports restricted exchange among taxa and geographical regions of North America for some APMV-1 sub-genotypes. We identify previously unrecognized genetic diversity of APMV-1 in wild birds in North America which is likely a function of continued viral evolution in reservoir hosts. We did not, however, find support for the emergence or maintenance of APMV-1 strains predicted to be pathogenic to poultry in wild birds of North America outside of the order Suliformes (i.e., cormorants). Furthermore, genetic evidence suggests that ecological drivers or other mechanisms may restrict viral exchange among taxa and regions of North America. Additional and more systematic sampling for APMV-1 in North America would likely provide further inference on viral dynamics for this infectious agent in wild bird populations.
Docherty, A R; Moscati, A; Peterson, R; Edwards, A C; Adkins, D E; Bacanu, S A; Bigdeli, T B; Webb, B T; Flint, J; Kendler, K S
2016-10-25
Biometrical genetic studies suggest that the personality dimensions, including neuroticism, are moderately heritable (~0.4 to 0.6). Quantitative analyses that aggregate the effects of many common variants have recently further informed genetic research on European samples. However, there has been limited research to date on non-European populations. This study examined the personality dimensions in a large sample of Han Chinese descent (N=10 064) from the China, Oxford, and VCU Experimental Research on Genetic Epidemiology study, aimed at identifying genetic risk factors for recurrent major depression among a rigorously ascertained cohort. Heritability of neuroticism as measured by the Eysenck Personality Questionnaire (EPQ) was estimated to be low but statistically significant at 10% (s.e.=0.03, P=0.0001). In addition to EPQ, neuroticism based on a three-factor model, data for the Big Five (BF) personality dimensions (neuroticism, openness, conscientiousness, extraversion and agreeableness) measured by the Big Five Inventory were available for controls (n=5596). Heritability estimates of the BF were not statistically significant despite high power (>0.85) to detect heritabilities of 0.10. Polygenic risk scores constructed by best linear unbiased prediction weights applied to split-half samples failed to significantly predict any of the personality traits, but polygenic risk for neuroticism, calculated with LDpred and based on predictive variants previously identified from European populations (N=171 911), significantly predicted major depressive disorder case-control status (P=0.0004) after false discovery rate correction. The scores also significantly predicted EPQ neuroticism (P=6.3 × 10 -6 ). Factor analytic results of the measures indicated that any differences in heritabilities across samples may be due to genetic variation or variation in haplotype structure between samples, rather than measurement non-invariance. Findings demonstrate that neuroticism can be significantly predicted across ancestry, and highlight the importance of studying polygenic contributions to personality in non-European populations.
Ramey, Andy M.; Goraichuk, Iryna V.; Hicks, Joseph T.; Dimitrov, Kiril M.; Poulson, Rebecca L.; Stallknecht, David E.; Bahl, Justin; Afonso, Claudio L.
2017-01-01
BackgroundAvian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health.MethodsIn this study we sequenced the fusion gene from 58 APMV-1 isolates recovered from thirteen species of wild birds sampled throughout the USA during 2007–2014. We analyzed sequence information with previously reported data in order to assess contemporary genetic diversity and inter-taxa/inter-region exchange of APMV-1 in wild birds sampled in North America.ResultsOur results suggest that wild birds maintain previously undescribed genetic diversity of APMV-1; however, such diversity is unlikely to be pathogenic to domestic poultry. Phylogenetic analyses revealed that APMV-1 diversity detected in wild birds of North America has been found in birds belonging to numerous taxonomic host orders and within hosts inhabiting multiple geographic regions suggesting some level of viral exchange. However, our results also provide statistical support for associations between phylogenetic tree topology and host taxonomic order/region of sample origin which supports restricted exchange among taxa and geographical regions of North America for some APMV-1 sub-genotypes.ConclusionsWe identify previously unrecognized genetic diversity of APMV-1 in wild birds in North America which is likely a function of continued viral evolution in reservoir hosts. We did not, however, find support for the emergence or maintenance of APMV-1 strains predicted to be pathogenic to poultry in wild birds of North America outside of the order Suliformes (i.e., cormorants). Furthermore, genetic evidence suggests that ecological drivers or other mechanisms may restrict viral exchange among taxa and regions of North America. Additional and more systematic sampling for APMV-1 in North America would likely provide further inference on viral dynamics for this infectious agent in wild bird populations.
Phelps, Ceri; Bennett, Paul; Hood, Kerenza; Brain, Kate; Murray, Alexandra
2013-04-01
The objective of this study is to evaluate the effectiveness of a self-help coping intervention in reducing intrusive negative thoughts while waiting for cancer genetic risk information. Between August 2007 and November 2008, 1958 new referrals for cancer genetic risk assessment were invited to participate in a randomised trial. The control group received standard information. The intervention group received this information plus a written self-help coping leaflet. The primary outcome measure was the intrusion subscale of the Impact of Event Scale. The intervention significantly reduced intrusive thoughts during the waiting period in those reporting moderate baseline levels of intrusion (p = 0.03). Following risk provision, those in the intervention group reporting low and moderate intrusive worries at baseline reported less intrusive thoughts than those in the control group (p = 0.04 and p = 0.03, respectively). The intervention had no adverse impact in the sample as a whole. Participants in the intervention group with high baseline avoidance and negative affect scores were significantly more likely to remain in the study than those in the control group (p = 0.05 and p = 0.004). Findings that the intervention both reduced distress in those with moderate levels of distress and had no adverse effects following notification of cancer genetic risk suggest that this simple intervention can be implemented across a range of oncology settings involving periods of waiting and uncertainty. The intervention may also reduce the number of individuals dropping out of cancer genetic risk assessment or screening. However, those with clinically high levels of psychological distress are likely to require a more intensive psychological intervention. Copyright © 2012 John Wiley & Sons, Ltd.
The genetic validation of heterogeneity in schizophrenia.
Tsutsumi, Atsushi; Glatt, Stephen J; Kanazawa, Tetsufumi; Kawashige, Seiya; Uenishi, Hiroyuki; Hokyo, Akira; Kaneko, Takao; Moritani, Makiko; Kikuyama, Hiroki; Koh, Jun; Matsumura, Hitoshi; Yoneda, Hiroshi
2011-10-07
Schizophrenia is a heritable disorder, however clear genetic architecture has not been detected. To overcome this state of uncertainty, the SZGene database has been established by including all published case-control genetic association studies appearing in peer-reviewed journals. In the current study, we aimed to determine if genetic variants strongly suggested by SZGene are associated with risk of schizophrenia in our case-control samples of Japanese ancestry. In addition, by employing the additive model for aggregating the effect of seven variants, we aimed to verify the genetic heterogeneity of schizophrenia diagnosed by an operative diagnostic manual, the DSM-IV. Each positively suggested genetic polymorphism was ranked according to its p-value, then the seven top-ranked variants (p < 0.0005) were selected from DRD2, DRD4, GRIN2B, TPH1, MTHFR, and DTNBP1 (February, 2007). 407 Schizophrenia cases and 384 controls participated in this study. To aggregate the vulnerability of the disorder based on the participants' genetic information, we calculated the "risk-index" by adding the number of genetic risk factors. No statistically significant deviation between cases and controls was observed in the genetic risk-index derived from all seven variants on the top-ranked polymorphisms. In fact, the average risk-index score in the schizophrenia group (6.5+/-1.57) was slightly lower than among controls (6.6+/-1.39). The current work illustrates the difficulty in identifying universal and definitive risk-conferring polymorphisms for schizophrenia. Our employed number of samples was small, so we can not preclude the possibility that some or all of these variants are minor risk factors for schizophrenia in the Japanese population. It is also important to aggregate the updated positive variants in the SZGene database when the replication work is conducted.
Genetics and the conservation of natural populations: allozymes to genomes.
Allendorf, Fred W
2017-01-01
I consider how the study of genetic variation has influenced efforts to conserve natural populations over the last 50 years. Studies with allozymes in the 1970s provided the first estimates of the amount of genetic variation within and between natural populations at multiple loci. These early studies played an important role in developing plans to conserve species. The description of genetic variation in mitochondrial DNA in the early 1980s laid the foundation for the field of phylogeography, which provided a deeper look in time of the relationships and connectivity among populations. The development of microsatellites in the 1990s provided much more powerful means to describe genetic variation at nuclear loci, including the ability to detect past bottlenecks and estimate current effective population size with a single temporal sample. In the 2000s, single nucleotide polymorphisms presented a cornucopia of loci that has greatly improved power to estimate genetic and population demographic parameters important for conservation. Today, population genomics presents the ability to detect regions of the genome that are affected by natural selection (e.g. local adaptation or inbreeding depression). In addition, the ability to genotype historical samples has provided power to understand how climate change and other anthropogenic phenomena have affected populations. Modern molecular techniques provide unprecedented power to understand genetic variation in natural populations. Nevertheless, application of this information requires sound understanding of population genetics theory. I believe that current training in conservation genetics focuses too much on the latest techniques and too little on understanding the conceptual basis which is needed to interpret these data and ask good questions. © 2016 John Wiley & Sons Ltd.
Lourenço de Oliveira, Ricardo; Vazeille, Marie; de Filippis, Ana Maria Bispo; Failloux, Anna-Bella
2003-07-01
We conducted a population genetic analysis of Aedes albopictus collected from 20 sites in Brazil, the United States (Florida, Georgia, and Illinois), and the Cayman Islands. Using isoenzyme analysis, we examined genetic diversity and patterns of gene flow. High genetic differentiation was found among Brazilian samples, and between them and North American samples. Regression analysis of genetic differentiation according to geographic distances indicated that Ae. albopictus samples from Florida were genetically isolated by distance. Infection rates with dengue and yellow fever viruses showed greater differences between two Brazilian samples than between the two North American samples or between a Brazilian sample and a North American sample. Introductions and establishments of new Ae. albopictus populations in the Americas are still in progress, shaping population genetic composition and potentially modifying both dengue and yellow fever transmission patterns.
A behavioral genetic analysis of callous-unemotional traits and Big Five personality in adolescence.
Mann, Frank D; Briley, Daniel A; Tucker-Drob, Elliot M; Harden, K Paige
2015-11-01
Callous-unemotional (CU) traits, such as lacking empathy and emotional insensitivity, predict the onset, severity, and persistence of antisocial behavior. CU traits are heritable, and genetic influences on CU traits contribute to antisocial behavior. This study examines genetic overlap between CU traits and general domains of personality. We measured CU traits using the Inventory of Callous-Unemotional Traits (ICU) and Big Five personality using the Big Five Inventory in a sample of adolescent twins from the Texas Twin Project. Genetic influences on the Big Five personality dimensions could account for the entirety of genetic influences on CU traits. Item Response Theory results indicate that the Inventory of Callous and Unemotional Traits is better at detecting clinically relevant personality variation at lower extremes of personality trait continua, particularly low agreeableness and low conscientiousness. The proximate biological mechanisms that mediate genetic liabilities for CU traits remain an open question. The results of the current study suggest that understanding the development of normal personality may inform understanding of the genetic underpinnings of callous and unemotional behavior. (c) 2015 APA, all rights reserved).
Bouchet, Sophie; Pot, David; Deu, Monique; Rami, Jean-François; Billot, Claire; Perrier, Xavier; Rivallan, Ronan; Gardes, Laëtitia; Xia, Ling; Wenzl, Peter; Kilian, Andrzej; Glaszmann, Jean-Christophe
2012-01-01
Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r2 decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod. PMID:22428056
Bouchet, Sophie; Pot, David; Deu, Monique; Rami, Jean-François; Billot, Claire; Perrier, Xavier; Rivallan, Ronan; Gardes, Laëtitia; Xia, Ling; Wenzl, Peter; Kilian, Andrzej; Glaszmann, Jean-Christophe
2012-01-01
Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r(2) decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod.
Pometti, Carolina L; Bessega, Cecilia F; Saidman, Beatriz O; Vilardi, Juan C
2014-03-01
Bayesian clustering as implemented in STRUCTURE or GENELAND software is widely used to form genetic groups of populations or individuals. On the other hand, in order to satisfy the need for less computer-intensive approaches, multivariate analyses are specifically devoted to extracting information from large datasets. In this paper, we report the use of a dataset of AFLP markers belonging to 15 sampling sites of Acacia caven for studying the genetic structure and comparing the consistency of three methods: STRUCTURE, GENELAND and DAPC. Of these methods, DAPC was the fastest one and showed accuracy in inferring the K number of populations (K = 12 using the find.clusters option and K = 15 with a priori information of populations). GENELAND in turn, provides information on the area of membership probabilities for individuals or populations in the space, when coordinates are specified (K = 12). STRUCTURE also inferred the number of K populations and the membership probabilities of individuals based on ancestry, presenting the result K = 11 without prior information of populations and K = 15 using the LOCPRIOR option. Finally, in this work all three methods showed high consistency in estimating the population structure, inferring similar numbers of populations and the membership probabilities of individuals to each group, with a high correlation between each other.
Personal attributions for melanoma risk in melanoma-affected patients and family members
Hay, Jennifer; DiBonaventura, Marco; Baser, Raymond; Press, Nancy; Shoveller, Jeanne; Bowen, Deborah
2010-01-01
Personal attributions for cancer risk involve factors that individuals believe contribute to their risk for developing cancer. Understanding personal risk attributions for melanoma may dictate gene-environment melanoma risk communication strategies. We examined attributions for melanoma risk in a population-based sample of melanoma survivors, first degree family members, and family members who are also parents (N=939). We conducted qualitative examination of open-ended risk attributions and logistic regression examining predictors (demographics, family member type, perceived risk) of the attributions reported (ultraviolet radiation [UVR] exposure, heredity/genetics, phenotype, personal melanoma history, miscellaneous). We found a predominance of risk attributions to UVR and heredity/genetics (80% and 45% of the sample, respectively). Those reporting higher education levels were more likely to endorse attributions to heredity/genetics, as well as to phenotype, than those of lower education levels. First-degree relatives and parent family members were more likely to endorse heredity/genetic attributions than melanoma survivors; melanoma survivors were more likely to endorse personal history of melanoma attributions compared to first-degree relatives and parent family members. These findings inform the development of risk communication interventions for melanoma families. PMID:20809355
Integrative genetic risk prediction using non-parametric empirical Bayes classification.
Zhao, Sihai Dave
2017-06-01
Genetic risk prediction is an important component of individualized medicine, but prediction accuracies remain low for many complex diseases. A fundamental limitation is the sample sizes of the studies on which the prediction algorithms are trained. One way to increase the effective sample size is to integrate information from previously existing studies. However, it can be difficult to find existing data that examine the target disease of interest, especially if that disease is rare or poorly studied. Furthermore, individual-level genotype data from these auxiliary studies are typically difficult to obtain. This article proposes a new approach to integrative genetic risk prediction of complex diseases with binary phenotypes. It accommodates possible heterogeneity in the genetic etiologies of the target and auxiliary diseases using a tuning parameter-free non-parametric empirical Bayes procedure, and can be trained using only auxiliary summary statistics. Simulation studies show that the proposed method can provide superior predictive accuracy relative to non-integrative as well as integrative classifiers. The method is applied to a recent study of pediatric autoimmune diseases, where it substantially reduces prediction error for certain target/auxiliary disease combinations. The proposed method is implemented in the R package ssa. © 2016, The International Biometric Society.
Evaluation of genetic variability in a small, insular population of spruce grouse
O'Connell, A.F.; Rhymer, Judith; Keppie, D.M.; Svenson, K.L.; Paigan, B.J.
2002-01-01
Using microsatellite markers we determined genetic variability for two populations of spruce grouse in eastern North America, one on a coastal Maine island where breeding habitat is limited and highly fragmented, the other in central New Brunswick (NB), where suitable breeding habitat is generally contiguous across the region. We examined six markers for both populations and all were polymorphic. Although the number of alleles per locus and the proportion of unique alleles were lower in the island population, and probably a result of small sample.size, heterozygosity and a breeding coefficient (Fis) indicated slightly more variability in the island population. Deviation from Hardy-Weinberg equilibrium also was more evident in loci for the mainland population. Several traits previously documented in the island population: relatively long natal dispersal distances, reproductive success, territoriality, adult survival, and longevity support the maintenance of hetrerzygosity, at least in the short-term. Sample collection from two small (500 ha), separate areas in NB, and the predicted importance of immigration density to supplement this population demonstrate the need for behavioral and ecological information when interpreting genetic variation. We discuss the relevance of these issues with respect to genetic variability and viability.
Ehler, Edvard; Vaněk, Daniel; Stenzl, Vlastimil; Vančata, Václav
2011-01-01
Aim To evaluate Y-chromosomal diversity of the Moravian Valachs of the Czech Republic and compare them with a Czech population sample and other samples from Central and South-Eastern Europe, and to evaluate the effects of genetic isolation and sampling. Methods The first sample set of the Valachs consisted of 94 unrelated male donors from the Valach region in northeastern Czech Republic border-area. The second sample set of the Valachs consisted of 79 men who originated from 7 paternal lineages defined by surname. No close relatives were sampled. The third sample set consisted of 273 unrelated men from the whole of the Czech Republic and was used for comparison, as well as published data for other 27 populations. The total number of samples was 3244. Y-short tandem repeat (STR) markers were typed by standard methods using PowerPlex® Y System (Promega) and Yfiler® Amplification Kit (Applied Biosystems) kits. Y-chromosomal haplogroups were estimated from the haplotype information. Haplotype diversity and other intra- and inter-population statistics were computed. Results The Moravian Valachs showed a lower genetic variability of Y-STR markers than other Central European populations, resembling more to the isolated Balkan populations (Aromuns, Csango, Bulgarian, and Macedonian Roma) than the surrounding populations (Czechs, Slovaks, Poles, Saxons). We illustrated the effect of sampling on Valach paternal lineages, which includes reduction of discrimination capacity and variability inside Y-chromosomal haplogroups. Valach modal haplotype belongs to R1a haplogroup and it was not detected in the Czech population. Conclusion The Moravian Valachs display strong substructure and isolation in their Y chromosomal markers. They represent a unique Central European population model for population genetics. PMID:21674832
Black bear density in Glacier National Park, Montana
Stetz, Jeff B.; Kendall, Katherine C.; Macleod, Amy C.
2013-01-01
We report the first abundance and density estimates for American black bears (Ursus americanus) in Glacier National Park (NP),Montana, USA.We used data from 2 independent and concurrent noninvasive genetic sampling methods—hair traps and bear rubs—collected during 2004 to generate individual black bear encounter histories for use in closed population mark–recapture models. We improved the precision of our abundance estimate by using noninvasive genetic detection events to develop individual-level covariates of sampling effort within the full and one-half mean maximum distance moved (MMDM) from each bear’s estimated activity center to explain capture probability heterogeneity and inform our estimate of the effective sampling area.Models including the one-halfMMDMcovariate received overwhelming Akaike’s Information Criterion support suggesting that buffering our study area by this distance would be more appropriate than no buffer or the full MMDM buffer for estimating the effectively sampled area and thereby density. Our modelaveraged super-population abundance estimate was 603 (95% CI¼522–684) black bears for Glacier NP. Our black bear density estimate (11.4 bears/100 km2, 95% CI¼9.9–13.0) was consistent with published estimates for populations that are sympatric with grizzly bears (U. arctos) and without access to spawning salmonids. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Beware! Uncle Sam has your DNA: legal fallout from its use and misuse in the U.S.
Weiss, Marcia J
2004-01-01
Technology has provided state and federal governments with huge collections of DNA samples and identifying profiles stored in databanks. That information can be used to solve crimes by matching samples from convicted felons to unsolved crimes, and has aided law enforcement in investigating and convicting suspects, and exonerating innocent felons, even after lengthy incarceration. Rights surrounding the provision of DNA samples, however, remain unclear in light of the constitutional guarantee against "unreasonable searches and seizures" and privacy concerns. The courts have just begun to consider this issue, and have provided little guidance. It is unclear whether the laws governing protected health information are applicable to the instant situation, and if so, the degree to which they apply. DNA databanks are not uniformly regulated, and it is possible that DNA samples contained in them may be used for purposes unintended by donors of the samples. As people live their lives, they leave bits of their DNA behind. They cannot be assured that these tiny specimens will not be taken or used against their will or without their knowledge for activities such as profiling to measure tendencies such as thrill-seeking, aggressiveness, or crimes with threatening behavior. Existing racial or ethnic discrimination and profiling may also encompass genetic discrimination and profiling, creating societal class distinctions. This article will explore the constitutionality of collecting genetic materials, the ethics of such activities, and balance the social good in solving crime and deterrence against the individual's security, liberty, and privacy.
Yilmaz, Yildiz E; Bull, Shelley B
2011-11-29
Use of trait-dependent sampling designs in whole-genome association studies of sequence data can reduce total sequencing costs with modest losses of statistical efficiency. In a quantitative trait (QT) analysis of data from the Genetic Analysis Workshop 17 mini-exome for unrelated individuals in the Asian subpopulation, we investigate alternative designs that sequence only 50% of the entire cohort. In addition to a simple random sampling design, we consider extreme-phenotype designs that are of increasing interest in genetic association analysis of QTs, especially in studies concerned with the detection of rare genetic variants. We also evaluate a novel sampling design in which all individuals have a nonzero probability of being selected into the sample but in which individuals with extreme phenotypes have a proportionately larger probability. We take differential sampling of individuals with informative trait values into account by inverse probability weighting using standard survey methods which thus generalizes to the source population. In replicate 1 data, we applied the designs in association analysis of Q1 with both rare and common variants in the FLT1 gene, based on knowledge of the generating model. Using all 200 replicate data sets, we similarly analyzed Q1 and Q4 (which is known to be free of association with FLT1) to evaluate relative efficiency, type I error, and power. Simulation study results suggest that the QT-dependent selection designs generally yield greater than 50% relative efficiency compared to using the entire cohort, implying cost-effectiveness of 50% sample selection and worthwhile reduction of sequencing costs.
Müller, Ueli C; Asherson, Philip; Banaschewski, Tobias; Buitelaar, Jan K; Ebstein, Richard P; Eisenberg, Jaques; Gill, Michael; Manor, Iris; Miranda, Ana; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A; Sonuga-Barke, Edmund Js; Thompson, Margaret; Faraone, Stephen V; Steinhausen, Hans-Christoph
2011-04-07
The International Multi-centre ADHD Genetics (IMAGE) project with 11 participating centres from 7 European countries and Israel has collected a large behavioural and genetic database for present and future research. Behavioural data were collected from 1068 probands with ADHD and 1446 unselected siblings. The aim was to describe and analyse questionnaire data and IQ measures from all probands and siblings. In particular, to investigate the influence of age, gender, family status (proband vs. sibling), informant, and centres on sample homogeneity in psychopathological measures. Conners' Questionnaires, Strengths and Difficulties Questionnaires, and Wechsler Intelligence Scores were used to describe the phenotype of the sample. Data were analysed by use of robust statistical multi-way procedures. Besides main effects of age, gender, informant, and centre, there were considerable interaction effects on questionnaire data. The larger differences between probands and siblings at home than at school may reflect contrast effects in the parents. Furthermore, there were marked gender by status effects on the ADHD symptom ratings with girls scoring one standard deviation higher than boys in the proband sample but lower than boys in the siblings sample. The multi-centre design is another important source of heterogeneity, particularly in the interaction with the family status. To a large extent the centres differed from each other with regard to differences between proband and sibling scores. When ADHD probands are diagnosed by use of fixed symptom counts, the severity of the disorder in the proband sample may markedly differ between boys and girls and across age, particularly in samples with a large age range. A multi-centre design carries the risk of considerable phenotypic differences between centres and, consequently, of additional heterogeneity of the sample even if standardized diagnostic procedures are used. These possible sources of variance should be counteracted in genetic analyses either by using age and gender adjusted diagnostic procedures and regional normative data or by adjusting for design artefacts by use of covariate statistics, by eliminating outliers, or by other methods suitable for reducing heterogeneity.
Recommendations for the use of microarrays in prenatal diagnosis.
Suela, Javier; López-Expósito, Isabel; Querejeta, María Eugenia; Martorell, Rosa; Cuatrecasas, Esther; Armengol, Lluis; Antolín, Eugenia; Domínguez Garrido, Elena; Trujillo-Tiebas, María José; Rosell, Jordi; García Planells, Javier; Cigudosa, Juan Cruz
2017-04-07
Microarray technology, recently implemented in international prenatal diagnosis systems, has become one of the main techniques in this field in terms of detection rate and objectivity of the results. This guideline attempts to provide background information on this technology, including technical and diagnostic aspects to be considered. Specifically, this guideline defines: the different prenatal sample types to be used, as well as their characteristics (chorionic villi samples, amniotic fluid, fetal cord blood or miscarriage tissue material); variant reporting policies (including variants of uncertain significance) to be considered in informed consents and prenatal microarray reports; microarray limitations inherent to the technique and which must be taken into account when recommending microarray testing for diagnosis; a detailed clinical algorithm recommending the use of microarray testing and its introduction into routine clinical practice within the context of other genetic tests, including pregnancies in families with a genetic history or specific syndrome suspicion, first trimester increased nuchal translucency or second trimester heart malformation and ultrasound findings not related to a known or specific syndrome. This guideline has been coordinated by the Spanish Association for Prenatal Diagnosis (AEDP, «Asociación Española de Diagnóstico Prenatal»), the Spanish Human Genetics Association (AEGH, «Asociación Española de Genética Humana») and the Spanish Society of Clinical Genetics and Dysmorphology (SEGCyD, «Sociedad Española de Genética Clínica y Dismorfología»). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Nelson, Matthew R.; Bryc, Katarzyna; King, Karen S.; Indap, Amit; Boyko, Adam R.; Novembre, John; Briley, Linda P.; Maruyama, Yuka; Waterworth, Dawn M.; Waeber, Gérard; Vollenweider, Peter; Oksenberg, Jorge R.; Hauser, Stephen L.; Stirnadel, Heide A.; Kooner, Jaspal S.; Chambers, John C.; Jones, Brendan; Mooser, Vincent; Bustamante, Carlos D.; Roses, Allen D.; Burns, Daniel K.; Ehm, Margaret G.; Lai, Eric H.
2008-01-01
Technological and scientific advances, stemming in large part from the Human Genome and HapMap projects, have made large-scale, genome-wide investigations feasible and cost effective. These advances have the potential to dramatically impact drug discovery and development by identifying genetic factors that contribute to variation in disease risk as well as drug pharmacokinetics, treatment efficacy, and adverse drug reactions. In spite of the technological advancements, successful application in biomedical research would be limited without access to suitable sample collections. To facilitate exploratory genetics research, we have assembled a DNA resource from a large number of subjects participating in multiple studies throughout the world. This growing resource was initially genotyped with a commercially available genome-wide 500,000 single-nucleotide polymorphism panel. This project includes nearly 6,000 subjects of African-American, East Asian, South Asian, Mexican, and European origin. Seven informative axes of variation identified via principal-component analysis (PCA) of these data confirm the overall integrity of the data and highlight important features of the genetic structure of diverse populations. The potential value of such extensively genotyped collections is illustrated by selection of genetically matched population controls in a genome-wide analysis of abacavir-associated hypersensitivity reaction. We find that matching based on country of origin, identity-by-state distance, and multidimensional PCA do similarly well to control the type I error rate. The genotype and demographic data from this reference sample are freely available through the NCBI database of Genotypes and Phenotypes (dbGaP). PMID:18760391
Herrera, Carlos M
2012-01-01
Methods for estimating quantitative trait heritability in wild populations have been developed in recent years which take advantage of the increased availability of genetic markers to reconstruct pedigrees or estimate relatedness between individuals, but their application to real-world data is not exempt from difficulties. This chapter describes a recent marker-based technique which, by adopting a genomic scan approach and focusing on the relationship between phenotypes and genotypes at the individual level, avoids the problems inherent to marker-based estimators of relatedness. This method allows the quantification of the genetic component of phenotypic variance ("degree of genetic determination" or "heritability in the broad sense") in wild populations and is applicable whenever phenotypic trait values and multilocus data for a large number of genetic markers (e.g., amplified fragment length polymorphisms, AFLPs) are simultaneously available for a sample of individuals from the same population. The method proceeds by first identifying those markers whose variation across individuals is significantly correlated with individual phenotypic differences ("adaptive loci"). The proportion of phenotypic variance in the sample that is statistically accounted for by individual differences in adaptive loci is then estimated by fitting a linear model to the data, with trait value as the dependent variable and scores of adaptive loci as independent ones. The method can be easily extended to accommodate quantitative or qualitative information on biologically relevant features of the environment experienced by each sampled individual, in which case estimates of the environmental and genotype × environment components of phenotypic variance can also be obtained.
Magnetic resonance imaging (MRI): A review of genetic damage investigations.
Vijayalaxmi; Fatahi, Mahsa; Speck, Oliver
2015-01-01
Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple 'down-stream' events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted using MRI equipment and, (iii) a discussion on several gaps in knowledge in the current scientific literature on MRI. Comprehensive, international, multi-centered collaborative studies, using a common and widely used MRI exposure protocol (cardiac or brain scan) incorporating several genetic/epigenetic damage end-points as well as epidemiological investigations, in large number of individuals/patients are warranted to reduce and perhaps, eliminate uncertainties raised in genetic damage investigations in cells exposed in vitro and in vivo to MRI. Copyright © 2015 Elsevier B.V. All rights reserved.
Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal
2016-05-23
X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependentmore » structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.« less
Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic (Epi)Genomics: A Mini-Review.
Parson, Walther
2018-01-01
Forensic genetics developed from protein-based techniques a quarter of a century ago and became famous as "DNA fingerprinting," this being based on restriction fragment length polymorphisms (RFLPs) of high-molecular-weight DNA. The amplification of much smaller short tandem repeat (STR) sequences using the polymerase chain reaction soon replaced RFLP analysis and advanced to become the gold standard in genetic identification. Meanwhile, STR multiplexes have been developed and made commercially available which simultaneously amplify up to 30 STR loci from as little as 15 cells or fewer. The enormous information content that comes with the large variety of observed STR genotypes allows for genetic individualisation (with the exception of identical twins). Carefully selected core STR loci form the basis of intelligence-led DNA databases that provide investigative leads by linking unsolved crime scenes and criminals through their matched STR profiles. Nevertheless, the success of modern DNA fingerprinting depends on the availability of reference material from suspects. In order to provide new investigative leads in cases where such reference samples are absent, forensic scientists started to explore the prediction of phenotypic traits from the DNA of the evidentiary sample. This paradigm change now uses DNA and epigenetic markers to forecast characteristics that are useful to triage further investigative work. So far, the best investigated externally visible characteristics are eye, hair and skin colour, as well as geographic ancestry and age. Information on the chronological age of a stain donor (or any sample donor) is elemental for forensic investigations in a number of aspects and has, therefore, been explored by researchers in some detail. Among different methodological approaches tested to date, the methylation-sensitive analysis of carefully selected DNA markers (CpG sites) has brought the most promising results by providing prediction accuracies of ±3-4 years, which can be comparable to, or even surpass those from, eyewitness reports. This mini-review puts recent developments in age estimation via (epi)genetic methods in the context of the requirements and goals of forensic genetics and highlights paths to follow in the future of forensic genomics. © 2018 S. Karger AG, Basel.
Hagenaars, S P; Harris, S E; Davies, G; Hill, W D; Liewald, D C M; Ritchie, S J; Marioni, R E; Fawns-Ritchie, C; Cullen, B; Malik, R; Worrall, B B; Sudlow, C L M; Wardlaw, J M; Gallacher, J; Pell, J; McIntosh, A M; Smith, D J; Gale, C R; Deary, I J
2016-11-01
Causes of the well-documented association between low levels of cognitive functioning and many adverse neuropsychiatric outcomes, poorer physical health and earlier death remain unknown. We used linkage disequilibrium regression and polygenic profile scoring to test for shared genetic aetiology between cognitive functions and neuropsychiatric disorders and physical health. Using information provided by many published genome-wide association study consortia, we created polygenic profile scores for 24 vascular-metabolic, neuropsychiatric, physiological-anthropometric and cognitive traits in the participants of UK Biobank, a very large population-based sample (N=112 151). Pleiotropy between cognitive and health traits was quantified by deriving genetic correlations using summary genome-wide association study statistics and to the method of linkage disequilibrium score regression. Substantial and significant genetic correlations were observed between cognitive test scores in the UK Biobank sample and many of the mental and physical health-related traits and disorders assessed here. In addition, highly significant associations were observed between the cognitive test scores in the UK Biobank sample and many polygenic profile scores, including coronary artery disease, stroke, Alzheimer's disease, schizophrenia, autism, major depressive disorder, body mass index, intracranial volume, infant head circumference and childhood cognitive ability. Where disease diagnosis was available for UK Biobank participants, we were able to show that these results were not confounded by those who had the relevant disease. These findings indicate that a substantial level of pleiotropy exists between cognitive abilities and many human mental and physical health disorders and traits and that it can be used to predict phenotypic variance across samples.
Samek, Diana R.; McGue, Matt; Keyes, Margaret; Iacono, William G.
2014-01-01
Previous research has shown adolescent siblings are similar in their alcohol use and that this similarity is largely due to their shared environment. Using a genetically-informed sibling sample (196 full-biological pairs, 384 genetically unrelated pairs), we confirmed that the extent to which older siblings facilitate younger siblings’ alcohol use (i.e., help them get alcohol) was one factor contributing to this shared environmental association. All analyses controlled for parent and peer influences. Findings were not moderated by sibling differences in genetic relatedness, gender, or ethnicity. Proximity in sibling age strengthened these associations, somewhat. Results were especially strong for sibling pairs where the older sibling was of legal drinking age. Implications for prevention and intervention are discussed. PMID:26640355
Home Page: Division of Birds: Department of Vertebrate Zoology: National
} Advanced Search Plan Your Visit Exhibitions Education Research & Collections About Us Get Involved © Smithsonian Institution Home Research Collections Visitor Information Loans Destructive Sampling Genetic Resources Database VZ Libraries Related Links Staff VZ All Birds Contact Us NMNH Home ⺠Research &
Genetic and endocrine tools for carnivore surveys
Michael K. Schwartz; Steven L. Monfort
2008-01-01
Modern literature and Hollywood proved decades ahead of science in imagining the information that could be obtained from single hairs or feces. Indeed, from Aldous Huxley's Brave New World (1932) to the cult movie GATTACA (Columbia Pictures Corporation 1997), writers and producers foreshadowed the scientific value of noninvasive samples. In the 1990s, with the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorwood, P.; Feingold, J.; Ades, J.
1995-12-18
Numerous studies on the involvement of dopamine receptors in the genetics of alcoholism focused on associations between a polymorphism of the D2 dopamine receptor (DRD2) gene and alcohol dependence. However, the results of these studies are conflicting. Another receptor, the D3 dopamine receptor (DRD3), may be of additional interest since it is specifically located in the limbic area, and in particular in the nucleus accumbens which plays a significant role in the reward process of addiction behavior. We thus tested the association in three independent samples of alcoholic patients, with different origins and various inclusion criteria. No difference in themore » DRD3 gene polymorphism emerged between controls and alcoholic patients, regardless of their origin, inclusion criteria, or presence or absence of the DRD2 TaqI A1-allele. Despite the fact that more information could have been considered and that association studies provide limited information, there is good evidence that this DRD3 polymorphism does not play a major role in the genetic component of alcoholism. 17 refs., 2 tabs.« less
Scaling up: human genetics as a Cold War network.
Lindee, Susan
2014-09-01
In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Teeuw, Marieke E; Loukili, Ghariba; Bartels, Edien Ac; ten Kate, Leo P; Cornel, Martina C; Henneman, Lidewij
2014-04-01
Consanguineous couples should be adequately informed about their increased reproductive risk and possibilities for genetic counselling. Information may only be effective if it meets the needs of the target group. This study aimed to gain more insight into: (1) attitudes of people belonging to ethnic groups in Western society towards consanguinity and their understanding of risk for offspring; and (2) their attitudes regarding reproductive information targeted at consanguineous couples. Dutch Moroccans and Turks were invited to complete an online questionnaire by snowball sampling and by placing a link on two popular Dutch Moroccan/Turkish forum websites between September and October 2011. The questionnaire was completed by 201 individuals who were, on average, neither positive nor negative towards consanguinity. Respondents with a consanguineous partner were more positive, estimated the risk for the offspring lower and were less positive about the provision of risk information to consanguineous couples when compared with respondents without a consanguineous partner. Participants of Turkish origin had a more negative attitude towards consanguinity and estimated the reproductive risk higher than Moroccan participants. More than half of the respondents thought that information should be given before marriage, whereas only 10% thought it should never be provided. The general practitioner was most often mentioned (54%) as the designated professional to inform people. Information about genetic risks related to consanguinity should be offered early, preferably before marriage. The diversity of the target population requires various strategies to disseminate information and reach consanguineous couples with the offer of genetic counselling.
Teeuw, Marieke E; Loukili, Ghariba; Bartels, Edien AC; ten Kate, Leo P; Cornel, Martina C; Henneman, Lidewij
2014-01-01
Consanguineous couples should be adequately informed about their increased reproductive risk and possibilities for genetic counselling. Information may only be effective if it meets the needs of the target group. This study aimed to gain more insight into: (1) attitudes of people belonging to ethnic groups in Western society towards consanguinity and their understanding of risk for offspring; and (2) their attitudes regarding reproductive information targeted at consanguineous couples. Dutch Moroccans and Turks were invited to complete an online questionnaire by snowball sampling and by placing a link on two popular Dutch Moroccan/Turkish forum websites between September and October 2011. The questionnaire was completed by 201 individuals who were, on average, neither positive nor negative towards consanguinity. Respondents with a consanguineous partner were more positive, estimated the risk for the offspring lower and were less positive about the provision of risk information to consanguineous couples when compared with respondents without a consanguineous partner. Participants of Turkish origin had a more negative attitude towards consanguinity and estimated the reproductive risk higher than Moroccan participants. More than half of the respondents thought that information should be given before marriage, whereas only 10% thought it should never be provided. The general practitioner was most often mentioned (54%) as the designated professional to inform people. Information about genetic risks related to consanguinity should be offered early, preferably before marriage. The diversity of the target population requires various strategies to disseminate information and reach consanguineous couples with the offer of genetic counselling. PMID:23921534
Feral Cat Globetrotters: genetic traces of historical human-mediated dispersal.
Koch, Katrin; Algar, Dave; Schwenk, Klaus
2016-08-01
Endemic species on islands are highly susceptible to local extinction, in particular if they are exposed to invasive species. Invasive predators, such as feral cats, have been introduced to islands around the world, causing major losses in local biodiversity. In order to control and manage invasive species successfully, information about source populations and level of gene flow is essential. Here, we investigate the origin of feral cats of Hawaiian and Australian islands to verify their European ancestry and a potential pattern of isolation by distance. We analyzed the genetic structure and diversity of feral cats from eleven islands as well as samples from Malaysia and Europe using mitochondrial DNA (ND5 and ND6 regions) and microsatellite DNA data. Our results suggest an overall European origin of Hawaiian cats with no pattern of isolation by distance between Australian, Malaysian, and Hawaiian populations. Instead, we found low levels of genetic differentiation between samples from Tasman Island, Lana'i, Kaho'olawe, Cocos (Keeling) Island, and Asia. As these populations are separated by up to 10,000 kilometers, we assume an extensive passive dispersal event along global maritime trade routes in the beginning of the 19th century, connecting Australian, Asian, and Hawaiian islands. Thus, islands populations, which are characterized by low levels of current gene flow, represent valuable sources of information on historical, human-mediated global dispersal patterns of feral cats.
Larmuseau, M H D; Van Geystelen, A; van Oven, M; Decorte, R
2013-04-01
In this article, we promote the implementation of extensive genealogical data in population genetic studies. Genealogical records can provide valuable information on the origin of DNA donors in a population genetic study, going beyond the commonly collected data such as residence, birthplace, language, and self-reported ethnicity. Recent studies demonstrated that extended genealogical data added to surname analysis can be crucial to detect signals of (past) population stratification and to interpret the population structure in a more objective manner. Moreover, when in-depth pedigree data are combined with haploid markers, it is even possible to disentangle signals of temporal differentiation within a population genetic structure during the last centuries. Obtaining genealogical data for all DNA donors in a population genetic study is a labor-intensive task but the vastly growing (genetic) genealogical databases, due to the broad interest of the public, are making this job more time-efficient if there is a guarantee for sufficient data quality. At the end, we discuss the advantages and pitfalls of using genealogy within sampling campaigns and we provide guidelines for future population genetic studies. Copyright © 2013 Wiley Periodicals, Inc.
Breastfeeding duration and offspring conduct problems: The moderating role of genetic risk.
Jackson, Dylan B
2016-10-01
A sizable body of research has examined associations between breastfeeding and various facets of offspring development, including childhood behavioral problems. Notwithstanding the number of studies on the topic, breastfeeding has not consistently been linked to child misbehaviors. Moreover, empirical examinations of whether breastfeeding is differentially predictive of conduct problems among individuals with varying degrees of genetic risk are lacking. The present study examines whether a short duration of breastfeeding and genetic risk interact to predict conduct problems during childhood. A genetically informative design is employed to examine a subsample of twins from the Early Childhood Longitudinal Study: Birth Cohort (ECLS-B), a nationally representative sample of American children. The findings suggest that a shorter duration of breastfeeding only enhances the risk of offspring conduct problems among children who possess high levels of genetic risk. Conversely, longer breastfeeding durations were found to protect against childhood behavioral problems when genetic risk was high. Indicators of genetic risk may help to distinguish individuals whose behavioral development is most sensitive to the duration of breastfeeding. Future research should seek to replicate and extend these findings by considering genetic factors as potential markers of differential susceptibility to breastfeeding duration. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Sensitivity of Genetic Connectivity Measures to Unsampled and Under-Sampled Sites
Koen, Erin L.; Bowman, Jeff; Garroway, Colin J.; Wilson, Paul J.
2013-01-01
Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic distance, such as conditional genetic distance (cGD), might be particularly sensitive to sampling intensity because pairwise estimates are relative to the entire network. We addressed this question by subsampling microsatellite data from two empirical datasets. We found that pairwise estimates of cGD were sensitive to both unsampled and under-sampled sites, and FST, Dest, and deucl were more sensitive to under-sampled than unsampled sites. We found that the rank order of cGD was also sensitive to unsampled and under-sampled sites, but not enough to affect the outcome of Mantel tests for isolation by distance. We simulated isolation by resistance and found that although cGD estimates were sensitive to unsampled sites, by increasing the number of sites sampled the accuracy of conclusions drawn from landscape genetic analyses increased, a feature that is not possible with pairwise estimates of genetic differentiation such as FST, Dest, and deucl. We suggest that users of cGD assess the sensitivity of this measure by subsampling within their own network and use caution when making extrapolations beyond their sampled network. PMID:23409155
Guzman-Valencia, S; Santillán-Galicia, M T; Guzmán-Franco, A W; González-Hernández, H; Carrillo-Benítez, M G; Suárez-Espinoza, J
2014-10-01
Oligonychus punicae and Oligonychus perseae (Acari: Tetranychidae) are the most important mite species affecting avocado orchards in Mexico. Here we used nucleotide sequence data from segments of the nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes to assess the phylogenetic relationships between both sympatric mite species and, using only ITS sequence data, examine genetic variation and population structure in both species, to test the hypothesis that, although both species co-occur, their genetic population structures are different in both Michoacan state (main producer) and Mexico state. Phylogenetic analysis showed a clear separation between both species using ITS and COI sequence information. Haplotype network analysis done on 24 samples of O. punicae revealed low genetic diversity with only three haplotypes found but a significant geographical population structure confirmed by analysis of molecular variance (AMOVA) and Kimura-2-parameter (K2P) analyses. In addition, a Mantel test revealed that geographical isolation was a factor responsible for the genetic differentiation. In contrast, analyses of 22 samples of O. perseae revealed high genetic diversity with 15 haplotypes found but no geographical structure confirmed by the AMOVA, K2P and Mantel test analyses. We have suggested that geographical separation is one of the most important factors driving genetic variation, but that it affected each species differently. The role of the ecology of these species on our results, and the importance of our findings in the development of monitoring and control strategies are discussed.
Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil.
Kajdacsi, Brittney; Costa, Federico; Hyseni, Chaz; Porter, Fleur; Brown, Julia; Rodrigues, Gorete; Farias, Helena; Reis, Mitermayer G; Childs, James E; Ko, Albert I; Caccone, Adalgisa
2013-10-01
Throughout the developing world, urban centres with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus) are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from nine sites in the city of Salvador, Brazil. These sites were divided between three neighbourhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographical distances. Most F(ST) comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighbourhoods or valleys within neighbourhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies. © 2013 John Wiley & Sons Ltd.
Genetic and environmental sources of covariation between early drinking and adult functioning.
Waldron, Jordan Sparks; Malone, Stephen M; McGue, Matt; Iacono, William G
2017-08-01
The vast majority of individuals initiate alcohol consumption for the first time in adolescence. Given the widespread nature of its use and evidence that adolescents may be especially vulnerable to its effects, there is concern about the long-term detrimental impact of adolescent drinking on adult functioning. While some researchers have suggested that genetic processes may confound the relationship, the mechanisms linking drinking and later adjustment remain unclear. The current study utilized a genetically informed sample and biometric modeling to examine the nature of the familial influences on this association and identify the potential for genetic confounding. The sample was drawn from the Minnesota Twin Family Study (MTFS), a longitudinal study consisting of 2,764 twins assessed in 2 cohorts at regular follow-ups from age 17 to age 29 (older cohort) or age 11 to age 29 (younger cohort). A broad range of adult measures was included assessing substance use, antisocial behavior, personality, socioeconomic status, and social functioning. A bivariate Cholesky decomposition was used to examine the common genetic and environmental influences on adolescent drinking and each of the measures of adult adjustment. The results revealed that genetic factors and nonshared environmental influences were generally most important in explaining the relationship between adolescent drinking and later functioning. While the presence of nonshared environmental influences on the association are not inconsistent with a causal impact of adolescent drinking, the findings suggest that many of the adjustment issues associated with adolescent alcohol consumption are best understood as genetically influenced vulnerabilities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Agung, Paskah Partogi; Saputra, Ferdy; Septian, Wike Andre; Lusiana; Zein, Moch. Syamsul Arifin; Sulandari, Sri; Anwar, Saiful; Wulandari, Ari Sulistyo; Said, Syahruddin; Tappa, Baharuddin
2016-01-01
A study was conducted to assess the genetic diversity among Simmental Cross cattle in West Sumatra using microsatellite DNA markers. A total of 176 individual cattle blood samples was used for obtaining DNA samples. Twelve primers of microsatellite loci as recommended by FAO were used to identify the genetic diversity of the Simmental Cross cattle population. Multiplex DNA fragment analysis method was used for allele identification. All the microsatellite loci in this study were highly polymorphic and all of the identified alleles were able to classify the cattle population into several groups based on their genetic distance. The heterozygosity values of microsatellite loci in this study ranged from 0.556 to 0.782. The polymorphism information content (PIC) value of the 12 observed loci is high (PIC>0.5). The highest PIC value in the Simmental cattle population was 0.893 (locus TGLA53), while the lowest value was 0.529 (locus BM1818). Based on the genetic distance value, the subpopulation of the Simmental Cross-Agam and the Simmental Cross-Limapuluh Kota was exceptionally close to the Simmental Purebred thus indicating that a grading-up process has taken place with the Simmental Purebred. In view of the advantages possessed by the Simmental Cross cattle and the evaluation of the genetic diversity results, a number of subpopulations in this study can be considered as the initial (base) population for the Simmental Cross cattle breeding programs in West Sumatra, Indonesia. PMID:26732442
A biobank management model applicable to biomedical research.
Auray-Blais, Christiane; Patenaude, Johane
2006-04-06
The work of Research Ethics Boards (REBs), especially when involving genetics research and biobanks, has become more challenging with the growth of biotechnology and biomedical research. Some REBs have even rejected research projects where the use of a biobank with coded samples was an integral part of the study, the greatest fear being the lack of participant protection and uncontrolled use of biological samples or related genetic data. The risks of discrimination and stigmatization are a recurrent issue. In light of the increasing interest in biomedical research and the resulting benefits to the health of participants, it is imperative that practical solutions be found to the problems associated with the management of biobanks: namely, protecting the integrity of the research participants, as well as guaranteeing the security and confidentiality of the participant's information. We aimed to devise a practical and efficient model for the management of biobanks in biomedical research where a medical archivist plays the pivotal role as a data-protection officer. The model had to reduce the burden placed on REBs responsible for the evaluation of genetics projects and, at the same time, maximize the protection of research participants. The proposed model includes the following: 1) a means of protecting the information in biobanks, 2) offers ways to provide follow-up information requested about the participants, 3) protects the participant's confidentiality and 4) adequately deals with the ethical issues at stake in biobanking. Until a governmental governance body is established in Quebec to guarantee the protection of research participants and establish harmonized guidelines for the management of biobanks in medical research, it is definitely up to REBs to find solutions that the present lack of guidelines poses. The model presented in this article offers a practical solution on a day-to-day basis for REBs, as well as researchers by promoting an archivist to a pivotal role in the process. It assures protection of all participants who altruistically donate their samples to generate and improve knowledge for better diagnosis and medical treatment.
Jin, Han Jun; Kim, Ki Cheol; Yoon, Cha Eun; Kim, Wook
2013-11-01
We analyzed the variation of eighteen miniSTR loci in 411 randomly chosen individuals from Korea to increase the probability that a degraded sample can be typed, as well as to provide an expanded and reliable population database. Six multiplex PCR systems were developed (multiplex I: D1S1677, D2S441 and D4S2364; multiplex II: D10S1248, D14S1434 and D22S1045; multiplex III: D12S391, D16S3253 and D20S161; multiplex IV: D3S4529, D8S1115 and D18S853; multiplex V: D6S1017, D11S4463 and D17S1301; multiplex VI: D5S2500, D9S1122 and D21S1437). Allele frequencies and forensic parameters were calculated to evaluate the suitability and robustness of these non-CODIS miniSTR systems. No significant deviation from Hardy-Weinberg equilibrium expectations were observed, except for D4S2364, D5S2500 and D20S161 loci. A multidimensional scaling plot based on allele frequencies of the six miniSTR loci (D1S1677, D2S441, D4S2364, D10S1248, D14S1434 and D22S1045) showed that Koreans appeared to have most genetic affinity with Chinese and Japanese than to other Eurasian populations compared here. The combined probability of match calculated from the 18 miniSTR loci was 2.902 × 10(-17), indicating a high degree of polymorphism. Thus, the 18 miniSTR loci can be suitable for recovering useful information for analyzing degraded forensic casework samples and for adding supplementary genetic information for a variety of analyses involving closely related individuals where there is a need for additional genetic information. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Paschou, Peristera
2010-01-01
Recent large-scale studies of European populations have demonstrated the existence of population genetic structure within Europe and the potential to accurately infer individual ancestry when information from hundreds of thousands of genetic markers is used. In fact, when genomewide genetic variation of European populations is projected down to a two-dimensional Principal Components Analysis plot, a surprising correlation with actual geographic coordinates of self-reported ancestry has been reported. This substructure can hamper the search of susceptibility genes for common complex disorders leading to spurious correlations. The identification of genetic markers that can correct for population stratification becomes therefore of paramount importance. Analyzing 1,200 individuals from 11 populations genotyped for more than 500,000 SNPs (Population Reference Sample), we present a systematic exploration of the extent to which geographic coordinates of origin within Europe can be predicted, with small panels of SNPs. Markers are selected to correlate with the top principal components of the dataset, as we have previously demonstrated. Performing thorough cross-validation experiments we show that it is indeed possible to predict individual ancestry within Europe down to a few hundred kilometers from actual individual origin, using information from carefully selected panels of 500 or 1,000 SNPs. Furthermore, we show that these panels can be used to correctly assign the HapMap Phase 3 European populations to their geographic origin. The SNPs that we propose can prove extremely useful in a variety of different settings, such as stratification correction or genetic ancestry testing, and the study of the history of European populations. PMID:20805874
Sulyok, Kinga M; Kreizinger, Zsuzsa; Hornstra, Heidie M; Pearson, Talima; Szigeti, Alexandra; Dán, Ádám; Balla, Eszter; Keim, Paul S; Gyuranecz, Miklós
2014-05-07
Information about the genotypic characteristic of Coxiella burnetii from Hungary is lacking. The aim of this study is to describe the genetic diversity of C. burnetii in Hungary and compare genotypes with those found elsewhere. A total of 12 samples: (cattle, n = 6, sheep, n = 5 and human, n = 1) collected from across Hungary were studied by a 10-loci multispacer sequence typing (MST) and 6-loci multiple-locus variable-number of tandem repeat analysis (MLVA). Phylogenetic relationships among MST genotypes show how these Hungarian samples are related to others collected around the world. Three MST genotypes were identified: sequence type (ST) 20 has also been identified in ruminants from other European countries and the USA, ST28 was previously identified in Kazakhstan, and the proposed ST37 is novel. All MST genotypes yielded different MLVA genotypes and three different MLVA genotypes were identified within ST20 samples alone. Two novel MLVA types 0-9-5-5-6-2 (AG) and 0-8-4-5-6-2 (AF) (Ms23-Ms24-Ms27-Ms28-Ms33-Ms34) were defined in the ovine materials correlated with ST28 and ST37. Samples from different parts of the phylogenetic tree were associated with different hosts, suggesting host-specific adaptations. Even with the limited number of samples analysed, this study revealed high genetic diversity among C. burnetii in Hungary. Understanding the background genetic diversity will be essential in identifying and controlling outbreaks.
An American termite in Paris: temporal colony dynamics.
Baudouin, Guillaume; Dedeine, Franck; Bech, Nicolas; Bankhead-Dronnet, Stéphanie; Dupont, Simon; Bagnères, Anne-Geneviève
2017-12-01
Termites of the genus Reticulitermes are widespread invaders, particularly in urban habitats. Their cryptic and subterranean lifestyle makes them difficult to detect, and we know little about their colony dynamics over time. In this study we examined the persistence of Reticulitermes flavipes (Kollar) colonies in the city of Paris over a period of 15 years. The aim was (1) to define the boundaries of colonies sampled within the same four areas over two sampling periods, (2) to determine whether the colonies identified during the first sampling period persisted to the second sampling period, and (3) to compare the results obtained when colonies were delineated using a standard population genetic approach versus a Bayesian clustering method that combined both spatial and genetic information. Herein, colony delineations were inferred from genetic differences at nine microsatellite loci and one mitochondrial locus. Four of the 18 identified colonies did not show significant differences in their genotype distributions between the two sampling periods. While allelic richness was low, making it hard to reliably distinguish colony family type, most colonies appeared to retain the same breeding structure over time. These large and expansive colonies showed an important ability to fuse (39% were mixed-family colonies), contained hundreds of reproductives and displayed evidence of isolation-by-distance, suggesting budding dispersal. These traits, which favor colony persistence over time, present a challenge for pest control efforts, which apply treatment locally. The other colonies showed significant differences, but we cannot exclude the possibility that their genotype distributions simply changed over time.
Lukindu, Martin; Bergey, Christina M; Wiltshire, Rachel M; Small, Scott T; Bourke, Brian P; Kayondo, Jonathan K; Besansky, Nora J
2018-04-16
Understanding population genetic structure in the malaria vector Anopheles gambiae (s.s.) is crucial to inform genetic control and manage insecticide resistance. Unfortunately, species characteristics such as high nucleotide diversity, large effective population size, recent range expansion, and high dispersal ability complicate the inference of genetic structure across its range in sub-Saharan Africa. The ocean, along with the Great Rift Valley, is one of the few recognized barriers to gene flow in this species, but the effect of inland lakes, which could be useful sites for initial testing of genetic control strategies, is relatively understudied. Here we examine Lake Victoria as a barrier between the Ugandan mainland and the Ssese Islands, which lie up to 60 km offshore. We use mitochondrial DNA (mtDNA) from populations sampled in 2002, 2012 and 2015, and perform Bayesian cluster analysis on mtDNA combined with microsatellite data previously generated from the same 2002 mosquito DNA samples. Hierarchical analysis of molecular variance and Bayesian clustering support significant differentiation between the mainland and lacustrine islands. In an mtDNA haplotype network constructed from this and previous data, haplotypes are shared even between localities separated by the Rift Valley, a result that more likely reflects retention of shared ancestral polymorphism than contemporary gene flow. The relative genetic isolation of An. gambiae on the Ssese Islands, their small size, level terrain and ease of access from the mainland, the relative simplicity of the vectorial system, and the prevalence of malaria, are all attributes that recommend these islands as possible sites for the testing of genetic control strategies.
Class, Quetzal A.; D’Onofrio, Brian M.; Singh, Amber L.; Ganiban, Jody M.; Spotts, E. L.; Lichtenstein, Paul; Reiss, David; Neiderhiser, Jenae M.
2013-01-01
A genetically-informed, quasi-experimental design was used to examine the genetic and environmental processes underlying associations between current parental depressive symptoms and offspring perceived self-competence. Participants, drawn from a population-based Swedish sample, were 852 twin pairs and their male (52%) and female offspring aged 15.7 ± 2.4 years. Parental depressive symptoms were measured using the Center for Epidemiological Studies Depression scale. Offspring perceived self-competence was measured using a modified Harter Perceived Competence Scale. Cousin comparisons and Children of Twins (CoT) designs suggested that associations between maternal depressive symptoms and offspring perceived self-competence were due to shared genetic/environmental liability. The mechanism responsible for father-offspring associations, however, was independent of genetic factors and of extended-family environmental factors, supporting a causal inference. Thus, mothers and fathers may impact offspring perceived self-competence via different mechanisms and unmeasured genetic and environmental selection factors must be considered when studying the intergenerational transmission of cognitive vulnerabilities for depression. PMID:22692226
Class, Quetzal A; D'Onofrio, Brian M; Singh, Amber L; Ganiban, Jody M; Spotts, E L; Lichtenstein, Paul; Reiss, David; Neiderhiser, Jenae M
2012-09-01
A genetically-informed, quasi-experimental design was used to examine the genetic and environmental processes underlying associations between current parental depressive symptoms and offspring perceived self-competence. Participants, drawn from a population-based Swedish sample, were 852 twin pairs and their male (52 %) and female offspring aged 15.7 ± 2.4 years. Parental depressive symptoms were measured using the Center for Epidemiological Studies Depression scale. Offspring perceived self-competence was measured using a modified Harter Perceived Competence Scale. Cousin comparisons and Children of Twins designs suggested that associations between maternal depressive symptoms and offspring perceived self-competence were due to shared genetic/environmental liability. The mechanism responsible for father-offspring associations, however, was independent of genetic factors and of extended family environmental factors, supporting a causal inference. Thus, mothers and fathers may impact offspring perceived self-competence via different mechanisms and unmeasured genetic and environmental selection factors must be considered when studying the intergenerational transmission of cognitive vulnerabilities for depression.
Patirana, A.; Hatcher, S.A.; Friesen, Vicki L.
2002-01-01
Population decline in red-legged kittiwakes (Rissa brevirostris) over recent decades has necessitated the collection of information on the distribution of genetic variation within and among colonies for implementation of suitable management policies. Here we present a preliminary study of the extent of genetic structuring and gene flow among the three principal breeding locations of red-legged kittiwakes using the hypervariable Domain I of the mitochondrial control region. Genetic variation was high relative to other species of seabirds, and was similar among locations. Analysis of molecular variance indicated that population genetic structure was statistically significant, and nested clade analysis suggested that kittiwakes breeding on Bering Island maybe genetically isolated from those elsewhere. However, phylogeographic structure was weak. Although this analysis involved only a single locus and a small number of samples, it suggests that red-legged kittiwakes probably constitute a single evolutionary significant unit; the possibility that they constitute two management units requires further investigation.
Inference from single occasion capture experiments using genetic markers.
Hettiarachchige, Chathurika K H; Huggins, Richard M
2018-05-01
Accurate estimation of the size of animal populations is an important task in ecological science. Recent advances in the field of molecular genetics researches allow the use of genetic data to estimate the size of a population from a single capture occasion rather than repeated occasions as in the usual capture-recapture experiments. Estimating the population size using genetic data also has sometimes led to estimates that differ markedly from each other and also from classical capture-recapture estimates. Here, we develop a closed form estimator that uses genetic information to estimate the size of a population consisting of mothers and daughters, focusing on estimating the number of mothers, using data from a single sample. We demonstrate the estimator is consistent and propose a parametric bootstrap to estimate the standard errors. The estimator is evaluated in a simulation study and applied to real data. We also consider maximum likelihood in this setting and discover problems that preclude its general use. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stoffel, Martin A.; Caspers, Barbara A.; Forcada, Jaume; Giannakara, Athina; Baier, Markus; Eberhart-Phillips, Luke; Müller, Caroline; Hoffman, Joseph I.
2015-01-01
Chemical communication underpins virtually all aspects of vertebrate social life, yet remains poorly understood because of its highly complex mechanistic basis. We therefore used chemical fingerprinting of skin swabs and genetic analysis to explore the chemical cues that may underlie mother–offspring recognition in colonially breeding Antarctic fur seals. By sampling mother–offspring pairs from two different colonies, using a variety of statistical approaches and genotyping a large panel of microsatellite loci, we show that colony membership, mother–offspring similarity, heterozygosity, and genetic relatedness are all chemically encoded. Moreover, chemical similarity between mothers and offspring reflects a combination of genetic and environmental influences, the former partly encoded by substances resembling known pheromones. Our findings reveal the diversity of information contained within chemical fingerprints and have implications for understanding mother–offspring communication, kin recognition, and mate choice. PMID:26261311
Genetic diversity in Egyptian and Italian goat breeds measured with microsatellite polymorphism.
Agha, S H; Pilla, F; Galal, S; Shaat, I; D'Andrea, M; Reale, S; Abdelsalam, A Z A; Li, M H
2008-06-01
Seven microsatellite markers were used to study genetic diversity of three Egyptian (Egyptian Baladi, Barki and Zaraibi) and two Italian (Maltese and Montefalcone) goat breeds. The microsatellites showed a high polymorphic information content (PIC) of more than 0.5 in most of the locus-breed combinations and indicated that the loci were useful in assessing within- and between-breed variability of domestic goat (Capra hircus). The expected heterozygosity of the breeds varied from 0.670 to 0.792. In the geographically wider distributed Egyptian Baladi breed there were indications for deviations from random breeding. Analysis of genetic distances and population structure grouped the three Egyptian goat breeds together, and separated them from the two Italian breeds. The studied Mediterranean breeds sampled from African and European populations seem to have differentiated from each other with only little genetic exchange between the geographically isolated populations.
Mandal, Anup; Mohindra, Vindhya; Singh, Rajeev Kumar; Punia, Peyush; Singh, Ajay Kumar; Lal, Kuldeep Kumar
2012-02-01
Genetic variation at mitochondrial cytochrome b (cyt b) and D-loop region reveals the evidence of population sub-structuring in Indian populations of highly endangered primitive feather-back fish Chitala chitala. Samples collected through commercial catches from eight riverine populations from different geographical locations of India were analyzed for cyt b region (307 bp) and D-loop region (636-716 bp). The sequences of the both the mitochondrial regions revealed high haplotype diversity and low nucleotide diversity. The patterns of genetic diversity, haplotypes networks clearly indicated two distinct mitochondrial lineages and mismatch distribution strongly suggest a historical influence on the genetic structure of C. chitala populations. The baseline information on genetic variation and the evidence of population sub-structuring generated from this study would be useful for planning effective strategies for conservation and rehabilitation of this highly endangered species.
A Follow-Up Community Survey of Knowledge and Beliefs About Cancer and Genetics
Hastrup, Janice L.; Hyland, Andrew; Rivard, Cheryl
2015-01-01
The purpose of this study is to assess changes since the launch of the US Surgeon General’s campaign in the public’s beliefs about the role of genetics in the etiology of cancer, as well as changes in recording family health history. We conducted a survey of 480 Western New York adults, assessing: (1) experiences with cancer, (2) beliefs about cancer and genetics, and (3) practices of recording family health history. Most respondents were aware of the importance of family history. The sample also showed increased knowledge about cancer and genetics compared with a previous survey. However, only 7 % kept written records that included medical conditions, which was not different from a previous survey. Time constraints, apathy, and reluctance to find out negative health information were the most reported barriers. Results suggest a need for continued education of the public, with increased emphasis on written family health records. PMID:25976378
A Follow-Up Community Survey of Knowledge and Beliefs About Cancer and Genetics.
Sweeney, Shannon M; Hastrup, Janice L; Hyland, Andrew; Rivard, Cheryl
2016-06-01
The purpose of this study is to assess changes since the launch of the US Surgeon General's campaign in the public's beliefs about the role of genetics in the etiology of cancer, as well as changes in recording family health history. We conducted a survey of 480 Western New York adults, assessing: (1) experiences with cancer, (2) beliefs about cancer and genetics, and (3) practices of recording family health history. Most respondents were aware of the importance of family history. The sample also showed increased knowledge about cancer and genetics compared with a previous survey. However, only 7 % kept written records that included medical conditions, which was not different from a previous survey. Time constraints, apathy, and reluctance to find out negative health information were the most reported barriers. Results suggest a need for continued education of the public, with increased emphasis on written family health records.
Analysis of serum angiotensin-converting enzyme.
Muller, B R
2002-09-01
Serum angiotensin-converting enzyme (SACE) levels are influenced by genetic polymorphism. Interpretation of serum levels with the appropriate genotypic reference range improves the diagnostic sensitivity of the assay for sarcoidosis. SACE assays are performed by a large number of routine clinical laboratories. However, there is no external quality assessment (EQA) for SACE other than an informal regional scheme. This showed analytical performance of SACE assays to be poor, with a diversity of reference ranges, leading to widely disparate clinical classification of EQA samples. Genetic polymorphism combined with poor analytical performance suggest that perhaps SACE assays should revert to being the province of specialized laboratories.
Using Genotype Abundance to Improve Phylogenetic Inference
Mesin, Luka; Victora, Gabriel D; Minin, Vladimir N; Matsen, Frederick A
2018-01-01
Abstract Modern biological techniques enable very dense genetic sampling of unfolding evolutionary histories, and thus frequently sample some genotypes multiple times. This motivates strategies to incorporate genotype abundance information in phylogenetic inference. In this article, we synthesize a stochastic process model with standard sequence-based phylogenetic optimality, and show that tree estimation is substantially improved by doing so. Our method is validated with extensive simulations and an experimental single-cell lineage tracing study of germinal center B cell receptor affinity maturation. PMID:29474671
NASA Astrophysics Data System (ADS)
Thiel, C.; Wills, D.; Foing, B.; Wadham, J.; Cullen, D.; van Sluis, C.
2009-04-01
Deoxyribonucleic acid (DNA) is found in almost all living organisms. The main function of DNA molecules is the long-term storage of genetic information.They are passed on from generation to generation as the hereditary material. This molecular structure is often compared to a genetic blueprint, a fingerprint, which is unique for each organism and can therefore be used as a mean of identification. In 1984 a revolutionary technique called polymerase chain reaction (PCR) was established, able to amplify a single or few copies of DNA molecules across several orders of magnitude, generating millions of copies of the original DNA fragment. PCR is nowadays a common technique used in medical and biological research laboratories for a large variety of applications like functional analysis of genes, DNA-based phylogeny, diagnosis of hereditary diseases, detection and diagnosis of infectious diseases, and identification of genetic fingerprints. This powerful tool gives us the opportunity to investigate, if there is or was life on Mars since DNA fragments are highly stable what allows not only amplification from living organisms but also from samples with an age of several thousand years. If we assume that micro-organisms were exchanged between Mars and Earth via meteorites, it is imaginable that Martian life might also be based on DNA as carrier of genetic information. Therefore our goal is to establish a routine for detection of DNA from micro-organisms based on the effective but also robust and simple PCR technique, demonstrated during the EuroGeoMars simulation campaign at Mars Desert Research Station (MDRS). We have already analysed some MDRS soil samples at ESTEC ExoGeoLab facility. During the MDRS simulation we will show that it is possible to establish a minimal molecular biology lab in the habitat for an immediate on site analysis by PCR after sample collection. Samples will be taken from different locations and soil depths. The sample analysis will start immediately after returning to the habitat and will be finished during the following days. DNA will be isolated from micro-organisms by Powersoil DNA isolation kit and serves as template for PCR using oligonucleotides specific for ribosomal DNA to identify representatives of the different groups of micro-organisms: archaea, bacteria and eukaryotes. PCR products will be analysed by agarose gel electrophoresis and documented via UV-trans-illuminator and digital camera.
Mei, Ting; Shen, Chun-Mei; Liu, Yao-Shun; Meng, Hao-Tian; Zhang, Yu-Dang; Guo, Yu-Xin; Dong, Qian; Wang, Xin-Xin; Yan, Jiang-Wei; Zhu, Bo-Feng; Zhang, Li-Ping
2016-01-01
The Uigur ethnic minority is the largest ethnic group in the Xinjiang Uygur Autonomous Region of China, and valuable resource for the study of ethnogeny. The objective of this study was to estimate the genetic diversities and forensic parameters of 30 insertion-deletion loci in Uigur ethnic group from Xinjiang Uigur Autonomous Region of China and to analyze the genetic relationships between Xinjiang Uigur group and other previously published groups based on population data of these loci. All the tested loci were conformed to Hardy-Weinberg equilibrium after Bonferroni correction. The observed and expected heterozygosity ranged from 0.3750 to 0.5515; and 0.4057 to 0.5037, respectively. The combined power of discrimination and probability of exclusion in the group were 0.99999999999940 and 0.9963, respectively. We analyzed the D A distance, interpopulation differentiations and population structure, conducted principal component analysis and neighbor-joining tree based on our studied group and 21 reference groups. The present results indicated that the studied Xinjiang Uigur group (represented our samples from the whole territory of Xinjiang Uigur Autonomous Region) had a close relationships with Urumchi Uigur (represented previously reported samples from Urumchi of Xinjiang) and Kazak groups. The present study may provide novel biological information for the study of population genetics, and can also increase our understanding of the genetic relationships between Xinjiang Uigur group and other groups.
Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm
Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua
2009-01-01
Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415
PlantDB – a versatile database for managing plant research
Exner, Vivien; Hirsch-Hoffmann, Matthias; Gruissem, Wilhelm; Hennig, Lars
2008-01-01
Background Research in plant science laboratories often involves usage of many different species, cultivars, ecotypes, mutants, alleles or transgenic lines. This creates a great challenge to keep track of the identity of experimental plants and stored samples or seeds. Results Here, we describe PlantDB – a Microsoft® Office Access database – with a user-friendly front-end for managing information relevant for experimental plants. PlantDB can hold information about plants of different species, cultivars or genetic composition. Introduction of a concise identifier system allows easy generation of pedigree trees. In addition, all information about any experimental plant – from growth conditions and dates over extracted samples such as RNA to files containing images of the plants – can be linked unequivocally. Conclusion We have been using PlantDB for several years in our laboratory and found that it greatly facilitates access to relevant information. PMID:18182106
Page, G P; Amos, C I; Boerwinkle, E
1998-04-01
We present a test statistic, the quantitative LOD (QLOD) score, for the testing of both linkage and exclusion of quantitative-trait loci in randomly selected human sibships. As with the traditional LOD score, the boundary values of 3, for linkage, and -2, for exclusion, can be used for the QLOD score. We investigated the sample sizes required for inferring exclusion and linkage, for various combinations of linked genetic variance, total heritability, recombination distance, and sibship size, using fixed-size sampling. The sample sizes required for both linkage and exclusion were not qualitatively different and depended on the percentage of variance being linked or excluded and on the total genetic variance. Information regarding linkage and exclusion in sibships larger than size 2 increased as approximately all possible pairs n(n-1)/2 up to sibships of size 6. Increasing the recombination (theta) distance between the marker and the trait loci reduced empirically the power for both linkage and exclusion, as a function of approximately (1-2theta)4.
Edwards, Taylor; Cox, Elizabeth Canty; Buzzard, Vanessa; Wiese, Christiane; Hillard, L. Scott; Murphy, Robert W.
2014-01-01
The Bolson tortoise (Gopherus flavomarginatus) is the first species of extirpated megafauna to be repatriated into the United States. In September 2006, 30 individuals were translocated from Arizona to New Mexico with the long-term objective of restoring wild populations via captive propagation. We evaluated mtDNA sequences and allelic diversity among 11 microsatellite loci from the captive population and archived samples collected from wild individuals in Durango, Mexico (n = 28). Both populations exhibited very low genetic diversity and the captive population captured roughly 97.5% of the total wild diversity, making it a promising founder population. Genetic screening of other captive animals (n = 26) potentially suitable for reintroduction uncovered multiple hybrid G. flavomarginatus×G. polyphemus, which were ineligible for repatriation; only three of these individuals were verified as purebred G. flavomarginatus. We used these genetic data to inform mate pairing, reduce the potential for inbreeding and to monitor the maintenance of genetic diversity in the captive population. After six years of successful propagation, we analyzed the parentage of 241 hatchlings to assess the maintenance of genetic diversity. Not all adults contributed equally to successive generations. Most yearly cohorts of hatchlings failed to capture the diversity of the parental population. However, overlapping generations of tortoises helped to alleviate genetic loss because the entire six-year cohort of hatchlings contained the allelic diversity of the parental population. Polyandry and sperm storage occurred in the captives and future management strategies must consider such events. PMID:25029369
Nagl, Nevena; Taski-Ajdukovic, Ksenija; Barac, Goran; Baburski, Aleksandar; Seccareccia, Ivana; Milic, Dragan; Katic, Slobodan
2011-01-01
Alfalfa is an autotetraploid, allogamous and heterozygous forage legume, whose varieties are synthetic populations. Due to the complex nature of the species, information about genetic diversity of germplasm used in any alfalfa breeding program is most beneficial. The genetic diversity of five alfalfa varieties, involved in progeny tests at Institute of Field and Vegetable Crops, was characterized based on RAPD markers. A total of 60 primers were screened, out of which 17 were selected for the analysis of genetic diversity. A total of 156 polymorphic bands were generated, with 10.6 bands per primer. Number and percentage of polymorphic loci, effective number of alleles, expected heterozygosity and Shannon's information index were used to estimate genetic variation. Variety Zuzana had the highest values for all tested parameters, exhibiting the highest level of variation, whereas variety RSI 20 exhibited the lowest. Analysis of molecular variance (AMOVA) showed that 88.39% of the total genetic variation was attributed to intra-varietal variance. The cluster analysis for individual samples and varieties revealed differences in their population structures: variety Zuzana showed a very high level of genetic variation, Banat and Ghareh were divided in subpopulations, while Pecy and RSI 20 were relatively uniform. Ways of exploiting the investigated germplasm in the breeding programs are suggested in this paper, depending on their population structure and diversity. The RAPD analysis shows potential to be applied in analysis of parental populations in semi-hybrid alfalfa breeding program in both, development of new homogenous germplasm, and identification of promising, complementary germplasm.
Myers, John M.; Kendler, Kenneth S.
2013-01-01
Objectives. We tested 3 hypotheses—social causation, social drift, and common cause—regarding the origin of socioeconomic disparities in major depression and determined whether the relationship between socioeconomic status (SES) and major depression varied by genetic liability for major depression. Methods. Data were from a sample of female twins in the baseline Virginia Adult Twin Study of Psychiatric and Substance Use Disorders interviewed between 1987 and 1989 (n = 2153). We used logistic regression and structural equation twin models to evaluate these 3 hypotheses. Results. Consistent with the social causation hypothesis, education (odds ratio [OR] = 0.78; 95% confidence interval [CI] = 0.66, 0.93; P < .01) and income (OR = 0.93; 95% CI = 0.89, 0.98; P < .01) were significantly related to past-year major depression. Upward social mobility was associated with lower risk of depression. There was no evidence that childhood SES was related to development of major depression (OR = 0.98; 95% CI = 0.89, 1.09; P > .1). Consistent with a common genetic cause, there was a negative correlation between the genetic components of major depression and education (r2 = –0.22). Co-twin control analyses indicated a protective effect of education and income on major depression even after accounting for genetic liability. Conclusions. This study utilized a genetically informed design to address how social position relates to major depression. Results generally supported the social causation model. PMID:23927513
Ancient DNA studies: new perspectives on old samples
2012-01-01
In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field. PMID:22697611
DNA extraction and amplification from contemporary Polynesian bark-cloth.
Moncada, Ximena; Payacán, Claudia; Arriaza, Francisco; Lobos, Sergio; Seelenfreund, Daniela; Seelenfreund, Andrea
2013-01-01
Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials.
DNA Extraction and Amplification from Contemporary Polynesian Bark-Cloth
Moncada, Ximena; Payacán, Claudia; Arriaza, Francisco; Lobos, Sergio; Seelenfreund, Daniela; Seelenfreund, Andrea
2013-01-01
Background Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. Methodology We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. Conclusions Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials. PMID:23437166
Mateus Pereira, L H; Socorro, A; Fernandez, I; Masleh, M; Vidal, D; Bianchi, N O; Bonatto, S L; Salzano, F M; Herrera, R J
2005-09-01
This study attempts to ascertain genetic affinities between Native American and East Asian populations by analyzing four polymorphic Alu insertions (PAIs) and three L1 polymorphic loci. These two genetic systems demonstrated strong congruence when levels of diversity and genetic distances were considered. Overall, genetic relatedness within Native American groups does not correlate with geographical and linguistic structure, although strong grouping for Native Americans with East Asians was demonstrated, with clear discrimination from African and European groups. Most of the variation was assigned to differences occurring within groups, but the interpopulation variation found for South Amerindians was recognizably higher in comparison to the other sampled groups of populations. Our data suggest that bottleneck events followed by strong influence of genetic drift in the process of the peopling of the Americas may have been determinant factors in delineating the genetic background of present-day South Amerindians. Since no clear subgroups were detected within Native Americans and East Asians, there is no indication of multiple waves in the early colonization of the New World. (c) 2005 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Clark, M. R.; Gardner, J.; Holland, L.; Zeng, C.; Hamilton, J. S.; Rowden, A. A.
2016-02-01
In the New Zealand region vulnerable marine ecosystems (VMEs) are at risk from commercial fishing activity and future seabed mining. Understanding connectivity among VMEs is important for the design of effective spatial management strategies, i.e. a network of protected areas. To date however, genetic connectivity in the New Zealand region has rarely been documented. As part of a project developing habitat suitability models and spatial management options for VMEs we used DNA sequence data and microsatellite genotyping to assess genetic connectivity for a range of VME indicator taxa, including the coral Desmophyllum dianthus, and the sponges Poecilastra laminaris and Penares palmatoclada. Overall, patterns of connectivity were inconsistent amonst taxa. Nonetheless, genetic data from each taxon were relevant to inform management at a variety of spatial scales. D. dianthus populations in the Kermadec volcanic arc and the Louisville Seamount Chain were indistinguishable, highlighting the importance of considering source-sink dynamics between populations beyond the EEZ in conservation planning. Poecilastra laminaris populations showed significant divergence across the Chatham Rise, in contrast to P. palmatoclada, which had a uniform haplotypic distribution. However, both sponge species exhibited the highest genetic diversity on the Chatham Rise, suggesting that this area is a genetic hotspot. The spatial heterogeneity of genetic patterns of structure suggest that inclusion of several taxa is necessary to facilitate understanding of regional connectivity patterns, variation in which may be attributed to alternate life history strategies, local hydrodynamic regimes, or in some cases, suboptimal sample sizes. Our findings provide important information for use by environmental managers, including summary maps of genetic diversity and barriers to gene flow, which will be used in spatial management decision-support tools.
Kowalczyk, Marek; Sekuła, Andrzej; Mleczko, Piotr; Olszowy, Zofia; Kujawa, Anna; Zubek, Szymon; Kupiec, Tomasz
2015-01-01
Aim To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Methods Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequences were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Results Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Conclusion Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical material. PMID:25727040
Kowalczyk, Marek; Sekuła, Andrzej; Mleczko, Piotr; Olszowy, Zofia; Kujawa, Anna; Zubek, Szymon; Kupiec, Tomasz
2015-02-01
To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequen-ces were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical material.
Differences between blood donors and a population sample: implications for case-control studies.
Golding, Jean; Northstone, Kate; Miller, Laura L; Davey Smith, George; Pembrey, Marcus
2013-08-01
Selecting appropriate controls for studies of genetic variation in case series is important. The two major candidates involve the use of blood donors or a random sample of the population. We compare and contrast the two different populations of controls for studies of genetic variation using data from parents enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC). In addition we compute different biases using a series of hypothetical assumptions. The study subjects who had been blood donors differed markedly from the general population in social, health-related, anthropometric, and personality-related variables. Using theoretical examples, we show that blood donors are a poor control group for non-genetic studies of diseases related to environmentally, behaviourally, or socially patterned exposures. However, we show that if blood donors are used as controls in genetic studies, these factors are unlikely to make a major difference in detecting true associations with relatively rare disorders (cumulative incidence through life of <10%). Nevertheless, for more common disorders, the reduction in accuracy resulting from the inclusion in any control population of individuals who have or will develop the disease in question can create a greater bias than can socially patterned factors. Information about the medical history of a control and the parents of the control (as a proxy for whether the control will develop the disease) is more important with regard to the choice of controls than whether the controls are a random population sample or blood donors.
Sala, Andrea; Corach, Daniel
2014-03-01
Argentinean Patagonia is inhabited by people that live principally in urban areas and by small isolated groups of individuals that belong to indigenous aboriginal groups; this territory exhibits the lowest population density of the country. Mapuche and Tehuelche (Mapudungun linguistic branch), are the only extant Native American groups that inhabit the Argentinean Patagonian provinces of Río Negro and Chubut. Fifteen autosomal STRs, 17 Y-STRs, mtDNA full length control region sequence and two sets of Y and mtDNA-coding region SNPs were analyzed in a set of 434 unrelated individuals. The sample set included two aboriginal groups, a group of individuals whose family name included Native American linguistic root and urban samples from Chubut, Río Negro and Buenos Aires provinces of Argentina. Specific Y Amerindian haplogroup Q1 was found in 87.5% in Mapuche and 58.82% in Tehuelche, while the Amerindian mtDNA haplogroups were present in all the aboriginal sample contributors investigated. Admixture analysis performed by means of autosomal and Y-STRs showed the highest degree of admixture in individuals carrying Mapuche surnames, followed by urban populations, and finally by isolated Native American populations as less degree of admixture. The study provided novel genetic information about the Mapuche and Tehuelche people and allowed us to establish a genetic correlation among individuals with Mapudungun surnames that demonstrates not only a linguistic but also a genetic relationship to the isolated aboriginal communities, representing a suitable proxy indicator for assessing genealogical background.
Civilian and Military Genetics: Nondiscrimination Policy in a Post-GINA World
Baruch, Susannah; Hudson, Kathy
2008-01-01
Evidence is emerging of a growing societal consensus about appropriate and inappropriate uses of genetic information. The Genetic Information Nondiscrimination Act of 2008 provides new legal protections to Americans by prohibiting the discriminatory use of genetic information by health insurers and employers. Additionally, the United States military recently created new policies for fair use of genetic information in the determination of benefits for servicemen and servicewomen leaving military service. Although critical issues remain, such as the potential for genetic information to be used to deny people other forms of insurance, and how the military will use genetic medicine overall, significant progress has been made. PMID:18940308
Internet-Based Direct-to-Consumer Genetic Testing: A Systematic Review.
Covolo, Loredana; Rubinelli, Sara; Ceretti, Elisabetta; Gelatti, Umberto
2015-12-14
Direct-to-consumer genetic tests (DTC-GT) are easily purchased through the Internet, independent of a physician referral or approval for testing, allowing the retrieval of genetic information outside the clinical context. There is a broad debate about the testing validity, their impact on individuals, and what people know and perceive about them. The aim of this review was to collect evidence on DTC-GT from a comprehensive perspective that unravels the complexity of the phenomenon. A systematic search was carried out through PubMed, Web of Knowledge, and Embase, in addition to Google Scholar according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist with the key term "Direct-to-consumer genetic test." In the final sample, 118 articles were identified. Articles were summarized in five categories according to their focus on (1) knowledge of, attitude toward use of, and perception of DTC-GT (n=37), (2) the impact of genetic risk information on users (n=37), (3) the opinion of health professionals (n=20), (4) the content of websites selling DTC-GT (n=16), and (5) the scientific evidence and clinical utility of the tests (n=14). Most of the articles analyzed the attitude, knowledge, and perception of DTC-GT, highlighting an interest in using DTC-GT, along with the need for a health care professional to help interpret the results. The articles investigating the content analysis of the websites selling these tests are in agreement that the information provided by the companies about genetic testing is not completely comprehensive for the consumer. Given that risk information can modify consumers' health behavior, there are surprisingly few studies carried out on actual consumers and they do not confirm the overall concerns on the possible impact of DTC-GT. Data from studies that investigate the quality of the tests offered confirm that they are not informative, have little predictive power, and do not measure genetic risk appropriately. The impact of DTC-GT on consumers' health perceptions and behaviors is an emerging concern. However, negative effects on consumers or health benefits have yet to be observed. Nevertheless, since the online market of DTC-GT is expected to grow, it is important to remain aware of a possible impact.
Internet-Based Direct-to-Consumer Genetic Testing: A Systematic Review
Rubinelli, Sara; Ceretti, Elisabetta; Gelatti, Umberto
2015-01-01
Background Direct-to-consumer genetic tests (DTC-GT) are easily purchased through the Internet, independent of a physician referral or approval for testing, allowing the retrieval of genetic information outside the clinical context. There is a broad debate about the testing validity, their impact on individuals, and what people know and perceive about them. Objective The aim of this review was to collect evidence on DTC-GT from a comprehensive perspective that unravels the complexity of the phenomenon. Methods A systematic search was carried out through PubMed, Web of Knowledge, and Embase, in addition to Google Scholar according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist with the key term “Direct-to-consumer genetic test.” Results In the final sample, 118 articles were identified. Articles were summarized in five categories according to their focus on (1) knowledge of, attitude toward use of, and perception of DTC-GT (n=37), (2) the impact of genetic risk information on users (n=37), (3) the opinion of health professionals (n=20), (4) the content of websites selling DTC-GT (n=16), and (5) the scientific evidence and clinical utility of the tests (n=14). Most of the articles analyzed the attitude, knowledge, and perception of DTC-GT, highlighting an interest in using DTC-GT, along with the need for a health care professional to help interpret the results. The articles investigating the content analysis of the websites selling these tests are in agreement that the information provided by the companies about genetic testing is not completely comprehensive for the consumer. Given that risk information can modify consumers’ health behavior, there are surprisingly few studies carried out on actual consumers and they do not confirm the overall concerns on the possible impact of DTC-GT. Data from studies that investigate the quality of the tests offered confirm that they are not informative, have little predictive power, and do not measure genetic risk appropriately. Conclusions The impact of DTC-GT on consumers’ health perceptions and behaviors is an emerging concern. However, negative effects on consumers or health benefits have yet to be observed. Nevertheless, since the online market of DTC-GT is expected to grow, it is important to remain aware of a possible impact. PMID:26677835
Diergaarde, Brenda; Bowen, Deborah J; Ludman, Evette J; Culver, Julie O; Press, Nancy; Burke, Wylie
2007-03-15
Genetic information is used increasingly in health care. Some experts have argued that genetic information is qualitatively different from other medical information and, therefore, raises unique social issues. This view, called "genetic exceptionalism," has importantly influenced recent policy efforts. Others have argued that genetic information is like other medical information and that treating it differently may actually result in unintended disparities. Little is known about how the general public views genetic information. To identify opinions about implications of genetic and other medical information among the general population, we conducted a series of focus groups in Seattle, WA. Participants were women and men between ages 18 and 74, living within 30 miles of Seattle and members of the Group Health Cooperative. A structured discussion guide was used to ensure coverage of all predetermined topics. Sessions lasted approximately 2 hr; were audio taped and transcribed. The transcripts formed the basis of the current analysis. Key findings included the theme that genetic information was much like other medical information and that all sensitive medical information should be well protected. Personal choice (i.e., the right to choose whether to know health risk information and to control who else knows) was reported to be of crucial importance. Participants had an understanding of the tensions involved in protecting privacy versus sharing medical information to help another person. These data may guide future research and policy concerning the use and protection of medical information, including genetic information. (c) 2007 Wiley-Liss, Inc.
Genetics of preeclampsia: what are the challenges?
Bernard, Nathalie; Giguère, Yves
2003-07-01
Despite recent efforts to identify susceptibility genes of preeclampsia, the genetic determinants of the condition remain ill-defined, as is the situation for most disorders of complex inheritance patterns. The angiotensinogen, factor V, and methylenetetrahydrofolate reductase genes have been investigated in different populations, as have other genes involved in blood pressure, vascular volume control, thrombophilia, lipid metabolism, oxidative stress, and endothelial dysfunction. The study of the genetics of complex traits is faced with both methodological and genetic issues; these include adequate sample size to allow for the identification of modest genetic effects, of gene-gene and gene-environment interactions, the study of adequate quantitative traits and extreme phenotypes, haplotype analyses, statistical genetics, genome-wide (hypothesis-free) versus candidate-gene (hypothesis-driven) approaches, and the validation of positive associations. The use of genetically well-characterized populations showing a founder effect, such as the French-Canadian population of Quebec, in genetic association studies, may help to unravel the susceptibility genes of disorders showing complex inheritance, such as preeclampsia. It is necessary to better evaluate the role of the fetal genome in the resulting predisposition to preeclampsia and its complications. Eventually, we may be able to integrate genetic information to better identify the women at risk of developing preeclampsia, and to improve the management of those suffering from this condition.
ERIC Educational Resources Information Center
Dirghangi, Shrija; Kahn, Gilly; Laursen, Brett; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette; Boivin, Michel
2015-01-01
This study tested 2 related hypotheses. The first holds that high co-rumination anticipates heightened internalizing problems. The second holds that positive relationships with friends exacerbate the risk for internalizing problems arising from co-rumination. A sample of MZ twins followed from birth (194 girls and 170 boys) completed (a)…
How Are Genetic Conditions Diagnosed?
... Consultation How are genetic conditions diagnosed? How are genetic conditions diagnosed? A doctor may suspect a diagnosis ... and advocacy resources. For more information about diagnosing genetic conditions: Genetics Home Reference provides information about genetic ...
Cassidy, Richard J; Zhang, Xinyan; Patel, Pretesh R; Shelton, Joseph W; Escott, Chase E; Sica, Gabriel L; Rossi, Michael R; Hill, Charles E; Steuer, Conor E; Pillai, Rathi N; Ramalingam, Suresh S; Owonikoko, Taofeek K; Behera, Madhusmita; Force, Seth D; Fernandez, Felix G; Curran, Walter J; Higgins, Kristin A
2017-10-01
Genetic aberrations are well characterized in lung adenocarcinomas (LACs) and clinical outcomes have been influenced by targeted therapies in the advanced setting. Stereotactic body radiotherapy (SBRT) is the standard-of-care therapy for patients with nonoperable, early-stage LAC, but to the authors' knowledge, no information is available regarding the impact of genomic changes in these patients. The current study sought to determine the frequency and clinical impact of genetic aberrations in this population. Under an Institutional Review Board-approved protocol, the records of 242 consecutive patients with early-stage lung cancers were reviewed; inclusion criteria included LAC histology with an adequate tumor sample for the successful use of next-generation sequencing and fluorescence in situ hybridization testing. Univariate analysis was performed to identify factors associated with clinical outcomes. LAC samples from 98 of the 242 patients were reviewed (40.5%), of whom 45 patients (46.0%) had genetic testing. The following mutations were noted: KRAS in 20.0% of samples, BRAF in 2.2% of samples, SMAD family member 4 (SMAD4) in 4.4% of samples, epidermal growth factor receptor (EGFR) in 15.6% of samples, STK1 in 2.2% of samples, tumor protein 53 (TP53) in 15.6% of samples, and phosphatase and tensin homolog (PTEN) in 2.2% of samples. The following gene rearrangements were observed: anaplastic lymphoma kinase (ALK) in 8.9% of samples, RET in 2.2% of samples, and MET amplification in 17.8% of samples. The median total delivered SBRT dose was 50 grays (range, 48-60 grays) over a median of 5 fractions (range, 3-8 fractions). The KRAS mutation was associated with worse local control (odds ratio [OR], 3.64; P<.05). MET amplification was associated with worse regional (OR, 4.64; P<.05) and distant (OR, 3.73; P<.05) disease control. To the authors' knowledge, the current series is the first to quantify genetic mutations and their association with clinical outcomes in patients with early-stage LAC treated with SBRT. KRAS mutations were associated with worse local control and MET amplification was associated with worse regional and distant disease control, findings that need to be validated in a prospective setting. Cancer 2017;123:3681-3690. © 2017 American Cancer Society. © 2017 American Cancer Society.
Next generation sequencing and its applications in forensic genetics.
Børsting, Claus; Morling, Niels
2015-09-01
It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs, insertion/deletions, mRNA) that cannot be analyzed simultaneously with the standard PCR-CE methods used today. The true variation in core forensic STR loci has been uncovered, and previously unknown STR alleles have been discovered. The detailed sequence information may aid mixture interpretation and will increase the statistical weight of the evidence. In this review, we will give an introduction to NGS and single-molecule sequencing, and we will discuss the possible applications of NGS in forensic genetics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NordicDB: a Nordic pool and portal for genome-wide control data.
Leu, Monica; Humphreys, Keith; Surakka, Ida; Rehnberg, Emil; Muilu, Juha; Rosenström, Päivi; Almgren, Peter; Jääskeläinen, Juha; Lifton, Richard P; Kyvik, Kirsten Ohm; Kaprio, Jaakko; Pedersen, Nancy L; Palotie, Aarno; Hall, Per; Grönberg, Henrik; Groop, Leif; Peltonen, Leena; Palmgren, Juni; Ripatti, Samuli
2010-12-01
A cost-efficient way to increase power in a genetic association study is to pool controls from different sources. The genotyping effort can then be directed to large case series. The Nordic Control database, NordicDB, has been set up as a unique resource in the Nordic area and the data are available for authorized users through the web portal (http://www.nordicdb.org). The current version of NordicDB pools together high-density genome-wide SNP information from ∼5000 controls originating from Finnish, Swedish and Danish studies and shows country-specific allele frequencies for SNP markers. The genetic homogeneity of the samples was investigated using multidimensional scaling (MDS) analysis and pairwise allele frequency differences between the studies. The plot of the first two MDS components showed excellent resemblance to the geographical placement of the samples, with a clear NW-SE gradient. We advise researchers to assess the impact of population structure when incorporating NordicDB controls in association studies. This harmonized Nordic database presents a unique genome-wide resource for future genetic association studies in the Nordic countries.
NordicDB: a Nordic pool and portal for genome-wide control data
Leu, Monica; Humphreys, Keith; Surakka, Ida; Rehnberg, Emil; Muilu, Juha; Rosenström, Päivi; Almgren, Peter; Jääskeläinen, Juha; Lifton, Richard P; Kyvik, Kirsten Ohm; Kaprio, Jaakko; Pedersen, Nancy L; Palotie, Aarno; Hall, Per; Grönberg, Henrik; Groop, Leif; Peltonen, Leena; Palmgren, Juni; Ripatti, Samuli
2010-01-01
A cost-efficient way to increase power in a genetic association study is to pool controls from different sources. The genotyping effort can then be directed to large case series. The Nordic Control database, NordicDB, has been set up as a unique resource in the Nordic area and the data are available for authorized users through the web portal (http://www.nordicdb.org). The current version of NordicDB pools together high-density genome-wide SNP information from ∼5000 controls originating from Finnish, Swedish and Danish studies and shows country-specific allele frequencies for SNP markers. The genetic homogeneity of the samples was investigated using multidimensional scaling (MDS) analysis and pairwise allele frequency differences between the studies. The plot of the first two MDS components showed excellent resemblance to the geographical placement of the samples, with a clear NW–SE gradient. We advise researchers to assess the impact of population structure when incorporating NordicDB controls in association studies. This harmonized Nordic database presents a unique genome-wide resource for future genetic association studies in the Nordic countries. PMID:20664631
McKibbin, Martin; Ahmed, Mushtaq; Allsop, Matthew J; Downey, Louise; Gale, Richard; Grant, Hilary Louise; Potrata, Barbara; Willis, Thomas A; Hewison, Jenny
2014-09-01
Advances in sequencing technology and the movement of genetic testing into all areas of medicine will increase opportunities for molecular confirmation of a clinical diagnosis. For health-care professionals without formal genetics training, there is a need to know what patients understand about genetics and genetic testing and their information needs and preferences for the disclosure of genetic testing results. These topics were explored during face-to-face interviews with 50 adults with inherited retinal disease, selected in order to provide a diversity of opinions. Participants had variable understanding of genetics and genetic testing, including basic concepts such as inheritance patterns and the risk to dependents, and many did not understand the term 'genetic counselling'. Most were keen for extra information on the risk to others, the process for genetic testing and how to share the information with other family members. Participants were divided as to whether genetic testing should be offered at the time of the initial diagnosis or later. Many would prefer the results to be given by face-to-face consultation, supplemented by further information in a format accessible to those with visual impairment. Health-care professionals and either leaflets or websites of trusted agencies were the preferred sources of information. Permission should be sought for disclosure of genetic information to other family members. The information needs of many patients with inherited retinal disease appear to be unmet. An understanding of their information needs and preferences is required to help health-care professionals provide optimal services that meet patient expectations.
Ramey, Andrew M; Reed, John A; Walther, Patrick; Link, Paul; Schmutz, Joel A; Douglas, David C; Stallknecht, David E; Soos, Catherine
2016-10-01
Blue-winged teal (Anas discors) are abundant, small-bodied dabbling ducks that breed throughout the prairies of the northcentral USA and central Canada and that winter in the southern USA and northern Neotropics. Given the migratory tendencies of this species, it is plausible that blue-winged teal may disperse avian pathogens, such as parasites causing avian malaria, between spatially distant areas. To test the hypothesis that blue-winged teal play a role in the exchange of blood parasites between North America and areas further south, we collected information on migratory tendencies of this species and sampled birds at spatially distant areas during breeding and non-breeding periods to diagnose and genetically characterize parasitic infections. Using a combination of band recovery data, satellite telemetry, molecular diagnostics, and genetic analyses, we found evidence for (1) migratory connectivity of blue-winged teal between our sampling locations in the Canadian prairies and along the US Gulf Coast with areas throughout the northern Neotropics, (2) parasite acquisition at both breeding and non-breeding areas, (3) infection of blue-winged teal sampled in Canada and the USA with Plasmodium parasite lineages associated with the Neotropics, and (4) infection of blue-winged teal with parasites that were genetically related to those previously reported in waterfowl in both North America and South America. Collectively, our results suggest that blue-winged teal likely play a role in the dispersal of blood parasites between the Neotropics and North America, and therefore, the targeting of this species in surveillance programs for the early detection of Neotropical-origin avian pathogens in the USA may be informative.
Ramey, Andy M.; Reed, John; Walther, Patrick; Link, Paul; Schmutz, Joel A.; Douglas, David C.; Stallknecht, David E.; Soos, Catherine
2016-01-01
Blue-winged teal (Anas discors) are abundant, small-bodied dabbling ducks that breed throughout the prairies of the northcentral USA and central Canada and that winter in the southern USA and northern Neotropics. Given the migratory tendencies of this species, it is plausible that blue-winged teal may disperse avian pathogens, such as parasites causing avian malaria, between spatially distant areas. To test the hypothesis that blue-winged teal play a role in the exchange of blood parasites between North America and areas further south, we collected information on migratory tendencies of this species and sampled birds at spatially distant areas during breeding and non-breeding periods to diagnose and genetically characterize parasitic infections. Using a combination of band recovery data, satellite telemetry, molecular diagnostics, and genetic analyses, we found evidence for (1) migratory connectivity of blue-winged teal between our sampling locations in the Canadian prairies and along the US Gulf Coast with areas throughout the northern Neotropics, (2) parasite acquisition at both breeding and non-breeding areas, (3) infection of blue-winged teal sampled in Canada and the USA withPlasmodium parasite lineages associated with the Neotropics, and (4) infection of blue-winged teal with parasites that were genetically related to those previously reported in waterfowl in both North America and South America. Collectively, our results suggest that blue-winged teal likely play a role in the dispersal of blood parasites between the Neotropics and North America, and therefore, the targeting of this species in surveillance programs for the early detection of Neotropical-origin avian pathogens in the USA may be informative.
The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation
Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian
2014-01-01
Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333
The impact of accelerating faster than exponential population growth on genetic variation.
Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian
2014-03-01
Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.
Haddadmarandi, M. R.; Madani, S. A.; Nili, H.; Ghorbani, A.
2018-01-01
Beak and feather disease virus (BFDV), a member of genus circovirus, is a small, non-enveloped, single stranded DNA virus. Although BFDVs are among the most well studied circoviruses, there is little to no information about BFDVs in Iran. The aim of the present study was to detect and identify BFDV molecules from the birds referred to the avian clinic of The Faculty of Veterinary Medicine, Tehran University, Iran. A total of 55 DNA samples were extracted from birds from nine different species of the order psittaciformes. A robust conventional polymerase chain reaction (PCR) was applied to detect the rep gene of the virus. Ten out of 55 samples, from four different species, were tested positive for BFDVs in PCR (Melopsittacus undulates (4), Psittacula Krameri (3), Psittacus erithacus (2), Platycercus eximius (1)). Molecular identification of the detected BFDVs was performed based on their rep gene sequences. The phylogenetic analysis revealed that the Iranian BFDVs from this study were clustered into four genetically distinct clades belonging to different genetic subtypes of BFDVs (L1, N1, T1, and I4). Although the relation between the samples and their related subtypes in the tree are discussed, further studies are needed to elucidate the host specificity and incidence of the BFDVs from different genetic subtypes. PMID:29805458
Haddadmarandi, M R; Madani, S A; Nili, H; Ghorbani, A
2018-01-01
Beak and feather disease virus (BFDV), a member of genus circovirus, is a small, non-enveloped, single stranded DNA virus. Although BFDVs are among the most well studied circoviruses, there is little to no information about BFDVs in Iran. The aim of the present study was to detect and identify BFDV molecules from the birds referred to the avian clinic of The Faculty of Veterinary Medicine, Tehran University, Iran. A total of 55 DNA samples were extracted from birds from nine different species of the order psittaciformes. A robust conventional polymerase chain reaction (PCR) was applied to detect the rep gene of the virus. Ten out of 55 samples, from four different species, were tested positive for BFDVs in PCR ( Melopsittacus undulates (4), Psittacula Krameri (3), Psittacus erithacus (2), Platycercus eximius (1)). Molecular identification of the detected BFDVs was performed based on their rep gene sequences. The phylogenetic analysis revealed that the Iranian BFDVs from this study were clustered into four genetically distinct clades belonging to different genetic subtypes of BFDVs (L1, N1, T1, and I4). Although the relation between the samples and their related subtypes in the tree are discussed, further studies are needed to elucidate the host specificity and incidence of the BFDVs from different genetic subtypes.
McLean, Duncan; Barrett, Robert; Loa, Peter; Thara, Rangaswamy; John, Sujit; McGrath, John; Gratten, Jake; Mowry, Bryan
2015-03-01
The symptom profile of schizophrenia can vary between ethnic groups. We explored selected symptom variables previously reported to be characteristic of schizophrenia in the Iban of Sarawak in transethnic populations from Australia, India, and Sarawak, Malaysia. We tested site differences to confirm previous research, and to explore implications of differences across populations for future investigations. We recruited schizophrenia samples in Australia (n = 609), India (n = 310) and Sarawak (n = 205) primarily for the purposes of genetic studies. We analyzed seven identified variables and their relationship to site using logistic regression, including: global delusions, bizarre delusions, thought broadcast/insertion/withdrawal delusions, global hallucinations, auditory hallucinations, disorganized behavior, and prodromal duration. We identified a distinct symptom profile in our Sarawak sample. Specifically, the Iban exhibit: low frequency of thought broadcast/insertion/withdrawal delusions, high frequency of auditory hallucinations and disorganized behavior, with a comparatively short prodrome when compared with Australian and Indian populations. Understanding between-site variation in symptom profile may complement future transethnic genetic studies, and provide important clues as to the nature of differing schizophrenia expression across ethnically distinct groups. A comprehensive approach to subtyping schizophrenia is warranted, utilizing comprehensively ascertained transethnic samples to inform both schizophrenia genetics and nosology. Copyright © 2013 Wiley Publishing Asia Pty Ltd.
Genetic identification of missing persons: DNA analysis of human remains and compromised samples.
Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A
2012-01-01
Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers. Copyright © 2012 S. Karger AG, Basel.
A SNP panel and online tool for checking genotype concordance through comparing QR codes.
Du, Yonghong; Martin, Joshua S; McGee, John; Yang, Yuchen; Liu, Eric Yi; Sun, Yingrui; Geihs, Matthias; Kong, Xuejun; Zhou, Eric Lingfeng; Li, Yun; Huang, Jie
2017-01-01
In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine.
A SNP panel and online tool for checking genotype concordance through comparing QR codes
Du, Yonghong; Martin, Joshua S.; McGee, John; Yang, Yuchen; Liu, Eric Yi; Sun, Yingrui; Geihs, Matthias; Kong, Xuejun; Zhou, Eric Lingfeng; Li, Yun
2017-01-01
In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine. PMID:28926565
Garcia-R, Juan C; French, Nigel; Pita, Anthony; Velathanthiri, Niluka; Shrestha, Rima; Hayman, David
2017-07-01
Cryptosporidiosis and giardiasis are recognized as significant enteric diseases due to their long-term health effects in humans and their economic impact in agriculture and medical care. Molecular analysis is essential to identify species and genotypes causing these infectious diseases and provides a potential tool for monitoring. This study uses information on species and genetic variants to gain insights into the geographical distribution and spatial patterns of Cryptosporidium and Giardia parasites. Here, we describe the population heterogeneity of genotypic groups within Cryptosporidium and Giardia present in New Zealand using gp60 and gdh markers to compare the observed variation with other countries around the globe. Four species of Cryptosporidium (C. hominis, C. parvum, C. cuniculus and C. erinacei) and one species of Giardia (G. intestinalis) were identified. These species have been reported worldwide and there are not unique Cryptosporidium gp60 subtype families and Giardia gdh assemblages in New Zealand, most likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes. The global analysis revealed that genetic variants of these pathogens are widely distributed. However, genetic variation is underestimated by data biases (e.g. neglected submission of sequences to genetic databases) and low sampling. New genotypes are likely to be discovered as sampling efforts increase according to accumulation prediction analyses, especially for C. parvum. Our study highlights the need for greater sampling and archiving of genotypes globally to allow comparative analyses that help understand the population dynamics of these protozoan parasites. Overall our study represents a comprehensive overview for exploring local and global protozoan genotype diversity and advances our understanding of the importance for surveillance and potential risk associated with these infectious diseases.
Genetics Home Reference: JAK3-deficient severe combined immunodeficiency
... of a genetic condition? Genetic and Rare Diseases Information Center Frequency JAK3 -deficient SCID accounts for an estimated 7 to 14 percent of cases of SCID. The prevalence of SCID from all genetic causes combined is approximately 1 in ... Information What information about a genetic condition can statistics ...
Craig, Erica H.; Adams, Jennifer R.; Waits, Lisette P.; Fuller, Mark R.; Whittington, Diana M.
2016-01-01
Understanding the genetics of a population is a critical component of developing conservation strategies. We used archived tissue samples from golden eagles (Aquila chrysaetos canadensis) in three geographic regions of western North America to conduct a preliminary study of the genetics of the North American subspecies, and to provide data for United States Fish and Wildlife Service (USFWS) decision-making for golden eagle management. We used a combination of mitochondrial DNA (mtDNA) D-loop sequences and 16 nuclear DNA (nDNA) microsatellite loci to investigate the extent of gene flow among our sampling areas in Idaho, California and Alaska and to determine if we could distinguish birds from the different geographic regions based on their genetic profiles. Our results indicate high genetic diversity, low genetic structure and high connectivity. Nuclear DNA Fst values between Idaho and California were low but significantly different from zero (0.026). Bayesian clustering methods indicated a single population, and we were unable to distinguish summer breeding residents from different regions. Results of the mtDNA AMOVA showed that most of the haplotype variation (97%) was within the geographic populations while 3% variation was partitioned among them. One haplotype was common to all three areas. One region-specific haplotype was detected in California and one in Idaho, but additional sampling is required to determine if these haplotypes are unique to those geographic areas or a sampling artifact. We discuss potential sources of the high gene flow for this species including natal and breeding dispersal, floaters, and changes in migratory behavior as a result of environmental factors such as climate change and habitat alteration. Our preliminary findings can help inform the USFWS in development of golden eagle management strategies and provide a basis for additional research into the complex dynamics of the North American subspecies. PMID:27783687
Craig, Erica H; Adams, Jennifer R; Waits, Lisette P; Fuller, Mark R; Whittington, Diana M
2016-01-01
Understanding the genetics of a population is a critical component of developing conservation strategies. We used archived tissue samples from golden eagles (Aquila chrysaetos canadensis) in three geographic regions of western North America to conduct a preliminary study of the genetics of the North American subspecies, and to provide data for United States Fish and Wildlife Service (USFWS) decision-making for golden eagle management. We used a combination of mitochondrial DNA (mtDNA) D-loop sequences and 16 nuclear DNA (nDNA) microsatellite loci to investigate the extent of gene flow among our sampling areas in Idaho, California and Alaska and to determine if we could distinguish birds from the different geographic regions based on their genetic profiles. Our results indicate high genetic diversity, low genetic structure and high connectivity. Nuclear DNA Fst values between Idaho and California were low but significantly different from zero (0.026). Bayesian clustering methods indicated a single population, and we were unable to distinguish summer breeding residents from different regions. Results of the mtDNA AMOVA showed that most of the haplotype variation (97%) was within the geographic populations while 3% variation was partitioned among them. One haplotype was common to all three areas. One region-specific haplotype was detected in California and one in Idaho, but additional sampling is required to determine if these haplotypes are unique to those geographic areas or a sampling artifact. We discuss potential sources of the high gene flow for this species including natal and breeding dispersal, floaters, and changes in migratory behavior as a result of environmental factors such as climate change and habitat alteration. Our preliminary findings can help inform the USFWS in development of golden eagle management strategies and provide a basis for additional research into the complex dynamics of the North American subspecies.
Craig, Erica H; Adams, Jennifer R.; Waits, Lisette P.; Fuller, Mark R.; Whittington, Diana M.
2016-01-01
Understanding the genetics of a population is a critical component of developing conservation strategies. We used archived tissue samples from golden eagles (Aquila chrysaetos canadensis) in three geographic regions of western North America to conduct a preliminary study of the genetics of the North American subspecies, and to provide data for United States Fish and Wildlife Service (USFWS) decision-making for golden eagle management. We used a combination of mitochondrial DNA (mtDNA) D-loop sequences and 16 nuclear DNA (nDNA) microsatellite loci to investigate the extent of gene flow among our sampling areas in Idaho, California and Alaska and to determine if we could distinguish birds from the different geographic regions based on their genetic profiles. Our results indicate high genetic diversity, low genetic structure and high connectivity. Nuclear DNA Fst values between Idaho and California were low but significantly different from zero (0.026). Bayesian clustering methods indicated a single population, and we were unable to distinguish summer breeding residents from different regions. Results of the mtDNA AMOVA showed that most of the haplotype variation (97%) was within the geographic populations while 3% variation was partitioned among them. One haplotype was common to all three areas. One region-specific haplotype was detected in California and one in Idaho, but additional sampling is required to determine if these haplotypes are unique to those geographic areas or a sampling artifact. We discuss potential sources of the high gene flow for this species including natal and breeding dispersal, floaters, and changes in migratory behavior as a result of environmental factors such as climate change and habitat alteration. Our preliminary findings can help inform the USFWS in development of golden eagle management strategies and provide a basis for additional research into the complex dynamics of the North American subspecies.
Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.
Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C
2015-03-01
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.
Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections
Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.
2015-01-01
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890
Reeve, John D; Frantz, Alain C; Dawson, Deborah A; Burke, Terry; Roper, Timothy J
2008-09-01
1. Urban and rural populations of animals can differ in their behaviour, both in order to meet their ecological requirements and due to the constraints imposed by different environments. The study of urban populations can therefore offer useful insights into the behavioural flexibility of a species as a whole, as well as indicating how the species in question adapts to a specifically urban environment. 2. The genetic structure of a population can provide information about social structure and movement patterns that is difficult to obtain by other means. Using non-invasively collected hair samples, we estimated the population size of Eurasian badgers Meles meles in the city of Brighton, England, and calculated population-specific parameters of genetic variability and sex-specific rates of outbreeding and dispersal. 3. Population density was high in the context of badger densities reported throughout their range. This was due to a high density of social groups rather than large numbers of individuals per group. 4. The allelic richness of the population was low compared with other British populations. However, the rate of extra-group paternity and the relatively frequent (mainly temporary) intergroup movements suggest that, on a local scale, the population was outbred. Although members of both sexes visited other groups, there was a trend for more females to make intergroup movements. 5. The results reveal that urban badgers can achieve high densities and suggest that while some population parameters are similar between urban and rural populations, the frequency of intergroup movements is higher among urban badgers. In a wider context, these results demonstrate the ability of non-invasive genetic sampling to provide information about the population density, social structure and behaviour of urban wildlife.
PREVALENCE OF GENETIC SUSCEPTIBILITY FOR CELIAC DISEASE IN BLOOD DONORS IN SÃO PAULO, BRAZIL.
Muniz, Janaína Guilhem; Sdepanian, Vera Lucia; Fagundes, Ulysses
2016-01-01
Celiac disease is a permanent intolerance induced by gluten, which is expressed by T-cell mediated enteropathy, and has a high prevalence in the general population. There is evidence of a strong genetic predisposition to celiac disease. To determine the prevalence of genetic markers HLA-DQ2 and HLA-DQ8 in blood donors from São Paulo and measure human recombinant tissue transglutaminase antibody IgA class in HLA-DQ2 and HLA-DQ8 positive donors. A total of 404 blood donors from São Paulo city and Jundiaí were included in the study and signed the informed consent form. Information regarding diarrhea, constipation and abdominal pain in the last 3 months was collected. Determination of HLADQ2 and HLADQ8 alleles was performed in all participants and human recombinant tissue transglutaminase antibody class IgA was measured only in blood donors who presentedDQ2 and/or DQ8. HLADQ2 and/or HLADQ8 were positive in 49% (198/404) of subjects. Positive samples were associated with alleles DR3, DR4, DR7, DR11 and DR12. The most frequent genotype was DR4-DQ8, which was present in 13.6% of samples, followed by genotypes DR3-DQ2 and DR7-DQ2 with DQB1*02 in heterozygous, which were present in 10.4% and 8.7%, respectively. Eleven out of 198 positive donors (5%) were positive to human tissue transglutaminase test. We observed a high prevalence of genetic markers for celiac disease, HLA-DQ2 and HLA-DQ8, in blood donors from São Paulo, similar to prevalence described in Europe. These findings show that the prevalence of celiac disease should not be rare in our country, but underdiagnosed.
Pometti, Carolina L.; Bessega, Cecilia F.; Saidman, Beatriz O.; Vilardi, Juan C.
2014-01-01
Bayesian clustering as implemented in STRUCTURE or GENELAND software is widely used to form genetic groups of populations or individuals. On the other hand, in order to satisfy the need for less computer-intensive approaches, multivariate analyses are specifically devoted to extracting information from large datasets. In this paper, we report the use of a dataset of AFLP markers belonging to 15 sampling sites of Acacia caven for studying the genetic structure and comparing the consistency of three methods: STRUCTURE, GENELAND and DAPC. Of these methods, DAPC was the fastest one and showed accuracy in inferring the K number of populations (K = 12 using the find.clusters option and K = 15 with a priori information of populations). GENELAND in turn, provides information on the area of membership probabilities for individuals or populations in the space, when coordinates are specified (K = 12). STRUCTURE also inferred the number of K populations and the membership probabilities of individuals based on ancestry, presenting the result K = 11 without prior information of populations and K = 15 using the LOCPRIOR option. Finally, in this work all three methods showed high consistency in estimating the population structure, inferring similar numbers of populations and the membership probabilities of individuals to each group, with a high correlation between each other. PMID:24688293
Kongsholm, Nana Cecilie Halmsted; Lassen, Jesper; Sandøe, Peter
2018-05-03
Individual, comprehensive, and written informed consent is broadly considered an ethical obligation in research involving the sampling of human material. In developing countries, however, local conditions, such as widespread illiteracy, low levels of education, and hierarchical social structures complicate compliance with these standards. As a result, researchers may modify the consent process to secure participation. To evaluate the ethical status of such modified consent strategies it is necessary to assess the extent to which local practices accord with the values underlying informed consent. Over a two-week period in April 2014 we conducted semi-structured interviews with researchers from a genetic research institute in rural Pakistan and families who had given blood samples for their research. Interviews with researchers focused on the institute's requirements for consent, and the researchers' strategies for and experiences with obtaining consent in the field. Interviews with donors focused on their motivation for donating samples, their experience of consent and donation, and what factors were central in their decisions to give consent. Researchers often reported modifications to consent procedures suited to the local context, standardly employing oral and elder consent, and tailoring information to the social education level of donor families. Central themes in donors' accounts of their decision to consent were the hope of getting something out of their participation and their remarkably high levels of trust in the researchers. Several donor accounts indicated a degree of confusion about participation and diagnosis, resulting in misconceived expectations of therapeutic benefits. We argue that while building and maintaining trusting relationships in research is important - not least in developing countries - strategies that serve this endeavor should be supplemented with efforts to ensure proper provision and understanding of relevant information, specifically about the nature of research and measures for individual consent and opt-out.
Hagenaars, S P; Harris, S E; Davies, G; Hill, W D; Liewald, D C M; Ritchie, S J; Marioni, R E; Fawns-Ritchie, C; Cullen, B; Malik, R; Worrall, B B; Sudlow, C L M; Wardlaw, J M; Gallacher, J; Pell, J; McIntosh, A M; Smith, D J; Gale, C R; Deary, I J
2016-01-01
Causes of the well-documented association between low levels of cognitive functioning and many adverse neuropsychiatric outcomes, poorer physical health and earlier death remain unknown. We used linkage disequilibrium regression and polygenic profile scoring to test for shared genetic aetiology between cognitive functions and neuropsychiatric disorders and physical health. Using information provided by many published genome-wide association study consortia, we created polygenic profile scores for 24 vascular–metabolic, neuropsychiatric, physiological–anthropometric and cognitive traits in the participants of UK Biobank, a very large population-based sample (N=112 151). Pleiotropy between cognitive and health traits was quantified by deriving genetic correlations using summary genome-wide association study statistics and to the method of linkage disequilibrium score regression. Substantial and significant genetic correlations were observed between cognitive test scores in the UK Biobank sample and many of the mental and physical health-related traits and disorders assessed here. In addition, highly significant associations were observed between the cognitive test scores in the UK Biobank sample and many polygenic profile scores, including coronary artery disease, stroke, Alzheimer's disease, schizophrenia, autism, major depressive disorder, body mass index, intracranial volume, infant head circumference and childhood cognitive ability. Where disease diagnosis was available for UK Biobank participants, we were able to show that these results were not confounded by those who had the relevant disease. These findings indicate that a substantial level of pleiotropy exists between cognitive abilities and many human mental and physical health disorders and traits and that it can be used to predict phenotypic variance across samples. PMID:26809841
Bonifaz-Peña, Vania; Contreras, Alejandra V.; Struchiner, Claudio Jose; Roela, Rosimeire A.; Furuya-Mazzotti, Tatiane K.; Chammas, Roger; Rangel-Escareño, Claudia; Uribe-Figueroa, Laura; Gómez-Vázquez, María José; McLeod, Howard L.; Hidalgo-Miranda, Alfredo
2014-01-01
Studies of pharmacogenomics-related traits are increasingly being performed to identify loci that affect either drug response or susceptibility to adverse drug reactions. However, the effect of the polymorphisms can differ in magnitude or be absent depending on the population being assessed. We used the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array to characterize the distribution of polymorphisms of pharmacogenetics and pharmacogenomics (PGx) relevance in two samples from the most populous Latin American countries, Brazil and Mexico. The sample from Brazil included 268 individuals from the southeastern state of Rio de Janeiro, and was stratified into census categories. The sample from Mexico comprised 45 Native American Zapotecas and 224 self-identified Mestizo individuals from 5 states located in geographically distant regions in Mexico. We evaluated the admixture proportions in the Brazilian and Mexican samples using a panel of Ancestry Informative Markers extracted from the DMET array, which was validated with genome-wide data. A substantial variation in ancestral proportions across census categories in Brazil, and geographic regions in Mexico was identified. We evaluated the extent of genetic differentiation (measured as FST values) of the genetic markers of the DMET Plus array between the relevant parental populations. Although the average levels of genetic differentiation are low, there is a long tail of markers showing large frequency differences, including markers located in genes belonging to the Cytochrome P450, Solute Carrier (SLC) and UDP-glucuronyltransferase (UGT) families as well as other genes of PGx relevance such as ABCC8, ADH1A, CHST3, PON1, PPARD, PPARG, and VKORC1. We show how differences in admixture history may have an important impact in the distribution of allele and genotype frequencies at the population level. PMID:25419701
Heritability of Autism Spectrum Disorder in a UK Population-Based Twin Sample
Colvert, Emma; Tick, Beata; McEwen, Fiona; Stewart, Catherine; Curran, Sarah R.; Woodhouse, Emma; Gillan, Nicola; Hallett, Victoria; Lietz, Stephanie; Garnett, Tracy; Ronald, Angelica; Plomin, Robert; Rijsdijk, Frühling; Happé, Francesca; Bolton, Patrick
2016-01-01
IMPORTANCE Most evidence to date highlights the importance of genetic influences on the liability to autism and related traits. However, most of these findings are derived from clinically ascertained samples, possibly missing individuals with subtler manifestations, and obtained estimates may not be representative of the population. OBJECTIVES To establish the relative contributions of genetic and environmental factors in liability to autism spectrum disorder (ASD) and a broader autism phenotype in a large population-based twin sample and to ascertain the genetic/environmental relationship between dimensional trait measures and categorical diagnostic constructs of ASD. DESIGN, SETTING, AND PARTICIPANTS We used data from the population-based cohort Twins Early Development Study, which included all twin pairs born in England and Wales from January 1, 1994, through December 31, 1996. We performed joint continuous-ordinal liability threshold model fitting using the full information maximum likelihood method to estimate genetic and environmental parameters of covariance. Twin pairs underwent the following assessments: the Childhood Autism Spectrum Test (CAST) (6423 pairs; mean age, 7.9 years), the Development and Well-being Assessment (DAWBA) (359 pairs; mean age, 10.3 years), the Autism Diagnostic Observation Schedule (ADOS) (203 pairs; mean age, 13.2 years), the Autism Diagnostic Interview–Revised (ADI-R) (205 pairs; mean age, 13.2 years), and a best-estimate diagnosis (207 pairs). MAIN OUTCOMES AND MEASURES Participants underwent screening using a population-based measure of autistic traits (CAST assessment), structured diagnostic assessments (DAWBA, ADI-R, and ADOS), and a best-estimate diagnosis. RESULTS On all ASD measures, correlations among monozygotic twins (range, 0.77-0.99) were significantly higher than those for dizygotic twins (range, 0.22-0.65), giving heritability estimates of 56% to 95%. The covariance of CAST and ASD diagnostic status (DAWBA, ADOS and best-estimate diagnosis) was largely explained by additive genetic factors (76%-95%). For the ADI-R only, shared environmental influences were significant (30% [95% CI, 8%-47%]) but smaller than genetic influences (56% [95% CI, 37%-82%]). CONCLUSIONS AND RELEVANCE The liability to ASD and a more broadly defined high-level autism trait phenotype in this large population-based twin sample derives primarily from additive genetic and, to a lesser extent, nonshared environmental effects. The largely consistent results across different diagnostic tools suggest that the results are generalizable across multiple measures and assessment methods. Genetic factors underpinning individual differences in autismlike traits show considerable overlap with genetic influences on diagnosed ASD. PMID:25738232
NASA Astrophysics Data System (ADS)
Ouyang, Qin; Liu, Yan; Chen, Quansheng; Zhang, Zhengzhu; Zhao, Jiewen; Guo, Zhiming; Gu, Hang
2017-06-01
Instrumental test of black tea samples instead of human panel test is attracting massive attention recently. This study focused on an investigation of the feasibility for estimation of the color sensory quality of black tea samples using the VIS-NIR spectroscopy technique, comparing the performances of models based on the spectra and color information. In model calibration, the variables were first selected by genetic algorithm (GA); then the nonlinear back propagation-artificial neural network (BPANN) models were established based on the optimal variables. In comparison with the other models, GA-BPANN models from spectra data information showed the best performance, with the correlation coefficient of 0.8935, and the root mean square error of 0.392 in the prediction set. In addition, models based on the spectra information provided better performance than that based on the color parameters. Therefore, the VIS-NIR spectroscopy technique is a promising tool for rapid and accurate evaluation of the sensory quality of black tea samples.
Ouyang, Qin; Liu, Yan; Chen, Quansheng; Zhang, Zhengzhu; Zhao, Jiewen; Guo, Zhiming; Gu, Hang
2017-06-05
Instrumental test of black tea samples instead of human panel test is attracting massive attention recently. This study focused on an investigation of the feasibility for estimation of the color sensory quality of black tea samples using the VIS-NIR spectroscopy technique, comparing the performances of models based on the spectra and color information. In model calibration, the variables were first selected by genetic algorithm (GA); then the nonlinear back propagation-artificial neural network (BPANN) models were established based on the optimal variables. In comparison with the other models, GA-BPANN models from spectra data information showed the best performance, with the correlation coefficient of 0.8935, and the root mean square error of 0.392 in the prediction set. In addition, models based on the spectra information provided better performance than that based on the color parameters. Therefore, the VIS-NIR spectroscopy technique is a promising tool for rapid and accurate evaluation of the sensory quality of black tea samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Dutta, Trishna; Sharma, Sandeep; Maldonado, Jesús E.; Panwar, Hemendra Singh; Seidensticker, John
2015-01-01
Sloth bears (Melursus ursinus) are endemic to the Indian subcontinent. As a result of continued habitat loss and degradation over the past century, sloth bear populations have been in steady decline and now exist only in isolated or fragmented habitat across the entire range. We investigated the genetic connectivity of the sloth bear meta-population in five tiger reserves in the Satpura-Maikal landscape of central India. We used noninvasively collected fecal and hair samples to obtain genotypic information using a panel of seven polymorphic loci. Out of 194 field collected samples, we identified 55 individuals in this meta-population. We found that this meta-population has moderate genetic variation, and is subdivided into two genetic clusters. Further, we identified five first-generation migrants and signatures of contemporary gene flow. We found evidence of sloth bears in the corridor between the Kanha and Pench Tiger Reserves, and our results suggest that habitat connectivity and corridors play an important role in maintaining gene flow in this meta-population. These corridors face several anthropogenic and infrastructure development threats that have the potential to sever ongoing gene flow, if policies to protect them are not put into action immediately. PMID:25945939
Piniewska, Danuta; Sanak, Marek; Wojtas, Marta; Polanska, Nina
2017-05-01
Advances in forensic identification using molecular genetics are helpful in resolving some historical mysteries. The aim of this study was to confirm the authenticity of shrunken-head artifacts exhibited by two Polish museums. Shrunken heads, known as tsantsas, were headhunting trophies of South American Indians (Jivaroan). A special preparation preserved their hair and facial appearance. However, it was quite common to offer counterfeit shrunken heads of sloths or monkeys to collectors of curiosities. We sampled small skin specimens of four shrunken-head skin from the museum collection from Warsaw and Krakow, Poland. Following genomic DNA isolation, highly polymorphic short tandem repeats were genotyped using a commercial chemistry and DNA sequencing analyzer. Haplogroups of human Y chromosome were identified. We obtained an informative genetic profile of genomic short tandem repeats from all the samples of shrunken heads. Moreover, amplification of amelogenin loci allowed for sex determination. All four studied shrunken heads were of human origin. In two ones, a shared Y-chromosome haplogroup Q characteristic for Indigenous Americans was detected. Another artifact was counterfeited because Y-chromosome haplogroup I2 was found, characteristic for the Southeastern European origin. Commercial genetic methods of identification can be applied successfully in studies on the origin and authenticity of some unusual collection items.
Fan, Yan; Zhang, Chenglin; Wu, Wendan; He, Wei; Zhang, Li; Ma, Xiao
2017-10-16
Indigofera pseudotinctoria Mats is an agronomically and economically important perennial legume shrub with a high forage yield, protein content and strong adaptability, which is subject to natural habitat fragmentation and serious human disturbance. Until now, our knowledge of the genetic relationships and intraspecific genetic diversity for its wild collections is still poor, especially at small spatial scales. Here amplified fragment length polymorphism (AFLP) technology was employed for analysis of genetic diversity, differentiation, and structure of 364 genotypes of I. pseudotinctoria from 15 natural locations in Wushan Montain, a highly structured mountain with typical karst landforms in Southwest China. We also tested whether eco-climate factors has affected genetic structure by correlating genetic diversity with habitat features. A total of 515 distinctly scoreable bands were generated, and 324 of them were polymorphic. The polymorphic information content (PIC) ranged from 0.694 to 0.890 with an average of 0.789 per primer pair. On species level, Nei's gene diversity ( H j ), the Bayesian genetic diversity index ( H B ) and the Shannon information index ( I ) were 0.2465, 0.2363 and 0.3772, respectively. The high differentiation among all sampling sites was detected ( F ST = 0.2217, G ST = 0.1746, G' ST = 0.2060, θ B = 0.1844), and instead, gene flow among accessions ( N m = 1.1819) was restricted. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. This structure pattern may indicate joint effects by the neutral evolution and natural selection. Restricted N m was observed across all accessions, and genetic barriers were detected between adjacent accessions due to specifically geographical landform.
Kimura, Birgitta; Marshall, Fiona B; Chen, Shanyuan; Rosenbom, Sónia; Moehlman, Patricia D; Tuross, Noreen; Sabin, Richard C; Peters, Joris; Barich, Barbara; Yohannes, Hagos; Kebede, Fanuel; Teclai, Redae; Beja-Pereira, Albano; Mulligan, Connie J
2011-01-07
Genetic data from extant donkeys (Equus asinus) have revealed two distinct mitochondrial DNA haplogroups, suggestive of two separate domestication events in northeast Africa about 5000 years ago. Without distinct phylogeographic structure in domestic donkey haplogroups and with little information on the genetic makeup of the ancestral African wild ass, however, it has been difficult to identify wild ancestors and geographical origins for the domestic mitochondrial clades. Our analysis of ancient archaeological and historic museum samples provides the first genetic information on the historic Nubian wild ass (Equus africanus africanus), Somali wild ass (Equus africanus somaliensis) and ancient donkey. The results demonstrate that the Nubian wild ass was an ancestor of the first donkey haplogroup. In contrast, the Somali wild ass has considerable mitochondrial divergence from the Nubian wild ass and domestic donkeys. These findings resolve the long-standing issue of the role of the Nubian wild ass in the domestication of the donkey, but raise new questions regarding the second ancestor for the donkey. Our results illustrate the complexity of animal domestication, and have conservation implications for critically endangered Nubian and Somali wild ass.
Adedokun, Babatunde O; Yusuf, Bidemi O; Lasisi, J Taye; Jinadu, A A; Sunmonu, M T; Ashanke, A F; Lasisi, O Akeem
2015-12-01
Understanding the perceptions of genetic testing by members of the deaf community may help in planning deafness genetics research, especially so in the context of strong adherence to cultural values as found among native Africans. Among Yorubas in Nigeria, deafness is perceived to be caused by some offensive actions of the mother during pregnancy, spiritual attack, and childhood infections. We studied attitudes towards, and acceptance of genetic testing by the deaf community in Nigeria. Structured questionnaires were administered to individuals sampled from the Vocational Training Centre for the Deaf, the religious Community, and government schools, among others. The main survey items elicited information about the community in which the deaf people participate, their awareness of genetic testing, whether or not they view genetic testing as acceptable, and their understanding of the purpose of genetic testing. There were 150 deaf participants (61.3 % males, 38.7 % females) with mean age of 26.7 years ±9.8. A majority of survey respondents indicated they relate only with other members of the deaf community (78 %) and reported believing genetic testing does more good than harm (79.3 %); 57 % expressed interest in genetic testing. Interest in genetic testing for deafness or in genetic testing in pregnancy was not related to whether respondents relate primarily to the deaf or to the hearing community. However, a significantly higher number of male respondents and respondents with low education reported interest in genetic testing.
Casas-Marce, Mireia; Marmesat, Elena; Soriano, Laura; Martínez-Cruz, Begoña; Lucena-Perez, Maria; Nocete, Francisco; Rodríguez-Hidalgo, Antonio; Canals, Antoni; Nadal, Jordi; Detry, Cleia; Bernáldez-Sánchez, Eloísa; Fernández-Rodríguez, Carlos; Pérez-Ripoll, Manuel; Stiller, Mathias; Hofreiter, Michael; Rodríguez, Alejandro; Revilla, Eloy; Delibes, Miguel; Godoy, José A.
2017-01-01
Abstract There is the tendency to assume that endangered species have been both genetically and demographically healthier in the past, so that any genetic erosion observed today was caused by their recent decline. The Iberian lynx (Lynx pardinus) suffered a dramatic and continuous decline during the 20th century, and now shows extremely low genome- and species-wide genetic diversity among other signs of genomic erosion. We analyze ancient (N = 10), historical (N = 245), and contemporary (N = 172) samples with microsatellite and mitogenome data to reconstruct the species' demography and investigate patterns of genetic variation across space and time. Iberian lynx populations transitioned from low but significantly higher genetic diversity than today and shallow geographical differentiation millennia ago, through a structured metapopulation with varying levels of diversity during the last centuries, to two extremely genetically depauperate and differentiated remnant populations by 2002. The historical subpopulations show varying extents of genetic drift in relation to their recent size and time in isolation, but these do not predict whether the populations persisted or went finally extinct. In conclusion, current genetic patterns were mainly shaped by genetic drift, supporting the current admixture of the two genetic pools and calling for a comprehensive genetic management of the ongoing conservation program. This study illustrates how a retrospective analysis of demographic and genetic patterns of endangered species can shed light onto their evolutionary history and this, in turn, can inform conservation actions. PMID:28962023
Development of a genetic tool for product regulation in the diverse British pig breed market.
Wilkinson, Samantha; Archibald, Alan L; Haley, Chris S; Megens, Hendrik-Jan; Crooijmans, Richard P M A; Groenen, Martien A M; Wiener, Pamela; Ogden, Rob
2012-11-15
The application of DNA markers for the identification of biological samples from both human and non-human species is widespread and includes use in food authentication. In the food industry the financial incentive to substituting the true name of a food product with a higher value alternative is driving food fraud. This applies to British pork products where products derived from traditional pig breeds are of premium value. The objective of this study was to develop a genetic assay for regulatory authentication of traditional pig breed-labelled products in the porcine food industry in the United Kingdom. The dataset comprised of a comprehensive coverage of breed types present in Britain: 460 individuals from 7 traditional breeds, 5 commercial purebreds, 1 imported European breed and 1 imported Asian breed were genotyped using the PorcineSNP60 beadchip. Following breed-informative SNP selection, assignment power was calculated for increasing SNP panel size. A 96-plex assay created using the most informative SNPs revealed remarkably high genetic differentiation between the British pig breeds, with an average FST of 0.54 and Bayesian clustering analysis also indicated that they were distinct homogenous populations. The posterior probability of assignment of any individual of a presumed origin actually originating from that breed given an alternative breed origin was > 99.5% in 174 out of 182 contrasts, at a test value of log(LR) > 0. Validation of the 96-plex assay using independent test samples of known origin was successful; a subsequent survey of market samples revealed a high level of breed label conformity. The newly created 96-plex assay using selected markers from the PorcineSNP60 beadchip enables powerful assignment of samples to traditional breed origin and can effectively identify mislabelling, providing a highly effective tool for DNA analysis in food forensics.
Development of a genetic tool for product regulation in the diverse British pig breed market
2012-01-01
Background The application of DNA markers for the identification of biological samples from both human and non-human species is widespread and includes use in food authentication. In the food industry the financial incentive to substituting the true name of a food product with a higher value alternative is driving food fraud. This applies to British pork products where products derived from traditional pig breeds are of premium value. The objective of this study was to develop a genetic assay for regulatory authentication of traditional pig breed-labelled products in the porcine food industry in the United Kingdom. Results The dataset comprised of a comprehensive coverage of breed types present in Britain: 460 individuals from 7 traditional breeds, 5 commercial purebreds, 1 imported European breed and 1 imported Asian breed were genotyped using the PorcineSNP60 beadchip. Following breed-informative SNP selection, assignment power was calculated for increasing SNP panel size. A 96-plex assay created using the most informative SNPs revealed remarkably high genetic differentiation between the British pig breeds, with an average FST of 0.54 and Bayesian clustering analysis also indicated that they were distinct homogenous populations. The posterior probability of assignment of any individual of a presumed origin actually originating from that breed given an alternative breed origin was > 99.5% in 174 out of 182 contrasts, at a test value of log(LR) > 0. Validation of the 96-plex assay using independent test samples of known origin was successful; a subsequent survey of market samples revealed a high level of breed label conformity. Conclusion The newly created 96-plex assay using selected markers from the PorcineSNP60 beadchip enables powerful assignment of samples to traditional breed origin and can effectively identify mislabelling, providing a highly effective tool for DNA analysis in food forensics. PMID:23150935
Genetic Information, Non-Discrimination, and Privacy Protections in Genetic Counseling Practice
Prince, Anya E.R.; Roche, Myra I.
2014-01-01
The passage of the Genetic Information Non Discrimination Act (GINA) was hailed as a pivotal achievement that was expected to calm the fears of both patients and research participants about the potential misuse of genetic information. However, six years later, patient and provider awareness of legal protections at both the federal and state level remains discouragingly low, thereby, limiting their potential effectiveness. The increasing demand for genetic testing will expand the number of individuals and families who could benefit from obtaining accurate information about the privacy and anti-discriminatory protections that GINA and other laws extend. In this paper we describe legal protections that are applicable to individuals seeking genetic counseling, review the literature on patient and provider fears of genetic discrimination and examine their awareness and understandings of existing laws, and summarize how genetic counselors currently discuss genetic discrimination. We then present three genetic counseling cases to illustrate issues of genetic discrimination and provide relevant information on applicable legal protections. Genetic counselors have an unprecedented opportunity, as well as the professional responsibility, to disseminate accurate knowledge about existing legal protections to their patients. They can strengthen their effectiveness in this role by achieving a greater knowledge of current protections including being able to identify specific steps that can help protect genetic information. PMID:25063358
Genetic information, non-discrimination, and privacy protections in genetic counseling practice.
Prince, Anya E R; Roche, Myra I
2014-12-01
The passage of the Genetic Information Non Discrimination Act (GINA) was hailed as a pivotal achievement that was expected to calm the fears of both patients and research participants about the potential misuse of genetic information. However, 6 years later, patient and provider awareness of legal protections at both the federal and state level remains discouragingly low, thereby, limiting their potential effectiveness. The increasing demand for genetic testing will expand the number of individuals and families who could benefit from obtaining accurate information about the privacy and anti-discriminatory protections that GINA and other laws extend. In this paper we describe legal protections that are applicable to individuals seeking genetic counseling, review the literature on patient and provider fears of genetic discrimination and examine their awareness and understandings of existing laws, and summarize how genetic counselors currently discuss genetic discrimination. We then present three genetic counseling cases to illustrate issues of genetic discrimination and provide relevant information on applicable legal protections. Genetic counselors have an unprecedented opportunity, as well as the professional responsibility, to disseminate accurate knowledge about existing legal protections to their patients. They can strengthen their effectiveness in this role by achieving a greater knowledge of current protections including being able to identify specific steps that can help protect genetic information.
Roberts, Laura Weiss; Geppert, Cynthia M A; Warner, Teddy D; Green Hammond, Katherine A; Rogers, Melinda; Smrcka, Julienne; Roberts, Brian B
2005-04-01
The societal use of genetic information raises ethical concerns, and the views of working persons regarding genetic information have received little attention. We performed an empirical project to characterize perspectives of 63 employees at two sites who expressed strong interest in learning about and protecting their personal genetic information. Genetic data were seen as more sensitive than other health data, and disclosure of genetic susceptibility was perceived as having negative consequences. This study suggests the value of exploring the perspectives of key stakeholders most directly affected by genetic applications across diverse societal settings.
Oxytocin and socioemotional aging: Current knowledge and future trends
Ebner, Natalie C.; Maura, Gabriela M.; MacDonald, Kai; Westberg, Lars; Fischer, Håkan
2013-01-01
The oxytocin (OT) system is involved in various aspects of social cognition and prosocial behavior. Specifically, OT has been examined in the context of social memory, emotion recognition, cooperation, trust, empathy, and bonding, and—though evidence is somewhat mixed-intranasal OT appears to benefit aspects of socioemotional functioning. However, most of the extant data on aging and OT is from animal research and human OT research has focused largely on young adults. As such, though we know that various socioemotional capacities change with age, we know little about whether age-related changes in the OT system may underlie age-related differences in socioemotional functioning. In this review, we take a genetic-neuro-behavioral approach and evaluate current evidence on age-related changes in the OT system as well as the putative effects of these alterations on age-related socioemotional functioning. Looking forward, we identify informational gaps and propose an Age-Related Genetic, Neurobiological, Sociobehavioral Model of Oxytocin (AGeNeS-OT model) which may structure and inform investigations into aging-related genetic, neural, and sociocognitive processes related to OT. As an exemplar of the use of the model, we report exploratory data suggesting differences in socioemotional processing associated with genetic variation in the oxytocin receptor gene (OXTR) in samples of young and older adults. Information gained from this arena has translational potential in depression, social stress, and anxiety-all of which have high relevance in aging—and may contribute to reducing social isolation and improving well-being of individuals across the lifespan. PMID:24009568
Strategies for informed sample size reduction in adaptive controlled clinical trials
NASA Astrophysics Data System (ADS)
Arandjelović, Ognjen
2017-12-01
Clinical trial adaptation refers to any adjustment of the trial protocol after the onset of the trial. The main goal is to make the process of introducing new medical interventions to patients more efficient. The principal challenge, which is an outstanding research problem, is to be found in the question of how adaptation should be performed so as to minimize the chance of distorting the outcome of the trial. In this paper, we propose a novel method for achieving this. Unlike most of the previously published work, our approach focuses on trial adaptation by sample size adjustment, i.e. by reducing the number of trial participants in a statistically informed manner. Our key idea is to select the sample subset for removal in a manner which minimizes the associated loss of information. We formalize this notion and describe three algorithms which approach the problem in different ways, respectively, using (i) repeated random draws, (ii) a genetic algorithm, and (iii) what we term pair-wise sample compatibilities. Experiments on simulated data demonstrate the effectiveness of all three approaches, with a consistently superior performance exhibited by the pair-wise sample compatibilities-based method.
Regulating genetic privacy in the online health information era.
Magnusson, Roger S
As the clinical implications of the genetic components of disease come to be better understood, there is likely to be a significant increase in the volume of genetic information held within clinical records. As patient health care records, in turn, come on-line as part of broader health information networks, there is likely to be considerable pressure in favour of special laws protecting genetic privacy. This paper reviews some of the privacy challenges posed by electronic health records, some government initiatives in this area, and notes the impact that developments in genetic testing will have upon the 'genetic content' of e-health records. Despite the sensitivity of genetic information, the paper argues against a policy of 'genetic exceptionalism', and its implications for genetic privacy laws.
The commercialization of human genetic information and related circumstances within Turkish law.
Memiş, Tekin
2011-01-01
Today, human genetic information is used for commercial purposes as well. This means, based on the case, the direct or indirect commercialization of genetic information. In this study, this specific issue is analyzed in light of the new legal regulations as to the subject in the Turkish Law. Specifically, this study focuses on the issue of whether the commercialization of genetic information is allowed under the Turkish Law. This study also attempts to clarify the issue of whether there is any limitations for the commercialization of genetic information in the Turkish Law provided that the commercialization of genetic information is permitted. Prior to this legal analysis, the problems of the legal ownership for genetic information and of whether genetic information should be considered as an organ of human body is discussed. Accordingly, relevant Turkish laws and regulations are individually analyzed within this context. In the mean time legal regulations of some countries in this respect are taken into account with a comparative approach. In the end a general evaluation and suggestions are provided to the reader.
Tansey, Katherine E; Guipponi, Michel; Perroud, Nader; Bondolfi, Guido; Domenici, Enrico; Evans, David; Hall, Stephanie K; Hauser, Joanna; Henigsberg, Neven; Hu, Xiaolan; Jerman, Borut; Maier, Wolfgang; Mors, Ole; O'Donovan, Michael; Peters, Tim J; Placentino, Anna; Rietschel, Marcella; Souery, Daniel; Aitchison, Katherine J; Craig, Ian; Farmer, Anne; Wendland, Jens R; Malafosse, Alain; Holmans, Peter; Lewis, Glyn; Lewis, Cathryn M; Stensbøl, Tine Bryan; Kapur, Shitij; McGuffin, Peter; Uher, Rudolf
2012-01-01
It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way. The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study). After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance p<5×10(-8)). No biological pathways were significantly overrepresented in the results. No significant associations (genome-wide significance p<5×10(-8)) were detected in a meta-analysis of NEWMEDS and another large sample (STAR*D), with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D. No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the Editors' Summary.
Radiogenomics to characterize regional genetic heterogeneity in glioblastoma
Hu, Leland S.; Ning, Shuluo; Eschbacher, Jennifer M.; Baxter, Leslie C.; Gaw, Nathan; Ranjbar, Sara; Plasencia, Jonathan; Dueck, Amylou C.; Peng, Sen; Smith, Kris A.; Nakaji, Peter; Karis, John P.; Quarles, C. Chad; Wu, Teresa; Loftus, Joseph C.; Jenkins, Robert B.; Sicotte, Hugues; Kollmeyer, Thomas M.; O'Neill, Brian P.; Elmquist, William; Hoxworth, Joseph M.; Frakes, David; Sarkaria, Jann; Swanson, Kristin R.; Tran, Nhan L.; Li, Jing; Mitchell, J. Ross
2017-01-01
Background Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments. Methods We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV). Results We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32). Conclusion MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology. PMID:27502248
Genetic differentiation among populations of marine algae
NASA Astrophysics Data System (ADS)
Innes, D. J.
1984-09-01
Most of the information for genetic differentiation among populations of marine algae is from studies on ecotypic variation. Physiological ecotypes have been described for individuals showing different responses to temperature and salinity conditions. Morphological ecotypes have also been found associated with areas differing in wave exposure or different intertidal positions. Little is known on how genetic variation is organized within and between populations of marine algae. The occurrence of ecotypic variation in some species is evidence for genetic differentiation among populations resulting from selection by the local environment. The rate of dispersal and subsequent gene flow will also affect the level of differentiation among populations. In species with low dispersal, differentiation can arise through chance founder events or random genetic drift. The few studies available have shown that species of algae exhibit a range of dispersal capabilities. This information can be useful for predicting the potential level of genetic differentiation among populations of these species. Crossing experiments with several species of algae have shown that populations separated by a considerable distance can be interfertile. In some cases individuals from these populations have been found to be morphologically distinct. Crosses have been used to study the genetic basis of this variation and are evidence for genetic differentiation among the populations sampled. Genetic variation of enzyme proteins detected by electrophoresis provides an additional method for measuring genetic variation within and between populations of marine algae. Electrophoretic methods have previously been used to study systematic problems in algae. However, there have been few attempts to use electrophoretic variation to study the genetic structure of populations of marine algae. This approach is outlined and includes some of the potential problems associated with interpreting electrophoretic data. Studies of electrophoretic variation in natural populations of Enteromorpha linza from Long island Sound are used as an example. This species was found to reproduce only asexually. Despite a dispersing spore stage, genetic differentiation was found on a microgeographic scale and was correlated with differences in the local environment of some of the populations. Similar studies on other species, and especially sexually reproducing species, will add to a growing understanding of the evolutionary genetics of marine algae.
Legal aspects of genetic information.
Andrews, L. B.
1991-01-01
The federally funded Human Genome Initiative will lead to the development of new capabilities to learn about an individual's genetic status. Legal issues are raised concerning patients' and other parties' access to that information. This article discusses the effect of existing statutes and case law on three pivotal questions: To what sort of information are people entitled? What control should people have over their genetic information? Do people have a right to refuse genetic information? The article emphasizes that the law protects a patient's right to obtain or refuse genetic information about oneself, as well as the right to control the dissemination of that information to others. PMID:1897258
McGuire, Amy L; Fisher, Rebecca; Cusenza, Paul; Hudson, Kathy; Rothstein, Mark A; McGraw, Deven; Matteson, Stephen; Glaser, John; Henley, Douglas E
2008-07-01
As clinical genetics evolves, and we embark down the path toward more personalized and effective health care, the amount, detail, and complexity of genetic/genomic test information within the electronic health record will increase. This information should be appropriately protected to secure the trust of patients and to support interoperable electronic health information exchange. This article discusses characteristics of genetic/genomic test information, including predictive capability, immutability, and uniqueness, which should be considered when developing policies about information protection. Issues related to "genetic exceptionalism"; i.e., whether genetic/genomic test information should be treated differently from other medical information for purposes of data access and permissible use, are also considered. These discussions can help guide policy that will facilitate the biological and clinical resource development to support the introduction of this information into health care.
Using genetic information while protecting the privacy of the soul.
Moor, J H
1999-01-01
Computing plays an important role in genetics (and vice versa). Theoretically, computing provides a conceptual model for the function and malfunction of our genetic machinery. Practically, contemporary computers and robots equipped with advanced algorithms make the revelation of the complete human genome imminent--computers are about to reveal our genetic souls for the first time. Ethically, computers help protect privacy by restricting access in sophisticated ways to genetic information. But the inexorable fact that computers will increasingly collect, analyze, and disseminate abundant amounts of genetic information made available through the genetic revolution, not to mention that inexpensive computing devices will make genetic information gathering easier, underscores the need for strong and immediate privacy legislation.
Advancing ecological understandings through technological transformations in noninvasive genetics
Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart
2009-01-01
Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...
Young, Sean G; Carrel, Margaret; Kitchen, Andrew; Malanson, George P; Tamerius, James; Ali, Mohamad; Kayali, Ghazi
2017-04-01
First introduced to Egypt in 2006, H5N1 highly pathogenic avian influenza has resulted in the death of millions of birds and caused over 350 infections and at least 117 deaths in humans. After a decade of viral circulation, outbreaks continue to occur and diffusion mechanisms between poultry farms remain unclear. Using landscape genetics techniques, we identify the distance models most strongly correlated with the genetic relatedness of the viruses, suggesting the most likely methods of viral diffusion within Egyptian poultry. Using 73 viral genetic sequences obtained from infected birds throughout northern Egypt between 2009 and 2015, we calculated the genetic dissimilarity between H5N1 viruses for all eight gene segments. Spatial correlation was evaluated using Mantel tests and correlograms and multiple regression of distance matrices within causal modeling and relative support frameworks. These tests examine spatial patterns of genetic relatedness, and compare different models of distance. Four models were evaluated: Euclidean distance, road network distance, road network distance via intervening markets, and a least-cost path model designed to approximate wild waterbird travel using niche modeling and circuit theory. Samples from backyard farms were most strongly correlated with least cost path distances. Samples from commercial farms were most strongly correlated with road network distances. Results were largely consistent across gene segments. Results suggest wild birds play an important role in viral diffusion between backyard farms, while commercial farms experience human-mediated diffusion. These results can inform avian influenza surveillance and intervention strategies in Egypt. Copyright © 2017 Elsevier B.V. All rights reserved.
Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers
2009-01-01
Wheat (Triticum aestivum) is one of the most important food staples in the south of Brazil. Understanding genetic variability among the assortment of Brazilian wheat is important for breeding. The aim of this work was to molecularly characterize the thirty-six wheat cultivars recommended for various regions of Brazil, and to assess mutual genetic distances, through the use of microsatellite markers. Twenty three polymorphic microsatellite markers (PMM) delineated all 36 of the samples, revealing a total of 74 simple sequence repeat (SSR) alleles, i.e. an average of 3.2 alleles per locus. Polymorphic information content (PIC value) calculated to assess the informativeness of each marker ranged from 0.20 to 0.79, with a mean of 0.49. Genetic distances among the 36 cultivars ranged from 0.10 (between cultivars Ocepar 18 and BRS 207) to 0.88 (between cultivars CD 101 and Fudancep 46), the mean distance being 0.48. Twelve groups were obtained by using the unweighted pair-group method with arithmetic means analysis (UPGMA), and thirteen through the Tocher method. Both methods produced similar clusters, with one to thirteen cultivars per group. The results indicate that these tools may be used to protect intellectual property and for breeding and selection programs. PMID:21637519
2014-01-01
Background Anastrepha fraterculus Wiedemann is a horticultural pest which causes significant economic losses in the fruit-producing areas of the American continent and limits the access of products to international markets. The use of environmentally friendly control strategies against this pest is constrained due to the limited knowledge of its population structure. Results We developed microsatellite markers for A. fraterculus from four genomic libraries, which were enriched in CA, CAA, GA and CAT microsatellite motifs. Fifty microsatellite regions were evaluated and 14 loci were selected for population genetics studies. Genotypes of 122 individuals sampled from four A. fraterculus populations were analyzed. The level of polymorphism ranged from three to 13 alleles per locus and the mean expected heterozygosity ranged from 0.60 to 0.64. Comparison between allelic and genotypic frequencies showed significant differences among all pairs of populations. Conclusions This novel set of microsatellite markers provides valuable information for the description of genetic variability and population structure of wild populations and laboratory strains of A. fraterculus. This information will be used to identify and characterize candidate strains suitable to implement effective pest control strategies and might represent a first step towards having a more comprehensive knowledge about the genetics of this pest. PMID:25471285
A national survey of hemochromatosis patients.
Mainous, Arch G; Knoll, Michele E; Everett, Charles J; Hulihan, Mary M; Grant, Althea M; Garrison, Cheryl; Koenig, Gerald; Sayers, Cynthia; Allen, Kelsey W
2012-01-01
Hereditary hemochromatosis (HH) is a common genetic disease in the United States, but little is known about the diagnosis from the patient's perspective. The purpose of this study was to characterize the circumstances surrounding the diagnosis of HH and assess treatments and health information needs. We surveyed US adults aged 18 years and older who were diagnosed with HH after 1996. Response rate was 46%, with a total sample size of 979. Respondents were asked about the use of genetic and clinical markers in their diagnosis, current treatments, and health information needs. Results were stratified by age, education, and income status. Total of 90.0% of women and 75.5% of men were genetically tested for HH (P < .01). Approximately half (52.5%) were diagnosed by a gastroenterologist, hematologist, or other specialty physician and half were diagnosed by a primary care provider. Most of the respondents thought their HH had improved with the initial treatment and most patients were still receiving treatment for HH. Patient interest in learning more about specific hemochromatosis topics was generally high. Since the introduction of genetic identification of HH, these tests have been used in the diagnosis of the majority of patients. Primary care physicians may need to be more aware HH and strategies for diagnosis.
Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes
Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Ángel
2009-01-01
Background Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. Results To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. Conclusion The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest. PMID:19344481
Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes.
Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Angel
2009-03-19
Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest.
Single-Step BLUP with Varying Genotyping Effort in Open-Pollinated Picea glauca.
Ratcliffe, Blaise; El-Dien, Omnia Gamal; Cappa, Eduardo P; Porth, Ilga; Klápště, Jaroslav; Chen, Charles; El-Kassaby, Yousry A
2017-03-10
Maximization of genetic gain in forest tree breeding programs is contingent on the accuracy of the predicted breeding values and precision of the estimated genetic parameters. We investigated the effect of the combined use of contemporary pedigree information and genomic relatedness estimates on the accuracy of predicted breeding values and precision of estimated genetic parameters, as well as rankings of selection candidates, using single-step genomic evaluation (HBLUP). In this study, two traits with diverse heritabilities [tree height (HT) and wood density (WD)] were assessed at various levels of family genotyping efforts (0, 25, 50, 75, and 100%) from a population of white spruce ( Picea glauca ) consisting of 1694 trees from 214 open-pollinated families, representing 43 provenances in Québec, Canada. The results revealed that HBLUP bivariate analysis is effective in reducing the known bias in heritability estimates of open-pollinated populations, as it exposes hidden relatedness, potential pedigree errors, and inbreeding. The addition of genomic information in the analysis considerably improved the accuracy in breeding value estimates by accounting for both Mendelian sampling and historical coancestry that were not captured by the contemporary pedigree alone. Increasing family genotyping efforts were associated with continuous improvement in model fit, precision of genetic parameters, and breeding value accuracy. Yet, improvements were observed even at minimal genotyping effort, indicating that even modest genotyping effort is effective in improving genetic evaluation. The combined utilization of both pedigree and genomic information may be a cost-effective approach to increase the accuracy of breeding values in forest tree breeding programs where shallow pedigrees and large testing populations are the norm. Copyright © 2017 Ratcliffe et al.
Andreassen, Ole A
2017-07-07
Nordic countries have played an important role in the recent progress in psychiatric genetics, both with large well-characterized samples and expertise. The Nordic countries have research advantages due to the organization of their societies, including system of personal identifiers, national health registries with information about diseases, treatment and prescriptions, and a public health system with geographical catchment areas. For psychiatric genetic research, the large biobanks and population surveys are a unique added value. Further, the population is motivated to participate in research, and there is a trust in the institutions of the society. These factors have been important for Nordic contributions to biomedical research, and particularly psychiatric genetics. In the era of eHealth, the situation seems even more advantageous for Nordic countries. The system with public health care makes it easy to implement national measures, and most of the Nordic health care sector is already based on electronic information. The potential advantages regarding informed consent, large scale recruitment and follow-up, and longitudinal cohort studies are tremendous. New precision medicine approaches can be tested within the health care system, with an integrated approach, using large hospitals or regions of the country as a test beds. However, data protection and legal framework have to be clarified. In order to succeed, it is important to keep the people's trust, and maintain the high ethical standards and systems for secure data management. Then the full potential of the Nordic countries can be leveraged in the new era of precision medicine including psychiatric genetics. © 2017 Wiley Periodicals, Inc.
Parent and peer influences on emerging adult substance use disorder: A genetically informed study
Bountress, Kaitlin; Chassin, Laurie; Lemery-Chalfant, Kathryn
2017-01-01
The present study utilizes longitudinal data from a high-risk community sample to examine the unique effects of genetic risk, parental knowledge about the daily activities of adolescents, and peer substance use on emerging adult substance use disorders (SUDs). These effects are examined over and above a polygenic risk score. In addition, this polygenic risk score is used to examine gene–environment correlation and interaction. The results show that during older adolescence, higher adolescent genetic risk for SUDs predicts less parental knowledge, but this relation is nonsignificant in younger adolescence. Parental knowledge (using mother report) mediates the effects of parental alcohol use disorder (AUD) and adolescent genetic risk on risk for SUD, and peer substance use mediates the effect of parent AUD on offspring SUD. Finally, there are significant gene–environment interactions such that, for those at the highest levels of genetic risk, less parental knowledge and more peer substance use confers greater risk for SUDs. However, for those at medium and low genetic risk, these effects are attenuated. These findings suggest that the evocative effects of adolescent genetic risk on parenting increase with age across adolescence. They also suggest that some of the most important environmental risk factors for SUDs exert effects that vary across level of genetic propensity. PMID:26753847
Pérez-Portela, R; Bumford, A; Coffman, B; Wedelich, S; Davenport, M; Fogg, A; Swenarton, M K; Coleman, F; Johnston, M A; Crawford, D L; Oleksiak, M F
2018-03-22
Despite the devastating impact of the lionfish (Pterois volitans) invasion on NW Atlantic ecosystems, little genetic information about the invasion process is available. We applied Genotyping by Sequencing techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to understand genetic trends relevant to the lionfish's long-term persistence. We found no significant differences in genetic structure or diversity between the two areas (F ST p-values > 0.01, and t-test p-values > 0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These findings suggest rapid genetic changes over space and time during the invasion, resulting in one panmictic population with no signs of divergence between areas due to local adaptation.
Population genetics of Glossina palpalis palpalis from central African sleeping sickness foci.
Melachio, Trésor Tito Tanekou T T; Simo, Gustave; Ravel, Sophie; De Meeûs, Thierry; Causse, Sandrine; Solano, Philippe; Lutumba, Pascal; Asonganyi, Tazoacha; Njiokou, Flobert
2011-07-18
Glossina palpalis palpalis (Diptera: Glossinidae) is widespread in west Africa, and is the main vector of sleeping sickness in Cameroon as well as in the Bas Congo Province of the Democratic Republic of Congo. However, little is known on the structure of its populations. We investigated G. p. palpalis population genetic structure in five sleeping sickness foci (four in Cameroon, one in Democratic Republic of Congo) using eight microsatellite DNA markers. A strong isolation by distance explains most of the population structure observed in our sampling sites of Cameroon and DRC. The populations here are composed of panmictic subpopulations occupying fairly wide zones with a very strong isolation by distance. Effective population sizes are probably between 20 and 300 individuals and if we assume densities between 120 and 2000 individuals per km2, dispersal distance between reproducing adults and their parents extends between 60 and 300 meters. This first investigation of population genetic structure of G. p. palpalis in Central Africa has evidenced random mating subpopulations over fairly large areas and is thus at variance with that found in West African populations of G. p. palpalis. This study brings new information on the isolation by distance at a macrogeographic scale which in turn brings useful information on how to organise regional tsetse control. Future investigations should be directed at temporal sampling to have more accurate measures of demographic parameters in order to help vector control decision.
Sánchez-Busó, Leonor; Coscollá, Mireia; Pinto-Carbó, Marta; Catalán, Vicente; González-Candelas, Fernando
2013-01-01
Legionella pneumophila infects humans to produce legionellosis and Pontiac fever only from environmental sources. In order to establish control measures and study the sources of outbreaks it is essential to know extent and distribution of strain variants of this bacterium in the environment. Sporadic and outbreak-related cases of legionellosis have been historically frequent in the Comunidad Valenciana region (CV, Spain), with a high prevalence in its Southeastern-most part (BV). Environmental investigations for the detection of Legionella pneumophila are performed in this area routinely. We present a population genetics study of 87 L. pneumophila strains isolated in 13 different localities of the BV area irrigated from the same watershed and compare them to a dataset of 46 strains isolated in different points of the whole CV. Our goal was to compare environmental genetic variation at two different geographic scales, at county and regional levels. Genetic diversity, recombination and population structure were analyzed with Sequence-Based Typing data and three intergenic regions. The results obtained reveal a low, but detectable, level of genetic differentiation between both datasets, mainly, but not only, attributed to the occurrence of unusual variants of the neuA locus present in the BV populations. This differentiation is still detectable when the 10 loci considered are analyzed independently, despite the relatively high incidence of the most common genetic variant in this species, sequence type 1 (ST-1). However, when the genetic data are considered without their associated geographic information, four major groups could be inferred at the genetic level which did not show any correlation with sampling locations. The overall results indicate that the population structure of these environmental samples results from the joint action of a global, widespread ST-1 along with genetic differentiation at shorter geographic distances, which in this case are related to the common watershed for the BV localities.
Sánchez-Busó, Leonor; Coscollá, Mireia; Pinto-Carbó, Marta; Catalán, Vicente; González-Candelas, Fernando
2013-01-01
Legionella pneumophila infects humans to produce legionellosis and Pontiac fever only from environmental sources. In order to establish control measures and study the sources of outbreaks it is essential to know extent and distribution of strain variants of this bacterium in the environment. Sporadic and outbreak-related cases of legionellosis have been historically frequent in the Comunidad Valenciana region (CV, Spain), with a high prevalence in its Southeastern-most part (BV). Environmental investigations for the detection of Legionella pneumophila are performed in this area routinely. We present a population genetics study of 87 L. pneumophila strains isolated in 13 different localities of the BV area irrigated from the same watershed and compare them to a dataset of 46 strains isolated in different points of the whole CV. Our goal was to compare environmental genetic variation at two different geographic scales, at county and regional levels. Genetic diversity, recombination and population structure were analyzed with Sequence-Based Typing data and three intergenic regions. The results obtained reveal a low, but detectable, level of genetic differentiation between both datasets, mainly, but not only, attributed to the occurrence of unusual variants of the neuA locus present in the BV populations. This differentiation is still detectable when the 10 loci considered are analyzed independently, despite the relatively high incidence of the most common genetic variant in this species, sequence type 1 (ST-1). However, when the genetic data are considered without their associated geographic information, four major groups could be inferred at the genetic level which did not show any correlation with sampling locations. The overall results indicate that the population structure of these environmental samples results from the joint action of a global, widespread ST-1 along with genetic differentiation at shorter geographic distances, which in this case are related to the common watershed for the BV localities. PMID:23634210
Hawksbill turtle terra incognita: conservation genetics of eastern Pacific rookeries.
Gaos, Alexander R; Lewison, Rebecca L; Liles, Michael J; Gadea, Velkiss; Altamirano, Eduardo; Henríquez, Ana V; Torres, Perla; Urteaga, José; Vallejo, Felipe; Baquero, Andres; LeMarie, Carolina; Muñoz, Juan Pablo; Chaves, Jaime A; Hart, Catherine E; Peña de Niz, Alejandro; Chácon, Didiher; Fonseca, Luis; Otterstrom, Sarah; Yañez, Ingrid L; LaCasella, Erin L; Frey, Amy; Jensen, Michael P; Dutton, Peter H
2016-02-01
Prior to 2008 and the discovery of several important hawksbill turtle (Eretmochelys imbricata) nesting colonies in the EP (Eastern Pacific), the species was considered virtually absent from the region. Research since that time has yielded new insights into EP hawksbills, salient among them being the use of mangrove estuaries for nesting. These recent revelations have raised interest in the genetic characterization of hawksbills in the EP, studies of which have remained lacking to date. Between 2008 and 2014, we collected tissue samples from 269 nesting hawksbills at nine rookeries across the EP and used mitochondrial DNA sequences (766 bp) to generate the first genetic characterization of rookeries in the region. Our results inform genetic diversity, population differentiation, and phylogeography of the species. Hawksbills in the EP demonstrate low genetic diversity: We identified a total of only seven haplotypes across the region, including five new and two previously identified nesting haplotypes (pooled frequencies of 58.4% and 41.6%, respectively), the former only evident in Central American rookeries. Despite low genetic diversity, we found strong stock structure between the four principal rookeries, suggesting the existence of multiple populations and warranting their recognition as distinct management units. Furthermore, haplotypes EiIP106 and EiIP108 are unique to hawksbills that nest in mangrove estuaries, a behavior found only in hawksbills along Pacific Central America. The detected genetic differentiation supports the existence of a novel mangrove estuary "reproductive ecotype" that may warrant additional conservation attention. From a phylogeographic perspective, our research indicates hawksbills colonized the EP via the Indo-Pacific, and do not represent relict populations isolated from the Atlantic by the rising of the Panama Isthmus. Low overall genetic diversity in the EP is likely the combined result of few rookeries, extremely small reproductive populations and evolutionarily recent colonization events. Additional research with larger sample sizes and variable markers will help further genetic understanding of hawksbill turtles in the EP.
Mitchem, Dorian G.; Zietsch, Brendan P.; Wright, Margaret J.; Martin, Nicholas G.; Hewitt, John K.; Keller, Matthew C.
2015-01-01
Theories in both evolutionary and social psychology suggest that a positive correlation should exist between facial attractiveness and general intelligence, and several empirical observations appear to corroborate this expectation. Using highly reliable measures of facial attractiveness and IQ in a large sample of identical and fraternal twins and their siblings, we found no evidence for a phenotypic correlation between these traits. Likewise, neither the genetic nor the environmental latent factor correlations were statistically significant. We supplemented our analyses of new data with a simple meta-analysis that found evidence of publication bias among past studies of the relationship between facial attractiveness and intelligence. In view of these results, we suggest that previously published reports may have overestimated the strength of the relationship and that the theoretical bases for the predicted attractiveness-intelligence correlation may need to be reconsidered. PMID:25937789
Lynch, Stacy K; Turkheimer, Eric; D'Onofrio, Brian M; Mendle, Jane; Emery, Robert E; Slutske, Wendy S; Martin, Nicholas G
2006-06-01
Conclusions about the effects of harsh parenting on children have been limited by research designs that cannot control for genetic or shared environmental confounds. The present study used a sample of children of twins and a hierarchical linear modeling statistical approach to analyze the consequences of varying levels of punishment while controlling for many confounding influences. The sample of 887 twin pairs and 2,554 children came from the Australian Twin Registry. Although corporal punishment per se did not have significant associations with negative childhood outcomes, harsher forms of physical punishment did appear to have specific and significant effects. The observed association between harsh physical punishment and negative outcomes in children survived a relatively rigorous test of its causal status, thereby increasing the authors' conviction that harsh physical punishment is a serious risk factor for children. ((c) 2006 APA, all rights reserved).
Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana.
Eggert, L S; Eggert, J A; Woodruff, D S
2003-06-01
African forest elephants are difficult to observe in the dense vegetation, and previous studies have relied upon indirect methods to estimate population sizes. Using multilocus genotyping of noninvasively collected samples, we performed a genetic survey of the forest elephant population at Kakum National Park, Ghana. We estimated population size, sex ratio and genetic variability from our data, then combined this information with field observations to divide the population into age groups. Our population size estimate was very close to that obtained using dung counts, the most commonly used indirect method of estimating the population sizes of forest elephant populations. As their habitat is fragmented by expanding human populations, management will be increasingly important to the persistence of forest elephant populations. The data that can be obtained from noninvasively collected samples will help managers plan for the conservation of this keystone species.
Liu, Tianyu; Liang, Yinan; Zhong, Xiuqin; Wang, Ning; Hu, Dandan; Zhou, Xuan; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou
2014-01-01
Dirofilaria immitis (heartworm) is the causative agent of an important zoonotic disease that is spread by mosquitoes. In this study, molecular and phylogenetic characterization of D. immitis were performed based on complete ND1 and 16S rDNA gene sequences, which provided the foundation for more advanced molecular diagnosis, prevention, and control of heartworm diseases. The mutation rate and evolutionary divergence in adult heartworm samples from seven dogs in western China were analyzed to obtain information on genetic diversity and variability. Phylogenetic relationships were inferred using both maximum parsimony (MP) and Bayes methods based on the complete gene sequences. The results suggest that D. immitis formed an independent monophyletic group in which the 16S rDNA gene has mutated more rapidly than has ND1. PMID:24639299
Lynch, Stacy K.; Turkheimer, Eric; D’Onofrio, Brian M.; Mendle, Jane; Emery, Robert E.; Slutske, Wendy S.; Martin, Nicholas G.
2010-01-01
Conclusions about the effects of harsh parenting on children have been limited by research designs that cannot control for genetic or shared environmental confounds. The present study used a sample of children of twins and a hierarchical linear modeling statistical approach to analyze the consequences of varying levels of punishment while controlling for many confounding influences. The sample of 887 twin pairs and 2,554 children came from the Australian Twin Registry. Although corporal punishment per se did not have significant associations with negative childhood outcomes, harsher forms of physical punishment did appear to have specific and significant effects. The observed association between harsh physical punishment and negative outcomes in children survived a relatively rigorous test of its causal status, thereby increasing the authors’ conviction that harsh physical punishment is a serious risk factor for children. PMID:16756394
Pettengill, James B; Pightling, Arthur W; Baugher, Joseph D; Rand, Hugh; Strain, Errol
2016-01-01
The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging due to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). When analyzing empirical data (whole-genome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.
Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.; ...
2016-11-10
The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.
The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less
Bradbury, Angela R; Patrick-Miller, Linda; Long, Jessica; Powers, Jacquelyn; Stopfer, Jill; Forman, Andrea; Rybak, Christina; Mattie, Kristin; Brandt, Amanda; Chambers, Rachelle; Chung, Wendy K; Churpek, Jane; Daly, Mary B; Digiovanni, Laura; Farengo-Clark, Dana; Fetzer, Dominique; Ganschow, Pamela; Grana, Generosa; Gulden, Cassandra; Hall, Michael; Kohler, Lynne; Maxwell, Kara; Merrill, Shana; Montgomery, Susan; Mueller, Rebecca; Nielsen, Sarah; Olopade, Olufunmilayo; Rainey, Kimberly; Seelaus, Christina; Nathanson, Katherine L; Domchek, Susan M
2015-06-01
Multiplex genetic testing, including both moderate- and high-penetrance genes for cancer susceptibility, is associated with greater uncertainty than traditional testing, presenting challenges to informed consent and genetic counseling. We sought to develop a new model for informed consent and genetic counseling for four ongoing studies. Drawing from professional guidelines, literature, conceptual frameworks, and clinical experience, a multidisciplinary group developed a tiered-binned genetic counseling approach proposed to facilitate informed consent and improve outcomes of cancer susceptibility multiplex testing. In this model, tier 1 "indispensable" information is presented to all patients. More specific tier 2 information is provided to support variable informational needs among diverse patient populations. Clinically relevant information is "binned" into groups to minimize information overload, support informed decision making, and facilitate adaptive responses to testing. Seven essential elements of informed consent are provided to address the unique limitations, risks, and uncertainties of multiplex testing. A tiered-binned model for informed consent and genetic counseling has the potential to address the challenges of multiplex testing for cancer susceptibility and to support informed decision making and adaptive responses to testing. Future prospective studies including patient-reported outcomes are needed to inform how to best incorporate multiplex testing for cancer susceptibility into clinical practice.Genet Med 17 6, 485-492.
Ronald E. McRoberts; Grant M. Domke; Qi Chen; Erik Næsset; Terje Gobakken
2016-01-01
The relatively small sampling intensities used by national forest inventories are often insufficient to produce the desired precision for estimates of population parameters unless the estimation process is augmented with auxiliary information, usually in the form of remotely sensed data. The k-Nearest Neighbors (k-NN) technique is a non-parametric,multivariate approach...
William J. Zielinski; Fredrick V. Schlexer; T. Luke George; Kristine L. Pilgrim; Michael K. Schwartz
2013-01-01
The Point Arena mountain beaver (Aplodontia rufa nigra) is federally listed as an endangered subspecies that is restricted to a small geographic range in coastal Mendocino County, California. Management of this imperiled taxon requires accurate information on its demography and vital rates. We developed noninvasive survey methods, using hair snares to sample DNA and to...
Estimates of Continental Ancestry Vary Widely among Individuals with the Same mtDNA Haplogroup
Emery, Leslie S.; Magnaye, Kevin M.; Bigham, Abigail W.; Akey, Joshua M.; Bamshad, Michael J.
2015-01-01
The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to infer an individual’s place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by mtDNA-haplogroup membership to those made by autosomal SNPs in ∼940 samples of the Human Genome Diversity Panel and recently admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match the highest continental-ancestry proportion of a majority of individuals with that haplogroup. Prediction of an individual’s mtDNA haplogroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individuals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin. PMID:25620206
Csizmár, Nikolett; Mihók, Sándor; Jávor, András; Kusza, Szilvia
2018-01-01
The Hungarian draft is a horse breed with a recent mixed ancestry created in the 1920s by crossing local mares with draught horses imported from France and Belgium. The interest in its conservation and characterization has increased over the last few years. The aim of this work is to contribute to the characterization of the endangered Hungarian heavy draft horse populations in order to obtain useful information to implement conservation strategies for these genetic stocks. To genetically characterize the breed and to set up the basis for a conservation program, in the present study a hypervariable region of the mitochrondial DNA (D-loop) was used to assess genetic diversity in Hungarian draft horses. Two hundred and eighty five sequences obtained in our laboratory and 419 downloaded sequences available from Genbank were analyzed. One hundred and sixty-four haplotypes and thirty-six polymorphic sites were observed. High haplotype and nucleotide diversity values ( H d = 0.954 ± 0.004; π = 0.028 ± 0.0004) were identified in Hungarian population, although they were higher within than among the different populations ( H d = 0.972 ± 0.002; π = 0.03097 ± 0.002). Fourteen of the previously observed seventeen haplogroups were detected. Our samples showed a large intra- and interbreed variation. There was no clear clustering on the median joining network figure. The overall information collected in this work led us to consider that the genetic scenario observed for Hungarian draft breed is more likely the result of contributions from 'ancestrally' different genetic backgrounds. This study could contribute to the development of a breeding plan for Hungarian draft horses and help to formulate a genetic conservation plan, avoiding inbreeding while.
Prenatal diagnostic decision-making in adolescents.
Plaga, Stacey L; Demarco, Kristin; Shulman, Lee P
2005-04-01
We sought to evaluate the prenatal decision-making of pregnant adolescents identified at increased risk for identifiable fetal genetic abnormalities. A retrospective review of records of gravid women 19 years old or younger undergoing genetic counseling from 2001-2003 (inclusive) was undertaken. Hospital-based academic center. Thirty-seven women were identified; four cases did not meet inclusion criteria. None. Decision to undergo or forgo invasive prenatal testing. Of the 33 women included in this study, the average age was 17.6 years (range: 15-19). Eighteen were Latinas, eight were African-Americans, and seven were Caucasians. Sixteen women had positive maternal serum screening outcomes; nine women sought counseling because of personal/family histories of genetic abnormalities, seven sought counseling after fetal structural anomalies were detected by ultrasound, and one woman sought counseling because she and her partner were positive for Mendelian disorder screening (sickle cell disease). Sixteen of the women (48.5%) chose to undergo invasive testing (15 amniocenteses, one chorionic villus sampling) whereas 17 (51.5%) chose to forgo invasive testing. Adolescents offered invasive prenatal diagnosis will chose to undergo or forgo such testing based on diagnostic and personal criteria as do adult women. Nonetheless, unique adolescent issues may make the process by which information is obtained and communicated during counseling to be different from counseling provided to adults. The development of new genetic screening and diagnostic protocols has and will increase the number of pregnant adolescent women who will be offered genetic counseling during their pregnancies. Such an increase in numbers will place considerably more pressure on an already taxed genetic counseling system; accordingly, new counseling paradigms will need to be developed to provide service to an expanded patient population seeking information for an increasing number of genetic issues.
Júnior, A L Silva; Souza, L C; Pereira, A G; Caldeira, M V W; Miranda, F D
2017-09-21
Schizolobium parahyba var. amazonicum (Fabaceae) is an arboreal species, endemic to the Amazon Rainforest, popularly known as paricá. It is used on a commercial scale in the timber sector, pulp and paper production, reclamation projects in degraded and landscaped areas. However, there is no availability of genetically improved material selected for the environmental conditions of the State of Espírito Santo, Brazil. In this sense, the present study aimed to characterize the genetic diversity in a population of S. amazonicum, established in a forest area in the southern region of the State of Espírito Santo, using inter-simple sequence repeat (ISSR) molecular markers. DNA samples from 171 individuals were analyzed using 11 ISSR primers, which generated 79 polymorphic bands in a total of 136 fragments (58%). The polymorphic information content performed for the ISSR markers revealed a mean of 0.37, classifying them as moderately informative. The number of loci found (N = 79) was greater than that established as the optimal number (N = 69) for the analyses. High genetic diversity was found with the parameters, genetic diversity of Nei (H E = 0.375) and Shannon index (I = 0.554). The data demonstrated in the dendrogram, based on the UPGMA cluster analysis, corroborated by the Bayesian analysis performed by the STRUCTURE program, which indicated the formation of two distinct clusters (K = 2). One of the groups was formed with the majority of the individuals (153 genotypes) and the second with the minority (18 genotypes). The results revealed high genetic diversity in the population of S. amazonicum evaluated in the present study, determining the potential of the population to be used as an orchard for seed collection and production of seedlings with confirmed genetic variability.
Lachance, Christina R; Erby, Lori A H; Ford, Beth M; Allen, Vincent C; Kaphingst, Kimberly A
2010-05-01
As direct-to-consumer genetic testing becomes more available, a diverse group of consumers, including those with limited health literacy, may consider testing. In light of concerns raised about direct-to-consumer genetic testing, this study sought to critically examine whether the informational content, literacy demands, and usability of health-related direct-to-consumer websites met existing recommendations. A content analysis was performed on 29 health-related direct-to-consumer websites. Two coders independently evaluated each website for informational content (e.g., benefits, limitations), literacy demands (e.g., reading level), and usability (e.g., ease of navigation). Most sites presented health conditions and some markers for which they tested, benefits of testing, a description of the testing process, and their privacy policy. Fewer cited scientific literature, explained test limitations, or provided an opportunity to consult a health professional. Key informational content was difficult to locate on most sites. Few sites gave sample disease risk estimates or used common language and explained technical terms consistently. Average reading level was grade 15. The quality of informational content, literacy demands, and usability across health-related direct-to-consumer websites varied widely. Many users would struggle to find and understand the important information. For consumers to better understand the content on these sites and evaluate the meaning of the tests for their health, sites should lower the demands placed on users by distilling and prioritizing the key informational content while simultaneously attending to the reading level and usability elements. In the absence of regulation compelling such changes, government agencies or professional organizations may need to increase consumer and provider awareness of these issues.
Monteiro, E R; Strioto, D K; Meirelles, A C S; Mangolin, C A; Machado, M F P S
2015-12-15
Amplified fragment length polymorphism (AFLP) analysis was used to evaluate DNA polymorphism in Pilosocereus gounellei with the aim of differentiating samples grown in different Brazilian semiarid regions. Seven primer pairs were used to amplify 703 AFLP markers, of which 700 (99.21%) markers were polymorphic. The percentage of polymorphic markers ranged from 95.3% for the primer combination E-AAG/M-CTT to 100% for E-ACC/M-CAT, E-ACC/M-CAA, E-AGC/M-CAG, E-ACT/M-CTA, and E-AGG/M-CTG. The largest number of informative markers (126) was detected using the primer combination E-AAC/M-CTA. Polymorphism of the amplified DNA fragments ranged from 72.55% (in sample from Piauí State) to 82.79% (in samples from Rio Grande Norte State), with an average of 75.39%. Despite the high genetic diversity of AFLP markers in xiquexique, analysis using the STRUCTURE software identified relatively homogeneous clusters of xiquexique from the same location, indicating a differentiation at the molecular level, among the plant samples from different regions of the Caatinga biome. The AFLP methodology identified genetically homogeneous and contrasting plants, as well as plants from different regions with common DNA markers. Seeds from such plants can be used for further propagation of plants for establishment of biodiversity conservation units and restoration of degraded areas of the Caatinga biome.
Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen
2016-01-01
Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas.
Chang, P; Grinband, J; Weinberg, B D; Bardis, M; Khy, M; Cadena, G; Su, M-Y; Cha, S; Filippi, C G; Bota, D; Baldi, P; Poisson, L M; Jain, R; Chow, D
2018-05-10
The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation. MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 ( IDH1 ) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase ( MGMT ) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification. Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features. Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training. © 2018 by American Journal of Neuroradiology.
Conservation of a domestic metapopulation structured into related and partly admixed strains.
Ramljak, Jelena; Bunevski, Gjoko; Bytyqi, Hysen; Marković, Božidarka; Brka, Muhamed; Ivanković, Ante; Kume, Kristaq; Stojanović, Srđan; Nikolov, Vasil; Simčič, Mojca; Sölkner, Johann; Kunz, Elisabeth; Rothammer, Sophie; Seichter, Doris; Grünenfelder, Hans-Peter; Broxham, Elli T; Kugler, Waltraud; Medugorac, Ivica
2018-04-01
Preservation of genetic diversity is one of the most pressing challenges in the planetary boundaries concept. Within this context, we focused on genetic diversity in a native, unselected and highly admixed domesticated metapopulation. A set of 1,828 individuals from 60 different cattle breeds was analysed using a medium density SNP chip. Among these breeds, 14 Buša strains formed a metapopulation represented by 350 individuals, while the remaining 46 breeds represented the global cattle population. Genetic analyses showed that the scarcely selected and less differentiated Buša metapopulation contributed a substantial proportion (52.6%) of the neutral allelic diversity to this global taurine population. Consequently, there is an urgent need for synchronized maintenance of this highly fragmented domestic metapopulation, which is distributed over several countries without sophisticated infrastructure and highly endangered by continuous replacement crossing as part of the global genetic homogenization process. This study collected and evaluated samples, data and genomewide information and developed genome-assisted cross-border conservation concepts. To detect and maintain genetic integrity of the metapopulation strains, we designed and applied a composite test that combines six metrics based on additive genetic relationships, a nearest neighbour graph and the distribution of semiprivate alleles. Each metric provides distinct information components about past admixture events and offers an objective and powerful tool for the detection of admixed outliers. The here developed conservation methods and presented experiences could easily be adapted to comparable conservation programmes of domesticated or other metapopulations bred and kept in captivity or under some other sort of human control. © 2018 John Wiley & Sons Ltd.
A Systematic Bayesian Integration of Epidemiological and Genetic Data
Lau, Max S. Y.; Marion, Glenn; Streftaris, George; Gibson, Gavin
2015-01-01
Genetic sequence data on pathogens have great potential to inform inference of their transmission dynamics ultimately leading to better disease control. Where genetic change and disease transmission occur on comparable timescales additional information can be inferred via the joint analysis of such genetic sequence data and epidemiological observations based on clinical symptoms and diagnostic tests. Although recently introduced approaches represent substantial progress, for computational reasons they approximate genuine joint inference of disease dynamics and genetic change in the pathogen population, capturing partially the joint epidemiological-evolutionary dynamics. Improved methods are needed to fully integrate such genetic data with epidemiological observations, for achieving a more robust inference of the transmission tree and other key epidemiological parameters such as latent periods. Here, building on current literature, a novel Bayesian framework is proposed that infers simultaneously and explicitly the transmission tree and unobserved transmitted pathogen sequences. Our framework facilitates the use of realistic likelihood functions and enables systematic and genuine joint inference of the epidemiological-evolutionary process from partially observed outbreaks. Using simulated data it is shown that this approach is able to infer accurately joint epidemiological-evolutionary dynamics, even when pathogen sequences and epidemiological data are incomplete, and when sequences are available for only a fraction of exposures. These results also characterise and quantify the value of incomplete and partial sequence data, which has important implications for sampling design, and demonstrate the abilities of the introduced method to identify multiple clusters within an outbreak. The framework is used to analyse an outbreak of foot-and-mouth disease in the UK, enhancing current understanding of its transmission dynamics and evolutionary process. PMID:26599399
Influences of history, geography, and religion on genetic structure: the Maronites in Lebanon
Haber, Marc; Platt, Daniel E; Badro, Danielle A; Xue, Yali; El-Sibai, Mirvat; Bonab, Maziar Ashrafian; Youhanna, Sonia C; Saade, Stephanie; Soria-Hernanz, David F; Royyuru, Ajay; Wells, R Spencer; Tyler-Smith, Chris; Zalloua, Pierre A; Adhikarla, Syama; Adler, Christina J; Balanovska, Elena; Balanovsky, Oleg; Bertranpetit, Jaume; Clarke, Andrew C; Comas, David; Cooper, Alan; Der Sarkissian, Clio S I; Dulik, Matthew C; Erasmus, Christoff J; Gaieski, Jill B; GaneshPrasad, ArunKumar; Haak, Wolfgang; Hobbs, Angela; Javed, Asif; Jin, Li; Kaplan, Matthew E; Li, Shilin; Martínez-Cruz, Begoña; Matisoo-Smith, Elizabeth A; Melé, Marta; Merchant, Nirav C; Mitchell, R John; Owings, Amanda C; Parida, Laxmi; Pitchappan, Ramasamy; Quintana-Murci, Lluis; Renfrew, Colin; Lacerda, Daniela R; Santos, Fabrício R; Schurr, Theodore G; Soodyall, Himla; Swamikrishnan, Pandikumar; Valampuri John, Kavitha; Santhakumari, Arun Varatharajan; Vieira, Pedro Paulo; Ziegle, Janet S
2011-01-01
Cultural expansions, including of religions, frequently leave genetic traces of differentiation and in-migration. These expansions may be driven by complex doctrinal differentiation, together with major population migrations and gene flow. The aim of this study was to explore the genetic signature of the establishment of religious communities in a region where some of the most influential religions originated, using the Y chromosome as an informative male-lineage marker. A total of 3139 samples were analyzed, including 647 Lebanese and Iranian samples newly genotyped for 28 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y chromosome. Genetic organization was identified by geography and religion across Lebanon in the context of surrounding populations important in the expansions of the major sects of Lebanon, including Italy, Turkey, the Balkans, Syria, and Iran by employing principal component analysis, multidimensional scaling, and AMOVA. Timing of population differentiations was estimated using BATWING, in comparison with dates of historical religious events to determine if these differentiations could be caused by religious conversion, or rather, whether religious conversion was facilitated within already differentiated populations. Our analysis shows that the great religions in Lebanon were adopted within already distinguishable communities. Once religious affiliations were established, subsequent genetic signatures of the older differentiations were reinforced. Post-establishment differentiations are most plausibly explained by migrations of peoples seeking refuge to avoid the turmoil of major historical events. PMID:21119711
Williams, R C; Knowler, W C; Pettitt, D J; Long, J C; Rokala, D A; Polesky, H F; Hackenberg, R A; Steinberg, A G; Bennett, P H
1992-01-01
Complementary genetic and demographic analyses estimate the total proportion of European-American admixture in the Gila River Indian Community and trace its mode of entry. Among the 9,616 residents in the sample, 2,015 persons claim only partial Native American heritage. A procedure employing 23 alleles or haplotypes at eight loci was used to estimate the proportion of European-American admixture, m(a), for the entire sample and within six categories of Caucasian admixture calculated from demographic data, md. The genetic analysis gave an estimate of total European-American admixture in the community of 0.054 (95% confidence interval [CI] .044-.063), while an estimate from demographic records was similar, .059. Regression of m(a) on md yielded a fitted line m(a) = .922md, r = .959 (P = .0001). When total European-American admixture is partitioned between the contributing populations, Mexican-Americans have provided .671, European-Americans .305, and African-Americans .023. These results are discussed within the context of the ethnic composition of the Gila River Indian Community, the assumptions underlying the methods, and the potential that demographic data have for enriching genetic measurements of human admixture. It is concluded that, despite the severe assumptions of the mathematical methods, accurate, reliable estimates of genetic admixture are possible from allele and haplotype frequencies, even when there is little demographic information for the population. PMID:1609790
Fernández, Luis; de Haro, Luis Alejandro; Distefano, Ana J; Carolina Martínez, Maria; Lía, Verónica; Papa, Juan C; Olea, Ignacio; Tosto, Daniela; Esteban Hopp, Horacio
2013-01-01
Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate-resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K-means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from glyphosate-resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target-site resistance mechanism. PMID:24223277
Yilmaz, Esra; Fritzenwanker, Moritz; Pantchev, Nikola; Lendner, Mathias; Wongkamchai, Sirichit; Otranto, Domenico; Kroidl, Inge; Dennebaum, Martin; Le, Thanh Hoa; Anh Le, Tran; Ramünke, Sabrina; Schaper, Roland; von Samson-Himmelstjerna, Georg; Poppert, Sven; Krücken, Jürgen
2016-01-01
Background Cutaneous dirofilariosis is a canine mosquito-borne zoonosis that can cause larva migrans disease in humans. Dirofilaria repens is considered an emerging pathogen occurring with high prevalence in Mediterranean areas and many parts of tropical Asia. In Hong Kong, a second species, Candidatus Dirofilaria hongkongensis, has been reported. The present study aimed to compare mitochondrial genomes from these parasites and to obtain population genetic information. Methods and Findings Complete mitochondrial genomes were obtained by PCR and Sanger sequencing or ILLUMINA sequencing for four worms. Cytochrome oxidase subunit 1 sequences identified three as D. repens (all from Europe) and one as C. D. hongkongensis (from India). Mitochondrial genomes have the same organization as in other spirurid nematodes but a higher preference for thymine in the coding strand. Phylogenetic analysis was in contradiction to current taxonomy of the Onchocercidae but in agreement with a recent multi-locus phylogenetic analysis using both mitochondrial and nuclear markers. D. repens and C. D. hongkongensis sequences clustered together and were the common sister group to Dirofilaria immitis. Analysis of a 2.5 kb mitochondrial genome fragment from macrofilaria or canine blood samples from Europe (42), Thailand (2), India (1) and Vietnam (1) revealed only small genetic differences in the D. repens samples including all European and the Vietnam sample. The Indian C. D. hongkongensis and the two Thai samples formed separate clusters and differences were comparatively large. Conclusion Genetic differences between Dirofilaria spp. causing cutaneous disease can be considerable whereas D. repens itself was genetically quite homogenous. C. D. hongkongensis was identified for the first time from the Indian subcontinent. The full mitochondrial genome sequence strengthens the hypothesis that it represents an independent species and the Thai samples might represent another cryptic species, Candidatus Dirofilaria sp. ‘Thailand II’, or a quite divergent population of C. D. hongkongensis. PMID:27727270
Genetics Home Reference: sick sinus syndrome
... of a genetic condition? Genetic and Rare Diseases Information Center Frequency Sick sinus syndrome accounts for 1 in 600 patients with heart disease who are over age 65. The incidence of this condition increases with age. Related Information What information about a genetic condition can statistics ...
Issues related to the use of genetic material and information.
Giarelli, E; Jacobs, L A
2000-04-01
To review issues regarding the use of genetic materials and information. Professional literature, regional and federal legislation. An analysis is provided of the relationship among advances in genetic technology, use of genetic material and information, and the development of laws that protect the interests of donors, researchers, and insurers. Rapid technological achievements have generated complex questions that are difficult to answer. The Human Genome Project began and the scientific discoveries were put to use before adequate professional and public debate on the ethical, legal, social, and clinical issues. The term "proper use" of genetic material and information is not defined consistently. An incomplete patchwork of protective state and federal legislation exists. Many complicated issues surround the use and potential misuse of genetic material and information. Rapidly advancing technology in genetics makes it difficult for regulations that protect individuals and families to keep pace. Oncology nurses need to recognize their role as change agents, understand genetic technology, and advocate for patients by participating in the debate on the proper use and prevention of misuse of genetic material and information.
Epps, Clinton W; Keyghobadi, Nusha
2015-12-01
Landscape genetics seeks to determine the effect of landscape features on gene flow and genetic structure. Often, such analyses are intended to inform conservation and management. However, depending on the many factors that influence the time to reach equilibrium, genetic structure may more strongly represent past rather than contemporary landscapes. This well-known lag between current demographic processes and population genetic structure often makes it challenging to interpret how contemporary landscapes and anthropogenic activity shape gene flow. Here, we review the theoretical framework for factors that influence time lags, summarize approaches to address this temporal disconnect in landscape genetic studies, and evaluate ways to make inferences about landscape change and its effects on species using genetic data alone or in combination with other data. Those approaches include comparing correlation of genetic structure with historical versus contemporary landscapes, using molecular markers with different rates of evolution, contrasting metrics of genetic structure and gene flow that reflect population genetic processes operating at different temporal scales, comparing historical and contemporary samples, combining genetic data with contemporary estimates of species distribution or movement, and controlling for phylogeographic history. We recommend using simulated data sets to explore time lags in genetic structure, and argue that time lags should be explicitly considered both when designing and interpreting landscape genetic studies. We conclude that the time lag problem can be exploited to strengthen inferences about recent landscape changes and to establish conservation baselines, particularly when genetic data are combined with other data. © 2015 John Wiley & Sons Ltd.
Protecting posted genes: social networking and the limits of GINA.
Soo-Jin Lee, Sandra; Borgelt, Emily
2014-01-01
The combination of decreased genotyping costs and prolific social media use is fueling a personal genetic testing industry in which consumers purchase and interact with genetic risk information online. Consumers and their genetic risk profiles are protected in some respects by the 2008 federal Genetic Information Nondiscrimination Act (GINA), which forbids the discriminatory use of genetic information by employers and health insurers; however, practical and technical limitations undermine its enforceability, given the everyday practices of online social networking and its impact on the workplace. In the Web 2.0 era, employers in most states can legally search about job candidates and employees online, probing social networking sites for personal information that might bear on hiring and employment decisions. We examine GINA's protections for online sharing of genetic information as well as its limitations, and propose policy recommendations to address current gaps that leave employees' genetic information vulnerable in a Web-based world.
Genetic diversity and patterns of population structure in Creole goats from the Americas.
Ginja, C; Gama, L T; Martínez, A; Sevane, N; Martin-Burriel, I; Lanari, M R; Revidatti, M A; Aranguren-Méndez, J A; Bedotti, D O; Ribeiro, M N; Sponenberg, P; Aguirre, E L; Alvarez-Franco, L A; Menezes, M P C; Chacón, E; Galarza, A; Gómez-Urviola, N; Martínez-López, O R; Pimenta-Filho, E C; da Rocha, L L; Stemmer, A; Landi, V; Delgado-Bermejo, J V
2017-06-01
Biodiversity studies are more efficient when large numbers of breeds belonging to several countries are involved, as they allow for an in-depth analysis of the within- and between-breed components of genetic diversity. A set of 21 microsatellites was used to investigate the genetic composition of 24 Creole goat breeds (910 animals) from 10 countries to estimate levels of genetic variability, infer population structure and understand genetic relationships among populations across the American continent. Three commercial transboundary breeds were included in the analyses to investigate admixture with Creole goats. Overall, the genetic diversity of Creole populations (mean number of alleles = 5.82 ± 1.14, observed heterozygosity = 0.585 ± 0.074) was moderate and slightly lower than what was detected in other studies with breeds from other regions. The Bayesian clustering analysis without prior information on source populations identified 22 breed clusters. Three groups comprised more than one population, namely from Brazil (Azul and Graúna; Moxotó and Repartida) and Argentina (Long and shorthair Chilluda, Pampeana Colorada and Angora-type goat). Substructure was found in Criolla Paraguaya. When prior information on sample origin was considered, 92% of the individuals were assigned to the source population (threshold q ≥ 0.700). Creole breeds are well-differentiated entities (mean coefficient of genetic differentiation = 0.111 ± 0.048, with the exception of isolated island populations). Dilution from admixture with commercial transboundary breeds appears to be negligible. Significant levels of inbreeding were detected (inbreeding coefficient > 0 in most Creole goat populations, P < 0.05). Our results provide a broad perspective on the extant genetic diversity of Creole goats, however further studies are needed to understand whether the observed geographical patterns of population structure may reflect the mode of goat colonization in the Americas. © 2017 Stichting International Foundation for Animal Genetics.
Developing genetic privacy legislation: the South Carolina experience.
Edwards, J G; Young, S R; Brooks, K A; Aiken, J H; Patterson, E D; Pritchett, S T
1998-01-01
The availability of presymptomatic and predisposition genetic testing has spawned the need for legislation prohibiting health insurance discrimination on the basis of genetic information. The federal effort, the Health Insurance Portability and Accountability Act (HIPAA) of 1996, falls short by protecting only those who access insurance through group plans. A committee of University of South Carolina professionals convened in 1996 to develop legislation in support of genetic privacy for the state of South Carolina. The legislation prevents health insurance companies from denying coverage or setting insurance rates on the basis of genetic information. It also protects the privacy of genetic information and prohibits performance of genetic tests without specific informed consent. In preparing the bill, genetic privacy laws from other states were reviewed, and a modified version of the Virginia law adopted. The South Carolina Committee for the Protection of Genetic Privacy version went a step further by including enforcement language and excluding Virginia's sunset clause. The definition of genetic information encompassed genetic test results, and importantly, includes family history of genetic disease. Our experience in navigating through the state legislature and working through opposition from the health insurance lobby is detailed herein.
Consumers' views of direct-to-consumer genetic information.
McBride, Colleen M; Wade, Christopher H; Kaphingst, Kimberly A
2010-01-01
In this report, we describe the evolution and types of genetic information provided directly to consumers, discuss potential advantages and disadvantages of these products, and review research evaluating consumer responses to direct-to-consumer (DTC) genetic testing. The available evidence to date has focused on predictive tests and does not suggest that individuals, health care providers, or health care systems have been harmed by a DTC provision of genetic information. An understanding of consumer responses to susceptibility tests has lagged behind. The Multiplex Initiative is presented as a case study of research to understand consumers' responses to DTC susceptibility tests. Three priority areas are recommended for accelerated research activities to inform public policy regarding DTC genetic information: (a) exploring consumer's long-term responses to DTC genetic testing on a comprehensive set of outcomes, (b) evaluating optimal services to support decision making about genetic testing, and (c) evaluating best practices in promoting genetic competencies among health providers.
Marital assortment for genetic similarity.
Eckman, Ronael E; Williams, Robert; Nagoshi, Craig
2002-10-01
The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.
Sun, Peng; Tang, Baojun; Yin, Fei
2018-05-01
The Chinese pomfret Pampus chinensis is one of the most economic and ecological important marine fish species in China. In the present study, the population genetic structure and genetic diversity of P. chinensis were evaluated from a total sample size of 180 individuals representing six populations from the East China Sea and the South China Sea using mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 24 variable sites (including 3 singleton sites and 21 parsimony information sites) were observed, and 18 haplotypes were defined. The haplotype diversity (Hd) of the populations ranged from 0.559 to 0.775, and the nucleotide diversity (π) ranged from 0.330 to 1.090%. Analysis of molecular variance (AMOVA) reveals that the main variation (66.02%) was among individuals within populations. The average pairwise differences and ϕ ST values indicated significant genetic differentiation between Dongxing population and the other populations. The results of the present study are helpful for the sustainable management and utilization of this species.
Genetic variation in the midcontinental population of sandhill cranes, Grus canadensis.
Petersen, Jessica L; Bischof, Richard; Krapu, Gary L; Szalanski, Allen L
2003-02-01
Three subspecies of sandhill crane (Grus canadensis) are recognized in the Midcontinental population, the lesser (Grus c. canadensis), Canadian (G. c. rowani), and greater (G. c. tabida). Blood samples collected on the population's primary spring staging area in Nebraska, U.S.A., were used to resolve the genetic relationship among these subspecies. Phylogenetic analysis of 27 G. canadensis, by DNA sequencing of a 675 bp region of the mtDNA, supports the subspecies designations of G. c. canadensis and G. c. tabida. G. c. rowani individuals were intermediate with each of the other two subspecies. Genetic divergence ranged from 6.5 to 14.5% between G. c. canadensis and G. c. tabida, 0.5 to 6.6% within G. c. canadensis, and 0.1 to 6.0% within G. c. tabida. Sufficient DNA for analysis was obtained from shed feathers indicating a source of genetic material that does not require the capture or sacrifice of the birds. Other genetic markers and methods, including satellite telemetry, are required for obtaining detailed information on crane distributions as needed to establish effective management units for the MCP.
Listman, Jennifer B; Hasin, Deborah; Kranzler, Henry R; Malison, Robert T; Mutirangura, Apiwat; Sughondhabirom, Atapol; Aharonovich, Efrat; Spivak, Baruch; Gelernter, Joel
2010-06-14
Detecting population substructure is a critical issue for association studies of health behaviors and other traits. Whether inherent in the population or an artifact of marker choice, determining aspects of a population's genetic history as potential sources of substructure can aid in design of future genetic studies. Jewish populations, among which association studies are often conducted, have a known history of migrations. As a necessary step in understanding population structure to conduct valid association studies of health behaviors among Israeli Jews, we investigated genetic signatures of this history and quantified substructure to facilitate future investigations of these phenotypes in this population. Using 32 autosomal STR markers and the program STRUCTURE, we differentiated between Ashkenazi (AJ, N = 135) and non-Ashkenazi (NAJ, N = 226) Jewish populations in the form of Northern and Southern geographic genetic components (AJ north 73%, south 23%, NAJ north 33%, south 60%). The ability to detect substructure within these closely related populations using a small STR panel was contingent on including additional samples representing major continental populations in the analyses. Although clustering programs such as STRUCTURE are designed to assign proportions of ancestry to individuals without reference population information, when Jewish samples were analyzed in the absence of proxy parental populations, substructure within Jews was not detected. Generally, for samples with a given grandparental country of birth, STRUCTURE assignment values to Northern, Southern, African and Asian clusters agreed with mitochondrial DNA and Y-chromosomal data from previous studies as well as historical records of migration and intermarriage.
Londono-Renteria, Berlin; Eisele, Thomas P; Keating, Joseph; Bennett, Adam; Krogstad, Donald J
2012-01-01
Describing genetic diversity of the Plasmodium falciparum parasite provides important information about the local epidemiology of malaria. In this study, we examined the genetic diversity of P. falciparum isolates from the Artibonite Valley in Haiti using the allelic families of merozoite surface protein 1 and 2 genes (msp-1 and msp-2). The majority of study subjects infected with P. falciparum had a single parasite genotype (56% for msp-1 and 69% for msp-2: n=79); 9 distinct msp-1 genotypes were identified by size differences on agarose gels. K1 was the most polymorphic allelic family with 5 genotypes (amplicons from 100 to 300 base pairs [bp]); RO33 was the least polymorphic, with a single genotype (120-bp). Although both msp-2 alleles (3D7/IC1, FC27) had similar number of genotypes (n=4), 3D7/IC1 was more frequent (85% vs. 26%). All samples were screened for the presence of the K76T mutation on the P. falciparum chloroquine resistance transporter (pfcrt) gene with 10 of 79 samples positive. Of the 2 (out of 10) samples from individuals follow-up for 21 days, P. falciparum parasites were present through day 7 after treatment with chloroquine. No parasites were found on day 21. Our results suggest that the level of genetic diversity is low in this area of Haiti, which is consistent with an area of low transmission. Copyright © 2011 Elsevier B.V. All rights reserved.
The genetics of attention deficit/hyperactivity disorder in adults, a review
Franke, B; Faraone, S V; Asherson, P; Buitelaar, J; Bau, C H D; Ramos-Quiroga, J A; Mick, E; Grevet, E H; Johansson, S; Haavik, J; Lesch, K-P; Cormand, B; Reif, A
2012-01-01
The adult form of attention deficit/hyperactivity disorder (aADHD) has a prevalence of up to 5% and is the most severe long-term outcome of this common neurodevelopmental disorder. Family studies in clinical samples suggest an increased familial liability for aADHD compared with childhood ADHD (cADHD), whereas twin studies based on self-rated symptoms in adult population samples show moderate heritability estimates of 30–40%. However, using multiple sources of information, the heritability of clinically diagnosed aADHD and cADHD is very similar. Results of candidate gene as well as genome-wide molecular genetic studies in aADHD samples implicate some of the same genes involved in ADHD in children, although in some cases different alleles and different genes may be responsible for adult versus childhood ADHD. Linkage studies have been successful in identifying loci for aADHD and led to the identification of LPHN3 and CDH13 as novel genes associated with ADHD across the lifespan. In addition, studies of rare genetic variants have identified probable causative mutations for aADHD. Use of endophenotypes based on neuropsychology and neuroimaging, as well as next-generation genome analysis and improved statistical and bioinformatic analysis methods hold the promise of identifying additional genetic variants involved in disease etiology. Large, international collaborations have paved the way for well-powered studies. Progress in identifying aADHD risk genes may provide us with tools for the prediction of disease progression in the clinic and better treatment, and ultimately may help to prevent persistence of ADHD into adulthood. PMID:22105624
2010-01-01
Background Detecting population substructure is a critical issue for association studies of health behaviors and other traits. Whether inherent in the population or an artifact of marker choice, determining aspects of a population's genetic history as potential sources of substructure can aid in design of future genetic studies. Jewish populations, among which association studies are often conducted, have a known history of migrations. As a necessary step in understanding population structure to conduct valid association studies of health behaviors among Israeli Jews, we investigated genetic signatures of this history and quantified substructure to facilitate future investigations of these phenotypes in this population. Results Using 32 autosomal STR markers and the program STRUCTURE, we differentiated between Ashkenazi (AJ, N = 135) and non-Ashkenazi (NAJ, N = 226) Jewish populations in the form of Northern and Southern geographic genetic components (AJ north 73%, south 23%, NAJ north 33%, south 60%). The ability to detect substructure within these closely related populations using a small STR panel was contingent on including additional samples representing major continental populations in the analyses. Conclusions Although clustering programs such as STRUCTURE are designed to assign proportions of ancestry to individuals without reference population information, when Jewish samples were analyzed in the absence of proxy parental populations, substructure within Jews was not detected. Generally, for samples with a given grandparental country of birth, STRUCTURE assignment values to Northern, Southern, African and Asian clusters agreed with mitochondrial DNA and Y-chromosomal data from previous studies as well as historical records of migration and intermarriage. PMID:20546593
Jin, Xiaoye; Wei, Yuanyuan; Chen, Jiangang; Kong, Tingting; Mu, Yuling; Guo, Yuxin; Dong, Qian; Xie, Tong; Meng, Haotian; Zhang, Meng; Li, Jianfei; Li, Xiaopeng; Zhu, Bofeng
2017-09-26
We investigated the allelic frequencies and forensic descriptive parameters of 23 autosomal short tandem repeat loci in a randomly selected sample of 1218 unrelated healthy Uyghur individuals residing in the Xinjiang Uyghur Autonomous Region, northwest China. A total of 281 alleles at these loci were identified and their corresponding allelic frequencies ranged from 0.0004 to 0.5390. The combined match probability and combined probability of exclusion of all loci were 5.192 × 10 -29 and 0.9999999996594, respectively. The results of population genetic study manifested that Uyghur had close relationships with those contiguous populations, such as Xibe and Hui groups. In a word, these autosomal short tandem repeat loci were highly informative in Uyghur group and the multiplex PCR system could be used as a valuable tool for forensic caseworks and population genetic analysis.
Functional linear models for association analysis of quantitative traits.
Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao
2013-11-01
Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY PERIODICALS, INC.
Zak, Yana; Pehek, Ellen
2013-01-01
Urbanization is a major cause of amphibian decline. Stream-dwelling plethodontid salamanders are particularly susceptible to urbanization due to declining water quality and hydrological changes, but few studies have examined these taxa in cities. The northern dusky salamander (Desmognathus fuscus) was once common in the New York City metropolitan area, but has substantially declined throughout the region in recent decades. We used five tetranucleotide microsatellite loci to examine population differentiation, genetic variation, and bottlenecks among five remnant urban populations of dusky salamanders in NYC. These genetic measures provide information on isolation, prevalence of inbreeding, long-term prospects for population persistence, and potential for evolutionary responses to future environmental change. All populations were genetically differentiated from each other, and the most isolated populations in Manhattan have maintained very little genetic variation (i.e. <20% heterozygosity). A majority of the populations also exhibited evidence of genetic bottlenecks. These findings contrast with published estimates of high genetic variation within and lack of structure between populations of other desmognathine salamanders sampled over similar or larger spatial scales. Declines in genetic variation likely resulted from population extirpations and the degradation of stream and terrestrial paths for dispersal in NYC. Loss of genetic variability in populations isolated by human development may be an underappreciated cause and/or consequence of the decline of this species in urbanized areas of the northeast USA. PMID:23646283
Who is afraid of math? Two sources of genetic variance for mathematical anxiety.
Wang, Zhe; Hart, Sara Ann; Kovas, Yulia; Lukowski, Sarah; Soden, Brooke; Thompson, Lee A; Plomin, Robert; McLoughlin, Grainne; Bartlett, Christopher W; Lyons, Ian M; Petrill, Stephen A
2014-09-01
Emerging work suggests that academic achievement may be influenced by the management of affect as well as through efficient information processing of task demands. In particular, mathematical anxiety has attracted recent attention because of its damaging psychological effects and potential associations with mathematical problem solving and achievement. This study investigated the genetic and environmental factors contributing to the observed differences in the anxiety people feel when confronted with mathematical tasks. In addition, the genetic and environmental mechanisms that link mathematical anxiety with math cognition and general anxiety were also explored. Univariate and multivariate quantitative genetic models were conducted in a sample of 514 12-year-old twin siblings. Genetic factors accounted for roughly 40% of the variation in mathematical anxiety, with the remaining being accounted for by child-specific environmental factors. Multivariate genetic analyses suggested that mathematical anxiety was influenced by the genetic and nonfamilial environmental risk factors associated with general anxiety and additional independent genetic influences associated with math-based problem solving. The development of mathematical anxiety may involve not only exposure to negative experiences with mathematics, but also likely involves genetic risks related to both anxiety and math cognition. These results suggest that integrating cognitive and affective domains may be particularly important for mathematics and may extend to other areas of academic achievement. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.
Who’s Afraid of Math? Two Sources of Genetic Variance for Mathematical Anxiety
Wang, Zhe; Hart, Sara Ann; Kovas, Yulia; Lukowski, Sarah; Soden, Brooke; Thompson, Lee A.; Plomin, Robert; McLoughlin, Grainne; Bartlett, Christopher W.; Lyons, Ian M.; Petrill, Stephen A.
2015-01-01
Background Emerging work suggests that academic achievement may be influenced by the management of affect as well as through efficient information processing of task demands. In particular, mathematical anxiety has attracted recent attention because of its damaging psychological effects and potential associations with mathematical problem-solving and achievement. The present study investigated the genetic and environmental factors contributing to the observed differences in the anxiety people feel when confronted with mathematical tasks. In addition, the genetic and environmental mechanisms that link mathematical anxiety with math cognition and general anxiety were also explored. Methods Univariate and multivariate quantitative genetic models were conducted in a sample of 514 12-year-old twin siblings. Results Genetic factors accounted for roughly 40% of the variation in mathematical anxiety, with the remaining being accounted for by child-specific environmental factors. Multivariate genetic analyses suggested that mathematical anxiety was influenced by the genetic and non-familial environmental risk factors associated with general anxiety and additional independent genetic influences associated with math-based problem solving. Conclusions The development of mathematical anxiety may involve not only exposure to negative experiences with mathematics, but also likely involves genetic risks related to both anxiety and math cognition. These results suggest that integrating cognitive and affective domains may be particularly important for mathematics, and may extend to other areas of academic achievement. PMID:24611799
Latent spatial models and sampling design for landscape genetics
Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.
2016-01-01
We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.
Genetic studies in pediatric ITP: outlook, feasibility and requirements
Bergmann, Anke K.; Grace, Rachael F.; Neufeld, Ellis J.
2010-01-01
The genomic revolution in medicine has not escaped attention of clinicians and scientists involved in medical management and research studies of immune thrombocytopenic purpura (ITP). In principle, ITP biology and care will benefit greatly from modern methods to understand the patterns of gene expression and genetic markers associated with fundamental parameters of the disease including predictors of remission; risk factors for severity; determinants of response to various therapies; and possibly biological sub-types. However, applying modern genetics to ITP carries severe challenges: (i) achieving adequate sample sizes is a fundamental problem because ITP is rare (and in pediatric ITP, chronic cases constitute only about 1/4 of the total); (ii) familial transmission of childhood ITP is so rare that a convincing pedigree requires consideration of other immunologic or hematologic disorders; (iii) ITP is probably biologically heterogeneous, based on clinical observations, immunological studies and animal models. Here we review the advantages and disadvantages of potential genetic approaches. Sufficient information is available to set reasonable bounds on which genetic analyses of ITP are feasible, and how they are most likely to be accomplished. The highest priority is for accurate phenotypes to compare to genetic analyses. Several registries worldwide hold promise for accomplishing this goal. PMID:20309691
Population structure in Japanese rice population
Yamasaki, Masanori; Ideta, Osamu
2013-01-01
It is essential to elucidate genetic diversity and relationships among even related individuals and populations for plant breeding and genetic analysis. Since Japanese rice breeding has improved agronomic traits such as yield and eating quality, modern Japanese rice cultivars originated from narrow genetic resource and closely related. To resolve the population structure and genetic diversity in Japanese rice population, we used a total of 706 alleles detected by 134 simple sequence repeat markers in a total of 114 cultivars composed of 94 improved varieties and 20 landraces, which are representative and important for Japanese rice breeding. The landraces exhibit greater gene diversity than improved lines, suggesting that landraces can provide additional genetic diversity for future breeding. Model-based Bayesian clustering analysis revealed six subgroups and admixture situation in the cultivars, showing good agreement with pedigree information. This method could be superior to phylogenetic method in classifying a related population. The leading Japanese rice cultivar, Koshihikari is unique due to the specific genome constitution. We defined Japanese rice diverse sets that capture the maximum number of alleles for given sample sizes. These sets are useful for a variety of genetic application in Japanese rice cultivars. PMID:23641181